
STATUS OF THESIS

Title of thesis Development of Lifting-based VLS I Architectures for
Two-Dimensional Discrete Wavelet Transform

I, IBRAHIM SAEED MOHAMED KOKO

hereby allow my thesis to be placed at the Information Resource Center (IRC) of

Universiti Teknologi PETRONAS (UTP) with the following conditions:

I. The thesis becomes the property of UTP.

2. The IRC ofUTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

D Confidential

[2] Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for ______ years.

Remarks on disclosure:

Ad~/&
Signature of Author

Permanent address:

Sudan U. of Science & Technology

Dept. of Electronics Engineering

Sudan, Khartoum

Date: _1/----'f /'---2-_o-'--/ a_· __

Endo sed by

Sign ture of Supervisor

Name of the Supervisor

Date: I /-1 jY I ()
-~,'---+,-------

UNIVERSITI TEKNOLOGI PETRONAS

DEVELOPMENT OF LIFTING-BASED VLSI ARCHITECTURES FOR TWO­

DIMENSIONAL DISCRETE WAVELET TRANSFORM

By

IBRAHIM SAEED MOHAMED KOKO

The undersigned certify that they have read, and recommend to the Postgraduate Studies

Programme for acceptance this thesis for the fulfillment of the requirements for the

degree of Doctor of Philosophy in Electrical and Electronic Engineering.

Signature

Main Supervisor

Signature

Co-Supervisor

Signature

Head of Department Dr. Nor Hisham Bin Hamid

I /tj_/?46
I I

Date

DEVELOPMENT OF LIFTfNG-BASED VLSI ARCHITECTURES FOR TWO­

DIMENSIONAL DISCRETE WAVELET TRANSFORM

By

IBRAHIM SAEED MOHAMED KOKO

A thesis

Submitted to the Postgraduate Studies Programme

as a Requirement for the degree of

DOCTOR OF PHILOSOPHY

fN ELECTRICAL AND ELECTRONIC ENGrNEERfNG

UN IVERS IT! TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR,

PERAK

August, 20 I 0

DECLARATION OF THESIS

Title of thesis Development of Lifting-based VLSI Architectures for
Two-Dimensional Discrete Wavelet Transform

I BRAHIM SAEED MOHAMED KOKO

hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

Signature of Author

Permanent address:

Sudan U. of Science & Technology

Dept of Electronics Engineering

Sudan, Khartoum

Date:_(--"-(q_:_:_j_J--o_/_cJ_

lV

Name of Supervisor

Date: l~t:£/')<rt6
I

ACKNOWLEDGMENTS

l would like to express my most gratitude to my supervisor Dr. Nor Hisham Bin

Hamid and co-supervisor Dr. Fawnizu Azmadi for their guidance, encouragement,

and valuable advises during the course of this research. l would like also to

acknowledge my former supervisor Dr. Herman Agustiawan for his guidance,

support, and great help during the two years period before he left the university.

l wish to thank the University for giving me the opportunity to undertake this

research at Universiti Teknologi PETRONAS. This work would have been impossible

without the valuable database resources and facilities provided by the university.

My sincere gratitude also to my family for their unlimited support and patience

thought out the period of this work. Finally, l would like to dedicate this work to the

memory of my mother for her unconditional love, support, and motivation of us

during her life.

v

ABSTRACT

Two-dimensional discrete wavelet transform (2-D DWT) has evolved as an essential

part of a modem compression system. It offers superior compression with good image

quality and overcomes disadvantage of the discrete cosine transform, which suffers

from blocks artifacts that reduces the quality of the inage. The amount of

computations involve in 2-D DWT is enormous and cannot be processed by general­

purpose processors when real-time processing is required. Th·"efore, high speed and

low power VLSI architecture that computes 2-D DWT effectively is needed. In this

research, several VLSI architectures have been developed that meets real-time

requirements for 2-D DWT applications. This research iaitially started off by

implementing a software simulation program that decorrelates the original image and

reconstructs the original image from the decorrelated image. Then, based on the

information gained from implementing the simulation program, a new approach for

designing lifting-based VLSI architectures for 2-D forward DWT is introduced. As a

result, two high performance VLSI architectures that perform 2-D DWT for 5/3 and

9/7 filters are developed based on overlapped and nonoverlapped scan methods. Then,

the intermediate architecture is developed, which aim a·: reducing the power

consumption of the overlapped areas without using the expensive line buffer. In order

to best meet real-time applications of 2-D DWT with demanding requirements in

terms of speed and throughput parallelism is explored. The single pipelined

intermediate and overlapped architectures are extended to 2-, 3-, and 4-parallel

architectures to achieve speed factors of 2, 3, and 4, respectively. To further

demonstrate the effectiveness of the approach single and para.llel VLSI architectures

for 2-D inverse discrete wavelet transform (2-D IDWT) are developed. Furthermore,

2-D DWT memory architectures, which have been overlooked in the literature, are

also developed. Finally, to show the architectural models developed for 2-D DWT are

simple to control, the control algorithms for 4-parallel architecture based on the first

scan method is developed. To validate architectures develcped in this work five

architectures are implemented and simulated on Altera FPGA.

VI

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the

university, the copyright of this thesis has been reassigned by the author to the legal

entity of the university,

Institute of Technology PETRONAS Sdn bhd.

Due acknowledgement shall always be made of the use of any material contained

in, or derived from, this thesis.

©Name of candidate, Year of Thesis submission

Institute of Technology PETRONAS Sdn Bhd

All rights reserved

VII

TABLE OF CONTENTS

Status of Thesis .. .i

Approval Page ... ii

Title Page .. iii

Declaration .. i v

Acknowledgements .. v

Abstract. ... v i

List of Figures ... xiv

List of Tables ... xxi

CHAPTER ONE: INTRODUCTION 1

1.1 Background -- .. ------------------------- I

1.2 JPEG2000 Image Compression-------------------.. ------------------------- 4

1.3 Realization of 2-D DWT --- 5

1.4 Separable and nonseparable transform ------------------------------------- 6

1.5 Problem statement --6

1.6 Research objectives and approach----------------.. ------------------------- 8

I . 7 Contributions --· --------------------------9

1.8 Organization of the thesis --9

CHAPTER TWO: LITERATURE REVIEW 11

2.1 Introduction ---·------------------------11

2.2 RAM-based architectures -------------------------- ------------------------14

2.2.1 Direct architecture --- 15

2.2.2 Row-column and column-row architecture ---------------------16

viii

2.2.3 1-levelline-based architecture ------------------------------------17

2.2.4 Multi-level line-based architecture ------------------------------18

2.3 Discussion ---18

2.4 Review of the !-level line-based architectures --------------------------1 9

2. 5 Conclusion -- 2 5

CHAPTER THREE : ARCHITECTURE DEVELOPMENT 27

3. I Introduction --2 7

3.2 Lifting-based 5/3 and 9/7 algorithms

and architectures development --2 8

3.3 Data dependency graphs (DOGs) for 5/3 and 9/7 algorithms ---------32

3.4 External Architecture Development and Refinement ------------------32

3.5 Overlapped and Nonoverlapped Scan Methods------------------------ 38

3.6 Scan Based Architectures --39

3. 7 Intermediate Architectures ---44

3. 7 .I Generalized Overlapped Scan method -------------------------- 44

3.7.2 Proposed External Intermediate Architecture----------------- 47

3. 7.3 Second Dataflow ---48

3.8 Processors Datapath Architectures Development ---------------------------52

3.8.1 5/3 Processor's Datapath Architecture Development--------53

3.8.2 9/7 Processor"s Datapath Architecture Development--------54

3.8.3 Row and Column Processors for 5/3 and 9/7 ------------------56

3.9 Evaluation of architectures--- 65

3. I 0 Combined 5/3 and 9/7 Architecture --7 4

3.11 conclusions ---75

v

CHAPTER FOUR: PARALLEL ARCHITECTURES DEVELOPMENT 76

4. I Introduction -- -------------------------7 6

4.2 parallel architectures based on first scan method------------- ---------------77

4.2.1 2-parallel pipelined external architecture ----------------------77

4.2.2 3-parallel pipelined architecture --------------------------------81

4.2.3 4-parrallel pipelined architecture -------------------------------89

4.2.4 Evaluations of architectures -------------------------------------97

4.3 Parallel form of the intermediate architectures -----------------------------10 I

4.3.1 2-parallel pipelined intermediate architecture ---------------102

4.3 .2 Transition to the last run----------------- -----------------------1 08

4.3.3 3-parallel pipelined intermediate architecture ---------------111

4.3.4 Scale factor multipliers reduction ------------------------------119

4.3 .5 Evaluation of performance --------------------------------------120

4.4 Conclusions -- ---------------------- 124

CHAPTER FIVE: DWT MEMORY ARCHITECTURES 125

5. I Introduction -- 125

5.2 The LL-RAM architecture development------------··---------------------- 126

5.2.1 The LL-RAM read operations ----------------------------------129

5.2.2 The LL-RAM write operations ---------------------------------130

5.2.3 RAM architecture modifications for

higher scan methods ---131

5.2.4 RAM architecture using banks------------------------------- 134

5.3 Subband memory architecture development --------------------------------13 7

5.3.1 The bank structure used in forming subband memory -----138

5.3.2 Details ofthe subband memory architecture ----------------143

5.3.3 Subband memory architecture for higher scan methods ---150

VI

5.4 Control Design for 4-parallel Architecture-------------------------------- !54

5.4.1 Main Control Unit ---157

5 .4.2 Processors Control Unit --164

5.4.3 Read LL-RAM Control Unit ----------------------------------174

5.4.4 Write RAM/Subband Memory Control Unit ----------------178

5. 5 Cone I us ions ---I 8 7

CHAPTER SIX: 2-DIMENSIONAL INVERSE DISCRETE WAVELETS 188

TRANSFORM ARCHITECTURE DEVELOPMENT

6.1 Introduction ---!88

6.2 Lifting-based 5/3 and 9/7 synthesis algorithms

and data dependency graphs --1 89

6.3 Scan methods-- I 91

6.4 Proposed External Architecture ---193

6.5 Processors' architecture development ------------------------------------198

6.5.1 Inverse 5/3 processor's architecture development --------198

6.5.2 Inverse 9/7 processor's datapath architecture -------------200

6.5.3 Combined inverse 9/7 and

5/3 processors architecture ----------------------------------200

6.5.4 Modified row and column processors for 5/3 and 9/7

externa I architecture --20 1

6. 6 Performance Evaluation ---209

6. 7 Parallel Architecture Development--------------------------------------- 211

6. 7 .I Proposed 2-parallel external architecture ----------------- 21 I

6. 7.2 Modified CPs and RPs for 5/3 and 9/7 2-parallel

external architecture ---214

6. 8 Proposed 4-parallel external architecture ---------------------------------217

vii

6.8.1 Column and row processors for 5/3 and 9/7

4-parallel external architecture ---------- ------------------220

6.8.2 Modified CPs for 4-parallel archite,;ture -----------------220

6.8.3 Modified RPs for 4-parallell archit(:cture ----------------222

6.9 Performance evaluation-- 224

6.10 Conclusions---·---------------------- 227

CHAPTER SEVEN: EXPERIMENTAL RESULTS 228

7.1 Performance analysis --228

7.2 Performance evaluations and comparisons ------------------------------229

7.3 Experimental results and comparisons ----------------------------------231

7.4 Cone I us ions ---241

CHAPTER EIGHT: CONCLUSIONS AND RECOMMENDATIONS 242

8.1 Conclusions---··-----------------------242

8.2 Recommendations -----------------------------------·-----------------------246

RE FERENCE S --- -----------------------24 8

APPENDIX A: Software simulation program development ---·-----------------------253

APPENDIX B: Dataflow and control signals tables------------.. -----------------------270

APPENDIX C: FPGA compilation and synthesis results------·-----------------------293

APPEND IX D : Pub 1 i cations---2 9 8

viii

List of Figures

1.1.1 (a) The original image (b) decorrelated image (c) reconstructed image ---------2

1.1.4 A simplified compression system ---3

1.2.1 JPEG 2000 encoding--4

1.3. I Lifting-based tree-structured fi Iter bank ---6

2.1.1 One-dimensional tree-structured filter bank and Subband structure -----------11

2.1.2 Tree-structured filter bank for 2-D DWT for D levels decomposition ---------12

2. 1.3 3 -!eve I of Wavelet decomposition of an image ------------------------------------13

2.2.1 Direct 2-D implementation --15

2.2.2 RCCR 2-D implementation --- 16

2.2.3 1-levelline-based implementation --- 17

2.2.4 Multi-level line-based implementation-- 18

3.1.1 Lifting-based tree-structured filter bank with processors ------------------------28

3 .2. I Block diagram representation of Eq (4.2.4) ---------------------------------------30

3.2.2 Three processors based 2-D DWT architecture---------------------------------- 31

3.3.1 5/3 algorithm's DOGs for (a) odd and (b) even length signals -----------------33

3.3.2 9/7 algorithm's DOG for odd (a) and even (b) length signals ------------------33

3.4.1 Architecture for 2-D DWT --- 36

3.5.1 Overlapped scan method for 5/3 ---39

3.5.2 Non-overlapped scan method for 5/3 --- 40

3. 5.3 Overlapped scan method for 9/7 ---40

3.6.1 Proposed overlapped scan architecture--- 41

3 .6.2 Proposed non-overlapped scan architecture --------------------------------------42

3.7.1 The third overlapped scan method (a) for 5/3 and (b) for 9/7-----------------45

3. 7.2 Proposed external intermediate architecture------------------------------------- 49

3.8.1 5/3 processor's datapath architecture with symmetric extension --------------54

3.8.2 The 917 processor's datapath architecture with extension----------------------55

ix

3.8.3 Modified stage 2 of the 5/3 CP for overlapped and nonoverlapped ----------58

3.8.4(a) Modified first 9/7 CP for overlapped and nonoverlapped architectures------ 58

3.8.4(b) Modified second 9/7 CP for overlapped

and nonoverlapped architectures ---59

3.8.5 Modified stage 2 of 5/3 for intermediate CP ------------·------------------------59

3.8.6 Incorporation of a TLB in stage 2 of the RP ------------·------------------------ 60

3 .8. 7 TLB in a separate pipeline stage --------------------------.. ------------------------60

3.8.8(a) Modified first 9/7 RP for overlapped

and nonove r lapped arch i lectures -------------------------.. ------------------------62

3.8.8(b) Modified fsecond 9/7 RP for overlapped

and nonoverlapped architectures -------------------------.. ------------------------63

3.8.9 Modified RP datapath for 5/3 and 9/7 intermediate architectures ------------64

3.8.10 Incorporation of a TLB in stage 3 of Figure 3.9.2 to form

the 9/7 RP for Intermediate architecture -----------------.. ----------------------- 64

3.9. I Pipe lined overlapped parallel scan architecture ----------------------------------68

3.9.2 Pipelined nonoverlapped parallel scan architecture----.. ------------------------ 68

3.9.3 Pipelined intermediate parallel scan architecture-------.. ----------------------- 69

3.10.1 Combined 9/7 and 5/3 processors datapath architecture -------------------------74

4.2. I 2-parallel pipe lined external architecture -----------------·------------------------78

4 .2. 2 Modified RP --.. ------------------------81

4.2.3 3-parallel pipe lined architecture ---------------------------- .. ----------------------- 82

4.2.4 Waveforms of the 2 clocks used in 3-parallel --------------------------------------83

4.2.5 Modified CPs datapath architecture ---87

4.2.6 Modified stage 3 of CPs -------------------------------------·------------------------ 89

4.2. 7 4-parallel pipe lined architecture ----------------------------.. ----------------------- 90

4.2.8 Waveforms of the 3 clocks used in 4-parallel-------------·------------------------ 91

4.2.9 Modified stage 2 of the RPs datapath architecture ------- .. ------------------------93

X

4.2.1 0 Control signals carried by CST and the block diagram ------------------------ 96

4.2.11 CPl and CP2 exchange high coefficients-- 97

4.3. I 2-paralle I pipe! ined intermediate architecture ------------------------------------1 02

4.3.2 Modified stage 2 of 5/3 RPS datapath architecture ------------------------------105

4.3 .3 Modified 9/7 RPs datapath for 2-parallel intermediate architecture ----------106

4.3.4 Control circuit that determines the last run ---------------------------------------110

4.3.5 (a) Modified 5/3 CP for 2-parallel intermediate architecture ------------------111

4.3.5 (b) Modified 9/7 CP for 2-parallel intermediate architecture ------------------112

4.3 .6 3 -parallel pipelined intermediate architecture ------------------------------------113

4.3. 7 Waveforms of the three clocks ---113

4.3.8 (a) Modified 5/3 RPs datapath for 3-parallel

intermediate architecture ---115

4.3.8 (a, b) Modified 9/7 RPs datapath for 3-parallel

intermediate architecture --116

5 .1.1 General structure of a compression system-- 126

5 .2. I Block diagram of the memory module. ---127

5 .2.2 RAM architecture using modules --128

5 .2.3 Incorporation of register XR --134

5.2.4 Bank architecture with 8 modules and its block diagram---------------------- 135

5 .2.5 RAM architecture using bank -- 136

5.3.1 Subband memory architecture --139

5.3.2 Structure of the first bank and its block diagram-------------------------------- 140

5.3.3 Structure of the second bank and its block diagram -----------------------------141

5.3.4 Subband memory architecture built using the block

diagram of the second bank ---142

5.3.5 Architecture of the subband memory --145

5. 3. 6 Architecture of subband memory --146

XI

5.3. 7 Incorporation of register XR --------------------------------·----------------------1 5 I

5.3.8 Flowchart for subband memory write control algorithm -----------------------153

5.4.1 Subband memory interconnections to 4-parallel ------------------------------ I 55

5.4.2 DWT Control Unit-- I 56

5 .4. 3 C-un it --- I 58

5.4.4 ASM flowchart for A-unit and its block diagram -------------------------------161

5.4.5 ASM chart forB-unit and its block diagram -------------------------------------163

5.4.6 ASM flowchart for TLB control unit and its block diagnm.------------------ 166

5.4. 7 ASM flowchart for Extension Control Unit and its block diagram.-----------169

5.4.8 ASM flowchart for CPs control unit and its block diagram------------------ 172

5.4.9 ASM chart for Read RAM Control Unit of the RAM architecture

using modules and its block diagram ----------------------··-----------------------175

5.4.1 0 ASM chart for Read RAM Control Unit of the

RAM architecture using banks and its block diagram -------------------------177

5.4.11 ASM chart for write subband memory control

unit and its block diagram ----------------------------------··-----------------------180

5.4.12 ASM chart for write RAM control unit of the RAM architecture

using modules, the block diagram, and the proposed clock signal ----------- 184

5.4.13 SM flowchart for write RAM control unit of the RAM

architecture using banks and block diagram ------------------------------------186

6.2.1 5/3 synthesis algorithm's DDGs for (a) odd and (b) even length signals ----190

6.2.2 9/7 synthesis algorithm's DDGs for(a) odd and (b) even length signals ----190

6.3.1 5/3 CP scan method-- 192

6.3.2 917 CP scan method-- 192

6.3.3 5/3 RP scan method-- 193

6.3.4 9/7 RP scan method -- 193

6.4.1 reposed external architecture for 513 and 9/7 and combined

xii

5/3 and 9/7 for 2-D IDWT and Waveforms for clocksfandfl'2 ·············• 195

6.5.1 Inverse 5/3 processor datapath architecture with symmetric extension ------199

6.5.2 Inverse 9/7 processor datapath architecture with symmetric extension ······202

6.5.3 Combined Inverse 9/7 and 5/3 processor datapath architecture ···············203

6.5.4 Modified inverse 5/3 CP datapath architecture with symmetric extension --203

6.5.5 Modified CP for 917 and combined 5/3 and 9/7 datapath architecture ····---206

6.5.6 Modified inverse 5/3 RP datapath architecture with symmetric extension --205

6.5.7 Modified RP for 9/7 and combined 5/3 and 9/7datapath architecture ·····---206

6.7.1 Proposed 2-parallel pipelined external architecture for 5/3 and 9/7

and combined 5/3 and 9/7 for 2-D IDWT and waveforms of the clocks----212

6.7.2 Modified inverse 5/3 CP for 2-parallel External architecture 215

6. 7.3 Modified RP for 2-parallel architecture (a) 5/3 and (a) & (b) 917 ············ 216

6.8.1 (a) Proposed 2-D IDWT 4-parallel pipe lined external architecture

or 5/3 and 9/7 and combined 5/3 and 9/7. (b) Waveforms of the clocks -----218

6.8.2 Modified CPs for 5/3 CP I & 3 and 2 &4 for 4-parallel architecture······· 221

6.8.3 (a) Modified 5/3 RPs I and 3 for 4-parallel External Architecture ·······--222

6.8.3 (a, b) Modified 9/7 RPs I and 3 for 4-parallel External Architecture ·····---223

7.3.1 Simulation Report- Simulation Waveforms

for 5/3 "decorrelate_processor"-··236

7.3.2 Simulation Report- Simulation Waveforms for 5/3

module ''reconst_processor'' ···236

7.3.3 Simulation Report- Simulation Waveforms

for first 9/7 "decrrelation2 _processor" ··-23 7

7.3.4 Simulation Report- Simulation Waveforms

for second 9/7 "decorelation_processor" ··-238

7.3.5 Simulation Report- Simulation Waveforms

for 5/3 2-parallel module "decorelation _process ·······························239

Xl11

A.3.1 (a) Main program (b) Forward program ---260

A.3.1 (c) Horizontal high pass decomposition flowchart -------------------------------261

A.3.1 (d) Horizontallowpass decomposition flowchart --------------------------------262

A.3 .2 (a) In verse program --263

AJ .2 (b) V erticallowpass flowchart ------------------------------ -----------------------264

A.3 .2 (c) Vertical high pass reconstruction flowcharts ----------------------------------.265

A.3.2 (d) Horizontallowpass flowchart --266

A.3.2 (e) Horizontal highpass reconstruction flowcharts ------------------------------.267

A.3.3 (a) The original image (b) decorrelated image

(c) reconstructed image ----------------------------------- -----------------------269

A.3.4 Original image pixels highly correlated --269

A.3.5 Decorrelated image pixels decorrelated --269

B .11 Circuit ---2 7 5

C.l.l Compilation Report- Flow Summary for

5/3 module "decorre late _processor"--2 93

C.l.2 Compilation Report- Power Analyzer summary

for 5/3 "decorre late _processor"---29 3

C.l.3 Compilation Report- Timing Analyzer Summary

for 5/3 "decorre late _processor"---293

C.2.1 Compilation Report- Flow Summary for

5/3 module "reconst_processor" --------------------------- ------------------------2 94

C.2.2 Compilation Report- Power Analyzer

summary for 5/3 "reconst_processor" ---2 94

C.2.3 Compilation Report-Timing Analyzer

Summary for 5/3 "reconst _processor"--------------------.. -----------------------2 94

CJ.l Compilation Report- Flow Summary

for first 9/7 "decrre lation2 _processor"---2 9 5

XIV

C.3.2 Compilation Report- Power Analyzer

summary for 9/7 "decrrelation2 _processor"-------------------------------------295

C.3.3 Compilation Report- Timing Analyzer

Summary for 9/7 "decrrelation2 _processor" ------------------------------------295

C.4.1 Compilation Report- Flow Summary

for second 9/7 "decore lation _processor"---2 96

C.4.2 Compilation Report- Power Analyzer

summary for 917 "decorelation _processor"--------------------------------------296

C.4.3 Compilation Report- Timing Analyzer

Summary for 917 "decrrelation2 _processor" ------------------------------------296

C.5.1 Compilation Report- Flow Summary

for 5/3 2-parallel module "two-parallel_DWT"--------------------------------297

C.5.2 Compilation Report- Power Analyzer

summary for 5/3 2-parallel module "two-parallel_DWT"---------------------297

C.5.3 Compilation Report- Timing Analyzer

Summary for 5/3 2-parallel module "two-parallel_ DWT"--------------------297

XV

List of Tables

2.1 Summary of the RAM-based 2-D architecture --------------------------------------19

3.1 Control signal values ---··------------------------43

3 .2 Reduce contro I signals ---· ------------------------44

3.3 Symmetric extension's control signals for 5/3 --------------------------------------54

3.4 Symmetric extension's control signals for 9/7 --------------------------------------56

4.1 Shows scheduling patterns for CPs and registers involved.------------------------ 85

4.2 Control signal values ---··----------------------- 85

4.3 Shows how and when CPs exchange high coefficients -----------------------------88

4.4 Control signal values for signal sc ---88

4.5 Control signal values for s3, SLO, and SLI-- 104

4.6 Control signal values for signals in stage 2 of both RP1 and RP2 ---------------107

4.7 Control signal values for s2, slO, and sll in the last run.---··-----------------------109

4.8 Control signal values ---··-----------------------118

6.1 Control signal values for eth, ell, and sr ---------------------·-------------- ------- 198

6.2 Extension's control signals ------------------------------------··---------------------- 200

6.3 Control signal values for 9/7 RP ------------------------------·---------------------- 208

6.4 Dataflow of the 5/3 RP I ---------------------------------------· -----------------------21 7

7 .I Comparisons of severall-level (9/7) 2-D DWT architectures-------------------- 230

7.2 Experimental results and comparisons-----------------------·---------------------- 234

B.1 Dataflow for Figures 4.6.1 and 4.6.2 ---270

B.2 (a) Dataflow of the second 9/7 pipelined overlapped

architecture for even N --2 71

B.2 (b) Dataflow of the second 9/7 pipelined overlapped architecture for odd N---272

B.2 (c) Control signal values ---------------------------------------· ----------------------272

B.3 Dataflow of the intermediate architecture ---273

B.4 Second dataflow for the architecture ---274

XVI

8.5 (a) Control signal values------------------------- ------------------------------------275

8.5 (b) Control signal values for sre2 ---275

8.6 5/3 Dataflow for overlapped and nonoverlapped parallel scan architecture --275

B. 7 5/3 Dataflow for intermediate parallel scan architecture ------------------------276

8.8 Dataflow for 2-parallel architecture --276

8. 9 Dataflow of the architecture ---277

B.l 0 5/3 4-parallel architecture's dataflow ---278

B.ll 4-parallel 's TL8s read and write dataflow --279

B.l2 Dataflow for 2-parallel intermediate architecture --------------------------------280

8.13 Dataflow of the last run for cases 4 and 3 when N is even ----------------------281

8.14 Dataflow of the last run for cases 4 and 3 when N is odd -----------------------282

B.l5 Dataflow of the last run for cases 2 and 1 when N is even ----------------------283

8.16 Dataflow of the last run for cases 2 and 1 when N is odd -----------------------284

8.17 Dataflow of the 3-parallel intermediate architecture -----------------------------285

B.l8 Dataflow of the 5/3 architecture-- 287

8.19 (a) dataflow for 9/7 architecture from CP side -----------------------------------288

8.19 (b) dataflow for 9/7 architecture from RP side ----------------------------------- 289

8.20 Dataflow for 2-parallel 5/3 architecture --290

B.21 Dataflow for 4-parallel5/3 architecture --291

XVII

1.1 Background

CHAPTER 1

INTRODUCTION

Image compression plays an important role in real-time applications especially in the

bandwidth limited applications such as internet, mobile phone, and telemedicine.

Images are compressed for fast transmission over a network and efficient storage.

Image compression takes advantage of the redundant information contained in the

original image. The redundancy exists in the form of statistical dependencies among

pixels especially neighboring pixels. However, neighboring or adjacent pixels are

highly correlated, which implies that it would be very difficult to immediately

compress the original image pixels. Applying a compression algorithm directly to the

original image pixels would yield poor compression ratio. Therefore, Transforms such

as Fast Fourier Transform (FFT), Discrete Cosine Transform (OCT), and Discrete

Wavelet Transform (DWT) are utilized to decorrelate the original image pixels in

order to be amenable to compression. Two-dimensional discrete wavelet transform (2-

D DWT) compared to OCT is very efficient in decorrelating an image pixels and thus

leading to a superior compression performance. DWT naturally as indicated in Figure

I. 1.1 (b) supports progressive transmission, which is somewhat very difficult to

implement in OCT-based compression. 2-DWT has evolved as an effective and

powerful tool in many applications especially in image processing and compression

[I, 2].

To show the correlation property of original image pixels I have plotted in Figure

A.3.4 the pixels of the original image shown in Figure 1.1.1 (a). It shows that the

original image pixels are highly correlated. But, when the pixels of the original image

are applied to the forward discrete wavelet transform (FDWT) software simulation

program that we have developed which is listed in Appendix A, the result was the

decorrelated image shown in Figure 1.1.1 (b). The pixels of the decorrelated image

The original Image

(a)

Deco rre late d image

(b)

A eoo nst ruote d I mage

(c)

Figure 1.1.1 (a) The original image (b) Decorretated image (c) Reconstructed image

2

shown m Figure 1.1.1 (b) are then plotted in Figure A.3.5 where it displays a flat

image indicating that the amount of correlation among pixels has been greatly

reduced.

The 2-D DWT considered in this research is part of a compression system based

on wavelet such as JPEG2000, as shown in Figure 1.1.4. The function of the forward

discrete wavelet transform (FDWT) in a compression system is to decorrelate the

image pixels prior to the compression step [3]. Thus, the DWT is used to effectively

decorrelate the image pixels to achieve higher compression rates [4, 5]. Decorrelation

step can be thought of introducing distortion to the original image pixels so that they

can be amenable to compression.

After transmitting to a remote site, the original image must be reconstructed from

the decorrelated image. The task for reconstructing and completely recovering the

original image are performed by the inverse discrete wavelet transforms (IDWT).

FDWT

Decorrelates

image
r-

Compress

Decorrelated

image

•••••• ..
a Transmit to

remote site

Decompress

decorrelated ~
image

Figure 1.1.4 A simplified Compression System

IDWT

reconstructs

image

The amount of computations involves in both decorrelation and reconstruction

steps are enormous, which required very high processing power that can't be achieved

by general-purpose processors, especially when real-time processing is required.

Therefore, high speed, low power, and low memory VLSI architectures that compute

2-D DWT effectively are needed. The objective of this research is to develop such

architectures based on the lifting scheme [4, 5, 6] that meets real-time requirements

for 2-D DWT applications. Lifting-based, compared with convolution-based, involves

less computation and lower memory and facilitates high speed and efficient

implementation of wavelet transform and it is attractive for high throughput and low

power applications.

3

1.2 JPEG2000 Image Compression

JPEG2000 was developed to provide high rates of compression with good image

quality and overcome the disadvantages of previous JPEG that uses OCT based image

compression [7, 8] which suffers from blocks artifacts that reduce the quality the

image.

The JPEG2000 standard uses 2-dimentional, separable, non expansive, symmetric

extension wavelet transforms. In this process the whole image is transformed into

different resolution levels using the DWT. In case of a large image size, the image is

optionally decomposed (divided) into a number of non-overlapping rectangular blocks

called tiles and DWT is applied inside each tile independently. The DWT performs

either reversible 5/3 filter, which provides loss less coding, or nonreversible 9/7 filter,

which provides higher compression ratio with lossy coding. The DWT decomposes an

image into subbands, then coefficients of each subband is partitioned into rectangular

code block as illustrated in Figure 1.2.1, which are then coded independently using

EBCOT (Embedded Block Code with Optimized Truncation). EBCOT is the name

given to the entropy encoder in the JPEG2000 and it differs from JPEG's encoder in

that the division into independent non-overlapping code-bl•)Cks is done after the

transform instead of before the transform. EBCOT, which contains tier- I and tier-2

coding, relies upon independent coding of relatively small bJo,;ks of subband samples

(e.g., 64 x 64 or 32 x 32 samples). In tier- I each code-block i~: independently entropy

coded and in tier-2 each encoded bit-stream is optimally trunc<ted such that an overall

desired bit rate is achieved. Tier-2 is implemented in software whereas tier-! is

implemented in hardware [8].

sub band

EJ===>
DWT

sub

1 band ~ Tier I Tier-2 sub sub
r band band EBCOT

t stream

Compresszon

Figure 1.2.1 JPEG 2000 encoding

4

1.3 Realization of 2-D DWT

The realization of DWT filter bank can be classified into two categories: one is

based on the convolution operation [I 0), [11), [12), and the other is based on the

lifting scheme [13), [14], [15). The tree structure filter bank is the realization of 2-D

DWT based on convolution operation. The high-pass and low-pass filters of the filter

bank are usually FIR (finite impulse response) filters and FIR involves convolution

operation. This direct realization is termed convolution-based DWT. Convolution

based DWT is computationally intensive and requires a large number of registers -

features that are not desirable in high-speed and low-power VLS1 implementation.

On the other hand, lifting-based scheme proposed by Daubechies [4, 5, 6)

involves less computation and lower memory. The basic principle of lifting scheme is

to factorize the polyphase matrix of the wavelet filters into a sequence of alternating

upper and lower triangular matrices and a diagonal matrix called lifting steps [4, 5).

Polyphase divide the filters into even and odd parts as follows [16):

(1.1)

where h(z) and ;if(z) are the low-pass and high-pass analysis filters. he(z)and

- -ho(z) are the even and odd parts ofh(z), whereas ge(z) and go(z) are the even and

odd parts ofg(z). Eq(l.1) can be represented in a matrix form, called, polyphase

matrix, P(z):

p (z)Jh.e(z) ho(z)l
l;,;e(z) go(z)

(1.2)

If the determinant of 1\z) is one, then polyphase matrix can be factorized into lifting

steps [4], as follows:

Ji(z)=Il[1 s,(z)][I O][k OJ
,~ 1 0 1 t,(z) I 0 ljk

(1.3)

It is a well known result in matrix algebra that any matrix with polynomial entries and

determinant one can be factored into such elementary matrices. Figure 1.3.1 shows

the lifting-based tree-structured filter bank representation of 2-D DWT. The new

representation leads to a faster implementation of the wavelet transform and it is

5

attractive for both high throughput and low-power applications. In addition, the

computational complexity of the lifting algorithm is half of that of convolution

algorithm [4]. Therefore, the lifting-based DWT becomes the preferred scheme for

VLSI implementation and it has been selected as the transform coder for image

compression in the released JPEG2000 standard.

1.4 Separable and nonseparable transforms

There are two approaches to compute the 2-D DWT: separabk and nonseparable [12].

A key practical advantage of separable transforms is that they may be implemented by

applying the one dimensional transform first to the rows of the image and then to its

columns. The inverse transform is implemented in an analogous manner. A

nonseparable approach for the 2-D DWT directly decompo;es an image into four

subimages without row and column processes one after another [17]. However, the

dedicated four 2-D filters require considerably more hardware resources.

X

Figure 1.3.1 Lifting-based tree-structured filter bank

1.5 Problem statement

VLSI architecture for 2-D DWT has not yet been completely and accurately

developed that meet real-time requirements for 2-D DWT applications. There is need

for comprehensive and detailed study to understand the 2-D DWT algorithms in order

6

to develop more accurate architectures. Thorough understanding of DWT algorithms

can be gained through developing a software simulation program for both

decorrelation and reconstruction processes. Developing a simulation program will

give the hardware architecture designer available opportunity to learn in details the

behavior of the algorithm and acquire a firm understanding, which in turn will enable

him to develop more accurate architecture.

Furthermore, the internal memory of the 2-D DWT processor, which dominates

the hardware cost and the complexity of the architecture, is still high, while external

memory consumes the most power. Therefore, the research would focus on reducing

effectively the internal memory or temporary line buffer (TLB) requirements for 2-D

DWT architecture. In addition, novel and accurate architectures for 2-D DWT would

be developed that meet high speed and low memory requirements. Furthermore, a

specific architecture would be developed that aims at reducing the external memory

power consumption, which consumes the most power. The intermediate architecture

developed in chapter 3 addresses this issue and 22% reduction in power consumption

has been achieved.

DWT decomposes an NxM image into subbands. These subbands must be stored

by DWT unit in a memory unit in a specific order that preserves the subbands

boundaries such that these subbands can be manipulated effectively by both DWT and

compression units. This would require developing specific VLSl memory

architectures for 2-D DWT. DWT memory architectures have been usually

overlooked in the literature. Since, 2-D DWT memory architectures are equally

important as DWT processor architectures commonly covered in the literature, in this

work, two novel YLSI architectures for LL-RAM and subband memory would be

developed. Furthermore, to show the architectures developed in this research are

simple to control, one of the architecture would be selected and its control algorithms

will be developed. Both pipe lining and parallelism will be explored to further improve

performance in terms of speed and throughput to best meet real-time applications of

2-D DWT with demanding requirements.

7

1.6 Research objectives and approach

The objective of the research is to develop VLSJ architectures for both decorrelation

and reconstruction processors that meet real-time requin:ments for 2-D DWT

applications. In developing VLSI architectures for 2-D DWT processors, our goals are

to achieve high speed, low power, low memory, and complete hardware utilization.

In this work, specifically, VLSI architectures for lossless 5/3 and lossy 9/7

algorithms, explicitly defined by the JPEG2000 image compression standard, will be

used for the development of the 2-D DWT decorrelation and reconstruction

processors. In addition, symmetric extension algorithm recommended by JPEG2000

for boundary treatment will be incorporated into 5/3 and 9/7 data dependency graphs

(DOGs) and will be implemented by the architectures develop<:d in this research.

To verity the architectures developed in this research are efficient and accurately

perform their intended functions, some selected architectures, which are

representative of the other architectures, will be implement·~d on FPGA and a

timing simulation will be performed to validate the logical operations of the

designs.

The approach or the strategy adopted in the development of 2-D DWT

architectures is based on the observation that the DOGs for 5/J and 9/7 algorithms are

identical when they are looked at from outside, taking into consideration only inputs

and outputs requirements, but differ in the internal details. Ba,;ed on this observation,

the first level of the architecture, call it, the external architecture, which is identical

for both 5/3 and 9/7, is developed. Then, the internal ddails of the DOGs is

considered for developing separately the processors' datapath architectures for each

5/3 and 9/7 filters that can be incorporated into the external architecture, since DOGs

internally define and specify the structure of the processors.

This new approach not only can be effectively used m 5/3 and 9/7 based

architectures development, but can be used also in architecture development for any

2-D DWT algorithms and it is certain to yield very efficient architectures in terms of

hardware complexity, speed, and power consumption with manageable control

complexity.

8

I. 7 Contributions

This research has contributed with several novels VLSI architectural models

developed specifically for 2-D DWT as follows. First, a software simulation program

is developed that perform both decorrelation and reconstruction of an MxN image.

Then, two single pipelined architectures based on overlapped and nonoverlapped scan

methods are developed for both 5/3 and 9/7 followed by the single pipelined

intermediate architecture. The above 3 single pipelined architectures are then

extended to 2-, 3-, and 4-parrallel architectures. In addition, modified datapath

processor architectures that can be incorporated into single and parallel architectures

are also developed.

The research also has addressed one of the critical issues overlooked in the

literature, the 2-D DWT memory architectures, and has developed two novel VLSI

architectures for LL-RAM and subband memory. Furthennore, to show that the

architectures developed in this research are simple to control, the control model and

its algorithms for 4-parallel architecture based on the first scan method is developed.

Finally, to show the effectiveness of the approach, the inverse DWT architectures

for single and parallel 5/3, 917, and combined 5/3 and 9/7 are developed.

Significant parts of this research had been published in international conferences

and journals were listed in Appendix D.

1.8 Organization of the thesis

Chapter 2 introduces tree structured filter bank for 1-D and 2-D DWT and

classification of2-D DWT architectures. Then 1-levelline-based architectures, which

adopt level-by-level approach to achieve multi-level decompositions, are reviewed.

In chapter 3, the data dependency graphs (DOGs) of the algorithms are derived.

Based on the DOGs, the overlapped and nonoverlapped single pipelined architectures

are developed. The intermediate architecture which is an alternative form of reducing

the power consumption of the overlapped areas is also developed.

In chapter 4, in order to best meet real-time applications of DWT with demanding

requirements, the parallel architectures based on the tirst scan method and parallel

9

form of the intermediate architectures are developed

ln chapter 5, DWT Memory architectures for LL _RAM and subband memory,

which have overlooked in the literature, are developed. To show the architectures

developed in this work are easy to control, the control algorithms of the 4-parallel

architecture are developed.

In chapter 6, to show the effectiveness of the approach and techniques adopted in

the forward architectures, the single and parallel architectures for inverse 5/3 and 9/7

are developed.

In chapter 7, performance evaluations and experimental results for 5 architectures

developed in this research are implemented on Altera FPGA and then simulated for

validation.

In chapter 8, conclusions are drawn and recommendations for future work are

stated.

IO

2.Jlntroduction

CHAPTER2

LITERATURE REVIEW

The basic operation of a discrete wavelet transfonn is as follow. Applied to a discrete

signal containing N samples, a pair of filters low-pass (ho) and high-pass (h1) derived

from wavelet is applied to the signal to decompose it into a low frequency band (L)

and a high frequency band (H). Each band is subsampled (decimated) by a factor of

two, so that the two frequency bands each contain N/2 samples. A tree-structured

transform is obtained by applying the L band again to a pair of low- and high-pass

filters [15]. The one dimensional case is illustrated in Figure 2.1.1. The recursive

subdivision is continued for J levels, yielding a total of (J+ I) subbands. The low

frequency subband LJ contains Nli samples, while the remaining subbands contain

N/2J samples for 0 < j ,; J.

X[K]

(a)

L_L_41~H-4~~-H-'--~~ ___ H_, ____ _L ________ H_, ________ _L_.. w

(b)

Figure 2.1.1 (a) one-dimensional tree-structured filter bank; (b) Subband structure for

J= 4 levels decomposition.

II

A two dimensional transform is constructed by "separable extension" of one

dimensional transform. In this approach each row of 2-J image is filtered with a low­

pass (ho) and high-pass (h 1) filters and the output of each filter is down-sampled

(decimated) by a factor of two to produce the intermediate images Land H, as shown

in Figure 2.1.2. L is the original image low-pass filtered and down-sampled in the

horizontal direction and H is the original image high-pass filt•;red and down-sampled

in the horizontal direction. Next, each column of these new images is filtered with

low- and high-pass filters in the vertical direction and down-sampled by a factor of

two to produce four sub-images (LL, LH, HL, and HH). The:;e four subband images

can be combined to create an output image with same number of samples as the

original. The four subband images contain all of the information present in the

original image but the sparse nature of the LH, HL, and HH sub bands (many samples

in these subbands are zeros or close to zeros) makes them amenable to compression.

In an image compression application, the two-dimensional wavelet decomposition

described above is applied again to the 'LL' image, forming four new subband

images. The resulting low-pass image is iteratively filtered to create a tree of sub band

images filter bank as shown in Figure 2.1.2. The subband structure is shown in

Figure 2.1.3 for

Row
filtering

Column
filtering

First level decomposition J'h !eve l decomposition

Figure 2.1.2 Tree-structured filter bank for 2-D DWT for J levels decomposition.

12

Ro

LL, HL,
HL2

L~ H~
HL 1

LH2 HH2

LH 1 HH,

Figure 2.1.3 3-level of Wavelet decomposition of an image

3-level decomposition of an image. In Figure 2.1.2 the notations *h and • v denote

horizontal and vertical convolution along rows and columns of the image,

respectively. And b denote horizontal and vertical decimation by 2 (down sampled

by 2). Note that only one of the four subbands, the LL band, is recursively

decomposed into further subbands. If the recursive subdivision is continued for J

levels, it yields a total of (3J + 1) subbands, with non-uniformly spaced pass bands.

The LL subband of nonuniform subband decomposition is a low resolution

versiOn of the original image. Therefore, it follows that the lowpass subbands,

identified as LLJ in Figure 2.1.2, represent a family of successively lower resolution

versions of the original image. The sampling density for LLJ is 2"2J times that of the

original image in each direction, where d = 1 ,2, ... ,J. However, all these low resolution

images are intermediate results; only LLJ is actually one of the subbands of the final

tree-structured transform. And each of the images in this multiresolution family may

be recovered by partial application of the synthesis system. LLJ _" for example, may

be synthesized from subbands LLJ, LHJ, HLJ, and HHJ, while LLJ _ 2 may be

synthesized from these subbands, together with LHJ .1• ~~~~J. 1, and HHJ. 1•

This multiresolution property is particularly interesting for image compression

13

applications. It provides a mechanism whereby a compressed bit-stream may be

partially decompressed to obtain successively higher resolution versions of the

original image. To be more specific, let Rj be the set containing of subbands LHJ + 1 _ J•

HLJ + 1 -i and HHJ + 1 _ J for 0 < j :'S 1 and let Ro be the set consisting of only subband

LLJ. These groupings are also identified in Figure 2.1.2. We refer to the RJ as

resolution levels, since R0 contains the lowest resolution image and each successive

resolution level, Rj, contains the additional information required to reconstruct the

next member of the multiresolution family. Suppose now that the elements of each

set, RJ, 0::; j ::; J, are compressed independently and their compressed representations

are separately identifiable within the compressed image representation. Then, the

compressed representation has a property known as "resolution scalability," whereby

a compressed representation of any member of the multire5olution family may be

obtained simply by discarding those pieces corresponding to the irrelevant resolution

levels, RJ. For image compression applications, the interest in dyadic decompositions

and hence two channels subband transform is driven primarily by the significance of

resolution scalability.

In the literature, 2-dimensional discrete wavelet transform (2-D DWT)

architectures are classified into two categories [I, 13]: convolution-based and lifting­

based. Convolution-based implements the two-channel filter bank directly. Such an

implementation demands intensive computations and a largt: number of storage -

features that are not desirable for either high speed or low power applications [13]. On

the other hand, lifting-based involves less computation and lower memory and

facilitates high speed and efficient implementation of wavelet transform and it is

attractive for both high throughput and low power applications

2.2 RAM-based architectures

There have been many VLSI architecture proposed for 2-D DWT in literature [13, 27,

29, 34]. Nevertheless, only RAM-based architectures are mo,;t practical for real-life

designs because of their greater regularity, density of storage, and simple control

circuits [1]. However, according to [51], the memory issue dominates the hardware

cost and complexity of the architecture and is the most critical part for 2-D DWT

architecture. Instead of number of multipliers that decide the performance of one­

dimensional (1-D) DWT architectures. Thus, for 2-D DWT architectures, the memory

14

1ssues, including internal memory size and external frame memory access, are the

most critical problems. The internal memory generally dominates the hardware cost,

whereas the external frame memory access consumes the most power [51]. ln [1],

RAM-based architectures for 2-D DWT are categorized as follows.

2.2.1 Direct Architecture

The most straightforward implementation is to perform 1-D DWT in one direction

and store the intermediate coefficients in the same frame memory, and then to

perform 1-D DWT with these intermediate coefficients in the other direction to

complete !-level 2-D DWT, as illustrated in Figure 2.2.1. For the other decomposition

levels, the lowpass-lowpass (LL) subband of the current level is treated as the input

signals of the next level and the above steps are then performed recursively.

-{LJ

External
Frame

Memory
(Nx N)

'
(a)

I gg-.• -- .•.•.• ..

..
~-

- _j

~

(b)

:n

Figure 2.2.1 Direct 2-D implementation. (a) System architecture. (b) Data flow of

external memory access (J = 3; white and grey parts represent

external frame memory reads and writes, respectively).

15

2.2.2 Row-column and column-row (RCCR) architecture

The direct architecture processes row coefficients first in ewry decomposition level

all the time. Whereas, RCCR architecture processes rov.-column for odd-level

decompositions and column-row for even-level decompositions [50], then the

successive tv.o row-wise or column-wise 1-D DWT decompositions can be performed

simultaneously, as illustrated in Figure 2.2.2. The DWT module of the RCCR

architecture can be implemented by folding two successive decompositions into 1-D

DWT module and store the coefficients in a line buffer of size N/2, and then performs

the latter level decomposition with the stored coefficients. The merging of two

successive decompositions in the same direction can decreas'e the external memory

access bandwidth by one half for every level, except the first kvel decomposition.

(LLf-
2
{L,H}, ... ,{L,H}

External
Frame

Memory
(N X N) RCCR

1-D DWT

Input
Module

(None or N/2)

(a)

! -

rn I !
I

~ ~~

.

.

------ -----"

EE
~

(b)

'/

(LLt LL
J-1

(LL) LH, ... ,LH
J-1

(LL) HL, ... ,HL
J-1

(LL) HH, ... ,HH

~"'
,'
·: ..

:.;

Figure 2.2.2 RCCR 2-D implementation (a) System architecture.

(b) Data flow of external memory access (J = 3).

16

2.2.3 !-level Line-Based Architecture

Unlike the direction-by-direction approach of direct and RCCR architectures, each

level of the DWT decomposition can be performed at a time, and the multi-level

decompositions can be achieved by using the level-by-level approach as illustrated in

Figure 2.2.3. However, this approach may require some internal memory, whose size

is proportional to the image width, to store the intermediate DWT coefficients of one

direction and to supply the input signals for the DWT decomposition in the other

direction [l l].

The external memory bandwidth of the !-level line-based architecture is exactly

one half of that of the direct architecture. This is due to the utilization of internal

buffers. Furthermore, unlike the direct architecture that uses the whole frame buffer of

size N2 as the intermediate coefficient buffer, the !-level line-based architecture only

uses one-quarter of the frame buffer.

External
Frame

Memory
(N/2 X N/2)

Input

J.2
(LL) LL, ... ,LL

1-level
2-D DWT
Module
(Kx N)

(a)

(b)

(LLt LL
J.1

(LL) LH, ... ,LH
J-1

(LL) HL, ... ,HL
J. t .

(LL) HH, ... ,HH

EB

Figure 2.2.3 l-levelline-based implementation. (a) System architecture.

(b) Data flow of external memory access (J ~ 3).

17

2.2.4 Multi-Level Line-Based Architecture

Instead of level-by-level approach, multi-level line-based architecture performs all of

the decomposition levels simultaneously, as illustrated in Figure 2.2.4. However,

using cascaded J 1-levelline-based architectures to implement directly will result in

very low hardware utilization. In addition, multi-level 2-D architecture requires more

internal buffer and suitable task assignment for 1-D DWT modules; but it reduces the

external memory access bandwidth to the minimum 2N2

(LL) J-2 LL LL

""'
J-level
2-DDWT

(LL) J- 1 LL

(LL) .J- 1 L H, .. .,LH

Input

Module r

__...
/

(-2K x N)
(LL) ,J-.1 HL ,HL

(LL) ,J-1 HH HH

(a)

H-
)

.

i

(b)

Figure 2.2.4 Multi-level line-based implementation. (a) System architecture.

(b) Data flow of external memory access (J = 3).

2.3 Discussion

Based on the Table 2.1, [I] the multi-level line-based architecture requires the most

hardware cost, including the internal line buffer, multiple 1-D DWT modules, and

complex control circuits. In addition, simultaneously int·~rleaving of the first

decomposition level computations with all subsequent levels computations is

somewhat a very complex mechanism to control, which makes this approach

18

Table 2.1 Summary of the RAM-based 2-D architecture [I]

External Intermediate
Memory Line Frame Control System

Architecture Access Buffer Buffer Complexity Integration
(words/image) (words) (words)

Direct 5.33N' - w Simple Difficult

RCCR (RPA) 4.67N' - N' Medium Difficult

RCCR (N/2) 4.67N' 0.5N N' Simple Difficult

!-level 2.67N' kN N'/4 Medium Medium

Multi-level 2N' 2kN - Complex Simple

impractical for real-time implementation. However, it reqmres the least external

memory bandwidth without using the external frame buffer to store intermediate data.

The simplest direct architecture has the least hardware cost but requires the most

external memory bandwidth. The RCCR architecture can decrease the external

memory bandwidth of the direct architecture by using one small line buffer.

The 1-level line-based architecture which adopts level-by-level approach to

achieve multi-level decompositions is a simple mechanism to control. In addition, !­

level line-based architecture is the most practical for real-time implementation

because of its greater regularity, which suit well for VLSI implementation. Therefore,

the research would focus on !-level line-based architectures and the related work in

literature would be reviewed in the next section.

2.4 Review of 1-/eve/line-ba>·etf architectures

In the following, line-based architectures recently proposed in literature are

reviewed. Bing-Fie eta/. [43] proposed a pipelined architecture for 2-D lifting-based

DWT of the 5/3 and the 917 filters by merging predict and update stages into one stage

(step). The overall architecture includes three main components: the column

processor, the transposing buffer, and the row processor. The modified algorithm was

derived to shorten the data path but it decreases the throughput of the pipelined

architecture. The architecture based on this modified algorithm is more complex and

may require a complex control circuits. The transposing buffer is a drawback because

19

it is a very expensive memory component and increases the •:omplexity and the cost

of the hardware without any performance advantage. In addition, the architecture

requires a total memory of size 3.5N and 5.5N for 5/3 and 9/7, respectively.

Cheng-Yi eta!. [40] proposed an architecture which is a combination of a !-level

architecture block and a multilevel architecture block. The !-level architecture block

consists of 4 processors, while the recursive architectun: block consists of 2

processors. The !-level architecture performs the first level of decomposition of the

original image and generates four subbands coefficients LL, LH, HL, and HH every

clock cycle. The LL coefficients are further pipelined to th•: recursive architecture

block for performing the next levels of decomposition. However, this architecture

requires considerable hardware resources with limited utilization, 6 processors and a

total of line buffer of size 5.5 and it is definitely slow.

Hongyu el at. [59] proposed an architecture called two··dimensional dual scan

architecture in which two consecutive rows are scanned simultaneously that allows

two pixels to be read per clock cycle from memory and applit:d to the row processor.

In this architecture the FIFO memories had been eliminatEd and the interleaving

mechanism was substituted by adding an intermediate memory of size N2/2 to store

LL coefficients for the next levels decompositions. However, the scan method

adopted requires a total of line buffer of size 2N and 6N for 5;3 and 9/7 architectures,

respectively.

Several lifting-based architectures resembling the archite•:ture in [59] were also

proposed in [3], [28], [29], and [35] in which the datapath (the row and the column

processors) was pipe lined to increase the throughput of the computations. In [30] and

[16] very efficient methods were developed that implement the multipliers in DWT

data path using arithmetic shift operation, which provide better area-power-operating

frequency.

In [25] and [26] line-based VLSI architectures for 9/7 and 5/3 based on lifting

scheme were proposed, respectively. The proposed architecture mainly includes a

row transform module and a column transform module, working in parallel and

pipeline. The embedded decimation technique based on fold and time multiplexing is

exploited to optimize the design of the architecture. The "so-called" embedded

20

decimation technique is defined as that, the samples are input in sequence, then the

prediction (dual) lifting and update (primal) lifting operations are performed at the

same processing element (PE) by fold and time multiplexing, so that the decimation

operation is completed in embedded fashion.

The authors of [25] and [26] claim that by adopting decimation technique they

have reduced significantly the required number of multipliers, adders, and registers, as

well as the size of the buffer memory and the amount of the RAM access. However,

since the two architectures use the raster scan order (RSO) for scanning the external

frame memory there would be no significant reduction in the line buffer size. In

addition, use of the same processing element (PE) to perform both predict lifting and

update lifting operations increase the hardware complexity by requiring introduction

of several multiplexers which in turn slow the computations.

In the efficient pipelined architecture presented in [61], a critical path delay of Tm

+Ta and a reduction in the number of multipliers are achieved through optimized data

flow graph. However, this architecture requires a total line buffer of size ION, which

is a very expensive memory component.

The architecture presented in [24] is an attempt to exploit the parallel nature of the

5/3 algorithm through parallel operation of independent units. The design is further

optimized by introducing pipeline stages. Input samples are accessed through a

window of four samples, allowing two concurrent predict operations and two

concurrent update operations. Four coefficients can be calculated in one clock cycle

once the pipeline is populated. The major drawback is that the pipeline requires four

clock cycles to read new values from external memory and how the architecture is

pipelined is not evidence. In addition, predict and update modules including the

whole architecture are poorly structured.

In [62], architecture called, deeply parallel architecture is proposed. The

architecture requires a buffer memory (BM) of size 5N, several FIFO buffers, and a

main memory (MM) of size 4N, which are very expensive memory components. In

addition, writing the results into MM and then switching them out to external memory

(EM) is really a drawback, since external memory usually consumes the most power

[47].

21

Chengyi et al. [64] proposed a line-based architecture for 2-D DWT where an

embedded decimation technique is exploited to optimize the architecture. The

architecture is mainly constituted of an input data buffer unit ODBU) implemented as

(FIFO) RAMs, and a wavelet transform (WT) module. The WT module includes two

horizontal filters HFI and HF2 for row-transform and one wrtical filter module VF

for column-transform. The image is scanned into HF I and HF2 in a raster format.

Two lines of sample are required to input simultaneously to the transform module,

therefore, the two FIFOs are used first to store the required input data before they are

sent out to the row-transform module. The architecture requ res excessive hardware

resources; two FIFOs and two row-processors. In addition, scanning using a raster

format is a drawback. The architecture also suffers from long latency of N/2 and 2N

for 5/3 and 917, respectively. The architecture requires a totd memory of size 3.5N

and 5.5N for 5/3 and 917, respectively.

Chih et at. [66] proposed based on new algorithms architectures for 5/3 and 917

which aim at improving the critical issues of the 2-D DWT. The architecture consists

of four parts, two sets of the first stage 1-D DWT, two sets of the second 1-D DWT,

control unit, and Mac unit. The new algorithm, however, increases the hardware

complexity of the architecture and does not decrease lhe transpose memory

requirement. In fact, the architecture requires a transpose memory of size 2N and 4N

for 5/3 and 917, respectively, in addition to internal memories. The architecture also

suffers from long latency, 3/2N +3 cycles.

Wei et at. [68] proposed architecture for 2-D DWT, which reduces the internal

memory required for 5/3 and 917 to 2N and 4N, respectively. However, the row and

the column processors are not pipe lined and require considemble hardware resources

which lead to longer critical path delay. In addition, scheduling coefficient, generated

by the row processor, to the column processor and registers used are not shown in the

architecture. The architecture requires a latency of 3/2N +.l clock cycles, which

implies the architecture need an additional transpose memory at least of size 1.5N and

that increases the total memory required for 5/3 and 9/7 to 3.5N and 5.5N,

respectively.

Jie et al. [67] proposed a modified interger-to-interger wavelet transform

architecture based on fixed-point manipulation. The architecture consists of horizontal

22

and vertical transform processors, intermediate buffer, control module, and output

control module. Image is input line-by-line to the horizontal processor to perform

horizontal filtering. Vertical processor employs row-wise coefficients and

simultaneously fetches data via intermediate buffers to execute column-wise

transform. The latency of the architecture is too long, 5N clock cycles. Intermediate

memory buffer of size 5N, in addition, to several memories which are internal to the

vertical processor are required in order for the architecture to perform its task.

Furthermore, the fixed-point manipulation actually increases the computational

complexity of the architecture, which leads to longer critical path delay.

The 5/3 architecture proposed in [69], consists of five key modules: data choose

module, the row DWT module, the column DWT module, DWT control unit, and

external RAM. The architecture requires a transpose memory of size 2N and internal

memory of size 2N, a total of 4N memory which is considered a large memory for 5/3

architecture. The data choose module is a drawback since it constitutes an extra

module, in addition, its structure is not drawn and how it operates is not described.

In [70], VLSI architecture for the 2-D 917 float discrete wavelet transform (DWT)

for the Consultative Committee for Space Data Systems image data compression is

proposed. The proposed architecture mainly consists of five parts: row processor,

column processor, intermediate buffer, controller, and external memory. The row

processor calculates the horizontal DWT of each row of the external memory image

data. Then, the resulting decomposed high-pass and low-pass coefficients are stored

in the intermediate buffers. The column processor calculates the vertical DWT as

soon as five rows have been processed. That means, the architecture would require a

latency of 5N clock cycles which is a very long latency. In addition, the row and the

column processors require large hardware resources and the internal memory

requirement is too large, 22N, which makes this architecture very expensive.

One of the serious limitations of the lifting-based architecture is its potentially

long critical path [2]. This problem was addressed in [2] and [21] and these papers

proposed architectures which aim at shorting the critical path of the lifting-based 1-D

architectures. Huang et al. [2], proposed an efficient VLSI architecture, called flipping

structure, in which the problem of serious timing accumulation for lifting-based

architectures is addressed by flipping some computing units with the inverse of

23

multiplier coefficients such that the critical path can be greatly reduced. However, this

architecture requires a total line buffer of size II N, which is a very expensive

memory component. A modified view of the flipping structure is presented in [21].

Compared with Huang's method, the method proposed in [21] is more efficient in

reducing critical path and memory requirement for one processor is 4N. But, usually

2-D DWT architectures consist of 2 processors, which would require more line

buffers. Furthermore, reducing the critical path delay to one multiplier is no longer a

critical issue, since coefficients and scaling factors of the 9/7 can be implemented in

hardware with only 2 adders using arithmetic shift method [23J.

In [60], by reordering the lifting-based DWT of the 917, tile critical path delay of

the pipelined architecture has been reduced to one multiplier delay. But the

architecture requires a total line buffer of size 5.5N, which is a very expensive

memory component. In addition, it requires real multipliers w th long delay that can't

be implemented by using arithmetic shift method. Moreover, the fold architecture

which uses one module to perform both predictor and update steps in fact increases

the hardware complexity, e.g., use of several multiplexers, and the control

complexity. Use of one module to perform both predictor and update steps implies

both steps have to be sequenced, which will definitely slow down the computation

process.

In [63], a line-based pipelined architecture for the :i/3 and the 9/7 2-D

DWT is proposed. The architecture consists of three key modules: the row DWT

module, the data buffer, and the column DWT module. The row module performs

row-wise DWT and the output data is stored in the data buffer. When enough rows are

processed the column module starts to perform the column-wise transform as soon as

possible and stores the intermediate results in the temporal bufYer memory. The

folding technique is employed to reduce the hardware cost, which achieves a critical

path of one multiplier delay. The folding technique even though it reduces the

arithmetic resources, it require, besides increasing number of multiplexers used, the

used of real multipliers which leads to longer critical path delay and more hardware

resources. In addition, the temporal buffers, which hold the intermediate results

generated by the column DWT module, are not incorporated into the column

module's architecture, thus, the architecture is not complete. Furthermore, the

24

architecture reqmres a total memory of size 3.5 N and 5.5N for 5/3 and 9/7,

respectively.

Chung-Fu et al. [7 I] proposed a pipeline architecture for the 9/7 2-D DWT. The

proposed architecture is composed of column and row processors to perform the

separable 2-D DWT. Based on a rescheduling algorithm, which merges the

computation of each lifting step, a critical path of one multiplier and two full-adders

delay is achieved. The architecture is generally complex and requires more hardware

resources such as Wallace tree multipliers. In addition, the architecture requires a total

memory of size 5.5N.

JPEG2000 allows (optionally) an image to be divided into a number of smaller

non-overlapping rectangular blocks known as "tiles" and 2-D DWT is applied inside

each tile independently. Tiling provides a simple mechanism for controlling the

amount of working memory used to compute 2-D DWT of a large image [8]. Papers

reviewed so far have proposed non-tile-based architectures, i. e.; they process the

whole image as one tile. Srikar et al. [27] and Dimitroutakos et al. [36] proposed tile­

based architectures for computing 2-D DWT. These architectures are somewhat too

complex and memory requirement is high which make them impractical.

Nevertheless, tiling is a useful mechanism to use for computing 2-D DWT of a large

image independent of its size with the use of the smaller intermediate memory size to

store "LL" values for next level decomposition.

2.5 Conclusion

I conclude that the most critical part of 2-D DWT architectures is the memory

issue, especially internal memory of the processors, which dominates the hardware

cost and complexity of the architecture, while, external memory access consumes the

most power. Most of the architectures proposed in the literature managed to reduce

internal memory (line buffers) requirements of the processors between 5.5N to II N,

which is still a large memory. In addition, no architectures were developed on purpose

that address directly the problem of reducing the power consumption of the 2-D

DWT. Other architectures, on the other hand, have focused on reducing the critical

path delay of the processor to one multiplier delay. However, this issue becomes less

25

critical after the fact that scales factors and coefficients of the 9/7 filters can be

implemented in hardware using only two adders. In addition, these architectures are

largely inaccurate and incomplete. Furthermore, two very important issues have been

overlooked in the literature, which will be addressed in this research, the DWT

memory architectures and control algorithms for 2-D DWT pwcessor architectures.

26

3.1 Introduction

CHAPTER3

ARCHITECTURE DEVELOPMENT

This research is started off by developing a software simulation program for both

decorrelation and reconstruction processes. The objective of developing the software

program is to learn in depth the behavior of the algorithm and in the process to

acquire a firm understanding, which would enable us to develop more accurate

architectures. The software program is listed in Appendix A.

Then, equipped with information gained from developing the software program, in

this chapter, novel VLS! architectures based on lifting scheme that compute 2-D

DWT in an image compression system and meet the high speed requirement for real

time applications of2-D DWT will be developed.

As a starting point consider the general lifting-based tree-structured filter bank for

the first level decomposition shown in Figure 3.1.1. The figure suggests that 2-D

DWT can be implemented by three processors as indicated by dotted lines in the

figure. The processors are row-processor, column-processor-H, and column­

processor-L. The row-processor (RP) computes DWT row wise i.e., the RP applies

one-dimensional DWT algorithm in each row of an image to produce the YH and YL

decompositions. The two column processors each compute DWT column wise by

applying one-dimensional DWT algorithm in every column of YH and YL. The

column-processor-H takes as an input YH and produces subbands HL and HH, while

the column-processor-L takes as an input YL and produces the LH and LL subbands.

Since the tree-structure shown in Figure 3.1.1 is a general representation of 2-D

DWT, it would be necessary now to determine the wavelet algorithm that would be

used by the three processors to compute DWT. As a matter of fact, any wavelet

algorithm could be chosen and the processors hardware architecture could be

designed based on it. At this point it is also clear that each processor should be

27

designed to execute one-dimensional DWT algorithm applied either to all rows or all

columns of an image. Therefore, to be specific in the architectures development, the

one-dimensional lifting-based 5/3 and 917 wavelet transform algorithms are selected

to be implemented by the three processors.

Row- processor

,---------------------------------------,
' '

--... -+HHi
k

HL
Column- processor- H

'------------------·--------------------

-~--.LH

' ' : Column- processor- L
'

LL
' '

~--------------------------------------·

Figure 3.1.1 Lifting-based tree-structured filter bank

3.2 Lifting-based 5/3 and 917 algorithms and architectures development

The lossless 5/3 and lossy 917 discrete wavelet transforms algorithms are defined by

the JPEG2000 image compression standard for 1-D signal X containing N samples, as

follow [27, 29]:

513 analysis algorithm

step!: Y(2j + 1) = X(2j +I) -l X(
2

)) + ~(2) +
2

) J

step2: Y(2j) = X(2j) + l Y(2j -l) + :{2) + l) + 2 J

28

917 analysis algorithm

step!: Y'(2J + 1) = X(2j + 1)+ a(X(2J)+ X(2J + 2))

step2 : Y'(2J) = X(2J) + ji(Y'(2J -I)+ Y'(2J +I))

step3: Y'(2J +I)= Y"(2j + 1)+ y(Y"(2J)+ Y"(2J + 2))
step4: Y'(2J) = Y"(2J)+ o(Y'(2J -I)+ Y'(2J +I))

stepS: Y(2j +I)= 1/k Y'(2J +I)

step6: Y(2j) = kY'(2j)

where}= 0, 1, 2 , N-1.

For the RP to compute 2-0 FDWT for an N x M image, the 5/3 algorithm can be

written as follows.

for i = 0 to N - I do

for j = 0 to M -I do

Y(i,2j +I)= X(i,2j +I) -l X(i,lj) + :(i,lj + l) J

Y(i, 2 j) = X(i,lj) + l Y(i,lj- I)+ :(i,2j +I)+ 2 J

end

end

Where Y(i,2j +I) and Y(i,2j)are the high and low decompositions that would result

when the image X (i, j) is applied to the algorithm above. This algorithm implies that

the high and the low output coefficients are stored in the same memory Y with the

high coefficients occupying the odd indexed locations and the low coefficients

occupying the even indexed locations. However, I prefer to store high and low

coefficients each in a separate memory, so the algorithm above is rewritten as

for i = 0 to N - I do

for j = 0 to M - I do

YH (i, j) = X (i,2j + I) -l X (i,lj) + ; (i, 2 j + 2) j
YL(i,j)= X(i,2j)+lYH(i,j-I):YH(i,J)+2 J

end

end

29

In this representation X (i, j) is interpreted as a two-dimensional array in a software

implementation and a physical memory in a hardware implementation containing the

original image pixels. The algorithm takes as an input X (i, j) and decomposes it into

high (H) and low (L) decompositions, which are stored in the memories denoted by

YH (i, j) and YL (i, j), respectively. This algorithm can be represented in a block

diagram as shown in Figure 3.2.1. The block diagram consists of a row-processor

(RP) and an external memory X (N, M) that contains the original image. The processor

reads the contents of the memory labeled X (N, M) line by line and computes the high

and low coefficients of the image and stores the results in the memories labeled YH

and YL, respectively.

YH
' M External ' ';v < 2

!..
Frame

X (i,j) nternal

Memory Row-

X(N, M) processor ~~L
Lf-VvxM

...... 2

Figure 3.2.1 Block diagram representation of the algorithm

By slightly modifying the indexes of the last algorithm, algorithms for the

column-processor-H and the column-processor-L are obtained, respectively. The

column-processor-H reads the contents of the memory labeled YH as input and yields

subbands HH and HL. Whereas, the column-processor-L reads contents of the

memory labeled YL and yields subbands LH and LL.

Column-processor-H

for j=O to M-1 do

for i = 0 to N - I do

YHH (i, j) = YH (2i +I, j) -l YH (2i, j) + ~H (2i ·- 2, j) J

YHL (i, j) = YH (2i, j) + l YIIH (i- I, j): YHH (i, j) + 2 J
end

end

30

Column-processor-L

for j = 0 to M - 1 do

for i = 0 to N - 1 do

YLH (i,j) = YL(2i + 1,}) -l YL(2i, j) + ~L(2i + 2, j) J

YLL(i, j) = YL(2i, j) + l YLH (i -1, j): YLH (i, j) + 2 J

end

end

When the two column-processors are combined with the architecture shown in

Figure 3.2.1, the architecture shown in Figure 3.2.2 is obtained, which computes the

first level DWT decomposition for an NxM image. To obtain J levels decomposition

the LL sub band coefficients of each successive level are stored in the memory labeled

LL-RAM for further decompositions as shown in Figure 3.2.2. This implies the

architecture decomposes 2-D images into the desired number of decomposition levels,

level by level.

