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ABSTRACT

Two-dimensional discrete wavelet transform (2-D DWT) has evolved as an essential
part of a modern compression system. It offers superior compression with good image
quality and overcomes disadvantage of the discrete cosine transform, which suffers
from blocks artifacts that reduces the quality of the iriage. The amount of
computations involve in 2-D DWT is enormous and cannot be processed by peneral-
purpose processors when real-time processing is required. Tharefore, high speed and
low power VLSI architecture that computes 2-D DWT effectively is needed. In this
research, several VLSI architectures have been developed that meets real-time
requirements for 2-D DWT applications. This research initially started off by
implementing a software simuiation program that decorrelates the original image and
reconstructs the original image from the decorrelated image. Then, based on the
information gained from implementing the simulation program, a new approach for
designing lifting-based VLSI architectures for 2-D forward DWT is introduced. As a
result, two high performance VLSI architectures that perform 2-D DWT for 5/3 and
9/7 filters are developed based on overlapped and nonoverlapped scan methods. Then,
the intermediate architecture is developed, which aim a! reducing the power
consumption of the overlapped areas without using the expensive line buffer. In order
to best meet real-time applications of 2-D DWT with demanding requirements in
terms of speed and throughput parallelism is explored. The single pipelined
intermediate and overlapped architectures are extended to 2-, 3-, and 4-parallel
architectures to achieve speed factors of 2, 3, and 4, respectively. To further
demonstrate the effectiveness of the approach single and parallel VLSI architectures
for 2-I) inverse discrete wavelet transform (2-D IDWT) are daveloped. Furthermore,
2-D DWT memory architectures, which have been overlooked in the literature, are
also developed. Finally, to show the architectural models deveioped for 2-D DWT are
simple to control, the control algorithms for 4-parallel architecture based on the first
scan method is developed. To validate architectures develcped in this work five

architectures are implemented and simulated on Altera FPGA.
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CHAPTER 1

INTRODUCTION
1.1 Background

Image compression plays an important role in real-time applications especially in the
bandwidth limited applications such as internet, mobile phone, and telemedicine.
Images are compressed for fast transmission over a network and efficient storage.
Image compression takes advantage of the redundant information contained in the
otiginal image. The redundancy exists in the form of statistical dependencies among
pixels especially neighboring pixels. However, neighboring or adjacent pixels are
highly correlated, which implies that it would be very difficult to immediately
compress the original image pixels. Applying a compression algorithm directly to the
original image pixels would yield poor compression ratio. Therefore, Transforms such
as Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), and Discrete
Wavelet Transform (DWT) are utilized to decorrelate the original image pixels in
order to be amenable to compression. Two-dimensional discrete wavelet transform (2-
D DWT) compared to DCT is very efficient in decorrelating an image pixels and thus
leading to a superior compression performance. DWT naturally as indicated in Figure
1.1.1{(b) supports progressive transmission, which is somewhat very difficult to
implement in DCT-based compression. 2-DWT has evolved as an effective and
powerful tool in many applications especially in image processing and compression

1,2].

To show the correlation property of original image pixels 1 have plotted in Figure
A.3.4 the pixels of the original image shown in Figure 1.1.1 (a). It shows that the
original image pixels are highly correlated. But, when the pixels of the original image
are applied to the forward discrete wavelet transform (FDWT) software simulation
program that we have developed which is listed in Appendix A, the result was the

decorrelated image shown in Figure 1.1.1 (b). The pixels of the decorrelated image



The original image

(a)
Decorrelated image

(b)

Reconstruoted image

(c)

Figure 1.1.1 (a) The original image (b) Decorretated image (c) Reconstructed image



shown in Figure 1.1.1 (b) are then plotted in Figure A.3.5 where it displays a flat
image indicating that the amount of correlation among pixels has been greatly

reduced,

The 2-D DWT considered in this research is part of a compression system based
on wavelet such as JPEG2000, as shown in Figure 1.1.4. The function of the forward
discrete wavelet transform (FDWT) in a compression system is to decorrelate the
image pixels prior to the compression step [3]. Thus, the DWT is used to effectively
decorrelate the image pixels to achieve higher compression rates {4, 5]. Decorrelation
step can be thought of introducing distortion to the original image pixels so that they

can be amenable to compression.

After transmitting to a remote site, the original image must be reconstructed from
the decorrelated image. The task for reconstructing and completely recovering the

original image are performed by the inverse discrete wavelet transforms (IDWT).

FDWT Compress Decompress IDWT

Decorrelates Decorrelated |lmumunsa > decorrelated reconstructs

image image Transmit to a | iMage image
remote site

Figure 1.1.4 A simplified Compression System

The amount of computations involves in both decorrelation and reconstruction
steps are enormous, which required very high processing power that can’t be achieved
by general-purpose processors, especially when real-time processing is required.
Therefore, high speed, low power, and low memory VLSI architectures that compute
2-D DWT effectively are needed. The objective of this research is to develep such
architectures based on the lifting scheme [4, 5, 6] that meets real-time requirements
for 2-D DWT applications. Lifting-based, compared with convolution-based, involves
less computation and lower memory and facilitates high speed and efficient
implementation of wavelet transform and it is attractive for high throughput and low

power applications,



1.2 JPEG2000 Image Compression

JPEG2000 was developed to provide high rates of compression with good image
quality and overcome the disadvantages of previous JPEG that uses DCT based image
compression [7, 8] which suffers from blocks artifacts that reduce the quality the

image.

The JPEG2000 standard uses 2-dimentional, separable, non expansive, symmetric
extension wavelet transforms. In this process the whole image is transformed into
different resolution levels using the DWT. In case of a large image size, the image is
optionally decomposed (divided) into a number of non-overlapping rectangular blocks
called tiles and DWT is applied inside each tile independently. The DWT performs
either reversible 5/3 filter, which provides lossless coding, or nonreversible 9/7 filter,
which provides higher compression ratio with lossy coding. The DWT decomposes an
image into subbands, then coefficients of each subband is partitioned into rectangular
code block as illustrated in Figure 1.2.1, which are then coded independently using
EBCOT (Embedded Block Code with Optimized Truncation). EBCOT is the name
given to the entropy encoder in the JPEG2000 and it differs from JPEG’s encoder in
that the division into independent non-overlapping code-blocks is done after the
transform instead of before the transform. EBCOT, which contains tier-1 and tier-2
coding, relies upon independent coding of relatively small blocks of subband samples
(e.g., 64 x 64 or 32 x 32 samples). In tier-1 each code-block is independently entropy
coded and in tier-2 each encoded bit-stream is optimally trunceted such that an overall
desired bit rate is achieved. Tier-2 is implemented in software whereas tier-1 is

tmplemented in hardware [8].

subband
sub
image m— band | Tier—1 Tier—2 E:Bg Stream
pwT |sub |sub :
band |band EECOT

Compression

Figure 1.2.1 JPEG 2000 encoding



1.3 Realization of 2-D DWT

The realization of DWT filter bank can be classified into two categories: one is
based on the convolution operation [10], [11], [12], and the other is based on the
lifting scheme [13], [14], [15]. The tree structure filter bank is the realization of 2-D
DWT based on convolution operation. The high-pass and low-pass filters of the filter
bank are usually FIR (finite impulse response) filters and FIR involves convolution
operation. This direct realization is termed convolution-based DWT. Convolution
based DWT is computationally intensive and requires a large number of registers —

features that are not desirable in high-speed and low-power VLSI implementation.

On the other hand, lifting-based scheme proposed by Daubechies [4, 5, 6]
involves less computation and lower memory, The basic principle of lifting scheme is
to factorize the polyphase matrix of the wavelet filters into a sequence of alternating
upper and lower triangular matrices and a diagonal matrix called lifting steps [4, 5].

Polyphase divide the filters into even and odd parts as follows [16]:
E(z) = f’;e(zz) + z’lﬁo(zz) \ §(z): §e(zz)+ z7'go(z?) (I.H

where E(z) and g(z) are the low-pass and high-pass analysis filters. ge(z)and

ho(z) are the even and odd parts of h(z), whereas ge(z) and go(z) are the even and

odd parts of g(z). Eq(1.1) can be represented in a matrix form, called, polyphase

matrix, ﬁ(z) :

5 (z):{}?e(z) holz } (1.2)

gelz) golz)

If the determinant of P(z) is one, then polyphase matrix can be factorized into lifting

R P I

It is a well known result in matrix algebra that any matrix with polynomial entries and

steps [4], as follows:

determinant one can be factored into such eiementary matrices. Figure 1.3.1 shows
the lifting-based tree-structured filter bank representation of 2-D DWT. The new

representation leads to a faster implementation of the wavelet transform and it is



attractive for both high throughput and low-power applications. In addition, the
computational complexity of the lifting algorithm is half of that of convolution
algorithm [4). Therefore, the lifting-based DWT becomes the preferred scheme for
VLSI implementation and it has been selected as the transform coder for image

compression in the released JPEG2000 standard.

1.4 Separable and nonseparable transforms

There are two approaches to compute the 2-D DWT: separable and nonseparable [12].
A Kkey practical advantage of separable transforms is that they may be implemented by
applying the one dimensional transform first to the rows of the image and then to its
columns. The inverse transform is implemented in an analogous manner. A
nonseparable approach for the 2-D DWT directly decomposes an image into four
subimages without row and column processes one after another [17]. However, the

dedicated four 2-D filters require considerably more hardware resources.

Figure 1.3.1 Lifting-based tree-structured filter bank

1.5 Problem statement

VLSI architecture for 2-D DWT has not yet been completely and accurately
developed that meet real-time requirements for 2-D DWT applications. There is need

for comprehensive and detailed study to understand the 2-D D'WT algorithms in order



to develop more accurate architectures. Thorough understanding of DWT algorithms
can be gained through developing a software simulation program for both
decorrelation and reconstruction processes. Developing a simulation program will
give the hardware architecture designer available opportunity to learn in details the
behavior of the algorithm and acquire a firm understanding, which in turn will enable

him to develop more accurate architecture.

