Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

AUTOMATED QUANTIFICATION AND CLASSIFICATION OF MALARIA PARASITES IN THIN BLOOD SMEARS

MOHD AZIZ, SITI SARAH AZREEN (2013) AUTOMATED QUANTIFICATION AND CLASSIFICATION OF MALARIA PARASITES IN THIN BLOOD SMEARS. Universiti Teknologi Petronas. (Unpublished)

[img] PDF
Restricted to Registered users only

Download (2822Kb)

Abstract

Malaria is one of the life threatening diseases caused by mosquitoes of Anopheles genus that carries the plasmodium parasite. In recent practice, popular methods of malaria disease identification are based on parasitological testing and diagnosis based on symptoms. Both methods have several drawbacks such as limited access to microscopy experts especially in rural area practice, and restricted diagnostic facilities. In addition, accuracy rate is very much dependent in level of microbiologist’s expertise and experience level. Thus, there is an urge for a fast and highly accurate diagnosis technique. The main objective of this project is to improve the current diagnosis technique of malaria parasite in thin blood smears by means of automatic identification by using an image processing method. Focus will be on identifying and counting Plasmodium Vivax parasite at trophozoites stage in thin blood smears. Experiment is conducted in MATLAB environment specifically using the Image Processing Toolbox. Tasks will be divided into four main stages; image acquisition, image preprocessing, image segmentation and image classification. In preprocessing, images were converted to L*a*b* color spaces and are filtered to remove noises. For segmentation stage, a threshold for each image was calculated by using Otsu method. Further, dilation and erosion were performed to completely removed background elements. In the classification stage, images were classified based on the number of infected red blood cell detected. Testing has been done by using 350 images had yield in 99.72% sensitivity, 99.94% specificity and 98.90% positive predictive value. Result proved that this proposed method is able to automatically quantify and classify malaria parasites accurately.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Design
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 29 Oct 2013 10:50
Last Modified: 25 Jan 2017 09:39
URI: http://utpedia.utp.edu.my/id/eprint/10041

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...