Similar procedure can be applied to transform the 9/7 algorithm. A careful

examination of the last 3 algorithms shows that they are basically identical

algorithms, which imply that their processor architectures would also be identical. In

addition, the architecture is modular, since it consists of three modules one row­

processor and two column-processors and regular because the modules are identical.

external memory

X(N,M)

LL-RAM
N M
-X-

2 2

column -

processor

Figure 3.2.2 2-D DWT architecture formed using 3 processors.

31

LH

LL

3.3 Data dependency graphs (DDGs) for 5/3 and 917 algorithms

The data dependency graphs (DOGs) for the 5/3 and the 9/7 algorithms derived from

their respective algorithm are shown in Figures 3.3.1 and 3.3.2, respectively. In the

DOGs, a node circled with a number represents a camputation. All step]

computations in 5/3 algorithm are performed by the nodes circled with odd numbers

(first level) in the DOGs of Figure 3.3.1. On the other hand, step 2 computations are

performed by the nodes circled with even numbers in the second level labeled Y(2j) in

the DOGs. The symmetric extension algorithm is incorporated in the DOGs to handle

the boundary problems. The symmetric extension is represented in the DOGs by

dotted lines. The boundary treatment is necessary to keep the number of wavelet

coefficients same as that of the original input. The boundary t:eatment is only applied

at the beginning and ending of the process [3]. That means in 2-D images, it will be

applied at the beginning and the ending of each row or column. The nodes circled

with the same numbers in the DOGs are considered redundant computations, which

will be computed once and used thereafter. In addition, note that the symmetric

extension algorithm behaves differently for even and odd length signals when it is

applied to the data dependency graph. Therefore, two DOG; are provided for each

algorithm, one for even and another for odd length signals. The data dependency

graph would be a useful tool in architecture development and (:nhancement.

3.4 External Architecture Development and refinement

In the architecture shown in Figure 3.2.2, the row-processor scans (reads) the external

memory, which contains the original image pixels, row-by-row and decomposes the

image into high (H) and low (L) coefficients which are stored in the memories labeled

YH and YL respectively. Then, the two column processors simultaneously each reads

its respective memory, YH and YL, and compute subbands HH. HL, LH, and LL

coefficients in parallel.

In order to reduce the size of the internal memories YH and YL and to allow the

two column processors to work in parallel with the row-processor, the DOGs are

considered. The DOGs show that, to ease the development of architectures the

strategy would be to divide the details of the development into two steps, each having

less information to handle. In the first step, the DOGs are loo:<ed at from the outside,

32

XU) 2 __ 1 __ 2 _ _3 __ 4 __ 567876 ----------1 I 2 0 I 2345676

Y(2j +I)

redundant

Y(2j)

,: I ,' ' ' ,
:'-: I

'

' \ ' ... redundant

computations

(a)

Figure 3.3.1 5/3 algorithm's DOGs for (a) odd and (b) even length signals

----,.,
' ' ' ' '

'

X(n) ~) :f ,I, 0 __ 1_2 __ 3_4 __ i_6 __ 7 __

', : ,/:'. ::
4, 1 ~ ,1 ,_o_ t __ 2 __ 3 __ 4 __ L_6 __

I I
11

1 I I

-,9 5 4
/•', :

I 1 I I I 1

' ' '
'

I I ,'• I

\ ' '
I 1\\t:J: '

', 5
'

Y'(2n)

Y'(2n+l)

Y'(2n) 0

Y(2n), Y(2n+ l): k k:
' ' -- -- --

YO n Y2 Y3 Y4 YS Y6 Y7 f1l YO n Y2 Y3 Y4 Y5 Y6 Y7

(a) (b)

Figure 3.3.2 9/7 algorithm's DOG for odd (a) and even (b) length signals

which is specified by the dotted boxes in the DOGs, in terms of the input and output

requirements. We have observed that the DOGs for 5/3 and 9/7 are identical when

they are looked at from outside, taking into consideration only the input and output

requirements; but differ in the internal details. Based on this observation the first level

of the architecture, the external architecture, is developed. In the second step, the

internal details of the DOGs are considered for the development of processors'

33

'
' '
'

datapath architectures, since DOGs internally define and specify the internal structure

of the processors.

The advantage of this new approach along with scan m(:thods developed in the

next section can be used not only in the forward 2-D DWT architecture

development but in inverse and any DWT algorithm and it is certain to yield very

efficient architectures in terms of hardware complexity, speedup, and power

consumption with manageable control complexity.

The DOGs of Figures 3.3.1 and 3.3.2 show that to compute one high and one low

coefficient at anytime, the processor needs three pixels as an input. Thus, for the two

column processors to work in parallel with the row-processor, the row-processor must

compute DWT for the first two rows. Then, the two column processors can start

computing as soon as the result of the first operation in the third row is available.

After that the three processors proceed computing in parallel until the row-processor

(RP) performs the last operation in the third row. The two column processors then go

into idle states, while the RP works on the fourth row. When the RP reaches the fifth

row and as soon as the result of the first operation in the row is available, the two

column processors again resume computing in parallel with the RP using the results

of the third, fourth, and fifth rows, until the last operation in the fifth row is

performed. Then, the two column processors again go intc idle states, while RP

operates on the sixth row to repeat the process. It is obvious the two column

processors would be in idle states or under utilized half •Jf the time. But, the

advantage is that the sizes of the two column processors memories labeled YH and YL

can each be reduced to M instead of N x M /2, which is a con;iderable reduction in a

very expensive memory component. In addition, since the two column-processors

(CPs) are under utilized half of the time, it is possible to remove one of the CPs and

keep only one to compute the four subbands HH, HL, LH, and LL. When these

changes are made to the architecture shown in Figure 3 .2.2, the architecture shown in

Figure 3 .4.1 is obtained and the hardware utilization is 100%. In this architecture, the

internal memories YH and YL each can be considered as consisting of two memory

banks of size M/2.

To evaluate the performance of the two architectures shown in Figures 3.2.2 and

3.4.1 in term of speedup, consider the following. Assume the RP of the architecture in

34

Figure 3.2.2 takes T clock cycles to perform one level of decomposition. Then the two

column processors, working in parallel; each would need T/2 clock cycles for a total

of T + T /2 = 3/2 T cycles to perform one level of decomposition by the three

processors. On other hand, the architecture shown in Figure 3.4.1 only requires a total

ofT cycles to compute one level of decomposition which is a gain in speedup factor

of3/2 as compared with the architecture shown in Figure 3.2.2.

Let us now explain the dataflow of the architecture shown m Figure 3.4.1.

Specifically, how data would flow from the outputs of the RP, through the internal

memories YH and YL, to the inputs of the CP. The RP scans the external memory

row-by-row, by reading every cycle 3 pixels and placing them into the registers

labeled RtO, Rtl. and Rt2 to initiate an operation. and produces as output coefficients

of the high (H) and low (L) decompositions, according to the DOGs. The results of

the first row computations, which are placed on output lines labeled H and L, are

stored in the memory banks BO of YH and BO of YL respectively. The results of the

second row computations are stored in the memory banks Bl of YH and BI of YL. The

CP would start its computations as soon as the results of the first operation in the third

row are computed and placed into registers Rt3 and Rt4. The CP performs its

computations by reading two coefficients data from the memory banks of YH and the

third from register Rt3. Data in register Rt3 follows the path that leads to Mux2 , to

register Rt6 and finally to the column-processor input labeled Ic2. While, data from

banks BO and Bl of YH follow the paths that lead to MuxO and Muxl to be loaded

into Rt7 and Rt5, respectively. The CP repeats this process every clock cycle until it

consumes the data in the two banks of the YH memory including the immediate data

coming through Rt3. According to the DOGs, the low and high coefficients produced

as a result of processing the third row by the RP are needed not only in the current but

also in the next calculations involving the 4th and the 5th rows of the YL and YH

decompositions. Therefore, these high and low coefficients are stored in the memory

banks Bo and Bl of YH, respectively, while the CP retrieves data from memory YH

banks. Of course, that would require reading and writing the same memory location

of YH in the same clock cycle, which is a problem. One might think as a solution

35

HH,LH
CP
Ic2

LL-RAM
N M LL
-X- ~-·-----------'

2 2

Figure 3.4.1 Architecture for 2-D DWT

implementing the memory banks of YH and YL as FIFO queues. That sounds

logically correct, but practically would require a large number of registers for 2-D

images and that would be a very expensive solution which we prefer to avoid.

Therefore, we prefer that the memory banks of YH and YL be implemented as RAM.

Then, read and write conflict can be resolved with careful timing by allowing read to

be performed in the first half cycle and writing in the second half.

As soon as the CP is done with the data stored in memory YH it turns to memory

YL and starts its second batch by operating on the data stored there. Each clock cycle,

two data one from bank Bl which takes the path that leads to muxl and the other from

bank BO that takes the path leading to MuxO. The third data i:; read at the same time

from bank Bl of YH to complete the three inputs requirement for an operation. While

the CP is retrieving and operating on the data stored in the memory banks of YL and

Bl of YH, the high and low coefficients, generated by the RP as a result of applying

DWT to the pixels of the fourth row in the external memory, are stored in banks BO

and Bl of YL, respectively. The third batch of computations take place by reading the

high coefficients stored in bank BO of YH and in bank BO of YL, while the high

coefficients, generated by the RP using data of the fifth row, are passed from register

Rt3 through the path leading to mux2 to CP as a third input. At the same time, the

high and low coefficients computed using the fifth row's data are stored in bank BO of

36

YH and in bank BO of YL, respectively, since they are needed in the computations of

the next two batches. The fourth batch is a low coefficients processing begins by

reading the data stored in banks BO and Bl of YL and Bl of YH, which follow the path

leading to MuxO, to Rt7 register, and finally enters the CP through the input labeled

leO. Meanwhile, the high and low coefficients computed by the RP using the data of

the sixth row are routed to BI of YH and Bl of YL, respectively. Data read from bank

BO of YL enter the CP through the input labeled lc2.

A careful examination shows that after the fourth batch is processed, the dataflow

or scheduling of batches repeat the same patterns described above for the four

batches. That means the next 4 batches would also exhibit the same scheduling

patterns of the first four batches and so on. Furthermore, with the pipeline registers

Rtf, Rt2, RtO, Rt3, Rt4, Rt5, Rt6, Rt7, Rt8, and Rt9 are in place not only the RP works

in parallel with the CP but the whole architecture are now fully pipelined. The

pipeline consists of three stages: the RP stage, the YH and YL memory stage, and the

CP stage. Pipelining improves the performance of the architecture in terms of speedup

and throughput as compared with non-pipelined architecture. It is possible to attain

maximum speedup and throughput in this architecture because 2-D DWT

computations involve a large number of operations. The larger the number of pipeline

stages, the higher the speedup.

Even though we have managed to reduce the hardware complexity to a great

extend from 3 processors and a total internal memory of size N x M consisting of YH

and YL in the architecture shown in Figure 3.2.2, to two processors and a total

memory of size 2M for YL and YH in the architecture shown in Figure 3.4.1 and in

the process have gained a speedup factor of 3/2 as compared with the architecture in

Figure 3.2.2, the disadvantage of the architecture shown in Figure 3.4.1 is that it

requires a very complex control circuitry to govern the dataflow across the memory

banks of YH and YL. In addition, the internal memory requirement is still high.

However, it is possible to eliminate the internal memories labeled YH and YL entirely

and use instead a few registers and reduce the control complexity to a great deal by

adopting a different scan strategy for scanning the external memory, as would be

illustrated in the following section.

37

3.5 Overlapped and Nonoverlapped Scan Methods

I believe that minimization of the internal memory, and hence the hardware

complexity in general for 2-D DWT architectures, depends on the proper scan method

adopted for scanning the external frame memory. Therefore, .n this section two scan

methods are illustrated and will be adopted instead of the row-by-row scan method

used so far, to further refine the architecture and obtain novel architectures that best

meet real-time applications of2-D DWT requirements.

The two scan methods, overlapped and nonoverlapped, are illustrated in Figures

3.5.1 and 3.5.2, respectively. The pixels in the overlapped areas, indicated by the dark

lines in Figure 3.5.1, are scanned twice. For an NxM image, the overlapped scan

method requires NM + N (]_(M _ 1 l /2 j) clock cycles to scan the external memory for

the first level decomposition, whereas in the nonoverlapped method, the overlapped

areas are eliminated to reduce the external memory access cydes to NM clock cycles

only and hence reduce the power consumption. The external memory access usually

consumes the most power [33, 51].

The scan method shown in Figures 3.5.1 and 3.5.2 are appropriate for both 5/3 and

917 algorithms. But, when this scan method is used in 917, it would not yield any

output coefficients in the first run, according to the 9/7 DDGs. Thus, to allow the 9/7

to generate output coefficients starting from the first run, we propose the overlapped

scan method shown in Figure 3.5.3. This scan method differs from 5/3 in the first run

only, which requires scanning of 5 pixels from each row. These two scan methods are

developed mainly with two objectives to achieve, that is, to make the external

architecture for both algorithms identical and to reduce the inlernal memory between

RP and CP to a few registers.

The following two observations, regarding the two scan methods would be

necessary in order to develop precise architectures for computing 2-D DWT. First, in

the case when the row length of an image is odd, pixels of th<: last column (M-1) are

considered overlapped and are scanned twice. In the first scan. according to the DDG

for odd length signals shown in Figures 3.3.1 and 3.3.2, they are used in the

calculation of the last high coefficient in each row, whereas in the second scan, they

are used in the calculation of the last low coefficient in each rJw. On the other hand,

38

when the row length of an image is even, only the last two pixels in each row

(columns M-2 and M-1) are scanned and are used by the RP in the calculations of the

last low and high coefficients, as required by the DOG for even length signals.

3.6 Scan Based Architectures

Based on the scan methods and the DOGs for 5/3 and 9/7 shown in Figures 3.3.1 and

3.3.2, when they looked at from outside, the architectures shown in Figures 3.6.1 and

3.6.2 are proposed for overlapped and non-overlapped scan methods, respectively.

The architectures operate in a pipeline fashion, consisting of two stages, the RP stage

and the CP stage. The two architectures are basically identical. The main difference is

that the nonoverlapped architecture contains a line buffer (LB) of size N. This line

buffer is added to hold N pixels that lay in each overlapped areas in Figure 3.5.1 in

order to reduce the external memory access and hence the power consumption. Pixels

in an overlapped area such as column 2 are also required in the next N operations.

According to the DOGs, each operation performed by either RP or CP would require

three inputs. For example, the inputs labeled 0, I, and 2 in DOG of Figure 3.5.2

initiate the first operation to yield the coefficients labeled YO and Yl, whereas inputs

2, 3, and 4 initiate the second operation which yields Y2 and Y3 and so on. Fig. 3.6.2

shows the nonoverlapped architecture from the RP side only, since its remaining parts

are the same as in Fig. 3 .6.1.

0

3

4

runl M
n2 ru

0 1 2/1 3 4 5 6
E = -

./

=
~

I= . ~-··

. /

/ ~

=
(a)

M
012345

o~jE3~§~
1·/ l:=t. / =

(b)

Figure 3.5.1 Overlapped scan method for 5/3 (a) Odd length signals

(b) Even length signals

39

M M

(a) (b)

Figure 3.5.2 Non-overlapped scan method for 5/3(a) Odd length signals

(b) Even length signals

Figure 3.5.3 Overlapped scan method for 917

If external memory is scanned with frequency f, both architectures shown in

Figures 3.6.1 and 3.6.2 should operate with frequency f /3. The dataflow for both

architectures is given in Table B. I (Appendix B). Note that this dataflow is derived

based on the 5/3 scan methods shown in Figures 3.5.1 and 3S2 and it is identical to

the 9/7 architecture's dataflow, based on the same scan methods, in all runs except the

first run where 9/7 does not yield any output coefficients. The dataflow of the 9/7

architecture based on the scan method of Figure 3.5.3 is shown in Table B.2

(Appendix B).

Looking at the DOGs shown in Figures 3.3.1 and 3.3.2 from the outside, it can be

observed that in the last high and low coefficients calculatiom., where the row length

of an image is even, only the last two pixels in a row, r, at locations X(r, M-2) and

X(r, M-1) are read from external memory. In addition, the DOG for even length,

40

f

sreO

EdO Ed3

LL-RAM
N M
-X-

2 2

sl

LL

Figure 3.6.1 Proposed overlapped scan architecture

41

~

0
~
~

" " 2
"-
' c:
E
;:l

0
u

X(i,j}

s2

f

Ed

LL

f

R./w Eib

Figure 3.6.2 Proposed non-overlapped scan architecture (RP-side only).

implementing the extension part, requires the pixel located at X(r, M-2) to be

considered as the first and the third inputs. This must be passed to the RP with the

second input pixel from location X(r, M-1), to compute the last high and low

coefficients in the row r. Thus, the function of the multiplexer labeled MuxreO is to

pass the pixel read from location X(r, M-2) after it has been transferred to register

RdO, to the row-processor's latch, Rt2, as the third input. Register Rd1 holds the

second inputs, pixel from location X(r, M-1). Similarly, the multiplexer labeled

MuxceO performs the same function, when the CP applies DWT to columns. In other

words, MuxreO and MuxceO, which are extension multiplexers, are used only in

calculation of the last coefficient in even row or even column images.

On the other hand, when the row length of an image is odd, according to the

DOGs for the odd length shown in Figure 3.3.1 and 3.3.2, to calculate the last low

coefficient only one pixel the last one at location X(r, M-1) should be passed to the

42

I
I
I
1

row-processor. This pixel is loaded into RdO and then passed to the row-processor

where it is used in the computation of the last low coefficient.

In the architecture based on the nonoverlapped scan method, starting from the

second run, the dataflow or scheduling of pixels to RP and LB should be as follows.

Assume the cycle where the last three pixels that are scanned from the last row in the

first run are loaded into the RP's latches by the pulse ending, say, cycle n. Cycle n

also transfers the pixel from location X{N-1,2) into Rd. In cycle n+ I, the second run

begins and the first pixel for the first operation is read from location X(O, 3) and is

loaded into Rd I by the pulse ending the cycle. In addition, during cycle n +I, contents

of register Rd are written into the last location of the LB. In cycle n+ 2, the first

location of the LB is loaded into RdO by the pulse ending the cycle and it is the only

event that takes place during the cycle. Cycle n+ 3 transfers the second pixel from

location X(0,4) to both Rd and Rt2 and contents of RdO and Rdl to RtO and Rtf by the

pulse ending the cycle, respectively. In cycle n+4, Rd"s contents are written in the

first location of the LB. In addition, the first pixel of the second operation which is in

location X (I, 3) is loaded into Rd I by the pulse ending the cycle. This pattern of

scheduling is repeated until the whole image is scanned.

The control signal values that must be issued by the control unit for the signals

labeled Ed2, Ed3,SO, Ed4, Ed5, Ed6, and Sf in the architecture shown in Figure 3.6.1

can be derived, reference to clockf, from Table B. I and starting from clock cycle 6

as shown in Table 3.1. Note that the pattern included in the dotted box repeats after

cycle 9. In addition, the number of control signals in Table 3.1 can be reduced

further, as shown in Table 3.2, by observing that signals Ed2~SI~Ed6~SO and

signals Ed3~Ed5.

Table 3.1 Control signal values

Cycle Ed2 Ed3 so Ed4 Ed5 Ed6 Sf

6 I X I I X X X
9 0 I X 0 I X X
12 I X X 0 0 I I i

I

15 0 I 0 I I X I

--- --------- --------- - -------- ---------- ___ Q _____ I

18 I X I 0 0 I 1
21 0 1 0 1 1 X 0

43

Table 3.2 Reduced control signals

Cycle Ed2 Ed4 Ed5
6 I I X
9 0 0 I

I 12
-

I 0 -6
I
I 15 0 I I J

18 I 0 0
21 0 I I

3. 7 Intermediate Architectures

Two lifting-based VLSI architectures for 2-D DWT for the 5/3 and the 9/7 algorithms

were proposed in the previous section based on two scan m~thods, overlapped and

nonoverlaped. In the architecture based on the overlapped scar. method, the maximum

power consumption occurs due to overlap external frame memory access. On the

other hand, in the nonoverlapped architecture, the power consumption was reduced to

minimum by eliminating the overlapped areas which require:; the addition of a line

buffer of size N. In this section, we developed a new architecture, called intermediate

architecture, for 5/3 and 9/7 algorithms, which aim at reducing the power

consumption of the overlapped areas, without using the expensive line buffer, to

somewhat between the two extreme architectures proposed in the previous section and

hence the name intermediate. The intermediate architectures are based on the

generalization of the overlapped scan method which is introdm:ed next.

3. 7.1 Generalized Overlapped Scan method

Suppose the overlapped scan method shown in Figure 3.5.1 is termed as the first scan

method, since three pixels are scanned from each row. The second method scans 5

pixels from each row. The third scans 7 pixels and the fourth scans 9 pixels and so on.

In general, the i1h scan method scans 2i+ 1 pixels from each row and the number of

overlapped areas in the i1h scan method can be written as l(M -l)/2i J. Similarly,

consider the overlapped scan method shown in Figure 3.5.3 for 9/7 as the first scan

method. Then successive scan methods for 9/7 will differ from that of the 5/3 only in

the first run, which requires scanning of 3+2i pixels from each row, while scanning in

the remaining runs remain the same. These scan methods reduce the excess memory

access and hence the power consumption by a factor of 1/i as ~ompared with the first

44

scan method. In addition, the internal memory between the row and column

processors increases by 5i registers, where i = 1,2,3, · denote the first, the

second, and the third scan methods and so on. The excess memory access is due to

scanning pixels in the overlapped areas twice. Figures 3.7.1 (a) and (b) show the third

overlapped scan method for 5/3 and 9/7, respectively, where the external memory

access due to overlapped areas scanning is reduced by a factor of 1/3. Thus, by

adopting a higher scan method it is possible to obtain an intermediate architecture,

since the external memory access due to scanning of the overlapped areas will be

somewhat between the two extreme architectures proposed based overlapped and

nonoverlapped scan methods.

To appreciate and have more insight into the excess memory access, which is due

to scanning of the overlapped areas twice, consider the following. The architecture

based on the first overlapped method, the total external memory access time Tmo in

clock cycles for J levels of decomposition can be estimated as follows.

M

M
0!2345 6 7 8 9 I 0 II 2 11 4 I <; 1 f. 7 1 ~ 1 o 20 ? 1

"'- --

N 2 -"· ---

3 ~- ---

4 /-- ---
- I--.-.

(b)

Figure 3.7.1 The third overlapped scan method (a) for 5/3 and (b) for 917

45

+~+~ --1 2 NM N ((M)/}
41-1 2./-1 21-1

T = NM 1+-+-+····+-l 1 1 (1)
1

-

1

m<> 4 16 4
NM N NM N NM

+----+----+--
2 2 8 4 32

n2 anl n2+1

Then using geometric series summation formula La' = -a , obtain
k=nl 1-a

(
1)1-1

4- -
3 4

Tm, = 2 NM ---'--
3

-'-----

T ~-NM 4--1 l (1)

1

-

1

J
mo 2 4

()

J-1

Since the term ± will be very small, the above equation c2n be reduced to

Tm, ~ 2NM Clock cycles

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

This equation can be used also to estimate the computation time of 2-D DWT

architectures.

46

On the other hand, for the architecture based on nonoverlapped scan method

shown in Figure 3.5.2, the total external memory access time, Tmn, in clock cycles for

J levels of decomposition can be estimated as

l 1 1 (')1

-

1J n (1).1-l Tm, =NM 1+-+-+ ·+- =NML-
4 16 4 1=1 4

(3.9)

(3 .I 0)

Thus, the excess memory access time, Tm,, due to overlapped areas scanning for J

levels of decomposition is given by

Tm, = Tm"- Tmn = 2NM- 4/3NM = 2!3NM (3 .II)

which is significant. In the architecture shown in Figure 3.6.2, Tm, is eliminated and

minimum access time Tmn and hence minimum power is obtained by nonoverlapped

scan method. But, the method requires the addition of a very expensive memory

component, a line buffer, in the architecture. The intermediate architectures are

alternative form for reducing the power consumption of the overlapped areas,

expressed in Eq(3 .II), without a I ine buffer.

3. 7.2 Proposed External Intermediate Architecture

Based on the scan method shown in Figure 3.7.1 and DOGs for 5/3 and 9/7 shown in

Figures 3.3.1 and 3.3.2, the architecture shown in Figure 3.7.2 is developed. The

architecture is valid for both 5/3 and 9/7 algorithms, since it is developed based on the

observation that the DOGs for 5/3 and 9/7 are identical when they are looked at from

outside, taking into consideration only inputs and outputs requirements. The

architecture operates in a pipelined fashion consisting of two stages, the row­

processor (RP) and the column-processor (CP). If external memory is scanned with

frequency f, then registers RdO and Rd I should operate with frequency f and the rest

of the architecture should operate with frequency f /3 as indicated in Figure 3. 7.2.

The dataflow of the architecture, derived based on 5/3 scan method shown in Figure

3.7.1 (a), is shown in Table B.3 (Appendix B). The dataflow is identical to the 9/7

47

dataflow in all runs except in the first run where 9/7 scans 9 pixels, whereas 5/3 scans

7 pixels from each row.

The clock period r and hence frequency f of the proposed overlapped,

nonoverlapped, and intermediate architectures can be determined by the following

statement. fm is the external memory frequency of operation, J;, is the processor

frequency and I is the number of input pixels that are required for an operation. I= 3

for 5/3 and 9/7 algorithms.

Statement I

Case If fm ~ t p then

r = fm

Case 2 else if
tp

fm then -~
I

r =
!..e._
I

else r = tm

To this point the processor critical path delay (tp = 1/.{p) is expected to be much larger

than that of the external frame memory scan delay, 1m= llfm· Therefore, the processor

delay fp would be the determining factor of the frequency f In other words, case2 will

be always true. The situation would change when the processors are pipelined later.

3. 7.3 Second Dataflow

The dataflow given in Table B.3 (Appendix B) is justified by the fact that each

operation performed by the RP and the CP requires three input data. In addition, since

the processor delay t r determines the scanning frequency J, then

J, =II r = 3 It = 3f I l p p (3.12)

That is, the scanning frequency J, should be at least three times faster than the

processor frequency JP in order to allow the scanning of the three pixels during the

48

I

~

0

"' Jr2 '{)
u
2
0

~
~

sO

~----sm-----:

' ' ' '
'

SRl
L-------------1

YL

I Ed: enable for load
3

LL-RAM
N M
-x-
2 2

0

"' u

" " ~

" " sceO ~

sl

LL

Figure 3. 7.2 proposed external intermediate architecture

~

0

"' "' "' 1c2 2
0.
' " E

.2
0
u

L

time specified by t P. Nevertheless, it is possible to obtain a different dataflow with

different frequency by realizing that after the first operation in each row, the second

and the third operations in the same row need only 2 pixels to be scanned. This is

because the third input pixel of the previous operation which is also the first input in

the next operation is already scanned and is available in register RdO. This implies, a

new scanning frequency, I, can be used, which is given by

(3.13)

49

The scanning frequency f 2 is two times faster than the processor's frequency of

operation fr. Thus, with the second scanning frequency, j 2 , it is possible to achieve a

great reduction in the external memory power consumption but with a drop in speed.

The second dataflow is illustrated in Table 8.4 (Appendix B).

To compare the performance of the two dataflow in term~: of power consumption

and speed consider the following. In the first dataflow shown in Table 8.3

p, = 27 clock cycles are needed to yield the first pair of output. The remaining (n- I)

outputs require 3(n- I) cycles. Thus, the total time, Tl, required to yield n paired

outputs is given by

(3.14)

Similarly, the second dataflow shown in Table 8.4 requires p 2 =21 cycles to

yield the first pair of output. According to Table 8.4, the remaining (n- I) outputs

require 713(n- I) clock cycles. Thus, the total time, T2, required to produce n paired

outputs is given by

T2 = [p, + 7/3(n -l)}r, (3 .15)

The speedup factor is then given by

(3.16)

(3.17)

That means the first dataflow is 7/6 times faster than the :;econd. In other words,

the total execution time of the second dataflow is increased by 16.7% as compared

with the total execution time of the first dataflow.

The power consumption of VLSI architectures can be estimated [I 7] as

2
P '= C1ora1 · Vo · f (3.18)

where C,o,.l denotes the total capacitance of the architecture, Vo is the supply voltage,

f is the clock frequency.

50

To detennine the amount of power reduction in the external memory that can be

achieved; when the second dataflow with frequency h is used, consider the following.

First, detennine the power consumption due to scanning the external memory,

when the nonoverlapped scan method is used with frequencies fi and h· Thus, if P1

and P2 denote the power consumed by the external memory for both J; and f 2 ,

respectively, then P1 and P2 can be written as.

~ = f3. c/o/a/. Vo 2. J; = f3' c/Oiu/VO 2 /rl (3.19)

(3.20)

(3.21)

(3.22)

Where C'"'"' · V0

2
·;;and C""'' · V0

2
· j 2 are the external memory power consumption

due to first overlapped scan method for J; and f 2 , respectively and f1 ~ Tm)Tm, ~ 2/3.

Second, taking into account the fact that the scan method shown in Figure 3.7.1

reduces the power consumption of overlapped areas by a factor of 113, then the power

consumption due to scanning the overlapped areas using the first and the second

dataflow, Po I and Po2, respectively are given by

2
Pol~ /10 ·C""'' · V0 • J; /3 (3.23)

(3.24)

(3 .25)

(3.26)

Where f10 ~ T," /Tm, ~ 1/3. Thus, the total power consumption due to external

memory access for the first and the second dataflow, PI"''"' and P2towl are

PI,,,,~~ +Pol ~c",,,·V0
2 ·JP ·(3/1+/10)

and

P2,,,,1 ~ P, + Po2 ~ 2C"""' · V0
2

• fp (/1 + fio 13)

51

3

2

(3.27)

(3.28)

(3.29)

Eq (3.29) implies that power consumption due to external memory scanning in the

second dataflow is 2/3 of the first dataflow. ln other words, the second dataflow

reduces the power consumption by 33.3% over the first dataflc·w.

On the other hand, the percent of power reduction achieved in the intermediate

architecture shown in Figure 3.7.2 for the first and the second dataflow as compared

with the architecture based on the overlapped scan method can be obtained as follows.

7

9
(3.30)

Where P,,,,, is the total power consumption of scanning the ('xternal memory for the

architecture based on the overlapped scan method. Eq(3.30) implies that the power

consumed due to scanning the external memory in the intermediate architecture based

on the first dataflow is reduced by 22.22% as compared with the architecture based on

the first scan method. Whereas,

P2/ulal = P2/oJal . Pllotal = 14

~t!lal PI Iota/ ~olaf 2 7
(3.31)

implies that the power consumption of the external memory in the intermediate

architecture based on the second dataflow is 14/27 of the architecture based on the

first scanning method. In other words, the external memory power consumption in the

intermediate architecture is decreased by 48% as compared with the architecture

based on the first scan method.

3. 8 Processors Datapath Architectures Development

To complete the architectures for 2-D DWT, the last phase is to design the row and

column processors datapath architectures for 5/3 and 9/7 algorithms separately that

can fit into the three architectures shown in Figures 3.6.1, 3.6.2, and 3.7.2. The three

architectures are valid architectures for both 5/3 and 9/7 algorithms, since they were

developed based on the observation that the DOGs for 5/3 anc. 9/7 are identical, when

they are looked at from outside, taking into consideration only the input and output

requirements.

52

3.8.1 513 Processor's Datapath Architecture Development

Based on the 5/3 algorithm and its DOGs shown in Figure 3.3.1, the 5/3 processor

datapath architecture is shown in Figure 3.8.1. The multiplexers labeled muxeO,

muxe I, and muxe2 implement the symmetric extension. This 3-stage pipe lined

processor is formed by mapping the two lifting steps of the 5/3 algorithm into two

pipeline stages. Stage 3 is added to reduce the critical path delay of stage 2;

specifically the path connecting the adders in stage2 to the RP's output L, to muxceO

through muxl, and end at Rt4. Suppose Ia and lx denote adder and multiplexer delays,

respectively. Then, the critical path of stage 2 becomes large, 3ta + 31x, when the

processor datapath is incorporated into the architecture. The addition of stage 3, which

is obtained by splitting stage 2, reduces the critical path of stage 2 to 2ta + lx and that

of stage 3 to la + 2tx.

Stage I computes the high coefficients (stepl) and sends results to the output

labeled H, whereas stages 2 and 3 compute the low coefficients (step2) and send

results to the output labeled L. According to the DOGs in Figure 3.3.1, each high

coefficient calculated in stage I enters not only in the calculation of the current low

coefficient in stage 2 but also in the next low coefficient calculation in stage 2.

Therefore, Rtl output of stage 3, which holds the high coefficient, is fed back into

Muxe I and Muxe2 to be considered in the next low coefficient calculation. Stage 2 of

the pipeline is a little bit complicated because it implements part of the extension. So

in the following, the dataflow of stage 2 is explained. First, according to the DOGs for

5/3, in the calculation of the first low coefficient YO, the high coefficient value Yl,

calculated in stage I, must be allowed to pass through the multiplexers, labeled Muxe I

and Muxe2, to the adder in stage 2. Second, in the calculation of the last coefficient,

for example, Y8 in the DOG of odd length signals in Figure 3.3.1(a), the high

coefficient (Y7) in RTI of stage 3 must be allowed to pass through both Muxel and

Muxe2 to the adder. During normal computations that occur between the first and last

coefficients calculations, the current high coefficient calculated in stage I and the

previous high coefficient in Rtlof stage 3 are allowed to pass through Muxe I and

Muxe2 to the adder, respectively. Note, in even length signals, the last high and low

coefficients calculations occur normally. Table 3.3 shows the values of the control

signals that have to be issued by the control unit so that the extension multiplexers

53

perform the required functions. Note also, the shift operations that are indicated on the

figure by the symbol>> are implemented in hardwire.

3.8.2 917 Processor's Datapath Architecture Development

A 6-stage pipe lined datapath architecture for 9/7 processor is shown in Figure 3.8.2. It

is formed using both the 9/7 algorithm and its DOGs show~ in Figure 3.3.2. ln this

Processor datapath architecture

X(2J + 1) stage3 H:

Figure 3.8.1 5/3 processor's datapath architecture with symmetric extension

Table 3.3 symmetric extension's control signals for 5/3

seO se l se2 seO se I se2

First 0 0 0 First 0 0 0
Normal 0 0 I Normal 0 0
Last 0 I Last 0

a) Even length signal b) odd length signal

architecture the pipeline stages I, 2, 4, and 5 represent the first 4 steps in the 9/7

algorithm. The implementation of stepS and step6 are incorpomted in stage 6 to allow

the two steps to operate in parallel. Stage 3, which connects stage 2 with stage 4, is

54

added because stage 4 requires two successive low coefficients that must be produced

by stage 2 in order to perform an operation. When the first coefficient produced by

stage 2 is in Rt of stage 4 the second coefficient will in Rt of stage 3 and will be

applied to stage 4 through the path labeled forward. The 9/7 processor shown in

Figure 3.8.2, can be thought formed by connecting together two 5/3 processors

through stage 3, assuming the 5/3 is a 2-stage pipe lined processor.

The multiplexers in stages 2, 4 and 5 including the one labeled MuxeO implement

the symmetric extension algorithm that is part of the DOGs in Figure 3.3.2. Table 3.4

shows the appropriate values of the control signals that must be issued by the control

unit to the extension multiplexers so that they perform the required functions. The

extension multiplexers in stages 2 and 5 function exactly the same way as that of the

5/3, described earlier. The normal function of the extension multiplexer labeled

muxeO is to pass the input signal X(2n + 2) to the latch, whereas function of the

extension multiplexer labeled muxe3 in stage 4, is to pass the forward

signal, Y'(2n + 2) to the adder. Only in the even length signals and in the calculation

of the last coefficient, muxeO passes the input signal X(2n) to the latch and Muxe3

.stage! stage2 stage3 stage4
' Rtl: Y'(2n +I)

X(2n +I) :

m~xeO

X(2n)
-'*-.j

f*~

Y'(2n)
Y'(2n) Y'(2n)

stage6

Y' 2n+l)

Y'(2n)

Figure 3.8.2 The 9/7 processor's datapath architecture with extension

55

Table 3.4 symmetric extension's control signals for 9/7

step! step2 step3 step4
seO se I se2 se3 se4 se5

First 0 0 0 0 0 0
Normal 0 0 1 0 0 1
Last 1 0 1 1 0 1

a) Odd length signals

step 1 step2 step3 step4
seO se I se2 se3 se4 se5

First 0 0 0 0 0 0
Normal 0 0 1 0 0 1
Last 0 1 0 1 1

b) E'en length signals

passes the delay signal Y'(2n) to the adder instead of the forward signal Y'(2n + 2).

Note that multiplication operations in Figure 3.8.2 can be implemented by only two

adders as illustrated in [23].

3.8.3 Row and Column Processors for 513 and 917

The 5/3 and 9/7 processor datapath architectures shown in Figures 3.8.1 and 3 .8.2

were developed assuming the external memory is scanned either row·by-row or

column-by-column. The CPs in the two architectures shown in Figures 3.6.1 and

3.6.2 for overlapped and nonoverlapped scan methods, respec1ively, scan the high and

the low coefficients generated by RP column-by-column. But, since the CPs alternate,

in an interleave fashion, between the high and the low coefficients calculations as

indicated in Table B.l, therefore, the 5/3 CP's datapath and both 9/7 CPs' datapath

based on the scan method shown in Figures 3.5.1 and 3.5.3, ffi'JSt be modified to allow

interleaving in execution. The modified 5/3 and 9/7 CPs' datapath are shown in

Figures 3.8.3 and 3.8.4, respectively.

In the 5/3 CP shown in Figure 3.8.3, registers RdO and Rdl are added to allow

interleaving in execution. The first 9/7 CP shown in Figure 3.E.4(a), which is based on

the scan method of Figure 3.5.1, is obtained by splitting stage 3 of the 9/7 processor's

datapath shown in Figure 3.8.2 into two stages to allow also interleaving of two

columns coefficients in execution. On the other hand, the second 9/7 CP shown in

Figure 3.8.4(b), which is based on the scan method shown in :0 igure 3.5.3, is obtained

by splitting stage 3 of the 9/7 processor's datapath of Figure 3.8.2 into four stages and

adding 4 registers labeled RO, Rl, R2, and R3 in stage 5. The multiplexers labeled

mux, control the interleaving operations. In the first run, the control signals, sc, of the

multiplexers are set 0, to allow in execution the interleaving pattern of run!, as

56

illustrated in the dataflow Table B.2 (a). In all subsequent runs, the multiplexers'

control signals are set I to allow normal interleaving of two columns.

As for the 5/3 CP in the intermediate architecture shown in Figure 3.7.2, it should

be modified as shown in Figure 3.8.5. This is necessary, since the intermediate CP

scans three columns in each H and L decomposition in a run as illustrated in the

dataflow shown in Table B.3 and alternates between executing 3 high and 3 low

operations in H and L decompositions.

On the other hand, the row-processors m the proposed overlapped and

nonoverlapped architectures for 5/3 and 9/7 scan the external memory according to

one of the scan methods illustrated in Figs 3.5.1, 3.5.2 and 3.5.3. A careful

examination of the scan methods and the DOGs shows that the N high coefficients of

step I in the 5/3 and steps I, 2, and 3 in the 917 that were calculated during a run must

be kept, in order to be used in the N operations of the next run. This requires the

addition of a temporary line buffer (TLB) of size N in stage 2 of the 5/3 and in each of

stages 2, 3, and 5 of the 9/7. Thus, the RP's datapath that fit into the two proposed

architectures is obtained when a TLB is incorporated into stage 2 of the 5/3 and in

each of stages 2, 3, and 5 of the 9/7 as shown in Figure 3.8.6. The inclusion of the

TLB may decrease the speed of the architectures. To maintain the speed, the TLB can

be placed in a separate pipeline stage as shown in Figure 3.8.7. However, inclusion of

a TLB causes a problem because the same TLB 's location must be read and written in

the same clock cycle. To solve this problem, the signal labeled R I W is connected

to the clock jl3 so that the TLB can be read in the first half cycle and written in the

second half. The register labeled TLBAR (TLB address register) generates addresses

for the TLB. Initially, TLBAR is cleared to zero by asserting signal incar (increment

address register) low to point at the first location. Then to address the next location,

after each read and write, register TLBAR is incremented by one by asserting incar

high.

Figure 3.8.7 is appropriate for 5/3 RP in overlapped and nonoverlapped

architectures. To obtain the first and the second 9/7 RPs' datapath based on the scan

methods of Figures 3.5.1 and 3.5.3, respectively, the 9/7 datapath shown in Figure

57

Stage2

r

-8
sre2

Figure 3.8.3 Modified the 5/3 CP for overlapped and nonoverl.lpped architectures

Stage 1 Stage 3 Stage '' Stage 5
Stage 2

Forward

seeD

~ ___ ..
Stage 7 X(2n+1)

Stage 6 ::LJ":\-~~
1-------r--------,---.,F~

k~

k

f-------------~1~ L~ ::J , \..:_) 'LTx{;n)

Figure 3.8.4 (a) Modified first 9/7 CP based on the scan method of Figure 3.5.1 for
overlapped and nonoverlaped architectures

58

Stage 1 Stage 3 Stage 4 Stage 5 Stage 6

Stage 8

sc

Figure 3.8.4 (b) Modified second 9/7 CP based on the scan method of Figure 3.5.3 for
overlapped and nonoverlapped architectures

~r-----~------------~·EJr
Figure 3.8.5 modified stage 2 of 5/3 CP for intermediate architecture

59

Eilb
f-!.-K;::::=:=~ address lines

Figure 3.8.6 Incorporation of a TLB in stage 2 of the RP

clock f 13

TLB

Figure 3.8.7 TLB in a separate pipeline stage

3.8.2 should be modified as shown in Figures 3.8.8 (a) and (b), respectively. The

operations of the multiplexers labeled mux in Figure 3.8.8 (b) can be controlled by

setting the select signals, sr, of the multiplexers 0 during the first run and I in all

subsequent runs.

A careful examination of the 9/7 DOGs shows tha.t when the last run's

computations are executed they would not yield all required output coefficients. Thus,

to get the remaining output coefficients, the control unit should be instructed to

execute one more run, call it, the extra run. In addition, examination of the last run's

portion of the 9/7 DOG for odd length signals shows that the extension signal labeled

sre I is required to be set I in order to compute the operation in the level labeled

Y'(2n) in the DOG. But, when the computation reaches levelY'(2n), the operation in

60

that level requires signal sre I to be set 0. Furthermore, in the extra run, the operation

at level Y'(2n) requires signal srel to be set I. Therefore, a circuit consisting of an

AND gate and an inverter is inserted into stages 6 and 7 of Figures 3.8.8 (a) and (b),

respectively. The circuit operates according to Table B.5 (a). However, in the case of

even length signals, according to the DOG of the 917, both srel and QI are set 0 in all

runs.

Similarly, examination of signal sreO, in the last and extra runs, for both even and

odd signals, reveals that this signal should be set also according to Table B.5(a) and

the circuit consisting of the AND gate and the inverter should be inserted into

stages 4 and 5 of Figures 3.8.8 (a) and (b), respectively. For the architecture

developed based on the scan method of Figure 3.5.1, signal sre2 should be set

according to Table B.5 (b) and the circuit consisting of the AND gate the inverter

should be inserted into stage 6 of Figure 3.8.8 (a).

Furthermore, to allow TLB3 of Figure 3.8.8 (b) to store coefficients generated by

stage 6 in the first run, a circuit consisting of a multiplexer and an inverter is inserted

into stage 6 of Figure 3.8.8 (b). In addition, to allow register TLBAR3 to address the

first location of the TLB3, when a transition is made from run I to run2, a circuit

consisting of a multiplexer, two inverters, and an AND gate is inserted into stage 5 of

Figure 3.8.8 (b).

On the other hand, to obtain the RP datapath for 5/3 and 9/7 intermediate

architectures, stage 2 of the 5/3 and stages 2 and 5 of the 917 datapath architectures

shown in Figures 3.8.1 and 3.8.2 should be modified as shown in Figure 3.8.9. The

advantage of this arrangement is that the TLB is not required to be read and written in

the same clock cycle.

Furthermore, examination of step2 (Y"(2n)) in the 917 DOGs shows that the fourth

low coefficients labeled Y'(6) calculated for each row in a run using the third

intermediate scan method should be stored in a buffer of size N, since they are

required in theN operations of the next run. This requires the addition of another TLB

in stage 3 of the 917 datapath architecture shown in Figure 3.8.2. Figures 3.8.10 shows

how this TLB can be incorporated into stage 3 of Figure 3.8.2 to form the required

917 RP for intermediate architecture. The TLB in Figure 3.8.1 0 is also not required to

61

Stage 1

Y(2n+1)

clock
' Stage 2 I

Stage 6 clock

~ 02

~ 01

Stage 3
clock

Stage 4

sreO~)sreO

00

Figure 3.8.8 (a) Modified first 9/7 RP based on scan method J.S.l for overlapped and

nonoverlapped architectures

be read and written in the same clock cycle. Figures 3.8.9 and3.8.1 0 form the first 5

stages of the modified 7-stage 9/7 RP for intermediate architecture and the remaining

2 stages are identical to stages 2 and 3 of Figure 3.8.9.

62

incar-cr::~car

sr

clock

clock

Stage 7

~
Q2l>-L---/
~~
Q1

sr

~ QO

Stage 8

Figure 3.8.8 (b) Modified second 9/7 RP based on scan method 3.5.3 for overlapped
and nonoverlapped architectures

63

stage 2 stage 3

Rd

address s

Ej----------~·Ej------------------------~-~
Figure 3.8.9 Modified RP datapath for 5/3 and 9/7 intermediate architectures

stage 3 stage 4 stage 5

Forward2

TLB

Y"(2n + 2)

se3

Figure 3.8.1 0 Incorporation of a TLB in stage 3 of Figure 3.8.2 to form the 9/7 RP for

Intermediate architecture

64

3. 9 Evaluation of architectures

In section 3.7.2, it is mentioned that statement] can be used to determine the

frequency f of the architectures. Pipe lining the processors to k stages changes the

frequency f, which can be determined by the following statement which is a slight

modification of statement].

Statement]

t
case I :If t"' :>: __!'_ then

k
T = t m

t
case 2: Else if _P_ :>: t m then

I ·k

tp
T=--

I·k

else T = t m

Where r =I/ f, t"' = 1/fm , and t P = 1/ fr are the clock period, the critical path delay

of the external frame memory and the processors, respectively.

In the algorithm stated above either case 1 or case 2 can be true. Case 2 implies

the availability of a very high speed scan that can scan the three pixels required for an

operation during the specified time limit given by f/k. If that is the case, the

architectures shown in Figures 3.6.1, 3 .6.2 and 3. 7.2 with their processors pipe lined,

the hardware utilization is 100% and the architectures are complete. Now, suppose

r 1 and r 2 denote the clock periods of the architectures before and after pipelining,

respectively. Then from statement I, case2

tp
r=­

t I

And from statement] case2

tp
r =--

2 I· k

The speedup factor S is given by

I· r 1

I·k

65

(3.32)

rt
k

(3.33)

The efficiency E of a k-stage pipeline is defined in [58] as

E=S=':_=I
k k

(3.34)

(3 .35)

Thus, the architectures with pipelined processors are k times faster than the

architectures with nonpipelined processors with efficiency I.

On the other hand, case I implies low scanning frequency. That means the time

required to scan the three pixels for an operation will take at least 3t/k seconds or

three clock cycles, where t/k is the stage critical path delay of the pipelined

processor. In that case, the architectures with pipelined processors will be under

utilized 2/3 of the time, since every three clock cycles yield one output. In addition,

the speedup due to pipelining is proportional to k. To determine that consider the

following. From statement2 case I,

~
k

(3.36)

The speedup factor S is then given by

(3.37)

The efficiency (3.38)

Thus, in 917 architectures, a gain in speedup factor of 2 can be achieved since k = 6

and I = 3 but no gain in speedup can be achieved in the case of 5/3 architectures,

since k = 3, by pipe lining the processors and the efficiency is very low, 1/3.

The under utilization and speedup problems can be alleviated, and the entire

architecture can be made to operate with frequency f = kltp and fully utilized,

producing outputs every cycle. If the architecture is allowed to read from the extemal

memory the required three pixels for an operation in parallel every clock cycle instead

of one pixel at time. Of course, that will require three buses instead of one to scan the

extemal frame memory. The parallel scan architectures can be obtained by slight

66

modifications of the architectures shown in Figures 3.6.1, 3.6.2, and 3.7.2 from RP

side only as shown in Figures 3.9.1, 3.9.2, and 3.9.3, respectively, since

modifications only affect this part of the architecture and the other parts remain the

same. The 5/3 dataflow of the pipe lined parallel scan architectures for overlapped and

nonoverlapped in Figures 3.9.1 and 3.9.2, respectively, is shown in Table B.6,

whereas the dataflow of the pipe lined intermediate parallel scan architecture, Figure

3.9.3, is shown in Table B.7. Tables B.6 and B.7 are derived assuming the RP and the

CP are 4- and 3-stage pipelined processor, respectively.

A problem occurs in the line buffer (LB) of Figure 3.9.2 because the same

memory location in the line buffer must be read and written in the same clock cycle.

To solve this problem, the LB is read in the first half cycle and is written in the

second half. To perform this operation the clock line is connected to the control

signal labeled R/W of the LB. When the clock is low, read takes place and the result

is loaded into Rd by the positive transition of the clock and when it is high write

operation takes place, as illustrated in Figure 3.9.2. The signal labeled Elb (enable

LB), when it is asserted high, read and write take place, otherwise, no read and write

take place.

To compare the performances of the pipelined parallel scan architectures

with the nonpipelined sequential scan architectures shown in Figures 3.6.1 and 3.6.2,

consider the following. In the architectures shown in Figures 3.6.1 and 3.6.2, p1 = 15

clock cycles (Table B.l) are needed to complete the execution of the first operation,

whereas p
1

= 27 is needed in the intermediate architecture shown in Figure 3.7.2

(Table BJ). The remaining (n~l) operations require l(n-1) cycles, where I= 3 for 5/3

and 9/7. Thus, the total time required to perform (n) operations or tasks is

(3.39)

where r, = 1/ J; is the clock period. On the other hand, the pipe lined overlapped and

nonoverlapped parallel scan architectures shown in Figures 3.9.1 and 3.9.2 require

p 3 = 10 cycles for 5/3 (Table B.6) to complete the execution of the first task, whereas

67

s

LL-RAM
N M
-x-
2 2

r! H

~

0

"' "' " u

r2 ~
~
0

c.:

LL

L

Figure 3.9.1 Pipelined overlapped parallel scan architecture

s

L:========~ LL-RAM f+--.!:L=.L __
N/2xM/2

Figure 3.9.2 Pipelined nonoverlapped parallel scan architecture

68

s

s L:========::l LL-RAM 1+--!::!LL:__ __
L-----------1 Nl2xM/2

Figure 3.9.3 Pipelined intermediate parallel scan architecture

p 1 = 14 for 5/3 (Table B. 7) is needed in the pipe lined intermediate parallel scan

architecture shown in Figure 3.9.3. The remaining (n- 1) tasks require (n- 1)

cycles. The total time required to execute n tasks is given by

The speedup factor is then given by

S = T(non},, _ (p, +l·(n-!)}r,
T(pipe)P"'- [p1 +(n-!)}r,

For large n, the above equation reduces to

The efficiency

s k
E=-=-=1

k k

(3 .40)

(3 .41)

(3.42)

(3.43)

That is the pipelined parallel scan architectures are k times faster than the

nonpipelined sequential scan architectures with efficiency 1.

69

The throughput, H, which is defined as the number of tasks (operations)

performed per unit time, can be written as

(3.44)

H(pipe),,, = (p, +I .(n- I))r'
nk

(3.45)
[p2 +I· (n -l)]r1

- nkJ;
- p

2
+ I · (n - I)

(3.46)

(3.47)

(3.48)

The maximum throughput, H'"'", occur when n is very large (n ---+ ctJ) and in these

architectures the maximum throughput is attainable, since n is expected to be very

large. Thus,

(3.49)

and

H (pipe l::' = H(pipe);;; = kJ; /I (3.50)

The pipelined parallel and sequential scan architectures' throughputs have increased

by a factor of k as compared with the nonpipelined architectures.

Based on the above evaluations, we can conclude that both pipelined sequential

and parallel scan architectures achieve the same performan:e in terms of speedup,

efficiency, and throughput.

To evaluate the power consumption of the pipelined parallel scan architectures

shown in Figures 3.9.1, 3.9.2, and 3.9.3 and that of the pipe lined sequential scan

architectures shown in Figures 3.6.1, 3.6.2, and 3.7.2 consider the following. First,

consider the power consumption of the pipelined parallel and sequential scan

70

architectures without external memory. From Eq (3.36) the frequency of the pipelined

parallel scan architectures is

(3.51)

Whereas from Eq (3.33) the frequency of the pipelined sequential scan

architectures is

(3.52)

If the total the capacitance, Cwwl. of parallel and sequential scan architectures are

equal, then that implies they are also consume the same power.

On the other hand, the external memory power consumption of the pipeiined

sequential and parallel scan architectures can be obtained as follow. The total power

consumption of the external memory for the pipelined overlapped sequential scan

architecture, Pm(over)"q is written as

(3.53)

Where c,:,"1 is the total capacitance of the external memory. The total external

memory power consumption for the pipelined nonoverlapped sequential scan

architecture, Pm(nonover),q is written as

(3.54)

Whereas the total external memory power consumption of the pipe lined intermediate

sequential scan architecture, Pm(int)."" can be obtained as follow. If P,(int)."'l is the

power consumption due to scanning the overlapped areas of the external memory

sequentially is give by

(3.55)

Where I· k · c,:,"1 • V0
2

· fP is the external memory power consumption of the

pipelined overlapped sequential scan architecture Eq(3.53), then

71

(3.56)

(3.57)

= 1· k · fr ·C,:,al · Vo'(fJ + flo/3) (3.58)

On the other hand, the total external power consumption of the pipelined

overlapped and nonoverlaped parallel scan architectJres Pm(over)pa' and

Pm(nonover)pu" respectively, are written as

(3.59)

(3.60)

Pm (nonover) ""' = fJ ·1 · k · c,;,a, · Vo' · fr (3.61)

Whereas, the total external power consumption of the pipelined intermediate

parallel scan architecture, Pm(inl)pa' can be obtained as follow. If Pu(int)pa' is the

power consumption due to scanning the overlapped areas of the external memory by

parallel scan architecture is give by

Where 1· k · c,:,, · V0
2

• JP = PJover) P"' , then

PJint)P"' = Pm(nonover)pa, + P,(int)P"'

= 1· k · fJ · c,:,, · V0
2

• fr +flo .J. k · c;,;,, · V0
2

• fr /3
= 1· k · JP · c,:,, · V0

2 · (fJ + flo/3)

(3.62)

(3.63)

(3.64)

(3 .65)

The above evaluations show that the external memory power consumption of the

sequential and parallel overlapped architectures are equal (Eq:; 3.53 and 3.60) and that

of the sequential and parallel nonoverlapped (Eqs 3.54 and 3.61) and the sequential

and parallel intermediate (Eqs 3.58 and 3.65).

In the following, an estimate for the total number of operations performed by the

row-processor for j levels of decomposition is derived. Number of operations

performed by the row-processor in each level of decompo:;ition can be written as

72

nl = N (I M; r lJ (3.66)

n2 = l N/2 J(ll M/~ J+ llJ (3.67)

n3 = lN/4J(IlMi~J+ 1l) (3.68)

n4 = lN/8 J(llM/~ J+ ll) (3.69)

(3.70)

Then the total number of operations (n) performed by the RP for j levels of

decomposition can be estimated as

n = N[rM2+ 11J+ ~I ~2+ 11]< I ,~2+ l + 2~' [12~~ +Ill

n=+NM[I+~+ I~+ 6~ + ··· +(~r}v[++~+i+ +(±r]

. l"{l!) +(ll}" :u •(!J']HlJ'

+M['l!i'} H· (it:
Since the term (± r-l will be very small the above equation can be reduced to

n~~NM
3

(3 71)

(3.72)

(3 73)

(3 74)

(3 75)

Eq (3.75) also estimates the total number of operations performed by the CP and the

total number of paired outputs for j levels of decomposition.

73

3.10 Combined 513 and 917 Architecture

The 9/7 processor datapath architecture of Figure 3.8.2 can be viewed as formed by

connecting two 513 processors through stage 3, assuming 5/3 is a 2-stage pipelined

processor. That suggests the possibility of modifying the 9/7 processor datapath

architecture shown in Figure 3.8.2 such that it performs both 9/7 and 5/3 algorithms.

To obtain such processor architecture the 5/3 algorithm is incorporated in stages I, 2,

and 3 of Figure 3.8.2 as shown in Figure 3.10.1. The control signal value of the signal

labeled/oss/ess/lossy determines which function the architecture would perform. If

loss less/lossy is 0, the architecture performs the loss less 9/7, otherwise, performs the

lossy 5/3. The combined architecture is useful and very efficient in situations where

the encoder in one site is required to perform either lossless or lossy image

compression. The advantage of the combined architecture is that a substantial saving

in silicon area could be achieved.

Rtl:
X(2n+l)

stage2

seO

X (2n-'-) .__~

loss less/ lossy

Figure 3.1 0.1 Combined 9/7 and 5/3 processors data path architecture

74

3.11 Conclusions

In this chapter, 3 high-speed and novel pipelined VLSI architectures, overlapped,

nonoverlapped, and intermediate architectures were developed for 5/3 and 9/7,

respectively. Pipelining technique is utilized to achieve high-speed performance. The

advantage of the overlapped and intermediate architectures is that they only require a

total temporary line buffer (TLB) of size N and 3N for 5/3 and 9/7, respectively. The

intermediate architecture, which is an alternative form for reducing the power

consumption of the overlapped areas of the external memory expressed in Eq(3.9),

reduces the external memory power consumption by 22.22 % as compared with the

external memory power consumption of the architecture based on the first overlapped

scan method. However, the intermediate architecture with the second dataflow Table

8.4 reduces the power consumption of the external memory by 48%. Therefore,

intermediate architecture could be a very good candidate in applications where power

consumption is a serious issue.

75

CHAPTER4

PARALLEL ARCHITECTURES DEVELOPMENT

4.1 Introduction

In chapter 3, three pipelined architectures were developed. The first architecture,

which is based on the first overlapped scan method, the maximum power

consumption occurs due to overlapped external memory access. The second

architecture, which is based on the nonoverlapped scan method, the power

consumption of the external memory has been reduced to minimum by eliminating the

overlapped areas but requires the addition of a line buffer (LB) to the architecture.

The intermediate architecture, which is based on the generalized overlapped scan

method, is introduced to reduce the power consumption of the external memory

access, without using the expensive line buffer, to somewhat between that based on

the first scan method and that based on the nonoverlapped scan method.

In this chapter, to further increase the performance in order to closely meet real­

time applications of DWT with demanding requirements, the parallel architectures

based on the first scan method and the parallel form of the intermediate architectures

will be designed. First, the parallel architectures based on the first overlapped scan

method will be developed followed by the intermediate parallel architectures.

In general, the scan frequency fi and hence the period r 1 = 1/.!; of parallel

pipelined architectures can be determined by the following statement, when the

required pixels I of an operation are scanned simultaneously in parallel. Suppose lp

and 1m are the processor and the external memory critical path delays, respectively.

Statement3

lft"jl·kztm then

r 1 =t,j(l·k)

else r1 = tm

76

Where l = 2, 3, 4 ... denote 2, 3, and 4-parallel and t P j k i; the stage critical path

delay of a k- stage pipe lined processor.

4.2 parallel architectures based on first scan method

In this section, three parallel architectures based on the first overlapped scan method

will be developed for 5/3 and 9/7 2-D DWT algorithm~;. These three parallel

architectures will be referred to as

• 2-parallel pipe lined architecture.

• 3-parallel pipe lined architecture.

• 4-parallel pipe lined architecture.

The 2-parallel, the 3-parallel, and the 4-parallel architectures each increases the

speedup by a factor of 2, 3, and 4, respectively, as compared with the single pipelined

architecture based on the first scan method developed in chapter 3.

4.2.1 2-paralle/ pipelined external architecture

Based on the first overlapped scan methods shown in Figures 3.5.1 and 3.5.3 and

DOGs for 5/3 and 9/7, respectively, the 2-parallel architecture shown in Fig. 4.2.1 is

developed for 5/3 and 9/7. The architecture is valid for both 5/3 and 9/7 algorithms,

since it is developed based on the observation that the DDGs for 5/3 and 9/7 are

identical when they are looked at from outside, taking into consideration only inputs

and outputs requirements.

The architecture consists of 2 k-stage pipe lined row-proeessors labeled RPl and

RP2 and 2 k-stage pipelined column-processors labeled CPl and CP2. The

architecture scans external memory with frequency 12 and it operates with

frequency f 2 /2. The buses labeled busO, bus 1, and bus2 are used for transferring in

every clock cycle 3 pixels from external memory to RP's latches RtO, Rtl, and Rt2.

The RPl 's latches load data every time clock f 2 /2 mabs a positive transition,

whereas RP2's latches load data every time a negative transition occurs as indicated

in Figure 4.2.1, assuming the first half pulse of the cloc<s 12 and J,/2 are low.

77

bus2

busO

RAM

N M J....--------'
2 2

Figure 4.2.1 2-paralle1 pipe1ined external architecture

On the other hand, the column-processors CP1 and CP2 and their associated latches

load new data every time clockJ;/2 makes a positive transition.

The DOGs for even length signals show that in the last high and low coefficients

calculations, only the last two pixels in a row, r, at locations X(r, M-2) and X(r, M-1)

are read from external memory. In addition, the extension part of the DOGs for even

length requires the pixel located at X(r, M-2) to be considered as the first and the third

inputs. This pixel must be passed to the RP2 with the second input pixel from location

X(r, M-1), to compute the last high and low coefficients in row r. Thus, the

multiplexer labeled muxreO, which is an extension multiplexer, passes in all cases data

78

coming through bus2, except when the row length (M) of an image is even and only in

the calculations of the last high and low coefficients in a row r, the pixel of location X

(r,M-2), which will be read into busO, must be allowed to pass through muxreO and

then loaded into Rt2 as well as RtO. The two multiplexers labded muxceO, attached to

CPs, are also extension multiplexers and operate similar to muxreO when DWT is

applied column-wise by CPs. The three multiplexers labeled muxc allow either the

external memory or the LL-RAM data to be passed to the RP's latches RtO, Rtf, and

Rt2.

On the other hand, when the row length of an image i; odd, according to the

DOGs for odd length signals, to calculate the last low coefficient only one pixel the

last one at location X(r, M-1) should be passed to the RPI.

The dataflow of the architecture is shown in Table B.S. This dataflow table is

derived based on the 5/3 scan method shown in Figure 3.5.1 and it is identical to 917

dataflow except in the first run, where 9/7 scan method shown in Fig. 3.5.3 requires

scanning of 5 pixels from each row. The 5/3 scan method shown in Figure 3.5.1 is

also a valid scan method for 917 and the dataflow for 5/3 shown in Table B.8 would

be identical to 9/7 dataflow derived using 5/3 scan method except in the first run

where 917, according to its DOGs, would not be able to yield any output coefficients.

The 9/7 RPs in the first run will be able to compute only two coefficients labeled

Y'(l) and Y'(O) in the DOGs for each row of run I and these coefficients can be

stored in TLBs so that they can be used in the next run computations. Inclusion of

TLBs will be discussed later when modified RP datapath architecture is developed.

The utilization of the 5/3 scan method as a unified scan method for both 5/3 and

9/7 gives many advantages:

• Similar control algorithms, if not identical, can be used for both 5/3 and

9/7.

• Ease of integration of the 5/3 into the 9/7 processor datapath architecture

for combined 5/3 and 9/7 architecture.

79

For these two reasons, the 5/3 scan method as unified scan method for both 5/3 and

917 is preferred and therefore, will be used in all parallel architectures developed in

this chapter.

Note that according to the first overlapped scan method shown in Figure 3.5.1, in

any particular time 3 columns are considered for scanning and in every clock cycle 3

pixels are scanned one from each column until end of the columns are reached, say, to

complete a run. Then a transition is made to the beginning of the next 3 columns to

initiate another run. In the clock cycle where a transition occurs, especially when

column length of an image is odd, the external memory should not be scanned since

during that cycle the two CPs each will compute the last low coefficient as required

by the DOGs for odd length signals. That is, during that cycle no pixel is loaded into

RP2 latches while the control is allowed to return to RPI by the pulse ending the

cycle. This also implies that each run will begin at RP I and the high coefficients

generated during a run, which are required in the next run computations, will be

stored in the TLB of the RP that generated them.

Figure 4.2.2 shows how stage 2 of the pipe lined 5/3 RP and stages 2, 3 and 5 of

the pipelined 9/7 RP should be modified when they are incorporated into the 2-

parallel architecture processors. The modifications require addition of a TLB size of

N/2 in each stage mentioned. The TLB is necessary, according to the DOGs, to keep N

coefficients calculated during a run in each of stages I, 2, and 4 of Figure 3.8.2 that

are also needed in the N operations of the next run. Signal fi./ w (read/write) is

connected to the clock /,/2 in Figure 4.2.2 so that the TLB can be read in the first half

cycle and written in the second half as required. The data read in the first half cycle,

for example, from TLBJ, is stored in register Rdl by the negative edge of the clock.

Then the positive edge of the clock loads it into the latch of the next stage. Note that

each of the 2-parallel 9/7 RP is identical to the RP shown in Figure 3.8.8 (a).

The register labeled TLBAR (TLB address register) generates addresses for the

TLB. Initially, register TLBAR is cleared to zero by asserting signal incar low to point

at the first location in the TLB. Then to address the next location after each read and

write, register TLBAR is incremented by one by asserting incar (increment address

register) high.

80

!, 12

!, 12

!, 12

incar2

I\
sre2

,f\

RPl

RP2

[Rf1 P¥i1tl sre 2
--~·~~----------------~·~~------·------------

/,12 !,12

Figure 4.2.2 modified 2-parallel RPs

4.2.2 3-para/lel pipelined architecture

The 3-parallel pipelined architecture is shown in Figure 4.2.3 and its dataflow based

on 5/3 scan method shown in Figure 3.5.1 is given in Table 13.9. The architecture has

two more processors, labeled RP3 and CP3, than the 2-parallel architecture shown in

Figure 4.2.1. The architecture operates with frequency f 1 j:l and scans the external

memory with frequency f 3 •

Figure 4.2.4 shows two waveforms for the frequency ;;/3 labeled f 3" and f 3h.

81

The RPI and its associated latches use the clockf,, , whereas the RP2 and the RP3

and their associated latches use the clock J;, as indicated in Figure 4.2.3.

In every clock cycle, 3 pixels are scanned from external memory and are loaded

into the latches of one of the RPs. First, RPI latches are loaded then RP2 latches

followed by RP3 latches and then the process repeats. The 3 row-processors latches

should be loaded with the required data during the time limit specified by t r j k before

bus2

Figure 4.2.3 3-parallel pipe lined architecture

82

HH
LH

HL
LL

!,
2 3 4 h_h

r I

L
I
I
I

/,, =J,/3 I
I

I I I

/,h = J,/3
lcP2 _fL
' ' '

RPI RP2 RP3

Figure 4.2.4 waveforms of the 2 clocks used in 3-parallel

it repeats. The RP I and RP2 latches are loaded every time clocks / 3, and f" make a

positive transition, respectively, whereas RP3 latches are ioaded each time clock

f" makes a negative transition.

The extension multiplexer's labeled muxreO and muxceO in Figure 4.2.3, function

the same way as in the 2-parallel extension multiplexers described in section 4.2.1. In

addition, note that the RP3 has two Rtl output latches labeled Rt/3a and Rt/3b instead

of one because the dataflow in Table B.9 requires the presence of such latches. These

latches are required to hold its contents sometime for more than one clock cycle with

respect to clock f 3h. Therefore, the control signals e3a and e3b are added to control

the loading of these two latches

The strategy adopted in this architecture is that each run must begin at RPI. The

advantage of the strategy is that it will not require any modifications to the RPs

datapath architecture shown in Figure 4.2.2 except the 3 RPs in the 3-parallel each

will has a TLB of size fN/Jl, while any other strategy will complicate very much the

RPs datapath and the control circuitry. Application of this strategy requires that if a

run ends at RPI, then the next run should begin after 2 clock~; cycles during which the

external memory is not scanned whether the column length ("') is even or odd. But, if

a run ends at RP2, then the next run must begin after one dock cycle. The external

memory is not scanned also during this cycle whether N is even or odd.

On the other hand, if a run ends at RP3 and N is even, th•!n the next run can begin

immediately, otherwise, if N is odd, then 3 clock cycles must elapse before the next

run can begin. These guidelines are necessary in order to avoid any conflict in the

83

dataflow. To identify at which RP a run would end, a 2-bit register can be used. The

register is initially set to 0 and then is incremented by one every clock cycle to count

from 1 to 3 and repeats. When a run ends the 2-bit register will contain the RP

number.

Now, let's move to the CPs side to see how this part of the architecture works.

According to the dataflow shown in Table B.9, CPl and CP3 work in parallel starting

from cycle 13. However, CPl executes high coefficients stored in Rthl, Rth2, and

Rth3, while CP3 executes low coefficients stored Rtll. Rt/2, and Rt/3. Whereas,

starting from clock cycle 14, the CP2 alternates between executing high and low

coefficients. Moreover, both CPl and CP3 are run by the clock labeled [3, and every

time it makes a positive transition new data are loaded simultaneously into both CPl

and CP3 latches RIO, Rtf, and Rt2. CP2 is run by the clock f 1h and loads new data into

its latches RIO, Rtf, and Rt2 every time the clock makes a positive transition.