Furthermore, the internal memory of the 2-D DWT processor, which dominates
the hardware cost and the complexity of the architecture, is still high, while external
memory consumes the most power. Therefore, the research would focus on reducing
effectively the internal memory or temporary line buffer (TLB) requirements for 2-D
DWT architecture. In addition, novel and accurate architectures for 2-D DWT would
be developed that meet high speed and low memory requirements. Furthermore, a
specific architecture would be developed that aims at reducing the external memory
power consumption, which consumes the most power. The intermediate architecture
developed in chapter 3 addresses this issue and 22% reduction in power consumption

has been achieved.

DWT decomposes an NxM image into subbands. These subbands must be stored
by DWT unit in 2 memory unit in a specific order that preserves the subbands
boundaries such that these subbands can be manipulated effectively by both DWT and
compression units. This would require developing specific VLSl memory
architectures for 2-D DWT. DWT memory architectures have been usually
overlooked in the literature. Since, 2-D DWT memory architectures are equally
important as DWT processor architectures commonly covered in the literature, in this
work, two nove! VLSI architectures for LL-RAM and subband memory would be
developed. Furthermore, to show the architectures developed in this research are
simple to control, one of the architecture would be selected and its control algorithms
will be developed. Both pipelining and parallelism will be explored to further improve
performance in terms of speed and throughput to best meet real-time applications of

2-D DWT with demanding requirements.



1.6 Research objectives and approach

The objective of the research is to develop VLSI architectures for both decorrelation
and reconstruction processors that meet real-time requirements for 2-D DWT
applications. In developing VLSI architectures for 2-D DWT processors, our goals are

to achieve high speed, low power, low memory, and complete hardware utilization.

In this work, specifically, VLSI architectures for lossless 5/3 and lossy 9/7
algorithms, explicitly defined by the JPEG2000 image compression standard, will be
used for the development of the 2-D DWT decorrelation and reconstruction
processors. In addition, symmetric extension algorithm recommended by JPEG2000
for boundary treatment will be incorporated into 5/3 and 9/7 data dependency graphs

(DDGs) and will be implemented by the architectures developed in this research.

To verify the architectures developed in this research are efficient and accurately
perform their intended functions, some selected architectures, which are
representative of the other architectures, will be implemented on FPGA and a
timing simulation will be performed to validate the logical operations of the

designs.

The approach or the strategy adopted in the development of 2-D DWT
architectures is based on the observation that the DDGs for 5/2 and 9/7 algorithms are
identical when they are looked at from outside, taking into ccnsideration only inputs
and outputs requirements, but differ in the internal details. Based on this observation,
the first level of the architecture, call it, the external architecture, which is identical
for both 5/3 and 9/7, is developed. Then, the intemmal details of the DDGs is
considered for developing separately the processors’ datapath architectures for each
5/3 and 9/7 filters that can be incorporated into the external architecture, since DDGs

internally define and specify the structure of the processors.

This new approach not only can be effectively used in 5/3 and 9/7 based
architectures development, but can be used also in architecture development for any
2-D DWT algorithms and it is certain to yield very efficient architectures in terms of
hardware complexity, speed, and power consumption with manageable control

complexity.



1.7 Contributions

This research has contributed with several novels VLSI architectural models
developed specifically for 2-D DWT as follows. First, a software simulation program
is developed that perform both decorrelation and reconstruction of an MxN image.
Then, two single pipelined architectures based on overlapped and nonoverlapped scan
methods are developed for both 5/3 and 9/7 followed by the single pipelined
intermediate architecture. The above 3 single pipelined architectures are then
extended to 2-, 3-, and 4-parrallel architectures. In addition, modified datapath
processor architectures that can be incorporated into single and parallel architectures

are also developed.

The research also has addressed one of the critical issues overlooked in the
literature, the 2-D DWT memory architectures, and has developed two novel VLSI
architectures for LL-RAM and subband memory. Furthermore, to show that the
architectures developed in this research are simple to control, the control model and

its algorithms for 4-parallel architecture based on the first scan method is developed.

Finally, to show the effectiveness of the approach, the inverse DWT architectures

for single and parallel 5/3, 9/7, and combined 5/3 and 9/7 are developed.

Significant parts of this research had been published in international conferences

and journals were listed in Appendix D.
1.8 Organization of the thesis

Chapter 2 introduces tree structured filter bank for 1-D and 2-D DWT and
classification of 2-D DWT architectures. Then l-level line-based architectures, which

adopt level-by-level approach to achieve multi-level decompositions, are reviewed.

In chapter 3, the data dependency graphs (DDGs) of the algorithms are derived.
Based on the DDGs, the overlapped and nonoverlapped single pipelined architectures
are developed. The intermediate architecture which is an alternative form of reducing

the power consumption of the overlapped areas is also developed.

In chapter 4, in order to best meet real-time applications of DWT with demanding

requirements, the parallel architectures based on the first scan method and parallel



form of the intermediate architectures are developed

In chapter 5, DWT Memory architectures for LL_ RAM and subband memory,
which have overlooked in the literature, are developed. To show the architectures
developed in this work are easy to control, the control algorithms of the 4-parallel

architecture are developed.

In chapter 6, to show the effectiveness of the approach and techniques adopted in
the forward architectures, the single and parallel architectures for inverse 5/3 and 9/7

are developed.

In chapter 7, performance evaluations and experimental results for 5 architectures
developed in this research are implemented on Altera FPGA and then simulated for

validation.

In chapter 8, conclusions are drawn and recommendations for future work are

stated.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The basic operation of a discrete wavelet transform is as follow. Applied to a discrete
signal containing N samples, a pair of filters low-pass (hg) and high-pass (h;) derived
from wavelet is applied to the signal to decompose it into a low frequency band (L)
and a high frequency band (H). Each band is subsampled (decimated) by a factor of
two, so that the two frequency bands each contain N/2 samples. A tree-structured
transform is obtained by applying the L band again to a pair of low- and high-pass
filters [15]. The one dimensional case is illustrated in Figure 2.1.1. The recursive
subdivision is continued for J levels, yielding a total of (J+1) subbands. The low
frequency subband L, contains N/2' samples, while the remaining subbands contain

N/2 samples for0 <j < J.

A1K] L, L
«hy 2 » +hy | 2—& ------ shy [ 2 Ly
X ¥ L
shy H-™12 —»
~hy "2 1 . H,
h 4 I_I2
o thi e 2 -
H,
(a)
Ls{Ha| Hs H» H,
- (1
(b)

Figure 2.1.1 (a) one-dimensional tree-structured filter bank; (b) Subband structure for

J= 4 levels decomposition.



A two dimensional transform is constructed by “separable extension” of one
dimensional transform. In this approach each row of 2-J image is filtered with a low-
pass (hg) and high-pass (hy) filters and the output of each filter is down-sampled
(decimated) by a factor of two to produce the intermediate images L and H, as shown
in Figure 2.1.2. L is the original image low-pass filtered and down-sampled in the
horizontal direction and H is the original image high-pass filtzred and down-sampled
in the horizontal direction. Next, each column of these new images is filtered with
low- and high-pass filters in the vertical direction and down-sampled by a factor of
two to produce four sub-images (LL, LH, HL, and HH). These four subband images
can be combined to create an output image with same number of samples as the
original. The four subband images contain all of the information present in the
original image but the sparse nature of the LH, HL, and HH subbands (many samples

in these subbands are zeros or close to zeros) makes them amenable to compression.

In an image compression application, the two-dimensional wavelet decomposition
described above is applied again to the ‘LL’ image, forming four new subband
images. The resulting low-pass image is iteratively filtered to create a tree of subband
images filter bank as shown in Figure 2.1.2. The subband structure is shown in

Figure 2.1.3 for

Column
filtering

Row
filtering o

XTi, /]

*h hO 2

e ho
S

First level decomposition

Figure 2.1.2 Tree-structured filter bank for 2-D DWT for J levels decomposition.
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Figure 2.1.3 3-level of Wavelet decomposition of an image

3-level decomposition of an image. In Figure 2.1.2 the notations *; and *, denote
horizontal and wvertical convolution along rows and columns of the image,
respectively. And |, denote horizontal and vertical decimation by 2 (down sampled
by 2). Note that only one of the four subbands, the LL band, is recursively
decomposed into further subbands. If the recursive subdivision is continued for J

levels, it yields a total of (3] + 1) subbands, with non-uniformly spaced passbands.

The LL subband of nonuniform subband decomposition is a low resolution
version of the original image. Therefore, it follows that the lowpass subbands,
identified as LL; in Figure 2.1.2, represent a family of successively lower resolution
versions of the original image. The sampling density for LL; is 2% times that of the
original image in each direction, where d = 1,2,...,). However, all these low resolution
images are intermediate results; only LL; is actually onc of the subbands of the final
tree-structured transform. And each of the images in this multiresolution family may
be recovered by partial application of the synthesis system. LL; _ |, for example, may
be synthesized from subbands LI.;, LH;, HL;, and HH,, while LL; _ ; may be
synthesized from these subbands, together with LH; | HL; ., and HH; ..