In order to understand and appreciate why the 3 sets of the multiplexers labeled

muxl. mux2, and mux3 are included, why they are interconnected in that way, and

finally, how they operate, consider Table 4.1. Table 4.1 is obtained from Table B.9

and it lists groups of RPs' output latches, identified in the table as patterns, and shows

how they are scheduled for the CPs. As shown in Table B. 9 in cycle 13, pattern 1

latches are scheduled for CPland CP3. In cycle 14, pattern2latches are scheduled for

CP2. In cycle 16, pattern 3 latches are scheduled for CP 1 and CP3, whereas in cycle

17, pattern4 latches are scheduled for CP2. These scheduling patterns again repeat

starting from pattern 1 and so on. Thus, looking at pattern 1 and pattern 3 latches, the

presence and interconnections of the three CP 1 multiplexers labeled mux I and the

three CP3 multiplexers labeled mux3 can be justified. In Figure 4.2.3, pattern 1 latches

are connected to the inputs of the multiplexers labeled 0, whereas pattern3 latches are

connected to inputs labeled 1. The operation of the two set of the multiplexers can be

controlled by one signal labeled sp 1. First, sp 1 is set to 0 to schedule pattern 1 and

then is set to 1 to schedule pattern 3 and so on.

Similarly, looking at pattern 2 and pattern 4 latches, which are used by CP2, the

inclusion of the three multiplexers, labeled mux2 and their interconnections can be

84

Table 4.1 Shows scheduling patterns
for CPs and registers involved

Pattern RP's output latches CP
Rthl Rt/1

I Rth2 Rt/2 1&3
Rth3 Rt/3a

Rth3
2 Rthl 2

H2
Rth2 Rt/3a

3 Rth3 Rt/1 1&3
HI Rt/2
Rt/2

4 Rt/3b 2
Rt/1

verified. In the architecture, pattern 2 latches are connected to the inputs of the

multiplexers labeled 0, whereas pattern4 latches are connected to the inputs labeled I.

The operations of these multiplexers are controlled by one signal labeled sp2. First,

sp2 is asserted low to schedule pattern 2 and then high to s,;hedule pattern 4 and so

on.

On the other hand, examination of tables B.9 and 4.1 sta1ing cycle 12 until cycle

17 shows that the control signal values for signals e3a, e3b, spl, and sp2 can be

derived as shown in Table 4.2. These signal values repeat every 6 clock cycles. In

addition, as indicated in the table, signals spland sp2 can be combined into one signal

sp.

According to the DOGs for 5/3 and 9/7, a high coefficient calculated in a previous

operation is also required in the calculation of the next operation. This implies, since

Table 4.2 Control signal values

Cycle e3a e3b spl sp2 Sp
number

12 I 0 X X 0
13 0 0 0 X 0
14 0 0 X 0 0
15 0 I X X 0
16 0 0 I X I
17 0 0 X I I

85

CP2 interleave in execution coefficients of both H and L decomposition generated by

the RPs, then it should be able to pass the high coefficients it generates to CPI and

CP3, and receive high coefficients generated by CPI and CP3. Therefore, the paths,

labeled hI, h2, /1, and /2, are added in Fig. 4.2.3 to serve this purpose.

In order for the CPs to exchange these high coefficients properly, the CPs datapath

architecture, specifically stage 2 of the 5/3 and stages 2 and 5 of the 917 should be

modified as shown in Figure 4.2.5. Table 4.3 provides the information necessary for

passing high coefficients between CPs. This table is used as mean in implementing

the modifications shown in Figure 4.2.5. Therefore, understanding of Table 4.3 ts

essential to appreciate the changes that have been incorporated into Figure 4.2.5.

Table 4.3 shows that in cycle 16, CPJ and CP3 generate the high coefficients

HHO,O and LHO,O, which are placed in Rtl and Rt3, respectively, by the pulse ending

the cycle. The pulse ending cycle 17 loads HHO,O into RJ2 of the CP2 as indicated by

the arrow labeled I. Similarly, the pulse ending cycle 20 transfers the high coefficient

LH I ,0 stored in Rt3 of the CP3 to RJ2 of the CP2 as indicated by the arrow labeled 2.

Note that this pattern of scheduling high coefficients to Rd2 repeats again in cycles 23

and 26. Thus, since Rd2 accept data either from Rtl of the CP I or Rt3 of the CP3, the

multiplexer labeled rnuxc2 is added in Figure 4.2.5 to allow Rd2 to select between

these two inputs. Similarly, the inclusion of the multiplexers, labeled rnuxcl and

rnuxc3 attached to RJJ of the CPI and Rd3 of the CP3, respectively, can be verified.

Another point that needs to be addressed is that Figure 4.2.5 shows that the

operations of rnuxc 1 and rnuxc3 can be controlled by only one signal labeled scI. This

can be verified also with the aid of Table 4.3. For instance, the two arrows labeled 3

and 5 in Table 4.3 indicate that two data transfers take place at the same time; one is

going to Rdl of the CPI and the other to Rd2 of the CP3. This implies that the two

data transfers can be accomplished if the data pointed by arrow 3 and that pointed by

arrow 5 are connected to input 0 of rnuxc I and rnuxc3, respectively. On the other

hand, the second data transfer indicated by the two arrows labeled 4 and 6 can be

accomplished by connecting the data pointed by arrow 4 and that pointed by arrow 6

to input I of the multiplexers rnuxc I and rnuxc3, respectively. Furthermore, Table 4.3

86

-----,--•~-r----~s~ta~e~2_,------~

H+------EJ
h2

1-H------r---EJ

12 II

-----,~~I+W---------r----~

scl = sc3 = sc2 = sc
I

"' IJ?tl~--------------sc_e __ 2 ~Rt --------~· w ~w

Figure 4.2.5 Modified CPs datapath architecture

87

CPl

CP2

CP3

Table 4.3 shows how and when CPs exchange high coefficients

ck CP CPl CP2 CP3
Rtl Rdl Rt2 Rd2 Rt3 Rd3

16 1,3 HHu,v - iL -------- -------- LHO,O --------
17 2 HHO,O -------- HHr;o--tHHO,O LHO,O --------
18 ---- HHO 0 -------- r:: JiHl,O HHO,O LHO,'(}(q-----
19 1,3 HH2:0 HHl~ HHl,O HH0,0'2 ,..b!-11,0 Lllll,O
20 2 HH2,0 HHl,O LH2,0 LHl,tr LHl,O LHO,O
21 ---- HH~HHl,O L , HI O,.,., LHl,O LHO,O
22 1,3 H , Qlf LH2,0 LH 1,0"" LH.•,U Cl't2,0
23 2 HH3,0 HH2,0 HH'I,U ~3,0 LH3,0 LH2,0
24 ---- HH3,0 HH2,0 'J vH~-~4,0 HH3,0 LH3~H2,0

25 1,3 HH5,0 HH4,r HH4,0 HH3,0""' _.LH4,0~Ll+3,0
26 2 HH5,0 HH4,0 LH5,0 LH4~ LH4,0 LH3,0
27 ---- H~HH4,0 L~ 'Hd o,t;;J LH4,0 LH3,0
28 1,3 HH6,0""tfH5,0 LH6:0 LH4,0~ LHo, CPt5,0

can be used for deriving control signal values for signals scI =sc3 and sc2 as shown in

Table 4.4. These signal values repeat every 6 clock cycles. As indicated in the table

these two signals can be further combined into one signal sc.

A careful examination of 917 DOGs shows that stage 3 of the 917 CPs in the 3-

parallel architecture should be also modified as shown in Figure 4.2.6. This figure can

be verified using 9/7 DOGs. The operations of the 3 multiplexers, labeled mux in

Figure 4.2.6 can be controlled simply by setting the control signal s repeatedly 3

consecutive cycles low and 3 cycles high as soon as stage 3 latches of the CP2 are

loaded, as shown in Table 4.4 for signal sc. Figures 4.2.5 and 4.2.6 form the first 3

stages of the 6-stage 9/7 CP and the remaining two stages are identical to stages 1 to 2

and the last stage is the scale factor.

Table 4.4 Control signal values for signal sc

Cycle number scl=sc3 sc2 Sc
16 X 0 0
17 X X 0
18 0 X 0
19 X 1 1

~- X X 1
21 I X 1

88

-------.~~~~-------s-t~ag~e-3 _______ ~
m~~

}~ CPI

I

0
•

Rt ..
~

~ ,
I)

I

Rt

~
I

i

Rt

Figure 4.2.6 modified stage 3 of the 917 CPs

4.2.3 4-parral/el pipelined architecture

The 4-parallel pipelined architecture is shown in Figure 4.2.7 and its dataflow is given

in Table B.IO. This architecture closely resembles the 2-para:lel architecture shown in

Figure 4.2.1. The main difference is that the 2-parallel architecture consists of two

pipelined processors, whereas the 4-parallel consist of 4 pipelined processors. Each

pipe lined processor contains one RP and one CP.

The architecture scans the external memory with frequency f" and itself operates

with frequency. The clock frequency f, can be obtained from statement] as

(4.1)

Note that when degree of parallelism increases from 2 to 3 e.g., the scanning

frequency fi also increases, while the architecture frequency of operation, which is the

89

bus2

/," LL (CP4)

U CP3)

Figure 4.2.7 4-parallel pipelined architecture

90

HL

HH

HL

HH

LL

LH

LL

LH

' ' '
2 3 4 ' ' ' 5 6iJiil

Cfl4

l._____~
'

Figure 4.2.8 Wavefonns of the 3 clocks used in 4-parallel

reciprocal of the stage critical path delay of the pipelined processors, remams

unchanged.

Two waveforms of the frequency labeled.fia and(" that can be generated from[,

are shown in Figure 4.2.8. In the architecture, RPl and RP3, and their associate

latches employ the clock labeledf,u, whereas RP2 and RP4 and their associate latches

employ the clock labeled.fi, as shown in Figure 4.2.7.

As shown in Table B.! 0, in every clock cycle, three pixels are scanned from

external frame memory and are loaded into the latches of one of the RPs. First, RPJ

latches are loaded followed by RP2 latches then RP3 latches followed by RP4 latches,

and then the process repeats. When the scanning process return to RPI to initiate

another operation, the RPI should have completed its curr·~nt operation in the time

specified by t, j k, and should be ready to accept the pixels of the next operation. As

indicated, in the architecture, RP I latches will be loaded with new data every time

clock.fia makes a negative transition, while RP3 latches wiL be loaded at the positive

transition. Whereas, RP2 and RP4 latches will be loaded at the negative and the

positive transitions of clock.fi,, respectively.

In the 3-parallel architecture, the strategy adopted was to allow each run to begin

at RPI. This strategy was preferred over the one that allow> each new run to start its

computations in the RP that immediately comes after the RP where the previous run

end, mainly because with the later it is very difficult to com·~ up with a simple scheme

that allows us to decide which TLB a high coefficient needed in the next run should

be stored and when it can be retrieved. However, the situation is quit different in the

91

4-parallel architecture because there can be found a simple and very efficient scheme

that encourages the adoption of the later strategy.

The scheme, which can be reasoned from Table B.! 0, is summarized as follows.

The decision, where to store each high coefficient calculated in the previous run that

are needed in the calculations of low coefficients in the next run, can be made by

examining the two least significant bits of N . Case one; if the two least significant

bits of N are 00 or II then the high coefficients should be stored in the TLBs of the

RPs that generate them. Case two; if the two least significant bits of N are either 0 I or

I 0, then the high coefficients of RPI should be stored in the TLB of RP3 and vice

versa, and the high coefficients of RP2 should be stored in the TLB of RP4 and vice

versa. Symbolically, case two can be written as

RP!~RP3

RP2~RP4

Therefore, the paths labeled Pa and Pb are added in Figure 4.2.7.

(4.2)

Not that the following fact is used also to arrive at the above result. In the clock

cycle where a transition from a run to the next occurs, especially when the column

length (N) of an image is odd, the external memory is not scanned and no pixels are

loaded into the RP latches. Since, during this cycle two CPs (CPI and CP3) or (CP2

and CP4) each will compute the last low coefficient using the last high and the last

low coefficients in H and L columns, respectively, as required by DOGs for odd

length signals. In Table B.! 0, the columns labeled Rth and Rtl represent H and L

columns, respectively.

The above scheme only affects stage 2 of the four 5/3 RPs and stages 2, 3, and 5

of the four 9/7 RPs and it can be implemented as shown in Figure 4.2.9. Signal (zs)

which control the operations of the four multiplexers labeled muxl, mux2, mux3, and

mux4 can be generated by use of a simple 2-input XNOR gate with its two inputs

connected to the two least significant bits of N. Thus, if the input to the XNOR are

eitherOO or II (case one), zs is asserted high to pass the high coefficient generated in

stage I of the same RP. Otherwise (case two) it is asserted low to pass the high

coefficient stored in each register BIR (butTer input register) that have been generated

92

Figure 4.2.9 Modified stage 2 of the RPs datapath architecture

93

by one of the RP. Note that signal zs will only have one value during each level of

decomposition. For example, during the whole period of the first level decomposition,

zs may be equal to I or 0, but not both.

This scheme, even though it optimizes the performance in term of number of

clock cycles that are needed for j-level decomposition, but, it complicates very much

the operations of the 4 RPs which would require a very complex control circuitry. In

addition, it needs more hardware and long buses. The alternative scheme would be to

allow each run to begin at RP I, as in case I. The advantage of this scheme is that it

would reduce the hardware and the control complexities to the level of case I which is

less complex and manageable. In addition, it will eliminate the long buses, the four

BIR registers, and the four multiplexers labeled muxl, mux2, mux3, and mux4. The

disadvantage of the alternative scheme is that it will increase the execution time by

Mli' 1 cycles for each decomposition level, when case2 occurs. However, since, the

hardware complexity is less; the alternative scheme will operate with higher

frequency which would compensate for the performance lost.

Read and write operations in the 4 TLBs for case2 is somewhat complex.

Therefore, Table B. I I is provided to illustrate how read and write operations take

place in the TLBs during each run of case2. Table B. II shows read and write

operations for RPI and RP3, which is also identical to that, take place in TLBs of RP2

and RP4, respectively. Table B. II shows that in the first run, RPI and RP3 each uses

its TLBARa for addressing its TLB and in each cycle, reference to clockj,,, the same

location is read in the first half cycle and is written in the second half cycle starting

from the first location. In the second run, as in the first run, RPI uses only TLBARla

to address its TLB, while RP3 uses both TLBARa and TLBARb to address its TLB,

which take place as follows. In each cycle two successive locations are accessed. The

first location is accessed by TLBAR3a, while the second is accessed by TLBAR3b. In

the first half cycle, reference to clock J;a. TLBAR3b reads its location and loads the

result into register BOR3 by the negative transition of /Ia, whereas, during the second

half cycle, TLBAR3a write contents of register BIR3 into the location it addressing.

This writing completes by the positive transition of clock .!.a· For example, Table

B. I I shows that in cycles 35 and 37, TLBAR3a is addressing location 2, while

TLBAR3b is addressing location 3.

94

In addition, note that in cycle 23, where run2 begins, and cycle 25, Table B.ll

shows that TLBAR3a is addressing location 4 to write the last coefficient of run 1,

while TLBAR3b is addressing location 0 to read the first location which contains the

first coefficient needed in run2 first operation.

Finally, note when the control signals sal2 or sa34 of the multiplexers, labeled

muxa are set 0 in a run, each OR gate passes the clock signal to the multiplexer muxa

control signal. The clock signals of f.u or /.h allow both TLBARa and TLBARb to be

used for addressing TLBs, as shown in RP3 's run2 in Table 13.11. On the other hand,

when, sal2 and sa34 are set 1 in a run only TLBARa is used for addressing TLBs, as

shown in run 1 of Table B.ll. In case 1, signals sal2 and sa3< are set 1 in all runs and

only TLBARa of each RP is used for addressing TLB.

The control signals such as zs, incar, and sre2 etc., which are generated by the

control unit can be arranged as shown in Figure 4.2.1 0 (a) and its block diagram is

shown in Figure 4.2.1 0 (b). The control signal values issued in each clock cycle by

control unit are transferred to the first stage of the pipeline and are loaded into the

control signal latches (CSTs) to carry these signal values from stage-to-stage. When a

stage where a signal(s) is used is reached, the signal value carried by its CST is

applied, while the remaining signals are carried on to the next stage.

Now, let's move to the CPs side to see how this part c.f the architecture works.

The 4 CPs run by the clock labeled f.u· According to the dataflow shown in Table

B.l 0, both CPl and CP3 execute in parallel starting from cycle 15 and load new data

every time clock/." makes a positive transition. Similarly, b:lth CP2 and CP4 execute

in parallel starting from cycle 17 and load new data every time clock .f.u makes a

negative transition. Thereafter, all RPs and CPs in the architecture work in parallel.

However, both CPl and CP2 execute high coefficients stored in Rthl, Rth2, Rth3 and

Rth4, whereas CP3 and CP4 execute low coefficients stored in Rtll, Rt/2, Rt/3, and

Rt/4

The two paths labeled h 1 and h2 between CP 1 and CP2, and that labeled

/3 and 1. between CP3 and CP4 are used for passing high coefficients among CPs,

since each high coefficient generated by a CP is also required in the next operation

that will be executed by another CP. Passing high coefficients occur between stages 2

95

incar

____ zs
_sre1

Cst: control siQnal latch

(a)

(b)

stage3

- --- - --1----+

Figure 4.2.1 0 (a) Control signals carried by CST and (b) the block diagram

of both CPI and CP2 or CP3 and CP4, in case of 5/3, and between stages 2 and

between stages 5 of both CPI and CP2 or CP3 and CP4, in case of9/7, as illustrated

in Fig. 4.2.11 for CP1 and CP2. The first 2 stages of Figure 4.2.11 represent modified

5/3 CPI and CP3, while, stages I to 3 represent the first 3 stages of the modified 6-

stage 9/7 CP1 and CP3 and the following two stage are identical to stages I to 2.

In a control design it would be necessary to determine the clock cycle (Cl) where

the first input data are loaded into the CPs latches and the clock cycle (C2) where the

first output coefficients are loaded into the CPs output latches. The following two

equations can be used to determine Cl and C2.

96

Cl =I· k, + 2i +I

C2 = Cl +l·k,

(4.3)

(4.4)

Where I= 2, 3, 4 ... denote 2-, 3-, 4-parallel (degree of parall·~lism) and i = I, 2, 3 ...

denotes the first, the second, the third scan method and so on. K, and k, are the

number of pipeline stages in a RP and a CP, respectively. Note that Eqs (4.4) and

(4.5) are also valid for parallel intermediate architectures developed in section 4.3.

X(2n +I)
stage2 stage3

M--r:::::::~--~
~a ~a

CPI

f4a

X(2n)-'--~

f4a
X(2n +I)

~
[4a

CP2

sreO f4a

X(2n).....L.-~

[4a f4a f4a

Figure 4.2.11 CPI and CP2 are modified to exchange high coefficients

4.2.4 Evaluations of architectures

To evaluate the performances of the three parallel architectures developed in this

section, in terms of speedup, efficiency, hardware utilization, and power consumption

consider the following. In the single pipe lined processor arc 1itecture based on the first

overlapped scan method developed in chapter 3, the total time Tl required to execute

n operations for j-level decomposition of an NxM image is given by Eq (3.14) as

97

(4.5)

From statemen/2, case 2,

r, =t,/(I·k) (4.6)

Where I = 3 for 5/3 and 9/7. Thus,

Tl = [p1 +3(n- 1)]t,/3k (4.7)

On the other hand, the total time, T2, required for executing n operations for j­

level decomposition of an NxM image on the 2-parallel pipelined architecture shown

in Figure 4.2. I, can be estimated using Table 8.8 as

From statemen/3,

Therefore,

T2 = [p2 + 2(n -I)]r 2

2

r 2 =t,/2k

T
2

= [p2 + 2(n- I)]t" j2k

2

The speedup factor (S2) is then given by

For large n, the above equation reduces to

3(n-l)t,/3k
S2 = · = 2

2(n-l)t
1
,j4k

(4.8)

(4.9)

(4. I 0)

(4.1 I)

(4. I 2)

Eq (4.12) indicates that the 2-parallel architecture is 2 times faster than the single

pipelined architecture.

The efficiency (£1) of an /-parallel processors system is defined by [58] as

(4.13)

98

The efficiency measures the useful portion of the total work performed by I

processors. The lowest efficiency corresponds to the case of an entire NxM image

being decomposed on a single pipelined processor (consisting of a RP and CP). The

maximum efficiency is achieved when all I pipelined processors are fully utilized

throughout the execution period. Thus, the efficiency of che 2-parallel pipelined

architecture can be written as

E, = S,/2 =I (4.14)

Hardware utilization indicates the extent to which resources (e.g. processors) are

utilized during a parallel computation [58]. Since in parallel architectures, hardware

utilization can be measured by efficiency [40], therefore, it can be concluded that

hardware utilization in the 2-parallel architecture is I 00%.

The total time (TJ) required to perform n operations, in j-level decomposition of

an NxM image on the 3-parallel pipelined architecture, can be written as

From statement3,

T3 = (p3+3(n-l)}r,

3

Thus,
(p3 + 3(n -l)]t P j3k T3 = .::.____~__:_:_-"-'..__

3

The speedup factor (SJ) is given by

For large n, SJ reduces to

SJ=27(n-1)= 3
9(n -I)

The efficiency £ 3 = S3 /3 = I

99

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Eq (4.19) indicates that the 3-parallel architecture is 3 time faster than the single

pipelined architecture with efficiency I.

Similarly from Table B.10, the total time (T4) require to execute n operations for j

levels of decomposition of an NxM image on the 4-parallel pipelined architecture can

be written as

T4 = (p4 + 2(n -i))r,
2

From statement3, r 4 = t P / 4k

Thus,
T

4
= (p4 + 2(n -1)]t r/4k

2

The speedup factor (S4) is then given by

For large n, the above equation reduces to

The efficiency £ 4 = S 4 I 4 = 1

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

Equations (4.25) and (4.26) imply that the 4-parallel architecture is 4 times faster than

the single pipe lined architecture and the efficiency is 1, respectively.

On the other hand, the power consumption of /-parallel pipelined architecture as

compared with the single pipelined architecture can be obtained as follows. Let Pt and

P, denote the power consumption of the single and /-parallel architectures without the

external memory, and Pm 1 and Pm1 denote the power consumption of the external

memory for the single and /-parallel architectures, respectively. Then,

P, = c"''"' . Vo' . J; 13 , P, = f. C,,,, . vo' . It I I (4.27)

100

and (4.28)

where C1, 1at is the total capacitance of single pipe lined archit<:cture.

On the other hand, P m 1 and P mt can be estimated as

(4.29)

and (4.30)

where em 1 is the total capacitance of the external memory· and !=3 is number of
lola

buses.

From the above evaluations, it can be concluded that as the degree of parallelism

increases the speedup and the power consumption of the architecture, without external

memory, and the power consumption of the external memory increase by a factor of I,

as compared with single pipe lined architecture.

4.3 Parallel form of the intermediate architectures

As mentioned before, the rational behind developing intermediate architecture is to

reduce the excess power consumption of the external memory, due to scanning

overlapped areas, to somewhat between the architecture based on the first overlapped

scan method and that based on the nonoverlapped scan method developed in chapter

3. In this section, the single pipelined intermediate architecture shown in Figure 3.7.2

will be extended to 2- and 3-parallel pipelined architectures to achieve speedup

factors of 2 and 3, respectively. The two proposed parallel architectures are intended

for used in real-time applications of 2-D DWT, where very high speed and throughput

are required.

4.3.1 2-para/le/ pipelined intermediate architecture

Based on the DOGs for 5/3 and 9/7 filters shown m Figures 3.3.1 and 3.3.2,

respectively, and the scan method shown in Fig. 3.7.1 (a), the 2-parallel pipelined

intermediate architecture shown in Figure 4.3.1 is developed. The dataflow of the

101

architecture is given in Table B.l2. The architecture consists of 2 k-stage pipe lined

row-processors labeled RPI and RP2 and 2 k-stage pipelined column-processors

labeled CPI and CP2. In the previous chapter, the RP and the CP for the 5/3 were

pipelined into 4 and 3 stages, respectively, whereas, the RP and the CP for the 9/7

were pipelined into 8 and 6 stages, respectively.

The architecture scans the external memory with frequency f2 and

operates with frequency f212. The buses labeled busO, hus I, and bus2 are used for

transferring every clock cycle pixels from external memory to one of the RPs latches

labeled RtO, Rtl, and Rt2, according to the scan method in Figure 3.7.1 (a). This scan

method requires that in the first clock cycle, the 3 buses should be used for scanning

the first 3 pixels from the first row of the external memory, whereas in the second and

Edh = ed/, s3 =s2
SID= shO, slf = shf

Figure 4.3.1 2-parallel pipelined intermediate architecture

third cycles each scans two pixels through bus I and bus2. Then the scan moves to the

second row to repeat the process. The RPI latches load new data (pixels) every time

clock f2/2 makes a positive transition, whereas RP2 latches load new data when a

I 02

negative transition occurs. Assume the first half cycle of the clocks/2 and/2/2 are low.

On the other hand, both CP l and CP2 and their associate latc'1es load new data every

time clockf2/2 makes a positive transition.

Furthermore, since in every clock cycle, 3 pixels are required to initiate an

operation and the third pixels, according to the DOGs, is always needed in the

next operation, therefore, register RdO is added to hold the third pixel for the next

operation. The multiplexer labeled mux1 passes RdO to eith<:r RtO of RPl or RtO of

RP2. Register RdO loads a new pixel from bus2 every time clock./2 makes a negative

transition.

The control signal s 1 of the multiplexer labeled mux 1 is ,;et to 0 in the first clock

cycle of .f2 to pass data in busO and is set to 1 in the second and third clock cycles to

pass RdO contents. The above steps are repeated in cycles 4, :i, and 6 and so on, when

scan moves to the second row.

The multiplexer labeled muxreO is an extension multiplexer, passes in all cases

data coming through bus2. Except when the row length (M) of an image is even and

only in the calculations of the last high and low coefficients in a row r, according to

the DOGs, the pixels at location X(r,M-2), which will be placed in busO, must be

allowed to pass through muxreO and then be loaded into Rt2 as well as RtO. The two

multiplexers labeled muxceO, located at the CPs side, are abo extension multiplexers

and perform the same function as that of muxreO when DWT is applied column-wise

by the CPs.

The registers labeled SRH 1, SRHO, SRLJ, and SRLO are FIFO shift registers each

holds at any time 3 coefficients. Registers SRH 1, SRHO, and RdH are used for storing

high coefficients generated by RPI and RP2, whereas SRL1, SRLO, and RdL are used

for storing low coefficients. These registers all operate with frequency ./2. In addition,

the control signals slO~shO and sll ~sh1 control the operation of the FIFO registers.

When they are high, the FIFOs shift in new data, otherwise, no shift take place. The

high coefficients stored in SRHO and SRH1 are executed by CPI, while CP2 executes

low coefficients stored in SRLO and SRL1.

The operations of the two multiplexers, labeled muxh and muxl, can be controlled

by one control signal labeled sf h. This control signal is connected to the clock.f2/2.

103

Whenf/2 is low, both multiplexers pass coefficients generated by RPI, otherwise,

pass that generated by RP2.

Observe that the dataflow pattern between cycles 13 and 18 in Table B.l2,

especially in the 4 FIFO registers including RdH and RdL, repeats each 6 clock cycles.

A careful investigation of Table B.l2 from cycles 13 to 18 shows that the control

signals of the two multiplexers labeled mux2 and two multiplexers labeled mux3

including the control signals (edh and edl) of the registers labeled RdH and RdL can

all be combined into one signal, s2. Moreover, examination of Table B.l2 shows that

the control signals values for signals s2. slO~shO, and sll ~sh1 starting from cycles 13

to 18 can be as shown in Table 4.5. These control signal values repeat every 6 clock

cycles.

Table 4.5 Control signal values for s3, s/0, and s/1

Cycle number s2 s/0 sll
13 0 I I
14 I 0 0
15 I I 0
16 0 0 I
17 I I I
18 0 0 I

According to the 5/3 DOGs shown in Figure 3.3.1, each coefficient calculated in

the first level (step!) is also required in the calculations of two coefficients in the

second level (step 2). That implies a high coefficient calculated by RPI in stage I

should be passed to stage 2 of RP2 and vice versa. The 917 DOGs shown in Figure

3.3.2 also shows similar dependencies that exist among coefficients of two levels or

steps. Therefore, the path labeled P 1 and P2 have been added in Fig. 4.3.1 so that the

two RPs can pass high coefficients to each other. However, this would require the two

RPs datapath architectures for 5/3 and 9/7 to be modified as shown in Figures 4.3.2

and 4.3.3, respectively.

In addition, if the third high coefficient of the first row labeled Y(5) in the 5/3

DOGs is stored in the first location in TLB1 of RPI, then the third high coefficient of

the second row should be stored in the first location in TLB1 of RP2 and so on.

I 04

Similarly, the 9/7 coefficients labeledY"(5),Y"(4), and Y'(3) in the DOGs generated

by processing the first row of the first run should be stored in the first locations of

each TLBJ, TLB2, and TLB3 of RPI, respectively, whereas the same coefficients

generated by processing the second row of the first run should be stored in the first

locations of each TLBJ, TLB2, and TLB3 of RP2, respectively, and so on. The same

process also applies in all other runs.

J,/2

stage 2 ~--~----------~-~
h/2 h/2

TLBI

sre1 RPI

J,/2 ~~
i-1'-------1'-1'----+~-s-re_2 ______ ...,..;¢

J,/2 J,/2

J,/2 ·~ .IE.

R.jw sre!

f------1.------..·L;J
f,/2

RP2

inc~ s4 ~ + E

~
J,/2 TLBI

-~
sre2 ~----~~----+~

J,/2 J,/2 J,/2

Figure 4.3.2 Modified 5/3 RPs datapath architecture

105

Ri' I

L

---·~9f-___,•~l

R1'2

~--------~~------~-~~--~~
~· ~·

Figure 4.3.3 Modified 9/7 RPs datapath for 2-parallel intermediate architecture

The control signal sf of the 8 multiplexers labeled muxf in Figure 4.3.3 can be set

0 in the first run and I in all other runs. It is very important to note that, especially in

the first run, the scan method in Figure 3.7.1 (a) allows 5/3 RPs to yield 6 coefficients,

where half belong to the first 3 columns of H decomposition and the other half to L

106

decomposition, each time it processes 7 pixels of a row, while 9/7 yield only 4

coefficients, 2 high and 2 low coefficients by processing the same number of pixels in

a row. This implies that in the first run each 5/3 CP would process 3 columns in an

interleave fashion as shown in Table B.l2, whereas each 9/7 CP would process in the

first run only two columns in an interleave fashion. However, in all other runs, except

the last, both 9/7 and 5/3 CPs would process 3 columns at a time. This interleaving

process, however, would require 9/7 and 5/3 CPs to be modified in order to allow

interleaving in execution to take place.

The advantage of this organization is that the TLBs in Figures 4.3.2 and 4.3.3 are

not required to be read and written in the same clock cycle, since, according to the

scan method shown in Figure 3.7.1 (a), 7 pixels are scanned from each row to initiate

3 successive operations and the TLB is read in the first operation and is written in the

third operation starting from the second run. Furthermore, the fact that 7 pixels are

scanned from each row to initiate 3 consecutive operations and the TLB is read in the

first operation and written in the third can be used to derive, for all runs except the last

one, the control signal values for the signals labeled R/W and incar in both TLBs

including s4, as shown in Table 4.6. These signal values repeat every 3 cycles starting

from the first cycle. However, since in the first run TLBs are only written then signal

s4 can be set 0 in the first run, whereas, in all subsequent runs it is set according to

Table 4.6. Signals in Table 4.6 including the extension mu.tiplexers control signals

which will be generated by a separate control unit can be carried by latches,

similar to pipeline latches, from the control unit to the first ~:tage of the pipeline then

to the next stage and so on. When a stage where a signal(s) will be used is reached

that signal(s) can be dropped and the rest are carried on to the next stage and so on

until they are all used.

Table 4 6 Control signal values for signals in stage 2 of both RPl and RP2

Cycle Number RP number R./w mcur s.f

I I 0 0 I

2 2 0 0 0

3 I I I 0

107

4.3.2 Transition to the last run

The description given so far including the control signal values in Tables 4.5 and 4.6

apply to all runs except the last run, which requires special handling. The last run in

any decomposition level can be determined and detected by subtracting after each run

6 from the width (M) of an image. The last run is reached when M becomes less than

or equal to 6 (M~6) and M can have one of the six different values 6, 5, 4, 3, 2, or I,

which imply 6 different cases. These values give number of external memory columns

that will be considered for scanning in the last run.

According to the scan method, in each run 7 columns in the external memory are

considered for scanning and each 7 pixels scanned, one from each column, initiate 3

consecutive operations. Thus, since cases 6 and 5 initiate 3 operations they can be

handled as normal runs.

On the other hand, cases 4 and 3 initiate 2 operations and the dataflow in the last

run will differ from the normal dataflow given in Table 8.12. Therefore, 2 dataflow

are provided in Tables 8.13 and 8.14 for even and odd N, respectively, so that they

can be applied when either of the two cases occurs. The dataflow shown in Table

8.13 is derived for case 4 but it can be used also for case3. Similarly, Table 8.14 is

derived for case3 but it can be used also for case 4. Moreover, examination of Tables

8.13 and 8.14, especially signals s2, s/0 and s/1, show that after 2k+ 2 cycles from the

last empty cycle, where k is the number of pipeline stages of the RPs, the control

signal values of signals s2, s/0, and sll, which repeat every 4 clock cycles, should be

as shown in Table 4.7 for the rest of the decomposition level. However, during the

2k+ 2 and the empty cycles, the control signal values for s2, s/0 and sll follow Table

4.5. Therefore, cases 4 and 3 can be considered as one case. Only at the beginning of

the transition to the last run, if N is even, then one empty cycle is inserted, otherwise,

4 cycles are inserted, according to Table 8.13 and 8.14, respectively. During an

Empty cycle external memory is not scanned.

On the other hand, cases 2 and 1, each initiate one operation. Case 2 initiates an

operation each time 2 pixels, one from each column, are scanned, whereas case 1

initiate an operation each time a pixel is scanned from the last column. Therefore,

dataflow of the last run in the two cases will differ from the normal dataflow given in

108

Table 4. 7 Control signal values for s2, slO, and sll in the last run.

Cycle number s2 S/0 .1"{{

34 0 0 I

35 I I I

36 I I I

37 I I 0

Table 8.12. For this reason, two dataflow are given in Table~; 8.15 and 8.16 for even

and odd N, respectively, in order to be used when either of the two cases occurs. The

dataflow in Table 8.15 is derived for case 2, even N, but it em be also applied in case

I for even N as well. Similarly, Table 8.16 is derived for ca~;e I, odd N, but it can be

applied in case 2 for odd N. Furthermore, study of Tables E:.l5 and 8.16 shows that

in the last run the control signal values for s2, s/0 and sll ~Jllow Table 4.5 until the

clock cycle that is 2k+ 1 cycles away from the last empty cycle is reached. In that

clock cycle, change the control signal value of signal s/0 to zero instead of one. Then,

for all subsequence cycles and to the end of the decomposition level, the control

signal values for signals s/0, sll, and s2~s3 should remain a1: one and ed!~edh should

alternate between 0 and 1. Therefore, cases 2 and 1 can be treated as one case. Only at

the beginning of the transition to the last run, even N requires insertion of two empty

cycle and odd N requires insertion of five cycles, according to Tables 8.15 and 8.16,

respectively.

Figure 4.3.4 shows the block diagram of the control unit that generates signals s2,

s/0, and sf/ along with the circuits that detect the occurrenc·~ of the last run and the 6

cases. First, M is loaded into register RM, then register R6, which contain the 2's

complement of 6, is subtracted from RM through the 2's -complement adder circuit

and the result of the subtraction is loaded back into RM If Lr is 1, then that implies

the last run is reached and the result of the subtraction is not transferred to RM. The 3

least significant bits of register RM is then examined by thE control unit to determine

which of the 6 cases has occurred. First zl is examined. lfzl is I, that implies the

occurrence of either cases 6 or 5 and the control unit proceeds as usual. But, if z 1 is 0,

then z2 is examined. If z2 is I, then cases 4 and 3 are applied, otherwise cases 2 and 1.

109

The above description can be generalized for determining the last run in any scan

method (first, second, or third scan method and so on) used in designing single or /­

parallel architectures. Thus, in general, the last run in any scan method can be

determined and detected by subtracting after each run 2i from the width (M) of an

image. The last run is reached when M becomes less than or equal to 2i (M9i), where

i=l, 2, 3 ... denote the first, the second, and the third scan method and so on. M can

have one of 2i different values, when last is reached, as follows: 2i, 2i-l, 2i-2 ... 2, I,

which implies 2i cases.

These values give number of external memory columns that would be considered

for scanning in the last run. In addition, cases 2i and 2i-l can always be handled as

normal runs.

According to the 5/3 DOGs, each 5/3 CP should also interleave in execution 3

columns, if case 5 or case 6 is the last run. But, if case 3 or case 4 is the last run,

according to Tables B.l3 and B.l4, each CP should process 2 columns in interleave

fashion, whereas, if case I or case 2 is the last run, according to Tables B.l5 and

B.l6, each CP should process one column. On the other hand, each 9/7 CP, according

to the DOGs, should also interleave in execution 3 columns, if either (cases 3 and 4)

or (cases 5 and 6) is the last run. However, if case I or case 2 is the last run, then each

CP should interleave 2 columns in execution, as shown in Tables B.l3 and B.14.

Furthermore, a careful I examination of the 9/7 DOGs, when last run is case 5 or

start

'2

Controllogici----""'"JJ

s/0 =- shO r-_ _ryt-,:--........J

010

001

Figure 4.3.4 Control circuit that determines the last run

II 0

100

Oil

6, shows that the 2-parallel RPs would not be able to yield all required output

coefficients. Thus, to get the remaining coefficients the 4 RP~' should be instructed to

execute one extra run. In the extra run, each CP would only process one column, as

shown in Tables B.l5 and B.l6. Signal s5 of the multiplexers labeled mux5 in Figs

4.3.2 and 4.3.3 should be set I only in the computations involving cases 3 and 4 of the

5/3 and cases I and 2 of the 9/7, otherwise, it remains at 0.

To enable each CP to process single column and interleave in execution 3 and 2

columns, each of the 5/3 and 9/7 processor's datapath should be modified as shown in

Figures 4.3.5 (a) and (b), respectively. Through the multiple,ers labeled mux the CP

control the process of executing single column, interleaving 2 or 3 columns.

4.3.3 3-paral/e/ pipelined intermediate architecture

The 2-parallel pipelined intermediate architecture developed in section 4.3.1 can be

extended to 3-parallel pipelined intermediate architecture as shown in Figure 4.3 .6.

This architecture increases the speed up by a factor of 3 as compared with single

pipelined architecture. The architecture performs its compt.tations according to the

dataflow given in Table B.l7. It operates with frequency .fj /3 and scans the

external memory with

sO s1

-A
A

Stage2 ~~n+1)
f-------r..,......;;=;..;;..-,~ H

t::J2L2n!
f--------------·---------~-~L

0 0 interleave 3 columns (run1 to the run before last+ last run of cases 5 & 6)
0 1 interleave 2 columns (if last run is cases 3 or 4)
1 x single column (if last is cases 1 or 2)

Figure 4.3.4 (a) Modified 5/3 CP for 2-parallel intermediate architecture

Ill

Stage 3 Stage 4 Stage 5

seeD

X(2n+1)

Stage 7

s0s1 k

sO s1
0 0 interleave 3 columns (run1 to the run before last+ last run of cases 3 & 4 and cases 5 & 6)
0 1 interleave 2 columns (if last run is cases 1 or 2)
1 x single column (Extra run for cases 6 & 5)

Figure 4.3.5 (b) Modified 9/7 CP for 2-parallel intermediate architecture

frequency jj. The clock frequency jj can be obtained from statement3 as

f, = 3kjtl' (4.31)

The waveform of the frequency .fi including two waveforms of the frequency jj /3

labeledfia andfJh that can be generated from.fi are shown in Figure 4.3.7.

The RP2 loads new data into its latches every time clock Jih makes a positive

transition, whereas RPI and RP3 load when clockfia makes a positive and a negative

transition, respectively. On the other hand, CPI and CP3 loads simultaneously new

data every time clock fia makes a positive transition and CP2 loads every time clock

.fih makes

112

edh=sh3 =sh2 e·dl=s/3 =s/2

Figure 4.3.6 3-parallel pipelined intermediate architecture

Clock/U fl_fl_
J,, ~ J,/3

f, ~ J,/3

1CP1
, / CP3 / -"'1 ReadTLB n Write TLBi

I . : t
L

I
I
I

_l

,--I--,
::~~ I muxl& mw.:l&

I "k:;p~
1~- muxh

\
mw.:h

\ I \ pass RPI pass RP2

load RPl load RP2 load RP3 output OUipUI

Figure 4.3.7 waveforms of the three clocks

113

..
mux/&

muxh

pa;, RP3'-­

output

a positive transition Furthermore, for the architecture to operate properly, it is

essential the three clocks labeled fi, fiu, and jj be synchronized as shown in Figure

4.3.7. Clockfiu andfih can be generated fromfi using a 2-bit register clocked by fi

and with a synchronous control signal clear. In order to obtain the divide-by-3

frequency, the register should be designed to count from 0 to 2 and then repeats. The

synchronization can then be achieved by the control unit simply by asserting the clear

signal high just before the first cycle where the external memory scanning begins.

The buses labeled busO, bus I, and bus2 are used for transferring, in every clock

cycle, 3 pixels from external memory to one of the RPs latches labeled RtO, Rt I, and

Rt2. In the first clock cycle, 3 pixels are scanned from external memory, locations

X(O,O), X(O,l) and X(0,2), and are loaded into RPI latches to initiate the first

operation. While the third pixel (X(0,2)) in bus2, which is required in the next

operation, is also loaded into RdO. The second clock cycle scans 2 pixels from

external memory, locations X(0,3) and X(0,4), through bus! and bus2, respectively,

and loads them into RP2 latches along with the pixel in register RdO by the pulse

ending the cycle. This cycle also stores pixel carried by bus2 in register RdO.

Similarly, the third clock cycle transfers 2 pixels from external memory, locations

X(0,5) and X(0,6), including the pixel in register RdO to RP3 latches to initiate the

third operation. The scan then moves to the second row

The paths labeled PI, P2, and P3 in Figure 4.3.6 are used for passing coefficients

between the three RPs, since a coefficient calculated in one stage of a RP is always

required in the next stage of another RP. This will require the combined three RPs

datapath architectures for 5/3 and 9/7 to be modified as shown in Figure 4.3.8 (a) and

(a, b), respectively, so that they can fit into RPs of the 3-parallel architecture shown in

Figure 4.3.6. Note that Figures 4.3.8 (a) and (b) together form the 9/7 RPs datapath

architecture. This architecture can be verified using the 9/7 DDGs. The control signal

sf of the 9 multiplexers, labeled muxf in Figure 4.3 .8 is set I in the first run and 0 in

all other runs.

In the 5/3 datapath architecture shown in Figure 4.3.8 (a), all high coefficients,

calculated in stage I of the RP3 in a run, are stored in TLB of stage 2 so that they can

114

Swge 2 ·S
/,, /,(I

Rl'f

1'1 1'3 /,,
·S

flo

~--~------------~-~
/;,

IU'2

1'2

r-------~~------.. -~
/;;

·S
/,,

IU'J
/,,

1,"

s ·S sre2 ·S
f,(l /,, /,,

(a)

Figure 4.3.8 (a) Modified 5/3 RPs datapath architecture

115

Stage4 Stage5 Stage6 Stage7

(b)

Figure 4.3.8 (a,b) Modified 9/7 RPs datapath for 3-parallel intermediate architecture

be used by RPI in the calculations of low coefficients in the next run. On the other

hand, the 9/7 datapath stores, the coefficients labeled Y.(5), y··(4), and Y.(3) in the

DOGs that can be generated as a result of processing the first 7 pixels of every row in

the first run, in TLB I, TLB2, and TLB3, respectively. Similarly, all other runs can be

handled.

For the same reason mentioned in the 2-parallel, the 5/3 RPs will generate 6

coefficients each time they process 7 pixels of a row, while 9/7 RPs will generate 4

coefficients by processing the same number of pixels in the first run. Each 4

coefficients will be generated by RPI and RP2, while RP3 will generate invalid

coefficients during the first run. As shown in Table B.l7, each CP in the 3-parallel

116

architecture processes, in a run, 2 columns coefficients in an interleave fashion. This

interleave processing will also require each CP to be modified as shown in Figures

3.8.3 and 3.8.4 (a) for 5/3 and 9/7, respectively.

In the first run the TLB is only written. However, starting from the second run

until the run before last, the TLB is read and written in th(: same clock cycle, with

respect to clockha·

The negative transition of clock ha always brought a new high coefficient from

stage I into stage 2 of the RP3. During the low pulse of clock ha the TLB is read and

the result, which is placed in the path labeled P 3, is loaded by the positive transition

into latch Rt2 in stage 3 of RPI where it will be used in the calculation of the low

coefficient. On the other hand, during the high pulse, as indicated in Figure 4.3.7, the

high coefficient in Rtl which is needed in the next run will be stored in the TLB.

The register labeled TLBAR (TLB address register) generates addresses for the

TLB. Initially, register TLBAR is cleared to zero by asserting .>ignal incar low to point

at the first location in the TLB. Then to address the next location after each read and

write, register TLBAR is incremented by asserting incar high. Each time a run 1s

complete, register TLBAR is cleared zero to start a new run and the process 1s

repeated.

The two multiplexers labeled muxh and muxl are used for passing every clock

cycle, reference to clock jj, the high and low coefficients, respectively, generated by

the three RPs. The two control signals of the two multiplexers are shown in Figure

4.3.6 connected to clocks ha and jjh. When the two pulses of the clockjja and jjb are

low, the two multiplexers would pass the output coefficients generated by RPI,

whereas when a high pulse of the clockjja and a low pulse oF the clockfih occur, the

two multiplexers would pass the output coefficients generated by RP2 as indicated in

Figure 4.3.7. Finally, when the two pulses are high, the two multiplexers would pass

the output coefficient ofRP3. In addition, note that the path extending from the inputs

of the multiplexer muxh, passing through muxh2, muxceO, and ending at Rt2 may

form a critical path, since signals through this path should rea~h Rt2 during one cycle

of clockjj.

117

The registers labeled SRHI, SRHO, SRLI, and SRLO, including RdH and RdL

operate with frequency fi. Registers SRH I, SRHO, and RdH store high coefficients,

while registers SRLJ, SRLO, and RdL store low coefficients. New coefficients are

loaded simultaneously into both CPl and CP3 latches every time clock fia makes a

positive transition, whereas CP2 latches are loaded when clock fih makes a positive

transition. Furthermore, each time a transition from a run to the next is made, when

the column length (N) of an image is odd, the external memory should not be scanned

for 3 clock cycles, since during this period the CPs will process the last high and low

coefficients in each of the 3 columns of H and L decompositions, as required by the

DOGs for odd signals. This is also true for 2-parallel intermediate architecture. No

such situation occurs when the column length of an image is even.

It can be reasoned from Table 8.17, the control signals of the two multiplexer's

labeled muxh2, muxh3, and register RdH can all be combined into one signal, sh2.

Similarly, the control signal of the two multiplexer's mux/2, mux/3, and register RdL

can be combined into one signal, s/2. Furthermore, a careful examination of Table

8.17 shows that the control signal values that must be issued by the control unit for

signals shl, shO, sll, s/0, sh2, and s/2, starting from cycles 16 to 21 and repeat every 6

cycles, should be as shown in Table 4.8

Table 4.8 control signal values

Cycle Shl ShO sll s/0 Sh2 s/2

16 I I I I 0 0

17 I I 0 0 0 I

18 0 0 0 0 I I

19 I I I 1 I I

20 I 0 I I 0 I

21 I 0 I 0 0 0

Moreover, if it is necessary to extend the 2-parallel architecture to 4-parallel

architecture, from the experience gained in designing 2- and 3-parallel architectures,

the best architecture for 4-parallel would be obtained if the fourth overlapped scan

method is used and 5-parallel if the fifth scan method is used and so on. Then the

architecture design for a higher degree parallelism becomes similar to that

experienced in the 3-parallel intermediate architecture. While an attempt, e.g., to

118

design 4-parallel intermediate architecture using the third scan method would require

very complex modifications in the datapath architecture of :the combined 4 RPs and

complex control logic. However, the objective for choosing a higher scan method in

the first place is to reduce the power consumption due to overlapped areas scanning of

external memory. Therefore, it makes sense if 4-parallel is designed with fourth scan

method and 5-parallel with fifth scan method and so on.

4.3.4 Scale factor multipliers reduction

In the lifting-based tree-structured filter bank for 2-D DWT shown in Figure 3.1.1, it

can be observed that the high output coefficients, which form H decomposition, each

is multiplied by the scale factor k in the first pass. In the second pass, the high output

coefficients, which form HH subband, each is multiplied by k. This implies the first

multiplication can be eliminated and the output coefficient;; of HH subband can be

multiplied by e using one multiplier after the second pass. While, the high output

coefficients, which form HL subband, each is multiplied by 1/k. This implies no

multiplications are required and scale multipliers along this path can be eliminated,

since HL subband coefficients are formed by multiplying each coefficient in the first

pass by k and then in the second by pass by 1 /k.

On the other hand, the low output coefficients of the Jirst pass, which form L

decomposition, each is multiplied by 1/k. Then in the ;;econd pass, the output

coefficients, which form LH subband, each is multiplied by k, which implies no

multiplications are required along this path. While, the output coefficients of the

second pass, which form LL subband, each is multiplied by 1/k. Thus, instead of

performing two multiplications, one multiplication can be performed by 11e after the

second pass [22, 23, 59]. However, note that the simple computations involve in each

lifting step of the 5/3 and 917 algorithms have made arriving at these results possible.

This process reduces number of multipliers used for scale factor multiplications in

the tree-structured filter bank to 2 instead of 6 multipliers. When it applied to single

pipelined architectures, it reduces number of scale multipliers to 2 instead of 4,

whereas, in 2- and 3-parallel pipelined architectures, it n~duces number of scale

multipliers to 2 and 4 instead of8 and 12, respectively.

119

In [23], it has been illustrated that the multipliers used for scale factor k and

coefficients a,jJ,y, and 5 of the 917 filter can be implemented in hardware using

only two adders.

4.3.5 Evaluation of performance

To evaluate the performance of the two proposed parallel architectures in terms of

speedup, throughput, and power consumption as compared with the single pipelined

intermediate architecture consider the following. In the single pipelined intermediate

architecture, the total time, TJ, required to yield n paired outputs for j-level

decomposition of an NxM image is given by

(4.32)

The dataflow of the 2-parallel architecture in Table 8.12 shows that p 2 = 19

clock cycles are needed to yield the first 2-pair of output. The remaining (n-2)12

outputs require 2(n-2)/2 cycles. Thus, the total time, T2, required to yield n paired

outputs is given by

T2=[p, +(n-2)}r2

From statement3, r 2 = t P j2k then

T2 = [p, + (n- 2)]1 P/2k

The speedup factor S is then given by

Tl [p1 +3(n-1)]tP/3k s - - - T-'------i'--'--'-;---
2 - T2 - [p, + (n- 2)]t P j2k

For large n, the above equation reduces to

S _ 3(n -1)(2k)
2 2

- (n-2)(3k)

(4.33)

(4.34)

(4.35)

(4.36)

Eq (4.36) implies that the proposed 2-parallel intermediate architecture is 2 times

faster than the single pipelined intermediate architecture.

On the other hand, to estimate the total time, T3, required for j-level

decomposition of an NxM image on the 3-parallel pipelincd intermediate architecture,

120

assume the output generated by CP2 in Table B. I? are shifted up one clock cycle so

that it parallel that of CPI and CP3. Then, p 2 = 25 clock cycles are needed to yield

the first 3-pair of output. The remaining (n-3)13 3-paired outputs require 3(n-3)/3

clock cycles. Thus, the total time, T3, required to yield n paimd outputs is given by

The speedup factorS is then given by

S=3(n-1)= 3 3 (n- 3)

(4.3 7)

(4.38)

(4.39)

Eq (4.39) implies that the proposed 3-parallel pipe lined intermediate architecture is 3

times faster than the single pipe lined intermediate architecture.

The throughput, H, which can be defined as numbe:: of output coefficients

generated per unit time, can be written for each architectures as

H(sin gle) = n/(p, + 3(n -I))t P j3k

The maximum throughput, H"'ax, occurs when n is very large (n-.. oo). Thus,

Hm" (single)= H(sin gle),~~

= 3 ·n ·k· fr/3·n = k· fr

H(2- parallel)= n/(p, + (n- 2))t P j2k

H'""(2- parallel)= H(2- parallel)H,

= 2·n·k· fr/n = 2·k · fr

H(3- parallel)= nj(p, +(n-3))tr/3k

Hm" (3- parallel)= H(3- para/lel)H,

= 3 · n · k · fr / n = 3 · k · fP

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

Hence, the throughputs of the 2-parallel and 3-parallel pipe lined architectures have

increased by a factor of 2 and 3, respectively, as comparEd with single pipelined

architecture.

121

To determine the amount of power reduction achieved in the external memory of

the intermediate parallel architecture as compared with first scan method based

parallel architecture, consider the following. If the power consumption of VLSI

architectures can be estimated as

P-C ·V' · f - lola/ o . (4.46)

where C,,1,, denotes the total capacitance of the architecture, Yo is the supply voltage,

and f is the clock frequency, then the power consumption due to scanning external

memory of the single pipe lined architecture based on nonoverlapped scan method can

be written as

P, (non)= f3 · C,,w1 • V,' · ft (4.47)

where C,,,,1 • V,2
·;; is the external memory power consumption due to first

overlapped scan method, f, IS the external memory scan frequency,

and f3 = Tm, /Tm, = 2/3. Tm, and Tm, denote total external memory access time in clock

cycle for J levels of decomposition for architecture based on the first overlapped and

nonoverlapped scan methods, respectively.

Using the fact that the scan method shown in Figure 3.7.1 (a) reduces the power

consumption of the overlapped areas by a factor of 1/3, the power consumption due to

scanning the overlapped areas of Figure 3.7.1 (a) can be written as

(4.48)

where f3" = Tm)Tm, = 1/3 and Tm, is the excess memory access time due to

overlapped areas scanning for J levels of decomposition. Thus, the external memory

power consumption of the single pipe lined intermediate, P,(int), is

P, (int) = P, (non)+ P,,(areas)

= f3 · C,olal • V,,2
· .t; +flo · C,otat · V,,2

• J; I 3

= C,owl . V,'. ft (fJo/3 + fJ)

= 3 · k · C,,,,1 · V,' · fr (/30 /3 + /3)

where ;; = 3 · k · fP , and j~ is processor's frequency.

122

(4.49)

(4.50)

(4.51)

(4.52)

The external memory power consumption of /-parallel pipelined intermediate

architecture, P, (int) can be written as

P, (int) = I· C,,"1 · V"' · ft · (j30 /3 + j3) (4.53)

From statement3, ljr1 = ft =I· kjt r , then

P,(int) =I· k ·I· C'"'"1 • V,' · fr · (f30 /3 + j3) (4.54)

where(!) is number of input buses and is 3 in the parallel architecture.

Similarly, the external memory power consumption of /-parallel pipelined

architecture based on the first scan, P, (first) can be written as

P (fir •·t) - I · C · V 2
• ' - I· k · I · C · V' · f I "- total o)/- lr>laf o ·P (4.55)

Thus,

P, (int) I· k. I. c,,wl . V,2 . Ir . (f3o /3 + j3)
=

l·k·I·C ·V'·f total o p

(4.56)
PJfirst)

= jJ,/3 + j3 = 7/9 (4.57)

implies that the intermediate parallel architecture based on scan method shown in

Figure 3.7.1 (a) reduces power consumption of the external memory by a factor of7/9

as compared with parallel architecture based on the first scan method. On the other

hand,

P, (int) = I· k ·I· C"'"1 • V,' · f" · (f30 /3 + j3) =I

P (int) 3 · k · C · V 2
• f · (j3 13 + j3) ·' /(J/al o . p 0 I

(4.58)

implies that as the degree of parallelism increases the external memory power

consumption of the intermediate parallel architecture based on the scan method in

Figure 3.7.1 (a) also increases by a factor of I as compared with single pipelined

intermediate architecture's external memory power consumption.

123

4.4 Conclusions

In this chapter, the single pipelined overlapped architecture is extended to 2-parallel,

3-parallel, and 4-parallel architectures to achieve speedup factors of 2, 3, and 4,

respectively, according to the evaluation given in section 4.2.4. Similarly, the single

pipeline intermediate architecture is extended to 2-parallel and 3-parallel

architectures. According to the evaluation given in section 4.3.5, the 2-parallel and 3-

parallel intermediate architectures achieve speedup factors of 2 and 3, respectively.

The intermediate parallel architecture reduces the power consumption of the external

memory by a factor of 7/9 as compared with the overlapped parallel architecture,

Eq(4.57). The advantage of the parallel architectures developed in this chapter, is that

the total temporary line buffer (TLB) requirement does not increase from the single

pipe lined architectures.

124

CHAPTERS

DWT MEMORY ARCHITECTURES

5.1Jntroduction

DWT memory architectures have been usually overlooked in the literature. However,

since 2-D DWT memory architectures are equally important as DWT processor

architectures commonly covered in the literature, in this chapter, two novel VLSI

architectures for LL-RAM and subband memory are developed.

The general structure of a compression system is shown in Figure 5. I .1. The DWT

unit generally consists of a row-processor (RP) and a column-processor (CP). RP

reads LL-RAM, while CP writes into LL-RAM and subband memory.

DWT decomposes an NxM image into subbands, as shown in Figure 2.1.3 for 3

decomposition levels. These subbands must be stored by DWT unit in a memory such

that they can be manipulated effectively by compression unit for compression

purposes. Therefore, a memory architecture, which allows DWT unit to perform

efficiently both, reads and writes and compression unit to perform reads is necessary.

Figure 2.1.3 shows that the first decomposition generates 4 subbands labeled HL I,

HH I, LH I, and LL I. The coefficients of the first 3 sub bands would be stored in a

memory, call it subband memory, which would contain memory blocks HLI, HHJ,

and LHI. The compression unit can then read the 3 subbands and compress each

independently, while subband LLI would be stored in another memory, call it, LL­

RAM or just RAM, for further decompositions.

The second decomposition generates 4 subbands, labeled HL2, HH2, LH2, LL2,

by reading subband LLI coefficients stored in the LL-RAM. The coefficients of the 3

subbands HL2, HH2, and LH2 would be stored also in the subband memory blocks

labeled HL2. HH2, and LH2, while subband LL2 would be stored in the RAM for

further decomposition.

125

"c § 0
..o E
..0 "
bl~

Figure 5.1.1 General structure of a compression system.

In the discussion above, two memory components have been identified, the LL­

RAM and the subband memory, that need to be designed sw:h that DWT unit can

perform effectively both read and write operations in the LL-RAM and

write only into subband memory, while compression can read subband memory.

Thus, in this chapter, the architectures of the LL-RAM and sub band memory would

be developed. First, the LL-RAM architecture will be developed followed by subband

memory architecture.

5.2 The LL-RAM architecture development

The LL-RAM is used by the DWT unit to store the coefficients of the LL subband

that it generates in each decomposition level, for further decomJositions. In the DWT

unit, the RP scans (reads) the LL-RAM, and the CP wr tes the LL sub band

coefficients in the LL-RAM. The generalized scan method requires the RAM to be

read in every clock cycle with frequency Ji, where 1~ 1,2,3 denote single, 2- or 3-

parallel, and to be written according to the order in which each scan method generates

its output coefficients. Which implies that reads operations will coincide with writes

operations. Therefore, the RAM architecture should be designed such that both read

and write can take place in the same clock cycle. Thus, the first half cycle of clockfi

will be reserved for read and the second half cycle for write.

The RAM, which can be viewed as a 2-dimensional memory of size N/2xM/2,

where N ~ 2" and M ~ r, can be readily constructed from M/2 modules with each

module having N/2 locations.

The block diagram of the memory module that would be used in forming the

RAM architecture is shown in Figure 5.2.1. The E signal, which is active high,

126

enables the module for reads and writes. The module is read and the result is placed in

the output bus when the signal labeled R/W is low, otherwise, it is written. The

address bus is used in addressing each location in the module for read or write. The

control signal labeled MS (module select) is useful when several modules are used in

forming a memory. It allows through a decoder one module to be selected for read or

write. The module can be read or written only when both signal E and MS are asserted

high.

The complete architecture of the RAM that facilitates both reads and writes is shown

in Figure 5.2.2 (a) and (b). This architecture is based on the first scan method.

However, the RAM architecture can be easily modified to handle other (or higher)

scan methods, as will be explained later. The decoder labeled dcodms is responsible

for selecting modules for reads or writes. When the architecture performs read

operations, the register labeled RMSR (read module select register) determines

through muxs which modules to be enabled. When it performs write operations,

register WMSR (write module select register) is used for selecting modules. Both

registers are (m-2)-bit counters with control signal clr (clear) and inc (increment) and

operate with frequency ft.

The multiplexer labeled muxs, its control signal is shown connected to clockfi.

Whenfi is low, read operation takes place and RMSR controls the decoder. On the

l
outp ut}us R/W input

<;:::= J
bus

addr ess buf_
I

v

E MS

i
Figure 5.2.1 Block diagram of the memory module.

127

c{r inc
p hi X y ei

b), I "' ~ -fU Y, a <

ft ~~.~
o<

I
I

RE = 0 ft r='tc: 1/W 1/-w -t- 1'/W ~,r.r. R/W RW

ml m2 m) m4 m5 ml m8

c rmc 'W MS MS f 1 -''#- c.41~
I';; 0 OR}J I 'll =:o- OR :
"' T "' OR}

~ I
..§ 3

:
"' IE I

a
{l

'lj =(1 S I I

A~
2m-2 -1 I

TE (a) c r me

Address bus

clr inc

(b)

Figure 5.2.2 (a) and (b) RAM architecture using modules

R/W
--- m2m-l

MS

Input bus

m2m-I

MS

other hand, when fi is high, write operation takes place and WMSR controls the

decoder.

The circuit in the upper left corner of Figure 5.2.2 (a), consisting of 3 multiplexers

labeled muxb, a NOR gate, signal RE and the register labeled WER (write enable

register), is in charge of generating signal values for the read and write signal

labeled Ji.jw. The control signals of the 3 multiplexers are alsc- shown connected to

128

the clockfi. Whenfi is low, modules are enabled for read, otherwise, are enabled for

write. Signals generated by this circuit will be described later in details.

The address bus is managed by two registers labeled RMAR (read module

address register) and WMAR (write module address register) through muxa. When the

multiplexer control signal is driven low by clock .ft. read operation takes place and

RMAR provides addresses to modules, otherwise, write operation takes place and

WMAR provides address to modules.

In the following, read and write operations will be described in details. First, read

operations will be described followed by write operations.

5.2.1 The LL-RAM read operations

The LL-RAM is read according to the scan method shown in Figure 3.5.1, the first

overlapped scan method. This scan method requires reading every clock cycle 3

pixels simultaneously, one from each module as follows. When .ft is low, the 3

multiplexers labeled muxb pass signal RE, which is active low, to the output signals

YO, Y2. and Yl. The three output signals enable all memory modules for read.

However, the scan method requires that in every run 3 modules should be enabled for

read as follows. First, modules I, 2, and 3 should be enabled then modules 3, 4, and 5

followed by modules 5, 6, and 7 and so on. Thus, the role of the decoder labeled

dcodms is to guarantee that modules are enabled in the order specified above. First,

the output of the decoder labeled 0 will be activated to enable modules I, 2, and 3.

Then, using the address bus, the first location of each enabled module is read into the

output buses. Whenfi makes a positive transition, the 3 pixels in the output buses are

loaded into a temporary register labeled DL (Data latch). Then the negative transition

of the clock fi loads the 3 pixels into the RPs latches. To address the second location

in each module, the negative transition of fi increments also register RMAR. This

process is repeated until the 3 enabled modules are read.

To enable the next 3 modules, register RMSR is incremented by one, which

asserts the second output of the decoder high. The decoder output labeled I enables

modules 3, 4, and 5 for read. When all 3 modules are read, the decoder output line

labeled 2 is activated by incrementing RMSR again by one to enable the set that

129

contains modules 5, 6, and 7. This process is repeated until the whole RAM ts

scanned.

In Figure 5.2.2 (b), the output of modules 3 and 5 are shown connected to muxO

and mux1, respectively. These multiplexers are necessary because all modules with

odd numbers, except the first, are scanned twice. For example, in the first run, when

locations of module 3 are scanned they are placed in the bus labeled bus2, whereas in

the second run they are placed in another bus labeled busO. Thus, to allow these

multiplexers to switch between bus2 and busO their control signals are connected to

decoder dcodms output lines labeled 0 and I and so on.

5.2.2 The LL-RAM write operations

How the LL-RAM should be written can be determined by examining the scan

method or the dataflow table of the DWT architecture uncer consideration. For

example, examination of the first scan method shows that the CP would generate

output coefficients column-by-column, which implies that the RAM should be written

module-by-module.

In general, the RAM can be written as follows. Whenft is high, the outputs b1 and

b2 of the register labeled WER (write enable register), which is initially cleared to

zero, and the output of the NOR gate are passed through multiplexers to the outputs

labeled Y1, Y3, and YO, respectively. Since WER is initially zero, only YO will be

asserted high, which enable for write all modules 1+ 3i, where 1 ~ 0, 1, 2 ... , m-1. For

example, if m~3, then modules I, 4, and 7 will be enabled. However, the RAM is

required to be written module-by-module and in order, i.e., f.rst module I, then 2

followed by 3 and so on and the function of the decoder labeled dcodms is to provide

this module-by-module control. Thus, the decoder output Ia.)eled 0 will be first

asserted high through WMSR to enable only module number I for write. Note that a

module is enabled for write when its both signals MS and R/W are asserted high and

all modules are disabled when signal E of dcodms is low.

When all locations of module I are written, WER is incremtmted by one to assert

only Yl high. Yl enables all modules labeled 2+ 3i, but since the first output of the

decoder is still high, only module 2 will be selected for write. When all locations of

130

module 2 are written, WER is incremented again by one to assert this time Y2 high. Y2

enables all modules labeled 3+ 3i but since the first output of the decoder is still high,

only modules 3 will be selected for write. When all locations of module 3 are written,

WER is cleared to zero to set YO high, and WMSR is incremented by one to assert the

decoder second output labeled I high. Assertion of both YO and the second output of

the decoder enable only module 4 for write. This process is repeated until all modules

are written.

Note that WER is a 2-bit register that count from 0 to 2 and repeats. Furthermore,

the amount of data to be written in each decomposition level including number of

modules and number of locations to be written in each module, can be determined in

advance from the knowledge of the height and width of the image that will be

processed.

5.2.3 RAM architecture modifications for higher scan methods

The RAM architecture shown in Figure 5.2.2 can be easily modified to handle other

scan method. The circuits in the upper corner of the RAM architecture, consisting of

register WER and multiplexers labeled muxb, remain unchanged. However,

modifications for a specific scan method in general, can be obtained by eliminating

some of the OR gates whose outputs are connected to signal MS, as follows. For

example, the second scan method, which requires 5 modules to be considered for read

and two modules for write at a time, would require eliminating the first OR gate and

connecting the first output of the decoder labeled dcodms to signal MS of each

modules m I, m2, and m3. While, connections to modules m4 and m5, remain

unchanged. Then, the connection pattern of the first 5 modules ml, m2, m3, m4, and

m5 is repeated in the next 5 modules m5, m6, m7, m8, and m9 and so on.

Similarly, the third scan method, which requires 7 modules to be considered for

read and 3 modules for write at a time, would require eliminating the first and the

second OR gates and then connecting the first output of the decoder to MS signal of

modules ml, m2, and m3 and that of the second output to signal MS of modules m4,

and m5. While connections to modules m6 and_m7, remain the same. The connection

patterns of the first 7 modules is repeated in the next 7 modules m7, m8, m9, miO,

mll, ml2, and ml3 and so on.

131

Now, let's see how read operations are performed on the RAM architecture based

on the second scan method. Since, the second scan method rquires 5 modules to be

considered for read at a time, the modules labeled ml, m2, m3, m4, and m5 will be

considered first. Thus, to read these modules location-by-location, registers RMAR

and RMSR are reset 0. This will allow register RMAR to address the first location in

each module and register RMSR to enable modules ml, m2, and m3 through the

decoder dcodms. Then, in the first clock cycle, when fi is low, the R/W signals of

modules ml, m2, and m3 are activated for read. This will allow the first location of

each modules ml, m2, and m3 to be read into the buses labeled busO. bus!, and bus2,

respectively. Then register RMSR is incremented by I to enabl·~ modules m4, and m5

for read. When fi is low, again in the second clock cycle, the first location in each

modules m4 and m5 are read into bus! and bus2, respectively. When this is done,

register RMAR is incremented by I to point at the second location in each module.

Register RMSR is reset 0 to enable again modules ml, m2, and m3. Whenfi is low in

the third cycle, the second location in each modules ml, m2, and m3 are read into the

buses. Then, register RMSR is incremented by I to enable modules m4 and m5 and

disable ml, m2, and m3 though the decoder labeled dcodms. Again, whenfi is low in

the fourth clock cycle, the second location of each modules m4' and m5 are read into

bus! and bus2, respectively. Then, register RMAR is incremented by one to address

the third location of each module and register RMSR is reset 0 to enable again

modules ml, m2, and m3. This process is repeated until the fiN 5 modules are read.

Then the same process is applied on the next 5 modules m5, mt, m7, m8, and m9 and

so on.

Similarly, the RAM architectures for third and fourth scan method etc. can be read

in the same manner described above. Note that, in the read operations described above

for the second scan method, after each read operation performed on modules m4 and

m5, the control should return to module ml and repeat the proce,;s. The same situation

also occurs when the next 5 modules m5, m6, m 7, m8, and m9 are considered for read

and so on. That is, returning to module m5 from module m9 should be remembered by

the control. Therefore, register XR is added to serve this purpose and it can be

connected to register RMSR as shown in Figure 5.2.3. A similar problem occurs with

write operations using registers WMSR and WER, and the solution shown in Figure

5.2.3 can be used, which is described in details in section 5.3.4.

132

This RAM architecture would work well in DWT architectures, where pixels are

scanned in parallel, such as in the parallel architectures developed in chapter 5. But, if

a DWT architecture is required to scan RAM pixel-by-pixel, then in that case all OR

gates in Fig. 5.2.2 (a) are eliminated and each output of decoder dcodms is connected

only to signal MS of one module and the output buses are reduced to one bus.