This multiresolution property is particularly interesting for image compression



applications. It provides a mechanism whereby a compressed bit-stream may be
partially decompressed to obtain successively higher resclution versions of the
original image. To be more specific, let R; be the set containing of subbands LH; . _;,
HL; . _jand HH; . ;_; for 0 <j < J and let R¢ be the set consisting of only subband
LL;. These groupings are also identified in Figure 2.1.2. We refer to the R; as
resolution levels, since Ry contains the lowest resolution image and each successive
resolution level, R;, contains the additional information required to reconstruct the
next member of the multiresolution family. Suppose now that the elements of each
set, Rj, 0 < j £, are compressed independently and their compressed representations
are separately identifiable within the compressed image representation. Then, the
compressed representation has a property known as “resolution scalability,” whereby
a compressed representation of any member of the multiresolution family may be
obtained simply by discarding those pieces corresponding to the irrelevant resolution
levels, R;. For image compression applications, the interest in dyadic decompositions
and hence two channels subband transform is driven primarily by the significance of

resolution scalability.

In the literature, 2-dimensional discrete wavelet transform (2-D DWT)
architectures are classified into two categories [1, 13]: convolution-based and lifting-
based. Convolution-based implements the two-channel filter bank directly. Such an
implementation demands intensive computations and a large number of storage —
features that are not desirable for either high speed or low power applications [13]. On
the other hand, lifting-based involves less computation and lower memeory and
facilitates high speed and efficient implementation of wavelet transform and it is

attractive for both high throughput and low power applications.
2.2 RAM-based architectures

There have been many VLSI architecture proposed for 2-D DWT in literature [13, 27,
29, 34]. Nevertheless, only RAM-based architectures are most practical for real-life
designs because of their greater regularity, density of storaze, and simple control
circuits [1]. However, according to [51], the memory issue dominates the hardware
cost and complexity of the architecture and is the most critical part for 2-D DWT
architecture, Instead of number of multipliers that decide thz performance of one-

dimensional (1-D) DWT architectures. Thus, for 2-D DW'T architectures, the memory
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issues, including internal memory size and external frame memory access, are the
most critical problems. The internal memory generally dominates the hardware cost,
whereas the external frame memory access consumes the most power [51]. In [1],

RAM-based architectures for 2-D DWT are categorized as follows.
2.2.1 Direct Architecture

The most straightforward implementation is to perform 1-D DWT in one direction
and store the intermediate coefficients in the same frame memory, and then to
perform 1-D DWT with these intermediate coefficients in the other direction to
complete 1-level 2-D DWT, as illustrated in Figure 2.2.1. For the other decomposition
levels, the lowpass-lowpass (LL) subband of the current level is treated as the input

signals of the next level and the above steps are then performed recursively.

1
i
|

External Y
Frame 1-D DWT
Memory Module
(Nx N) i
) 1
(a)

Figure 2.2.1 Direct 2-D implementation. (a) System architecture, (b) Data flow of
external memory access {(J = 3; white and grey parts represent

external frame memory reads and writes, respectively).
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2.2.2 Row-column and column-row (RCCR) architecture

The direct architecture processes row coefficients first in every decomposition level
all the time. Whereas, RCCR architecture processes row-column for odd-level
decompositions and column-row for even-level decompositions [50], then the
successtve two row-wise or column-wise 1-D DWT decompositions can be performed
simultaneously, as illustrated in Figure 2.2.2. The DWT module of the RCCR
architecture can be implemented by folding two successive decompositions into 1-D
DWT module and store the coefficients in a line buffer of size N/2, and then performs
the latter level decomposition with the stored coefficients. The merging of two
successive decompositions in the same direction can decrease the external memory

access bandwidth by one half for every level, except the first level decomposition.

(LLY AL H), .o {LH)

L

External

Frame

Memory i

{NxN) - RCCR > (LL)J-1 LL.
1DOWT —*> (LL)J 1LH,...,LH

Module |—» (L} HL,...HL
Input —» Monoorn |1\ H,.. HH

{_ i
FH

Figure 2.2.2 RCCR 2-D implementation (a) System architecture.

(b) Data flow of external memory access (J = 3).
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2.2.3 1-level Line-Based Architecture

Unlike the direction-by-direction approach of direct and RCCR architectures, each
level of the DWT decomposition can be performed at a time, and the multi-level
decompositions can be achieved by using the level-by-level approach as illustrated in
Figure 2.2.3. However, this approach may require some internal memory, whose size
is proportional to the image width, to store the intermediate DWT coefficients of one
direction and to supply the input signals for the DWT decomposition in the other

direction [11].

The external memory bandwidth of the 1-level line-based architecture is exactly
one half of that of the direct architecture. This is due to the utilization of internal
buffers. Furthermore, unlike the direct architecture that uses the whole frame buffer of
size N” as the intermediate coefficient buffer, the 1-level line-based architecture only

uses one-guarter of the frame buffer.

Ly L, .. L

External

Frame

Memory o

(N XN2) |, 1-level > (LL) L

2.0 DWT —>(LL)J 1LH,...,LH

nout Module H(LL)J'HL,...,HL
npu KxN Ly ity b, HH

Figure 2.2.3 1-level line-based implementation. (a) System architecture.

(b) Data flow of external memory access (J = 3).
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2.2.4 Multi-Level Line-Based Architecture

Instead of level-by-level approach, multi-level line-based architecture performs all of
the decomposition levels simultaneously, as illustrated in Figure 2.2.4. However,
using cascaded J 1-level line-based architectures to implement directly will result in
very low hardware utilization. In addition, multi-level 2-D architecture requires more
internal buffer and suitable task assignment for 1-D DWT modules; but it reduces the

external memory access bandwidth to the minimum 2N°.

(LU Y2 LL..LL

J-level » (LU i

2DDWT | (L)1 LH,.LH
Module J-1
2K X N) » (LL} HL...HL

Input
P l——p (L1} THH..HH

(a)

(k)

Figure 2.2.4 Multi-level line-based implementation. (a) Svstem architecture.

(b) Data flow of external memory access {J = 3).

2.3 Discussion

Based on the Table 2.1, [1] the multi-level line-based architecture requires the most
hardware cost, including the internal line buffer, multiple 1-D DWT meodules, and
complex control circuits. In addition, simultaneously intsrleaving of the first
decomposition level computations with all subsequent levels computations is

somewhata very complex mechanism to control, which makes this approach



Table 2.1 Summary of the RAM-based 2-D architecture [1]

External Intermediate
Memory Line Frame Control System
Architecture | Access Buffer Buffer Complexity | Integration

(words/image} | (words) | (words)

Direct 5.33N° - N’ Simple | Difficult
RCCR (RPA) | 4.67N° - N° Medium | Difficult
RCCR (N/2) | 4.67N? 0.5N N? Simple | Difficult
1-level 2.67N* kN N°/4 Medium | Medium
Multi-level 2N? 2kN - Complex | Simple

impractical for real-time implementation. However, it requires the least external

memory bandwidth without using the external frame buffer to store intermediate data.

The simplest direct architecture has the least hardware cost but requires the most
external memory bandwidth. The RCCR architecture can decrease the external

memory bandwidth of the direct architecture by using one small line buffer.

The 1-level line-based architecture which adopts level-by-level approach to
achieve multi-level decompositions is a simple mechanism to control. In addition, 1-
level line-based architecture is the most practical for real-time implementation
because of its greater regularity, which suit well for VLS! implementation. Therefore,
the research would focus on I-level line-based architectures and the related work in

literature would be reviewed in the next section.

2.4 Review of I-level line-based architectures

In the following, line-based architectures recently proposed in literature are
reviewed. Bing-Fie et al {43] proposed a pipelined architecture for 2-D lifting-based
DWT of the 5/3 and the 9/7 filters by merging predict and update stages into one stage
(step). The overall architecture includes three main components: the column
processor, the transposing buffer, and the row processor. The modified algorithm was
derived to shorten the data path but it decreases the throughput of the pipelined
architecture. The architecture based on this modified algorithm is more complex and

may require a complex control circuits. The transposing buffer is a drawback because
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it is a very expensive memory component and increases the complexity and the cost
of the hardware without any performance advantage. In addition, the architecture

requires a total memory of size 3.5N and 5.5N for 5/3 and 9/7, respectively.

Cheng-Yi et al. [40] proposed an architecture which is a combination of a 1-level
architecture block and a multilevel architecture block. The 1-level architecture block
consists of 4 processors, while the recursive architecture block consists of 2
processors. The 1-level architecture performs the first level of decomposition of the
original image and generates four subbands coefficients LL, LH, HL, and HH every
clock cycle. The LL coefficients are further pipelined to the recursive architecture
block for performing the next levels of decomposition. However, this architecture
requires considerable hardware resources with limited utilization, 6 processors and a

total of line buffer of size 5.5 and it i3 definitely slow.

Hongyu et al. [59] proposed an architecture called two-dimensional dual scan
architecture in which two consecutive rows are scanned simultaneously that allows
two pixels to be read per clock cycle from memory and applied to the row processor.
In this architecture the FIFO memories had been eliminated and the interleaving
mechanism was substituted by adding an intermediate memory of size N*/2 to store
LL coefficients for the next levels decompositions. However, the scan method
adopted requires a total of line buffer of size 2N and 6N for 5/3 and 9/7 architectures,

respectively.

Several lifting-based architectures resembling the architecture in [59] were also
proposed in [3], [28]. [29], and [35] in which the datapath (the row and the column
processors) was pipelined to increase the throughput of the computations. In [30] and
[16] very efficient methods were developed that implement the multipliers in DWT
data path using arithmetic shift operation, which provide better area-power-operating

frequency.

In [25] and [26] line-based VLSI architectures for 9/7 and 5/3 based on lifting
scheme were proposed, respectively. The proposed architecture mainly includes a

row transform module and a column transform module, working in parallel and

pipeline. The embedded decimation technique based on fold and time multiplexing is

exploited to optimize the design of the architecture. The “so-called” embedded
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decimation technique is defined as that, the samples are input in sequence, then the
prediction (dual) lifting and update (primal) lifting operations are performed at the
same processing element (PE) by fold and time multiplexing, so that the decimation

operation is completed in embedded fashion.