On the other hand, how the RAM should be written would depend on the scan

method adopted. The first scan method, as described earlier, requires the RAM to be

written module-by-module. Whereas, the second scan method requires considering 2

modules for write at a time, as follows. Initially, registers WER, WMSR, and WMAR

are set 0. Setting WER and WMBR 0 while .!i is high enable module I for write, and

WMAR addresses the first location of module 1. This will let the first output

coefficient, LLO,O to be stored in the first location of module 1. When the negative

transition of clockfi ending the cycle occurs, it will increment WER by one to enable

module 2 for write. During the high pulse of the second cycle of clock fi, the second

coefficient labeled LLO, 1 is stored in the first location of module 2, while the negative

transition of clockfi ending the cycle clears WER to enable again module I for write

and increments WMAR to address the second location of module 1. In this location,

the third output coefficient, LLI ,0 is stored during the high pulse of the third cycle of

clock/i. The negative transition of clock/i ending the third cycle, increments WER by

one to enable module 2 again for write. During the high pulse of the fourth cycle, the

fourth output coefficient, LLI, 1 is stored in the second location of module 2. This

process is repeated until all required locations in the two modules are written. Then

the same process is applied on the next 2 modules m3 and m4 and so on. Note that

writing into the RAM does not take place every clock cycle as reading but when it

occurs it coincides with reading and the order of writing coefficients occur as

described above.

Similarly, the third scan method requires writing into 3 modules at a time. In

general, the ith scan method would require writing into i modules at a time.

133

clr

load -~c_--..-------'

load
clr
inc

Figure 5.2.3 Incorporation of register XR

5.2.4 RAM architecture using banks

The decoder labeled dcodms, in the RAM architecture shown in Figure 5.2.2, is a very

large decoder. This large decoder can slow down the LL-RAM's operations and can

degrade its performance in terms of speed and power. Therefore, it is necessary to

reduce the size of the decoder to a practical level. Furthermore, the signal labeled YO,

Y1, and Y2, each is shown in Figure 5.2.2 connected to drive read/ write signal labeled

Ji.jw of several modules. Driving this large capacitive load in this way can also

negatively affect the performance of the RAM. For these reasons, the bank method is

introduced in Fig. 5.2.4 (a) to alleviate these problems.

Figure 5.2.4 (a) shows a bank structure with 8 modules. The bank can contain any

number of 2b modules where b = 1, 2, ... m-2. Read and write operations in the bank

can be performed in the same way as described for Figure 5 .2.2. Figure 5 .2.4 (b)

shows the block diagram of the bank. This block diagram is used in building the RAM

architecture shown in Figure 5.2.5. This architecture can be thought formed by

dividing the architecture in Figure 5.2.2, which can be considered as one big bank

holding 2m·l modules, into several smaller independent baoks each holding 2b

modules. Inside the smaller banks reads and writes are performed as in the big bank

but faster and more efficient.

The architecture performs read or write operations bank-by-bank and in order, b 1

first, b2 second followed by b3 and so on. In the architecture shown in Figure 5.2.2,

the decoder labeled dcodms is used for selecting modules, whereas the decoder

labeled dcodbs in Figure 5.2.5 is used for selecting banks. When read operation takes

place, the register labeled RBSR (read bank select register) controls the decoder but

when write operation takes place, the register labeled WBSR (write bank select

!34

(r :r· bl
J;

~ "' " ~ b)

·(V ~
Y, ·-

J, "'

~
Y,

0 It
Addre bu'

/np< bu'

.. r£~ ~'R/"w., ~~~;yJ ~~~ ~fjf:~ 1t'w~ 1tw~ ~tw~
ml rrf2 m3 m4 m5 rriJ
MSI- MS-

!
~M.§_ c4f.§_ ~M.§_

'0~ T
-; ~ 1 r r-----

8 I {QV-
--; '!I 2

3
'"£["-'

~~~ 
r;;----r ri-~ 
~~~: I Ill ~ 

I I
I I

I mr;xO I I mutt I I '"'"" I
l_ f-- I l I l - I

(a) Bus\ Bus-:!. BusO

-

.L .L
d' me

.t;
b

T T T T T trlo decod:r,..,

T T
(b)

Address

Input bus

busO

bus:!.

husl

m7 m8

~.§_ c.41i'"""

-lOR}

r;;--c--
1 ~~I
I I
I I
I mux3 J

l - _I

Figure 5.2.4 (a) bank architecture with 8 modules (b) its block diagram

135

!,

l l
J; clr inc

b1

aD a1

WMSR ~ I,:;."--RM-SR....J

!,

me
clc

zh11 :all modules in a bank are written
;hr all modules in a bank a:re read

Input Bus buso bus2 bus 1

~

l l l
j, clr me !'f'

i+-

b2 1--

il
0 l

dcodbs ~ E

!,

inc ..----' llu.._ i ~---<?1.5,~ r-;;;,r-r-- me
c/r RBSR ~ ! ~ WBSR ~ c/r

!,

I

Figure 5.2.5 RAM architecture using bank

136

I J J
cfr inc~

+
!,

-

register) controls the decoder. Both registers are (m-4)-bit counters with control

signals clr (clear) and inc (increment).

The decoders which are attached to the banks labeled b 1 and b2 etc. in the RAM

architecture shown in Figure 5.2.5, each is responsible for selecting modules when its

bank is enabled by decoder dcodbs. When the architecture performs read operations in

bank bl, for example, the register labeled RMSR (read module select register) controls

the decoder output through mux. When it performs write operations, the register

labeled WMSR (write module select register) controls output of the enabled decoder.

Registers RMSR and WMSR both are 2-bit counters that count from 0 to 3 and

repeats. When all modules in a bank are read or written, the signals labeled zbr or zbw

will be asserted high, respectively, indicating that the next bank can now be enabled

by dcodbs. To see how effective the bank method in reducing the decoder size,

consider the following. Suppose, M=r is the largest image width that can be

processed by the DWT unit. Then, the maximum number of modules in the RAM will

be (2m-I) modules with decoder size m-2: r-2
• Now, if each bank is structured to

contain 26 modules, then

(5.1)

represents number of banks and number of decoder dcodbs outputs. Whereas,

(5.1)

gives the reduction in the decoder size. Thus, if b=3, the decoder size decreases by a

factor of 4.

5.3 Subband memory architecture development

The basic architecture of the subband memory is shown in Figure 5.3.1. The

architecture is developed with two objectives in mind to achieve, that is, write

operations by the DWT unit and read operations by compression unit, which are

somewhat complex operations, should be performed etTectively.

The strategy adopted for managing subband memory architecture for an NxM

image is as follow. The first decomposition, which consist of subbands HLl, HH 1,

and LHl, are stored in the memory blocks labeled HLJ, HHJ, and LHJ, respectively.

Then, the compression unit is informed to read these memory blocks. The

137

compression unit can read each subband memory block code-block by code-block for

EBCOT (Embedded Block Coded with Optimized Truncation) coding as required by

JPEG2000 standard [7]. The compression unit applies compn~ssion algorithm on

each code-block independently. The compression unit first reads contents of HLJ,

then HH I, and last LH I, while, the LLI sub band coefficients, which are stored in the

RAM, are scanned by the RPs for further decomposition.

Subbands of the second decomposition HL2, HH2, and LH2, are stored in the

subband memory blocks labeled HL2, HH2, and LH2, whereas, subbands of the

third decomposition are stored in the subband memory blocks labeled HL3, HH3, and

LH3, and so on. However, subbands of the last decomposition are stored in the

subband memory labeled HL1max• HH1mux. L~max. and LL1max·

When the LLI subband is decomposed into the required number of decomposition

levels, the compression unit is again informed. Thus, the compr·~ssion unit is informed

twice during the whole decomposition process. First, when subbands of the first

decomposition are available in subband memory blocks HLI, HHI, and LHI.

Second, when all subsequence decompositions of LLI subband are completed and are

stored in their respective sub band memory blocks.

5.3.1 The bank structure used in forming subband memory

In Figure 5.3.1, each block of the subband memory labeled HLI, HH I, etc. is a 2-

dimensional memory block, size 2"''xr•', where j =I, 2, 3 .. .jmax and)max is the

maximum number of decomposition levels allowed. Two methods of forming a bank

containing modules are shown Figures 5.3.2 and 5.3.3. The first bank shown in Figure

5.3.2 contains 2h modules. When signal EM is asserted high, it enables the bank for

both read and writes operations. Whereas, which module to read or write is

determined by the decoder and the address lines are used to address each location in

the selected module starting from location zero to location 2n'1-.J. The block diagram

of the bank is shown in Figure 5.3.2 (b).

138

data in HL!

2"-1 X 2m-!

HL2

2n-2 X 2m-2

I

I
I

HLj max
2n-jmax X 2m-jmax

data in
HH!

2"-1 X 2m-!

HH2

2n-2 X 2m-2

I
I
I

HHjmax

zn-jma~ X zm-;max

data in LH!

2n-l x2m-l

LH2

2n-2 X 2m-2

data in I

I
I

LHjmax

2n-jmaxX 2m-jmax

RAM LLjmax

Figure 5.3.1 Subband memory architecture

139

The second bank and its block diagram are shown in Figure 5.3.3 (a) and (b),

respectively. It consists of two small banks, the upper and the lower banks, which in

turn form a larger bank. The second bank method reduces the' decoder size by y, as

compared with the first bank method, and allows more packing of modules into a

bank. The number of modules in the larger bank is 2h, whik the lower and upper

banks each contains (f1
) modules as indicated in Figure 5.3 .3(a). Reads or writes

into the bank take place module-by-module. Modules in the upper bank are read (or

written) first followed by the lower bank modules. When signal E is enabled, the

upper bank is selected by asserting the signal EUB (enable upper bank), whereas the

lower bank is selected by asserting the signal ELB (enable lower bank). Modules in

the upper or lower banks are selected by the decoder. Modules are selected in the

order specified by the decoder, which selects a module at a time.

'" ta'

Add
Da

-·
W R

! r--c~~
Data out

ml

rEM -=
Address

"'C' Rfc- Data in

m2

r,E M Bank

--r
I

'-: Rr.-

m2' -
r---; EM~
~

EM

EM
2b-l 1 0

---JE decoder

lJ b
b

(a) (b)

Figure 5.3.2 (a) structure of the first bank (b) its block diagram

140

ddre s
ata z

A
D

W R

-
H Rr
~

:: ml Data out ..
r''---'EM
~

-:: Ri<-
!" m2

"""'
.. ,.,___,

EM
T

Upp'rr ban

-; R!<-

: m2b-J

"""'
..

r'~ EM
.......:=

-; RE-

... ml
..... ..

y Eu

RE-
~

:: m2
...::, EM

T
Low'rr ban

-l RE-
;. m2b-J -•

---?E M
--~ ----

2b-1 -1 I
§::J
"l"l ----7 E decoder

1f
b-1

(a)

Address

Data in

0

b-1

(b)

Figure 5.3.3 (a) Structure of the second bank (b) its block diagram

141

Data:;:'"+-..-------..-------------·...,

bl

UB/fd!~ ITI :r
j£ 10
J Tdecoder

b2 ------------ r-'-'

§0!1 ~0!)
~~ ~~

T 1 Jfi.T
J;, 10 rl£ !0

ndecoder decoder
b-1 T T

MS-+----~~----~~---L-----------------~~

BS t

0
If-----,------'

dcodbs

T
I
E

(a)

E

(b)

Figure (a) subband memory block architecture formed u:;ing the block
diagram of the second bank (b) its block diagram

Using the block diagram of the second bank, the subband memory block

architecture shown Figure 5.3.4 (a) is formed_ The architecture consists of r-h,;

142

banks, each bank contains 2h memory modules and each module contains 2"j

locations. The decoder labeled dcodbs in Figure 5.3.4(a) selects one bank at a time for

reads or writes. Banks are selected in order, first bl, and second b2 and so on. The

modules inside a selected bank are enabled one at a time through the lines labeled MS

(module select). The line labeled UB/ LBenables the upper bank when asserted low

and the lower bank when asserted high. Reads or writes occur when signal E of

decoder dcodbs is asserted high.

The block diagram of the architecture is shown in Figure 5.3.4(b). This block is

used further for forming the subband memory architecture shown Figure 5.3.1. That

means, each block in Figure 5.3.1 is replaced by the block diagram shown in Figure

5.3.4(b).

Suppose, for instant, the largest image size that can be processed is N~M~2'0, b is

3, and the maximum number of decomposition levels, jmax is 7. Then, this implies

that the subband memory blocks labeled HLI, HHl, and LHl forj~l, should each be

designed to contain 64 banks and each memory module in a bank should contain 29

locations. The blocks of the second level labeled HL2. HH2, and LH2 for j~2, each

should contain 32 banks and each module in a bank should contain f memory

locations. Similarly, the sizes of the subband memory blocks for third and forth and so

on to jmaxth level can be determined. Note that the blocks of the last level labeled

HL1max. Hff;m,a. Llf;m,a. and LL;max for j=jmax~7, each must be designed with one bank

with each module in the bank having 23 memory locations. That is each block should

be 8x8.

5.3.2 Details of the subband memory architecture

The details of the sub band memory architecture and its interconnections are shown in

Figures 5.3.5 and 5.3.6. These two figures together give the complete architecture of

the sub band memory. The architecture is designed to allow the DWT unit to write into

subband memory and the compression unit to read it.

The two sets of registers labeled MARl and MAR2 in Figure 5.3.5 supply address

to modules that are selected for reads or writes. MARl, which is an (n-1)-bit counter,

provides addresses to modules of the first level memory blocks labeled HLJ, HHl,

143

and LHI, whereas, MAR2, an (n-2)-bit counter, provides addresses to all memory

blocks that lay below the first level. Note that in Figure 5.3 .6, the 3 signals labeled

BS, UB/ LB, and MS are grouped together and are connected to the output of the

register labeled SMSR (subband module select register), where BS and MS occupy the

most and the least significant bits positions, respectively. Grouping of these 3 signals

in this way facilitate banks and modules within a bank to be accessed successively.

These signals can be generated by register SMSR, which is a simple counter. This

register will drive these signals and will determine their valu·~s by simply counting

from 0 to 2m'1, where 2m-J represents number of modules to be •.-.ritten (or read) in each

subband memory block. The value in the SMSR gives, when z block of the subband

memory is enabled for reads (or writes), the bank number and the module number

selected in the upper or lower bank. SMSRJ is an (m-1)-bit register and is used along

with MARl to address only subband memory blocks of the first level. Whereas

SMSR2, which is an (m-2)-bit register, is used along with MAR2 to address all

subband memory blocks that lay after the first level.

Figures 5.3.5 and 5.3.6 also show two groups of registers labeled A and B. These

registers make it possible to control storing of output coeffi~ients in the subband

memory by either single or parallel pipelined 2-D DWT architectures. Single

pipe lined architectures generate two output coefficients each clock cycle, reference to

the processor's clock. The two output coefficients might belong to either subbands

LH and LL or subbands HL and HH. In the first case, one coefficient (the high

coefficient) is stored in the sub band memory block LH using group B registers, while

the other coefficient (low coefficient) is passed to LL-RAM where it is stored. In the

second case, simultaneously, the low and high coefficients are stored in the subband

memory blocks HL and HH, respectively, using group A registers. On the other hand,

the parallel architectures generate 4 output coefficients every c·ock cycle that belong

to sub bands HL, HH, LH, and LL. The 3 coefficients of subbands HL, HH, and LH

are stored in the subband memory blocks HL, HH, and LH using both groups A and B

registers, while coefficient of subband LL is passed to LL-RAM

144

I

~~ LHjmax I_ 1~
1-+!Address ~ ·-., ££

~~:.J Fbwe E ~}., 0 ~f~~~~~E~:::==~' ~~1;2=o~=~=i~~~d!ct"~d E
~'!t~t WDER) ·~

~
~7::JRBEI'9J Jvmax-1

1
1
0
,----

d,~a!.Jt"'a!..,Uin:~..._i-l•IO{_[A_d_dr_es_'.:L:_::LJ~·m:::ax::__~ t:::-::1~-----~--1 ."'>~ E dcodr

set-r 1
set---r .-:'\ cf,._._.:l. FLLre (RDER "t" inc
c/r-.::J..FLLwe) l L clr

inc clr

Figure 5.3.5 Architecture of the subband memory

145

set
clr-=h~u

A inc-)

c/r--) SMSRI

A b-l

SMSR2 m b

nr
set]A'
clr- ,;;,?

se:=r B
c/r- ,Fwl)

2

B

w
h -1 MS

UB/LB HLI
m-b~ BS

w
MS
UB/LBHLl
I lis'

r. w
HLJ max

'---' w
----3 MS HHI

UB/LB
BS

----3 w
HH2

w
HH}max

w
h -1

MS LHI
SMSRI m-h-1 UB/LB

BS

Ti ,-; w
inc clr r-; MS LH2

b I
UB/LB

B BS

SMSR2 m h-2 w

n H LHjmax

se~=r B "\
c/r- P~?.

qw LLjmax

R c----@= set
clr

Rr -

Rl<- -

Rr

R-r -

Ror -

R<,-

Rk--

Ri<c--

(FR2J=
~

set
clr

Datq,_ out

Figure 5.3.6 Architecture of the subband merr.ory

Suppose, now the DWT unit is requested to process, for example, a 256x200

image and to decompose it into 5 levels of decomposition. The first decomposition

146

will generate 4 subbands, each of size 128xl00. The 3 subbands HLl, HHl, and LHl

will be written into the subband memory blocks HLI, HHJ, and LHJ. That is, in each

subband memory blocks HLJ, HHJ, and LHJ, 100 modules will be written and each

module addresses range from 0 to 127. SMSRJ selects a bank and a module in the

bank to be written, while MARl generates addresses for accessing locations in the

selected module.

The second decomposition generates also 4 subbands images, each of size 64x50.

The 3 subbands HL2, HH2, and LH2 will be written into the subband memory blocks

HL2, HH2, and LH2. In each subband memory block, SMSR2 is used for selecting a

bank and a module in the bank and MAR2 is used for generating addresses for

accessing each location in the module.

The third decomposition generates 4 subbands HL3, HH3, LH3, and LL3 each of

size 32x25. The first 3 subbands are stored in the subband memory blocks HL3, HH3,

and LH3, respectively.

The fourth decomposition generates 4 subbands HL4, HH4, LH4, and LL4.

Subbands HL4 and HH4 each is of size 16x 12, while subbands LH4 and LL4 each is

of size 16x 13. The first 3 subbands are stored in the subband memory blocks HL4,

HH4, and LH4, respectively.

The fifth decomposition, which is the last decomposition, generates 4 subbands

HL5, HH5, LH5, and LL5. Subbands HL5 and HH5 each is of size 8x6, while

subbands LH5 and LL5 each is of size 8x7. These 4 subbands are stored in the

subband memory blocks HL5, HH5, LH5, and LL1mux, respectively. Note that the LL,

sub band of the last decomposition should always be stored in the subband memory

block labeled LL1ma'·

The decoder labeled dcodw along with the register labeled WDER and the FFs

labeled Fbwe, Fwl, Fw2, and FLLwe are used for enabling subband memory for

writes. Whereas the decoder labeled dcodr along with the two registers labeled RDER

and RBER, and the FFs labeled FRI. FR2, and FLLre are used by compression unit

for enabling sub band memory for reads.

147

The two registers labeled WDER (write decomposition register) and RDER (read

decomposition register) both are counter that count from 0 toj-1. These registers are

initially designed to count from 0 tojmax-1, where Jmax is the maximum number of

decomposition allowed. In a decomposition process, the required number of

decompositions,} desired should be provided by loading} into a register. Moreover,

the order of writing into the subband memory blocks are controlled by WDER,

whereas the order of reading them by compression unit are controlled by the two

registers labeled RDER and RBER.

To write subbands coefficients of the first level decomposition into subband

memory, the DWT unit initially clears registers SMSRJ, MARl, WDER, and the flip­

flop (FF) labeled FLLre to zero and sets the FFs labeled Fw I and Fbwe I. Fbwe

enables the decoder dcodw and since WDER is 0, the first output of the decoder

labeled 0 is activated. Activation of this output signal enables subband memory

blocks HLI, HH I, and LH I for write. The value in register SMSRJ determines the

bank number and the module number to be written in each enabled sub band memory

block. While register MARl is used for addressing each location in the 3 selected

modules. When all locations of the 3 modules are written, register SMSRI is

incremented by one to select the next 3 modules, one from each enabled blocks. This

process is repeated until all modules in the 3 enabled subband memory blocks are

written. The DWT unit resets FF Fwl 0 and then informs the compression unit, say,

by asserting a FF high. The compression unit responds by wading contents of the

subband memory blocks HLI, HHI, and LHJ, and compresses them independently.

Meanwhile, the DWT unit moves to the second level in the subband memory by

incrementing register WDER and setting Fw2 I. This allows the DWT unit to write

subbands coefficients of the second decomposition into the subband memory.

Incrementing register WDER by one activates the second output of the decoder

labeled dcodw. This output enables subband memory blocks labeled HL2, HH2, and

LH2 for write. In addition, registers SMSR2 and MAR2 are reset zero. Resetting

SMSR2 zero, selects the first bank in each one of the 3 enabled blocks and enables the

first module in each selected bank for write. Register MAR2 is used for addressing

each location in the 3 enabled modules. The process of writing into these modules

proceeds as that of the first level. When all modules in the 3 enabled subband memory

I48

blocks are written, the third level in the subband memory is enabled by incrementing

WDER by one. This activates the third output of the decoder, which enables blocks

HL3, HH3, and LH3 for write. This process is continued until the last decomposition

level is reached. When all subbands coefficients of the last decomposition are written,

the DWT unit will inform again the compression unit. It will also reset Fbwe and

Fw2 zero to disable subband memory for writes, until it read by compression unit.

On the other hand, reading of subband memory by compression unit proceeds as

follows. As soon as the compression unit receives the first signal from DWT unit,

confirming that the first level decomposition is completed and its subbands

coefficients are available in the subband memory blocks HLI,HHl, and LHl, the

compression unit clears registers RDER, RBER, SMSRl,and MARl to zero and sets FF

FRl 1. Resetting RDER and RBER zero enable the subband memory block labeled

HLI for read. While resetting SMSRl selects the first bank in block HLI and enables

the first module in the bank. Then MARl is used for addressing each location in the

module for read. The next module is enabled by incrementing SMSRl by one. The

compression unit continues in this fashion until all HLI modules are read. Then RBER

is incremented by one to enable HHI for read and SMSRJ and MARl are reset zero to

select the first bank and enable the first module in the bank. Then, reading of block

HH I proceeds as that of HLI.

To enable block LH I, the compression unit increments again RBER by one and

resets SMSRI and MARl zero. When all modules in LHI are read and the second

signal from DWT unit is received to confirm that all subband coefficients, starting

from the second level decomposition, are available in their respective subband

memory blocks, register RDER is incremented by one to enable the second decoder

(dcod2) and RBER is reset zero to activate the first output of the decoder. In addition,

FRIis reset zero and FR2 is set I. Activation of the first output of the second decoder

enables block HL2 for read. Then compression unit uses registers SMSR2 and MAR2

to read block HL2 module-by-module as described in the first level. After HL2 is

read, HH2 is enabled for read then LH2. The compression unit reads subband memory

level-by-level and each level is read block-by-block and each block is read bank-by­

bank and each bank is read module-by-module until it reaches the last subband

memory block labeled LL1max· To read block LL1m,,, the compression unit sets FLLre 1

149

to enable this block for read and then uses registers SMSR2 and MAR2 to read its

contents.

5.3.3 Subband memory architecture for higher scan method.,

With first scan method, writing into each sub band memory block takes place module­

by-module. That means, only one module in each block will be enabled for write at a

time. The second and the third scan methods require writing into 2 and 3 modules at

time in each block, respectively. In general, the ith scan method requires writing into i

modules in each subband memory block.

To see how this can take place consider, for example, the dataflow for the 2-

parallel intermediate architecture shown in Table B.l2. The dataflow table shows that

the architecture yields 4 output coefficients every clock cycle, reference to

clock j, /2. The 3 output coefficients labeled HHO,O, HLO,O, and LHO,O in Table B.12

should be stored in the first location of the first module in each subband memory

blocks HHJ, HLJ, and LHJ, respectively. The second output coefficients HH0,1,

HL0,1, and LHO, 1 should be stored in the first location of the second module in each

subband memory blocks HH1, HLl, and LH1, respective.ly. The third output

coefficients HH0,2, HL0,2, and LH0,2 should be stored in th,~ first location of the

third module in each subband memory blocks HHJ, HLJ, and LHJ, respectively. The

fourth output coefficients HH1,0, HLJ,O, and LH1,0 should be stored in the second

location of the first module in each subband memory blocks HHJ, HLJ, and LHJ,

respectively.

It is obvious, after the third output coefficients are stored, I he process of storing

coefficients returns to the first module in each block to repeat the process until the

first 3 modules in each subband memory blocks HHJ, HLJ, and LHI are written.

Similarly, the next 3 modules in each subband memory blocks HHJ, HLJ, and LHJ

are written and so on. When all modules in the subband memory blocks HHJ, HLJ,

and LH 1 are written, the process moves to the second level of the sub band memory

blocks HH2, HL2, and LH2 to store subbands coeffici(,nts of the second

decomposition level. However, in order for the control to move dfectively between 3

modules, the first module number ought to be remembered by the control. For this

150

reason, register XR is added and is connected to register SMSR as shown in Figure

5.3.7.

Initially, registers SMSR, MAR and XR are reset 0. When SMSR is reset, BS

enables the first bank in each subband memory blocks HHJ, HLJ, and LHJ, while

UB and MS enable the upper bank and the first module in each bank, respectively.

This will allow the first 3 output coefficients HHO,O, HLO,O, and LHO,O to be

stored in the first location of

j,

Figure 5.3.7lncorporation of register XR

each module in blocks HHJ, HLJ, and LHJ, respectively, addressed by MAR. Then

register SMSR is incremented by one to enable the second module in each subband

memory blocks HHJ, HLJ, and LHJ. This will allow the second output coefficients

HHO, I, HLO, I, and LHO, I to be stored in the first location of the second module in

each subband memory blocks HHJ, HLJ, and LHJ, respectively. To store the third

output coefficients HH0,2, HL0,2, and LH0,2 in the first location of the third module

in each block, register SMSR is again incremented by one.

Since, the fourth output coefficients HH 1 ,0, HL I ,0, and LH I ,0 should be stored in

the second location of the first module in each subband memory blocks HH 1, HLJ,

and LHJ, respectively, register XR, which is 0, is loaded into SMSR while MAR is

incremented by one to address the second location in each module. This process is

repeated until the first 3 modules in each block are written. At that point, where run 2

begins, SMSR will be 2, indicating that the third module is the last module written in

each block. To enable the fourth module in each block, register SMSR is incremented

by one and the result is loaded into XR so that this module number can be

remembered, while MAR is reset 0 to address the first location in each module. This

151

will allow the first 3 output coefficients of run 2 to be stored in the first location of

each module enabled in the subband memory blocks HH I, HL 1, and LH 1. Then,

register SMSR is incremented by one to enable the fifth module in each block. When

the first location of each module is written, register SMSR is incremented again by

one to enable the sixth module in each block. When the first lc·cation of each module

is written, register MAR is incremented by 1 and register XR i; loaded into SMSR to

enable again the fourth module in each block and the process repeats. When all

modules in the first level are written, the subband memory blocks HH2, HL2, and

LH2, in the second level, are enabled and writing into these blc·cks proceeds as in the

first level.

A flowchart, which describes the control algorithm that can be used to control

subband memory write operations, is shown in Figure 5.3.8. In the flowchart, the

following 3 registers are used. Register RN3 holds number of .locations to be written

in a module. Register RM3 holds number of modules to be written in a subband

memory block, while RS holds the scan method number. Thus, if DWT architecture is

based on the third scan method, e.g., 3 is loaded into RS to indicate number of

modules that will be considered for write in each subband memory block at a time.

Flast is a FF, when it is set 1, indicates the last run.

The flowchart remains in state SO as long as the status input signal wsub is low.

When wsub is asserted high, the process of storing subbands of the first

decomposition level begins. As the flowchart moves from states SO to Sf it resets

registers SMSR, MAR, WDER, XR, and FF F/ast 0, sets FFs FWJ and Fbwe 1, loads i

into RS, while number of modules and number of locations are loaded into RM3 and

RN3, respectively. In state Sf, register RS is examined. As long as it is not 1, the loop

consisting of states Sf and S2 is executed, during which write operations take place in

the modules enabled in each subband memory blocks HH I, HU, and LH I. When RS

becomes l, register RN3 is examined. If RN3 is not equal l, the eontrol moves to state

S3. As the control moves from states S3 to Sf, register MAR is incremented and

register RN3 is decremented, while register XR and i arc loaded into SMSR and RS,

respectively. If RN3 is 1, it indicates the last location is reached and the flowchart

moves to state S4. As it moves from states Sf to S4, it loads SMSR into XR and

152

0

5M5R ~5M5R + 1
R5~R5-1

5M5R, MAR, WDER, XR, Flast ~ 0
FW1, Fbwe -1. RS- i
RN3 ~ N/2, RM3 ~ M/2

52

RN3 ~RN3 -1, MAR~ MAR+ 1
5M5R ~xR, R5 ~ i

54

RN3 ~ N/2, XR ~ XR + 1
MAR ~ 0, 5M5R ~ 5M5R + 1

0

Flast- 1
R5~ RM3

End of a decntnpo'>ition

Figure 5.3.8 Flowchart for subband memory write control algorithm

subtracts i from RM3 to reflect number of modules that remain to be written in the

subband memory blocks that are under consideration.

!53

In state S4, a signal would be issued to reset MAR 0, to increment SMSR and XR,

and to load RN3 with number of locations, while register RM3 is examined. If RM3 >

i, the flowchart moves to state Sf to consider the next i modules in each subband

memory block for write. But, if (RM3 ~ i), then the last run is reached and RM3

contains number of modules that are remain in each subband memory block which

will be considered for write in the last run. Number of modules that will be considered

in the last run will be i, i-1, i-2 ... or I depending on the image width M. For example,

if the architecture is based on the third scan method , then nlmber of modules that

will be consider in the last run will be either 3, 2, or I. In addition, if RM3 ~ i, the

status of the next input is examined. If Flast is 0, then the control moves to state Sl to

begin storing the output coefficients that will be generated in the last run and as it

moves to state Sl, it set Flast I and loads RM3 into RS. When Flast is I, the flowchart

returns to its initial state SO and remains in that state until ac:ivated for the second

level decomposition. The algorithm given in Figure 5.3.8 is general and is intended to

illustrate in a broad sense how subband memory is written. However, the algorithm

can be modified to fit any specific architecture requirements.

5.4 Control Design for 4-paral/e/ Architecture

In this section, to demonstrate that the controls for the architectures developed m

chapter 4 and 5 are simple to design, the control algorithms for the 4-parallel

architecture shown in Figure 4.2.7 including the LL-RAM and subband memory

architectures will be developed. Control unit is responsible for tssuing proper control

signals, in respond to a clock pulse, to the components of the architecture where data

processing take place.

Figure 5.4.1 (a) shows the interconnection between subband memory of Figure

5.3.1 and the 4-parallel pipelined architecture shown in Figure 4.2.7. The

interconnection between the two entities is accomplished through four multiplexers,

labeled mux. Furthennore, since CPI and CP3, and CP2 and CP4 load into their

output latches four new coefficients each time clock !-1a makes a positive and a

!54

l Hl r--
1

CP1 Mux

_/\ H HH r+o

It,. /,"

L .!:!h,_
~1

CP2 mux

A H HH 0

It,. /,"

L.l!.,_

CP3

1\ H.l!:!.

I

CP4

H

RAM

data in

data itt

1-

HLI
zn-1 X zm-1

HL2

2"- 2 X 2m-l
I

I

HLJ max
2n-jmax x2m-jmax

HHI

2n-1 X zm-1

HH2

2n-2 X 2m-2

I

I
I

HHjmax

2n-jmax X 2m-1max

LHjmax
2n-Jmax X 2m-Jmx

LL)max

(a)

1
During this
pulse penod
CP1 & CP3
outputs are
passed to
subband
memory and
RAM

CP2 & CP4
outputs are
passed
dur'tng this
pulse period

(b)

Figure 5.4.1 (a) Subband memory interconnections to 4-parallel (b) Control input

signal waveform of the multiplexer labeled mux

155

,.-

"' ~
"' c

zs--___.J~
Lr~(/j

r-;:::::=;,~ .-J Qr4 h a: ':';
§ ;t ~ - ":':. D Qr1 ~
~ ~ "'

I--

I--

~

~ ~ lr:-:1 ~~
::~ ~ ~ Ur2~ ,_

c c .. a Qr3 1 "'

-

RP1

RP2

RP3

'----

RP4

"'

~t=~l CP21
H

H-hiB ~HCP3
H

H-'"'>' CP41
-~-

l
I

-~
..,
~

:8 ·"' ~:S
~g
~a

Subband
memory

Write
subband
memory
control

unit

'

g tfclr;1 1'2

8 -~~ ..
If. iii ~ '"' M QO 1_1 To RP 1 ,2,3,& 4

,------. ~ 0
Write
RAM

,-.:~: control
IX~g ~ IF~

:}_ 8 ""' B~RP1,2,3,&4

j, ;::J , f-~ RP 1 ,2,3,& 4
initQrs -i[_

02
_J- f.

T l

Processors
Control Unit

A-unit R 8-un/t R C-unit I
Main Unit

unit

I.

RAM

l IL__ ______ ~
L_ ______________ __

Read RAM
control unit

L__ __J

Figure 5.4.2 DWT Control Unit

negative transition, respectively; therefore, the clock J,a is connected to the input

control signal of the four multiplexers. When J,a is high, the four multiplexers will

pass the four output coefficients generated by CPl and CP3 to :;ubband memory and

LL-RAM for storage. Otherwise, the four multiplexers will pass the output

156

coefficients of CP2 and CP4 to subband memory and LL-RAM for storage, as

illustrated in Figure 5.4.1 (b).

In Figure 5.4.2, which represent the overall DWT control unit, four control units

have been identified and labeled main control unit, processors control unit, read RAM

control unit, and write RAM/subband memory control unit. The main control unit

consists of3 units, A-unit, B-unit, and C-unit.

In the following, a description of each control unit function will be given along

with its algorithmic state machine (ASM). The ASM is a special flowchart, which

precisely specifies the control algorithm that can be used for deriving the hardware of

the control.

5.4.1 Main Control Unit

a) C-unit

This unit is basically consists of various registers, as shown in Figure 5.4.3. These

registers functions are to generate control signals, which will be used by all other

control units as input control signals. At the start of a decomposition process, the

height (N) and the width (M) of an image along with the desired number of

decomposition levels (J) must be loaded into registers RNO, RMO, and RD,

respectively. The loading of these registers should be handled by an entity other than

the DWT unit, for example, microprocessor. Then DWT unit is activated by asserting

the start signal of A-unit.

The signals labeled EN and EM in Figure 5.4.3 are examined by the control units

to determine whether Nand Mare even or odd. In section 4.2.3, two cases where

identified regarding storage of high coefficients. In the first case, if the two least

significant bits of N are either 00 or II, then the high coefficients should be stored in

the TLBs of the RPs that generate them. In the second case, if the two least

significant bits of N are either 0 I or I 0, then the high coefficients of RP I should be

stored in the TLB of RP3 and vice versa, while the high coefficients of RP2 should

be stored in the TLB of RP4 and vice versa. Thus, the signal labeled zs is formed to

157

" --' --' "1·-"0 - " -(/)·-.- - -

l~y ot N I~M

~ Lj RNO ~ MO
E

RD

riH N I M/2

"" -i 7t-'
L::::l RN1

~ ,$ N/2 rc_ RM~

I~
« ___L _j_ ;~ jt ~r:::: e ~ RN2 ~RN3 ~ ···~

=· = lr«~ ,.., ' \(

loss -C\j Y cue

"""
RN2

C-unit f= :'='
'<;Y

l Tr (transltton) zwc z1 z5

holds number of RM3
operations in a column

z2

I

zs EN J. r zl zm EM c

holds number of moclules to be
written in the RAM & in subband memory

RN3: holds number of Zwc: all locations in enabli~d
locations to be written in a module modules are written

RN1 : holds number of locations to Lr: last run in a
be read from each module in a run decomposition is reached

RM1 · holds number of runs (each Zm last module is written

run activates 3 modules) Zlc the last operation in tile last
column is reached

RM2 holds number of columns
EP1 End of decompositicn process

to be scheduled for CPs
Z1 End of a run

RD holds number of
decomposition levels desired EP2· last decomposition level

lossy ·is a FF, if zero, performs 513, othefV.Iise, 917

Figure 5.4.3 C-unit

158

detect occurrence of these two cases. If zs is 1, it signifies occurrence of the first case,

otherwise, the second case.

Figure 5.4.3 shows that contents of RNO should be transferred to both registers

RN I and RNC. However, if RNC is odd, which can be determined by examining

EN, it is first shifted to right (divided by 2) and then is incremented by one, otherwise,

it shifted to right only. These operations are controlled by A-unit. The result is then

loaded into two registers labeled RN2 and RN3. Register RN2 holds number of

operations in a column when DWT is applied column wise by CPs and each operation

requires 3 pixels or coefficients except the last operation, while register RN3 holds

number of locations to be written in a module.

On the other hand, contents of the register labeled RMO is examined by the B-unit

to determine whether it is even or odd. If signal EM is 1, then RMO is odd and it is

shifted to right and then is incremented by one, otherwise, it is shifted only to right.

The result is then transferred to the three registers labeled RMI, RM2, and RM3.

Registers RN1 and RMI are used by the read RAM control unit. Register RMI

holds number of runs required in a level decomposition, where each run activates 3

modules for read except the last run. When the signal labeled Lr (last run) is asserted

high it indicates that the run before the last has completed. On the other hand, register

RN 1 holds number of locations to be read from each module in a run. The signal

labeled z2, which is generated by an XNOR gate attached to RN I, is shown connected

to RM I 's signal labeled dec (decrement). When register RN1 is counted down to 2,

signal z2 is asserted high, which in the next clock cycle will decrement register RM 1

by one to reflect number of runs remaining. Signal zl is similar to z2, but it is asserted

high when RN 1 is counted down to I and it indicates a run has completed. Then the

next run can be initiated by reloading register RNJ from RNO. Signal z5 is asserted

high when RN 1 is counted down to 5. This signal will be made clear when TLB

control unit is introduced later.

The registers labeled RM3 and RN3 are used by both write control units of the

LL- RAM and subband memory to control write operations in the two memories.

Register RM3 function is to hold number of modules to be written in the RAM and in

each subband memory block enabled for write in a level decomposition. When RM3

159

is counted down to zero, signal zm is asserted high to indicate all modules for this

decomposition have been written and the next decomposition level can be initiated.

On the other hand, register RN3 function is to hold number of locations to be written

in a module. When all locations in a module are written, the signal labeled zwc is

asserted high and RN3 can be then reloaded from RNC for the next module to be

written. This process is repeated until all modules in a decomposition level are

written. The occurrence of this event will be signified by assertion of signal zm.

The registers labeled RM2 and RN2 are used by the CPs control unit, which is

part of the processors control unit. Register RM2 holds number of columns, inLand

H decompositions, to be scheduled for CPs. When all columns in L and H

decompositions are scheduled, the signal labeled zlc is asserted high to indicate that

this is the last cycle where the coefficients of the last operation in the last column will

be transferred to CPs input latches. On the other hand, register RN2 holds number of

operations in a column, where each operation requires 3 coefficients except the last

one. Each time an operation is scheduled, RN2 is decremented by one. When all

operations in a column of Land a column of H are scheduled, signal Tr (transition) is

asserted high. That is when RN2 is counted down to 2. Assertion of signal Tr

indicates that in the clock cycle after next, the last operation in a column, before a

transition is made to the next column, will be scheduled.

The final register in C-unit is the register labeled RD. Register RD holds number

of decomposition levels (J) desired for an (NxM)-image decomposition. Each time a

decomposition level is completed, RD is decremented by one. When all J levels of

decomposition are completed, that is, when RD is counted down to zero, the signal

labeled EP I is asserted high signifYing end of the process. The second signal labeled

EP2 is asserted high when RD is counted down to l to indicate this is the last

decomposition.

h) A-unit

The ASM flowchart and the block diagram for A-unit are shown in Figures 5.4.4 (a)

and (b), respectively. The ASM chart describes the control function of the A-unit,

160

cl

(b)

YO

E!JL: End of a decomposition level

stBU: activate B~unit

Fs, Fcomp, Fllre, FR2, FR1 ~ 0
RNC~ RNO

Y2

RD ~ RD-1)+---'----< 0

sh

EDL : end of a decomposition level

EP1 :end ofthe decomposition process

(a)

Figure 5.4.4 (a) ASM flowchart for A-unit (b) Block diagram

161

while the block diagram displays the input and output control signals. As soon as

registers RNO, RMO, and RD are loaded with N, M, and J, respectively, A-unit is

activated by asserting the start signal. As long as the start signal is low the A-unit

remains in the initial state SO. The activation of A-unit starts the decomposition

process.

When start signal is asserted high, the A-unit first initializes several registers and

flip-flops (FFs) by asserting its output signal labeled YO and then it moves to state S I

at the clock event. In state S I, it examines signal EN to determine whether register

RNC is even or odd. If EN is I, then RNC is odd and the ASM asserts the conditional

output signal labeled shnc. At the clock event, RNC is shifted to the right. In state S2,

RNC is incremented by one. If EN is 0, register RNC is shifted to the right only.

Register RNC now holds the number that will be loaded into register RN2 and RN3.

In state S3, the B-unit is activated by asserting signal stBU high. In state S4, signal

EDL (end of a decomposition level) is examined. If EDL is 0, the ASM remains in

state S4 until EDL is I. When EDL becomes I, register RD is decremented by one and

the ASM moves to state S5. In state S5, the status input signal labeled EP 1 is

examined. If EP 1 is I, then this indicates the decomposition process has completed

and the control returns to its initial state SO at the clock event. Otherwise, the control

executes the loop consisting of states S6, S7, S8, and S I. Inside the loop a new value

for RNO is computed. This value gives the height of the LL-image to be decomposed

next.

c) B-unit

The B-unit is represented by the ASM flowchart and the block diagram shown m

Figures 5.4.5 (a) and (b), respectively. When B-unit is activated, by asserting its input

signal labeled stBU high, it immediately initializes all FFs labeled Qr, in the

processors control unit, to zero by asserting the output signal labeled initQrs and then

moves to state S I. In state S I, registers RN2 and RN I are loaded from RNC and RNO,

respectively, while register RMO is shifted to the right one position.

In state S2, a decision is made based on signal EM, the least significant bit of

RMO. IF EM is I, RMO is incremented by one; otherwise, RMO is left unchanged. In

state S3, the new value in register RMO is loaded into registers RM2, RM I, and RM3.

162

0

fs

(a)

initQrs

YO
Y1

8-unit Y2

Y3

(b)

enable LL-RAM

activate CPs control unit

activate TLB control unit

activate RAM control unit

Figure 5.4.5 (a) ASM chart forB-unit (b) Block diagram

163

In state S4, the FF FE is set I to enable the LL-RAM for read and write. The

RAM is enabled when signal E of dcodms or dcodbs are high. In addition, the TLB

control unit and the CPs control unit are activated by asserting the input signals stTLB

and stCPC, respectively. Furthermore, while the ASM is in state S4, signal

fs is examined. If fs is 0, the scanner control unit is activated to scan the original

image pixels; otherwise, read RAM control unit is activated to scan the LL-RAM.

In a decomposition process, the original image pixels are scanned first through an

image scanner. Thus, in the first level decomposition the scanner control unit is

activated to scan the original image pixels. Then in all subsequence decompositions,

read LL-RAM control unit is activated. This process is controlled by signal fs of FF

Fs. First, Fs is cleared to zero by A-unit and then examined by B-unit in state S4. The

scanner control unit sets Fs I at the end of the scan to allow in all subsequence

decompositions the LL-RAM to be scanned. Signalfs can also be used to control the

operations of the multiplexers that would be needed in Figure 4.2. 7 to select between

passing the scanner or the LL-RAM data. If signal.fs is 0, the multiplexers should pass

to RPs the pixels that will be scanned by the scanner, otherwise, should pass data that

will be read from the LL-RAM.

5.4.2 Processors Control Unit

The processors control unit consists of two control units, the RPs control unit and the

CPs control unit, which are in charge of issuing control signals to RPs and CPs,

respectively. The RPs control unit generates the following signals labeled zs. sreO,

sre3, sre I, sre2, and incAR for the RPs. These signals are generated by the RPs

control unit by setting or resetting each of the FFs labeled QrO, Qrl, Qr2, and Qra

shown in Figure 5.4.2. These signals are then transferred to the first stages of the RPs

and loaded into the latches labeled CST (control signal latches). These latches then

carry these signals from stage-to-stage. Each time a stage is reached; signals that are

used in that stage can be dropped from the CST and the rest are carried on until the

last stage is reached. These signals are used in both 5/3 and 9/7 processors. For

example, signal incAR which is used in stage 2 of the 5/3 is also used in stages 2 and 5

of the 9/7. This is also true for other control signals. Thus, the control developed here

can be used in both 5/3 and 9/7 architectures. Similarly, the CPs control unit generates

164

four extension signals labeled sceO, sce3, sce2, and see I by setting or resetting each of

the FFs labeled Qc5, Qc6, and Qc7 shown in Figure 5.4.2.

a) The RPs Control Unit

The RPs control unit is further divided into two units, the TLB control unit and the

extension control unit.

i) The TLB Control Unit

The TLB control unit is in charge of the reads and writes operations that take place in

the 4 RPs' TLBs. The control unit generates the control signal incar (increment

address register) for both TLBARa and TLBARb registers shown in Figure 4.2.9. Both

TLBARs are (n-2)-bit counters.

The ASM chart, which represents the control algorithm of the TLB control unit, is

shown in Figure 5.4.6. The control unit is activated when its status input signal stTLB

is asserted high by B-unit. Then at the clock event, the ASM moves to state Sl. In

state S 1, FF FEXR is set 0 and signals ETLB, sa 12, and sa34 are set 1, while a

decision is made based on the input signal labeled zs. If zs is 1, the control takes the

path labeled case 1 and in every clock cycle each location of a TLB is read in the first

half cycle and written in the second half using only TLBARa as address register. But if

zs is 0, the control takes the path labeled case2 and read and write operations take

place according to Table B.ll.

As explained in chapter 4, signal zs will be I, when the two least significant bits of

N are either 00 or 11, which implies that the high coefficients of stage 1 will be stored

in the TLB of the RP that will generate them, starting from the TLB of RPI. This

would require FF Qra, which drives signal incar of each TLBARa in the 4 RPs shown

Figure 4.2.9, to be set 1 a clock cycle before external memory scanning begins, as

shown in Figure 5.4.6 (a). ln state S2, where scanning of the external memory begins,

the extension control unit is activated by asserting signal stEX high. When the ASM

moves to state S3, the first three pixels and content of Qra are loaded into the three

RPl latches and CSTa, respectively.

ln state S3, the control examines signal z5 and will continue executing the loop

165

stTLB :start TLB control unit

stEX stan (activate)
Extension Control Unit

z1 endofarun
Lr. last run

0 case2

~----- _ ____J

11 lstr97
L~--

"' . "
ara~1 S19

--'

(a)

Figure 5.4.6 (a) ASM flowchart for TLB control unit (b) The block diagram

consisting only of S3 as long as z5 is 0. Each time this loop is executed three pixels

and Qra are loaded into one of the RP latches until z5 is asserted high. Assertion ofz5

allows Qra to insert zero in each of the last 4 operations that will be scheduled for the

4 RPs. The insertion of zeros occurs while the control is in state S4. These zero

values of signal incar are necessary to reset register TLBAR of each TLB zero so

that it addresses the first location at the start of the next run. The control remains in

state S4 until zl becomes I. When zl is I, the control examines signal EN If EN is

I, then N is odd and the external memory will not be scanned in the next cycle.

166

Therefore, the control sets signal ETLB 0 to disable TLB so that read and write can

not take place during the next cycle and then moves to state S5. But, if EN is 0, the

control sets FF Qra 1, which asserts signal incar high, and then moves to state S5.

In state S5, the control sets Qra l and examines FF FEXR and signal Lr (last run).

If both are 0, then the next run is initiated by executing the loop consisting of states

S3, S4, and S5. This loop usually will be executed for several times and each time it

executed, a new run will be initiated until signal Lr becomes 1. Signal Lr will be 1

only when last run is initiated. When signal Lr becomes l, signal lossy is examined.

If lossy is 0, the operation is 5/3 last run and the control returns to its initial state SO

and remains in that state until activated. Otherwise, the operation is 9/7, which

requires extra run, and the control set both FFs QO and FEXR I and moves to state S3

to initiate the last run. When the control reaches state S5 again, it examines FEXR. At

this time FEXR should be I and the control sets both FFs Q I and QO 0, as required by

Table B.5 (a), to initiate the extra run. Then the control moves to its initial state SO.

On the other hand, when the two least significant bits of N are either 0 I or I 0,

signal zs becomes 0 and the control takes the path labeled case2 to state S6. When this

path is taken, high coefficients generated by stage I of each RP will be stored

according to Eq(4.3) starting from TLB of RP3. Therefore, setting of Qra is delayed

until state S7.

In state S6, where scanning of the external memory begins, the extension control

unit is activated by asserting signal stEX high. When the control moves to state S7,

the first 3 pixels scanned from the external memory are loaded into RP1 latches. In

state S7, Qra is set I and signal EN is examined to determine whether N is even or

odd. If N is I, then N is odd and the control moves to state S8, where it examines

signal z2. As long as z2 is 0, the control executes the loop consisting only of S8.

Signal z2 will be I when register RNI is counted down to 2 by read RAM control unit

and it indicates that in the next cycle the last operation of the current run will be

scheduled for computation. When z2 becomes I, the control examines signal sa34.

According to Table B.ll, signal sa34 will alternate between I and 0 values. Therefore

it has been used here to indicate whether the current run sequence is even or odd.

Signal sa34 will be I when a run sequence is odd and it will be 0 when the sequence

is even. Thus, at the end of the first run, sa34 will be 1 and the conditional output

167

signal Qrab1 will be asserted high and at the end of the second run, it will be 0 to

assert signal QrabO high and so on. In both cases, QrabO and Qrab 1 set FFs Qra,

Qrb 12, and Qrb34 according to Table B.ll so that TLBARa and TLBARb of each RP

address the first location in the TLB each time a transition to a new run is made. FF

Qrbl2 drives signal incar of both TLBAR1b and TLBAR2b ofRPI and RP2, whereas,

FF Qrb34 drives signal incar of both TLBAR3b and TLBAR4b in RP3 and RP4 shown

in Figure 4.2.9. FF Qra drives signal incar of all TLBARa of the 4 RPs.

In states S I 0 and S II, signals sal2 and sa34 are also set according to Table B.ll.

State S 14 is parallel to state S5 when the control takes the path labeled case I. Thus,

every thing said there is also true here.

On the other hand, if EN is 0, then N is even and the control moves to state S9

where it examines signal z3. As long as z3 is 0, the control executes the loop

consisting only of S9, until z3 is I. Signal z3 will be I when register RN I is counted

down to 3 and it indicates that in the next two clock cycles, the last two operations of

the current run will be scheduled and a new run then can be initiated. From this point

on every thing that has been said when the control takes the path EN= I is also true

for EN=O.

ii) The Extension Control Unit

The extension control unit controls the operation of the two extension

multiplexers found in stage 3 of the four 5/3 RPs and stages 3 and 7 of the four

9/7 RPs, through the two signals labeled sre 1 and sre2. The extension control unit

generates these two signals by setting or resetting each of the two FFs labeled Qr I and

Qr2 in Figure 5.4.2.

The ASM chart for the extension control unit is shown in Figure 5.4.7 (a) and the

control block diagram is shown in Figure 5.4.7 (b). The TLB control unit

activates, by asserting its output signal stEX (start extension), the extension control

unit in the clock cycle where external memory scan begins. At the clock event, the

ASM moves from states SO to Sl. In state Sl, the ASM examines signal z1 and

remains in that state as long as z 1 is 0. During this period where the first run takes

place, Qr2 and Qrl are left unchanged (retain zero values). The reason for this is that

the first run requires the two multiplexers to pass in each clock cycle the current

168

" sre2 O:t::
·~ " ~:;, .,_
~~

sre1 ~8
rOO

(b)

0

5/3 first run and 9/7
second run end and

intermediate Runs begin

0

sre1

Or1. 01 ~ 1

(a)

External memory
scanning begins

02~0

0

Figure 5.4.7 (a) ASM flowchart for Extension Control Unit (b) The block diagram.

169

high coefficient required in the calculation of the current low coefficient and inserting

zeros by Qr2 and Qrl during this period will guarantee the proper operation of the

multiplexers. When z I becomes I, the control asserts its conditional output signal sre2

to set Qr2 and Q2 I, as required by Table B.5 (b) for run2 of the 9/7, and examines

signal lossy. If lossy is 0, the control moves to state S3 to initiate run2 of the 5/3,

otherwise, it moves to state S2 to initiate run2 of the 9/7. In state S2, the control

examines signal zi again and remains in that state until zi becomes I, which indicates

end of run2. As the control moves from states S2 to S3 it set FF Q2 0, as required by

Table B.5 (b) for run3 and all subsequent runs of the 9/7.

In state S3, the first run of the 5/3 or the second run of the 9/7 end and the

intermediate runs begin. Intermediate refers to the runs that are between the first and

last run. During intermediate runs the two multiplexers are required to pass both the

current high coefficient and the previous high coefficient read from TLB. Thus, for

the multiplexers to be able to accomplish this task, Qr2 is set I while Qrl is left

unchanged (zero) during the whole intermediate period. In addition, in state S3, a

decision is made based on signal EM, the least significant bit of register RMO, to

determine whether the width M of the image is even or odd. If EM is 0, then M is

even and the control returns to its initial state SO, since, as in the intermediate runs,

even M requires Qr2 and Qrl to be set I and 0, respectively, in the last run.

On the other hand, if EM is I, then M is odd and the last run would require both

Qr2 and Qr I to be I. Therefore, in state S4, the ASM waits in a loop controlled by Lr

until the last run is reached. The last run is reached when Lr equals I. Then, the ASM

sets Qrl and Ql I and returns to the initial state SO.

Finally, note that the output of the XNOR gate attached to register RNO

will generate the control signal zs, whereas signals sreO and sre3 will be obtained by

directly connecting signal set ofQrO to signal Lr. as indicated in Figure 5.4.2.

h) The CPs Control Unit

The CPs control unit is in charge of issuing the four extension signals labeled sceO,

sce3, sce2, and see I that control the operations of the extension multiplexers in the

four pipe lined CPs. The CPs control unit generates these signals by setting each of the

FFs labeled Qc5, Qc6, and Qc7 in Figure 5.4.2 either 1 or 0. According to Tables 3.3

170

and 3.4, since CPs compute DWT column-by-column, Qc5 which drives both signals

sceO and sce3 should be set to I every time the last operation in a column is scheduled

for execution; otherwise, it remains at zero. On other hand, the two signals see] and

sce2, which control the two multiplexers in stage 3 of the 5/3 and stages 3 and 7 of the

9/7 processors, according to Tables 3.3 and 3.4, should be set as follows. Every time

the first operation in a column is scheduled, both Qc6 and Qc7 should be set zero. All

operations between the first and last operations in a column require Qc6 and Qc7 to

be set I and 0, respectively. The last operation in each column requires Qc6 and Qc7

to be set I if the column length is odd, otherwise, Qc6 and Qc7 are set I and 0,

respectively.

The cycle number (CJ) at which the first input data are loaded into both CPI and

CP3 latches for both 5/3 and 9/7 is given by Eq (4.4). For 5/3 CJ is 19, since its RPs

are pipelined into 4 stages, whereas CJ is 35 for 9/7, since its RPs are pipelined into 8

stages. In order to detect occurrence of this event, register RC is added to the CPs

control unit as shown in Figure 5.4.8 (b). Register RC is a down counter with control

signals set and dec (decrement). Initially, RC is set to 18 or 34 by asserting signal set

high. Register RC then is decremented by one every clock cycle starting from the

cycle where scanning of external memory begins. When RC becomes 0, it sets signal

zc high to indicate that the pulse ending this cycle will load CPI and CP3 latches with

data for the first time.

The ASM chart for the CPs control unit and its block diagram are shown in Figure

5.4.8, respectively. The CPs control unit is activated when its input signal stCPC is

asserted high by the TLB control unit. As the ASM moves from states SO to S I,

register RC is set to its initial value. In state S I, FFs QcS, Qc6, and Qc7 are set 0. In

state S2, where scanning of external memory begins, register RC is decremented by

one.

In state S3, the ASM executes the loop consisting only of state S3 and controlled

by signal zc. Each time this loop is executed, RC is decremented by one. When zc is

I, the control exits the loop and moves to state S4. As the control moves from states

S3 to state S4, it activates the write subband memory control unit by asserting the

output control signal labeled wsub and checks the input signal EP2. If EP2 is 0, the

171

0
setre

RC~C1

deere

RC ~ RC- 1)+---"0~C

YO
RN2~ RN2-1

CP1 & CP3 inpu1
latches are loaded
for the first time

(a)

0

Tr indicates in the clock
cycle after next, the last

operation in a column will
be scheduled before a

transition is made

Zlc : last operation in the last
column is reached

__. stCPC s:tEE de RC XNOR

+- Y6

setrc
resetQes

deere

" wsub :§
g Y1
0

8 Y2

~
" Y4

Y5

(b)

Figure 5.4.8 (a) ASM flowchart for CPs Control Unit (b) The block diagram.

172

ASM asserts its conditional output signal labeled Yl to activate the write RAM

control unit and decrement register RN2 by one. The control will execute this path

and activate the write LL-RAM control unit in all decomposition levels except in the

last level decomposition. The reason is that, the LL-subband of the last

level decomposition should be stored in the subband memory block labeled LL1max.

not in the LL-RAM. When EP2 becomes I, it indicates that the last level

decomposition is in process.

In addition, note that when the ASM makes a transition from states S3 to S4, CPI

and CP3 latches will be loaded for the first time with high and low coefficients of the

first operations, respectively. In state S4, Qc6 is set I, since all operations between the

first and last operations in a column, as explained before, require Qc6 and Qc7 to be

set I and 0, respectively.

In state S5, a decision is made based on signal Tr, which is the output of the

XNOR gate attached to register RN2. As long as, Tr is 0, the loop consisting of states

S5 and S6 is executed and register RN2, which hold number of operations in a

column, is decremented by one to reflect number of operations left. Register RN2 is

decremented each time a high and a low operation are scheduled from H and L

decompositions, respectively. Note that, the actual scheduling of operations is done

internally by clock f4a, as indicated in the architecture shown in Figure 4.2.7, and

during execution of the above loop. However, all operations scheduled for CPs during

this loop execution are that between the first and last operation in a column.

Signal Tr becomes I when RN2 is decremented to 2. When Tr is I, the decision

box with input signal EN is examined to determine whether N is even or odd. If EN is

I, then N is odd and Qc7 is set I in order to satisfy the requirement that both Qc7 and

Qc6 must be I in the last operation. Otherwise, Qc7 is left unchanged. Then the

control moves to state S7.

In state S7, the ASM asserts the output signal labeled Y5. This output signal

decrements register RM2, which holds number of column to be scheduled for CPs, by

one and sets Qc5 I. Setting Qc5 I for the last operation in a column, which will be

scheduled in the next state (SS), will allow the extension multiplexers controlled by

signals sceO and sce3 to pass data of the bus connected to the input of the extension

173

multiplexers labeled 1 instead of 0 to Rt2 as a third input, as rec,uired when N is even.

In state S8, where the last operation in a column is scheduled for execution, a

decision is made based on signal zlc, which is the output of the XNOR gate attached

to register RM2. If zlc is I, it indicates that all columns in L and H decompositions

have been scheduled and the control returns to its initial state SO. On the other hand, if

zlc is 0, the control moves to state S9 to initiate processing of the next column. As the

control moves from states S8 to S9, it loads again register Rl\2 and clears FFs Qc5,

Qc6 and Qc7 to zero by asserting its conditional output signal labeled Y6. When the

control moves from S I 0 to S4 it loads coefficients of the first operation of the next

column in each Hand L decomposition into CPI and CP3 or CP2 and CP4 latches.

5.4.3 Read LL-RAM Control Unit

Read LL-RAM control unit is responsible for reading LL-RAM memory according to

the scan method shown in Figure 3.5.1. Two control algorithm; (or ASM charts) will

be developed, one for the RAM architecture designed using modules shown in Figure

5.2.2 and the other for the RAM architecture designed using banks shown in Figure

5.2.5. Remember, the LL-RAM architecture is designed to allow both read and write

to take place in the same clock cycle. Read takes place in the fi:·st half cycle and write

in the second half cycle.

The ASM chart for read RAM control unit and its block diagram that controls the

read operations of the RAM architecture shown in Figure 5.2.2 are given in Figures

5.4.9 The ASM chart of the control unit is activated when its input signal rram is

asserted high by B-un it. As a result, the control moves from states SO to S I. In state

S I, both registers RMAR (read module address register) and RMSR (read model select

register) are set zero. Register RMSR enables the first 3 modules for read, while

register RMAR points to the first location in each module. Then, the control moves

unconditionally to state S2, where the process of scanning the RAM begins. When the

control moves from states S2 to S3 three pixels are scanned, one from each module,

and then are loaded into the RPI 's latches. In addition, register RMAR is incremented

by one so that it addresses the second location in each module, while register RN I is

decremented by one to reflect that one read operation has been performed. Register

RN 1 hold number of locations to be read from each module in a run.

174

1

0

S1 RMAR, RMSR <--- 0

Y1
82 RN1 <--- RN1-1, RMAR <--- RMAR+1 RAM scanning

begins

S3

0

1

Last
run's
reads

z1
EN

Lr

1

(a)

-e -c:
Q u_
::!:§
~
"tl .. .,
0::

(b)

YO
Y1
Y2
Y3
Y4
Y5

Y6

0

Odd:
no read

Figure 5.4.9 (a) ASM chart for Read RAM Control Unit of the RAM
architecture using modules (b) The block diagram.

175

In state S3, the control executes the loop consisting only of state S3 and controlled

by signal zl. This loop allows the control to continue reading the enabled RAM

modules. Each time the loop is executed, register RMAR is incremented so that it

points to the next location, while register RN I is decremented by one. When RN I is

decremented to I, it asserts signal zl high to indicate the three modules enabled in the

current run all have been read and the next 3 modules for next run can be initiated. As

the ASM moves from states S3 to S4, to get ready for the next run, register RNI 1s

again loaded with the same value, register RMAR is set 0, and register RMSR 1s

incremented by one to select the next three modules that would be read in the next

run.

In state S4, where a run ends and another begins, signal EN is examined, the least

significant bit of RNO. If EN is I, then N is odd and no read will take place when the

control moves to SS. This will satisfy the condition requ red by the 4-parallel

architecture, when a transition is made from a run to the next and if N is odd, no data

is read from external memory. Otherwise, N is even and the first read operation in the

new run is immediately performed. In both cases, the next state is SS.

In state SS, signal Lr (last run) is examined to determine whether the last run is

reached. As long as, Lr is 0, the last run is not reached and the ASM executes the loop

consisting of states S3, S4, and SS until Lr becomes I. When Lr becomes I, it

indicates that the run before the last one is now completed and the last run is in

progress. Then, the ASM moves to state S6 to continue with the last run. Signal Lr,

which is the output of the XNOR gate attached to register RMl, becomes 1 when

RMl is decremented to I. Note that register RMl is decrerrented internally by the

signal labeled z2 in C-unit.

In state S6, the ASM chart executes the loop consisting only of state S6 and

controlled by signal zl. As long as, signal zl is 0, this loop will be executed and read

operations required in the last run will be performed. When zl becomes I, it indicates

that all required reads in the last run have been performed. Then at the clock event,

the control returns to its initial state SO.

The ASM chart for the second read RAM control unit and its block diagram,

which controls the read operations of the RAM architecture (Figure 5.2.5) designed

176

0

S1 RMAR, RMSR,RBSR ~ 0

S2 RN1 ~ RN1-1, RMAR ~ RMAR+1 RAM scanning begins

Y4

Y5
-1

RMAR~RMAR+

(a)

g
" 0
(J

:IE '2 q::::>
a:: .., Y3
ill
a:: Y4

Y5

(b)

Last
run's
reads

Zbr: all modules in a bank are read

Odd:

zl :end of a run (ali modules enabled in the current
run are read)

Lr : last run in a decomposition is reached

Figure 5.4.10 (a) ASM chart for Read RAM Control Unit of the RAM
architecture using banks (b) The block diagram

177

using banks, are given in Figure 5.4.10. The ASM chart shown in Figure 5.4.10 (a) is

basically identical in every aspect to the one shown in Figure 5.4.9 (a). Except, it has

one extra decision box between states S3 and S4 with the control input signal labeled

zbr (see Figure 5.2.5). When all modules in a bank are read, signal zbr becomes I.

When zbr becomes I, register RNI is loaded again with th~ same value, register

RMAR is set 0, and register RBSR (read bank select register) and RMSR are

incremented to select the first three modules in the new bank. Otherwise, the control

will continue reading the same bank. In both cases, the next state is S4.

5.4.4 Write RAM/Subband Memory Control Unit

Write RAM/subband memory control unit consist of two control units, write RAM

control unit and write subband memory control unit. Write RAM and subband

memory control units are responsible for performing write operations in the LL-RAM

and subband memory, respectively. Both control units are activated at the same time,

when signals wsub and wram are asserted high by the CPs control unit and are

terminated at the same time. However, in the last level decomposition, only write

subband memory control unit will be activated, since the LL-subband of the last

decomposition is required to be stored in the subband memo~y block labeled LL;mux

not in the LL-RAM.

On the other hand, number of clock cycles that would elapse between the cycle,

where the first inputs are loaded into CP I and CP3 latches and the cycle where the

first output coefficients generated CPI and CP3 are loaded into the output latches, can

be obtained from Eqs (4.4) and (4.5) as follows.

C2- Cl = 4k, (5.3)

In order to detect occurrence of this event, register RFO is added to write sub band

memory control unit shown in Figure 5.4.11 (b). Register RFO ts a down counter with

control signals set and dec (decrement). Initially, RFO is set equal to 4k, by asserting

signal set high. This register is then decremented by one every clock cycle. When

RFO is decremented to 1, it will assert signal zfo high to indicate that the first output

coefficients will be available in CPI and CP3 output latches at the end of the cycle.

According to the dataflow table of the 4-parallel architecture, once the first four

output coefficients are produced, then in every other clock cycle four new output

178

coefficients will be produced until the process of decomposing a level into subbands

is completed.

a) Write Subband Memory Control Unit

The ASM chart that describes write sub band memory control unit is shown in Figure

5.4.11 (a) and its block diagram is shown in Figure 5.4.11 (b). The ASM chart is

derived such that the control unit can write into subband memory according to the

strategy explained in section 5.3.2, which can be summarized as follows. The strategy

begins by storing the first three subbands of the first level decomposition in the

subband memory blocks labeled HLI, HHI, and LHI. As soon as, the three subbands

are written, the compression unit is informed by setting the FF labeled Fcomp high.

Then the compression unit can read each subband block and compress it

independently, while the DWT unit continues to further decompose the LL-subband

of the first level decomposition. First, the compression unit will reset Fcomp zero

and then will go on with compression process. When all levels after the first are

decomposed and their subbands are stored in their respective subband memory blocks,

the compression unit is again informed by asserting FF Fcomp high.

Write subband memory control unit, represented by the ASM chart shown in

Figure 5.4.11 (a), is activated when the input signal wsub of the ASM is asserted high

by the CPs control unit. Then the ASM moves from its initial state SO to state S 1. As

the control moves from state SO to S I, register RN3 is loaded with number of

locations to be written in a module and register RFO is set equal 4k,, while the input

latches of CPI and CP3 are loaded internally with data of the first operation.

In state S I, the ASM execute the loop controlled by signal zjo, which consists of

state S I and the conditional output labeled YI. As long as zfo is 0, this loop is

executed and register RFO is decremented by one, while the control remains in the

same state, S 1. When register RFO is decremented to I, it asserts its output signal zfo

high, which indicates that the first output coefficients generated by CPI and CP3 will

be loaded into the output latches by the pulse ending the cycle (when the control

moves from states S I to S2). In addition, when signal zfi; is I, two status input signals

EP2 andji· are examined. If both signals are 0, which will be true only if this is the

first level decomposition, the ASM will follow the path leading to state S2. But, if

179

0

Y1

RFO ~ RFO -1

unit

(b)

EDL: end of a decompos!tJOn level

=we: all locations in enabled modules
are written

EP2: lwt decomposllwn level

4kc: number of clock cycles that must
ela~'se before the first output are

loaded mto CP I and CP3
output latches

Figure 5.4.11 (a) ASM chart for write subband memory control unit
(b) The block diagram

180

EP2 is I, then it implies that the final decomposition is in progress and the conditional

output labeled Y2 is executed as the control moves from states S I to S5. Execution of

Y2 sets FF Fllwe I, which enables the subband memory block labeled LL1mux to store

the last subband LL-image. However, in all decomposition levels that are between the

first and the last decomposition, signal EP2 andfs will be 0 and I, respectively, and

the path leading to state S5 through the conditional output labeled Y3 will be

executed.

In state S2, the ASM executes the loop consisting of states S2 and S3. Each time

this loop is executed three coefficients from CPs output latches will be simultaneously

transferred to subband memory, where each coefficient will be stored in the first

module of each sub band blocks labeled HLI, HH, and LHI, starting from the first

location. In addition, register RN3, which holds number of locations to be written in a

module, is decremented by one and register MARl is incremented by one so that it

points to the next location in the three enabled modules that will be written next.

When register RN3 is decremented to I, it asserts signal zwc high to indicate that

all locations in the three enabled modules are written and the next three modules can

be enabled for write. Then the ASM moves from states S2 to S4. As the ASM moves

from states S2 to S4, register RM3, which holds number of modules to be written in

each subband memory block, is decremented by one. In state S4, register RN3 is

loaded again with the same value and register MARl is reset 0, while register SMSR

is incremented by one to select the next 3 modules, one from each subband memory

blocks labeled HLI, HHI, and LHI that will be written next.