The authors of [23] and [26] claim that by adopting decimation technique they
have reduced significantly the required number of multipliers, adders, and registers, as
well as the size of the buffer memory and the amount of the RAM access. However,
since the two architectures use the raster scan order (RSO) for scanning the external
frame memory there would be no significant reduction in the line buffer size. In
addition, use of the same processing element (PE) to perform both predict lifting and
update lifting operations increase the hardware complexity by requiring introduction

of several multiplexers which in turn slow the computations.

In the efficient pipelined architecture presented in [61], a critical path delay of Tm
+Ta and a reduction in the number of multipliers are achieved through optimized data
flow graph. However, this architecture requites a total line buffer of size 10N, which

is a very expensive memory component.

The architecture presented in [24] is an attempt to exploit the parallel nature of the
5/3 algorithm through parallel operation of independent units, The design is further
optimized by introducing pipeline stages. Input samples are accessed through a
window of four samples, allowing two concurrent predict operations and two
concurrent update operations. Four coefficients can be calculated in one clock cycle
once the pipeline is populated. The major drawback is that the pipeline requires four
clock cycles to read new values from external memory and how the architecture is
pipelined is not evidence. In addition, predict and update modules including the

whole architecture are poorly structured.

In [62], architecture called, deeply parallel architecture is proposed. The
architecture requires a buffer memory (BM) of size 54, several FIFO buffers, and a

main memory (MM) of size 4N, which are very expensive memory components. In

addition, writing the results into MM and then switching them out to external memory

(EM) is really a drawback, since external memory usually consumes the most power

[47].
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Chengyi et al. [64] proposed a line-based architecture for 2-D DWT where an
embedded decimation technique is exploited to optimize the architecture. The
architecture is mainly constituted of an input data buffer unit {IDBU) implemented as
(FIFO) RAMs, and a wavelet transform (WT) module. The WT module includes two
horizontal filters HF1 and HF2 for row-transform and one vertical filter module VF
for column-transform. The image is scanned into HF1 and HFZ2 in a raster format,
Two lines of sample are required to input simultaneously to the transform module,
therefore, the two FIFOs are used first to store the required input data before they are
sent out to the row-transform module. The architecture requ:res excessive hardware
resources; two FIFOs and two row-processors. In addition, scanning using a raster
format is a drawback. The architecture also suffers from long latency of N/2 and 2N
for 5/3 and 9/7, respectively. The architecture requires a totel memory of size 3.5N

and 5.5N for 5/3 and 9/7, respectively.

Chih et at. [66] proposed based on new algorithms architectures for 5/3 and 9/7
which aim at improving the critical issues of the 2-D DWT. The architecture consists
of four parts, two sets of the first stage 1-D DWT, two sets of the second 1-D DWT,
control unit, and Mac unit. The new algorithm, however, increases the hardware
complexity of the architecture and does not decrease the transpose themory
requirement. In fact, the architecture requires a transpose memory of size 2N and 4N
for 5/3 and 9/7, respectively, in addition to internal memories. The architecture also

suffers from long latency, 3/2N +3 cycles.

Wei et at. [68] proposed architecture for 2-D DWT, which reduces the internal
memory required for 5/3 and 9/7 to 2N and 4N, respectively. However, the row and
the column processors are not pipelined and require considerable hardware resources
which lead to longer critical path delay. In addition, scheduling coefficient, generated
by the row processor, to the column processor and registers used are not shown in the
architecture. The architecture requires a latency of 3/2N +3 clock cycles, which
implies the architecture need an additional transpose memory at least of size 1.5N and
that increases the total memory required for 5/3 and 9/7 to 3.5N and 5.5N,

respectively.

Jie et al. [67] proposed a modified interger-to-interger wavelet transform

architecture based on fixed-point manipulation. The architecture consists of horizontal
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and vertical transform processors, intermediate buffer, control module, and output
control module. Image is input line-by-line to the horizontal processor to perform
horizontal filtering, Vertical processor employs row-wise coefficients and
simultaneously fetches data via intermediate buffers to execute column-wise
transform. The latency of the architecture is too long, SN clock cycles. Intermediate
memory buffer of size 5N, in addition, to several memories which are internal to the
vertical processor are required in order for the architecture to perform its task.
Furthermore, the fixed-point manipulation actually increases the computational

complexity of the architecture, which leads to longer critical path delay.

The 5/3 architecture proposed in [69], consists of five key modules: data choose
module, the row DWT module, the column DWT module, DWT control unit, and
external RAM. The architecture requires a transpose memory of size 2N and internal
memory of size 2N, a total of 4N memory which is considered a large memory for 5/3
architecture. The data choose module is a drawback since it constitutes an extra

module, in addition, its structure is not drawn and how it operates is not described.

In [70], VLSI architecture for the 2-D 9/7 float discrete wavelet transform (DWT)
for the Consultative Committee for Space Data Systems image data compression is
proposed. The proposed architecture mainly consists of five parts: row processor,
column processor, intermediate buffer, controller, and external memory. The row
processor calculates the horizontal DWT of each row of the external memory image
data. Then, the resulting decomposed high-pass and low-pass coefficients are stored
in the intermediate buffers. The column processor calculates the vertical DWT as
soon as five rows have been processed. That means, the architecture would require a
latency of 5N clock cycles which is a very long latency. In addition, the row and the
column processors require large hardware resources and the internal memory

requirement is too large, 22N, which makes this architecture very expensive.

One of the serious limitations of the lifting-based architecture is its potentially
long critical path [2]. This problem was addressed in [2] and [21] and these papers
proposed architectures which aim at shorting the critical path of the lifiing-based 1-D
architectures. Huang et al. [2], proposed an efficient VLSI architecture, called flipping
structure, in which the problem of serious timing accumulation for lifting-based

architectures is addressed by flipping some computing units with the inverse of
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multiplier coefficients such that the critical path can be greatly reduced. However, this
architecture requires a total line buffer of size 11N, which is a very expensive
memory component. A modified view of the flipping structure is presented in [21].
Compared with Huang’s method, the method proposed in [21] is more efficient in
reducing critical path and memory requirement for one processor is 4N. But, usually
2-D DWT architectures consist of 2 processors, which would require more line
buffers. Furthermore, reducing the critical path delay to one multiplier is no longer a
critical issue, since coefficients and scaling factors of the 9/7 can be implemented in

hardware with only 2 adders using arithmetic shift method [23].

In [60], by reordering the lifting-based DWT of the 9/7, the critical path delay of
the pipelined architecture has been reduced to one multiplier delay. But the
architecture requires a total line buffer of size 5.5N, which is a very expensive
memory component. In addition, it requires real multipliers w'th long delay that can’t
be implemented by using arithmetic shift method. Moreover, the fold architecture
which uses one module to perform both predictor and update steps in fact increases
the hardware complexity, e.g., use of several multiplexers, and the control
complexity. Use of one module to perform both predictor and update steps implies
both steps have to be sequenced, which will definitely slow down the computation

process.

In [63], a line-based pipelined architecture for the 5/3 and the 9/7 2-D
DWT is proposed. The architecture consists of three key modules: the row DWT
module, the data buffer, and the column DWT module. The row module performs
row-wise DWT and the output data is stored in the data buffer. When enough rows are
processed the column module starts to perform the column-wise transform as soon as

possible and stores the intermediate results in the temporal bufier memory. The

folding technique is employed to reduce the hardware cost, which achieves a critical
path of one multiplier delay. The folding technique even though it reduces the
arithmetic resources, it require, besides increasing number of multiplexers used, the
used of real multipliers which leads to longer critical path delay and more hardware
resources. In addition, the temporal buffers, which hold the intermediate results
generated by the column DWT module, are not incorporated into the column

module’s architecture, thus, the architecture is not complete. Furthermore, the

24



architecture requires a total memory of size 3.5 N and 5.5N for 5/3 and 9/7,

respectively.

Chung-Fu et al. [71] proposed a pipeline architecture for the 9/7 2-D DWT. The
proposed architecture is composed of column and row processors to perform the
separable 2-D DWT. Based on a rescheduling algorithm, which merges the
computation of each lifting step, a critical path of one multiplier and two full-adders
delay is achieved. The architecture is generally complex and requires more hardware
resources such as Wallace tree multipliers. In addition, the architecture requires a total

memory of size 5.5N.

JPEG2000 allows {optionally) an image to be divided into a number of smaller
non-overlapping rectangular blocks known as “tiles” and 2-D DWT is applied inside
each tile independently, Tiling provides a simple mechanism for controlling the
amount of working memory used to compute 2-D DWT of a large image [8]. Papers
reviewed so far have proposed non-tile-based architectures, i. e.; they process the
whole image as one tile. Srikar et al. [27] and Dimitroutakos et al. [36] proposed tile-
based architectures for computing 2-D DWT. These architectures are somewhat too
complex and memory requirement is high which make them impractical.
Nevertheless, tiling is a useful mechanism to use for computing 2-D DWT of a large
image independent of its size with the use of the smaller intermediate memory size to

store “LL” values for next level decomposition.

2.5 Conclusion

I conclude that the most critical part of 2-D DWT architectures is the memory
issue, especially internal memory of the processors, which dominates the hardware
cost and complexity of the architecture, while, external memory access consumes the
most power. Most of the architectures proposed in the literature managed to reduce
internal memory (line buffers) requirements of the processors between 5.5N to 11N,
which is still a large memory. In addition, no architectures were developed on purpose
that address directly the problem of reducing the power consumption of the 2-D
DWT. Other architectures, on the other hand, have focused on reducing the critical

path delay of the processor to one multiplier delay. However, this issue becomes less
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critical after the fact that scales factors and coefficients of the 9/7 filters can be
implemented in hardware using only two adders. In addition, these architectures are
largely inaccurate and incomplete. Furthermore, two very important issues have been
overlooked in the literature, which will be addressed in this research, the DWT

memory architectures and control algorithms for 2-D DWT processor architectures.
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CHAPTER 3

ARCHITECTURE DEVELOPMENT
3.1 Introduction

This research is started off by developing a software simulation program for both
decorrelation and reconstruction processes. The objective of developing the software
program is to learn in depth the behavior of the algorithm and in the process to
acquire a firm understanding, which would enable us to develop more accurate

architectures. The software program is listed in Appendix A.

Then, equipped with information gained from developing the software program, in
this chapter, novel VLSI architectures based on lifting scheme that compute 2-D
DWT in an image compression system and meet the high speed requirement for real

time applications of 2-D DWT will be developed.

As a starting point consider the general lifting-based tree-structured filter bank for
the first level decomposition shown in Figure 3.1.1. The figure suggests that 2-D
DWT can be implemented by three processors as indicated by dotted lines in the
figure. The processors are row-processor, column-processor-H, and column-
processor-L. The row-processor (RP) computes DWT row wise i.e., the RP applies
one-dimensional DWT algorithm in each row of an image to produce the YH and YL
decompositions. The two column processors each compute DWT column wise by
applying one-dimensional DWT algorithm in every column of YA and YL. The
column-processor-H takes as an input YH and produces subbands AL and HH, while

the column-processor-L takes as an input YL, and produces the LF and L1 subbands.

Since the tree-structure shown in Figure 3.1.1 is a general representation of 2-D
DWT, it would be necessary now to determine the wavelet algorithm that would be
used by the three processors to compute DWT. As a matter of fact, any wavelet
algorithm could be chosen and the processors hardware architecture could be

designed based on it. At this pointit isalso clear that each processor should be
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designed to execute one-dimensional DWT algorithm applied either to all rows or all
columns of an image. Therefore, to be specific in the architectures development, the
one-dimensional lifting-based 5/3 and 9/7 wavelet transform algorithms are selected

to be implemented by the three processors.

X

Row— processor

Figure 3.1.1 Lifting-based tree-structured filter bank
3.2 Lifting-based 5/3 and 9/7 algorithms and architectures development

The lossless 5/3 and lossy 9/7 discrete wavelet transforms algorithms are defined by
the JPEG2000 image compression standard for 1-D signal X containing N samples, as
follow [27, 29]:

5/3 analysis algorithm

stepl:Y(2j+l)=X(2J‘+1)_{X(2j)+;\/(2f+2)J
sfepz;y(zj):X(zj)J{Y(?.j—1)+Z’(2j+1)+2J
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9/7 analysis algorithm

stepl Y72 +1)= X (27 + )+ aX(2/)+ X(2/ +2))
step2:Y"(2j)= X(2/)+ Br"(2) -1)+ Y"(2j +1))
step3: V(25 +1)=Y"(25 + )+ p(r"(25)+ V"2 +2))
step4: Y'(27)=Y"(25)+ 8(v' (25 - 1)+ ¥'(25 +1))
stepS 1 Y(2j+1) =1/kY'(25 +1)

step6: Y(2/)=kY'(2))

wherej =01 2........., N-1.

For the RP to compute 2-D FDWT for an N x M image, the 5/3 algorithm can be

written as follows.

Jor i=0to N-1 do
Jor j=0 1o M -1 do

Y25+ = X257+ - { XU+ XU2J+ 2)J

2
Y(i,2j—l)+Y(i,2j+1)+2J
4

Yi2jp=X3G2,)+ {

end
end

Where Y(i,27+1) and Y(#,2 j)are the high and low decompositions that would result
when the image X (i, j) is applied to the algorithm above. This algorithm implies that
the high and the low output coefficients are stored in the same memory Y with the
high coefficients occupying the odd indexed locations and the low coefficients
occupying the even indexed locations, However, 1 prefer to store high and low

coefficients each in a separate memory, so the algorithm above is rewritten as

Jor i=0 t0 N-1 do
for j=01to M -1 do

2
YH G, j- 1)+ YH(f‘,j)+2j

YH G, ) = X(i,2j+l)_l/k’(i,2j)+X(i,2j+2)J

YL(i, j}y = X(i,2j)+{ 2

end
end
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In this representation X (i, j) is interpreted as a two-dimensional array in a software
implementation and a physical memory in a hardware implementation containing the
original image pixels. The algorithm takes as an input X (i, j) and decomposes it into
high (H) and low (L) decompositions, which are stored in the memories denoted by
YH (i, j) and YL (i j), respectively, This algorithm can be represented in a block
diagram as shown in Figure 3.2.1. The block diagram consists of a row-processor
(RP) and an external memory X (N, M) that contains the original image. The processor
reads the contents of the memory labeled X (N, M) line by line and computes the high
and low coefficients of the image and stores the results in the memories labeled YH

and YL, respectively.

YH
External . o= M
Frame X [V~ 2 ‘\lntemal
Memory *1 Row- emory
X(N M processor 5
L« M
| 2

Figure 3.2.1 Block diagram representation of the algorithm

By slightly modifying the indexes of the last algorithm, algorithms for the
column-processor-H and the column-processor-L are obtained, respectively. The
column-processor-H reads the contents of the memory labeled Y7 as input and yields
subbands HH and HL. Whereas, the column-processor-L reads contents of the

memory labeled Y7 and yields subbands LH and LL.

Column-processor-H

for j=0 to M-1 do
Jor i=0 to N -1 do

YHH (i, ) = YH (2i +1, j) - [YH (26, )+ YH Qi - 2'”J

2
YHH (i—1, )+ YHH (i, j)} + 2J
4

YHL (i, j} = YH (2i,j)+{

end
end
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Column-processor-L

Jor j=0 to M-1 do
Jor i=0 to N-1 do

YLH G j) = YL(2i +1, /) - {YL(21’,]) +YL(2i + 2, j)J

2
YLH(i—l,j)+YLH(i,j)+2J
4

YLL(i, j) = YI_(ZLJHL

end

end

When the two column-processors are combined with the architecture shown in
Figure 3.2.1, the architecture shown in Figure 3.2.2 is obtained, which computes the
first level DWT decomposition for an NxAf image. To obtain J levels decomposition
the LL subband coefficients of each successive level are stored in the memory labeled
LL-RAM for further decompositions as shown in Figure 3.2.2. This implies the
architecture decomposes 2-D images into the desired number of decomposition levels,

level by level.

Similar procedure can be applied to transform the 9/7 algorithm. A careful
examination of the last 3 algorithms shows that they are basically identical
algorithms, which imply that their processor architectures would also be identical. In
addition, the architecture is modular, since it consists of three modules one row-

processor and two column-processors and regular because the modules are identical.

external memory maticl
column —
Hp-» YH »
processor — H
X(N,M) M = row — >HL
> processor
Ltk y1 = column — LH

processor — L

LL
LL-RAM
N M

2 2

Figure 3.2.2 2-D DWT architecture formed using 3 processors.
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3.3 Data dependency graphs (DDGs) for 5/3 and 9/7 algorithms

The data dependency graphs (DDGs) for the 5/3 and the 9/7 algorithms derived from
their respective algorithm are shown in Figures 3.3.1 and 3.3.2, respectively. In the
DDGs, a node circled with a number represents a computation. All stepl!
computations in 5/3 algorithm are performed by the nodes circled with odd numbers
(first level) in the DDGs of Figure 3.3.1. On the other hand, step 2 computations are
performed by the nodes circled with even numbers in the second level labeled Y(2f) in
the DDGs. The symmetric extension algorithm is incorporated in the DDGs to handle
the boundary problems. The symmetric extension is represented in the DDGs by
dotted lines. The boundary treatment is necessary to keep the number of wavelet
coefficients same as that of the original input. The boundary treatment is only applied
at the beginning and ending of the process [3]. That means in 2-D images, it will be
applied at the beginning and the ending of each row or column. The nodes circled
with the same numbers in the DDGs are considered redundant computations, which
will be computed once and used thereafter. In addition, note that the symmetric
extension algorithm behaves differently for even and odd length signals when it is
applied to the data dependency graph. Therefore, two DDGs are provided for each
algorithm, one for even and another for odd length signals. The data dependency

graph would be a useful tool in architecture development and enhancement.
3.4 External Architecture Development and refinement

In the architecture shown in Figure 3.2.2, the row-processor scans (reads) the external
memory, which contains the original image pixels, row-by-row and decomposes the
image into high (H) and low (L) coefficients which are stored in the memories labeled
YH and YL respectively. Then, the two column processors siraultaneously each reads
its respective memory, YH and YL, and compute subbands HH, HL, LH, and LL

coefficients in parallel.

In order to reduce the size of the internal memories YH and YL and to allow the
two column processors to work in parallel with the row-processor, the DDGs ate
considered. The DDGs show that, to ease the development of architectures the
strategy would be to divide the details of the development into two steps, each having

less information to handle. In the first step, the DDGs are looiked at from the outside,
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Figure 3.3.2 9/7 algorithm’s DDG for odd (a) and even (b) length signals

which is specified by the dotted boxes in the DDGs, in terms of the input and output
requirements. We have observed that the DDGs for 5/3 and 9/7 are identical when
they are looked at from outside, taking into consideration only the input and output
requirements; but differ in the internal details. Based on this observation the first fevel
of the architecture, the external architecture, is developed. In the second step, the

internal details of the DDGs are considered for the development of processors’
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datapath architectures, since DDGs internally define and specify the internal structure

of the processors.

The advantage of this new approach along with scan methods developed in the
next section can be used not only in the forward 2-D DWT architecture
development but in inverse and any DWT algorithm and it is certain to yield very
efficient architectures in terms of hardware complexity, speedup, and power

consumption with manageable control complexity.