In state S4, a decision is made based on signal zm. If zm is 0, the loop consisting

of states S2, S3, and S4 is executed. This loop will execute several times before zm

becomes I. Signal zm becomes I, when register RM3 is decremented to 0, which

confirms that all modules in the first level are written. Then the control moves from

states S4 to S8 during which register WDER is incremented by one to enable the next

3 subband memory blocks labeled HL2, HH2, and Lll2 for writing the second level

decomposition. In addition, Fwl is reset 0 and Fw2 is set I to prevent further writing

in the first level of the subband memory and to enable the second level for write,

respectively. Furthermore, FF Fcomp is set I to inform the compression unit that the

181

first level decomposition is completed and its subbands are now available m the

subband memory blocks HLI, HHl, and LHl for compression.

In state S8, the output signal labeled EDL (end of a decomposition level) is

asserted high to inform the A-unit that the first level decomposition has completed and

the next level decomposition can be initiated. Then at the clock event, the control

returns to its initial state SO and remains in that state until it is activated for

the next level decomposition.

In all decomposition levels except the first, the second path leading to state S5 is

executed. The second path executes a loop identical to the one in the first path. So

every thing that has been said for the loop in the first path is a .so true for the loop in

the second path.

At the end of the second loop, when signal zm is 1, the status input signal EP2 is

examined again, this time to determine if the last decomposition is completed. Signal

EP2 becomes I only when register RD is decremented to 1. Thus, the path labeled 0

leading to state S8 through the conditional output signal labeled Y9 is always executed

until the last decomposition is completed. When the last decomposition completes,

signal EP2 will be still 1. Then, at the clock event as the ASM moves to state S8, FFs

Fllwe, Fbwe, and Fw2 are reset 0 to disable sub band memory so that no further writes

take place until it is read by the compression unit and the compression unit is

informed by setting Fcomp 1.

In state S8, the output signal EDL is asserted high and at the clock event, the

control returns to its initial state SO and remains in that state until activated

for decomposition of another image.

b) Write LL-RAM Control Unit

In following, two ASM charts for write LL-RAM control unit v.ill be derived, one for

the RAM architecture designed usmg modules shown in Figure 5.2.2 and the

other for the RAM architecture designed using banks shown in Figure 5.2.5.

The first ASM chart that describes write RAM control unit for the RAM architecture

shown in Figure 5.2.2 is given in Figure 5.4.12 (a) and its block diagram is shown in

182

Figure 5.4.12 (b). This control unit is activated when its input signal wram is asserted

high by the CPs control unit. As the control moves from states SO to S 1 the FF labeled

FM is set 0. FM is a FF with two signals clr (clear) and T(toggle). This FF is initially

cleared to 0 and each time signal T is high it toggles. Since, the decoder labeled

dcodms enables at a time 3 modules and writing is required to take place module-by­

module, FM is used for determining the time at which register WMSR should be

incremented such that the next 3 modules are enabled by the decoder at appropriate

time, while writing into only one module at a time is still possible. Looking at the

architecture in Figure 5.2.2 it can be determined that as soon as module number

(2m) is written, where m~ 1, 2, 3, register WMSR can be incremented so that the

decoder can safely select the next 3 modules. In other words, register WMSR will be

incremented first after module number 2 is written then after module number 4 is

written and so on. Thus, FM is used to serve this purpose.

In state S 1, the ASM executes a loop exactly identical to the one in state S 1 of the

write subband memory control unit. This might suggest the possibility of eliminating

this loop and the control can be activated from write subband memory control unit

instead. Any way, as the control moves from states S 1 and S2 register WMSR,

WMAR, and WER are reset 0. Registers WMSR and WER together determine which

module will be enabled for write, whereas register WMAR is used to address each

location in the enabled module.

In state S2, two loops are executed, the inner loop which is controlled by signal zwc

and the outer loop which is controlled by signal zm. These two loops are similar to the

two loops that are in states S2 and S4 of the ASM chart for write sub band memory

control unit. The inner loop writes into the enabled module through register WMAR,

which serves as address pointer starting from the first location. On the other hand, the

outer loop selects the next module to be written through registers WER and WMSR.

When all modules are written, signal zm becomes 1. Then, at the clock event the

control moves to state S5. As the control moves to state S5, FF FE, which its output

should be connected to the enable signal of the decoder labeled dcodms in Figure

5.2.2 (a), is set 0 to disable the LL-RAM so that it safeguard its contents until next

level decomposition is initiated.

183

0

0

-
h

WMSR, WMAR, WER ~ 0

Read RAM

The first output coefficients are loaded
into CP1 & CP3 output latches

Zwc · all locations in the
enabled module are written

Zm last module is written

S5

WMAR, WMSR, WER ~ 0

(a)

~L...JU_JReset

clofl<.. h

(b)

Write
r--
Write Write

RAM Read RAM RAM Read RAM RAM
begns ends begin

(c)

Figure 5.4.12 (a) ASM chart for write RAM control unit ofth·~ RAM architecture
using modules (b) The block diagram (c) Proposed clock signal

184

In state S5, registers WMAR, WMSR, and WER are reset 0. This step is necessary

to prevent modification of stored data by illegal writes during the period where the

RAM is enabled and only read operations are taking place. This occurs always at

the beginning of each decomposition level, since the LL-RAM is designed to allow

both read and write to take place in the same clock cycle. This step will force the first

module to be enabled and register WMAR to point at the first location. Thus, during

this period all illegal writes will occur in the first location of the first module which

will be read before the first illegal write takes place. Then, at the clock event the ASM

moves from states S5 to SO and remains in that state until it is activated again.

The second ASM chart shown in Figure 5.4.13 (a) describes the write RAM

control unit for the RAM architecture designed using bank shown in Figure 5.2.5.

The block diagram of the control unit is shown in Figure 5.4.13 (b). This ASM is

basically identical in every part to the one shown in Figure 5.4.12 (a). Except that

it has one extra decision box with a status input signal zbw (see Figure 5.2.5) and one

conditional output box labeled Y4 immediately inserted after the conditional output

labeled Y2. When all modules in a bank are written, signal zbw is asserted high. Thus,

every time signal zbw is I, register WBSR (write bank select register) is incremented

by one to enable the next bank for write and the control moves to state S2.

Finally, before closing this section, a very important issue regarding clock f,

would be addressed. As mentioned before, the LL-RAM architecture is designed to

support both reading and writing operations to take place in the same clock cycle.

Read occurs in the first half cycle and write in the second half cycle. This might

suggest the low and high pulses of clock f.; should be equal. But, from the dataflow

given in Table B.! 0 it can be seen that the CPs yield four output coefficients every

other clock cycle, reference to clock[;. That means these output coefficients remain in

the output latches for two clock cycles before the next output coefficients are loaded.

Thus, using a clock with equal pulses will be definitely inefficient. For example, if

read is performed during the time where the first pulse of the clock is low and write is

performed during the time where the second pulse of the clock is high, then in every

two clock cycles, the second pulse of the first cycle will be used for writing, but the

second pulse of the second cycle will be unused. Thus, in order to use the whole

185

0

CP1 & CPJ are loaded
L-,--.J for the first time

Y1

WBSR, WMAR, WER ~ 0

~--_.::::==~~!£=:::;-~F~irs;(.t outputs are

0

Y2

WMSR ~WMSR+1

loaded into CP1 &
CPJ output latches

1

0

zwc : all locations in enabled
modules are written

zm : !ast module is written

zbw: all modules in a bank are written

S5

WMAR, WBSR, WER ~ 0

(a)

(b)

Figure 5.4.13 (a) ASM flowchart for write RAM control unit of the
RAM architecture using banks (b) The block diagram

186

period effectively, a clock signal of the form shown in Figure 5.4.12 (c) is proposed.

In this clock, the low pulse width is longer than the high pulse width and write

operation which starts at a high pulse is allowed to complete in the next high pulse of

the clock as indicated in Figure 5.4.12 (c). In addition, the fact that memory read

operation takes more time than write operation makes this solution more attractive.

5.5 Conclusions

In this chapter, two novel VLSI memory architectures for 2-D DWT architectures for

5/3 and 9/7 are developed. Banking technique is utilized to form more efficient DWT

memory architectures in term of speed. The advantage of the two proposed

architectures is that they can be easily incorporated into single or parallel DWT

architectures. Furthermore, to show that the architectures developed in this research

are simple to control, the control algorithms for 4-parallel architecture including the

LL-RAM and the subband memory were developed. To ease the control development,

the overall system control is divided into several smaller units. Then, the algorithmic

state machine (ASM) for each unit is developed. The control algorithms developed

here can be used to derive the hardware of the control.

187

CHAPTER6

2-DIMENSIONAL INVERSE DISCRETE WAVELETS TRANSFORM

ARCHITECTURE DEVELOPMENT

6.1 Introduction

In chapter 3, architectures for 2-dimensional forward discrete wavelet transform (2-D

FDWT) for 5/3 and 9/7 algorithms were developed. In this chapter, architectures for

2-dimensional inverse discrete wavelet transform (2-D IDWT) for 5/3 and 9/7

algorithms will be developed.

The function of the 2-D FDWT in a compression system is to decorrelate image

pixels prior to compression step, whereas the function of the 2-D IDWT is to

reconstruct and completely recover the original image from the decorretated image.

The 2-DFDWT decomposes an NxM image into subbands as shown in Figure

6.1.1 for 3-level decomposition. The decorrelated image shown in Figure 6.1.1 can be

reconstructed by using 2-D IDWT as follows. First, it reconstructs in the column

direction subbands LL3 and LH3 column-by-column to recover L3 decompostion.

Similarly, subbands HL3 and HH3 are reconstructed to obtain H3 decomposition.

Then L3 and H3 decompositions are combined row-wise to reconstruct subband LL2.

This process is repeated in each level until the whole image is reconstructed.

The reconstruction process described above implies that the task of the

reconstruction can achieved by using 2 processors. The first processor (the column­

processor) computes column-wise to combine subbands LL and LH into L and

subbands HL and HH into H, while the second processor (the row-processor)

computes row-wise to combine L and H into the next level sub band. The decorrelated

image represented in Figure 6.1.1 is assumed to be residing with the same format in

an external memory.

188

L H

LL, HL,

LH, HH,
HL2

HLI

LH2 HH2

LHI HH1

Figure 6.1.1 Subband decomposition of an NxM image into 3 levels.

6.2 Lifting-based 513 and 917 synthesis algorithms and data dependency graphs

The 5/3 and the 9/7 inverse discrete wavelet transforms algorithms are defined by the

JPEG2000 image compression standard for 1-D signal Y(n) containing N samples as

follow:

5/3 synthesis algorithm

step!: X(2n) ~ Y(2n) -l Y(2n -I)+ :(2n +I)+ 2 J

step2: X(2n +I)~ Y(2n +I)+ l X(
2

n) + ~(2n +
2

) J where n =' 0,!,2 N -1

917 synthesis algorithm

Step!: Y'(2n) ~ 1/ k · Y (2n)
Step2: Y'(2n + 1) ~ k · Y(2n + 1)

Step3: Y'(2n) ~ Y'(2n)- o(Y'(2n -1) + Y'(2n + 1))

Step4: Y'(2n + 1) ~ Y'(2n +I)- y(Y'(2n) + Y'(2n + 2))

StepS: X(2n) ~ Y'(2n)- j3(Y'(2n -1) + Y'(2n + 1))

Step6: X(2n + 1) ~ Y'(2n + 1)- a(X(2n) + X(2n + 2))

The data dependency graphs (DOGs) for 5/3 and 9/7 derived from the synthesis

algorithms are shown in Figures 6.2.1 and 6.2.2, respectively. The DOGs are very

useful tools in architecture development and provide the information necessary for the

designer to develop more accurate architectures. The symmetrie extension algorithm

recommended by JPEG2000 is incorporated into the DOGs to handle the boundaries

problems. The boundary treatment is necessary to keep number of wavelet coefficient

189

Y(n))

X(2n)

X(2n + 1)

Y(n) 1 ,

Y'(2n+1) k
Y'(2n)

Y'(2n)

Y'(2n+i)

X(2n)

X(2n +I)

23456787
-- '

XO XI X2 X3 X4 X5 X6 X? X8

(a)

" •
' " •
•
' ' ' ' '

23456765

XO XI X2 X3 X4 X5 X6 X?

(b)

'

', \ ',,
redu'ndant

computations

Figure 6.2.1 5/3 synthesis algorithm's DDGs for (a) odd and (b) even length signals

7 6 5

XO XI X2 X3X4 X5 X6 X7 X8 XO Xl X2 X3 X4 X5 X6 X7

(a) (b)

Figure 6.2.2 9/7 synthesis algorithm's DDGs for (a) odd and (b) even length signals

the same as that of the original input. The boundary treatment is only applied at the

beginning and ending of the process. The nodes circled with the same numbers are

considered redundant computations, which will be computed once and used thereafter.

Note that the inputs coefficients with even numbers in the DDGs are low coefficients

and that with odd numbers are high coefficients.

The strategy or the approach used in chapter 4 for developing 2-D FDWT

architectures can be also used in 2-D IDWT architectures development. To ease the

architecture development, the strategy divides the details of the development into two

parts or steps each having less information to handle. In the first step, the DDGs are

looked at from the outside, which is specified by the dotted boxes in the DDGs, in

190

terms of the inputs and outputs requirements. It can be observed that the DOGs for 5/3

and 9/7 are identical when they are looked at from outside, taking into consideration

only the input and output requirements, which can be specified for each algorithm by

adopting appropriate scan method; but differ in the internal details Based on this

observation, the first level of the architecture, call it, the external architecture is

developed. In the second step, the internal details of the DOGs are considered for the

development of the processors' datapath architectures, since the DOGs internally

define and specify the internal structure of the processors.

6.3 Scan methods

The first step in developing external architecture for 5/3 and 9/7, which would consist

of a column-processor (CP) and a row-processor (RP), is to specify an appropriate

scan method for each processor. Therefore, in Figures 6.3.1 and 6.3.2, two scan

methods for 5/3 and 9/7 CP are illustrated, respectively. Similarly, two scan methods

are illustrated in Figures 6.3.3 and 6.3.4 for 5/3 and 9/7 RP, respectively. These scan

methods are developed mainly with one objective in mind to a,;hieve, that is, to make

the external architecture for both 5/3 and 9/7 algorithms identical. Note that the boxes

labeled (a) in Figures 6.3.1 and 6.3.2 are formed for illustration purposes by merging

together subbands LL and LH, where LL-subband coefficients occupy even rows and

LH-subband coefficients occupy odd rows. Similarly, the boxes labeled (b) in Figures

6.3.1 and 6.3.2 are formed by merging HL and HH together.

The 5/3 CP scans the external memory column-by-column according to the scan

method shown in Figure 6.3.1. The scan method illustrated in Figure 6.3. I (a) scans

the sections of the external memory labeled LL and LH as follows. First, the low

coefficient, LLO,O is scanned followed by the high coefficient, LHO,O to initiate the

first operation. The second operation is initiated by scanning coefficient LLI ,0

followed by LHI,O and so on. Note that coefficient LHO,O is also required in the

second operation. This process is repeated until the first column in both LL and LH

are scanned. Then the scan moves to the second column in both LL and LH to repeat

the process and so on. Similarly, sections HL and HH of th'~ external memory are

scanned.

191

runl run I
.. ···a·· ... I 2 3 ,/ij'· .. , I 2 3

LLO,O ~ .. Q. '" HL 0,0 ~ ... 0. ...
LHO,O~··i" ... HH 0,0 ~"-\" ..

LL 1,0 ~ ... z HL 1,0 ~ .. ·2· ..

LH 1,0 ~ .. ~ HHI,O ~ ... ; ...

4 4

5 5

(a) (b)

Figure 6.3.1 5/3 CP scan method (a) merging of LL and LH
(b) merging of HL and HH

run 1 run 2

(a) (b)

Figure 6.3.2 9/7 CP scan method(a) merging of LL and LH
(b) merging of HL and HH

However, in order to allow the RP, which operates on data generated by the CP, to

work in parallel with the CP as soon as possible, the (a)'s (LL+LH) first column

coefficients are interleaved in execution with the (b)'s (HL+HH) first column

coefficients. Then the second column coefficients in both (a) and (b) are interleaved

and so on. This columns coefficients interleaving process take place as follow. First,

two coefficients LLO,O and LHO,O are scanned from the first column of (a) followed

by another two coefficients HLO,O and HHO,O from the first column of (b). Then the

scan moves to (a)'s first column and scans LLl,O and LHl,O followed by HLl,O and

HHl ,0 from the first column of (b). This is repeated until the two columns are

processed, say, to complete a run. The second run, similarly, processes the second

column in both (a) and (b) and so on. The advantage of interleaving process not only

it speedups the computations by allowing the two processors to work in parallel

192

Lf,O H010 L,0,1 ~0,1

0 1 i2 i3 4 5

o~··"'m.,·~~-··· Ll,Q.
2
\. ... •· .. .·•

... ..··

run! run2

(a) (b)
Figure 6.3.3 5/3 RP scan method (a) Even length row (b) Odd length row

run! run2
.:····························::;..

.... 0 2 3 \ 4 5 ··.

0 ,··
.L.··· J;:

2 .I?'"··
3

..},:." ... J:."
.......··

..t!···
.... .. .J:."

4

Figure 6.3.4 9/7 RP scan method

earlier during the computations, but also reduces the internal memory requirement

between CP and RP to a few registers.

The scan method for 5/3 CP and the DDGs suggest that the 5/3 RP should scan its

coefficients, which are generated by CP, according to the scan method illustrated in

Figure 6.3.3. This figure is formed, for illustration purposes, by merging L and H

decompositions, even though they are actually separate. In Figure 6.3 .3, L 's

coefficients occupy even columns, while H's coefficients occupy odd columns. In the

first run, coefficients of columns 0 and 1 are scanned by RP as shown in Figure 6.3.3.

In the second run, coefficients of columns 2 and 3 are scanned and so on.

The scan method shown in Figure 6.3.2 for the 9/7 CP is basically identical in all

runs to that of the 5/3 CP except in the first run which requires, according to 917

DDGs, interleaving of 4 columns; two from each (a) and (b) of Figure 6.3.2 as

follows. First, coefficients LLO,O, HLO,O from the first column of (a) are scanned.

Second, coefficients HLO,O and HHO,O from the first column of (b) are scanned, then

193

LLO, I and LHO, I from the second column of (a) followed by HLO, I and HHO, I

from the second column of (b) are scanned. The scanning process then returns to the

first column of (a) to repeat the process and so on.

The scan method for 9/7 RP is illustrated in Figure 6.3.4, which is basically also

identical to the 5/3 RP scan method except in the first run. In the first run, the 9/7

RP's scan method requires considering the first four columns for scanning as follows.

First, coefficients LO,O and HO,O from row 0 followed by Ll ,0 and HI ,0 from row I

are scanned. Then the scan returns to row 0 and scans coefficients LO, I and HO, I

followed by Ll,l and HI, I. This process is repeated as shown in Figure 6.3.4 until

the first run completes.

6.4 Proposed External Architecture

Based on the scan methods and the DOGs for 5/3 and 9/7, the architecture shown in

Figure 6.4.1 (a) is proposed for 2-D IDWT. This architecture is also valid for

combined 5/3 and 9/7 architecture. The architecture consists of two fully pipelined

processor labeled CP and RP which will be developed later. The proposed

architecture scans the external memory with frequency f, while the architecture

operates with frequency jl2 as indicated in Fig. 6.4.1 (a). The waveforms of the two

clocks are shown in Figure 6.4.1 (b). The CP and the RP latches load new data every

time clockfl2 makes a positive transition.

The CP in the proposed architecture scans the external memory according to the

scan methods shown in Figures 6.3.1 and 6.3.2 for 5/3 and 9/7, respectively, whereas

RP scans the output latches of the CP labeled Rt/0, Rtf/, and Rth according to scan

method illustrated in Figure 6.3.3 and 6.3.4 for 5/3 and 9/7, respectively. The

architecture reconstructs a decorrelated image stored in the external memory such as

the one shown in Figure 6.1.1 as follows. The CP begins the reconstruction process by

scanning column-by-column the external memory's sections labeled LL3 and

LH3.and that labeled HL3 and HH3 in an interleave manner to yield L3 and H3

decomposition, which are passed to RP through the latches labeled Rt/0, Rtll, and

Rth. L3's coefficients are stored in Rt!O and Rtll, whereas H3's coefficients are stored

in Rth before they are read by RP.

194

f/2

Y(J,j)

Ell

(a)

/HJiJij-
_lH ri
2! H ~

I I I I

(b)

sr

Figure 6.4.1 (a) Proposed external architecture for 5/3 and 9/7 and combined
5/3 and 9/7 2-D IDWT (b) Waveform for clockfandj!2.

To be specific consider the dataflow of the architecture when it executes 5/3

algorithm. In the first clock cycle, coefficient LLO,O from the first column of LL3 in

the external memory, is scanned and is loaded into RdO by th·~ positive transition of

clock/ The second clock cycle scans coefficient LHO,O from the first column of LH3

and places it in the path labeled Y(i,j). Then the positive transition of clockj!2 loads

RdO and LHO,O into CP latches RtO and Rtl, respectively.

In the third clock cycle, coefficient HLO,O, from the first column of HL3, is

scanned and is loaded into RdO by the positive transition of the clock f The fourth

clock cycle scans coefficient HHO,O from the first column of HH3 in the external

memory and places it in the path labeled Y(i,j). Then the posi::ive transition of clock

j!2 loads contents of RdO and HHO,O into the CP's latches labeled RtO and Rtl,

respectively. The scanning process then returns to subband LL3 in the external

memory to repeat this interleaving process.

The CP generates every clock cycle two output coefficients. The first two output

coefficients, LO,O and L I ,0 which belong to L3 decomposition are loaded into Rt/0

and Rtll, respectively, by the positive transition of clock .f12. During the next clock

195

cycle, say, cycle n coefficients HO,O and HI ,0 which belong to H3 decomposition,

will be placed in the output paths labeled L and H, respectively. Then the positive

transition of the clock ending the cycle transfers Rt!O and HO,O in the output path, L,

to the RP's latches labeled RtO and Rtf, respectively, through the two multiplexers

labeled muxr, while HI,O in the output path labeled H is loaded int Rth. The second

two output coefficients of L3, L2,0 and L3,0 are loaded into Rt/0 and Rtll,

respectively, by the positive transition of the clock ending cycle n+ I, while contents

of Rt/1 and Rth are transferred to RP latches RtO and Ril, respectively. This process is

repeated according to the scan method illustrated in Figure 6.3 .3.

On the other hand, the dataflow of the 9/7 architecture, which differs mainly in the

first run from that of the 5/3 by requiring interleaving of 4 columns instead of two, is

as follow. However, since the dataflow of the 9/7 CP is same as that of the 5/3 up to

the fourth clock cycle, the dataflow description would continue from the fifth cycle.

In the fifth clock cycle, the scanning process returns to LL3 and scans coefficient

LLO, I from the second column and loads it into RdO by the positive transition of the

clock ending the cycle. The sixth clock cycle scans coefficients LHO, I from the

second column of LH3 and places it in the path labeled Y(i,;). Then the positive

transition of the clock jl2 loads RdO and LHO,l into CP's latches RtO and Rtf,

respectively. In the seventh clock cycle, the scan moves to HL3 in the external

memory and scans coefficient HLO, I from the second column and loads it into RdO by

the pulse ending the cycle. The eighth clock cycle, scans coefficient HHO, I from the

second column of HH3 and places it in the path labeled Y(i,j). Then the positive

transition of the clock f/2 loads RdO and HO, I into CP's latches RtO and Rt I,

respectively. The scanning process then returns to subband LL3 in the external

memory to repeat the process until the first run completes. In the second run, the third

column in both (a) and (b) of Figure 6.3.2 are consider for processing and proceeds as

that of the 5/3 described earlier. Remember, in Figure 6.3.2 (a), coefficients of

subband LL occupy even rows, while subband LH coefficients occupy odd row.

Similarly, in Figure 6.3.2 (b), coefticients of subband HL occupy even row, while

sub band HH coefficients occupy odd rows.

Now, let's look at the dataflow of the 9/7 from RP side. The CP yields every clock

cycle two output coefficients. The first two output coefficients, LO,O and L1 ,0 from

196

L3 decomposition are loaded into Rt/0 and Rtll, respectively, by the positive

transition of clock jl2. During the next clock cycle, say, cycle n, coefficients HO,O

and HI ,0 from H3 decomposition will be placed in the output path labeled L and H,

respectively. Then, the positive transition of the clock ending the cycle, transfers Rt/0

and coefficient HO,O in the output path labeled L, to RP's latches RtO and Rtl,

respectively, while Hl,O in path H is loaded into Rth. In cycle n+ I, coefficients in

Rtll and Rth are transferred to RP's latches RtO and Rtf, resp<~ctively, while the two

output coefficients LO, l and Ll, l from L3 decomposition are loaded into Rt!O and

Rtll, respectively, by the positive transition of the clock ending the cycle. During

cycle n+2, two output coefficients HO, I and HI, I from H3 decomposition will be

placed in the output path labeled Land H, respectively. Then the positive transition of

the clock ending the cycle, transfers Rt/0 and HO, I in path L to RP latches RtO and

Rtf, respectively, while Hl,l in path H is loaded into Rth. Cycle n+ 3 transfers

contents of Rtll and Rth to RP latches RtO and Rtf, respectively, while the two new

output coefficients, L2,0 and L3,0 from L3 decomposition generated by CP are loaded

into Rt!O and Rt/J, respectively. This process is repeated according to the scan method

shown in Figure 6.3.4. The dataflow table of the architecture will be given later after

the two processor, labeled CP and RP in Figure 6.4.1 are developed.

One important point, if number of columns in (a) and (b) of Figures 6.3.1 and

6.3.2 are not equal, then the last run will consist of only one column of (a). In that

case, scan the last column of (a) every other clock cycle, reference to clockfl2, so that

CP yields a valid pair of output coefficients every other clc•ck cycle. Because, an

attempt to scan the last column every clock cycle ofjl2 will result in CP generating

more coefficients than that can be handled by RP. The dataflow from RP side is as

follow. Suppose, at clock cycle n the first two output coefficients of the CP LO,m and

L I ,m of the last column m are loaded into Rt/0 and Rtf I, respectively. ln the next

clock cycle, cycle n+ I, RtlO is transferred to RtO of RP, whil'' data in path L and H

generated by CP during the cycle are not loaded into RtlO and Rtll, since they are

invalid coefficients. In cycle n+ 2, coefficients L2,m and L3,rn generated by CP are

loaded into Rt/0 and Rtll, respectively, while content of Rtll is transferred to RP

latch RtO through muxr. This process is repeated until the run C•)mpletes.

197

The control signal values for signals Eth, Etl, and sr that could be issued by a

control unit are derived in Table 6.1 starting from clock cycle n where the first two

output coefficients generated by CP are loaded into Rt!O and Rtll. However, note that

signal Eth can be eliminated, since it alternates between don't-care and 1. In addition,

since the first value of signal sr is a don '!-care and the rest of the signal values are

same as that of signal Etl, then signal sr and Etl can be combined into one signal sr.

Table 6.1 Control signal
values for Eth Ell and sr '

CKj12 Eth Etl sr
N X 1 X
n+l 1 0 0
n+2 X I I
n+3 1 0 0
n+4 X I I

6.5 Processors' architecture development

6.5.1 Inverse 513 processor's architecture development

To complete the architecture for 2-D IDWT, the last phase is to design the row and

column processors' datapath architectures for 5/3 and 9/7 algorithms separately that

can be incorporated into CP and RP of the external architecture shown in Figure 6.4.1

(a). First, the datapath architecture for 5/3 will developed followed 9/7 in the next

section.

Based on the algorithm (6.1) and the DDGs shown in Figure 6.2.1, the inverse 5/3

processor datapath architecture shown in Figure 6.5.1 is obtained. The multiplexers

labeled muxeO, muxe I, and muxe2 implement the symmetric extension algorithm

incorporated into the DDGs. This 3-stage pipelined processor is formed by mapping

the two lifting steps of the inverse 5/3 algorithm into two pipeline stages. Steps 1 and

2 are mapped into stages I and 3 in Figure 6.5.1, respectively. Then. stages I and 3

are connected through stage 2 to form a 3-stage pipelined processor. Stage 2 is

necessary because stage3, which implements step 2, requires two successive low

coefficients from stage I to perform an operation. When the first coefficient generated

by stage I is in RtO of stage 3, the second coefficient will be in RtO of stage 2 and will

be applied to stage 3 through the path labeled X(2n+2), the Forward path. The nodes

198

circled with even number in the DOGs, which represent step 1 of the algorithm, are

all computed in stage 1 in the order indicated in the DOGs. Similarly, nodes circled

with odd number, which represent step2, are computed in stage 3 in the order

specified in the DOGs.

In the following the operations of the extension multiplexers are explained. First,

according to DOGs for 5/3, in the calculation of the first low coefficient XO, the

second input Y1 must be allowed in stage 1 to pass through the two multiplexers,

labeled muxeO and muxe 1 to the adder. Second, in the calculation of the last

coefficient, for example, X8 in the DDG for odd length signals, the input coefficient

Y7, which will be in Rt 1 of stage 2, must be allowed to pass through both muxeO and

muxe 1 to the adder. On the other hand, during the normal computations, which take

place between the first and last calculations, the current inpFt coefficient in Rtl of

stage 1 and the previous coefficient in Rt 1 of stage 2 are allowed to pass through

muxeO and muxel, respectively, to the adder. However, note that in even length

signals, according to the DDG in Figure 6.2.1 (b), the last high and low coefficients

calculations take place as normal calculations. As for the extension multiplexer

Stage I X(2n+ I)
H

»l

Forward

X(2n)

X(2n) X(2n)

Figure 6.5.1 Inverse 5/3 processor datapath architecture with symmetric extension

labeled muxe2 in stage 3, its normal function is to pass in all cases the forward signal,

X(2n+2), to the adder in stage 3, except in the even length signals and in the

calculation of the last coefficients, multiplexer muxe2 passes the coefficient stored in

199

RtO of stage 3 to the adder instead of the one in the Forward path. Table 6.2 shows the

control signal values that are required to be issued by the control unit order for the

extension multiplexers to perform the required functions.

Table 6.2 Extension's control signals

seO sel se2 seO Sel se2

First 0 0 0 First 0 0 0

Normal 0 I 0 Normal 0 I 0

Last I I 0 Last 0 I I

a) Odd length signals b) Even length signals

6.5.2 Inverse 9/7 processor's datapath architecture

Based on the 9/7 algorithm 6.2 and its DDGs shown in Figure 6.2.2, the inverse 9/7

processor datapath architecture is shown in Figure 6.5.2. This processor architecture is

formed by mapping steps 3, 4, 5, and 6 of the algorithm into stages 2, 4, 5, and 7,

respectively, while steps I and 2 are mapped into stage I to allow the two steps to

perform in parallel. This architecture also can be thought formed by connecting two

5/3 processors at stage 4.

The multiplexers in stages 2, 4, 5, and 7 implement the symmetric extension

algorithm that is part of the DDGs shown in Figure 6.2.2. Table 6.2 also provides

appropriate control signal values that must be issued by the control unit to the 9/7

extension multiplexers so that they can perform their required functions. These

extension multiplexers functions exactly the same way as that of the 5/3 described

earlier.

6.5.3 Combined inverse 9/7 and 5/3 processors architecture

The 9/7 processor architecture shown in Figure 6.5.2 can be modified as shown in

Figure 6.5.3 to give the combined processor architecture for both 9/7 and 5/3. The 5/3

processor is incorporated into the 9/7 processor by modifying stages I, 2, and 4, while

the remaining stages remain the same. The control signal labeled lossy I loss less

enables the architecture to be selected either to perform 9/7 or 5/3 algorithms. Thus, if

signal lossy I loss less is I, the architecture reconstructs the image using 9/7 algorithm,

200

otherwise, it reconstructs the image using 5/3 algorithm. The combined architecture

could be a very useful and efficient in situations where the decoder in one site is

required to perform either lossless or lossy image reconstruction. In addition, the

advantage of the combined architecture is that a great saving in silicon area can be

achieved.

6.5.4 Modified row and column processors for 513 and 917 external architecture

The 5/3 and 9/7 processors datapath architectures shown in Figures 6.5.1 and 6.5.2

were developed assuming the processors scan coefficients from external memory row­

by-row or column-by-column. The CPs for 5/3 and 9/7 external architecture do,

according to the scan methods shown in Figures 6.3.1 and 6.3.2, scan the external

memory column-by-column. However, since the CPs for both 5/3 and 9/7 are required

to rotate between executing coefficients of subbands LL and LH with that of HL and

HH in an interleave fashion, the processor datapath archite,;tures for 5/3 and 9/7

shown in Figures 6.5.1 and 6.5.2 should be modified as shown in Figures 6.5.4 and

6.5.5, respectively, in order to allow interleaving in execution. The 513 processor

shown in Figure 6.5.1 is modified by adding one stage between stages 2 and 3, since it

interleaves two column in execution, to obtain a 4-stage CP :;hown in Figure 6.5.4

that fit into 5/3 external architecture.

On the other hand, the 7-stage 9/7 processor datapath architecture shown in Figure

6.5.2 is modified by adding 3 stages between stages 3 and 4 and stages 6 and 7 each,

since it is required to interleave 4 columns in the first run, to obtain a 13-stage CP

shown in Figure 6.5.5 for 9/7 external architecture. Figure 6.5.5 show only the first

seven stages, since the remaining 6 stages are identical to stages 2 to 7. Tables B. IS

and B.l9 (a) show the dataflow of the 513 and the 9/7 architectures, respectively,

which illustrate how interleave execution takes place.

In Figure 6.5.5, the control signal, s of the two multiplexer:; labeled mux is set I in

the first run to allow interleaving of 4 columns, whereas in all other runs it is set 0 to

allow interleaving of 2 columns as required by scan method shown in Figure 6.3.2,

which is identical to 5/3 scan method shown in Figure 6.3.1 in all runs except the first

run. This also implies that reference to Figure 6.5.3, Figure 6.5.5 can be easily

201

Stage 2

Y'(2n +I) Y'(2n +I) Y'(2n +I)

Forward1

sel

Forward2

Stage 7
X(2n+1)

X(2n)

H

L

Figure 6.5.2 Inverse 9/7 processor datapath architecture with symmetric extension

202

Stage 2 Stage 3 Stage 4

X(2n)

L

Figure 6.5.3 Combined Inverse 9/7 and 5/3 processor datapath architecture

Stage I Stage 2 Stage 3 Stage 4

Y(2n t I) Y(2n-·l) Y(2n -I)

»I

Forward

r:::J.____J X (2 n)
f-----~Rtof-..l..+j~~RtOI-'----.1..-+L

X(2n) X(2n) X(2n)

Figure 6.5.4 Modified inverse 5/3 CP datapath architecture with symmetric extension

203

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 7
Y'(2n+l) Y'(2n+l) Y'(2n+l)

Y'(2n +I)

Figure 6.5.5 Modified CP for 917 and combined 5/3 and 9/7 datapath architecture

modified as a CP for combined 5/3 and 9/7 external architecture shown in Figure

6.4.1. Thus, when signals lossy /loss less of Figure 6. 5.3 and s both are zero the

architecture performs 5/3; otherwise, it performs 917.

On the other hand, the RP in the proposed external architecture scans coefficients

of the high (H) and low (L) decompositions generated by CP according to scan

methods shown in Figure 6.3.3 and 6.3.4 for 5/3 and 9/7, respectively. Thus, this

would require modifying the 5/3 and the 9/7 processor datapath architectures shown

in Figures 6.5.1 and 6.5.2, respectively, as follows. Looking at the input conditions of

the 5/3 and the 917 in the DOGs and the scan methods shown in Figures 6.3.3 and

6.3.4 one can immediately recognize that all input coefficients occupying odd

columns in Figures 6.3.3 and 6.3.4 in each run need to be stored in a temporary line

buffer (TLB) of size N, since they are required in next run's computations. Therefore,

a TLB should be added in both Figures 6.5.1 and 6.5.2.

Furthermore, according to the 5/3 DOGs, applying the scan method shown in

Figure 6.3.3 would require addition of another TLB of size N in order to store low

coefficients of a run calculated in stage I of Figure 6.5 .I, since they are required in

high coefficients that would be calculated in stage 3 in the next run. When these

changes are incorporated into Figure 6.5.1, the 4-stage RP shown in Figure 6.5.6, is

obtained for 5/3 external architecture. Table 8.18 shows the dataflow of the 5/3

204

architecture. In this dataflow table, the first location of TLB I, for example, contains

coefficient YO(!) and the second location contains Y 1 (1) followed by Y2(I) in the

third location and so on. In the first run, TLBs are only written .. whereas starting from

the second run, the TLBs are read and written in the same clock cycle. For instance, in

the second run at cycle 30, Table B.l8 shows that the first loeation of TLB I is read

into Rt2 of stage 2 and a new coefficient labeled Y0(3) is written into it.

f/2
Y(2n+1)

Stage 3

in car

f2

Y(2n) X(2n) X(2n)

Figure 6.5.6 Modified inverse 5/3 RP datapath architecture with symmetric extension

On the other hand, according to the 9/7 DOGs, applying the scan method shown in

Figure 6.3 .4 would require addition of three TLBs each of size N in the data path

architecture shown in Figure 6.5.2. The first TLB is needed because all coefficients

calculated in stage 2 of Fig. 6.5.2, in a run, are required in stag·~ 4 in the next run. The

second TLB is needed for storing N coefficients calculated in stage 4 in a run, which

are required in the calculations that take place in stage 5 in the next run. The third

TLB is necessary to keep N coefficients calculated in stage 5 in a run, which are

required m stage 7 calculation in the next run. When these changes are

incorporated into Figure 6.5.2, the 9-stage RP shown in Figure 6.5.7, is obtained for

9/7 external architecture.

205

ETLB: enable TLB tncar increment AR c/ar: clear AR

Y'(2n+ 1)
j12

Y'(2n + 1) Y'(2n + 1)
12

Stuge 2 Stuge 4

j12

1-----+!RtO!-----~

Y'(2n) Y'(2n) Y"(2n) Y"(2n) sco

Y"(2n+ 1)
Stage 8

f/2 TLB3

Y"(2n) Y"(2n) X(2n) X(2n)

Figure 6.5.7 Modified RP for 9/7 and combined 5/3 and 9/7 datapath architecture

The registers labeled RO and R1 in stage 3 of Figure 6.5.7 are added because the

scan method for 9/7 illustrated in Figure 6.3.4 requires in the first run, for example,

storing the second input coefficient of both rows 0 and I in Figure 6.3.4, labeled HO,O

and H1 ,0, since these two coefficients are required in the second operation of rows 0

and 1, respectively. Whereas, registers RO and R I in stage 4 are added to store in the

first run, the first two coefficients computed in stage 3 for each two rows using the

first two input coefficients of each row, since they are required in the two successive

computations that take place in stage 5. Note that the control signal s of the two

multiplexers, labeled mux in stages 3 and 4 of Figure 6.5.7 is set I in the first run to

pass coefficients stored in RO and R 1 and 0 in all other runs to pass coefficients stored

in TLB I and TLB2.

206

The details of the 9/7 architecture dataflow from RP side is given in Table B.l9

(b). This table shows that in the first run each two outputs are followed by two empty

cycles. To see why this occurs can be determined by looking at column 5 (stage 5) in

the dataflow Table B.l9 (b), which shows that in clock cycle 22 and 23 no data are

passed to stage 5 from 4. Similarly, in clock cycles 26 and 27, and so on. This

mainly is a consequence of the scan method adopted in the first run, which forces

stage 5 to wait each time on two successive coefficients calculated in stage 3 before it

can proceed. However, in all subsequent runs, the 917 architecture would yield a pair

of output every clock cycle.

It is very important to note that when the RP executes its last set of input

coefficients, according to 917 DOGs for odd and even signals shown in Figure 6.2.2 it

will not yield all required output coefficients as expected by the last run. For example,

in the DOGs for odd length signals shown in Figure 6.2.2 (a), when the last input

coefficient labeled YS is applied to RP it will yield output coefficient X5 and X6. To

get the last remaining two coefficients X7 and XS, the RP must execute another run,

which will be the last run in order to compute the remaining two output coefficients.

Similarly, when the last two input coefficients labeled Y6 and Y7 in the DOG for

even length signals shown in Fig. 6.2.2 (b) are applied to 917 RP it will yield output

coefficients X3 and X4. To obtain the remaining output coeffi~ients X5, X6, and X7,

two more runs should be executed by RP according to the DOG. The first run will

yield X5 and X6, whereas the last run will yield X7. The details of the computations

that take place during each of these runs can be determined by examining the specific

area of the DOGs.

Control signals of a pipe lined processor such as the signal~ of the pipeline 9/7 RP

shown in Figure 6.5.7 can be issued every clock cycle by a control unit. The control

signal values issued in each clock cycle are transferred to the first stage of the pipeline

and are loaded into the control signal latches (CSTs) that are similar to the pipeline

latches, to carry these signal values from stage-to-stage. When a stage where a signal

(or signals) is used is reached, the signal value carried by its CST is applied, while the

remaining signals are carried to the next stage. For example, in Table 6.3 starting

from cycle 14, the control signal values for signals incar, clar, ETLB, seO, etc. for 4

207

Table 6.3 Control signal values for 9/7 RP

CK incar clar ETLB s seO sel se2
14 0 0 0 I 0 0 0
15 0 I 0 I 0 0 0
16 I 0 I I 0 I 0
17 I 0 I I 0 I 0

cycles are derived. In cycle 14, the control signal values listed at cycle 14 in Table 6.3

would be loaded by the control unit into CSTs of the first pipeline stage. Similarly, in

cycle 15, the control signal values listed at cycle 15 in the table would be transferred

to CSTs of the first stage, while the control signal values issued in cycle 14 would be

transferred to CSTs of the next stage and so on.

In addition, observe that if registers RO and R I in stages 3 and 4 are

eliminated, the RP for 9/7 from stages 2 to 5 and from 6 to 9 are similar in structure to

the 4-stage 5/3 RP shown in Figure 6.5.6. This implies that the RP for 9/7 can be

easily modified to work as a RP for the combined 5/3 and 9/7 external architecture.

In the combined architecture, signal s of the two multiplexers, labeled mux in

stages 3 and 4 of Fig. 6.5.7 is set 0 if the architecture is to perform 5/3; otherwise, it is

set 1 in the first run and 0 in all other run if the architecture is to perform 9/7.

Moreover, the multiplexer labeled muxco in stage 5 is only needed in the combined

5/3 and 9/7 architecture, otherwise, it can be eliminated and Rt2 output can be

connected directly to the input of the RIO of the next stage. Thus, in the combined

architecture signal sea of muxco is set 0 if the architecture have to perform 5/3,

otherwise, it is set I if the architecture have to perform 9/7.

Note that the TLBs in Figures 6.5.6 and 6.5.7 are required to be read and written

in the same clock. Therefore, signal R/W is connected to clock j72 so that the TLB

can be read in the first half cycle and written in the second half cycle. The register

labeled TLBAR (TLB address register) generates addresses for TLB. Initially,

TLBAR is cleared to zero to point at the first location. Then to address the next

location, after each read and write, register TLBAR is incremented by one.

208

6.6 Performance Evaluation

Suppose 1m and lp are the critical path delays of the external memory and the non­

pipe lined processor architecture, respectively. I is the number of input coefficients

scanned from external memory for each operation. I= 2 for both inverse 5/3 and 9/7.

Then the scan clock period r and hence the scan frequency f of the proposed

architecture can be determined by the following algorithm.

Statement4

case I : If I m ~ t P / k then

r tm

case 2 : Else if I p I I . k " t m then

r t,/I·k

else r = t m

In the algorithm above either case I or case 2 can be true. Case 2 implies the

availability of a very high speed scan that can scan the two pixels required for an

operation during the specified time limit given by t/k. If that is the case-the

architecture shown in Figure 6.4.1 with it processor pipelined-the hardware utilization

is 100% and the architecture is complete. Now, suppose r 1 and r, denote the scan

clock periods of the architecture before and after pipelining, respectively. Then

r, =tPji.

And from statemen/4, case2

The speedup factor S is then given by

S=r1/r2 =r,/(r,/k)=k

The efficiency E of k-stage pipeline is defined as

E = S/k = k/k =I

(6.1)

(6.2)

(6.3)

(6.4)

Thus, the architecture with pipe lined processors is k times fast<er than the architecture

with non-pipe lined processors with efficiency 1.

On the other hand, case 1 implies low scanning frequency. That means the time

required to scan the two pixels for an operation will take at least 2t/k seconds or two

clock cycles, where 1/k is the stage critical path delay of the pipe lined processor. In

209

that case, the proposed architecture would not only be slow but would be under

utilized half of the time, since every 2 clock cycles would yield one output. To

remedy this problem, the proposed architecture can be allowed to read from external

memory the required 2 coefficients for an operation in parallel every clock cycle

instead of one coefficient at a time, if the frequency of the pipe lined architecture and

the external memory scan frequency are made equal. This would require two buses

instead of one to scan the external memory in the parallel scan architecture.

If the clock period r 3 for both external memory and the pipe lined architecture are

made equal to tplk, then the speedup factorS of the pipe lined parallel scan architecture

as compared with the non-pipelined architecture is given by

(6.5)

The efficiency E=S/k=l

That is the parallel scan architecture is k times faster than nonpipelined architecture

with efficiency I.

On the other hand, to compare the power consumption of the pipe lined parallel

and sequential scan architectures consider the following. First, since both pipelined

parallel and sequential scan architectures operate with frequency kltp and are equal in

capacitance, therefore, they consume the same power. Second, the external memory

power consumption in the pipe lined parallel scan architecture, P m(pipe)pu' and that in

the pipe lined sequential scan architecture, P m(pipe)m1 can be determined as follow. If

the power consumption of VLSl architecture can be estimated as

P=C ·V'·f
lulu/ "

(6.6)

where Ctotal denotes the total capacitance of the architecture, Yo is the supply voltage,

andfis the clock frequency, then

P (pipe) -em ·V'·f -em ·V 2 1/r -J.em ·V'·k/t (6.8) m seq- total o 2- Iota/ o 2- /1!/al o p

e"' '"'"' is the total capacitance of the external memory.

210

Based on the above evaluations, it can be concluded that both pipelined parallel

and sequential scan architectures achieve the same performance in terms of speedup,

efficiency and they consume the same power.

6, 7 Parallel Architecture Development

In order to best meet real-time applications 2-0 DWT with demanding requirements,

in this section, parallelism will be explored. The single pipelined architecture

developed in the previous sections will be extended to 2- and 4-parallel pipelined

architectures to achieve speedup factors of 2 and 4, respectively. First, the 2-parallel

pipelined architecture for 5/3 and 9/7 will be developed followed by the 4-parallel

pipe lined architecture.

6. 7.1 Proposed 2-parallel external architecture

Based on the scan methods and the DOGs for 5/3 and 9/7, the 2-parallel external

architecture shown in Fig. 6.7.1 (a) is proposed for 5/3 and 9/7 and combined 5/3 and

917 for 2-D IDWT. The architecture consists of two k-stage pipelined column­

processors labeled CPl and CP2 and two k-stage pipelined row-processors labeled

RPl and RP2. The waveforms of the two clocks / 2 and / 2 /2 that are used in the

architecture are shown in Fig. 6.7.1 (b). The clock frequency .f2 is determined from

statement3 as

(6.9)

The architecture scans the external memory with frequency f 2 and it operates with

frequency / 2 /2. Each clock cycle two new coefficients are scanned from external

memory through the two buses labeled busO and bus]. The two new coefficients are

loaded into CPl or CP2 latches RtO and Rtl every time clock f,/2 makes a negative

or a positive transition, respectively. On the other hand, both RPI and RP2 latches

RtO and Rt 1 load simultaneously new data from CPI and CP2 output latches each time

clock / 2 /2 makes a negative transition.

The dataflow for 5/3 2-parallel architecture is shown in Table B.20, where CPs

and RPs are assumed to be 4-stage pipelined processors. This 5/3 dataflow table is

211

J,/2

bus a
Rt/0 1-----+J

RP1

bus1

RP2

Rth1

(a)

I
.

3
.

J, . 2 .
I I I I r . .

J,/2 • •

I ~Load
RP1 & RP2

• • . .
• .

Load CP1 Load CP2

(b)

Figure 6.7.1 (a) Proposed 2-parallel pipelined external architecture for 5/3 and 9/7 and
combined 5/3 and 9/7 for 2-D IDWT (b) Waveforms of the clocks

derived based on the 9/7 scan methods shown in Figs. 6.3.2 and 6.3.4 instead of 5/3

scan method shown in Figs. 6.3 .1. The reason is to show that 9/7 scan methods can be

used for 513 as well. In addition, a unified scan method for both 917 and 5/3 make

their control algorithms identical, which is advantageous especially in combined 5/3

and 9/7 architecture. The dataflow for 917 2-parallel architecture is similar, in all runs,

to the 5/3 dataflow except in the first run, where RPI and RP2 of the 9/7 architecture

each would generate one output coefficient every other clock cycle, reference to

clockJ,/2 . The reason is that the first 4 coefficients of each row processed in the first

run by either RPI or RP2 of the 9/7 would require, according to the DOGs, two

successive low coefficients from the first level of the DOGs labeled Y"(2n) in order to

212

carry out node I computations in the second level labeled Y'(2n+ 1). In Table B.20, the

output coefficients in RtO of both RPI and RP2 at cycles 19, 23, and 27 and so on

represent the output coefficients of the 9/7 in the first run.

The strategy adopted for scheduling memory columns for CPI and CP2 of the 5/3

and 9/7 2-parallel architectures, which are scanned according to the scan method

shown in Figure 6.3.2, is as follow. In the first run, both 5/3 and 9/7 2-parallel

architectures are scheduled for executing 4 columns of memory, two from each (A)

and (B) of Figure 6.3.2 . The first two columns of Fig. 6.3.2 (A) are executed in an

interleaved fashion by CPI, while the first two columns of Fig. 6.3.2 (B) are executed

by CP2 also in an interleaved fashion as shown in the dataflow Table B.20. In all

subsequent runs, 2 columns are scheduled for execution at a time. Each time one

column from (A) of Fig. 6.3.2 will be scheduled for execution by CPI, while another

from (B) will be scheduled for CP2. However, if number of columns in (A) and (B) of

Fig. 6.3.2 is not equal, then the last run will consist of only one column of (A). In that

case, schedule the last column in CPI only, but its output coefficients will be executed

by both RPI and RP2. The reason is that if the last column is s~heduled for execution

by both CPI and CP2, they will yield more coefficients than that can be handled by

both RPI and RP2.

On the other hand, scheduling RPI and RP2 of 5/3 and 9/7 2-parallel architectures

occurs according to scan method shown in Fig. 6.3.4. In this scheduling strategy, all

rows of even and odd numbers in Fig. 6.3.4 will be scheduled for execution by RPI

and RP2, respectively. In the first run, 4 coefficients from each 2 consecutive rows

will be scheduled for RPI and RP2, whereas in all subsequent runs, two coefficients

of each 2 consecutive rows will be scheduled for RPI and RP2, as shown in Figure

6.3.4. However, if the number of columns in Figure 6.3.4 is odd, that occurs when

number of columns in (A) and (B) of Fig. 6.3.2 is not equal, then the last run would

require scheduling one coefficient of each 2 successive rows to RP I and RP2.

In general, all coefficients belong to columns of even numbers in Fig. 6.3.4 will be

generated by CPI and all coefficients belong to columns of odd numbers will be

generated by CP2. For example, in run I, first, CPI will geLerate two coefficients

labeled LO,O and Ll,O that belong to locations 0,0 and 1,0 in Fig. 6.3.4, while CP2

will generate coefficient HO,O and HI ,0 that belong to locatiDns 0, I and I, I. Then

213

coefficients in locations 0,0 and 0, I are executed by RPI, while coefficients of

locations I ,0 and I, I are executed by RP2. Second, CPI will generate two coefficients

for locations 0,2 and I ,2, while CP2 will generate two coefficients for locations 0,3

and I ,3. Then coefficients in locations 0,2 and 0,3 are executed by RPI, while

coefficients in locations I ,2 and I ,3 are executed by RP2. The same process is

repeated in the next two rows and so on.

In the second run, first, CPI generates coefficients for locations 0,4 and l ,4,

whereas CP2 generates coefficients for locations 0,5 and 1,5 in Fig. 6.3.4. Then

coefficients in locations 0,4 and 0,5 are executed by RP I, while coefficients in

locations I ,4 and I ,5 are executed by RP2. This process is repeated until the run

completes. However, in the even that the last run processes only one column of (A),

CPI would generate first coefficients of locations O,m and J,m where m refers to the

last column. Then coefficients of location O,m is passed to RPI, while coefficient of

location l,m is passed to RP2. In the second time, CP! would generate coefficients of

locations 2,m and 3,m. Then 2,m is passed to RPI and 3,m to RP2 and so on.

6. 7.2 Modified CPs and RPs for 513 and 917 2-paral/e/ external architecture

Each CP of the 2-parallel external architecture is required to execute two columns in

an interleave fashion in the first run and one column in all other runs. Therefore, Fig.

6.5.1 should be modified as shown in Fig. 6. 7.2 by adding one more stage between

stages 2 and 3 for 5/3 2- parallel external architecture to allow interleaving of two

columns as described in the dataflow Table B.20. Through the two multiplexers

labeled mux the processor controls between executing 2 columns and one column.

Thus, in the first run, the two multiplexers' control signal labeled s is set I to allow

interleaving in execution and 0 in all other runs. The modified 9-stage CP for 9/7 2-

parallel external architecture can be obtained by cascading two copies of Figure 6.7.2.

On the other hand, RPI and RP2 of the proposed 2-parallel architecture for 5/3

and 9/7 are required to scan coefficients of H and L decompositions generated

by CPI and CP2 according to the scan method shown in Fig. 6.3.4. In this scan

method, all rows of even numbers are executed by RP I and all rows of odds numbers

214

X(2n) X(2n) X(2n)

~n+1)

YH
I
I
I

Figure 6.7.2 Modified inverse 5/3 CP for 2-parallel external architecture

are executed by RP2. That is, while RPl is executing rowO coefficients, RP2 will be

executing rowl coefficients and so on. In addition, looking at the DOGs for 5/3 and

9/7 one might immediately observe that applying the scan methods shown in Fig.

6.3.4 would require inclusion of temporary line buffers (TLBs) in RPl and RP2 of the

proposed 2-parallel external architecture as follows. ln the first run, the fourth input

coefficient of each row in the DOGs and the output coefficients labeled X(2) in the

5/3 DOGs and that labeled Y"(2), Y"(l), and X(O) in the 9/7 DOGs, generated by

considering 4 inputs coefficients in each row, should be stor<:d in TLBs, since they

are required in the next run's computations. Similarly, in the second run, the sixth

input coefficient of each row and the output coefficients labeled X(4) in the 5/3 DOGs

and that labeled Y"(4), Y"(3), and X(2) in the 9/7 DOGs generated by considering 2

inputs coefficients in each row, should be stored in TLBs. Accordingly, 5/3 would

require addition of 2 TLBs each of size N, whereas 9/7 would require addition of 4

TLBs each of size N. However, since 2-parallel architecture consists of two RPs, each

5/3 RP will has 2 TLBs each of size N/2 and each 9/7 RP will has 4 TLBs each of

size N/2 as shown in Fig. 6.7.3. Figure 6.7.3 (a) represents the 5/3 modified RP,

while both (a) and (b) represent the 9/7 modified RP for 2- parallel architecture.

To have more insight into the two RPs operations, the dataflow for 5/3 RPl ts

given in Table 6.4 for first and second runs. Note that stage l input coefficients in

Table 6.4 are exactly the same input coefficients of RPl in Table B.20. In the first

run, TLBs are only written, but in the second run and in all subsequent runs, TLBs are

215

ETLB: enabh: nB incar: mm:menl AI? dar: clear AN

/2 f2

Figure 6.7.3 Modified RP for 2-parallel architecture (a) 5/3 (a, b) 9/7

read in the first half cycle and written in the second half cycle. In the cycle 15, Table

6.4 shows that coefficients HO,I is stored in the first location of TLBI, while

coefficient H2, I is stored in the second location in cycle 19 and so on. Run 2 starts at

cycle 27. In cycle 28, the first location ofTLBI, which contains coefficients HO,l is

read during the first half cycle and is loaded into Rdl by the positive transition of the

cycle, whereas coefficient H0,2 is written into the same location in the second half

cycle. Then, the negative transition of clock cycle I 0 transfers contents of Rdl to Rt2

in stage 2.

In Figure 6.7.3, the control signal, s, of the two multiplexers' labeled mux is set I

during run I to pass RO of both stages 2 and 3, whereas in all other runs, it is set 0 to

216

Table 6.4 Dataflow of the 5/3 RPI

CK RPI input latches RP!output
j, STAGE I STAGE 2 STAGE 3 STAGE 4 latches

RtO Rtl TLBI RtO Rt2 Rtl RO RIO Rtl RO TLB2 lltO Rtl Rt2 RIO Rtl
II LO,O HO,O ----- -----
13 LO,I HO,I LO,O ---- HO,O ----- -----
15 L2,0 H2,0 HO,I LO,I ---- HO,I HO,O XO,O --- ---- ----- ------ 17 L2,1 H2,1 L2,0 ---- H2,0 ----- X0,2 HO,O XO,O XO,O ---- ---- ----- -----

5 19 L4,0 H4,0 H2,1 L2,1 ---- H2,1 H2,0 X2,0 ----- ----- X0,2 X0,2 HO,O XO,O XO,O -----
"' 21 L4,1 H4,1 L4,0 ---- H4,0 ----- X2,2 H2,0 X2,0 X2,0 ----- ----- X0,2 XO,I

23 L6,0 H6,0 H4,1 L4,1 ---- H4,1 H4,0 X4,0 ----- ----- X2,2 X2,2 H2,0 X0,2 X2,0 -----
25 L6,1 H6,1 L6,0 ---- H6,0 ----- X4,2 H4,0 X4,0 X4,0 ----- ------ X2,2 X2,1
27 L0,2 H0,2 H6,1 L6, I ---- H6,1 H6,0 X6,0 ----- ----- X4,2 X4,2 H4,0 X4,0 X4,0 -----
29 L2,2 H2,2 H0,2 L0,2 HO, I H0,2 ----- X6,2 H6,0 X6,0 X6,0 ----- ------ X4,2 X4,1

"' 31 L4,2 H4,2 H2,2 L2,2 H2, I H2,2 ----- X0,4 HO, I ----- X6,2 X6,2 H6,0 X6,0 X6,0 -----z
:::J 33 L6,2 H6,2 H4,2 L4,2 H4,1 H4,2 ---- X2,4 H2, 1----- X0,4 X0,4 HO,I X0,2 X6,2 X6,1

"' 35 ---- ----- H6,2 L6,2 H6, I H6,2 ----- X4,4 H4, I ----- X2,4 X2,4 H2,1 X2,2 X0,4 X0,3
37 ---- ----- ----- ----- ------ ----- X6,4 H6, I ----- X4,4 X4,4 H4,1 X4,2 X2,4 X2,3
39 ---- ----- ----- ----- ------ ---- ------ ----- ----- X6,4 X6,4 H6,1 X6,2 X4,4 X4,3
41 ---- ----- ----- ----- ------ ---- ------ ----- ----- ---- ----- ------ X6,4 X6,3

pass coefficients read from TLB I and TLB2.

6.8 Proposed 4-para/lel external architecture

To further increase speed of computations twice as that of the 2-parallel architecture,

the 2-parallel architecture is extended to 4-parallel architecture as shown in Fig. 6.8. I

(a). This architecture is valid for 5/3, 917, and combined 5/3 and 9/7. It consists of 4 k­

stage pipelined CPs and 4 k-stage pipelined RPs. The waveforms of the 3 clocks[;,

/.a. and/.h used in the architecture are shown in Fig. 6.8.1 (b). The frequency

of clock[. is determined from statement] as

(6.1 0)

The architecture scans the external memory with frequency;" and it operates with

frequency /.a and/.h· Every time clockf4a makes a negative transition CPI loads into

its input latches RtO and Rtl two new coefficients scanned from external memory

through the buses labeled busO and bus I, whereas CP3 loads every time clock /.a

makes a positive transition. CP2 and CP4 load every time clock/46 makes a negative

and a positive transition, respectively. On the other hand, both RPI and RP2 load

simultaneously new data into their input latches RtO and Rtf each time clock[.a

makes a negative transition, whereas RP3 and RP4 loads each time clock[., makes a

negative transition.

217

k Load [
/,, = J;/4 IL-__ c_P_I ----'f

(a)

Load
CP3

(b)

l Load
f RPI, RP2

Figure 6.8.1 (a) Proposed 2-D IDWT 4-parallel pipelined external architecture for 5/3
and 9/7 and combined 5/3 and 9/7 (b) Waveforms of the clocks

218

The dataflow for 4-parallel 5/3 external architecture is given in Table B.21, where

CPs and RPs are assumed to be 3- and 4-stage pipelined processors, respectively. The

dataflow table for 4-parallel 917 external architecture is similar in all runs to the 5/3

dataflow except in the first run, where RPs of the 9/7 architecture, specifically RP3

and RP4 generate a pattern of output coefficients different from that of the 5/3. RP3

and RP4 of the 917 architecture generate every clock cycle, ref(,rence to clockj,b, two

output coefficients as follows. Suppose, at cycle number n the first two coefficients

X(O,O) and X (I ,0) generated by RP3 and RP4, respectively, are loaded into output

latch RtO of both processors. Then, in cycle n+ 1, RP3 and RP4 generate coefficients

X(2,0) and X(3,0) followed by coefficients X(4,0) and X(5,0) ia cycle n+ I and so on.

Note that these output coefficients are the coefficients generated by both RP1 and

RP2 in Table B.2l.

The strategy used for scheduling memory columns for CPs of the 5/3 and 9/7 4-

parallel architecture, which resemble the one adopted for 2-parallel architecture, is as

follow. In the first run, both 5/3 and 9/7 4-parallel architecture will be scheduled to

execute 4 columns of memory, two from (A) and the other two from (B), both of Fig.

6.3.2. Each CP will be assigned to execute one column of memory coefficients as

illustrated in the first run of the dataflow shown in Table B.21, whereas in all

subsequent runs, 2 columns at a time will be scheduled for execution by the 4 CPs.

One column from Fig. 6.3.2 (A) will be assigned to both Cf'1 and CP3, while the

other from Fig. 6.3.2 (B) will be assigned to both CP2 and CP4 as shown in the

second run of Table B.2l. However, if number of columns in (A) and (B) of Fig. 6.3.2

is not equal, then the last run will consist of only one column of (A). In that case,

schedule the last column's coefficients in both CP1 and CP3 as shown in the third run

of Table B.21, since an attempt to execute the last column using 4 CPs would result

in more output coefficients been generated than that can be handled by the 4 RPs.

On the other hand, scheduling rows coefficients for RPs, which take place

according to scan method shown in Fig. 6.3.4, can be unders1ood by examining the

dataflow shown in Table B.21. In cycle 17 and 18, the first two rows coefficients are

scheduled for RPs as shown in Table B.21, while CPs generate ,;oefficients of the next

two rows, row2 and row3. Table B.21 shows that the first 4 coefficients of row 0 are

scheduled for execution by RPI and RP3, while, the first 4 coefficients of row I are

219

scheduled for RP2 and RP4. In addition, note that all coefficients generated by CP4,

which belong to column 3 in Fig. 6.3.4, are required in the second run's computations,

according to the DOGs. Therefore, this would require inclusion of a TL8 of size N/4

in each of the 4 RPs to store these coefficients. The second run, however, requires

these coefficients to be stored in the 4 TL8s as follows. Coefficients HO, 1 and HI, 1

generated by CP4 in cycle 16 should be stored in the first location ofTL8 ofRP1 and

RP2, respectively. These two coefficients would be passed to their respective TL8

through the input latches ofRP1 and RP21abeled Rt2, as shown in cycle 17 of Table

8.21. Whereas, coefficients H2, 1 and H3, I generated by CP4 at cycle 20 should be

stored in the first location of TLB of RP3 and RP4, respectively. These two

coefficients are passed to their respective TLB through the input latches of RP3 and

RP4 labeled Rt1, as shown in cycle 22 of Table 8.21. Similarly, coefficients H4,1 and

H5, 1 generated by CP4 at cycle 24 should be stored in the second location of TL8 of

RP1 and RP2, respectively, and so on. These TLBs are labeled TLB 1 in Fig. 6.8.1 (a).

6.8.1 Column and row processors for 5/3 and 9/7 4-parallel external architecture

The 5/3 and the 9/7 processors datapath architectures shown in Figs. 6.5.1 and 6.5.2

were developed assuming the processors scan external memory either row by row

or column by column. However, CPs and RPs of the 4-parallel architecture are

required to scan external memory according to scan methods shown in Figs. 6.3.2 and

6.3.4, respectively. The 4-parallel architecture, in addition, introduces the requirement

for communications among the processors in order to accomplish their task.

Therefore, the processors datapath architectures shown in Figs. 6.5.1 and 6.5.2 should

be modified according to the scan methods and the communications requirements so

that they fit into the 4-parallel's processors. Thus, in the following, the modified 4

CPs will be developed first followed by the 4 RPs.

6.8.2 Modified CPs for 4-parallel architecture

The 4 CPs of the 4-parallel architecture each is required in the first run to execute

one column at a time. That means the first run requires no modifications of the 5/3

and 9/7 datapath architectures shown in Figs. 6.5.1 and 6.5.2. However, in all

subsequent runs, each two processors (CP1 and CP3 or CP2 and CP4) are assigned to

execute one column together, which requires interactions between the two processors

220

to accomplish the required task. Therefore, both CPs I and 3, similarly, CPs 2 and 4

should be modified as shown in Fig. 6.8.2 to allow communications. The two

processors communicate or interact through the paths (buses) labeled Pi, P2, P3, and

P4. Fig. 6.8.2 shows modified 5/3 CPs I and 3 which is identical to CPs 2 and 4. Fig.

6.8.2 also represents the first 3 stages of 917 CPs I and 3 (and 9/7 CPs 2 and 4) and

the remaining stages are identical to stages I to 3. Note that since the first 3 stages of

5/3 and 9/3 are similar in structure, the 5/3 processor can be easily incorporated into

917 processor to obtain the combined 5/3 and 9/7 processor for 4-parallel architecture.

The control signal, s of the 4 multiplexers, labeled rnux is set 0 in the first run to

Stage I

CPl

P2

L

Pi
P3 P4

sel

L

Figure 6.8.2 Modified 5/3 CPs 1 & 3 for 4-parallel architecture

221

allow each processor to execute one column and I in all other runs to allow execution

of one column by two processors.

6.8.3 Modified RPs for 4-paral/el/ architecture

In section 6.7.2, it has been pointed out the reasons for including TLBs in the two RPs

of the 2-parallel architecture. For the same reasons, it is also necessary to include

TLBs in the 4 RPs of the 4-parallel architecture, as shown in Figures 6.8.3 (a) and

(a,b) for 5/3 and 9/7, respectively. The processor datapath for both RPI and RP3,

which is also identical to the processor datapath of both RP2 and RP4, are drawn

together in Figs.6.8.3 (a) and (a, b) for 5/3 and 9/7, respectively, since in the first run,

Stage 3
H

(o)

Figure 6.8.3 (a) Modified 5/3 RPs I and 3 for 4-parallel external architecture

222

TLB3

(b)

P4

Stage7 ~
1--+--.....;~- ~ {' H

I
.l~h I

TLB4 I

ETL
("')
o._
0:::

Figure 6.8.3 (a, b) Modified 9/7 RPs I and 3 for 4-parallel ''xternal architecture

both processors are required to execute together the first 4 ceefficients of each row.

Which implies interactions between the two processors during the computations and

that take place through the paths (buses) labeled PI, P2, P3, and P4. However, in all

subsequent runs, according to the scan method shown in Fig. 6.3.4, each RP will be

scheduled to execute each time two coefficients of a row as shown in cycles 37 and 38

of Table B.21. The advantage of this organization is that the total size of the TLBs

does not increase from that of the single pipe lined architecture, when it is extended to

2- and 4- parallel architecture.

In the first run, all TLBs m Fig. 6.8.3 will be written only, whereas, in all other

runs, the same location of a TLB will be read in the first half cycle and written

in the second half cycle with respect to clock[," or /lh-

223

The control signal, s of the six multiplexers, labeled mux in Fig. 6.8.3, is set 0 in

the first run to allow in the RP I, coefficient coming through path 0 of each

multiplexer to be stored in its respective TL8, whereas in the RP3, it allows contents

of Rt2 and Rdl in stages I and 3, respectively, to be passed to the next stage. In all

subsequent runs, s is set I to pass coefficients read from TL8s to next stage.

Note that during run 2 all RPs execute independently with no interactions

among them. In addition, in the first run, if the first coefficient generated by stage 2 of

RP3 is stored in TL82 of RPI, then the second coefficient should be stored in TL82

of RP3 and so on. Similarly, TL8 I, TL83, and TL84 of both RPI and RP3 are

handled. Furthermore, during the whole period of run I, the control signals of the

three extension multiplexers labeled muxeO, muxel, and muxe2 in RPI should be set

0, according to Table 6.2, whereas those in RP3 should be set normal as shown in the

second line of Table 6.2, since RP3 will execute normal computations during the

period. However, in the second run and in all subsequent runs except the last run, the

extension multiplexers control signals in all RPs are set normal. Moreover, the

multiplexers labeled muxco in stage 4 is only needed in the combined 5/3 and 9/7

architecture, otherwise, it can be eliminated and Rt2 output can be connected directly

to RtO input of the next stage in case of 9/7, whereas in 5/3, RIO is connected directly

to output latch RIO. In the combined architecture, signal sea of muxco is set 0 if the

architecture is to perform 5/3; otherwise, it is set I if the architecture is to perform

917.