The DDGs of Figures 3.3.1 and 3.3.2 show that to compute one high and one low
coefficient at anytime, the processor needs three pixels as an input. Thus, for the two
column processors to work in parallel with the row-processor, the row-processor must
compute DWT for the first two rows. Then, the two column processors can start
computing as soon as the result of the first operation in the third row is available.
After that the three processors proceed computing in parallel until the row-processor
(RP) performs the last operation in the third row. The two column processors then go
into idle states, while the RP works on the fourth row. When the RP reaches the fifth
row and as soon as the result of the first operation in the row is available, the two
column processors again resume computing in parallel with the RP using the results
of the third, fourth, and fifth rows, until the last operation in the fifth row is
performed. Then, the two column processors again go intc idle states, while RP
operates on the sixth row to repeat the process. It is obvious the two column
processors would be in idle states or under utilized half of the time. But, the
advantage is that the sizes of the two column processors memories labeled Yff and YL
can each be reduced to M instead of N x M/2, which is a considerable reduction in a
very expensive memory component. In addition, since the two column-processors
(CPs) are under utilized half of the time, it is possible to remove one of the CPs and
keep only one to compute the four subbands HH, HL, LH, and LL. When these
changes are made to the architecture shown in Figure 3.2.2, the architecture shown in
Figure 3.4.1 is obtained and the hardware utilization is 100%. In this architecture, the
internal memories YA and YL each can be considered as consisting of two memory

banks of size M/2.

To evaluate the performance of the two architectures shown in Figures 3.2.2 and

3.4.1 in term of speedup, consider the following. Assume the RP of the architecture in
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Figure 3.2.2 takes T clock cycles to perform one level of decomposition. Then the two
column processors, working in parallel; each would need T/2 clock cycles for a total
of T+7T/2=3/2Tcycles to perform one level of decomposition by the three

processors. On other hand, the architecture shown in Figure 3.4.1 only requires a total
of T cycles to compute one level of decomposition which is a gain in speedup factor

of 3/2 as compared with the architecture shown in Figure 3.2.2.

Let us now explain the dataflow of the architecture shown in Figure 3.4.1.
Specifically, how data would flow from the outputs of the RP, through the internal
memories YH and YL, to the inputs of the CP. The RP scans the external memory
row-by-row, by reading every cycle 3 pixels and placing them into the registers
labeled Rt0, Rt and R¢2 to initiate an operation and produces as output coefficients
of the high (H) and low (L) decompositions, according to the DDGs. The results of
the first row computations, which are placed on output lines labeled H and L, are
stored in the memory banks B0 of YH and B0 of YL respectively. The results of the
second row computations are stored in the memory banks B/ of YH and B/ of YL. The
CP would start its computations as soon as the results of the first operation in the third
row are computed and placed into registers Rt3 and Rt4. The CP performs its
computations by reading two coefticients data from the memory banks of YA and the
third from register R¢3. Data in register Rt3 follows the path that leads to Mux2 | to
register Rt6 and finally to the column-processor input labeled ic2. While, data from
banks B0 and B! of YH follow the paths that lead to Mux(0 and Mux1 to be loaded
into Rt7 and Rt5, respectively. The CP repeats this process every clock cycle until it
consumes the data in the two banks of the ¥/ memory including the immediate data
coming through Rt3. According to the DDGs, the low and high coefTicients produced
as a result of processing the third row by the RP are needed not only in the current but
also in the next calculations involving the 4™ and the 5™ rows of the YL and YH
decompositions. Therefore, these high and low coefficients are stored in the memory
banks By and Bl of YH, respectively, while the CP retrieves data from memory YH
banks. Of course, that would require reading and writing the same memory location

of YH in the same clock cycle, which is a problem. One might think as a solution
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Figure 3.4.1 Architecture for 2-D DWT

implementing the memory banks of YA and YL as FIFO queues. That sounds
logically correct, but practically would require a large number of registers for 2-D
images and that would be a very expensive solution which we prefer to avoid.
Therefore, we prefer that the memory banks of YH and YL be implemented as RAM.
Then, read and write conflict can be resolved with careful timing by allowing read to

be performed in the first half cycle and writing in the second half.

As soon as the CP is done with the data stored in memory YH it turns to memory
YL and starts its second batch by operating on the data stored there. Each clock cycle,
two data one from bank B/ which takes the path that leads to mux1 and the other from
bank B0 that takes the path leading to Mux0. The third data is read at the same time
from bank B1 of YH to complete the three inputs requirement for an operation. While
the CP is retrieving and operating on the data stored in the memory banks of YL and
Bl of YH, the high and low coefficients, generated by the RP as a result of applying
DWT to the pixels of the fourth row in the external memory, are stored in banks B0
and B/ of YL, respectively. The third batch of computations take place by reading the
high coefficients stored in bank B0 of YH and in bank B0 of YL, while the high
coefficients, generated by the RP using data of the fifth row, are passed from register
Rt3 through the path leading to mux2 to CP as a third input. At the same time, the

high and low coefficients computed using the fifth row’s data are stored in bank B0 of
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YH and in bank B0 of YL, respectively, since they are needed in the computations of
the next two batches. The fourth batch is a low coefficients processing begins by
reading the data stored in banks B( and B/ of YL and B! of YH, which follow the path
leading to MuxO, to R¢7 register, and finally enters the CP through the input labeled
Ic0. Meanwhile, the high and low coefficients computed by the RP using the data of
the sixth row are routed to B/ of Y/ and B/ of YL, respectively. Data read from bank
B0 of Y1 enter the CP through the input labeled /c2.

A careful examination shows that after the fourth batch is processed, the dataflow
or scheduling of batches repeat the same patterns described above for the four
batches. That means the next 4 batches would also exhibit the same scheduling
patterns of the first four batches and so on. Furthermore, with the pipeline registers
Riel, Re2, R0, Ri3, Red, Rt5, Rt6, Rt7, Re8, and Rt9 are in place not only the RP works
in parallel with the CP but the whole architecture are now fully pipelined. The
pipeline consists of three stages: the RP stage, the YA and YL memory stage, and the
CP stage. Pipelining improves the performance of the architecture in terms of speedup
and throughput as compared with non-pipelined architecture, It is possible to attain
maximum speedup and throughput in this architecture because 2-D DWT
computations involve a large number of operations. The larger the number of pipeline

stages, the higher the speedup.,

Even though we have managed to reduce the hardware complexity to a great
extend from 3 processors and a total internal memory of size N x M consisting of YA
and YL in the architecture shown in Figure 3.2.2, to two processors and a total
memory of size 2M for YL and YH in the architecture shown in Figure 3.4.1 and in
the process have gained a speedup factor of 3/2 as compared with the architecture in
Figure 3.2.2, the disadvantage of the architecture shown in Figure 3.4.1 is that it
requires a very complex control circuitry to govern the dataflow across the memory
banks of YH and YL. In addition, the internal memory requirement is still high.
However, it is possible to eliminate the internal memories labeled YH and YL entirely
and use instead a few registers and reduce the control complexity to a great deal by
adopting a different scan strategy for scanning the external memory, as would be

illustrated in the following section.
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3.5 Overlapped and Nonoverlapped Scan Methods

I believe that minimization of the internal memory, and hence the hardware
complexity in general for 2-D DWT architectures, depends on the proper scan method
adopted for scanning the external frame memory. Therefore, n this section two scan
methods are illustrated and will be adopted instead of the row-by-row scan method
used so far, to further refine the architecture and obtain novel architectures that best

meet real-time applications of 2-1D DWT requirements.

The two scan methods, overlapped and nonoverlapped, are illustrated in Figures
3.5.1 and 3.5.2, respectively. The pixels in the overlapped areas, indicated by the dark
lines in Figure 3.5.1, are scanned twice. For an N x M image, the overlapped scan

method requires ny + v (M - 1)/2 ) clock cycles to scan the external memory for

the first level decomposition, whereas in the nonoverlapped method, the overlapped
areas are eliminated to reduce the external memory access cycles to NM clock cycles
only and hence reduce the power consumption. The external memory access usually

consumes the most power [33, 51].

The scan method shown in Figures 3.5.1 and 3.5.2 are appropriate for both 5/3 and
9/7 algorithms. But, when this scan method is used in 9/7, it would not yield any
output coefficients in the first run, according to the 9/7 DDGs. Thus, to allow the 9/7
to generate output coefficients starting from the first run, we propose the overlapped
scan method shown in Figure 3.5.3. This scan method differs from 5/3 in the first run
only, which requires scanning of 5 pixels from each row. These two scan methods are
developed mainly with two objectives to achieve, that is, to make the external
architecture for both algorithms identical and to reduce the internal memory between

RP and CP to a few registers.