6. 9 performance evaluation

In order to evaluate performance of the two proposed parallel pipelined architectures

in terms of speedup and throughput as compared with single pipelined architecture

consider the following. Assume subbands HH, HL, LH, and LL of each level are

equal in size. The dataflow for single pipelined architecture shown in Table 8.18

shows that p, = 20 clock cycles are needed to yield the first output. Then, the total

number of output coefficients in the first run of the J'" level reconstruction can be

estimated with the help of Table 8.18 as

N/2 1
-' (6.11)

and the total number of cycles in run I is given by

224

(6.12)

The total time, T1, required to yield n pairs of output coefficients for the J'h level

reconstruction by single pipe lined architecture can be estimated as

(6.13)

On the other hand, the dataflow Table 8.20 for th,; 2-parallel pipelined

architecture shows that p 2 = 19 clock cycles are needed to yield the first 2 output

coefficients. Then, the total numbers of paired output coefficients in the first run of

the J'h level reconstruction can be estimated as

3/2 N /21 _,.

The total number of2-paired output coefficients is given by

and the total number of cycles in run I is

2N/21
-

1

(6.14)

(6.15)

(6.16)

Note that the total number of paired output coefficients of the first run in each level of

reconstruction starting from the first level can be written as

3/2 N,3/2 N /2,3/2 N 1 4, ,3/2 N /21
_, (6.17)

where the last term is Eq (6.14).

The total time, T2, required to yield n pairs of output coefficients for the J'h level

reconstruction of an NxM image on the 2-parallel architecture can be estimated as

T2 = {p, +2N/21
-

1 +2(n/2~3/4N/2'-'J)r,
T2={p, +I/2N/21

-
1 +n)tr/2k

(6.18)

(6.19)

The term 2(n/2~3/4N/21-') in (6.18) represents the total number of cycles of run 2

and all subsequent runs.

The speedup factor, S2, is then given by

TI {p, +N/2'-' +2n)tr/2k
S2~-~

~ T2 ~ (p, + I/2N/2' 1 + n)tr/2k
(6.20)

225

For large n, the above equation reduces to

82
= 2(1/2N/2H + n) =

2
{I/2N/21

-
1 + n) -

(6.21)

That means the 2-parallel architecture is 2 times faster than the single pipelined

architecture.

Similarly, the dataflow Table 8.21 for the 4-parallel pipelined architecture shows

that p 4 = 33 clock cycles are needed to yield the first two output coefficients. In

addition, with the help of the dataflow table of the 4-paralell architecture it can be

estimated that both RPI and RP2, in the first run of each level reconstruction, yield

(N /21
-

1)/2 pairs of output coefficients, while both RP3 and RP4 yield N /2'-1 pairs

of output coefficients, a total of 3/2 N /21
-

1 pairs of output coefficients. The total

number of cycles in run I is then given by

4(N /2 1
-

1)/2 (6.22)

Thus, the total time, T4, required to yield n pairs of output coefficients for the J1
h level

reconstruction of an NxM image on the 4-parallel architecture can be estimated as

T4=(p, +2N/21
-

1 +2(n-3/2N/2 1
-

1)/2)r,

T4 = {p, + 2N /2 1
-

1 + (n- 3/2 N /2 1
-

1))t" j4k

T4=(p, +t/2N/2 1
-

1 +n)tr/4k

(6.23)

(6.24)

(6.25)

The term (n- 3/2 N /2 1
-

1
) represents the total cycles of run 2 and all subsequent runs.

The speedup factor, S4, is then given by

TI {p1 +N/21
-

1 +2n)t"j2k
S 4 = -T-4 = '(P"-,-'+-t/'2'--N-;""1 2-c,-:_1_+_n:._)f-t'--"-/ 4-k

For large n it reduces to

S4 = 4(1/2N/2
1

-
1

+n) =4
(l/2N/2 1

-
1 +n)

(6.26)

(6.27)

Thus, the 4-parallel architecture is 4 times faster than the single pipe lined architecture.

The throughput, H, which can be defined as number of output coefficients

generated per unit time, can be written for each architecture as

226

H(single)=n/(p, +N/21
-

1 +2n)tP/2k

The maximum throughput, ft"ax, occurs when n is very large (n->oo), thus,

Hm"(sin gle) = H(sin gle),~, = nkJPj(l/2 N /2 1
-

1 + n)

H(2- parallel)= n/(p, + 1/2 N /2 1
-

1 + n)t P j2k

Hm"(2- parallel)= H(2- parallel)H, =. 2knfP/(l/2N/21
-

1 +n)

H(4- parallel)= nj(p4 +lj2Nj21
-

1 +n)tPj4k

Hm"(4- parallel)= H(4- parallel)H,~ = 4knfP/(l/2N/2'-' +n)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

Thus, the throughputs of the 2-parallel and the 4-parallel pipe lined architectures have

increased by factors of 2 and 4, respectively, as compared with the single pipelined

architecture.

6.10 Conclusions

In this chapter, to show the effectiveness of the approach adopted for developing

forward architectures in chapters 3 and 4, the architectures for 2-dimensional inverse

discrete wavelet transform (2-D IDWT) for 5/3 and 9/7 were developed. First, a high­

speed single pipelined inverse architecture including its column-processor (RP) and

row-processor (CP) were developed. Then, the single pipelined architecture IS

extended to 2-parallel and 4-parallel to achieve speedup factors of 2 and 4,

respectively, according to the evaluation given in section 6.9. The advantage of the

single pipelined architecture developed here is that it only requires a total temporary

line buffer (TLBs) of sizes 2N and 4N for 5/3 and 9/7, respectively, and the TLB

requirement does not increase when it extended to parallel architecture. The

interleaving technique is utilized to speedup the computations by allowing the two

processors to work in parallel earlier during the computations and to reduce TLB

requirement between CP and RP to a few registers.

227

CHAPTER 7

EXPERIMENTAL RESULTS

7.1 Performance analysis

In chapter 3, two scan methods were developed for 9/7 algorithm. The first scan

method shown in Figure 3.5.1 can be used for both 917 and 5/3 algorithms.

Architecture developed based on this scan method will not yield any output

coefficients in the first run. However, starting from the second run its dataflow is

same as that of the 5/3 dataflow shown in Table 8.6. On the other hand, the 9/7

architecture developed based on the second scan method shown in Figure 3.5.3 will

yield output coefficients starting from the first run, as illustrated in the dataflow

shown in Table 8.2(a). This might give the impression that the second scan method

performs better than the first scan method. To show that both scan methods achieve

the same performance in terms of the total number of cycles and throughput, consider

the following. From the RP and the CP of the 9/7 shown in Figures 3.8.8(a) and

3.8.4(a), respectively, which are based on the scan method shown in Figure 3.5.1, it

can be shown that (p, +N) cycles are needed to yield the first pair of output

coefficients. The remaining (n-1) pairs of output coefficients, which will be produced

according to Table 8.6, would require (n-1) cycles. Thus. the total time Tl required to

yield n pairs of output coefficients for j-level decomposition of an NxM image is

given by

Tl = {p, + N + (n- I))r,

where r, = t P j k is the clock period. The throughput His given by

H = n/(p, + N + (n- 1))r,

The maximum throughput,Hm" occurs when n is very large (n->oo), thus,

228

(7.1)

(7.2)

(7.3)

On the other hand, Table B.2 of the architecture based on the scan method shown

in Figure 3.5.3, indicates p2 = 23 cycles are needed to yield the first pair of output

coefficients. In addition, the total number of paired output coefficients and the total

number of cycles in the first run are Nand 2N-2, respectively. Thus, the total time T2

required to yield n pairs of output coefficients for j-level decomposition is estimated

as

(p2 +(2N-2)+(n-N)}r,

where r 2 = tP/k. The throughput His given by

H = n/(p, + 2N + (n- N))r2

Hm" =H =nkf jN+n
!l-¥X p

(7.4)

(7.5)

(7.6)

Similar analysis also can be carried out for intermediate architectures based on the

scan methods shown in Figures 3.7.1 (a) and (b). Equations 7.1, 7.3, 7.4, and 7.6,

show that the architectures developed based on both scan methods give the same

performance in terms of the number of clock cycles and throughput, if r, = r 2 •

However, the hardware and the control complexities of the architecture based on the

second scan method, as indicated in Figures 3.8.4(b) and 3.8.8(b) are more complex

than the one based on the first scan method shown in Figures 3.8.4(a) and 3.8.8(a).

The situation becomes even more complex and worse when the architecture is

extended to parallel. Furthermore, the implementation results in Figurers C.3.3 and

C.4.3 show the speed advantage of the first scan method. Figure C.3.3 shows that the

first scan method architecture operates with frequency 147.95 MHz, while Figure

C.4.3 shows the second scan method architecture operates with frequency 136.04

MHz. For these reasons, therefore, the first scan method is adopted for all parallel

architectures developed in chapter 4.

7.2 Performance evaluations and comparisons

This section evaluates and compares architectures developed in this research with

most recent architectures in the literatures. The architectures are evaluated in terms of

hardware complexity, hardware utilization, computing complexity, and control

complexity. Hardware complexity is measured by the number of multipliers, the

number of adders, the total size of the line buffer, and the complexity of the control

229

circuits [40]. Computing complexity for 2-D DWT is estimated by the number of

clock cycles required to scan an NxM image for j levels of decomposition.

Table 7.1 shows the performance comparison results. The line-based architecture

presented in [1] requires a line buffer of size 5.5N implemented in two-port RAM.

Besides, its critical path delay is large, 4Tm + 8Ta. Whereas the proposed

architectures use single-port RAMs of sizes 3N and 4N for overlapped and

nonoverlapped architectures, respectively.

Flipping structure [2] introduces a new method to shorten the critical path of the

lifting-based architecture to one multiplier delay but requires a line buffer of size liN

[43]. In [21], a modified view of the flipping structure, which shortens the critical

path delay to one multiplier and reduces the size of the line buffer required to

4N, is presented. In fact, [2, 21] have only introduced a method not an architecture,

which aims at shorting the critical path delay of lifting- based to one multiplier delay.

However, this issue becomes less important after the fact that scale factors and

coefficients of the 9/7 filter can be implemented in hardware using only two adders as

illustrated in [23]. The proposed overlapped and nonoverlapped architectures require

a total line buffer of size 3N and 4N, respectively. However, note that by adding a line

buffer of size N in the nonoverlapped architecture, the power consumption has been

Table 7.1 Comparisons ofseverall-level (9/7) 2-D DWT architectures

Architecture Multi Adders Line Computing Critical
buffer Time Path

Generic RAM-based [I] 10 16 5.5N 2(J-4l)NM 4Tm +8Ta
Flipping [2] 10 16 liN 2(1-4"l)NM Tm
Chao [60] 6 8 5.5N 2(J-4l)NM Tm
PLSA [21] 12 16 4N N/A Tm
lling [43] 6 8 5.5N 2(1-4·J)NM Tm
Lan [29] 12 12 6N 2(1-4·))NM Tm
Jain [61] 9 16 ION 2(1-4·))NM Tm+Ta
Cheng [22](2-oarallel) 18 32 5.5N (l-4J)NM N/A
FIDF [62](2-oarallcl) 24 32 5N (1-4-J)NM Tm+2Ta
Proposed (overlapped) 10 16 3N 2(1-4·))NM Tm+2Ta
Proposed (nonovcrlappcd) 10 16 4N 2(1-4-J)NM Tm+2Ta
Proposed (2-parallel) 18 32 3N (l-4·J)NM Tm+2Ta
Pronosed (4-narallel) 36 64 3N 1/2(1-4·))NM Tm+2Ta
Proo. (2-oarallcl intermediate) 18 32 3N (1-4-j)NM Tm+2Ta
Proo. (3-oarallel intermediate) 28 48 3N 2/3(1-4·))NM Tm+2Ta
Proo. (single pioelined inverse) 10 16 4N 2(1-4·))NM Tm+2Ta
Prooosed (2-parallel inverse) 18 32 4N (1-4·))NM Tm+2Ta
Prooosed (4-=Darallel inverse) 36 64 4N 112(1-4l)NM Tm+2Ta

230

reduced to minimum. Thus, the nonoverlapped architecture could be a very efficient

alternative in applications where power consumption is a seriov.s concern.

In [43, 60], by reordering the lifting-based DWT of the 9// filter, the critical path

of the pipe lined architectures have been reduced to one multiplier delay but requires a

total line buffer of size S.SN. However, [43] requires two row processors and [60]

requires 4 processing elements (PEs), two in each horizontal and vertical processors,

to perform prediction lifting and update lifting. In addition, both [43, 60] require the

use of real multipliers with long delay that cannot be implemented by using arithmetic

shift method [23]. The architecture proposed in [29] achieves a critical path of one

multiplier delay using very large number of pipeline registers. In addition, it requires

a total line buffer of size 6N. In the efficient pipelined architecture [61], a critical path

delay of Tm+ Ta is achieved through optimized data flow graph but requires a total

line buffer of size I ON.

On the other hand, the architectures proposed in [22, 621, like the proposed 2-

parallel architectures, achieve a speedup factor of 2. How~ver, [62], the deeply

parallel architecture requires a total line buffer of size SN, whereas [22] requires a

total line buffer of size S.SN. The advantage of the parallel architectures developed in

this research is that the total line buffer does not increase from that of the proposed

single pipeline architectures when the degree of parallelism is increased. In addition,

the architectures proposed in this research are real architectures, which compared with

architectures listed in Table 7.1 are accurate and complete.

7.3 Experimental results and comparisons

To further verifY that the architectures developed here are accurate, efficient and

practically can be implemented, we have chosen for FPGA implementation five

architectures, which are representative of the other architectures: the 5/3 forward

overlapped scan architecture shown in Figure 3.6.1, the inverse 5/3 architecture

shown in Figure 6.4.1, two 9/7 forward overlapped architectures, one is based on the

scan method shown in Figure 3.5.1 and the other is based on the scan method shown

in Figure 3.5.3, and the 5/3 2-parallel architecture shown in Figure 4.2.1. First, the

Verilog HDL descriptions for the five architectures are developed and then

implemented on Altera FPGA with 16-bit word length for internal datapath. The

231

Verilog HDL program codes for the five architectures are named as module

"decorrelate _processor" for forward 5/3 architecture, module "reconst_processsor"

for inverse 5/3 architecture, module "decrrelation2 _processor9 _7" for the first 9/7

architecture based on the scan method of Figure 3.5.1, module

"decorelation _processor9 _7" for the second 9/7 architecture based on the scan method

of Figure 3.5.3, and module "two_parallel_DWT" for the 5/3 2-parallel architecture.

The Veri log descriptions of the five architectures are compiled and synthesized on

Altera FPGA Stratix II device EP2515F484C3 using Quartus II CAD software. This

software provides automatic mapping of designs written in Verilog into Field

Programmable Gate Arrays (FPGAs).

The compilation and the synthesis reports for module "decorrelate_processor" are

shown in Figures C. I.!, C.1.2, and C.1.3, whereas, the compilation reports for module

"reconst_processor" are shown in Figures C.2.1, C.2.2, and C.2.3. The forward 9/7

compilation reports for module" decrrelation2_processor9_7" are shown in Figures

C.3.1, C.3.2 and C.3.3, while that of module "decorelation_processor9 _7" are shown

in Figures C.4.1, C.4.2, and C.4.3. The 2-parallel architecture compilation reports for

module "two_parallei_DWT" are shown in Figures C.5.1, C.5.2, and C.5.3.

The compilation report in Figure C. I.! shows that the design uses 93 pins, a total

of 438 logic cells, and a total of 434 registers, whereas, the compilation report shown

in Figure C.1.2 indicates that the total power dissipation of the design is 500.46 mW.

On the other hand, the Compilation Report-Timing Analyzer Summary shown in

Figure C.1.3 lists four parameters. The first parameter /.,, indicates the worse-case

setup time required is 3.195 ns and it is from Ed3 to REd3. This parameter means

that signal Ed3 must have a stable value at least 3.195 ns before each active edge of

the clock. The second parameter 1m indicates the worse-case clock-to-output delay is

6.301 ns from register L_data_out[8] to pin L_data_out[8]. In other words, it indicates

the time elapsed from an active edge of the clock at the clock pin until an output

signal is produced at an output pin [65]. The third parameter in the Timing Analyzer

Summary is th, which give the worse-case hold time, and it is 1.831 ns for the path

from pin data _inO[O] to register RIO _1 [I 0]. Hence, the signal at pin data _inO[O] must

maintain a stable value for at least 1.831 ns after each active edge of the clock. The

last parameter in the list gives the maximum frequency, which is often called Fmax. at

232

which the synthesized circuit can operate isl85.74 MHz. This is a useful indicator of

performance. The maximum frequency is determined by the path with longest

propagation delay, often called the critical path, between any two registers (flip-flops)

in the circuit.

Figure C.l.3, shows that the maximum operating frequency Fmax of the module is

detennined by the TLB operations where the path with Ionge:;! delay occurs. This is

expected since the overlapped architecture requires both read and write operations in

the TLB to take place in the same clock cycle. However, since the intermediate

architecture for 5/3 shown, in Fig 3.7.2, does not require such constraint on its TLB,

therefore, the intermediate architecture would operate with higher frequency.

Furthennore, the synthesis results shown in Figures C.l.3, C.2.3, C.3.3, and C.4.3,

which show the maximum frequencies of the four implemented architectures, imply

that the parallel forms of these architectures will also operate with the same

frequencies. In fact, the 5/3 2-parallel architecture operating with frequency of 186.01

MHz, which is the parallel fonn of the single 5/3 pipelined architecture operating with

frequency of 185.74 MHz, verifies that the 2-parallel architt:cture is 2 times faster

than the single pipelined architecture. This result is also in agreement with the

theoretical evaluation given in section 4.2.4.

To compare the implementation results of our architectures with other

implementations in the literature, Table 7.2 is provided which summarizes the

experimental results of several implemented architectures. This table shows that the

5/3 implementations in [3, 24] with 8-bit word length operate with frequencies of 110

MHz and 129.93 MHz, respectively, whereas, the proposed S/3 forward and inverse

with 16-bit word length operate with maximum frequencies of 185.74 MHz and

188.32 MHz, respectively. In addition, the implementation in [3] requires a large

number of FPGA logic cells and registers. On the other hand, the 5/3 2-parallel

architecture in [62], which is implemented on the same FPGA device, operates with a

frequency of 145.54 MHz, whereas, the proposed 5/3 2-parallel architecture operates

with frequency of 186.01 MHz.

The last 3 implementations in Table 7.2 are 9/7 architectures. Comparing the two

9/7 architectures, in term of speed, with the architectures proposed in [30, 40], shows

233

Table 7.2 Experimental results and comparisons

Architectures Type Logical Regs Max Power Word
cells frequency dissipation lengt_h

Zewail [24] 5/3 473 149 112.93 MHz N/A 8-bit
FIDF[62] 513 1316 466 145.54 MHz N/A 16-bit
2-parallel
Gregory[3] 5/3 1741 2542 110 MHz N/A 8-bit
PLSA[21] 9/7 416 192 152.39 MHz N/A 16-bit
Xiong[40] 9/7 2992 N!A 50 MHz 393.62 mw 16-bit
Sandro[30] 917 1002 N/A 105 MHz N/A 8-bit
Proposed forward 5/3 438 434 185.74 MHz 500.46 mw 16-bit
Proposed inverse 5/3 446 457 188.32 MHz 465.39 mw 16-bit
Proposed 513 872 697 186.01 MHz 580.98 mw 16-bit
2-parallel forward
Proposed first 9/7 2036 858 147.95 MHz 673.37 mw 16-bit
Proposed second 9/7 2529 1049 136.04 MHz 739.36 mw 16-bt

that the 917 architectures implemented in this work operate with higher frequencies. In

addition, the implementation in (40] requtres more logic cells and the

operating frequency is very slow, 50 MHz. The implementation in [21], operates with

a frequency of 152.39 MHz, which is slightly higher than the first proposed 9/7

implementation, which operate with a maximum frequency of 147.95 MHz. However,

(21] introduced only a method, not architecture, for reducing the critical path delay to

one multiplier and had implemented only one processor for 1-D DWT, while 2-D

DWT architectures usually consist of two processors.

The final stage of the implementation is the timing simulation. To verify that both

forward and inverse 5/3 architectures, the 5/3 2-parallel architecture, and both 917

architectures perform their intended logical functions accurately in the worst case

timing of the target device; we have applied test input patterns and have simulated the

implemented architectures' hardware modules. Figures 7.3.1, 7.3.2, 7.3.3, 7.3.4, and

7.3.5 show the simulation waveform results for the five implemented architectures.

The forward 5/3 module "decorrelate _processor" is simulated by applying a 2-

dimensional array of size 6x5 containing random numbers. This 6x5 image is

scheduled according to the scan method shown in Figure 3.5.1, which requires 3

pixels to be fed into the circuit every clock cycle. The 3 pixels are indicated as

data_inO, data_in1, and data in2 in Figure 7.3.1. In cycle number 2 of Figure

7.3.1, the first 3 pixels 22, 143, and 65 of the first row are applied to the hardware

module. In cycle 3, the first 3 pixels 62, 5, and 222 of the second row are applied to

the hardware module. In cycle 7, the last 3 pixels 64, 121, and 34 of the last row are

234

applied to complete the first run. The second run begins at cyde 8, where pixels 65,

192, and 115 are applied, and ends at cycle 13 with pixels 34, 143, and 32. The last

run begins at cycle 14 and ends at cycle 19. Note that pixels of the last column are

applied to the circuit one pixel at a time as shown in Figure 7.3.1, which is in

accordance with the scan method.

The first two outputs of run! simulation, which are shown under the labels

L data out and H data out in Figure 7.3.1, appear at c:ycle 12 with output

coefficients 21 and -I 03. These two coefficients belong to the first locations in

subbands LL and LH, respectively. The second two output coefficients -3 and -207

belong to the first locations in subbands HL and HH, respectively. The hardware

module alternates between generating output coefficients for subbands LL and LH

and subbands HL and HH until the run ends. The first run ends by the positive

transitions of clock cycle 18 with output coefficients 2 and 33. The positive transition

of cycle 18 marks the ending of run! and the beginning of run 2 with coefficients 131

and 29. These two output coefficients belong to the first location of the second

column in each subbands LL and LH, respectively. The positive transition of clock

cycle 24 marks the ending and the beginning of run 2 and tht: last run, respectively.

The last run generates only output coefficients for subbands LL and LH. The

simulation results in Figure 7.3.1 show that the hardware module for

"decorretate_processor" precisely performs its function and according to Table B.6.

The signal between data_in2 and L_data_out in Figure 7.3.: are control signals for

RP and CP of Figures 3.8.7 and 3.8.3, respectively. The control signals sreO, srel, and

sre2 are control signals for RP's extension multiplexers, whereas, signals sceO, see!,

and sce2 are the control signals for CP's extension multiplexers. Signals incar and

rst_ TLBAR control the operation of the TLBAR (TLB address register), while signal

ETLB is used for enabling TLB for read and write operations. The control signals

Ed2, Ed3, and Ed4 control the operations of the registers and multiplexers that exist

between the RP and the CP in Figure 3.6.1 and are set in Figure 7.3.1 according to

Table 3.2.

In order to validate the inverse architecture, the output coefficients generated by

module "decorrelate _processor" are fed into the inverse hardware module

"reconst_processor" as shown in Figure 7.3.2. The coefficients are scheduled

235

['tuloroal 1overlapp_drthotedur., d.,correlat.,_pro(e§~ drcorrelate...J)foti:"Swr- [51mufationRt!p<lrt- §I • ...14J.l!J
Vievf---~~- Ass9"*'!.~~---F!~ Tools -~ .. -Help -:-c---r- --~-~
" 1•1 .x "'e. I"' " !!"'"""'"-""'""' 3fiC "«~ ~0~;-i~T>;; oT~ I-& 1 ® 1111! :G I
e_Piocesstt.vwf I 0 Sillulalion Report· Silldation W.....tonn I

·rnesar.f

clock

III dllt~_inO

III dal~_rnl

Ill dal~_rn2

ETLfl

rst_TLBAR

111C~I

sreO

sre1

sre2

Ed2

Ed3

Ed4

sceO

scel ~~~~~~i~~~~~iiiii~iii~~iiiiiii~~iii~ii~ $ce2

Ill L_d"'-'"
ill H_dat~_aut

Fig. 7.3.1 Simulation Waveforms for forward 5/3 module "decorrelate_processor".

'f.ew Project Assqwnents Proc;essii'IQ Tools Wrldow 1-1$

"J!il'~ "£ e.l·" ~'JI"'""~J''"""-' -~::J I }t "«~ ~ e> Iii~"-. ! 'Ill o I !:'. I~ I® I !:ill '!1
oocenor.v I~Silluletionftepad:·SilluWionW...r- I ----
Ide: Timg

rime Bar: I ·- 200.0 na

I~
1111 2G.~nt 52.pm 79}m 1051Sna 132,0na 1~4na 1841Bna I ,_

2000 ns

'""' L.i • 1!1 data_1nO X · · 6 111 ·91 51 X X X

Iii d..ta_onl

~•0 w;:·
ocol M<>

~·' ~ r
• I "" l_ l__jl__jl__jl__jl_Jl__jl__jl__j
ETLB $:%
rst_TLBAR ~ r I
rncar ;:;:,:
"' ,,,
,,,

lB L_dllt~_out 22 2 02 142 41 64 18 6 • 11 93 6 • 11 X

Iii H_data_otJ _!!_ -- -.A. -·

Figure 7.3.2 Simulation Waveforms for inverse 5/3 module "reconst_processor"

236

" a t ~!::-~ 1 ~-··c~~ .ldec~~~~bor~2_proc~_:s_~r~-~--- ::J i.~.-~ <~_~ ~_l!_~~-!-~~ j ~(!)-~-~ -~ . ~ I®,~ :~ -~-
"'Report • SiiMIIation Wavefonn

avefotm~

:le: Timiftl

imeBs:l 11l5ns ±J Poinler; r------131.52 m:

I ~" 14.pns "P"' 42.pnt "'P"' 70.pnt 84.pm 98.pnt 112;0ns 12610m 140;0 m: 1541Dns 16810ns I ,_
171 5 nl

'"'' ~rtn,tL.n_,Jl~nn_n.£lJ"LJ"Lh~ ~
13 data_inO 4 4J 0 230 11 ·1 -130 80 34 1 0 0 190 57 11 -49 9 ~ 71 1

13 data_in1 X " ·4 2 10 . 4 1 '" 110 ·130~18 1 1 0 "' 52 ·3 ·1 ·2 5

IB data_1n2 X 2 1 1 0 80 1 ·1 0 9 31 1 1 X

ETLB
~ r -nLTLBAR

i
rncar 'I--
""" 00

'
srel

01

'"'

_r-Lfj={ g J=f'~ 02

Ed2 .

Ed3

Ed4 _r- l___j"" l.. ..I l.. ..I l__-
sceO

sce1

sce2 I

~ !.tl L_data_oo.i 0

IB H_~ta_out ·3 ·1 85

i:neBa:, 171.5m '"''"'I 155.15nt

I
71.5nt t~Sns 1~5ns 21~5ns 22715nt 24115nt 25515ns ~Snt

~·"'
29715nl 311 15ns ~'"' ~ ,_

71 5 ns

clock ULnnn.~r~nn
00 data_rnO 111 X

Ill data_1nl 1. X

[!:1 data_rn2 X

ETLB

ISI_TLBAR h
·=
""" h 00

srel

01

"" 02
Ed2 }={ :=]={]={ r= }={ }={ = pl__ff1 }= }={J Ed3

Ed4 ~ l.. ..I
l__f

l__ ..I l___j"" l.. ..I
seeD !

scel

sce2 I d.
li L_data_out 61 26 ·14 ·1 4 10 " ·2 1 .l_4 5i' I 211 14 20 78 J3 1 4 -260

IB H_data_out 86 44 ·11 44 8 ·I ·14 -11 14 ·10 42 86 3 5 ·I 6 14 66

Fig. 7.3.3 Simulation Waveforms for first 9/7 module "decrrelation2_processor"

237

m_procenorS_7.v

de: Timhg

·-
'""' 1!1 data_110

!11 dat~_111

!11 data_112

ETLB

rst_TLBAA

.o•
sreO

" srel

Q1

sre2

Q2

"
Ed2

Ed3

Ed<

sceO

scel

sce2

"
13 l_dal~_out

Ill H_data_out

....
clock

1!1 data_inO

1!1 data_tn1

III data_rn2

ETLB

rst_TLBAR

~"
sreO

QO

sre1

Q1

sre2

Q2

Ed2

Ed3

Ed4

"" scel

sce2

" 13 L_data_out

r±l H_data_out

194.52ns '""r-·
I '" '"I"~ "-'1'~ "-57'~ 11&lS8~ "'""' ,,,,,. I

1 527"

-~~ .
1 ·1 1

_A

H
l___f 1__f l___f l___J

l___f 1__f l___f l___J 1__f

r

I

!

!

147 15S ·17 66 120 2 243 104 262 ·221 26 134 1

·11 91 9 H

;y.

36 243

1L

{]=

l_ -'J=f '=="= P-s l_ J l_

s

~ ·1

~

211 140 20

·1 - 42 ·8

78 333 105 33 134 . 6

1 14 X

Fig 7.3.4 Simulation Report- Simulation Waveforms for second 9/7 module
"decorelation _processor"

238

-~-!t'-""'-'-"---~ Processir'Q Tools~~- -·-------------· _ _ ______________ -· _ ~~
"Ia I~ <n 1B I"' 0

' lltw~:"""''-0wr __ H_ :::Jil:i / ~ ~ 0 I !l'_c_":__!"'__'(!)_t!> I:'.J~!I® l~_!_f~L
Jn Report . SinUetion Wawtfoona I

'ln!IBar:j·----71i4ns ~Poinler:[' 13'11Wns lntetYatf S1.Uns --St1•tl- Erd:j-

I"P-,--;:,::::,;_M_.:...,25::-:,:-,_-__ --:,.:::-1-:-,=, =-::._-_::,:1:::-.,_-,-.:-=:_,.:-:.p:-.. -,,-,-,-:,.::-,:-,·,-_-_-__ -_:-:,.-:-f~--:OO_-... _"',-=oz~.•'"" .. ;; -; .. ,-::,.,"'.,.,_c."'-.. -.--,,c:,.:-:!~-"~]

+-d=oc, --f .JLDD.ILDDDDD.D-J .n.n.n.n.n.n.n.n.n.s
- [3 d4ta_in0 ! X ~, 4 2. 1 2 63 31 11 32

[f] d4t~_ln1 X 4, , , 1

-
-

[!l ~t~_in2

ETLB

rst_TLBAR

11'1car .,, .,, .,,
~ceO

~·· ~·2

X .~93 '1

X

X

- [!l LL_out X

X

[13 66 131 202 188 1 9 4 3 X

- [!l LH_mi 1 .;•1 3 29 -2 1 12 48 X

[!l Hl_out

[!] HH_W X 20 316355

Fig 7.3.5 Simulation Report- Simulation Waveforms for the 5/5 2-parallel's module
"decorelation_processor"

according to the scan method shown in Figure 6.3.1. The output of the simulation in

Figure 7.3.2 indicates that the hardware module "reconst_processor" accurately

reconstructs the original image pixels. In Figure 7.3.2, the first six outputs of run!

under L_data_out are valid output pixels, while the first output ofH_data_out are not,

according to the Table 8.18. The first six outputs of L_data_out represent pixels of

the first column in the 6x5 image. The second and the la"t runs each yield two

columns to complete the 5 columns of the 6x5 image. The CP and the RP of the

inverse external architecture implement the datapath architectures shown in Figures

6.5.4 and 6.5.6, respectively. The control signal sr of the external architecture is set in

Figure 7.3 .2 according to Table 6.1.

The hardware modules for both 9/7 forward pipe lined overlapped architectures are

tested by applying an image of size 6x8. This image is scmned into the first 9/7

hardware module "decrrelation2_processor" according to the scan method shown in

Figure 3.5.1 and the results of the simulation are shown in Figure 7.3.3. This module

does not yield any output coefficients in the first run, but start: ng from the second run

it generates output patterns that are similar to the 5/3 forward overlapped

239

X

architecture. It yields its first pair of output coefficients 26, and 44 at clock cycle 25,

as shown in Figure 7.3.3. The positive transition of clock cycle 31 marks the ending

of the second run, with output coefficients 104 and -50, and the beginning of the third

run with output coefficients 262 and 8. This hardware module implements the RP and

the CP datapath shown in Figures 3.8.8 (a) and 3.8.4 (a), respectively. The control

signals sreO, QO, sre1, Q1, sre2, and Q2, which are issued according to Table B.5, are

control signal for RP's extension multiplexers. The control signals Ed2, Ed3, and Ed4

in Figure 7.3.3 are set according to Table B.2 (c).

On other hand, in the second 9/7 hardware module ''decorelation_processor9 _7",

the image is scanned into the module according to the scan method shown in Figure

3.5.3. The simulation results are shown in Figure 7.3.4. The difference between this

module and the first 9/7 module is that this module generates output coefficients

starting from the first run and according to Table B.2. In Figure 7.3.4, its first pair of

output coefficients 26 and 44 appears at cycle 25. The positive transition of clock

cycle 35 marks the ending of the first run, with output coefficients I 04 and -50, and

the beginning of the second run with output coefficients 262 and 8. The simulation

results shown in Figures 7.3.3 and 7.3.4 for both 9/7 module verify that both hardware

modules perform their logical functions accurately in the worse case timing

simulation. This hardware module implements the RP and CP datapath architectures

shown in Figures 3.8.8 (b) and 3.8.4 (b), respectively. A table similar to Table B.2 (c),

which contains control signal values, was derived from Table B.2 (b) for signals Ed2,

Ed3, and Ed4 and then was used in Figure 7.3.4 for setting these signals.

The 5/3 2-parallel hardware module "two_parallel_DWT" is simulated by

applying an image of size 6x5 which is identical to the one applied to the single

pipelined architecture's module "decorrelate_processor". The image pixels are

scanned into the hardware module according to the scan method shown in Figure

3.5.1. The simulation results are shown in Figure 7.3.5. In this figure, the first 4

output coefficients 21, -103, -3, and -207 appear at cycle 11. The positive transition of

clock cycle 14 marks the ending of the first run with output coefficients 66, 39, 2, and

33 and the beginning of the second run with output coefficients 131, 29, 103, and 1.

Cycle 17 marks the ending of the second run with output coefficients 188, 150, 85,

and 55 and the beginning of the last run with output coefficients 169 and 5. In the last

240

run, only CP2 generates output coefficients for subbands LL and LH. The 5/3 2-

parallel's simulation results shown in Figure 7.3.5 are identical to the 5/3 single

pipe lined architecture's simulation results shown in Figure 7 .3.1 and that verifies that

the 2-parallel architecture performs its intended computations correctly as required.

The 2-parallel hardware module implements the RP and the CP datapath architectures

shown in Figure 4.2.2 and 3.8.1, respectively. In Figure 7.3.5, RP1 input latches are

loaded with 3 pixels every time the clock makes a negative transition, whereas, RP2

input latches are loaded on the positive transition of the clock.

The six papers listed in Table 7.2, which had implemented their architectures on

FPGA, had only provided synthesis results such as shown in Table 7.2 without any

simulation waveforms results. Simulation results such as shown in Figs 7.3.1, 7.3.2,

7.3.3, 7.3.4, and 7.3.5 serve as prove the implemented architectures perform their

functions correctly under the worse case timing of the target FPGA device.

7.4 Conclusions

In this chapter, 5 selective architectures, which are repre:;entative of the other

architectures developed in this work, are implemented and synthesized on Altera

FPGA. The compilation results of the implementation and comparisons are

summarized in Table 7.2. the comparison results given in Table 7.1 and 7.2 including

simulation results shown in Figs 7.3.1, 7.3.2, 7.3.3, 7.3.4, and 7.3.5 verify that the

architectures implemented in this work not only are accurate and fast but are efficient

in terms of power dissipation and hardware complexity. In addition, the synthesis

results of the 2-parallel architecture shown in Fig C.5.3 confirm that the 2-parallel

pipelined architecture is 2 times faster than the single pipelined architecture.

Furthermore, the compilation results given in Figs C.3.1, C.3.2, and C.3.3 for the first

917 architecture and compilation results shown in Figs C.4.1, C.4.2, and C.4.3 for the

second 9/7 architecture show that the first 9/7 architecture p·~rforms better than the

second 9/7 architecture in terms of speed, power consumption, and hardware

complexity.

241

CHAPTERS

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In this research, two highly efficient and novel architectures for 2-D DWT are

proposed that meet the high speed, low power, and memory requirements for real­

time applications. The most noticeable accomplishment is the elimination of the

internal memories, between row and column processors, which dominates the

hardware cost. In the proposed pipelined architecture based on the nonoverlapped

scan method, the power consumption due to the external frame memory access is

reduced to minimum and it could be a very efficient alternative in applications where

the power consumption is a serious issue.

In the development of the architectures, two cases were identified based on the

scanning frequencies; case I, low scan frequency and case2, high scan frequency. In

case I, the optimal performances of the pipe lined architectures in terms of speed,

efficiency, and hardware utilization are achieved by scanning 3 pixels in parallel each

cycle. This requires slight modifications of the architectures developed in the first part

that scan the external memory pixel-by-pixel. In case2, the optimal performances of

the architectures are immediately obtained by pipelining the processors with no

further modifications of the architectures developed in the first part.

Furthermore, the critical path delay of the proposed pipe lined architectures can be

reduced to four adders delays when multiplications operations in the 917 processors

are implemented by adders only. The advantage of the approach adopted in the

development of the two proposed architectures is that it can be used in developing

architecture for any 2-D DWT algorithm and it is certain to yield very efficient

architectures in terms of hardware complexity, speedup, and power consumption with

manageable control complexity.

242

Based on the generalization of the overlapped scan method, the intermediate

architecture is developed, which aims at reducing the power consumption of the

overlapped areas without using the expensive line butTer to somewhat between the

two extreme architectures, the overlapped and nonoverlapped. Compared with the

power consumption of scanning the external memory for the architecture based on the

first scan method, the intermediate architecture decreases the power by 22% with no

lost in speed. While the intermediate architecture with the second dataflow decreases

the power consumption of scanning the external memory by 48%. However, the

second dataflow increases the total execution time by 16.7% over the architecture

based on the first scan method and the intermediate architecture using the first

dataflow. In addition, since the reduction in the power consumption is achieved

without using a line buffer, the intermediate architecture occupies less silicon area.

Therefore, intermediate architecture could be a very efficient alternative for high­

speed, low cost, and low power applications such as mobile video phone.

To further improve performance in terms of speed and throughput to best meet

real-time applications of 2-D DWT with demanding requirements, parallel

architectures were developed. The single pipelined overlapped architecture is

extended to 2-parallel, 3-parallel, and 4-parallel architectures to achieve speedup

factors of 2, 3, and 4, respectively, according to the evaluation given in section 4.2.4.

The scheme adopted in the development of the 4-parallel architecture optimizes the

performance, in term of number of clock cycles requires for j l·~vels of decomposition,

as compared with the alternative scheme which increases the execution time by

M/2 1
-

1 cycles for each level of decomposition, when case 2 occurs. Similarly, the

single pipeline intermediate architecture is extended to 2-parallel and 3-parallel

architectures. According to the evaluation given in section 4.3.5, the 2-parallel and 3-

parallel intermediate architectures achieve speedup factors of 2 and 3, respectively.

The intermediate parallel architecture reduces the power consumption of the external

memory by a factor of 7/9 as compared with the overlappE:d parallel architecture,

Eq(4.57).

The advantage of the proposed parallel architectures developed in this research is

that the total temporary line buffer (TLB) does not increase from that of the proposed

single pipelined architectures, when degree of parallelism is increased. In addition, the

243

comparison results show that single and parallel architectures developed in this

research compared with most recent architectures in the literature require only a total

TLB of size N in the 5/3 processor datapath and 3N in the 9/7, while other

architectures listed in Table I 0 require more TLBs, which are very expensive memory

components. In addition, the control architecture that detects occurrence of the last

run and the 6 cases of the intermediate architectures is also designed. Furthermore, to

reduce control designs effort, several tables giving the control signal values for

several control signals are provided.

This research has also addressed in details one of the important issues that

have been overlooked so far, that is, the 2-D DWT memory architectures and

management and has proposed two novel VLSl memory architectures, the LL-RAM

and subband memory, which are based on the first scan method. The LL-RAM and

subband memory were designed such that DWT unit performs effectively both read

and write operation in the LL-RAM and write only into suband memory while

compression unit reads subband memory. How the two memory architectures can be

modified for higher scan method is also illustrated. The banking technique is used to

further improve and form more efficient memory architectures in terms of speed and

power consumption. The bank-based architecture can be thought formed by dividing

the module-based RAM architecture, which can be considered as one big bank, into

several smaller independent banks. Inside the smaller banks reads and writes are

performed as in the big bank but faster and more efficiently. The advantage of the two

proposed memory architectures is that they can be easily incorporated into single or

parallel 2-D DWT processor architectures.

To show that the architectures developed in this research are simple to control, the

control algorithms for 4-parallel architecture including the LL-RAM and the subband

memory were developed. To ease the control development, the overall system control

is divided into several smaller units. Then, the algorithmic state machine (ASM) for

each unit is developed. The control algorithms developed here can be used to derive

the hardware of the control.

Furthermore, based on data dependency graphs (DOGs) and scan methods

specifically developed for inverse 5/3 and 9/7, the external architectures for single and

parallel 5/3, 9/7, and combined 5/3 and 9/7 were developed. First, a high-speed single

244

pipelined inverse architecture including its column-processor (RP) and row-processor

(CP) were developed. Then, the single pipelined architecture is extended to 2-parallel

and 4-parallel to achieve speedup factors of 2 and 4, respectively. The advantage of

the single pipelined architecture developed here is that it only requires a total

temporary line buffer (TLBs) of sizes 2N and 4N for 5/3 and 917, respectively, and the

TLB requirement does not increase when it extended to parallel architecture. The

combined architecture is very useful and efficient in situations where a decoder in one

site is required to perform either lossless 5/3 or lossy 917 image reconstruction. In

addition, the advantage of the combined architecture is that a considerable saving in

silicon area can be achieved. The proposed architectures besides precisely

implementing the two algorithms, their control complexity is simple. Specifically the

external architecture's control signals of the single pipelined inverse architecture

shown in Figure 6.4.1 were reduced to only one control signal. The interleave

technique used by CP for combing subbands not only speeds up the computations by

allowing RP to work in parallel with CP as early as possible, but reduces internal

memory requirement between CP and RP to a few registers.

The processor datapath architectures were first developed assuming the external

memory is scanned either row-by-row or column-by-column. However, since the

external architectures developed in this work scan the external memory differently,

the processors datapath for single and parallel architectures are modified in order to fit

into the external architectures' processors.

The symmetric extension algorithm is incorporated in the data dependency graphs

(DOGs) to handle the boundary problem and then implemented by all architectures

developed in this work. Symmetric extension is a necessary treatment to prevent

distortion from appearing at the image boundaries.

The scan method adopted, for development of architectures, not only reduces the

internal memory between RPs and CPs to a few registers, but also reduces the internal

memory or number of TLBs in the RP to minimum. In addition, it allows CPs to work

in parallel with RPs earlier during the computation, which leads in reducing the

latency to a few cycles.

The approach or the strategy adopted in the development of the proposed single

245

and parallel architectures can be used in architecture development for any 2-D DWT

algorithm and it is certain to yield very efficient architectures in terms of hardware

complexity, speedup, and power consumption with manageable control complexity.

The simulation results of the five architectures implemented and synthesized on

Altera FPGA verify that the architectures developed in this work not only are accurate

and fast but are efficient in terms of power dissipation and hardware complexity. In

addition, the synthesis results of the 2-parallel architecture shown in Figure C.5.3

confirm that the 2-parallel pipelined architecture is 2 times faster than the single

pipe lined architecture. Furthermore, the compilation results given in Figures C.3.1,

C.3.2, and C.3.3 for the first 9/7 architecture and compilation results shown in Figures

C.4.1, C.4.2, and C.4.3 for the second 9/7 architecture show that the first 9/7

architecture performs better than the second 9/7 architecture in terms of speed, power

consumption, and hardware complexity.

The Verilog version used in Altera FPGA Quartus II does not have the capability

of supporting simulation using real images. This limitation has forced my to use

images of sizes 6x5 and 6x8 containing random numbers in the final simulation.

Another limitation is that the architectures developed in this work are designed to

process the whole image as one tile. JPEG2000 allows (optionally) an image to be

divided into a number of smaller non-overlapping rectangular blocks known as "tiles"

and then each tile is processed independently by DWT unit. This mechanism is a

useful to use for computing 2-D DWT of a large image independent of its size with

the use of the smaller intermediate memory (LL-RAM) to store "LL" coefficients for

next level of decomposition. Thus a control algorithm is needed to divide a large

image into tiles and then passes each tile to the DWT unit for processing.

8.2 Recommendations

The possible future work would be to extend the approach and the techniques

acquired from this research to develop architectures for any 2-D DWT algorithms

including development of VLSl architectures for signal and image processing

algorithms. This work also could be extended to develop architectures for 3-

dimensional images where computational requirements are very intensive with

246

complex and large memory requirements. Furthermore, the concept and techniques

developed in this work also can aid in the development of VLSI architectures for

Turbo decoder. Turbo code is one of the most attractive error .;orrection codes and it

is an essential component in digital communication and data storage systems

Another possibility would be to extend this work to develop architecture for

compression part of the system, which uses EBCOT (Embedded Block Code with

Optimized Truncation), to independently code each subband coefficients. EBCOT

contains Tier I and Tier 2. Tier I is implemented in hardware, whereas, Tier 2 is

implemented in software. The insight gained from this work would aid the designer to

develop compression architecture that can be integrated into the 2-D DWT

architecture.

Moreover, this research includes many in-depth and optimized designs and

therefore, can be available reference for graduate students and researchers pursuing

in-depth study in this field.

247

REFERENCES

[1] Chao-Tsung, Po-Chih, and Liang-Gee, ''Generic RAM-Based architecture for 2-D Discrete wavelet

transform with line-based method'', IEEE trans on circuits an Systems for video technology,

vol. 15, No.7, July 2005, PP. 910-920.

[2] C-T. Huang, P.-C, Tseng, and L.-G Chen, "Flipping structure: an e!Ticient VLSI Architecture

for lifting-based discrete wavelet transform,'' IEEE Trans. Signal Processing, vol. 52, No.

4, April 2004, PP. 1080- 1089.

[3] Gregory Dillin, Benoit Georis, Jean- Didier Legant, and Olivier Cantineau."Combined Line­

based Architecture for the 5-3 and 9-7 Wavelet Transfprm of JPEG2000,"IEEE Trans. on

circuits and Systems, vol. 13, No.9, Sep. 2003, PP. 944- 950 .. vol 54, No.5, May 2006, PP.

1910-1916.

{4] Daubechies and Sweldens, ''Factoring \vavelet transform into lifting schemes,'' J. Fourier

Analysis and Application, vol. 4, No.3. 1998, PP. 245- 267 ..

[5] Sweldens, "The lifting scheme: A new philosophy in biorthogonal wavelet constructions," in

proc. SPIE, vol. 2569, 1995, PP. 68- 79.

(6] Calderbank, I. Daubechies, Swelden, and Yeo, "Wavelet transf(Jrms that map integers," J. Applied

and Computational Harmonic. Analysis, vol. 5. No.3, Sept. 1998, PP.332- 369.

[7] fSO/lEC, ISO/IE 15444- I, information technology-JPEG2000 image coding system, 2000.

Website : http://w\v\v .jpeg.org/CDs 15444.htrnl.

[8] David S. and Michael W. "JPEG 2000 image compression fimdamentals, standards and

practice," Kluwer Academic polishers, 2002.

[9] Mu-Yu chiu, Kun-Bin Lee and Chein-Wei Jen,"Optimal data transfer and Buffering

Schemes for JPEG2000 encoder." in proceeding IEEE workshop signal proc. S)1St 2003, PP.

177- 182.

[10] K. K. Parhi and T. Nishitani. "VLSI architectures for discrete wavelet transforms," IEEE

Trans. Very Large Scale integration (VLSI) System, June 1993, PP. 191-202.

[11] C. Chryatis and A. Orlega, ''Line-based, reduced memory, wavelet image compression," IEEE

Trans. Image Processing, vol. 9, No. 3, March 2000, PP. 378-389.

(12] M. Week and M. Bayoumi, ·'Discrete wavelet transform: Architectures, design and performance

issues," J. VLSI signal processing & systems, vol. 35, No.2, 2003, PP. !55 -178.

[13] Kishore A., Chaitati Ch., and Tinku A. "A VLSI architecture for Iifiing-based forward and

inverse wavelet transfOrm," IEEE Trans. on signal processing, vol.50, No. 4, April 2002.

[14] W. Jiang and A. Ortega, "Lifting Factorization-based Discrete Wavelet Transform Architecture

Desgin,'' IEEE Trans. on Circuits & Sys. For Video Technology, vol. II, N. 5, May 2001, 651

- 657.

[15] Ani! K. Jain, "Fundamentals of digital image processing," Prentice Hall 1989.

[16] K. K. Parhi, VLSI Digital Signal Processing System: Design and Implementation. New York:

Wiley, I 999.

[17] F. Marino, "Efficient high-speed/ low-power pipelined architecture for the direct 2-D

248

discrete wavelet transform," IEEE Trans. Circuits Sys.II, Analog Dig,tal signal processing vol.

47, No. 12, Dec 2000, PP. 1476- 1491.

[18] Sanjit K. Mitra, "Digital signal processing, a computer-based approach," McGraw _Hill, 2001.

[19] Jaideva C. Goswami and Andrew K. Chan,"Fundamentals of wavele1s, theory algorithm, and

applications," New York, Wiley, 1999.

[20] Agostino Abbate, Casimer M. and Pankaj K. Das,"Wavelcts and subbands, Fundamentals and

applications," Birkauser, 200 I.

[21] Cheng_Yi, Jim_ Wen. and Jian Liu, "A note on "Flipping structure: an efficient VLSI

architecture for lifting-based discrete wavelet transform"." IEEE trans. on signal processing,

vol.54, No.5, May 2006, PP. 1910-1916.

[22] Cheng- Yi Xiong, Jim-Wen Tian and Jian Liu,"Efficient parallel architecture for lifting-based

two-dimensional discrete wavelet transform:' IEEE Int. Workshop V~:..SI Design & Video Tech.

China, May 2005, PP. 75- 78.

[23] Qing-ming Yi and Sheng-Li Xie,"Arithmetic shift method suitable for VLSI implementati-on to

CDF 9/7 discrete wavelet transform based on lining scheme," Proceedtngs of the Fourth Int.

Conf. on Machine Learning and Cybernetics. Guangzhou, August 2005, PP. 5241-5244.

[24] R. Zewail, P. Marshall, S. Kozicki, N. Ying, D. Elliott, and N. Durdle," A reconfigurable fully

Scalable integer wavelet transform unit for JPEG200," CCECE/CCGEI Saskatoon, IEEE. May

2005, PP. 798- 801.

[25] Zhi-Rong Gao and Cheng-Yi Xiong," An efficient Line-based architec1ure for 2-D discrete

wavelet transform,'' proceeding of IEEE international conference on communications, circuits

and systems, 2005, PP. 1322- 1325.

[26] Chengyi Xiong, Jinwen Tian and Jian Lui,''A fast VLSI architecture for two-dimensional discrete

wavelet transform based on lifting scheme,'' proceeding of IEEE 71
h international conference on

solid-state and integrated circuits technology, 2004, PP. 1661-1664.

[27] Srikar Movva and Srinivasan S.,"A novel architecture for lifting-based discrete wavelet transforms

for JPEG2000 standard suitable for VLSI implementation," Proceedings of the 6'h International

Cont on VLSI Design, 2003 IEEE, PP. 202-207

[28] K-C. B Tan and T. Arslan,"Shift-accumulator ALU centric JPEG200(1 5/3 lifting based discrete

wavelet transform architecture," proceeding of2003 IEEE, PP. vl61- vl64.

[29] Xuguang Lan, Nanning Zheng, & Yuehu Liu, ''Low-Power and High-~ peed VLSI Architecture

For lifting-Based Forward and Inverse Wavelet Transform'' IEEE tram.action on consumer

electronics. Vol. 51, issue 2, 2005, PP 379 385 ..

[30] Sandro V. Silva & Sergio Bampi, "Area and Throughput Trade_offs in the Design of Pipelined

Discrete Wavelet Transform architectures,'' proceedings of the design automation and Test in

Europe conference and Exhibtion. 2005 IEEE, PP 32- 37.

[31] W. Swelden, ''The lifting scheme: A custom-design construction ofbiorthogonal wavelets, "

Applied and computational Harmonic Analysis. vol. 3, No. 15, 1996, l'P.l86- 200.

[32] Zhong Guangjum, Cheng Lizhi & Chen Huowang. "A simple 9/7-tap wavelet filter based on

lifting scheme," proceeding of IEEE international conference on ima:~e processing, vol. 2, 2001,

249

pp 249-252.

[33] Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen, "Analysis and VLSI Architecture for

1-D and 2-D Discrete Wavelet Transform,'' IEEE Trans. on signal processing, vol.53, No.4,

April2005, PP.I575- 1586 ..

[34] Jen-Shiun Chiang, Chih-Hsicn Hsia, Hsin-Jung Chen, and Te-Jung Lo, "VLSI Architecture of

Low Memory and High Speed 2-D lifting-Based Discrete Wavelet Transform for JPEG 2000

Applications,'' IEEE international symposium on circuits and systems, ISCAS 2005, Vol. 5, PP.

4554-4557.

[35] S. Barua, J. E. Carletta, K. A. Kotteri, A. E. Bell, ''An efficient architecture for lifting-base two­

dimensional discrete wavelet transforms". Integration, the VLSI journal, 2005 Elsevier,

PI'. 341 - 352.

[36] G. Dimitroulakos, M.D. Galanis, A. Milidonis, and C. E. Goutis, "A high-throughput and

Memory efficient 2-D discrete wavelet transform hardware architecture for JPEG2000

Standard,'' IEEE international symposium on circuits and systems ISCAS 2005, Vol. I, PP.472-

475 ..

[37] Chengjun Zhang, Chunyan Wang, M. Omair Ahmad," A VLSI architecture for a High-speed

computation of the 1-D discrete wavelet transform'', IEEE international symposium on circuits

and systems, ISCAS 2005, Vol. 2, PP. 1461- 1464.

[38] K. A. Kotteri, S. Barua, A E. Bell, and J. E. Carletta,"A comparison of hardware implementations

of the Biorthogonal 9/7 DWT: convolution versus lifting". IEEE Trans. on Circuits &

System, vol. 52, No.5, May 2005, PP. 256- 260.

[39] Yuan-Long Jean, Kai-Jearg, Kai-Jyun Liang. Jiun-llau Tu, Jain-Zhou lluang, and Pingshou

Cheng. ''An embeded wavelet image coding algorithm and its hardware implementation Based on

Zero-block and Array (EZBA)," 48ili Midwest symposium on circuits and systems, IEEE 2005,

Vol. 2,PP.1414-1417.

[40] C-Y. Xiong, J-W. Tian, J. Liu, "Efficient high-speed/low-power line- based architecture for 2-

dimcnsional discrete wavelet transforms using lifting scheme." IEEE Trans. On Circuits & sys.

for Video Tech.Vol.16, No.2, February 2006, PP. 309-316.

[41] Michael Unser, & Thierry Blu, ·'Wavelet Theory Demystified", IEEE Trans. on Signal

Processing, vol. 51, No.2, February 2003, PP. 470-483.

[42J Chao-Tsung Huang, Po-Chih Tseng & Liang-Gee Chen, "VLSI architecture for forward discrete

wavelet transform based on B-splinc factorization", Journal of VLSI signal processing.

2005 Springer Science, PP. 343 - 353.

[43] B-F. Wu, C-F. Lin, "A high-Performance and Memory-Efficient Pipeline Architecture for the 5/3

and 9/7 Discrete Wavelet Transform of JPEG2000 Codec," IEEE Trans. on Circuits & Sys. for

Video Technology, Vol. 15, No. 12, December 2005, PP. 1615-1628.

[44] lain E. G. Richardson, ''H. 264 and MPEG-4 video compression, video coding for next­

generation multimedia," Wiley 2003.

[45] Maurizio Martina and Guido Masera. ''Low-complexity, Etlicient 917 Wavelet Filters

Implementation," proceeding of2005 IEEE.

250

[46] Gab Cheon lung, Seong Mo Park, and lung Hyoun Kim, "An Efficient VLSI Architecture for

JPEG2000 Encoder," proceeding of2005 IEEE, PP. 1203- 1206.

[47] David B. H. Tay, "A class of lifting based integer wavelet transform,'· proceeding of IEEE

international conference on image processing, vol. 1, 2001, PP. 602-605.

[48] Zhi-Rong Gao & Cheng-Yi Xiong, "Combining Parallel Lifting and Retiming Architecture for

Discrete Wavelet Transform,'' IEEE Int. workshop VLSI design and video Technology,

Suzhou, China, May 2005, PP. 175- 178.

[49] Michael D. Adams, & Faouzi Kossentini, "Reversible Integer-to-Integer Wavelet Transforms for

Image Compression: Performance Evaluation and Analysis,'' IEEE T1·ansactions on Image

Processing, vol. 9, No.6, June 2000, PP. 1010- 1024.

[50] P.-C. Tseng, C.-T. Huang, and L.-G Chen,"VLSI implementation of shape adaptive discrete

wavelet transform," in Proc. SPIE Int. conf. Visual Communications and Image Processing,

2002, PP. 655-666.

[51] N.D. Zervas,G. P. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopoclos, and C.E. Goutis,

"Evalution of design alternatives for the 2-D discrete wavelet transform,'' IEEE Trans.

Circuits Syst. Video Technology, vol. II, No. 12, December 2001, PP. 1246- 1262.

[52] H. Yamauchi eta!., "Image processor capable of block-noise-free JPE:G2000 compression with

30 frames Is for digital camera applications," in proceeding IEEE Int. Solid-State Circuits

Conf., vol. I, PP. 46-477, 2003.

[53] Jorg Ritter and Paul Molitor," A pipelined architecture for partitioned DWT based lossy

image compression using FPGA's,'' Monterey, CA, USA. ACM 2001, PP. 201-206.

[54] L. Liu, X. Wang, H. Mcng, L. Zhang, Z. Wang, and H. Chen," A \'LSI architecture of spatial

combinative lifting algorithm based 2-D DWT/IDWT," in proc. 2002 Asia-pacific conf circuits

and systems, vol. 2, 2002, PP. 299-304.

[55] B. F. Wu and C. F. lin, "A rescheduling and fast pipeline VLSI architecture for lifting-based

discrete wavelet transforms," in proceeding IEEE JSCAS, May 2003, PP. 732- 735

[56] H. Meng and Z. Wang, "Fast spatial combinative lifting algorithm of wavelet Transform using

the 9/7 filter for image block compression," Electron. Lett., Vol. 36, No. 21, Oct. 2002, PP.

1766-1767.

[57] MPEG-4, !SO/IEC JTCJ/SC29/WGII.FCD 14496, "coding of moving pictures and audio," May

1998.

[58] Kai Hwang, "Advaccd Computer Architecture: Parallelism, Scalability, Programmabilty,"

McGraw-Hill 1993.

[59] Hongyu Liao, Mrinal Kr., and Btuce F. "Efficient architectures for 1-D and 2-D lifting-based

wavelet transform,'' IEEE Trans. on signal processing. vol. 52, No. 5. May 2004.

[60] W. Chao, W. Zhilin, C. Peng, and L. Jie, "An efficient VLSJ Architecture for lifting-based

discrete wavelet transform," Mulltimedia and Epo, 2007 IEEE lntl~:rnationa! conference, PP.

1575-1578.

[61] R. Jain and P.R. Panda,"An efficient pipelined VLSI architecture fc•r Lifting-based 2D­

discrete wavelet transform," ISCAS, 2007 IEEE, PP. 1377-1380.

251

[62] B-F. Li andY. Dou, "FlOP A novel architecture for lifting-based 20 DWT in JPEG2000,"

MMM (2), lecture note in computer science, vol. 4352, Springer, 2007, PP. 373-382.

[63} Peng Cao, Xin Guo, Chao Wang, and Jie Li, ''Efficient architecture for two-dimensional discrete

Wavelet transform based lifting scheme," 7" International Conference on ASIC, ASICON'07,

2007 IEEE, PP. 225-228.

[64] Chengyi Xiong, Jinv..'en Tian, and Jian Liu. ''Efficient architecture fot t\vo-dimensional discrete

Wavelet transform using lifting scheme," IEEE transactions on image processing, Vol. 16, No.3,

March 2007, PP. 607-614.

[65] Stephen Brown and Zvonko Vranesic, "Fundamentals of digital logic with verilog design,"

Second edition, Me Graw-Hill, higher eductation, 2008.

[66] Chih-Hsien Hsia and Jen-shium Chiang, "New memory-efficient hardware architecture of2-D

dual-mode lifting-based discrete wavelet transform for JPEG2000," II •h IEEE Singapore

International Conference on Communication Systems, 2008 IEEE, PP. 766- 772.

[67] Jie Guo, Ke-yan Wang, Cheng-ke Wu, and Yun-song Li, "Eflicient FPGA implementation of

Modified DWT for JPEG2000," 9'h International Conference on Solid and Integrated-circuit

Technology, 2008 IEEE, PP. 2200-2303.

[68J Wei-Ming Li, Chih-Hsien Hsia, and Jcn-Shiun Chiang, "Memory-efficient architecture of2·D

dual-Mode discrete wavelet transform using lifting scheme for motion-JPEG2000," IEEE

International Symposium on circuits and systems, 2009, PP. 750-753.

[69] Pingping Yu, Suying Yao, and Jiangtao Xu, "An efficient architecture for 2-D lifting-based

discrete \vavelet transform," 41
h IEEE Conference on Industrial Electronics and Applications,

2009. PP. 3667- 3670.

[70] Xiaodong Xu and Yiqi Zhou, ·'Efficient FPGA implementation of2-D DWT for 9/7 float wavelet

filter,'' International Conference on Information Engineering and Computer Science, 2009 IEEE,

PP. 1-4

[71] Chung·Fu Lin, Pei·kung, and Bing·Fei Wu, "An efficient pipeline architecture and memory bit·

\\'idth Analysis for discrete wavelet transform of the 917 filter for JPEG2000,'' 1 Sign Process

Syst, 2009 Springer, PP. 245-253.

252

APPENDIX A

SOFTWARE SIMULATION PROGRAM DEVELOPMENT

A. I Introduction

It will be of a great benefit to start this research by developing a software simulation program that

computes both forward and inverse 2-D DWT using lifting-based 5/3 algorithms. The forward operations

decorrelate the original image to be amenable to compression, whereas the inverse operations reconstruct

the original image from the decorrelated image. Developing a simulation program will give the hardware

architecture designer available opportunity to learn in details the behavior of the algorithm and acquire a

firm understanding, which in turn will enable him to develop more accurate architecture.

A.2 Forward and inverse lifting-based 513 algorithms and software development

Lifting·based forward and inverse 5/3 wavelet transform algorithms are defined by the JPEG2000 image

compression standard as follows [7, 27, 29].

5/3 forward algorithm

step!: Y(2j +I)= X(2j +I) -l X(
2
J) + ~(2} +

2
) J

2 2 .) 2 . lY(2j-l)+Y(2j+l)+2j step :Y(J =X(J)+
4

513 inverse algorithm

step!: X(2J) = Y(2n) -l Y(2j -I)+ :(2} +I)+ 2 J

step2:X(2j+l)=Y(2j+l)+l X(2})+~(2i+ 2) J

Based on the above two algorithms, the data dependency graphs (DDGs) for forward and inverse,

shown in Figures 3.3.1 and 6.2.1, respectively, are derived. The symmetric extension algorithm

recommended by JPEG2000 is also incorporated into the DDGs to handle boundary problems. Based on

forward and inverse algorithms and the DDGs, the software simulation program listed below is developed.

253

'
'

This software is developed by Ibrahim Saeed Koko at

Universiti Teknologi PETRONAS (UTP)

'
'

FORWARD PROGRAM

% program fdwt

Xl = imread(1 cameraman.tif 1
); %read image and storE it in

Xl rgb2gray(Xl);

X double (Xl);

[m,n] size (X) ;

YH horizontalf (X);

YL horizontalfl(X,YH);

YHHl verticalf (YH) ;

YHLl verticalFL(YH,YHHl);

YLHl verticalf (YL) ;

YLLl verticalFL(YL,YLHl);

YH = [] ; YL = [] ;

[m,n] = size(YLLl);

YH horizontalf(YLLl);

YL

YHH2

YHL2

YLH2

YLL2

horizontalfl(YLLl,YH);

verticalf (YH) ;

verticalFL(YH,YHH2);

verticalf (YL) ;

verticalFL(YL,YLH2);

YH = [] ; YL = [] ; YLLl [] ;

[m,n] = size(YLL2);

YH horizontalf(YLL2);

YL horizontalfl(YLL2,YH);

YHH3 verticalf(YH);

YHL3 verticalFL(YH,YHH3);

% array X

% Separates image from colors

% convert pixels from grayscale

% numbers to signed r:.umbers

% first level decomposition

%free YH and YL

% second level decomposition

% third level decomposition

254

YLH3 verticalf(YL);

YLL3 verticalFL(YL,YLH3);

YLL2 []; YH []; YL [];

function YH= horizontalf(zO)

[m,n] = size (zO);

k = fix(n/2);

for i ::= l:m

for j = l:k

if (j < k) I (k -= n/21

%horizontal highpass decomposition

YH(i,j) = zO(i,2*j)- fix((zO(i,2*j-1)+zO(i,2*j+1))/2);

else

YH (i, j) zO(i,2*j)- zO(i,2*j-1);

end

end

end

function YL= horizontalfl(zO,YH)

[m,n] = size(zO);

%horizontal lowpass decomposition

k = fix(n/2);

if k -= n/2

k = k + 1;

end

for i l:m

end

for j = 1:k

if j == 1

end

YL(i,j) = zO(i,2*j-1) + fix(YH(i,j)/2);

else if (fix(n/21 == n/21 (j < k)

end

YL(i,j) = zO(i,2*j-l) + fix((YH(i,j-1)+YH(i,j)+2)/4);

else

YL(i,j) zO (i,2*j-1) + fix(YH(i,j-1) /2);

end

255

function ZL= verticalFL(z1,ZH)

[m,n] = size(z1);

k = fix(m/2);

if k -= m/2

k = k + 1;

end

fori l:n

for j = 1:k

if j == 1

%vertical lowpass decomposition

ZL(j,i) = z1(2*j-1,i)+fix(ZH(j,i)/2);

else if(fix(m/2) == m/2) I (j < k)

ZL(j,i) = Z1(2*j-1,i)+fix((ZH(j-1,i)+ZH(j,i)+2)/4);

else ZL(j,i) = z1(2*j-1,i) + fix(ZH(j-1,i)/2);

end

end

end

end

function ZH = verticalf(z1)

[m,n] = size(z1);

k = fix(m/2);

fori = l:n

for j = 1 :k

%vertical highpass decomposition

if I j < k) I lk -= m/2)

ZH(j,i) = Z1(2*j,i)-fix((z1(2*j-1,i)+Z112*j+1,i))/2);

else

ZH (j, i) z1(2*j,i)-z1(2*j-1,i);

end

end

end

% function f2dwt

fdwt; % call main program.

Y3

Y2

[YHH3 YLH3;YHL3 YLL3];

[YHH2 YLH2; YHL2 Y3];

% combine subbands to obtain

% decorrelated ima::re

256

Yl [YHHl YLHl; YHLl Y2];

Y = mat2gray(Yl);

figure, imshow(Y);

title(1 Decorrelated image 1
)

[m,n] = size (Yl);

y l:l:m;

x l:l:n;

[x,y] = meshgrid(x,y);

figure, mesh(x,y,Yl);

%decomposed image

%covert a data to a grayscale image

% Display decorrelated image

title(1 This figure shows the decomposed image pixels are

decorrelated 1)

figure, mesh(x,y,X);

title('This figure shows the original image pixels highly are

Correlated 1)

%program idwt

fdwt;

YL verticalR(YLH3,YLL3);

YH verticalR(YHH3,YHL3);

YLL2 = horizontalR(YH,YL);

YH [] YL [];

YL verticalR(YLH2,YLL2);

YH verticalR(YHH2,YHL2);

YLLl = horizontalR(YH,YL);

YL []; YH [];

YL verticalR(YLHl,YLLl);

YH verticalR(YHHl,YHLl);

xrl = horizontalR(YH,YLI;

INVERSE PROGRAM

% activate fdwt to compute the fdwt.

% first level reconstruction

% second level reconstruction

% third level reconstruction

% reconstructed image

xr mat2gray(xrl); % convert matlab image to a grayscale image.

257

figure, imshow(xr) % display the reconstructEd image.

title('Reconstructed image')

figure, imshow (X1)

title('Original image')

% display the original mage.

DIFF = difference(xr1,X) %call function difference

function Xrec = horizontalR(YH,YL) %horizontal reconstruction

[m,n1] = size(YL);

[m,n] size (YH); Xrec zeros(m,n+n1);

for i 1:m

for j = 1: n1

if j == 1

%horizontal lowpass reconstruction

end

end

for i

for

Xrec (i,2*j -1)

else if (n1 == n)

Xrec(i,2•j-1)

YL(i,j) - fix(YH(i,j)/2);

(j < n1)

YL(i,j)- fix((YH(i,j-1)+YH(i,j)+2)/4);

end

1 :m

j =

if

else Xrec(i,2*j-1) = YL(i,j) - fix(YH(i,j-1)/2);

end

1 :n

(j < n)

% horizontal highpass reconstruction

(nl -= n)

Xrec(i,2•j) = YH(i,j) + fix((Xrec(i,;~•j-1) +

Xrec { i , 2 * j + 1)) I 2) ;

else

Xrec(i,2*j) YH (i, j) + Xrec (i, 2*j -1)

end

end

end

function YL = verticalR(YLH,YLL)

[m,n] = size(YLH);

[ml,n] = size(YLL);

if ml -= m

YL zeros(2*m+l,n);

else YL = zeros{2*m,n);

%vertical reconstruction.

258

end

for i 1 :n % vertical lowpass reconstruction

for j = L m1

if j == 1

end

end

for i

YLI2*j-1,il YLLij,il- fixiYLHij,il/21;

else if lm1 == ml lj < m11

end

1 :n

YL(2*j-1,il = YLLij,il- fixi(YLHij-1,ii+YLH(j,il+21/41;

else YL(2*j-1,il = YLLij,il - fix(YLH(j-1,il/21;

end

%vertical highpass reconstruction

for j = 1;m

if I j < ml (m1 -= ml

YLI2*j,il = YLHij,il + fixi(YL(2*j-1,il + YLI2*j+1,ill/21;

else

YLI2*j,il YLH I j , i I + YL I 2 * j -1, i I ;

end

end

end

function diff = difference(xl,x2)% This function computes the

difference %between the original image and the reconstructed image.

[m,n] = size(x21;

z"'O;

for i 1 m

for j 1 n

z z + (xl(i,j) - x2(i,j)); %compute differences.

end

end

if z = 0

end

disp('the orginal and the reconstructed images are identical')

disp('We have a perfect reconstruction')

else disp('the original and the reconstructed images are not

identical' I

259

The flowcharts for both forward and inverse 2-D DWT programs are shown in Figures A.3.1 and

A.3.2, respectively. Note that in the forward program, the flowcharts for functions verticalFL and verticalf

are similar to the flowcharts for functions horizontalfl and horizontal f. respeotively. The only difference is

that the vertical functions compute column-wise, whereas, the horizontal functions compute row-wise.

Program fdwt I • Read an mxn image and store
it in X1

..!.
Convert pixels from grayscale

to signed numbers

.!.
Get image size (m,n) I

.!.
Call function horizontalf

To compute YH (highpass
decomposition)

...
Call function horizontalfl
To compute YL (lowpass

decomposition)

t
Call function verticalf

To compute subband YHH

..!.
Call fdwt

To decorrelate an l Call function verticaiFL

I To compute subband YHL
mxn image • .L.

Combine subband to I Call function verticalf

I To compute subband YLH

obtain decorrelated j.
image

..!. l Call function verticaiFL

I To compute subband YLL

Convert data of the ..!.
decorrelated image to Repeat the last 6 calls or
grayscale image and steps for :'1 levels

then display it decompositions

.L. .!.
(stop stor~

(a) (b)

Figure A.3.1 (a) Main program (b) Forward program.

260

outer loop

YH(i,j) = x{i,2j)- x{i,2j-1)
j = j + 1

No

Function
horizontal!

Get image size
(m,n)

k=ln/21
Seti= 1 andj= 1

yes
End

Inner loop

yes

YH(i, j) = x(i,2 j)- i(x(i,2j -1) + x(i,2j + 1))/ 21
j = j +1

(c)

Figure A.3.1 (c) Horizontal highpass decomposition flowchart

261

outer loo

i = i+1
j = 1

No

YL(i,j) = x(i,2j -1) +I YH(i,j -1)/21
j =)+1

Function
horizontalfl

Get image size
(m,n)

k=ln/21
Seti= 1 andj= 1

Inner loop

yes YL(i,J) '' x(i,2j -1) +I YH(i,j)l 21
j = }+1

es

YL(i,J) = x(i,2j -1) -I(YH(i,J -1) + YH(i,J) + 2)/ 41
J=j+

(d)

Figure A.3.1 (d) Horizontallowpass decompositio~ flowchart.

262

Call fdwt
To decorrelate an mxn image

+
Call function verticaiR

To reconstruct YL

~
Call function verticaiR

To reconstruct YH

~
Call function horizontaR

To reconstruct YLL

~
Repeat steps 2, 3, and 4 until

the whole image is
reconstructed

t
Convert reconstructed matlab image
to a grayscale image and display it

along with the original image

+
Call function psnr

to compute mean square error

+
stop

(a)

Figure A.3.2 (a) Inverse Program

263

Verticallowpass
reconstruction

Function verticaiR

Get YLH size (m,n)
Get YLL size (m1,n)

yes YL = zeros(2m+1,n) I

No

No

YL(2j -l,i) = YLL(j,i)-r YLH (J -1,1)/21

j= j+I

yes YL(2j-I,i) = YLL(J,i,)-jYLH(i,j)!2l

J = j +I

es

YL(2j -l,i) = YLL(j,i)-j(YLH(j -l,i) + YLH(J,i) + 2)/

YL & YLH

Continue to the next page

(b)

Figure AJ.2 (b) Verticallowpass flowchart.

264

YL(2j,i) = YLH(J,i) + YL(2j- l,i)

j = j +I

No

Vertical highpass
reconstruction

Seti&j=1

yes

YL(2j,i) = YLH(J, i)- I<YL(2j- I, i) + YL(2j + l,i))/ 21
j = j+l

(c)

Figure A.3.2 (c) Vertical highpass reconstruction flowchart.

265

'

horizontal lowpass
reconstruction

i = i+1 L yes /s
j = 1 I = n1?

No

x(i,2j -I) = YL(i, j) -r YH(i,j -1)/21

j = j+l

Function
horizontaiR

t
Get YL size (m,n1)
Get YH size (m,n)

Seti&j=1

No is yes J
End) i=m? \

No

/s yes x(i,2j -I)= YL(i, j)-r YH(i, j)l 21
j = 1? j = }+1

No

isnl =nor j <nl
yes

x(i,2j -I) = YL(i,j) -r(YJI(i, j -I)+ YH(i,j) + 2)/ 41

1 x& YH

Continue to the next page

(d)

j = j +I

Figure AJ ,2 (d) Horizontal lowpass flowchart.

266

I

'

Outer loop

i = i+1
j = 1

x(i,2 j) = YH(i, j) + x(i,2j- I)

No

Horizontal
highpass

reconstruction

Seti=1&j=1

yes
End

Inner loop

yes

x(i,2j) = YH(i,j) + i(x(i,2j- I)+ x(i,2j + I)) I 21
j =j+l

(e)

Figure A.3 .2 (e) Horizontal high pass reconstruction flowchart.

The forward program consists of 6 parts: programfdwt, reads in the original image to be decomposed

and then calls appropriate functions to decompose (decorrelate) it, the horizontalf and horizontalji

functions compute DWT in the horizontal direction to yield the highpass (H) and the lowpass (L)

decompositions, respectively, the verlicalfh function computes DWT in the vertical direction to decompose

H into subbands HH and HL, the vertica(fl function computes DWT in the vertical direction to decompose

L into subbands LH and LL. The last part of the forward program is program j2dwt (the main program).

This program combines subbands of the decomposed image to form the decorrelated image. Then, it

displays the decorrelated image and plots pixels of the original and dccorrelated images to show correlation

and decorrelation properties, respectively.

267

The forward program is activated by typing at the prompt "f2dwt", which activates the main program.

The main program in turn calls fdwt. The four functions named horizonto/(, horizontaljl, vertical(, and

vertica/FL are called from programfdwt, for example, in the first level decomposition as follows. First, the

horizontalffunction is called followed by the horizontaljl function to yield Hand L decompositions, which

are stored in YH and YL, respectively. Then, function verticalfis called with YH as a parameter to yield

HH, which is stored in YHH I. Next function vertica/FL is called with YH and YHH I as parameters to

yield subband HL which is stored in YHLI. Again, function verticalfis call-oct, with YL as a parameter, to

yield subband LH which is stored in YLHI. Then, function vertica!FL is called with YL and YLHI as

parameters to yield subband LL which is stored in YLLI. This process is repeated in each decomposition

level until the entire image is decomposed into the desire number of levels.

On the other hand, the inverse program consists of 4 parts (functions): ia'wt, vertica/R. horizonta!R, and

psnr. The vertica/R function reconstructs the original by combining in each level subbands LH and LL into

Land subband HH and HL into H. Whereas, the function of horizonta/R, in each level, is to combine H and

L decompositions to form the next LL subband ..

The difference function computes the difference between the original image (X I) and the reconstructed

image (X2) using the following formula [8, 15].

A/ N

z= LL(Xi(i,j)-X2(i,j)) (A.!)
l=l p=l

If the difference (z) is zero, the two images' pixels are identical; otherwise, the two images' pixels are not

identical.

The function of the idwt is to reconstruct the original image by calling vertica/R and horizohnta/11.

The inverse program is activated by typing at the prompt "idwt", which activates program idwt. Then, idwt

callsfdwt to decorrelate the image. The reconstruction process for the first !eve! begin by calling vertica/R

with YLH3 and YLL3 as parameters to yield L3 decomposition which is stored in YL. Again, function

vertica/R is called with YHH3 and YHL3 as parameters to yield H3 decom:Josition which is stored in YH.

Then, function horizon/aiR is called with YH and YL as parameters to yield sub band LL2 which is stored

in YLL2. This completes the first level reconstruction. For each subsequencr~ level reconstruction the above

steps are repeated until the whole image is reconstructed. When this is done, idwt dis lays both the original

and reconstructed images and then call psnr to compute signal-to-noise ratio (SNR) between the original

image and reconstructed image.

The following figures show simulation results of applying an original image to the software simulation

program. When the image shown in Figure A.3.3 (a) was processed by the forward simulation program, the

result was the image shown in Figure A.3.3 (b), which is the wavelet representation of the decorrelated

image. Then the decorrelated image is applied to the inverse software program to yield the image shown in

268

Figure A.3.3 (c) which is a perfect reconstruction of the original image without distortion in the image

boundaries.

On the other hand, the result of the simulation in Figures A.3.4 and A.3.5 show clearly the correlation

and decorrelation properties, respectively. Figure A.6 shows the original image pixels are highly correlated,

while Figure A.3.5 shows the image pixels, which are the result of applying FDWT to the original image

pixel, are decorrelated.

The original Image Oeoorrelated Image Reoonstruoted Image

(a) (b) (c)

Figure A.3.3 (a) The original image (b) Decorretated image (c) Reconstructed image

200

100

0

-100

Thl• flgu,.. ano~ 1ne original l,....ge pbcete are highly oorrel•t•d

Figure A.3.4 Original image pixels highly correlated

Thle figure eho~ the deoornpoeed trn.ge ptx••• .,.. dltoor,..lated

0 0

Figure A.3.5 decomposed image pixels decorrelated

269

300

...

APPENDIXB

DATAFLOW AND CONTROL SIGNALS TABLES

B. I Dataflow tables of chapter 3

Table B.! Dataflow for 5/3 overlapped and overlapped scan architectures

Ck RP's input Cp's input latches Cp's output

f latches RP's output latches atchcs
RdO Rd1 Rd LB RtO Rt2 Rt1 RdO Rd3 Rd4 Rd6 Rd5 Rt3 Rt4 RtS Rt6 Rt7

I xO,O
2 xO,O xO,I
3 ---- --- x0,2 xO,O x0,2 xO, I
4 xi.O --- x0,2
5 xi,O xl,l
6 --- ---- xl,2 xi,O x1.2 xl,l LO.O --- HO,O ---- -----
7 x2,0 ---- xl,2
8 x2,0 x2,1
9 ---- --- x2,2 x2,0 x2,2 x2, I LO,O LI,O 110,0 ---- HI,O
10 x3,0 --- x2,2
11 x3,0 x3, I -

0 12 ---- --- x3.2 x3,0 x3,2 x3,1 L2,0 ---- HO,O 112,0 HI.O LO,O L2,0 LI,O
0

"' 13 x4,0 --- x3,2
14 x4,0 x4,1
15 --- --- x4,2 x4,0 x4,2 x4, I L2,0 L3,0 H2,0 ----- H3,0 HO.O H2,0 HI ,0 LHO,O LLO,O
16 x5.0 --- x4.2
17 x5,0 x5, I
18 --- --- x5,2 x5,0 x5,2 x5,1 L4,0 --- 112,0 H4,0 113,0 L2.0 L4.0 L3,0 IIHO.O IILO.O
19 x6,0 --- x5,2
20 x6,0 x6, I
21 --- --- x6,2 x6,0 x6,2 x6, I L4.0 L5,0 H4.0 ----- H5.0 H2,0 H4,0 H3,0 LHI,O LLI,O
22 --- ---
23 --- ---
24 --- --- ---- ---- ---- L6,0 ---- H4,0 H6,0 H5,0 L4,0 L6.0 L5.0 HHI,O HLI.O
25 x0.2 ---
26 x0.2 x0,3
27 ---- --- x0,4 x0,2 x0,4 x0,3 L6.0 ----- H6,0 ----- ----- H4,0 H6,0 H5,0 LH2,0 LL2.0
28 x1,2 --- x0,4
29 x1,2x1.3
30 ---- ---- x1,4 x1,2 x1,4 x!J LO, I ----- H6,0 HO,I ----- L6.0 ----- ----- HH2,0 HL2,0
3 1 x2,2 ---- x1.4
32 x2,2 x2,3
33 ---- ---- x2,4 x2,2 x2,4 x2,3 LO,I Ll,l HO,I ----- HI,! H6.0 ----- ----- ------ LL3,0

N

§ 34 x3,2 ---- x2.4

"' 35 x3,2 x3,3
36 ---- ---- x3,4 x3.2 x3,4 x3,3 L2,1 ---- HO,I H2,1 HI,! LO, I L2. I Ll,l ------ HL3.0
37 x4,2 ---- x3,4
38 x4.2 x4,3
39 ---- ---- x4.4 x4,2 x4,4 x4,3 L2,0 L3,1 H2,1 ----- H3,1 HO,I H2,1 HI, I LHO,I LLO,!
40 x5,2 ---- x4,4
41 x5,2 x5,3
42 ---- ---- x5,4 x5,2 x5,4 x5,3 L4,1 ---- H2,1 H4,1 H3,1 L2,1 L4,1 LJ,I HHO.I HLO.I
43 x6,2 ---- x5,4
44 x6,2 x6,3
45 ---- ---- x6,4 x6,2 x6,4 x6,3 lA, l L5,1 H4,l ----- H5,l H2,l H4,l H3,1 LHI,I LLI.l

270

Note that in Table B.! at cycles 22, 23, and 24 the external memory is not scanned and no pixels are

loaded into RP latches RtO, Rtl, and Rt2 at cycle 24 where a transition from run I to run 2 is made. This is

only required every time a transition from a run to the next is made when the column length N of an image

is odd.

Dataflow tables for the second 9/7 pipelined overlapped architecture, developed based on the scan

method shown in Figure 3.5.3, are shown in Tables 8.2 (a) and (b), respectively. Note that when the

column length N of an image is odd, after the second run, an empty cycle should be inserted whenever a

transition is made from a run to the next as shown for example at cycle 22 in Table 8.2 (b).

Control signal values for signals Ed2, Ed3, Ed4, Ed5, Ed6, SO, and S I derived from Table B.2(a)

are shown in Table 8.2 (c). Note that number of control signals in Table 8.2 (c) can be reduced to 3 signals

by observing that signals Ed2, Ed6, SO and Sl are equal and so are signals Ed3 and Ed5.

Table 8.2 (a) Dataflow of the second 9/7 pipelined overlapped architecture for even N

ck RP's input RP's output Latches CP's mput CP's output
latches Latches Latches
RtO Rt2 Rtl Rd2 Rd3 Rd4 Rd6 Rd5 Rt3 Rt4 Rt5 Rt6 Rt7

I xO,O x0,2 xO, I
2 x0,2 x0,4 x0,3
3 xl,Ox1,2 xl,l
4 xl,2 x\,4 xl,3

"
5 x2,0 x2,2 x2,1

" 6 x2,2 x2,4 x2,3

"' 7 x3,0 x3,2 x3,1
8 x3,2 x3,4 x3,3
9 x4,0 x4,2 x4,1
10 x4,2 x4,4 x4,3 LO,O --- 110,0
II x5,0 x5,2 xS,l LO,O --- 110,0
12 x5,2 x5,4 x5,3 LO,O Ll,O 110,0 ---- 111,0
13 x0,4 x0,6 x0,5 LO,O Ll,O HO,O ---- Hl,O
14 xl,4xl,6xl,5 1.2,0 --- HO,O H2,0 HI ,0 LO,O L2,0 Ll ,0

';! 15 x2,4 x2,6 x2,5 L2,0 --- 110,0 112,0 111,0 110.0 H2,0 111,0

" 16 x3,4 x3,6 x3,5 L2,0 Ll.O H2,0 ---- H3,0 ----- ----- -----"' 17 x4,4 x4,6 x4,5 L2,0 Ll.O H2,0 ---- H3,0 ----- ----- -----
18 x5,4 x5,6 x5,5 L4,0 --- H2,0 H4,0 H3.0 1.2,0 1.4,0 LJ,O
19 x0,6 x0,8 x0,7 !A,O --- H2,0 H4,0 H3,0 112,0 114,0 113,0

M
20 xl,6 xl,8 xl,7 L4,0 L5,0 114.0 ---- H5,0 ---- -····

c 21 x2,6 x2,8 x2,7 L4,0 LS,O 0 114,0 ---- HS,O ·---- --·-- -----

"' 22 x3,6 x3,8 x3,7 LO,l ---- H4,0 110,1 H5,0 L4,0 L4,0 L5,0
23 x:4,6 x4,8 x4,7 LO,l Ll.l HO,l ----HI,! H4,0 H4,0 H5,0 LHO,O LLO.O
24 x5,6 x5,8 x5,7 L2,1 ---- flO, I H2,1 Hl,l LO,l L2,1 Ll,l HHO,O HLO,O
25 L2,1 LJ,l H2,1 ---- H3,1 HO.l H2,1 HI,! ------- -------
26 L4,1 ---- 112, I 114, I H3, I 1.2, I L4,\ 1.3, I ···---- --··---
27 L4,1 L5,1 H4,1 ---- H5,1 H2,1 H4,1 H3,1 LHI,O LLI,O
2H L0,2 ---- H4,1 H0,2 H5,1 L4,1 L4,1 L5,1 11111,0 111.1,0
29 L0,2 Ll,2 H0,2 ---- H3, I H4,1 114,1 H5.1 ------- ···----
30 L2,2 ---- 110.2 112.2111,2 1.0,2 1.2,2 1.1 ,2 ···---- --···--
31 1.2,2 1.3,2 H2,2 ---- H3,2 H0,2 H2,2 HI ,2 1.112,0 LL2,0
32 L4,2 ---- H2,2 H4,2 H3,2 1.2,2 1.4,2 1.3,2 HH2,0 HL2,0
33 L4,2 L5,2 114,2 ---- H5,2 H2.2 H4,2 H3,2 LHO,l LLO,l
34 L4,2 1.4,2 L5,2 HIIO,l HLO,l
35 H4,2 H4,2 H5.2 LHI,l LLI,l
36 HHI,l HLI,l
37 LH2,1 LL2,1
38 HH2,1 HL2,1

271

Table B.2 (b) Dataflow of the second 9/7 pipelined overlapped architecture for odd N

ck RP's input RP's output Latches CP's input CP's output
latches Latches Latches
RtO Rt2 Rt1 Rd2 Rdl Rd4 Rd6 RdS Rt3 Rt4 Rt5 Rt6 Rt7

9 x4,0 x4,2 x4, I

- 10 x4,2 x4,4 x4,3 LO,O --- 110,0

" 11 x5,0 x5,2 xS, I
" LO,O --- HO,O

"' 12 x5,2 x5,4 x5,3 LO,O Ll.O HO,O ---- Ill ,0
13 x6,0 x6,2 x6, 1 LO.O Ll,O HO,O ---- H 1,0
14 x6,2 x6,4 x6,3 L2,0 --- HO,O H2,0 H 1,0 LO.O L2,0 Ll,O
15 x0,4 x0,6 x0,5 L2,0 --- HO,O H2,0 H1.0 HO,O H2,0 HI,O
16 x1,4 x1,6 xl,S L2.0 LJ,O H2.0 ---- HJ,O ----- ----- ------

N 17 x2,4 x2,6 x2,5 L2,0 LJ,O H2,0 ---- HJ,O
" ----- ----- ------
" 18 x3,4 x3,6 x3,5 L4,0 H2,0 H4,0 Hl,O L2.0 L4,0 u.o "' ---

19 x4,4 x4,6 x4,5 L4,0 --- H2.0 H4,0 HJ,O H2,0 H4,0 H,O
20 x5,4 x5,6 x5,5 L4,0 L5,0 H4,0 ---- H5,0 ----- ----- -----
21 x6,4 x6,6 x6,5 L4,0 L5,0 H4,0 ---- 115,0 ----- ----- -----
22 ----- ---- ----- L6,0 ---- H4,0 H6,0 H5,0 L4,0 L6,0 L5.0
23 x0,6 x0,8 x0,7 L6,0 ---- H6,0 ---- ----- H4.0 H6,0 H5.0 LHO,O LLO,O

M
24 xl,6 xl,8 x1,7 L0,1 ---- H6,0 H0,1 ---- L6,0 ----- ----- 111!0.0 HLO,O

" "
25 x2,6 x2,8 x2, 7 L0.1 L1,1 110.1 ---- H1.1 H6,0 ----- ----- ------- -------

"' 26 x3,6 x3,8 x3,7 L2,1 ---- H0,1 H2,1 H1,1 LO,I L2,1 L1,1 ------- -------
27 x4,6 x4,8 x4,7 L2,1 L3,1 H2,1 ---- HJ.I H0,1 H2,1 H1,1 LH1.0 LLl,O
28 x5,6 x5,8 x5,7 L4,1 ---- H2,1 H4,1 HJ,1 L2,1 L4,1 l.l, 1 HIII,O HL1,0
29 x6,6 x6,8 x6,7 L4,1 L5.1 H4,1 ---- H5,1 H2.1 H4,1 HJ,1 ------- -------
30 L6,1 ---- H4, 1 H6, 1 115,1 1.4,1 L6,1 1.5.1 ------- -------
31 L6,1 ---- H6,1 ---- ----- H4,1 H6, I 115,1 LH2,0 LL2.0
32 L0,2 ---- H6, 1 H0,2 ---- L6,1 ----- ----- H112.0 HL2.0
33 L0,2 L1,2 H0,2 ---- H 1,2 H6,l ----- ·---- ----- LLJ,O
34 L2,2 ---- 110,2 H2.2 H 1,2 L0,2 L2,2 1.1 ,2 ----- HLJ,O
35 L2,2 LJ,2 H2,2 ---- 113,2 H0.2 H2,2 111.2 LliO.I LL0,1
36 L4,2 ---- H2,2 114,2 HJ,2 L2,2 L4.2 Ll.2 H110.1 HL0.1
37 L4,2 L5,2 114,2 ---- H5,2 H2,2 H4,2 113,2 Llll.l LL1,1
38 L6,2 ---- H4,2 H6,2 H5.2 L4,2 L6,2 L5,2 11111.1 IILI.1
39 L6,2 ---- H6,2 ---- ----- H4,2 H6,2 H5,2 LH2,1 LL2.1
40 H6,2 ---- ----- L6,2 ---- ----- HH2.1 HL2, 1
41 H6,2 ---- ----- ------ LLJ,I

------ HLJ,1
LIIO,J LLO,J
HH0,3 HL0,3

Table B.2 c) Control signal values
clock Ed2 Edl Ed4 Ed5 Ed6 so :~I

10 1 X 1 X X 1 X
11 0 X 0 X X X X
12 0 I 0 1 X X X
13 0 0 0 0 X X X
14 1 X 0 0 1 X I -

" 15 0 X 0 0 0 X) ,
"' 16 0 1 1 1 X 0 X

17 0 0 0 0 X X X
18 1 X 0 0 1 X I
19 0 X 0 0 0 X J
20 0 1 1 1 X 0 X
21 0 0 0 0 X X X
22 1 X 0 0 1 X I
23 0 1 I 1 X 0 0

N 24 1 X 0 0 1 X I

§ 25 0 1 I 1 X 0 0

"' 26 1 X 0 0 1 X 1
27 0 1 1 1 X 0 0
28 1 X 0 0 1 X 1
29 0 I 1 1 X 0 0
30 1 X 0 0 1 X I

272

Table B.3 Dataflow of the intermediate architecture

YH YL
SRO SR2 SRI SRO SRI

Clk RdO Rdl RtO Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO Rt3 Rt4 Rt5
I xO,O -
2 xO,O xO,l
3 x0,2 - xO,O x0,2 xO, I
4 x0,2 x0,3
5 x0,2 x0,3
6 x0,4 - x0,2 x0,4 x0,3 hO,O LO,O -
7 x0,4 x0,5
8 x0,4 x0,5
9 x0,4 x0,6 x0,5 hO,l hO,O LO,l 1.0.0 -
10 xi,O -
II xl,O xl,l
12 x1,2 - xl,O x1,2 xl,l h0,2 hO,l hO,O L0,2 LO,l LO,O
13 x1,2 xl,3
14 xl,2 xU
15 xL4 - x\,2 x\,4 xl,3 h0,2 hO,l hO,O hl,O L0,2 LO,l LO,O 1.1,0
16 xl,4 xl,S
17 x\,4 xl,S
18 - - x1,4xl,6x1,5 h0,2h0,\h0,0 hl,lhl,O L0,2LO,!LO,O Ll,!Ll,O
19 x2,0 -
20 x2,0 x2, l
21 x2,2 - x2,0 x2,2 x2,1 h0,2 hO,l hO,O h1,2 hl,lhl,O L0,2 LO,l LO,O L1,2 Ll,ILI,O
22 x2,2 x2,3
23 x2,2 x2,3
24 x2.4 - x2,2 x2,4 x2,3 h0,2 hO, I hO,O h2,0 hI ,2 hI, I hi,O 1.2.0 1.0,2 LO, I L I ,2 L\,1 1.0.0 1.2,0 \.I ,0
25 x2,4 x2,5
26 x2,4 x2,5

Rt6 Rt7

27 - - x2.4x2,6x2,5 h0,2h0,1 hO,O h2,1 h2,0 h1,2hl,l hi,O 1.2,1 L2,0L0,2 L\,2 LO,I 1.2,1 L\,1 Lh0,0\.1.0,0
28 x3,0 -
29 x3,0 x3, I
30 x3,2 - x3,0 x3,2 x3, I h0,2 hO, I hO,O h2,2 h2, I h2,0 hI ,2 hI, I hI ,0 L2,2 L2, 1 L2,0 L0,2 L2,2 L I ,2 LhO, I LLO, l
31 x3,2 x3,3
32 x3,2 x3,3
33 x3,4 - x3,2 x3,4 x3,3 h2,0 h0,2 hO, I h2,2 h2, 1 h3,0 h 1 ,2 h 1 ,I L2,2 L2, I L2,0 LJ,O - hO,O h2,0 hI ,0 Lh0,2 LL0,2
34 x3,4 x3,5
35 x3,4 x3,5
36 - - x3,4x3,6xl,5 h2,1 h2,0h0.2 - h2,2 hl,l hl,Ohl,2 1.2,21.2,1 1.2.0 1.3,1 LJ,O - hO,I h2,1 hl,l hhO,OhLO,O
37 x4,0 -
38 x4,0 x4,1
39 x4,2 - x4,0 x4,2 x4, I h2,2 h2,1 h2,0 h3,2 h3,1 h3,0 L2,2 L2, I L2.0 L,3,2 LJ, I L3,0 h0,2 h2,2 hi ,2 hhO,l hL0,1
40 x42 x4,3
41 x4,2 x4,3
42 x4,4 - x4,2 x4,4 x4,3 h2,2 h2,1 h2,0 h4,0 h3,2 h3,1 h3,0 L4,1l L2,2 L2,1 L3.2 LJ,I L2,0 L4,0 LJ,O hh0,2 hL0,2
43 x4,4 x4,5
44 x4,4 x4,5
45 - - x4,4x4,6x4,5h2,2h2,1 h2,0 h4,1h4,0 h3,2h3,1 h3,0 lA, I L4,0L2,2 - L3,2 L2,1 L4,1 L3,\ Lhl,OLLI,O

It is important to keep in mind that each time a transition from a run to the next is made, when the

column length of an image is odd, the external memory is not scanned for i consecutive clock cycles

reference to the processor clock, where i = I, 2 , 3, .. denotes first, second, third scan methods, and so on.

The reason is that during this period the CP would be processing the last coefficient in i columns of each H

and L decomposition that were under consideration in the previous run as required by the DOG for odd

length signals. No such situation arises when the column length of an image is even.

273

Table 8.4 Second dataflow for intermediate archite,:ture

YH YL
SRO SR2 SRI SRO SRI

Clk RdO Rdl RtO Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO Rtl Rt4 Rt5
I xO,O -
2 xO,O xO, I
3 x0,2 - xO,O x0,2 xO, 1
4 x0,2 x0,3
5 x0,4 - x0,2 x0,4 x0,3 hO,O
6 x0,4 x0,5
7 - x0,4 x0,6 x0,5 hO,I hO,O
8 xl,O -
9 xl,O xl,l
10 x\,2 - xl,Ox1,2xl,l h0,2h0,1 hO,O
II x\,2 xl,3
12 x\,4 - xl,2 xl,4 xl,3 h0,2 hO,I hO,O
13 x1.4 xl,5
14 - xl,4 xl,6 xl,S h0,2 hO,l hO,O
15 x2,0 -
16 x2,0 x2,1

LO,O -

LO,l LO.O

L0,2 LO, I LO,O

hi,O L0,2 LO, I LO,O Ll ,0

hl,lhi,O L0,2 LO, I Lll,O L1, I l.l ,0

17 x2,2 - x2,0x2,2x2,1 h0,2h0,1 hO,O hl,2hl,lhi,O L0,2LO,I LO,O LI,2LI,ILI,O
18 x2,2 x2,3
19 x2,4 - x2,2 x2,4 x2,3 h0,2 hO,J hO,O h2,0 hI ,2 hI, I hI ,0 L2,0 L0,2 LO, I "I ,2 Ll, I LO,O L2,0 L I ,0
20 x2,4 x2,5

Rt6 Rt7

21 - x2,4x2,6x2,5 h0,2h0,1 hO,O h2,1 h2,0 h1,2hl,l hi,O L2,1 L2,0L0,2 Ll.2 LO,I L2,1 Ll,l LhO,OLLO,O
22 x3,0 -
23 x3,0 x3, I
24 x3,2 - x3,0 x3,2 x3, I h0,2 hO, I hO,O h2,2 h2, I h2,0 hI ,2 hI, I hI ,0 L2,2 L2, I L2,0 L0,2 L2,2 L1 ,2 LhO, I LLO, I
25 x3,2 x3,3
26 x3,4 - x3,2 x3,4 x3,3 h2,0 h0,2 hO, I h2,2 h2,1 h3,0 hI ,2 hI ,I L2,2 L2, I L2,0 LJ,O hO,O h2,0 h 1,0 Lh0,2 LL0,2
27 x3,4 x3,5
28 - - x3,4 x3,6 x3,5 h2,1 h2,0 h0,2 - h2,2 h3,1 hl,O hl,2 L2,2 L2,1 L2.0 LJ, LJ,O hO,I h2,1 hl,l hhO,O hLO,O
29 x4,0 -
30 x4,0 x4,1
3 I x4,2 - x4,0 x4,2 x4, I h2,2 h2, I h2,0 h3,2 hl, I h3,0 L2,2 L2, I L2,0 L) 2 LJ. I LJ,O h0,2 h2,2 hI ,2 hhO, I hLO, I
32 x4,2 x4,3
33 x4,4 - x4,2 x4,4 x4,3 h2,2 h2,1 h2,0 h4,0 hl,2 hl,l hl,O L4,0 L2,2L2,1 Ll,2Ll,l L2,0 L4,0 LJ,O hh0,2 hL0,2
34 x4,4 x4,5
35 - - x4,4x4,6x4,5h2,2h2,1 h2,0 h4,1h4,0 hl,2h3,1 h3,0 L4,1 L4,0L2,2 - LJ,2 L2,1 L4,1 LJ,I Lhi,OLLI,O

Control signals such as sreO, sre I, sre2, and incar etc., are issued by the control unit and are loaded, in

every clock cycle, into the first stage of the RP. Then, these signals are carried from stage-to-stage. When a

stage where a signal is used is reached that signal is applied and the reset :1re carried on to the next stage

until the last stage is reached. However, in the 9/7, applying the scan met"1ods such as shown in Figures

3.5.1, 3.5J, and 3.8.1 would require these signals values of the RP to change as they move from stage-to­

stage, especially in the last and extra runs. Tables B.5 (a) and (b) and the circuit shown in Figure B. I l,

which operate according to Table B.5, are provided in order to be applied as described in section 3.8,3,

• Signal srel takes on the signal values of Table B.5 (a), when the row length of an image is odd. In

the case of even length both sre l and Q l are set 0 in all runs.

• Table B.5 (a) is used for signal sreO for both odd and even length,

274

• Table B.5 (b) is applied only in the architecture developed based on the scan method of Figure

3.5.1. For the architecture based on the scan method of Figure 3.5.3, signal sre2 is set to alternate

between 0 and I, while Q2 is set 0, in the first run. In all subsequent runs, sre2 and Q2 are set I

and 0, respectively, as shown in the third row of Table B.5 (b).

Table B.5 (a) control signal values

sreO QO
srel Ql

0 0 0 Run I to
0 0 0 the run

0 0 0 before
0 0 0 last.
I I 0 Last run
I 0 I Extra run

Table B.5 (b) control signal values for sre2

sre2 Q2
0 X Run 1
I I Run 2
I 0 Run 3 to extra run.

~ Q

Figure B.l.l circuit

Table 8.6 5/3 Dataflow for overlapped and nonoverlapped
parallel scan architecture

Clk RtO Rt2 Rtl Rd2 Rdl Rd4 Rd6 Rd5 Rtl Rt4 Rt5 Rt6 Rt7

I xO,O x0,2 xO, 1 - - - -
2 xl,Ox\,2xl,l - -
3 x2,0 x2,2 x2, I - - -
4 xJ,O x3,2 x3,1 - - -
5 x4,0 x4,2 x4,1 LO.O 110.0 - - - -
6 x5,0 x5,2 x5, I LO,O Lt ,0 HO,O Hl,O - - -
7 x6,0 x6,2 x6,1 L2,0 HO,O H2,0 Ill ,0 LO,O 1.2,0 Ll,O
8 x7,0x7,2x7,l L2,0 LJ,O 112,0 HJ,O 110,0 H2,0 Hl,O -
9 x8,0 x8,2 x8, I L4,0 H2,0 114,0 HJ,O L2,0 L4,0 LJ,O -
10 x9,0 x9,2 x9,1 L4,0 LS,O H4,0 HS,O H2,0 H4,0 Hl,O LHO,O LLO,O
II xlO,O xl0,2 xlO,l L6,0 H4,0 H6,0 HS,O L4,0 L6,0 LS,O HHO,O llLO,O
12 xll,Oxll,2xll,l L6,0 L7,0 H6,0 117,0 H4,0 H6,0 HS,O LH1,0 LLl,O
1 3 x\2,0 x12,2 xl2,1 L8,0 - H6,0 H8,0 H7,0 L6,0 L8,0 L7,0 HH1,0 HLt,O
14 x\3,0 xl3,2 xl3,1 L8,0 L9,0 H8,0 - H9,0 H6,0 H8,0 H7,0 LH2,0 LL2,0
15 x14,0 xl4,2 x\4,1 L!O,O H8,0 H 10,0 H9,0 L8,0 Lt 0,0 L9,0 HH2,0 HL2,0
16 xl5,0 x15,2 xiS,! LlO,OL11,0 1110,0 Hl1,0 H8,0 H10,0 H9,0 Llll,O LLJ,O

275

Table B.7 513 Dataflow for intermediate parallel scan architecture

YL YH
SRO SRI SRO SR2 SRI

Clk Rd RtO Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO Rtl Rt4 Rt5 Rt6 Rt7

1 x0,2 xO,O x0,2 xO, 1
2 x0,4 x0,2 x0,4 x0,3
3 x0,6 x0,4 x0,6 x0,5
4 xl,2 xl,O x1,2 x\,1
5 xl,4 xl,2 xl,4 x\,3 LO,O 110,0
6 x1,6 xl,4xl,6x1,5 LO,l LO,O HO,l HO,O-
7 x2,2 x2.0 x2,2 x2,1 L0,2 LO, I LO,O H0,2 HO,I HO,O
8 x2,4 x2,2 x2,4 x2.3 L0,2 LO,l LO,O LI,O H0,2 HO,I HO,O HI,O
9 x2,6 x2,4 x2,6 x2,5 L0,2 LO, I LO,O Ll, I L1 ,0 - H0,2 HO, I HO,O HI, I HI ,0
10 x3,2 xl,O x3,2 xl,l L0,2 LO,I LO,O l.l,21.1,1 LI,O H0,2 HO,I HO,O Hl,2 HI,! HI,O
II xl,4 x3,2xl,4xl,J L2,0L0,2LO,I - LI,2LI,I H0,2HO,I HO,OH2,0 HI,2HI,I HI,O !.O,OL2,0LI.O
12 x3,6 x3,4x3,6x3,5 L2,1 L2,0L0,2 - - L\,2 H0,2HO,l HO,OH2,1 H2,0 - H1,2Ht,l Hl,O LO,l L2,1 Ll,l
I 3 x4,2 x4,0 x4,2 x4, I L2,2 L2.1 L2,0 - - H0,2 HO, I HO,O H2,2 H2, I H2,0 HI ,2 HI ,I HI ,0 L0,2 L2,2 Ll.2
14 x4,4 x4,2 x4,4 x4,3 L2,2 L2,1 L2,0 Ll,O H2,0 H0,2 HO,I - H2,2 H2,1 Hl,O Hl,2 HI.! HO.O H2,0 HI,O LHO,O LLO,O
15 x4,6 x4,4x4,6x4,5 L2,2L2,1 L2,0 LJ,I LJ,O H2,1 H2,0H0,2 - - H2,2 H3,1 H3,0HI,2HO,I H2,1 HI.! LIIO,I Ll.O.I
16 x5,2 x5,0 x5,2 x5,1 L2,2 L2,1 L2,0 LJ,2 LJ,I LJ,O H2,2 H2,1 H2,0 - - HJ,2 HJ,I H3,0 H0,2H2,2 Hl,2 LII0,2 LL0,2
17 x5,4 x5,2 x5,4 x5,3 !A,O L2,2 L2,1 - LJ,2 LJ,I H2,2 H2,1 H2,0 H4,0 Hl,2 Hl,l H3,0 L2,0 L4,0 LJ,O HHO,O HLO,O
18 x5,6 x5,4x5,6x5,5 !A,I L4,0L2,2 - - L3,2 H2,2H2,1 H2,0H4,1 H4,0 - Hl,2Hl,l H3,0 L2,1 L4,1 Ll,l HHO,I HLO,I
19 x6,2 x6,0 x6,2 x6, I !A,2 L4,1 L4,0 - H2,2 112, I 112,0 H4,2 H4, I H4,0 Hl,2 HJ, I Hl,O L2,2 !A,2 L3,2 IIHO,I HLO,I
20 x6,4 x6,2 x6,4 x6,3 !A,2 L4,1 L4,0 LS,O H4,0 H2,2 H2,1 H4,2 H4,1 HS,O 113,2 H3,1112,0 H4,0 Hl,O LHI,O LLI,O
21 x6,6 x6,4 x6,6 x6,5 !A,2 L4, I L4,0 L5,1 L5,0 114, I H4,0 H2,2 - - H4,2 HS, I H5,0 Hl,2 H2, I H4, I HJ, I LH 1.1 LL I, I

B.2 Dataflow tables of chapter 4

Table B.8 Dataflow for 2-parallel architecture

CK RP RPI & RP2 Rth Rtl CPI input latches CP2 input latches CP I & CP2 OUTPUTS
RtO Rt2 Rtl RtO Rt2 Rtl RtO F.t2 Rtl RtO Rtl RtO Rtl

I I xO,O x0,2 xO,I

2 2 x!,O xl,2 xl ,I

3 I x2,0 x2,2 x2,1

4 2 x3,0 x3,2 x3,l

5 I x4,0 x4,2 x4,1

6 2 xS,O x5,2 x5,1

7 I x6,0 x6,2 x6,1 HO,O LO,O

8 2 x7,0 x7,2 x7,1 HI,O LI,O

9 I x8,0 x8,2 x8,1 112,0 L2,0 HO,O H2,0 HI,O LO,O L2,0 LI,O

10 2 x9,0 x9,2 x9,1 HJ,O Ll,O ---------------------- ---------- ------- -------

II I xlO,O x10,2 x!OJ H4,0 !A,O H2,0 H4,0 Hl,O L2,0 L1,0 Ll,O

12 2 xll,O xll,2 xll,l H5,0 L5,0 ----- ---------------- ----------------- -------

13 I xl2,0 xl2,2 xl2,1 H6,0 L6,0 H4,0 H6,0 H5,0 !A,O 1.6,0 L5,0

14 2 xl3,0 x13,2 x13,1 H7,0 L7,0 ----- ---------------- ----------------- -------

15 I xl4,0 xl4,2 xl4,1 H8,0 L8,0 H6,0 H8,0 H7,0 L6,0 L8,0 L7,0 HHO,O HLO,O LHO,O LLO,O

16 2 x!S,O xl5,2 x\5,1 H9,0 L9,0 ---------------------- ------ ---- ------- ----- -----------------------------------

17 I xl6,0 x\6,2 xl6,1 HIO,O LIO,O H8,0 HIO,O H9,0 L8,0 1.10,0 L9,0 HHI.O HLI,O LHI,O LLI,O

18 2 xl7,0 xl7,2 x\7.1 HII,O LII,O ---------------------- ------ ---- ------- ----- ------------------------------------

19 I xl8,0 xl8,2 xl8,1 Hl2,0 L12,0 HIO,O Hl2,0 HII,O LIO,O 1.12,0 LII,O HH2.0 HL2,0 l.H2,0 I.L2,0

276

Table 8.9 dataflow of the 3-parallel architecture

Ck RP RP' s input latches RP's output latches (CPI &CP3) /CP2 input latches
f, RtO Rt2 Rtl Rth Rtl Rtl3b RtO Rt2 Rtl RtO Rt2 Rtl

I I X 0,0 X 0,2 xO,I

2 2 X 1,0 xl,2 xl,l

3 3 X 2,0 X 2,2 X 2,1

4 I X 3,0 X 3,2 X 3,1

5 2 X 4,0 X 4,2 X 4,1

6 3 X 5,0 X 5,2 X 5,1

7 I X 6,0 X 6,2 x6,1

8 2 X 7,0 X 7,2 X 7,1

9 3 X 8,0 X 8,2 X 8,1

10 I X 9,0 X 9,2 X 9,1 110,0 LO.O

II 2 X 10,0 X 10,2 X 10,1 HI,O L 1.0

12 3 X 11,0 X 11,2 X 11,1 H2,0 L2.0

13 I X 12,0 X 12,2 X 12,1 H3,0 L3.0 110,0 112,0 HI,O LO,O L2,0 LI,O

14 2 X 13,0 X 13,2 X 13,1 H4,0 L4,0 ··------------------- -- 112,0 114,0 H3,0

15 3 X 14,0 X 14,2 X 14,1 115,0 L2,0 L5,0 ---
16 I X 15,0 X 15,2 X 15,1 H6,0 L6,0 -------- H4,0 1160 H5,0 L2,0 L4,0 L3,0

17 2 X 16,0 X 16,2 X 16,1 H7,0 L7,0 -------- ----------------------- L4,0 L6.0 L5,0

18 3 X 17,0 X 17,2 X 17,1 H8,0 L8,0 -------- ---
19 I X 18,0 X 18,2 X 18,1 H9,0 L9,0 -------- H6,0 H8,0 H7,0 L6,0 L8,0 L7,0

20 2 X 19,0 X 19,2 X 19,1 1110,0 LIO,O ------- ------------------------ H8,0 1110,0 119,0

21 3 X 20,0 X 20,2 X 20,1 Hll.O L8,0 Lll,O ---
22 I X 21,0 X 21,2 X 21,1 Hl2,0 Ll2.0 ------- HIO.O 1112,0 1111,0 L8,0 LIO,O L9,0

23 2 X 22,0 X 22,2 x22,1 Hl3,0 Ll3.0 ------- ------------------------- LIO,O Ll2,0 Lll,O

24 3 X 23,0 X 23,2 X 23, I Hl4,0 Ll4,0 ------- ---
25 I X 24,0 X 24,2 X 24, I Hl5,0 L15,0 ------- Hl2.0 1114,0 Hl3,0 Ll2,0 L14,0 L13,0

26 2 X 25,0 X 25,2 X 25,1 Hl6,0 Ll6,0 ------- ------- --- ------- ---- -- --- Hl4,0 H16,0 H15,0

27 3 X 26,0 X 26,2 X 26,1 Hl7,0 Ll4,0 Ll7,0 ---
28 I X 27,0 X 27,2 X 27,1 Hl8,0 Ll8,0 ------- Hl6.0 Hl8,0 Hl7,0 Ll4,0 Ll6,0 Ll5,0

29 2 X 28,0 X 28,2 X 28,1 1119,0 Ll9.0 ------- ------- --- ------ ---------- L16,0 LI8,0 Ll7,0

CK CP I & CP3 output latches CP2 output latches
Rth Rtl Rth Rtl Rth Rtl

22 HHO,O HLO,O LHO,O LLO.O

23 ----------------------------------- IIIII ,0 HLI, 0

24

25 HH2,0 HL2,0 LHI,O LLI,O

26 Lll2,0 LL2,0

27

28 HH3,0 HL3,0 LH3.0 LL3,0

29 HH4,0 HL4,0

277

Table B.IO 5/3 4-parallel architecture's dataflow

ck RP RP's input latches RP's output latches CP I & C'P3 input latches I
RtO Rt2 Rtl Rth Rtl RtO Rt2 Rtl RtO Rt2 Rtl I

I I X 0,0 X 0,2 xO,I

2 2 X 1,0 xl,2 X 1,1

3 3 X 2,0 X 2,2 X 2,1

4 4 X 3,0 X 3,2 X 3,1

5 I X 4,0 X 4,2 X 4,1

6 2 X 5,0 X 5,2 X 5,1

7 3 X 6,0 X 6,2 x6,1

8 4 X 7,0 X 7,2 X 7,1

9 I X 8,0 x8,2 X 8.1

10 2 X 9,0 X 9,2 X 9,1

II 3 X 10,0 xl0.2 X 10,1

12 4 X 11,0 X 11.2 X 11,1

13 I X 12,0 X 12,2 X 12,1 HO,O LO,O

14 2 X 13,0 X 13,2 X 13,1 HI,O LI,O

15 3 X 14,0 X 14,2 X 14,1 H2,0 L2,0 HO.O H2,0 HI.O LO,O L2,0 LI,O

16 4 X 15,0 X 15,2 X 15,1 H3,0 L3,0 ~--

17 I X 16,0 X 16,2 X 16.1 H4,0 L4,0 ---
18 2 X 17,0 X 17,2 X 17,1 H5,0 L5,0 ---
19 3 X 18,0 X 18,2 X 18,1 !16,0 L6,0 H4,0 H6l· H5,0 L4.0 L6.0 L5,0

20 4 X 19,0 X 19,2 X 19.1 117,0 L7,0 ---
21 I X 20,0 X 20,2 x20,1 H8,0 L8,0 ---
22 2 X 21,0 X 21,2 X 21,1 H9.0 L9,0 ---
23 3 x22.0 X 22.2 X 22,1 HIO,O LIO,O H8,0 Hi'J,O H9,0 L8,0 LIO.O L9,0

24 4 X 23.0 X 23,2 x23.1 HII,O LII,O ---
25 I X 24,0 X 24,2 X 24,1 Hl2,0 Ll2,0 ------------·--
26 2 X 25,0 X 25.2 X 25,1 HIJ.O L13,0 -----------------------······························
27 3 X 26,0 X 26,2 X 26,1 H14,0 Ll4.0 Hl2.0 Hl4,0 Hl3.0 Ll2,0 1.14.0 Ll3,0

28 4 X 27,0 X 27,2 X 27.1 Hl5,0 Ll5,0 ····-····-· ····--····-···- w

29 I X 28.0 X 28,2 X 28,1 1116,0 Ll6,0 ---·- -------· --- ---------- ----- ------ ----------· -··· w

CP2 &CP4 input latches CP 1 & CP3 output latchts CP2 & CP4 output latches
CK RtO Rt2 Rtl RtO Rt2 Rt I Rthl Rtll Rth3 Rtl3 Rth2 Rtl2 Rth4 Rtl4

17 H2.0 H4,0 H3.0 L2,0 L4.0 L3,0

18

19

20

21 H6,0 HS,O H7.0 L6,0 L8,0 L7,0

22

23

24

25 1110,0 Hl2,0 HII.O LIO,O Ll2,0 LII,O

26

27 -------------···-------·-----·----··-----··· HHO,O HLO,O LHO,O LLC, 0

28

29 H 14,0 H 16,0 HI 5.0 L 14,0 L 16,0 Ll 5,0 ---------------------·----------·-- HHLO HLI,O LHI.O LLI.O

278

Table B.ll 4-parallel's TLBs read and write dataflow for case 2

RPI
Sta e 2 Stage 3

Ck RtO Rtl Sal2 Ia lb BIRI TLBI BORI Rt2 RtO Rtl
(,
5 xO,O HO,O I 0 0 ------- ---- ----- -----
7 xO.O HO.O I 0 0 ------- ------ ----- ------
9 x4,0 H4,0 I 0 0 H2,0 ------ xO,O HO,O
II x4,0 H4,0 I 0 0 H2.0 ------ xO,O HO,O

" 13 x8,0 H8,0 I I 0 H6,0 H2.0 ------ x4,0 H4.0
" 15 x8.0 H8,0 I I 0 H6,0 H2,0 x4,0 H4,0 <>: ------

17 xl2,0 Hl2,0 I 2 0 HIO,O H2,0 H6,0 ------ x8,0 H8.0
19 X 12,0 1112,0 I 2 0 H10,0 H2,0 H6,0 ------ x8,0 H8,0
21 x16,0 Hl6,0 I 3 0 Hl4,0 H2,0 H6.0 H 10,0 ------ xl2,0 Hl2.0
23 xl6,0 Hl6,0 I 3 0 H14,0 H2,0 H6,0 HI 0,0 ------ xl2,0 Hl2,0
25 x2.2 H2,1 I 0 0 HO,I H2,0 H6,0 H 10,0 1114,0 ------ xl6,0 Hl6,0
27 x2,2 H2.1 I 0 0 HO,I H2,0 H6,0 H 10,0 H 14,0 H2,0 ------ xl6,0 Hl6,0
29 x6,2 H6,1 I I 0 114,1 HO.I H6,0 H 10.0 1114,0 H2,0 H2,2 x2.2 H2,1

N 31 x6,2 116,1 I I 0 H4,1 HO,I H6,0 HIO,O Hl4,0 H6,0 H2,2 x2.2 H2,1 " " 33 x10,2 HIO,I I 2 0 118, I 110, I 114, I H 10,0 1114,0 116,0 H6,0 x6,2 H6,1 "' 35 xl0,2 HIO,I I 2 0 H8,1 HO,I H4,1 HIO,O Hl4,0 HIO,O H6,0 x6,2 H6,1
37 xl4.2 Hl4,1 I 3 0 1112,1 HO, I H4, I 118.0 1114,0 1110,0 HIO,O xl0,2 HIO,I
39 xl4,2 Hl4,1 I 3 0 1112,1 110, I H4, I H8, I 1114.0 1114,0 HIO,O x10.2 HIO,I
41 x0,4 110,2 0 4 0 1116,1 110, I 114.1 118, I 1112.1 1114,0 Hl4,0 xl4,2 Hl4,1

"'
43 x0,4 H0.2 0 4 0 Hl6,1 HO.I H4,1 H8,1 Hl2,1 HO.I Hl4,0 xl4,2 Hl4,1

" 45 x4.4 H4,2 0 0 I H2,2 ----- H4, I H8, I Hl2,1 H16,1 HO,I HO,I x0,4 H0,2 " "' 47 x4,4 H4,2 0 0 I 112,2 ----- H4.1 118, I 1112,11116,1 114, I HO,I x0.4 H0,2
49 x8,4 H8.2 0 I 2 H6,2 H2,2 ----- H8, I 1112,1 Hl6.1 H4,1 H4,1 x4,4 H4,2

RP3
Stage 2 Stage 3

Ck RtO Rtl Sa34 3a 3b BIR3 I TLB3 BOR3 Rt2 RtO Rtl
(,
7 x2,0 H2,0 I 0 0 HO.O ------ ------ ------
9 x2,0 H2,0 I 0 0 HO,O ------ ------ ------
II x6.0 H6.0 I I 0 H4.0 HO,O ----- x2.0 H2,0 - 13 x6,0 H6.0 I I 0 H4.0 110,0 ----- x2,0 H2.0

" " 15 x10.0 HIO,O I 2 0 H8,0 HO.O H4,0 x6,0 H6,0 <>: -----
17 x!O.O HIO,O I 2 0 H8,0 HO.O H4,0 ----- x6.0 H6,0
19 xl4,0 Hl4.0 I 3 0 Hl2,0 HO,O H4,0 H8,0 ----- x!O,O 1110,0
21 x14,0 Hl4.0 I 3 0 H12,0 HO.O H4,0 H8,0 ----- xiO.O HIO,O
23 x0,2 HO.I 0 4 0 1116,0 110,0 114,0 H8,0 H 12,0 ----- xl4,0 Hl4,0
25 x0.2 HO,I 0 4 0 Hl6,0 110,0 H4,0 H8,0 H 12,0 HO.O ----- xl4.0 Hl4,0
27 x4.2 H4.1 0 0 I H2,1 ----- H4,0 H8,0 Hl2,0 Hl6,0 HO,O HO,O x0.2 HO,I
29 x4,2 114,1 0 0 I 112, I ----- H4.0 H8,0 1112.0 Hl6,0 H4,0 HO,O x0,2 HO,I

';j 31 x8.2 H8.1 0 I 2 116, I 112, I ----- H8,0 Hl2.0 Hl6,0 H4,0 H4.0 x4.2 H4,1
" 33 x8.2 H8.1 0 I 2 H6,1 H2,1 ----- H8.0 Hl2.0 Hl6.0 H8.0 H4.0 x4.2 H4,1 <>:

35 xl2,2 H12,1 0 2 3 1110.1 112, I H6.1 ------ H 12,0 H 16,0 H8,0 H8.0 x8,2 H8,1
37 x12,2 Hl2.1 0 2 3 1110.1 112,1 H6.1 ------ 11 12,0 H 16,0 Hl2,0 H8.0 x8,2 H8.1
39 xl6,2 Hl6,1 0 3 4 Hl4.1 H2,1 H6,1 1110,1------ H16,0 Hl2,0 Hl2.0 xl2.2 H12,1
41 xl6,2 Hl6,1 0 3 4 1114, I 112, I 116.1 HIO,I------ Hl6,0 Hl6,0 Hl2,0 xl2,2 Hl2,1
43 x2,4 H2.2 I 0 0 H0.2 H2.1 H6,1 HIO,I1114,1------ 1116,0 1116,0 xl6,2 Hl6.1

"' 45 x2,4 H2.2 I 0 0 110,2 112,1 H6.1 HIO,I Hl4.1------ H2.1 H16,0 xl6,2 Hl6.1
" " 47 x6,4 H6.2 I I 0 H4,2 H0,2 H6,1 HI 0, I H 14, I ------ H2,1 H2,1 x2,4 112,2 <>:

49 x6,4 H6.2 I I 0 114.2 H0,2 H6, I HI 0, I 1114. I ------ H2.1 H2,1 x2,4 H2.2
Ia: TLBARia, lb: TLBARib, 3a: TLBAR3a, 3b: TLBAR3b

279

Table B.l2 Dataflow for 2-parallel intermediate architecl ure (k~3)

Ck RP RdO RP's input latches RdH SRHO SRHI Rd. SRLO SRLI
RtO Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO

I I x0,2 X 0,0 X 0,2 X 0, I

2 2 X 0,4 X 0,2 X 0,4 X 0,3
3 I X 0,6 X 0,4 X 0,6 X 0,5

4 2 X 1,2 X I ,0 X L2 X I' 1

5 I X],4 x1,2xl,4xl,3

6 2 X],6 X] ,4 X] ,6 X J ,5

7 I X 2,2 X 2,0 X 2,2 X 2,] HO,O ----- ----- LO,O ----- -----

8 2 X 2,4 X 2,2 X 2,4 X 2,3 HO,I HO,O ----- LO.l LO.O -----

9 I X 2,6 X 2,4 X 2,6 X 2,5 H0,2 1!0, I HO,O L0,2 LO,I LO,O

10 2 X 3,2 x3,0 x3.2 x3,1 HI,O ----- ----- l.l,O ----- -----

II I X 3,4 X 3,2 X 3,4 X),3 Hl,l HI,O ----- Ll,l Ll.O -----

12 2 X 3,6 X 3,4 X 3,6 X),5 H0,2 HO,l HO.O H1,2 Hl,l HI,O L0,2 LO, I LO,O 1.1.2LI.I LI,O

13 I X 4,2 x4,0 x4,2 x4,1 H2,0 H0,2 HO,I ----- Hl,2 Hl,l L2,0 L0,2 LO, I ------ L1,2 Ll,l

14 2 X 4,4 X 4,2 X 4,4 X 4,3 H2,1 H2,0 H0,2 110, I ----- 111,2 Hl,l L2,1 L2,0 L0,2 LO, I ------ L1 ,2 L1, I

15 I X 4,6 X 4,4 X 4,6 X 4,5 H2,2 H2, I H2,0 H 0,2 ----- Hl,2 Hl,l L2,2 L2,1 L2,0 L0,2 ------ L1,2 Ll,l

16 2 X 5,2 X 5,0 X 5,2 X 5,] H2,2 H2, I H2,0 H 0,2 H3,0 ----- Hl,2 L2,2 L2,1 L2,0 L0,2 LJ,O ------ Ll,2

17 I X 5,4 X 5,2 X 5,4 X 5,3 ------ H2,2 H2, I H 2,0 H3,1 HJ,O ------ ------ L2,2 L2.1 L2,0 LJ.I LJ,O -----

18 2 X 5,6 X 5,4 X 5,6 X 5,5 ------ H2,2 112, I H 2,0 H3,2 HJ,I HJ,O ------ L2,2 L2,1 L2,0 LJ,2 LJ,l LJ.O

19 I X 6,2 X 6,0 X 6,2 X 6, I ------ H4,0 H2,2 H2, I ------ H3,2 H3,1 ------ L4,0 L2.2 L2.1 ------ L3,2 LJ,I

20 2 X 6,4 X 6,2 X 6,4 X 6,3 1!4, I H4,0 H2,2 H2. I ------ H3,2 1!3,1 U,l L4,0 1.2,2 L2, I ------ LJ.2 LJ, I

21 I X 6,6 x6,4 x6,6 x6,5 H4,2 H4,1 H4,0 H2,2 ------ 1!3,2 H3, I U.2 L4,1 L4,0 L2,2 ------ Ll,2 Ll,l

22 2 X 7,2 x7,0 x7,2 x7,1 H4,2 H4,1 H4,0 H2,2 H5,0 ------ 113,2 U-,2 L4,1 L4,0 L2,2 LS,O ----- Ll.2

23 I X 7,4 X 7,2 X 7,4 X 7,3 ·----- H4,2 H4,1 1!4,0 H5,1 HS,O ------ ------ L4.2 lA,! L4,0 L5,1 LS,O -----

24 2 X 7,6 X 7,4 X 7,6 X 7,5 ----- H4,2 H4,1 H4,0 H5,2 115, I H5,0 --·--- L4,2 L4,1 L4,0 L5,2 L5, I LS,O

25 I X 8,2 X 8,0 X 8,2 X 8,] ------ H6,0 H4,2 H4, I ------ H5,2 H5, I --··--- L6,0 L4,2 1.4, I ----- L5,2 L5,1

ck RP CPJ &CP2 input latches CP 1 & CP2 output latches
RtO Rt2 Rtl RtO Rt2 Rtl Rtl RtJ Rtl RtO

13 HO,O H2,0 Ill ,0 LO,O L2,0 L I ,0
14 2
15 I HO,l H2,1 111,1 LO,l L2,1 Ll,l
16 2
17 I H0,2 H2,2 111,2 L0,2 L2,2 Ll,2
18 2
19 I H2,0 H4,0 113,0 L2,0 L4,0 LJ,O HHO,O HLJ,O LHO,O LLO,O
20 2
21 I H2,1 H4,1 H3,1 L2,1 L4,1 L3,1 11110, I HLJ, I LHO, I LLO, I
22 2
23 H2,2 H4,2 H3,2 L2,2 L4,2 L3,2 HH0,2 HL0,2 LH0,2 LL0,2
24 2
25 114,0 116.0 H5,0 L4,0 L6,0 1.5,0 HHI,O HLI,O LIII,O LLI,O

280

Table B.l3 Dataflow of the last run for cases 4 and 3 when N is even

Ck RP RdO RP's mput latches RdH SRHO SRHI Rdl SRLO

25

26 2
27

28 2

29

30 2

31 I

32 2

33

34 2

35

36 2

37

38 2

39

40 2

41

42 2

43

44 2

45

46 2

47

48 2

49

50 2

RIO Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO

H6,0 H4,2 H4, I ------ H5,2 HS, I 1.6,0 L4,2 1.4,1

X 0,8 X 0,6 X 0,8 X 0,7 116,1 116,0 114,2 H4, I ------ H5,2 HS, I 1.6,1 1.6,0 L4,2 1.4,1
X 0,8 X 0,8 X 0, 9 H6,2 H6, I H6,0 H4,2 ------ H5,2 H5, I 1.6,2 1.6, I L6,0 1.4,2

x\,8 xl,6xl,8xi,7 H6,2 H6,1 H6,0 H4,2 H7 ,0 ------ H5,2 1.6,2 1.6, I 1.6,0 1.4,2

X \,8 X \,8 X \,9 116,2 116, I H6,0 H7,1 H7,0 ------ 1.6,2 1.6, I 1.6,0

X 2,8 X2,6 X 2,8 X 2,7 H6,2 H6, I H6,0 H7,2 H7,1 H7,0 1.6,2 L6, I 1.6,0

x2,8 x2,8 x2,9 ----- H6,2 H6, I ------ H7,2 117, I ------ 1.6,2 1.6, I

X),8 X),6 X),8 X 3,7 H0,3 ----- 116,2 H6, I ------ H7,2 117, I 1.0,3 ------ 1.6,2 1.6, I

X 3,8 X 3,8 X 3,9 H0,4 HO,J ----- H6,2 ------ H7,2 H7,1 1.0,4 1.0,3 ------ 1.6,2

x4,8 x4,6 x4,8 x4,7 110,4 H0,3 ----- H6,2 H\,3 ------ H7,2 1.0,4 LO.J ----- 1.6,2

X 4,8 X 4,8 X 4,9 H0,4 H0,3 ----- HI ,4 HI ,3 ------ 1.0,4 1.0,3 -----

X 5,8 X 5,6 X 5,8 X 5,7 H2,3 ----- H0,4 HO,l ------ HI ,4 Ill.) l.2.3 ----- 1.0,4 1.0,3

X 5,8 X 5,8 X 5,9 H2,4 H2,3 ----- H0,4 ------ H1,4 Hl,l 1.2,4 1.2,3 ----- 1.0,4

X 6,8 X 6,6 X 6,8 X 6,7 H2,4 112,3 ----- H0,4 HJ,3 ------ 111,4 1.2,4 1.2,3 ----- 1.0,4

x6,8 x6,8 x6,9 H2,4 H2,3 ----- H3,4 H3,3 ----- L2,4 1.2,3 -----

x7,8 x7,6 x7,8 x7,7 H4,3 ------ H2,4 H2,3 ----- H3,4 H3,.1 1.4,3 ------ 1.2,4 1.2,3

X 7,8 X 7,8 X 7,9 H4,4 114,3 ------ H2,4 ----- H3,4 113,3 L4,4 L4,3 ------ L2,4

---------------------- H4,4 H4,3 ------ H2,4 115,3 ---- H3,4 1.4,4 1.4,3 ------ 1.2,4

---------------------- H4,4 H4,3 ------ H5,4 H5,3 ----- L4,4 L4,3 ------

---------------------- H6,3 ----- 114,4 H4,3 ------ H5,4 115,3 1.6.3 ----- 1.4,4 1.4,3

---------------------- H6,4 H6,3 ----- H4,4 ------ H5,4 H5,3 1.6,4 1.6.3 ----- 1.4,4

---------------------- H6,4 H6,3 ··--- H4,4 H7,3 ------ 115,4 1.6,4 1.6,3 ----- 1.4,4

---------------------- 116,4 116,3 ----- H7,4 H7,3 ------ 1.6,4 L6,3 -----

Ck RP

29
30 2
31
32 2

H6,4 H6,3 H7,4 117,3 1.6,4 1.6,3

------ H6,4 H7,4 H7,3 ------ L6,4

------ H6,4 ------ 117.4 ------ 1.6,4

CPI &CP2 input latches
RtO Rt2 Rtl RtO Rt2 Rtl
H4,2 H6,2 H5,2 1.4,2 L6,2 1.5,2

H6,0 H6,0 H7,0 L6,0 1.6,0 1.7,0

CPl & CP2 output latches
Rt Rt Rt Rt

Hlll ,2 IlL 1,2 LH I ,2 LLI ,2

Hll2,0 HL2,0 LH2,0 1.1.2,0

33 H6,1 H6,1 H7,1 L6,1 L6,1 1.7,1 H112,1 HL2,1 LH2,1 1.1.2,1
34 2
35 I 1-16,2 1-16,2 H7,2 L6,2 L6,2 1.7,2 HH2,2 HL2,2 LH2,2 LL2,2
36 2
37 I HO,J H2,3 111,3 L0,3 1.2,3 Ll,J Hll3,0 Hl.J,O LH3,0 LLJ,O
38 2
39 110,4 112,4 Hl,4 1.0,4 1.2.4 Ll,4 HH3,1 HLJ.I Llll,l LLJ,I
40 2
41 ll2,3 114,3 H3,3 L2,3 L4,3 L3,3 HH3,2 HL3,2 Lll3,2 LL3,2
42 2

f--74 3~-t-c;l:--t--'11..,2,_., 4_._11,.4,., 4_._Hoc3,_,, 4_-"L"-2 ,_.4 --"L"4'-',4~L~l,_., 4-j-_.H=II 0) H LO ,3 LIIO ,3 L 1.0 ,3
44 2
45 I H4,3 H6,3 H5,3 L4.3 L6,3 1.5,3 11110.4 HL0,4 LH0,4 1.1.0,4
46 2
47 114,4 116,4 H5,4 1.4,4 1.6,4 1.5,4 HH1,3 HL1,3 Ll11,3 LLI,3
48 2
49 116,3 116,3 H7,3 1.6,3 1.6,3 1.7,3 HHI,4 HL1,4 Ll11,4 LLI,4
50 2
51 H6,4 H6,4 H7,4 1.6,4 1.6,4 1.7,4 HH2,l HL2,3 LH2,3 1.1.2,3

281

SRLI
R2 Rl RO

----- 1.5,2 1.5, I

----- 1.5,2 1.5, I
----- 1.5,2 1.5, I

L7,0 ------ L5,2

L 7, I L 7,0 ------

1.7,2 1.7,1 1.7,0

------1.7,2 1.7,1

------1.7,2 1.7,1

------1.7,2 1.7,1

Ll,3 ------ 1.7,2

Ll,4 Ll,3 -----

------ Ll ,4 I. I ,3

------ Ll,4LI,3

1.3,3 ------ Ll ,4

1.3,4 1.3,3 -----

----- 1.3,4 LJ,3

----- 1.3,4 1.3,3

1.5,3 ----- LJ,4

L5,4 L5,3 -----

------ 1.5,4 1.5,3

------ 1.5,4 1.5,3

1.7,3 ------ 1.5,4

1.7,4 1.7,3 -----

1.7,4 1.7,3

1.7,4 1.7,3

------ L 7,4

Table B.l4 Dataflow of the last run for cases 4 and 3 when N is odd

Ck RP RdO RP's input latches RdH SRHO SRHI RdL SRLO SRL I

22 2

23 I
24 2

25

26 2

27

28 2

29

30 2

31

32 2

33

34 2

35

36 2

37

38 2

39

40 2

41

42 2

RtO Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO

H4,2 H4,1 H4,0 H2,2 HS,O ------ H3,2 1.4,2 L4,1 L4,0 L2,2 L5,0 ---- L3,2

H4,2 H4,1 114,0 H5, I H5,0 ----- 1.4,2 1.4,1 1.4,0 1.5, I 1.5,0 ----
H4,2 H4,1 H4,0 H5,2 H5, I H5,0 L4,2 L4, I L4,0 L5,2 LS, I L5,0

H6,0 H4,2 H4, I H5,2 H5,1 L6,0 L4,2 L4, I ----- L5,2 L5, I

x0,8 x 0,6 x 0,8 x0,7 H6, I H6,0 H4,2 H4, I H5,2 HS, I 1.6, I L6,0 L4,2 L4, I ----- L5,2 1.5, I

x 0,8 ------ ----- H6,2 H6, I H6,0 H4,2 H5,2 HS, I L6,; L6, I L6,0 L4,2 ----- L5,2 L5, I

x1,8 x 1,6 x 1,8 x\,7 H6,2 H6,1 H6,0 H4,2 ------ H5,2 L6,; L6,1 L6,0 L4,2 ----- ----- L5,2

X I ,8 ------ ----- H6,2 H6, I 116,0 L6,2 1.6, I L6,0

x2,8 X2,6 X 2,8 x2, 7 116,2 116, I H6,0 L6,2 L6, I L6,0

X 2,8 ---·-- ····· ------ H6,2 H6, I ------1.6,2 1.6, I

x3,8 x 3,6 x 3,8 x3,7 110,3 ------ H6,2 H6,1 -------------------- LO,'· ------1.6,2 L6.1

X 3,8 ···-·- ----- 110,3 ------ H6,2 -------------------- LD.'· 1.0,3 ------1.6,2

x4,8 x4,6 x4,8 x4,7 H0,3 ------H6) Hl,3 ------------ LO,<· L0.3------L6,2 Ll,3 ----------

x4,8 ------ ----- ------ H0,3 ----- Hl,J ---- L0,4 LO,J ---- Ll.4 Ll,J -----

x5,8 x 5,6 x 5,8 x5,7 H2,3 ------ ----- H0,3 ----- Hl,3 L2) ----- L0,4 L0,3 ----- Ll,4 LIJ