The following two observations, regarding the two scan methods would be
necessary in order to develop precise architectures for computing 2-D DWT. First, in
the case when the row length of an image is odd, pixels of the last column (M-1) are
considered overlapped and are scanned twice. In the first scan. according to the DDG
for odd length signals shown in Figures 3.3.1 and 3.3.2, they are used in the
calculation of the last high coefficient in each row, whereas in the second scan, they

are used in the calculation of the last low coefficient in each row. On the other hand,
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when the row length of an image is even, only the last two pixels in each row
(columns Af-2 and M-!) are scanned and are used by the RP in the calculations of the

last low and high coefficients, as required by the DDG for even length signals.
3.6 Scan Based Architectures

Based on the scan methods and the DDGs for 5/3 and 9/7 shown in Figures 3.3.1 and
3.3.2, when they looked at from outside, the architectures shown in Figures 3.6.1 and
3.6.2 are proposed for overlapped and non-overlapped scan methods, respectively.
The architectures operate in a pipeline fashion, consisting of two stages, the RP stage
and the CP stage. The two architectures are basically identical. The main difference is
that the nonoverlapped architecture contains a line buffer (LB) of size N. This line
buffer is added to hold N pixels that lay in each overlapped areas in Figure 3.5.1 in
order to reduce the external memory access and hence the power consumption. Pixels
in an overlapped area such as column 2 are also required in the next N operations.
According to the DDGs, each operation performed by either RP or CP would require
three inputs. For example, the inputs labeled 0, 1, and 2 in DDG of Figure 3.5.2
initiate the first operation to yield the coefficients labeled Y0 and Y/, whereas inputs
2, 3, and 4 initiate the second operation which yields Y2 and ¥3 and so on. Fig. 3.6.2
shows the nonoverlapped architecture from the RP side only, since its remaining parts

are the same as in Fig. 3.6.1.

runl MrunZ M
0 1 3 4\5 6 0 1 2 34 5
EE=E= [T
e ; =
= 4 =n
(a) (b)

Figure 3.5.1 Overlapped scan method for 5/3 (a) Odd length signals

(b) Even length signals
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Figure 3.5.3 Overlapped scan method for 9/7

If external memory is scanned with frequency £, both architectures shown in
Figures 3.6.1 and 3.6.2 should operate with frequency f/3. The dataflow for both
architectures is given in Table B.1 {Appendix B). Note that this dataflow is derived
based on the 5/3 scan methods shown in Figures 3.5.1 and 3.5.2 and it 1s identical to
the 9/7 architecture’s dataflow, based on the same scan methods, in all runs except the
first run where 9/7 does not yield any output coefficients. The dataflow of the 9/7
architecture based on the scan method of Figure 3.5.3 is shown in Table B.2

(Appendix B).

Looking at the DDGs shown in Figures 3.3.1 and 3.3.2 from the outside, it can be
observed that in the last high and low coefficients calculations, where the row length
of an image is even, only the last two pixels in a row, r, at locations X(», M-2) and

X(r, M-1) are read from external memory. In addition, the DDG for even length,
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Figure 3.6.2 Proposed non-overlapped scan architecture (RP-side only).

implementing the extension part, requires the pixel located at X7r, M-2) to be
considered as the first and the third inputs. This must be passed to the RP with the
second input pixel from location X(r, M-1), to compute the last high and low
coefficients in the row ». Thus, the function of the multiplexer labeled Muxre0 is to
pass the pixel read from location X{r, A-2) after it has been transferred to register
Rd0, to the row-processor’s latch, Rf2, as the third input. Register Rd/ holds the
second inputs, pixel from location X¢r, Af-1). Similarly, the multiplexer labeled
Muxce0 performs the same function, when the CP applies DWT to ¢columns. In other
words, Muxre0 and Muxce0, which are extension multiplexers, are used only in

calculation of the last coefficient in even row or even column images.

On the other hand, when the row length of an image is odd, according to the
DDGs for the odd length shown in Figure 3.3.1 and 3.3.2, to calculate the last low

coefficient only one pixel the last one at location X(r, M-1) should be passed to the
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row-processor. This pixel is loaded into R40 and then passed to the row-processor

where it is used in the computation of the last low coefficient.

In the architecture based on the nonoverlapped scan method, starting from the
second run, the dataflow or scheduling of pixels to RP and LB should be as follows.
Assume the cycle where the last three pixels that are scanned from the last row in the
first run are loaded into the RP’s latches by the pulse ending, say, cycle n. Cycle n
also transfers the pixel from location X{N-/,2) into Rd. In cycle n+1, the second run
begins and the first pixel for the first operation is read from location X¢0,3) and is
loaded into Rd! by the pulse ending the cycle. In addition, during cycle » +/7, contents
of register Rd are written into the last location of the LB. In cycle n+2, the first
location of the LB is loaded into Rd0 by the pulse ending the cycle and it is the only
event that takes place during the cycle. Cycle n+3 transfers the second pixel from
location X(0,4) to both Rd and Rt2 and contents of Rd(} and Rd/ to Rt and Rt] by the
pulse ending the cycle, respectively. In cycle n+4, Rd’s contents are written in the
first location of the LB. In addition, the first pixel of the second operation which is in
location X¢7,3) is loaded into Rd/ by the pulse ending the cycle. This pattern of

scheduling is repeated until the whole image is scanned.

The control signal values that must be issued by the control unit for the signals
labeled Ed2, Ed3,50, Ed4, Ed5, Ed6, and S/ in the architecture shown in Figure 3.6.1
can be derived, reference to clock /', from Table B.1 and starting from clock cycle 6
as shown in Table 3.1. Note that the pattern included in the dotted box repeats after
cycle 9. In addition, the number of control signals in Table 3.1 can be reduced
further, as shown in Table 3.2, by observing that signals Ed2=81=FEd6=50 and
signals Ed3=FEd5.

Table 3.1 Control signal values

Cycle Ed2? Ed3 S0 Ed4 Eds Ed6 Sf
6 | X 1 1 X X X
9 0 ] X 0 I X X
12 | X X 0 0 1 l
R T N N I S I S oI\
18 1 X 1 0 0 ] 1
21 0 ] 0 1 l X 0
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Table 3.2 Reduced control signals

Cycle | Ed2 | Ed4 | Ed5
6 1 1 X
9 0 0 1
e O
15 o [ v
18 ] 0 0
21 0 1 1

3.7 Intermediate Architectures

Two lifting-based VLSI architectures for 2-D DWT for the 5/2 and the 9/7 algorithms
were proposed in the previous section based on two scan mzthods, overlapped and
nonoverlaped. In the architecture based on the overlapped scar. method, the maximum
power consumption occurs due to overlap external frame memory access. On the
other hand, in the nonoverlapped architecture, the power consumption was reduced to
minimum by eliminating the overlapped areas which requires the addition of a line
buffer of size N. In this section, we developed a new architecture, called intermediate
architecture, for 5/3 and 9/7 algorithms, which aim at reducing the power
consumption of the overlapped areas, without using the expensive line buffer, to
somewhat between the two extreme architectures proposed in the previous section and
hence the name intermediate. The intermediate architectures are based on the

generalization of the overlapped scan method which is introduced next.
3.7.1 Generalized Overlapped Scan method

Suppose the overlapped scan method shown in Figure 3.5.1 is termed as the first scan
method, since three pixels are scanned from each row. The second method scans 5
pixels from each row. The third scans 7 pixels and the fourth scans 9 pixels and so on.

In general, the i™ scan method scans 2i+ 1 pixels from each row and the number of

overlapped arcas in the i" scan method can be written as L[M—l)/Zz’J. Similarly,

consider the overlapped scan method shown in Figure 3.5.3 for 9/7 as the first scan
method. Then successive scan methods for 9/7 will differ from that of the 5/3 only in
the first run, which requires scanning of 3+2i pixels from each row, while scanning in
the remaining runs remain the same. These scan methods reduce the excess memory

access and hence the power consumption by a factor of 1/7 as compared with the first
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scan method. In addition, the internal memory between the row and column
processors increases by 5/ registers, where i=1,2,3.-...-" denote the first, the
second, and the third scan methods and so on. The excess memory access is due to
scanning pixels in the overlapped areas twice. Figures 3.7.1 (a) and (b) show the third
overlapped scan method for 5/3 and 9/7, respectively, where the external memory
access due to overlapped areas scanning is reduced by a factor of 1/3. Thus, by
adopting a higher scan method it is possible to obtain an intermediate architecture,
since the external memory access due to scanning of the overlapped areas will be
somewhat between the two extreme architectures proposed based overlapped and

nonoverlapped scan methods.

To appreciate and have more insight into the excess memory access, which is due
to scanning of the overlapped areas twice, consider the following. The architecture
based on the first overlapped method, the total external memory access time 7y, in

clock cycles for./J levels of decomposition can be estimated as follows,

012345671?91011121314
0 >| = - | b 's_"'
IPERSENE= SR EN= N
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Rt o S =i
4 ++ — L _‘ »
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(b)
Figure 3.7.1 The third overlapped scan method (a) for 5/3 and (b) for 9/7
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Since the term [Z] will be very small, the above equation czn be reduced to
T, =2NM Clock cycles (3.8)

This equation can be used also to estimate the computation time of 2-D DWT

architectures.
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On the other hand, for the architecture based on nonoverlapped scan method
shown in Figure 3.5.2, the total external memory access time, T, in clock cycles for

J levels of decomposition can be estimated as

11 ' = (1Y
T =NM|l+—-+—+.-1 +] = =NM) |- 3.9
" { 4 16 [4) } 2(4] 39

1 1Y) 4
T =-—NM 4(-} =2 NM (3.10)
3 4 3

Thus, the excess memory access time, 7., due to overlapped areas scanning for J

levels of decomposition is given by
T.=T,-T, =2NM-4/3NM =2/3NM (3.11)

which is significant. In the architecture shown in Figure 3.6.2, 7, is eliminated and
minimum access time T,,, and hence minimum power is obtained by nonoverlapped
scan method, But, the method requires the addition of a very expensive memory
component, a line buffer, in the architecture. The intermediate architectures are
alternative form for reducing the power consumption of the overlapped areas,

expressed in Eq(3.11), without a line buffer.
3.7.2 Proposed External Intermediate Architecture

Based on the scan method shown in Figure 3.7.1 and DDGs for 5/3 and 9/7 shown in
Figures 3.3.1 and 3.3.2, the architecture shown in Figure 3.7.2 is developed. The
architecture is valid for both 5/3 and 9/7 algorithms, since it is developed based on the
observation that the DDGs for 5/3 and 9/7 are identical when they are looked at from
outside, taking into consideration only inputs and outputs requirements. The
architecture operates in a pipelined fashion consisting of two stages, the row-
processor (RP) and the column-processor (CP). If external memory is scanned with
frequency £, then registers Rd0 and Rdl should operate with frequency fand the rest
of the architecture should operate with frequency f/3 as indicated in Figure 3.7.2.
The dataflow of the architecture, derived based on 5/3 scan method shown in Figure

3.7.1 (a), is shown in Table B.3 (Appendix B). The dataflow is identical to the 9/7
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dataflow in all runs except in the first run where 9/7 scans 9 pixels, whereas 5/3 scans

7 pixels from each row.