X 5,8 ------ -----

x6,8 x 6,6 x 6,8 x6,7

X 6,8 -----· ··••·

Ck RP

22 2
23
24 2
25
26 2
27
28 2
29
30 2
31 I
32 2
33 I
34 2
35 I
36 2
37 I
38 2
39 I
40 2
41 I

112,3 ------ ----- ---- Ill ,3 1.2,<1 L2,3 ---- L0.4 ----- L 1.4 L I ,3

H2,3 ------ ----- H3,3 L2,'1 L2,3 ---- L0,4 LJ,J ----- 1.1.4

H2,3 ----- H3,3 ----- L2,4 L2,3 ---- L3,4 L3,3 -----

H4,3 ------ H2,3 ----- H3,3 1..4,:1 ------1.2,4 L2,3 L3,4
LJ,J

H4,3 ----- 113,3 1.4,4 L4,3 ---- L2,4 L3,4 LJ,J

H4,3 H5,3 ------ ----- L4,'1 L4,3 ---- 1.2,4 L5,3 ---- LJ,4

CPI &CP2 input latches
RtO Rt2 Rt I RtO Rt2 Rt I

H2,2 H4,2 H3,2 L2,2 1.4,2 1.3,2

114,0 H6,0 H5,0 1.4,0 1.6,0 LS,O

H4,1 H6,1 H5,1 L4,1 1.6,1 1.5,1

H4,2 H6,2 H5,2 1..4,2 1.6,2 L5,2

H6,0 ------ ------ L6,0 ------ ------

116, I ------ ------ L6, I ----- ------

116,2 ------ ------ 1.6,2 ----- ------

H0,3 H2,3 Hl,J L0,3 L2,3 Ll,J

----------------------- L0,4 L2,4 Ll ,4

H2,3 H4,3 H3,3 1.2,3 1.4,3 L3,3

CPI & CP2 output latches
Rt Rt Rt Rt

HH0,2 HL0,.2 LH0,2 LL0,2

HHI,O HLI,l LHI,O LLI,O

HHI,l HLI,l LHI,l LLI,l

HHI,2 HLI,2 LHI,2 LLI,2

HH2,0 HL2,J LH2,0 LL2,0

HH2,1 HL2,1 LH2,1 1.1.2,1

HH2,2 HL2,2 1.112.2 1.1.2,2

------- HLJ,i) ------- LL3,0

------- HLJ,l ------- LLJ,l

-------- IIL3,2 -------- LL3,2
'--"-'42'----'-'2'----..L:-:.:·--=--=---=--=---=--=---=--=---::.:-·:·:-·::.:··=---=--=---=--=--=---=--:_j- ------------------------------------

282

Ck

25

26
27

28

29

30

3 I

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Table B.l5 Dataflow of the last run for cases 2 and I when N is even

RP RdO RP's input latches RdH SRHO SRHI RdL SRLO

2

2

2

2

2

2

2

2

2

2

2

2

RtO Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO

---------------------- 116,0 H4,2 H4, I ------ H5,2 HS,l L6,0 L4,2 L4,1

---------------------- H6, l H6,0 H4,2 H4, I ------ 115,2 HS,I L6,1 L6,0 L4,2 L4,1
X 0,6 X 0,6 X 0,7 H6,2 H6,1 H6,0 H4,2 ------ ll5,2 H5,1 L6,2 L6,1 L6,0 L4,2

X 1,6 X 1,6 X 1,7 H6,2 H6,1 H6,0 H4,2 H7,0 ------ H5,2 L6,2 L6,1 L6,0 L4,2

X2,6 X 2,6 X 2, 7 116,2 H6,1 116,0 117,1 117,0 ------ L6,2 L6,1 L6,0

X 3,6 X 3,6 X 3,7 116,2 H6,1 H6,0 H7,2 H7,1 H7,0 L6,2 L6,1 L6,0

x4,6 x4,6 x4,7 H6,2 116,1 ------ H7,2 H7,1 ------ L6,2 L6,1

X 5,6 X 5,6 X 5,7 H6.2 H6.1 ------ H7.2 H7,1 ------ L6.2 L6,1

X 6,6 X 6,6 X 6, 7 H0,3 H6,2 H6, I ------ 117,2 fl7,1 LO,J ------ L6,2 L6,1

X 7,6 X 7,6 X 7,7 HOJ ----- H6,2 HI ,3 ------ H7,2 L0,3 ----- L6,2

---------------------- 112,3 ------ HO,J ----- ----- H 1.3 ------ L2,3 ----- L0,3 -----

---------------------- H2,3 H2,3 ------ H0,3 llJ ,3 ------ H 1,3 L2,3 L2,3 ----- LO,J

---------------------- 114,3 ----- H2,3 ------ ------ H3,3 ------ L4,3 ------ L2,3 -----

---------------------- H4,3 H4,3 ----- H2,3 HS,J ------ H3,3 IA,J !.4,3 ----- L2,3

---------------------- H6,3 ------ 114,3 ----- ------ H5,3 ------ L6,3 ------ L4,3 -----

---------------------- 116,3 H6,3 ------ H4,3 H7,3 ------ H5,3 L6,3 L6,3 ------ L4,3

------ 116,3 ------ ------ H7,3 ------ ------ L6,3 ------

ck RP

28 2
29 I
30 2
31
32 2
33
34 2
35 I
36 2
37
38 2

------ ------ H6,3 ------ ------ H7,3 ------ ------ L6,3

CP 1 &CP2 input latches
RtO Rt2 Rtl RtO Rt2 Rtl

CP l & CP2 output latches
Rt Rt Rt Rt

H4,2 H6.2 H5.2 1.4,2 1.6,2 1.5,2 HHI.2 HLI,2 LH1,2 LLI,2

H6,0 H6,0 117,0 L6,0 L6,0 L7,0 11112.0 HL2,0 Lll2,0 LL2,0

H6,1 H6,1 H7.1 L6, I 1.6, I 1.7,1 11112.1 HL2,1 LH2,1 LL2,1

H6,2 H6,2 H7,2 L6,2 L6,2 L7.2 HH2.2 HL2,2 LH2.2 1.!.2,2

110,3 112,3 111,3 L0,3 L2,3 Ll,l 11111.0 HLJ,O l.H3.0 1.1.3,0

39 H2,3 114,3 H3,3 1.2,3 1.4,3 L3,3 IIHl,l HLl,l LH3,1 LLl,l
40 2
41 H4,3 H6,3 H5,3 L43 L6,3 LS,3 HH32 HL3,2 LH3,2 LL3,2
42 2
43 116,3 116,3 117,3 1.6,3 1.6,3 L7,3 f 1110.3 HL0,3 LH0,3 LL0,3
44 2
45 Hll 1.3 HL 1.3 Lll I ,3 LLI,3
46 2
47 11112,3 IIL2,3 LH2,3 1.1.2,3
48 2
49 I --··--- I {J 13,3 HL3 ,3 I.H3 ,3 I .L3,3

283

SRLI
R2 Rl RO

----- L5,2 LS,I

----- L5,2 LS,I
----- L5,2 LS,I

L7,0 ------ L5,2

L 7,1 L7,0 ------

L7,2 L7,1 1.7,0

------ L7,2 L7,1

------ L 7,2 L7,1

------ L7,2 L7,1

L1,3 ------ L7,2

------ Ll,J -----

LJ,J ----- L 1,3

------ LJ ,3 -----

L5,3 ------ L3,3

------ L5,3 -----

1.7,3 ------ 1.5,3

----- L7,3 ------

----- ------ L7.3

Ck

22

23
24

25

26

27

28

29

30

3 I

32

33

34

35

36

37

38

39

40

41

42

43

Table 8.16 Dataflow of the last run for cases 2 and I when N is odd

RP RdO RP's input latches RdH SRHO SRHI RdL SRLO SRLI

2

2

2

2

2

2

2

2

2

2

2

RtO Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO R2 Rl RO

·-···----------------- H4,2 ! 14,1 H4,0 H2,2 H5,0 ------ H3,2 L4.2 1.4,1 1.4,0 1.2,2 1.5,0 ----- 1.3,2

---------------------- H4,2 H4, I H4,0 H5,1 H5,0 ------- 1.4,2 IA,I 1.4,0 1.5,1 1.5,0 ----

---------------------- H4,2 H4, I 114,0 H5,2 H5,1 H5,0 1.4,2 L4,1 1.4,0 1.5,2 1.5,1 1.5,0

---------------------- H6,0 H4,2 H4, I H5,2 H5,1 1.6,0 1.4,2 1.4.1 ----- 1.5,21.5,1

---------------------- H6,1 H6,0 H4,2 H4,l H5,2 H5,1 1.6,1 1.6,0 L4,2 1.4, I ----- 1.5,2 1.5,1

x 0,6 ------ ------- H6,2 H6, I H6,0 H4,2 H5,2 HS,I 1.6,2 1.6,1 1.6,0 1.4,2 ----- 1.5,2 1.5,1

x I ,6 ------ ------- H6,2 H6,1 H6,0 H4,2 ------ H5,2 1.6,2 1.6, I 1.6,0 1.4,2 ----- ----- L5.2

X 2,6 ------ ------- H6,2 116, I H6,0 ---------------------- L6,2 L6, I L6,0

X 3,6 ······ ·------ 116,2 116, I H6,0 1.6,2 L6, I 1.6,0

X 4,6 -·-··- ·•••··· ------ H6,2 H6,1 ------ 1.6,2 1.6, I

X 5,6 ---··· ------- ------ 116,2 116,1 ------ 1.6,2 L6, I

X 6,6 ------ ·•••··· ----- ------ H6,2 LC,3 ------ 1.6,2 1.6, I

------ ------ H6,2 U,3 1.0,3 ------ 1.6,2 L1 ,3 ----- -----

---------------------- ---------------------- L2,3 ----- 1.0,3 ------ ------ L I ,3 -----

L2.3 1.2,3 ------ 1.0,3 1.3,3 ----- L1,3

---------------------- ---------------------- lA,3 ------ 1.2,3 ------ ------ Ll,J -----

lA ,3 1.4,3 ------ 1.2,3 1.5,3 ----- 1.3,3

Lt,3 ------ 1.4,3 ------ ------ 1.5,3 -----

1.6,3 1.6,3 ------ 1.4,3 ----- ------ 1.5,3

------ 1.6,3 ------ -------------------

ck RP

22 2
23 I
24 2
25
26 2
27 I
28 2
29 I
30 2
3 I
32 2
33 I
34 2
35 I
36 2
37
38 2

CPI &CP2 input latches
RtO Rt2 Rt I RtO Rt2 Rt I

------ ------ 1.6,3

CPI & CP2 ·Jutput latches
Rt Rt Rt Rt

112,2 114,2 H3,2 1.2,2 1.4,2 L3,2 Hl10,2 HL0,2 LH0,2 LL0,2

H4,0 116,0 H5,0 L4,0 1.6,0 1.5,0 HHI,O HLI,O LHI,O LLI,O

H4,1 H6,1 H5,1 L4,1 1.6,1 1.5,1 HHI,I HLI,I LHI,I LLI,I

H4,2 H6,2 H5,2 IA,2 1.6,2 1.5,2 HH1,2 HL1.2 LH1,2 LL1,2

H6,0 ------ ------ 1.6,0 ------ ------ HH2,0 HL2,0 LH2,0 1.1.2,0

H6, I ------ ------ 1.6,1 ----- ------ HH2,1 HL2. I LH2, I LL2,1

H6,2 ------ ------ 1.6,2 ----- ------ HH2 2 HL2 2 LH2,2 LL2,2

----------------------- L0,3 L2,3 LIJ I ------- HL3,0 ------- LU,O

39 ----------------------- 1.2,3 1.4,3 1.3,3 ------- HLJ,I ------- LLJ,I
40 2
41 I ----------------------- IA,3 1.6,3 1.5,3 -------- HLJ 2 -------- LL3,2
42 2
43 ----------------------- 1.6,3 ------ ------ ------- -------- LHO,J I.LO,l
44 2
45 I --- ------- -------- LH I ,3 LLI ,3

46 2
47 I --- ------- -------- I.H2,J 1.1.2,3
48 2
49 --- ------- -------- ------- LLJ,J

284

Table 8.17 Dataflow of the 3-parallel intermediate architecture

Ck RP RdO RP's input RdH SRHO SRHI RdL SRLO SRLI
latches R2 Rl RO R2 Rl RO Rl RO R2 Rl RO R2 Rl RO

RIO Rt2 Rtl
I I x0,2 x 0,0 x 0,2 x0,1

2 2 x0,4 X 0,2 X 0,4 x0,J
3 3 x0,6 X 0,4 X 0,6 x0,5

4 I x\,2 xl,O xl,2xl,l

5 2 xl,4 x 1,2x 1,4x 1,3

6 3 xl.6 X 1,4 x 1,6 xl,S

7 I x2,2 X 2,0 X 2,2 x2,J

8 2 x2,4 X 2,2 X 2,4 x2,J

9 3 x2,6 X 2,4 X 2,6 x2,5

10 I x3,2 x3,0 x3,2x3,1 HO,O --··· ----- LO,O -----

II 2 x3,4 X 3,2 x 3,4 x3,3 HO,I HO,O ----- LO,I LO,O

12 3 x3,6 X 3,4 x 3,6 x3,5 H0,2 HO,I HO,O L0,2 LO,I LO,O

13 I x4,2 x 4,0 X 4,2 x4, I H0,2 HO,I HO,O HI,O ----- ----- L0,2 LO, I LO,O LI,O ----- -----

14 2 x4.4 X 4,2 X 4,4 x4,3 H0,2 HO, I HO,O Hl,l HI,O ----- L0,2 LO, I LO,O Ll,l LI,O

15 3 x4,6 X 4,4 X 4,6 x4,5 H0,2 HO, I HO,O Hl,2 Hl,l HI,O L0,2 LO, I LO,O Ll,2 Ll,l LI,O

16 I x5,2 X 5,0 X 5,2 x5,J H2,0 H0,2 HO, I ----- HI,2HI,I L2,0 L0,2 LO, I Ll,2 Ll,l

17 2 x5,4 X 5,2 X 5,4 x5,3 ----- H2,1 H2,0 H 0,2 ----- ------ H1,2 L2,1 ---- L2,0 L0,2 LO, I ------ Ll,2 Ll,l

18 3 x5,6 X 5,4 X 5,6 x5,5 H2,2 H2, I H2,0 H 0,2 ----- -----· HI ,2 L2,2 L2,1 L2,0 L0,2 LO, I Ll,2 Ll,l

19 I x6,2 X 6,0 X 6,2 x6,J ----- H2,2 H2,1H 2,0 HJ,O ----- ------ ----- L2,2 L2,1 L2,0 L0,2 LJ,O -----· Ll ,2

20 2 x6,4 X 6,2 x 6,4 x6,3 ----- H2,2 H2, I H 2,0 IIJ, I H3,0 ------ ------ L2,2 L2,1 L2,0 LJ,I LJ,O

21 3 x6,6 X 6,4 X 6,6 x6,5 ----- H2,2 H2,1H 2,0 H3,2 H3,1 IIJ,O ------ ------ L2,2 L2, I L2,0 LJ,2 LJ,I L3,0

22 I x7,2 X 7,0 X 7,2 x7,J ----- H4,0 H2,2 H2,1 ------ H3,2 H3, I ------ ------ L4,0 L2,2 L2,1 LJ,2 LJ,I

23 2 x7,4 X 7,2 X 7,4 X7,3 ----- H4,1 H4,0 H2,2 ------ ----- H3,2 L4,1 L4,0 1.2,21.2,1 L3,2 LJ,I

24 3 x7,6 x7,4 x7,6x7,5 H4,2 H4,1 H4,0 112,2 ------ ------ H3,2 L4,2 L4,1 L4,0 L2,2 L2, I ------ L3,2 LJ, I

25 I x8,2 X 8,0 X 8,2 x8,1 ----- H4,2 H4,1 H4,0 115,0 i ----- L4,2 L4,1 L4,0 L2,2 L5,0 ----- L3,2

26 2 x8,4 X 8,2 x 8,4 x8,3 ----- H4,2 H4,1 H4,0 H5,1 H5,0 ------ ------ ------ L4,2 L4,1 L4,0 LS,I L5,0 -----

27 3 x8,6 X 8,4 X 8,6 x8,5 ----- H4,2 H4,1 114,0 H5,2 H5,1 HS,O ------ ------ L4,2 L4,1 L4,0 L5,2 L5,1 L5,0

28 I x9,2 X 9,0 x 9,2 x9,1 ----- H6,0 114,2114,1 ------ H5,2 H5,1 ------ ------ L6,0 L4,2 L4,1 ----- L5,2 L5, I

29 2 x9,4 X 9,2 X 9,4 x9,3 ----- H6,1 H6,0 H4,2 ------ ----- H5,2 L6,1 ------ L6,0 L4,2 L4, I ----- L5,2 L5,1

30 3 x9,6 X 9,4 X 9,6 x9,5 H6,2 H6,1 H6,0 fl4,2 ------ H5,2 L6,2 L6,1 L6,0 1.4,2 L4, I ----- L5,2 L5,1

ck RP CPI & CP3 input latches CP2 input latches CPl & CP3 output latches CP2 output latches
RtO Rt2 Rtl RtO Rt2 Rtl RtO Rt2 Rtl Rth Rtl Rth Rtl Rth Rtl

t6 t HO,O H2,0 111,0 LO,O L2,0 Ll,O
17 2 --- ~10, 1 112, 1 HI, I
18 3
19 H0,2 H2,2 HI ,2 LO,l L2, I L I, I ---------------------
20 2 --- L0,2 L2,2 L I ,2
21 3
22 H2,0 H4,0 H3,0 L2,0 L4,0 LJ,O ---------------------
23 2
24 3
25 I 112,2 H4,2 H3,2 1.2,1 L4,1 LJ,I HHO,O HLO,O LHO,O LLO,O
26 2 --- L2,2 L4,2 L3,2 ----------------·------------------- HHO, I 111.0, I
27 3
28 I H4,0 H6,0 HS,O L4,0 L6,0 L5,0 HH0,2 HL0,2 LHO,I LLO,I
29 2 LH0,2 LL0,2

30 3

285

B.J Dataflow tables of chapter 5

In Table 8.19 (a), the pipeline stages 4, 7, and 10 of Figure 6.5.5 have not included, since they are in the

first run, which ends at cycle 20, only pass coefficients of the previous sta.~e to the next, whereas in the

second run, which begins at cycle 25, and in all subsequent runs, stages 4 and I 0 are bypassed, as shown in

Table 8.19 (a). For instance, RtO and Rt1 of stage 2 are shown holding coefficients YL'2,0 and YL'2,1 in

cycle 26, during which coefficient YL"2,0 is computed. Then in cycle 27 YL"2,0 is loaded into RtO of stage

3 while YL'2,1 is loaded into Rt1 of stage 5 through the multiplexer labeled mu.x bypassing stages 3 and 4.

In cycle 28, YL'2, I in Rtl of stage 5 is loaded into Rt1 of stage 6, while YL"2,0 in RtO of stage 3 is

transferred to RtO of stage 6 bypassing stages 4 and 5, where the two coefficients proceed together until

stage 8.

Note that the first indexes in YL, YH, XL, and XH in Tables 8.18 and 8.19 (a) refer to column

numbers in Figures 6.3.2 (A) and (8). While the second indexes refer to input numbers in each column in

accordance with the convention followed in the DOGs. On the other hand, the first indexes of Y and X in

Tables 8.18 and 8.19 (b) refer to input numbers in each row in accordance with the convention followed in

the DOGs which is also indicated in the processors datapath architecture.

286

Table B.l8 Dataflow of the 5/3 architecture

Ck I 2 3 4 CP output latches I 2 3 4 RP output

f CP input latches RP input latches latches
RdO RIO Rll RIO Rll RIO Rll RIO Rll RtlO Rtll Rlh RtO Rtl TLBI RIO Rll Rt2 RIO Rll TLB2 RIO Rtl Rt2 RIO Rll

I LLO.O ····--- --------
2 ------- LLO.O LHO.O
3 HLO,O LLO,O LHO,O
4 HLO,O HHO,O XLO(O) YLO(I)
5 LL 1 ,0 IILO,O HHO,O XLO(O) YLO(I)
6 ------- LLI,O LHI,O XHO(O) YHO(I XLO(O YLO(l
7 HLLO LL\,0 UII,O XHO(O) YHO(l) XLO(O) YLO(l)
8 ------- HLI.O HHI.O XL0(2) YLO(l) XHO(O) YHO(I) XLO(O) YLO(I)
9 LL2,0 HLI,O HHI,O XL0(2) YL0(3) XHO(O) YHO(l) XLO 0 YLO(l
10 ------- LL2.0 L!-12,0 XH0(2) YH0(3) XL0(2) YL0(3) XHO(O) YHO(I) LO,O Ll,O -----
II HL2.0 LL2.0 LH2.0 XH0(2) YHO(J) XL0(2) YL0(3) XHO(O YHO(l) LO.O Ll.O -
12 - -- HL2,0 HH2,0 XL0(4) YL0(5) XH0(2) YH0(3) XL0(2) YLO(l) ----- LI,O Hl,O LO.O HO.O ------
13 LLJ.O HL2.0 H\12.0 XL0(4) YLO(S) XHO 2) YH0(3 XL0(2) YL0(3) ----- L1 ,0 HI ,0 LO,O HO,O ------
14 ------- LLJ.O ------- X\10(4) Y\10(5) XL0(4) YLO(S) XH0(2) YH0(3 L2.0 L3.0 ------ Ll.O H\.0 YO(I) YO(O YO I ----
15 HL3,0 LL3,0 ------- XH0(4) YH0(5) XL0(4) YLO 5) XH0(2) YH0(3) L2,0 LJ,O ------ Ll,O Hl,O YO(O) YO(I) ----
16 ------- 11!.3.0 ----- XLO(6) -------- XH0(4) YH0(5) XLO 4) YL0(5 -- U,O HJ,O L2.0 H2.0 Y\(1) Yl 0 Y\(1 ---- xo 0) -----
17 ! LU,J HL3,0 XLO(6) -·---·-- XH0(4) YH0(5l_ XL0(4) YL0(5) ----- U,O 113,0 L2,0 H2,0 Y\(0) Y\(1) ---- XO(O) -----
18 ---- LLU_l LHU_l XH0(6) ------- XL0(6) - - XHO 4) YHO 5) L4,0 LS,O ------ Ll.O H3.0 Y2(1) Y2(0) Y2(1) ···· X\(0) ----- XO(O) XO(O) ---- ----
19 llLOI 1_1_11] 1_1!0_1 XH0(6) ------· XL0(6) -------- XH0(4) YH0(5) L4,0 LS,O - ---- U,O H3,0 Y2(0) Y2(I) ---- X\(0) ----- XO(O) - --
20 ------- I 11 0.1 1\IICI_l XL\(0) YLl(II XH0(6) ------- XLO(6) -------- ----- LS,O HS,O L4,0 H4,0 YJ(1) Y3(0) Y3(1 ---- X2(0) ----- X\(0) X\(0) ---- ---- X(O.O) ----
21 Ll IJ lll_li_]J!IIn_] Xl.l((Jl 'il li!_1 XII0(6) XLO 6) ·---·--- ----- L5.0 H5.0 L4,0 H4,0 Y3 0) Y3 I ---- X2 0 ----- X\(0) ---- ---- X(O.O) -----
22 Ll.l I I 111 I \.llltl!iY!llil_l XI it'l} YLlt ll XIIO(6) ···---- L6,0 ------ ------ LS.O H5.0 Y4(1) Y4(0)Y4(1J --·· X3(0 ----- X2(0) X2(0) ---- ---- X(l.O) -----
23 JILl I l.Ll 1 L!ll,l \.lll(UiYlllil) \1](11)'11 It I) XH0(6) - -- L6.0 ----- ------ L5.0 H5.0 Y4(0)Y4(1) ---- X3(0) --- X2(0) ·-- ---- X(1.0) ·····
24 ------- 11LLI 1\lll I \.1 IC?.1 VLii~J :\Ill (iJ 1 Ylllll) X!.ltll}YI 1(11 ------ ------ ------ L6.0 116.0 Y5(1) Y5(0) YS(l) ---- X4(0) ----- X3(0) X3(0) ---- ---- X(2.0) -----
25 11.2.1 111 l.lll11U XI_](2J 'l Lli3l \.IIIHIJ Ylll(II Xl]{f,)YII(II ------ - - ------ L6,0 H6,0 ¥5(0 Y5(1 ---- X4 0) ----- X3(0) ·-- X(2.0) --··-
26 ------- l.L2.1 I.IP.l X!li(::'_IYIII<J} ALI(2) 'l'l.l(3j XHl(O) 'l'IJ](I l I_! I_] L1, I ------ ----- Y 6(I) Y6(0) Y6(1) ---- X5(0) ----- X4(0) X4(0) ---- ---- X(3.0) -----
27 11!.2,1 LL2_l Lll2_1 Xll\(2_1 'r'lll(') X\.1(2} Yll(') Xlli(O) YH](I l Ul_l II I ----- ------ ----- Y6(0) Y6(1 ---- X5(0) ----- X4(0) ---- ---- X(3.0) -----
28 I II 2.1 ll/!2J XI 1<--1) Yl It") _'\1!1(21 YI!IOJ :XLlf2J YLIU) Ll I Ill I IJJ.l H(J.J ------ ----- ---- X6 0 ---- X5(0) X5(0) ··-- ---- X(4.0) -----
29 I U_l l!l 2.1 11112.1 XI It~ 1 Yl It~~ '\111!21 YIIJ(.i_l AL1(2J Yl It _I 1 I ~ I Ill I I II_ 1 I Hi.! ------ ----- ---- X6(0) ----- X5(0) ---- X(4.0) ----
30 Ll 3. l ------ Xllli--1.) \HI(5J XLJ(--Il YUt>J .XIII('~ 1 Y111 (J) L2,1 U_l ------ Ll I fiLl YUt3J YI)(..,JYO{JJ'ri;(!) --····· -·--- X6(0 X6(0) ---- ---- X(5.0) -----
31 l!L3_1 LU_I --- Xllli-1)YI!](~l XLII~ I YLii_'> I X!ll('l Yl/1(3) 1.2. I L.LI I I I Ill I Ylli.-,1 YC,(_'l) Yilt I 1 ------- ----- X6(0 ---- ---- X(5.0) -----
32 !lLU ------- XL I (6) X!ll(.J.)Yilli:'l XLII4J YLl(:') I:U fLU 12_1 IP_I Yi()J YI('JYI(~)YiilJ '(0(2) YIJIII ------ ---- ---- X(6.0) -----
33 !IU.l XL\(6) ------- X!ll(4) 'llllt."J '([_](41 'd_](_'\) [__)_I IL~ _ I 1 2.1 112. 1 Y1t2JYI('JY1\1J X0(2) Y11111 ------ ---- ---- X(6.0) -·--·
34 ------- ------- ------- Xlll(bl XLif(J) ------- X11114)YIII(::-) 1AJ LS_l ------ 1.3.1 113.1 Y 1 (J) Y2{2J Y2() l Y2\ 1) X!(2JYIIIJX0(2) XOt2l Yo(1 J XO~Ol ------- -----
35 ------ :\1!!(1>! ------- XLl(6J -- -- X\!1(4) Yl!lt5J L4.1 1_:' I U_l !U_I Y2(2) Y2(l J Y2(1) Xlt2) Ylrl) Xli(2) YO(I l XII(O) ------- -----

36 ------- ------- .. - --- XH!\61 ------- XL1(6) ------- ---- 1.5.1 115,1 1A.I H4_1 YJI)J YJ(2)Y3t3JYJ(1) X2(2 l Y2fl) :X!(21 X!~2) Yl(l 1 Xl(O) :'<(1!.2) XW.l)
37 ------- ------- --------- -------- XlliU>I XLl<6) --- --- ----- L::-.1 115.1 1.4.1 114,1 Y3(2)Y3i3iY3(1) X2\2) Y2(1) Xl(2) Yl(l l XI(O) xm2) X((), I l
38 ------- --- ------ -------- --------- -------- Xlll(6) -- 1.6.1 L::-.1 11::-J Y-'l-C'l Y4(2) Y4U) Y4{1) X312) y_-, I) X2t2) X2(2) Y2 ll X2(0J XtUJ X(l,l J

39 --------- -------- ------- XII 1(6) Lr>_l ----- LS_I 115,1 Y4{2)Y4t3JY4(1) X3t 1 J Y3(1) X2(2) Y2i I l X2(11) Xt 1.2) X(L1)
40 ------ ------- - -- --------- -------- --------- -------- ------ ------ L6,1 11(),1 Y:-(3) Y5(2) Y5(3 J Y5(1) X--112)Y4(1)X312J X3(2J Y3(ll XJ({J) xc:~_2) X(2.1 l
41 - ----- --------- -------- - . ------ u-._1 H6_1 Y5(?_.IY)(3)Y5tll X4(2) Y4(I l XJ(2 1 \'3(I) X ~(0 1 X(2.2J Xt2J l
42 ---- --------- -------- --- ------- ------ ----- ----- Y6UJ Yht2J Y6(3) '{fl(I ·1 X"(2) Y4t I J X4C2) X4(2JY4t1)X4(0J X(3.2J XUJ l
43 -- -- ------- _._ ____ - ------- -------- --------- -------- ------ ------ ------ YN21 Y6(_~) Yl'l I J X5(2) Y<-11 I l X4(2JY--I(I)X4dll X(3,2J Xt3.1J

287

Table 8.19 (a) dataflow for 9/7 architecture from CP side

Ck I 2 3 5 6 8 9 II 12 13 CP output
P2 CP input latches latches

RtO Rtl RtO Rtl RtO Rtl RtO Rtl RtO Rtl RtO Rtl RtO Rtl RtO Rtl RtO Rtl RtO Rtl RtlO Rtll Rth
I LLO,O LHO,O
2 HLO,O HHO,O YL'O,O YL'0,1
3 LLO,I LHO,I YH'O,O YH'0,1 YL"O,O YL'0,1
4 HLO,l HHO,l YL'1,0 YL'1,1 YH"O,O YH'0,1
5 LLI.OLH\,0 YH'1,0YH'1,1 YL"1 ,0 YL'1, 1 YL"O,O YL'O, 1
6 HLI,O HHI,O YL'0,2 YL'0,3 YH"1,0YH'1,1 YH"O,O YH'0,1 YL"O,O YL'O, 1
7 LLI,I LHI,I YH'0,2 YH'0,3 YL"0,2 YL'0,3 YL"1,0YL'1,1 YH"O,O YH'O, 1
8 HLI,l HHI,I YL'1 ,2 YL'1 ,3 YH"0,2 YH'0,3 YH"1 ,0 YH'1, 1 YL"1 ,0 YL'1, 1 YL"O,O YL"O, 1
9 LL2,0 LH2,0 YH'1 ,2 YH'1 ,3 YL"1 ,2 YL'1 ,3 YL"0,2 YL'0,3 YH"1,0YH'1,1 YH"O,O YH"O, 1 XLO,O YL"O, 1
10 HL2,0 HH2,0 YL'0,4 YL'0,5 YH"1,2 YH'1,3 YH"0,2 YH'0,3 YL"0,2 YL'0,3 YL"1 ,0 YL"1, 1 XHO,O YH"0,1
II LL2,1 LH2,1 YH'0,4 YH'0,5 YL"0,4 YL'0,5 YL"1 ,2 YL'1 ,3 YH"0,2 YH'0,3 YH"1,0YH"1,1 XL1 ,0 YL"1, 1 XLO,O YL"0,1
12 HL2,1 HH2,1 YL'1,4 YL'1,5 YH"0,4 YH'0,5 YH"1 ,2 YH'1 ,3 YL"1,2 YL'1,3 YL"0,2 YL"0,3 XH1,0YH"1,1 XHO,O YH"O, 1 XLO,O YL"O, 1
13 LLJ,O LHJ,O YH'1 ,4 YH'1 ,5 YL"1 ,4 YL'1 ,5 YL"0,4 YL'0,5 YH"1 ,2 YH'1 ,3 YH"0,2 YH"0,3 XL0,2 YL"0,3 XL1 ,0 YL"1, 1 XHO,O YH"O, 1 XLO,O YL"0,1
14 HL3,0 HH3,0 YL'0,6 YL'O, 7 YH"1,4 YH'1 ,5 YH"0,4 YH'0,5 YL"0,4 YL'0,5 YL"1 ,2 YL"1 ,3 XH0,2 YH"0,3 XH1 ,0 YH"1, 1 XL1 ,0 YL"1, 1 XHO,O YH"O, 1 LO,O Ll ,0 ----
15 LL3,1 LH3,1 YH'0,6 YH'0,7 YL"0,6 YL'0,7 YL"1 ,4 YL'1 ,5 YH"0,4 YH'0,5 YH"1 ,2 YH"1,3 XL 1 ,2 YL"1,3 XL0,2 YL"0,3 XH1 ,0 YH"1, 1 XL1,0 YL"1, 1 ----- Ll,O HI,O
16 HU,l HHJ,l YL'1,6 YL'1,7 YH"0,6 YH'0,7 YH"1 ,4 YH'1,5 YL"1,4 YL'1,5 YL"0,4 YL"0,5 XH1,2 YH"1 ,3 XH0,2 YH"0,3 XL0,2 YL"0,3 XH1,0 YH"1, 1 LO,I Ll,l ----
17 LL4,0 ------ YH'1,6 YH'1,7 YL"1,6 YL'1,7 YL"0,6 YL'0,7 YH"1 ,4 YH'1 ,5 YH"0,4 YH"0,5 XL0,4 YL"0,5 XL 1 ,2 YL"1 ,3 XH0,2 YH"0,3 XL0,2 YL"0,3 ----- Ll,l Hl,l
18 HIA,O ------ YL'0,8 - -- YH"1,6 YH'1,7 YH"0,6 YH'0,7 YL"0,6 YL'0,7 YL"1 ,4 YL"1 ,5 XH0,4 YH"0,5 XH1,2 YH"1,3 XL1 ,2 YL"1,3 XH0,2 YH"0,3 L2,0 L3,0 ----
19 LL4, I ------ YH'0,8 --- YL"0,8 ---- YL"1 ,6 YL'1 ,7 YH"0,6 YH'0,7 YH"1 ,4 YH"1 ,5 XL 1 ,4 YL"1 ,5 XL0,4 YL"0,5 XH1 ,2 YH"1 ,3 XL1,2 YL"1 ,3 ----- L3,0 H3,0
20 HIA, I ------ YL'1 ,8 - - YH"0,8 -- YH"1 ,6 YH'1, 7 YL"1,6 YL'1,7 YL"0,6 YL"0,7 XH1 ,4 YH"1 ,5 XH0,4 YH"0,5 XL0,4 YL"0,5 XH1 ,2 YH"1 ,3 L2.1 L3, I ----
21 ----- - ------ YH'1,8 YL"1,8 - YL"0,8 - YH"1 ,6 YH'1 ,7 YH"0,6 YH"O, 7 XL0,6 YL"O, 7 XL 1 ,4 YL"1 ,5 XH0,4 YH"0,5 XL0,4 YL"0,5 ----- L3,1 H3,1
22 ------- ------ ---------- ------- YH"1,8 --- YH"0,8 ----- YL"0,8 --- YL"1,6 YL"1,7 XH0,6 YH"0,7 XH1 ,4 YH"1 ,5 XL1 ,4 YL"1 ,5 XH0,4 YH"0,5 IA,O LS,O ----
23 ------- ------ ---------- ------- ---------- ------- YL"1,8 ---- - YH"0,8 YH"1 ,6 YH"1, 7 XL1,6YL"1,7 XL0,6 YL"0,7 XH1.4 YH"1,5 XL1 ,4 YL"1,5 ----- L5,0 H5,0
24 ------- ------ ---------- ------- ---------- ------- YH"1,8 --- YL"1,8 ---- YL"0,8) ---- XH1 ,6 YH"1 ,7 XH0,6 YH"0,7 XL0,6 YL"0,7 XH1 ,4 YH"1,5 IA,I L5,1 ----
25 LUL2 U HL1 ------- YH"1,8 YH"0,8 - XL0,8 XL1.6YL"1.7 XH0,6 YH"O, 7 XL0,6 YL"0,7 ----- L5,1 H5,1
26 11!_11.2 I !l\1 1.:::: YL'2.0 YL'2. 1 ---------- ------- --------- ------- ---------- ------- YL"1,8 -- XH0,8 -- XH1 ,6 YH"1 ,7 XL1 ,6 YL"1 ,7 XH0,6 YH"0,7 L6,0 L7,0 ----
27 I I I,' I 111.2 YH'2.0 YH'2, 1 YL"2.0 -------- YL'2,1 ---------- ------- YH"1,8 ---- XL1,8 ---- XL0,8) ------ XH1,6 YH"1,7 XL1,6 YL"1,7 ----- L7,0 H7,0
28 fiLU 11!11.2 YL'2.2 YL'2,3 YH"2,0 -------- YH'2.1 YL"2.0 YL'2.1 ---------- ------- XH1,8 XH0,8 - - XL0,8 - XH1,6 YH"1,7 L6,1 L7,1 ----
29 LL2_2 Ll\2_2 YH'2.2 YH'2.3 YL"2.2 ------- -------- YL'2.3 YH"2.0 YH'2.1 ---------- ------- -------- ~-~-~-- .X.L 1,8 ---- XH0,8 ---- XL0,8 ---- ----- LI,J 01,1

30 IIL2.2lll/2.2 YL'2.4 YL'2,5 YH"2.2 ---- -------- YH'2.3 YL"2.2 YL'2,3 YL"2.0 YL"2, 1 -------- ------- XH1,8 ---- XL1,8 ---- XH0,8 --- L8,0 ---- -----
31 LU_2 Ll LL2 YH'2.4 YH'2,5 YL"2.4 .. YL'2.5 YH"2 .. 2 YH'2,3 YH"2.0 YH"2 .. 1 XL2J.\ - YL"2.1 XH1,8 XL1,8 .. ------ ----- -----
32 1 IU.~ 1!11.~.2 YL'2.6 YL'2.7 YH"2..4 -------- YH'2,5 YL"2 4 YL'2.5 YL"2,2 YL"2,3 XI!2Ji ------- ------- YH"2.1 XL2_1J YL"2.1 XH1,8 ---- L8, I ---- -----
33 !.lA_2 ------- YH'2.6 YH'2,7 YL"2.6 ·------ YL'2.7 YH"2..4 YH'2.5 YH"2 .. 2 YH"2.3 XL2,2 ----- YL"2.3 Xll2_11 YH"2.1 XI '"~_II YL"2.1 ------ ----- -----
34 Ill A_~ ------- YL'2.8 ------- YH"2.6 -------- -------- YH'2.7 YL"2 6 YL'2 7 YL"2.4 YL"2 .. 5 Xll2.2 -------- YH"2,3 XU,J YL"2,3 Xli1_0 YH"2.1 L0,2 Ll ,2 -----
35 ------- ------· YH'2 .. 8 ------- YL"2.8 -------- YH"2.6 YH'2.7 YH"2.,4 YH"2.5 XL2,4 YL"2.5 XI 12_2 YH"2,3 XI .2_2 YL"2.3 ----- Ll,2 H1,2
36 ------- ------- ------- YH"2.8 --- . ------- YL"2.8 YL"2.6 YL"2 .. 7 :'(1!2_1 YH"2,5 '<! 2_--1- YL"2.5 XI 12_J YH"2.3 L2,2 L3,2 -----
37 -- ------- ------- ------- -~----- ------ YH"2,8 ---··-- YH"2.6 YH"2.7 Xl.~h -------· YL"2.7 XI 1.2_--1 YH"2.5 XU,--1 YL"2,5 L3,2 H3,2
38 ------- ------- YL"2.8 Xll2_6 ------- YH"2 .. 7 XL2_r• Yl"2.7 XII2A YH"2,5 L4,2 L5,2 -
39 ------- ------- ------ ------ YH"2 .. 8 -------- XI.2.S ------- - ---- XI !..2.1• YH"2.7 XL2J• YL"2,7 L5.2 H5,2
40 ------- ------- ------- ------- ------- --~--~- All2_X ------- ------- AL2_H ------- XIC_6 YH"2.7 L6,2 L 7,2 -----
41 ------- ------- ------- ------- ------- ------- ------- ------- ------- All2 X XL2J\ ----- L7,2 H7,2
42 - ------- ------- ------- XI!2_.S ------- L8_2 ----- -----
43 ------- ------- ------- ------- -- ---- ------- ------- ------- ----- ----- -----

288

Table 8.19 (b) dataflow for 9/7 architecture from RP side

Ck I 2 3 4 5 6 7 8 9 RPout
f!2 RP mput latches

RID Rtl RtO Rtl TLBI RtO Rtl Rt2 Rl RO RtO Rtl TLB2 Rl RO RtO Rtl Rt2 RtO Rtl TLB2 RIO Rtl Rt2 RtO Rtl TLB4 RtO Rtl Rt2 RtO Rtl
14 ---- ----
IS LO.O HO.O
16 Ll,O 111,0 YO.O Y0.1
17 LO.I HO.I Y1.0 Y1.1 YO.O Y0.1 - - -- -
18 LI.IHI.I Y0.2 Y0.3 Y1.0Y1.1 --Y0.1 -- YO.O --- --- --- ---
19 L2,0 112.0 Y1.2 Y1.3 Y0.3 Y0.2 Y0.3 -- Y1.1 Y0.1 Y1.0 -- - YO.O --
20 L3,0 H3,0 Y2.0 Y2.1 Y1.3 Y1.2 Y1.3 -- --- Y1.1 Y0.2 Y0.1 --- Y1.0 YO.O
21 L2,1 H2.1 Y3.0 Y3.1 Y2.0 Y2.1 -- ---- ---- Y1.2 Y1.1 Y0.2 - Y1.0 Y0.2 Y0.1 YO.O
22 Ll.l H3.1 Y2.2 Y2.3 Y3.0 Y3.1 Y2.1 - Y2.0 ---- Y1.2 - - Y1.2 Y1.1 Y1.0 YO.O Y0.1 -
23 L4.0 H4.0 Y3.2 Y3.3 Y2.3 Y2.2 Y2.3 - Y3.1 Y2.1 Y1.0 -- Y2.0-- ----- ----- ----- Y1.0Y1.1 Y0.1 YO.O Y0.1 --
24 LS,O HS,O Y4.0 Y4.1 Y3.3 Y3.2 Y3.3 Y3.1 Y3.2 Y2.1 Y3.0 Y2.0 ----- ---- --- - -------- Y1.1 Y1.0 Y1.1 ---- xO,O -- --
25 L4,1 H4,1 YS.O Y5.1 Y4.0 Y4.1 -- --- --- Y3.2 Y3.1 Y2.2 --- Y3.0 Y2.2 Y2.1 Y2.0 ----- ----- ----- ----- ---- x 1,0 ---- xO,O xO,O ---- -----
26 LS,l H5J Y4.2 Y4.3 Y5.0Y5.1 -Y4.1 -- Y4.0 -- Y3.2 - Y3.2 Y3.1 Y3.0 Y2.0 Y2.1 ----- ----- ---- ----- ---- xl,O xl,O xO,O ----
27 L6,0 H6,0 Y5.2 Y5.3 Y4.3 Y4.2 Y4.3 Y5.1 Y4.1 YS.O Y4.0 ----- ----- ----- Y3.0 Y3.1 Y2.1 Y2.0 Y2.1 -- - -- ----- ---- ----- xl,O ----
28 L7.0 H7.0 Y6.0 Y6.1 Y5.3 Y5.2 Y5.3 - --- Y5.1 Y4.2Y4.1 YS.O Y4.0 ----- ----- ----- ----- ----- Y3.1 Y3.0Y3.1 -- x2.0 ---- ----- ---- ----- ---- ----
29 L6,1 H6J Y7.0 Y7.1 Y6.0 Y6.1 - - Y5.2 Y5.1 Y4.2 YS.O Y4.2 Y4.1 Y4.0 -- -- --- - -- x3,0 x2,0 x2,0 --- ---- ----
30 L7,1 117,1 Y6.2 Y6.3 Y7.0 Y7.1 -- Y6.1 -- Y6.0 -- Y5.2 -- -- Y5.2 Y5.1 YS.O Y4.0 Y4.1 ----- ----- ---- ----- ---- x3,0 x3,0 ---- ----- x2,0 ----
31 L8.0 H8.0 Y7.2 Y7.3 Y6.3 Y6.2 Y6.3 Y7.1Y6.1 Y7.0 Y6.0 - - ----- ----- ----- YS.O Y5.1 Y4.1 Y4.0 Y4.1 -- ----- ---- ----- ---- ----- x3,0 ----
32 ----- ----- Y8.0 Y8.3 Y7.3 Y7.2 Y7.3 - - Y7.1 Y6.2 Y6.1 Y7.0 Y6.0 ----- ----- ----- ----- ----- Y5.1 YS.O Y5.1 --- x4,0 ---- ----- ---- ----- ---- ----

33 L8,1 H8,1 ------ Y8.0 Y8.1 --- ---- ---- Y7.2 Y7.1 Y6.2 --- Y7.0 Y6.2 Y6.1 Y6.0 ----- ----- ----- ----- ---- x5,0 ---- x4,0 x4,0 ---- ----- ---- ----
34 --- - ----- Y8.2 Y8.3 -- --- Y8.1 - Y8.0 ---- Y7.2 - - ---- Y7.2 Y7.1 Y7.0 Y6.0 Y6.1 ----- ----- ---- ----- ---- x5,0 x5D ---- ----- x4,0 ----
~~ 111.2 1111_2 ------ Y8.3 Y8.2 Y8.3 --- -- Y8.1 -- -- YB.O -- ----- ----- ----- Y7.0 Y7.1 Y6.1 Y6.0 Y6.1 -- ----- ---- ----- ---- ----- x5,0 ----
_-;I, 1.1_2 II L2 Y0.4 Y0.5 ---- ---- ----- Y8.2 Y8.1 -- Y8.0 ----- ----- ----- ----- ----- Y7.1 Y7.0 Y7.1 x6,0 ---- ----- ----- ---- ----- ---- ----
~7 !_22112_2 Y1 4 Y1 5 Y0,5 Y0.4 YO 5 YO 3 Y8.2 -- - - Y8.2 Y8.1 Y8.0 - - - - - ----- ---- x7,0 -- x6,0 x6,0 - - ----
:;s U_2 ILl 2 Y2.4 Y2.5 Y1.5 Y1.4 Y1 5 Y1 3 ·--- ----- YOA Y0.3 ----- ------ ----- ----- Y8.0 Y8.1 ----- ----- ---- ----- ---- x7,0 x7,0 ---- ----- x6,0 ----
-;c) 14.211-U Y3.4 Y3.5 Y2.5 Y2.4 Y2.5 Y2.3 ·--- ----- Y1.4Y1,3Y0,4 - YOA Y0.3 YO.Z ----- ----- Y8.1 YB.O Y8.1 ----- ---- ----- ---- ----- x7,0 ----
40 !__,.2 liS.::' Y4.4 Y4.5 Y3.5 Y3.4 Y3.5 Y3.3 ---- ---- Y2.4 Y2.3 Y1.4 --- Y1.4 Y1.3 Y1.2 Y0.2 Y0.3 ----- ---- ---- x8.0) ---- ----- ---- ----- ---- ----
41 [h_2 llh _ __., Y5.4 Y5.5 Y4.5 Y4.4 Y4.5 Y4.3 --------- Y3.4 Y3.3 Y2.4 ---- - Y2.4 Y2.3 Y2 2 Y1.2 Y1.3 Y0.3 Y0.2 Y0.3 Y0.1 ----- ---- x8,0 x8,0 ---- ----- ---- ----
42 17_2!172 Y6_4 Y6 5 Y5 5 Y5 4 Y5.5 Y5.3 -- Y4.4 Y4.3 Y3.4 ---- ---- Y3 4 Y3.3 Y3 2 Y2.2 Y2 3 Y1 3 Y1.2Y13Y11 -..<1_2 Y0.1 ----- ---- --- - x8.0
--~-~ I .<,;, ~ J II'_~ Y7.4 Y7.5 Y6.5 Y6.4 Y6.5 Y6.3 ·--- ----- Y5 4 Y5.3 Y4.4 Y4.4 Y4.3 Y4.2 Y3.2 Y3.3 Y2.3 Y2.2 Y2.3 Y2.1 '\l.2Y1.1 ,o_2 >h2 Y0.1 '.JJ u ---- ----
44 ----- ----- Y8.4 Y8.5 Y7.5 Y7.4 Y7.5 Y7.3 Y6.4 Y6.3 Y5.4 - Y5.4 Y5.3 Y5.2 Y4.2 Y4.3 Y3.3 Y3.2 Y3.3 Y3.1 x2,2Y2.1 xU xL2Y11 xiJJ x0.2 xO.I
4) ----- ----- Y8.5 Y8.4 Y8.5 Y8.3 ---- ----- Y7.4 Y? 3 Y6.4 ---- ---- Y6 4 Y6 3 Y6.2 Y5.2 Y5.3 Y4.3 Y4 2 Y4.3 Y4.1 _,3,2 Y3. 1 :-.2,2 '\2_2 Y2.1 x2_il -..... 1_2 "I I

289

Table 8.20 Dataflow for 2-parallel inverse 5/3 archilecture

Ck CP CPI & CP2 CPI output CP2 output RPI input RP2 input Output latches of
h input latches latches latches latches latches RPI RP2

RtO Rtl Rt!O Rtll RthO Rthl RtO Rtl RtO Rtl RtO Rtl RtO Rtl

I I LLO,O LHO,O

2 2 HLO,O HHO,O

3 I LLO,l LHO,l

4 2 HLO,l HHO,l

5 I LLI,O LHI,O

6 2 HLI,O HHI.O

7 I LLI,l LHI,l
- 8 2 HLI,l HHI,l
z 9 I LL2,0 LH2,0 LO,O Ll,O :0

"' 10 2 HL2,0 HH2,0 HO,O Hl,O

II I LL2,1 LH2,1 LO,l Ll,l LO,O HO,O Ll,O Hl,O

12 2 HL2,1 HH2,1 HO,l HI,!

13 I LLJ,O LH3,0 L2,0 LJ,O LO,l HO.l Ll,l HI,!

14 2 IILJ,O HIIJ,O H2,0 H3,0

15 I LLJ,l LH3,1 L2,1 LJ,l L2,0 H2,0 LJ,O HJ,O

16 2 HLJ,l HH3,1 H2,1 H3,1

17 I LL0,2 LH0,2 L4,0 L5,0 L2,1 H2,1 Ll,l Hl,l

18 2 HL0,2 HH0,2 H4,0 H5,0

N
19 I LL1,2 LH1,2 L4,1 L5,1 L4,0 H4,0 L5,0 H5,0 XO,O ----- XI ,0------

z 20 2 HL1,2 HH1,2 114,1 HS,l
:0 21 I LL2,2 LH2,2 L6,0 L7,0 L4,1 H4,1 L5,1 H5,1 X0,2 XO,l Xl,2 XI,! "' 22 2 HL2,2 HH2,2 H6,0 H7,0

23 I LLJ,2 LH3,2 L6,1 L7,1 L6,0 116,0 L7,0 H7,0 X2,0 ----- X3,0 -----

24 2 HLJ,2 HH3,2 H6,1 H7,1

25 I L0,2 Ll,2 L6,1 H6,1 L7,1 117,1 X2,2 X2,1 X3,2 X3,1

26 2 H0,2 Hl,2

27 I L2,2 LJ,2 L0,2 H0,2 Ll,2 111,2 X4,0 ------ X5,0 ------

28 2 J-12,2 H3,2

29 I L4,2 L5,2 L2,2 H2,2 L3,2 H3,2 X4,2 X4,1 X5,2 X5,1

30 2 114,2 115,2

31 I L6,2 L7,2 L4,2 H4,2 L5,2 H5,2 X6,0 ----- X7,0 -----

32 2 1-16,2 H7,2

33 I L6,2 H6,2 L7,2 H7,2 X6,2 X6,1 X7.2 X7,1

34 2

35 I X0,4 XO,J Xl,4 Xl,J

36 2

37 I X2,4 X2,3 XJ,4 X3,3

38 2

39 I X4.4 X4,3 X5,4 X5.3

290

Table B 21 Dataflow for 4 parallel inverse 5/3 architecture -
CK CP CPs input CPs I &3 CPs 2 & 4 RPs l & 3 RPs 2 & 4 input RPs I & 3 RPs 2 & 4
[, Latches Out latches Out latches input latches latches Out latches Out latches

RtO Rtl Rt!O Rtll RthO Rthl RP RtO Rtl Rt2 RP RtO Rtl Rt2 RtO Rtl RtO Rtl
I I LLO.O LHO.O
2 2 HLO.O HHO.O
3 3 LLO,l LHO,i
4 4 IILO, I HHO,i
5 I LLI,O LHI,O
6 2 HLI,O HHI,O
7 3 LLI,l LHI,l
8 4 HLI,l HHI,l

- 9 1 LL2,0 LH2,0

z 10 2 HL2,0 HH2,0
::J II 3 LL2,1 LH2,1

"' 12 4 HL2,1 HH2_!
13 I LLJ,O LIIJ,O LO,O LI,O
14 2 HLJ,O HHJ,O HO,O Hl.O
15 3 LLJ,l LHJ,i LO,l Ll,l
16 4 HLJ,l HHJ,l HO,l HI,!
17 I LL4,0 ------ L2,0 Ll,O I LO,O HO,O HO, I 2 LI,O Hl,O HI_!
18 2 HL4,0 ------ H2,0 H3.0 3 LO,l HO,l HO,O 4 Ll,l HI,! Hl.O
19 3 LL4,1 ------ L2,1 LJ,1
20 4 HL4,1 ------ H2,1 HJ,l
21 I LL0,2 LH0,2 L4,0 L5,0 I L2,0 H2.0 ----- 2 LJ,O HJ,O -----
22 2 HL0,2 HH0,2 H4,0 H5,0 3 L2,1 H2,1 H2,0 4 LJ,l HJ,l 113,0
23 3 LLI,2 LHI,2 L4,1 L5,1
24 4 HLI,2 IIHI,2 H4,1 H5,1

N 25 I LL2,2 LH2,2 L6,0 L7,0 I L4,0 H4,0 114, I 2 L5,0 H5,0 H5,1
26 2 HL2,2 HH2,2 H6,0 117,0 3 L4,1 H4,1 H4,0 4 L5,1 HS,l H5,0 z

::J 27 3 LLJ,2 LH3,2 L6.1 L7,1

"' 28 4 HLJ,2 HH3,2 H6,1 H7,1
29 1 LL4,2 ------ L8,0 ----- I L6,0 H6,0 ----- 2 L7,0 H7,0 -----
30 2 HL4,2 ------ H8,0 ----- 3 L6,1 H6,1 H6,0 4 L7,1 H7,1 H7,0
31 3 ------- ------- L8,1 -----
32 4 ------- ------- 118.1 -----
33 I LLO,J LHO,J L0,2 Ll,2 I L8,0 H8,0 H8, I 2 ----- ---- ---- XO,O ---- Xl,O -----
34 2 110,2 Hl,2 3 L8,1 H8,1 H8,0 4 ----- ---- ---- X0,2 XO,l Xl,2 XI,!
35 3 LLI,J LHI,] L2,2 Ll,2
]6 4 H2,2 H3,2
37 I LL2,3 LH2,3 L4,2 L5,2 I L0,2 H0,2 ----- 2 L1,2 Ill ,2 ----- X2,0 ---- XJ,O -----

M 38 2 H4,2 H5,2 3 L2,2 H2,2 ----- 4 LJ,2 113,2 ----- X2,2 X2,1 X3,2 XJ,l
z 39 3 LLJ,J LHJ,J L6,2 L7,2
~ 40 4 H6,2 H7,2

41 I LL4,3 ------ L8,2 ----- I L4,2 H4,2 ----- 2 L5,2 H5,2 ----- X4,0 ---- X5,0 -----
42 2 H8,2 ------ 3 L6,2 H6,2 ----- 4 L7,2 117,2 ----- X4,2 X4,1 X5,2 X5,1
43 3 ------- ------- ----- -----
44 4 ------- ------- ------ ------
45 I LO,J LU I LR,2 H8,2 ----- ' ----- ---- ---- X6,0- X7 ,0 -----
46 2 ------ ------ 3 ---- ---- ----- 4 ----- ---- ---- X6,2 X6,l X7,2 X7,1
47 3 L2,3 Ll,J
48 4 ------ ------
49 I L4,3 L5,3 I LO,J ------ ---- 2 Ll,J ----- ----- X8,0 ---- ----- -----
50 2 ------ ------ 3 L2,3 ------ ----- 4 LJ,J ----- ----- X8,2 X8,1 ----- -----
51 3 L6,3 L7,3
52 4 ------ ------
53 1 L8,3 ----- I L4,3 ------ ----- 2 L5,3 ------ ----- X0,4 XO,J Xl,4 Xl,J
54 2 ------ ------ J L6,3 ------ ----- 4 1.7,3 ----- ----- X2,4 X2,3 X3,4 XJ,J
55 J ------ ------
56 4 ----- ------
57 I I L8,3 ------ ----- 2 ----- ---- ---- X4,4 X4,3 X5,4 X5,3
58 2 J ----- ----- ----- 4 ----- ---- ---- X6,4 X6,3 X7,4 X7,3
59 3
60 4
61 I X8,4 X8,3 ----- ------
62 2 ------ ------ ----- ------

291

292

APPENDIXC

FPGA COMPILATION AND SYNTHESIS RESULTS

C./ Compilation reports for forward 513 module "decorrelate_processor"

Flow Status

Quartus II Version
Revision Name
T op·level Entity Name
Family

Met timing requirements

Logic utilization
Combinational ALU T s

Dedicated logic registers

Total registers

Total pins

Total virtu.el pins

Total block memory bits
DSP block 9-bit elements

Totol PLLs
Totol DLLs
Device
Timing Models

Successful· TueApr 2013:11:30 2010
9.0 Build 235 06/17/2009 SP 2 SJ Web Edition
deCOfrelate_processor
decorrelate_processor

Strati>~ II
Yes
6~

438/12_480 (4 ~ l
434/12.480 I 3 ~I
434
93/343(27~)

0
4,150/419,328 (< 1 ~ l
0/96(0~)

0/6(0~)

0/2(0~)

EP2S15F484C3
Final

Figure C.l.l Compilation Report- Flow Summary for forward 5/3 module "decorrelate_processor".

PowerPiay Power Analyzer Status
Quartus II Version
Revision Name
Top·level Entity Name
Family

Device
Power Models

Total Thermal Power Dissipation
Core Dynamic Thermal Power Dissipation

Core Static Therm.e~l Power Dissipation
1/0 Thermal Power Dissipation
Power Estimation Confidence

Succeulul· TueApr 20 13:11:30 2010
9.0 Build 235 0611712009 SP 2 SJ Web Edition
decorrelate_procesaor
decorrelate_processor

StratiM II
E P2S15F494C3
Final

500.46mW
B0.96mW
304.80mW
114.70mW
Medium: user provided moderately complete toggle rate data

Figure C.l.2 Compilation Report- Power Analyzer summary for forward 5/3 module "decorrelate_processor".

4' Quart us II~ (:/tutorral1 overlapp_atchrtecture1 decorrelate_processor ~ decorrelate_proceSior- [Compilation Repcitt- TiDtg ~

jj D ~ 11113 i 19 I ¥. i'lll f\ I "' r> lldecorrelate_processor

Worst-case lh

Clock Setup: 'clock'

Total number of farled po~J~hs

N/A None :-1.831 ns
N/A ·None '185.74 MHz(period "5_384 ~;)i~l~sJncram: TLB_rti_Oiahyncram_tprl :auto_generated_J_a~_-block1 aO...:p;rlb~;ddress_reg7 Rd[9]

- o- ----- - - -- I -- --- ---- - " · --- -- - - ------ -

Figure C.l.3 Compilation Report- Timing Analyzer Summary for forward 5/3 module "decorrelate_processor"

293

C.2 Compilation reports for inverse 513 module "reconst_procossor"

Flow Status
Quartus U Version

Revision Name
Top-level Entity Name
Famil}l

Met timing requirements
Logic utilization

Combinational ALUT s
Dedicated logic registers

Total registers

Total pins
Total virtual pins
Total block memory bits
DSP block 9-bit elements
Total PLLs
Total DLLs
Device
Timing Models

Successful· TueApr 20 13:28:12 2010
9.0 Build 235 06/17/2009 SP 2 SJ Web Edition
reconst_processor

reconst_processor
Strati• II
Yes
6%
446/12.480 (4%)
457/12.480 (4%)
457
75/343(22%)

0
8.192/419.328 (2%)
0/96(0%)
0/6(0%)
0/2(0%)

EP2S15F484C3
Final

Figures C.2.1 Compilation Report- Flow Summary for inverse 5/3 module "reconst_processor"

PowerPiay Power Analyzer Status

Gluartus U Version

Revision Name
Top-level Entity Name
Family

Device
Power Models
Total Thermal Power Dissipation
Core Dynamic Thermal Power Dissipation

Core Static Thermal Power Dissipation

110 Thermal Power Dissipation
Power Estimation Confidence

Succassful • TueApr 2013:28:12:1010
9.0 Build 235 06/17/2009 SP 2 SJ Web Edition
reconst_processor

reconsLprocessor
Strati• II
EP2S15F484C3
Final

465.39mW
85.26 mW
304.44 mW
75.70mW
Medium: user provided moderately complete toggle rate data

Figure C.2.2 Compilation Report- Power Analyzer summary for inverse 5/.3 module "reconst_processor".

Fig. C.2.3 Compilation Report-Timing Analyzer Summary for inverse 5/'3 module "reconst_processor"

294

C.3 Compilation reports for first forward 917 module "decorrelation2_processor9 _7"

Flow Status
Quartuoll Version
Revision Name
Top-level Entity Name
Family
Met timing requirements
Logic utrnzation

Combinational ALUT s
D odicated logic registers

Total registers

Total pins
T otel virtual pins
Total block memory bits
DSP block 9-bit element•
Total PLLo
Total DLLs
Device
Timing Models

Succeooful- TueApr 2013:47:13 2010
9.0 Build 235 06/17/2009 SP 2 SJ Web Edition
docrrelation2_procoooor9_7
decrrelation2_process:or9_7

Strati• II
Yeo
20%
2,036/12.480 (16%1
858/12,480(7'-1
858
96/343(28%1
0
12,288/419,328 (3%1
0/96(0%1
0/6(0%1
0/2(0%1
EP2S15F484C3
Final

Fig. C.3.1Compilation Report- Flow Summary for first 9/7 module "decrrelation2_processor"

PowerPiay Power Analyzer Status

Quartus II Version
Revision Name
Top-level Entity Name

Fami~

Device
Power Models
Total Thermal Power Dissipation
Core Dynamic Thermal Power Dissipation
Core Static Thermal Power Dissipation
1/0 Thermal Power Dissipation
Power Estimation Confidence

Succeooful- TuoApr 2013:47:13 2010
9.0 Build 235 06/17/2009 SP 2 SJ Web Edition
decrrelation2_processor9_7
decrrelation2_processor9_7
Strati>< II
EP2S15F484C3
Final
673.37mW
264.78mW
306.60mW
101.99mW
Medium: user provided moderately complete toggle rate data

Figure C.3.2 Compilation Report- Power Analyzer summary for first 9/7 module "decrrelation2_processor".

<@) File Ed~ View Project Assignments Proces~ng Tools Window Help

jj D ~ lil Cill ~ llb ~@ I"' r• lldecrrelation2_processor9_7 :::J I~ .I <I ~@ I G I~<> ~ 11-& l•tt

I <@) Compilation Report - Timing Analgzer s-

Figure C.3.3 Compilation Report- Timing Analyzer Summary for first 9/7 module "decrrelation2 _processor"

295

C. 4 Compilation reports for second forward 917 module "decorrelation _processor9 _7"

Flow Status

Quartus II Version

Revision Name

T op·level Entity Name

Family

Met timing requirements

Logic utilization

Combination~! ALUT s
Dedicated logic registers

Total registers

Total pins
Total virtual pins

Total block memory bits
DSP block 9-bit elements
Total PLLs
Total DLLs
Device

Timing Models

Successlul· TuoApr 2014:01:55 2010
9.0 Build 235 06/17/2009 SP 2 SJ Web Edition
decorelation_processor9_7

decorelation_processor9_7

Stratix II

Yes
25 Y.

2.529 I 1 2.480 (20 Y. l
1.049/12.480 (8 Y.)

1049
98/343(29%)
0

12.288/419.328 (3% l
0/96(0%)
0/6(0%)
0/2(0%)
EP2S15F484C3
Final

Figure C.4. I Compilation Report- Flow Summary for second 9/7 modul' "decorelation_processor"

PowerPiay Power Analyzer Status

Quartus II Version

Revision Name

Top-level Entity Name

Family

Device

PowerModeb

Total Thermal Power Dissipation

Core Dynamic Thermal Power Dissipation

Core Static Thermal Power Dissipation

1/0 Therfl'W!II Power Dissip~tion

Power Estimation Confidence

Successful· TuoApr 20 14:01:55 2010
9.0 Build 235 06/17/2009 SP 2 SJ Web Edition
decorelation_processor9_7

decorelation_processor9_7

Str~tiM II

EP2S 1 5F484C3
Final

739.36 mW
316.61 mW
307.29mW
115.45mW
Medium: user provided moderatebJ complete toggle rate data

Figure C.4.2 Compilation Report- Power Analyzer summary for second 9/7 module "decorelation_processor".

43> File Edit View Project Assignments Processing Tools Window Help

jj D c;j; Iii! ell I df I Jb Cli!l Ia I"" r• lldecorelation_processor9_7

~ Compilation Report - Timing Analyzer Summary

Fig. C.4.3 Compilation Report- Timing Analyzer Summary for second 9/7 module "decrrelation _processor"

296

C.5 Compilation repomjor 513 2-para//el module "twoyaral/ei_DWT7"

Flow Status

Ou~rtus II Version

Revision Name

T op·level Entity Name
Family
Device

Timing Models

Met timing requirements

Logic utilization

Combinational ALU T s
Dedicated logic registers

Total registers

Total pins
Total virtual pins

Total block memory bits

D S P block 9·bit elements
Total Plls

Total Dlls

Successful· TueApr 2012:21:07 2010
9.0 Build 235 06/17/2009 SP 2 SJ Web Edition

two_paralleLDWT
two_parallei_DWT

Strati' II
EP2S15F484C3
Final

Yes

10 4

872/12.480 I 7% I
697/12.4801641
697

122/34313641
0
8,300/419,32812 4 I
0/961041
0/61041
0/21041

Figure C.5.1 Compilation Report- Flow Summary for 5'3 2-parallel module "two _parallel_ OWl"

PowerPiay Power Analyzer Status

Quartus II Version

Revision N arne

Top-level Entity N arne

Family

Device

Power Models

Total Thermal Power Dissipation

Core Dyn<!!lmic Thermal Power Dissipation

Core Static Thermal Power Dissipation

1/0 Thermal Power Dissipation

Power Estimation Confidence

Successful· TueApr 2012:21 07 2010
9.0 Build 235 06/1712009 SP 2 SJ Web Edition
two_parallei_DWT

two_paralleLDWT
Stlati:< ll

E P2S 15F 484C3
Final
580.98 mW
130.02 mW
305.64 mW
145.33 mW
Medium: user provided moderately complete toQQie rate data

Figure C.5.2 Compilation Report- Power Analyzer summary for 5l3 :::-parallel module ·•two __ pararllci_D\VT'.

r,..
Worsl·cdSe l~u -·--···---·----·---·--
Worst·cose teo

] Worst·co~e th

; ""'· If! i .. : ~-~ : ltwo_parallei_DWT

j "0 two_poalilei_DWT v\¥1

,,~

---!~~--~": ____ .~.2~_'2.s_ _______________________ J~1?_,._,~El._ __ ----·-----·- ·- ---·---·-- ... -·--···-·--···----·--
N.ill. None 6 493 ns HH_out[9]-regD

1'./A None ·2 Q48 n~ scel

. HH_ou![3J

Fscel_cl_l

4 Clock Setup "cloc" N/A None :186 01 MH~ 1 penod • 5 J7E m (dltsyncrdm T LB2_ •II_ 1 i<~ltsyncr ~1'"1_!1•1 duiO_;Jenerdtedlr<~m _blocK- aO-portt_ addre>s_reg7 ~ Rd2!91

5 r otdl numoer oltoUed ~-<'llhs.

Fig. C.5.3 Compilation Report- Timing Analyzer Summar) for 5-"3 ~-parallel module "decrrelation_processor''

297

APPENDIXD

PUBLICATIONS

Conference papers

\

(I] Ibrahim Saeed Koko and Herman Agustiawan, "Lifting-based VLSI architectures for 2- Dimensional

discrete wavelet transform for Effective image compression," in: Proceedings of the International

MultiConference of Engineers and Computer Scientists 2008 Vol.!, Hong Kong, March 2008, PP. 339-347.

(2] Ibrahim Saeed Koko and Herman Agustiawan, "High-speed and power efficient lifting-based VLSI

architectures for two-Dimensional discrete wavelet transform," proceedings of the IEEE Second Asia

International Conference on Modeling and Simulation, AMS , May 2008, PP. 998-l 005.

(3] Ibrahim Saeed Koko and Herman Agustiawan, "Pipelined lifting-based VLSI architecture for two­

dimensional inverse discrete wavelet transform," proceedings of the IEEE International Conference on

Computer and Electrical Engineering, ICCEE, December 2008, Phuket Island, Thailand, PP. 692-700.

(4] Ibrahim Saeed Koko and Herman Agustiawan, "Parallel Pipelined VLSI Architectures for Lifting­

based Two-dimensional Forward Discrete Wavelet Transform," proceedings of the IEEE International

Conference on signal acquisitions and processing, ICSAP, April2009, Kuala Lumpur, Malaysia, PP. 18-25.

Journal paoers

[5] Ibrahim Saeed and Herman Agustiawan, "Two-dimensional Discrete Wavelet Transform Memory

Architectures," International Journal of Computer and Electrical Engineering, Vol. I, No. I, April 2009,

pp 84-97.

(6] Ibrahim Saeed and Herman Agustiawan, "Parallel form of the Pipelined Lifting-based VLSI

Architectures for Two-dimensional Discrete Wavelet Transform," International Journal of Computer

Theory and Engineering, Vol. I, No. I, April2009, PP 85-96.

(7] Ibrahim Saeed and Herman Agustiawan, "Parallel Form of the Pipelined Intermediate Architecture for

2-dimensional Discrete Wavelet Transform," IAENG International Journal of Computer Science, Vol. 36,

issue 2, June 2009.

Book Chapter

(I] Ibrahim Saeed and Herman Agustiawan, "High Performance Parallel Pipelined Lifting-based VLSI

Architectures for Two-Dimensional Inverse Discrete Wavelet Transform," book title: "VLSI", ISBN 978-

3-902613-50-9, IN-TECH, Feb. 2010.

298