The clock periodr and hence frequency f of the proposed overlapped,
nonoverlapped, and intermediate architectures can be determined by the following
statement. f,, is the external memory frequency of operation, f, is the processor
frequency and / is the number of input pixels that are required for an operation. /=3

for 5/3 and 9/7 algorithms.
Statement 1

Case 1: If t, 2t then

il
T =1,

t
Case 2 : else if Iiz t. then

£

!
T

To this point the processor critical path delay (¢, = 1/} is expected to be much larger
than that of the external frame memory scan delay, f,, = I/f,, Therefore, the processor
delay ¢, would be the determining factor of the frequency /. In other words, case2 will

be always true. The situation would change when the processors are pipelined later.

3.7.3 Second Dataflow

The dataflow given in Table B.3 (Appendix B} is justified by the fact that ecach

operation performed by the RP and the CP requires three input data. In addition, since

the processor delay ¢, determines the scanning frequency f, then
fi=Ur, =3/t,=3f, (3.12)

That is, the scanning frequency f, should be at least three times faster than the

processor frequency f,in order to allow the scanning of the three pixels during the
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Figure 3.7.2 proposed external intermediate architecture

time specified by . Nevertheless, it is possible to obtain a different dataflow with

different frequency by realizing that after the first operation in each row, the second
and the third operations in the same row need only 2 pixels to be scanned. This is
because the third input pixel of the previous operation which is also the first input in

the next operation is already scanned and is available in register R40. This implies, a

new scanning frequency, f, can be used, which is given by

fo=V, =1/, 12)=2/1,=2f, (3.13)
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The scanning frequency f, is two times faster than the processor’s frequency of
operation /. Thus, with the second scanning frequency, f,, it is possible to achieve a

great reduction in the external memory power consumption but with a drop in speed.

The second dataflow is illustrated in Table B.4 (Appendix B).

To compare the performance of the two dataflow in terms of power consumption
and speed consider the following. In the first dataflow shown in Tabie B.3
P, =27 clock cycles are needed to yield the first pair of output. The remaining (7 - /)
outputs require 3¢r - 1) cycles. Thus, the total time, 7/, required to yield » paired

outputs is given by
T1=[p, +3(n-1)k, (3.14)

Similarly, the second dataflow shown in Table B.4 requires p, =21 cycles to

yield the first pair of output. According to Table B.4, the remaining (n — I) outputs
require 7/3¢n — 1) clock cycles. Thus, the total time, 72, required to produce » paired

outputs is given by

r2=[p, +7/3(n -1k, (3.15)

The speedup factor is then given by

12 _[p, +713(n- 1)k,
S=q T [p, +3(2 -1k, (3.16)
_7/3(n-1)e, /2)

3(n-1)r, /3)

7
- (3.17)

That means the first dataflow is 7/6 times faster than the second. In other words,
the total execution time of the second dataflow is increased by 16.7% as compared

with the total execution time of the first dataflow.

The power consumption of VLSI architectures can be estimated [17] as

P :C.‘U.'m' .VDZ f (3]8)

where Cial denotes the total capacitance of the architecture, Vg is the supply voltage,

[ is the clock frequency.
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To determine the amount of power reduction in the external memory that can be
achieved; when the second dataflow with frequency f is used, consider the following.
First, determine the power consumption due to scanning the external memory,
when the nonoverlapped scan method is used with frequencies £, and f. Thus, if P,

and P, denote the power consumed by the external memory for both f and £,

respectively, then P; and P, can be written as.

Pl =ﬂlcmraf 'VOZ'fI =ﬂ'C,“,u',V02/TI (3.19)
1)1 = 3 ) ﬂ ’ Cmraf ’ Vﬂz/fp =3 ﬂ ' C.'ulaf ’ I/l'_)2 ' fp (320)
Pzzﬂ'cmfaf'Voz'fz :lBlC.'um['VDQ/TE (3.21)
p=24- Croar 'Vo2 /lp =24 Crotar V02 'fp (3.22)
Where C,,,,V,” " fandC,,, -V," - f, are the external memory power consumption

due to first overlapped scan method for £, and f,, respectively and 8 =T, /T, =2/3.

Second, taking into account the fact that the scan method shown in Figure 3.7.1
reduces the power consumption of overlapped areas by a factor of 1/3, then the power
consumption due to scanning the overlapped areas using the first and the second

dataflow, Pol and Po2, respectively are given by

Pol=f,-C,. Vo 13 (3.23)
Pol =30, -Cpo V" 13, = By - Cou Vo™ £, (3.24)
PO2= By Co Vo' f2 /3228 Cos Vo 131, (3.25)
Po2=2138,-Cp Vo' - £, (3.26)

Where 8, =T,,/T,, =1/3. Thus, the total power consumption due to external

memory access for the first and the second dataflow, P/, and P2, are

Pl.’um.’ = 13] + POI = Crm‘m’ . V02 : f_{) ! (318 + ﬁo) (3'27)

P2,y = Py + P02=2C,, V.- F,(B+B,13) (3.28)
and

Plrara.’ Cm-'a.' ) VD2 ’ fp ’ (Bﬁ + ﬁo)

3
_ _3 (3.29)
P2mla‘f 2-C|‘g,‘a,' 'VOZ 'f_n (ﬂ+ﬁ0/3) 2
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Eq (3.29) implies that power consumption due to external memory scanning in the
second dataflow is 2/3 of the first dataflow. In other words, the second dataflow

reduces the power consumption by 33.3% over the first dataflcw.

On the other hand, the percent of power reduction achieved in the intermediate
architecture shown in Figure 3.7.2 for the first and the second dataflow as compared
with the architecture based on the overlapped scan method can be obtained as follows.

lerm’ — Cmm! : VOZ i fp ) (3/8 + ﬁO) — l (3 30)

)leﬂﬂf 3 ‘ Cm.'cr.' : V02 : fp 9

Where P, is the total power consumption of scanning the external memory for the

architecture based on the overlapped scan method. Eq(3.30) implies that the power
consumed due to scanning the external memory in the intermediate architecture based
on the first dataflow is reduced by 22.22% as compared with the architecture based on
the first scan method. Whereas,

P2 — P210!a!‘ . Pl.‘nm.’ - ﬂ (331)
})mfaf Pl.’r).’a.’ IDtoian' 27

teterl

implies that the power consumption of the external memory in the intermediate
architecture based on the second dataflow is 14/27 of the architecture based on the
first scanning method. In other words, the external memory power consumption in the
intermediate architecture is decreased by 48% as compared with the architecture

based on the first scan method.
3.8 Processors Datapath Architectures Development

To complete the architectures for 2-D DWT, the last phase is to design the row and
column processors datapath architectures for 5/3 and 9/7 algorithms separately that
can fit into the three architectures shown in Figures 3.6.1, 3.6.2, and 3.7.2. The three
architectures are valid architectures for both 5/3 and 9/7 algerithms, since they were
developed based on the observation that the DDGs for 5/3 anc 9/7 are identical, when
they are looked at from outside, taking into consideration only the input and output

requirements.
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3.8.1 5/3 Processor’s Datapath Architecture Development

Based on the 5/3 algorithm and its DDGs shown in Figure 3.3.1, the 5/3 processor
datapath architecture is shown in Figure 3.8.1. The multiplexers labeled muxe0,
muxel, and muxe? implement the symmetric extension. This 3-stage pipelined
processor is formed by mapping the two lifting steps of the 5/3 algorithm into two
pipeline stages. Stage 3 is added to reduce the critical path delay of stage 2,
specifically the path connecting the adders in stage2? to the RP’s output L, to muxce0
through muxl, and end at Rtd. Suppose ¢, and 1, denote adder and multiplexer delays,
respectively. Then, the critical path of stage 2 becomes large, 3¢, + 3t., when the
processor datapath is incorporated into the architecture. The addition of stage 3, which
is obtained by splitting stage 2, reduces the critical path of stage 2 to 21, + t, and that

of stage 3 to 1, + 2.

Stage 1 computes the high coefficients (stepl) and sends results to the output
labeled H, whereas stages 2 and 3 compute the low coefficients (step2) and send
results to the output labeled L. According to the DDGs in Figure 3.3.1, each high
coefficient calculated in stage 1 enters not only in the calculation of the current low
coefficient in stage 2 but also in the next low coefficient calculation in stage 2.
Therefore, Rtl output of stage 3, which holds the high coefficient, is fed back into
Muxel and Muxe2 to be considered in the next low coefficient calculation. Stage 2 of
the pipeline is a little bit complicated because it implements part of the extension. So
in the following, the dataflow of stage 2 is explained. First, according to the DDGs for
5/3, in the calculation of the first low coefficient YO0, the high coefficient value Y1,
calculated in stagel, must be allowed to pass through the multiplexers, labeled Muxel
and Muxe2, to the adder in stage 2. Second, in the calculation of the last coefficient,
for example, Y8 in the DDG of odd length signals in Figure 3.3.1(a), the high
coefficient (Y7) in RT! of stage 3 must be allowed to pass through both Muxel and
Muxe2 to the adder. During normal computations that occur between the first and last
coefficients calculations, the current high coefficient calculated in stage | and the
previous high coefficient in Rf/of stage 3 are allowed to pass through Muxe!l and
Muxe? to the adder, respectively. Note, in even length signals, the last high and low
coefficients calculations occur normally. Table 3.3 shows the values of the control

signals that have to be issued by the control unit so that the extension multiplexers
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perform the required functions. Note also, the shift operations that are indicated on the

figure by the symbol >> are implemented in hardwire.

3.8.2 9/7 Processor’s Datapath Architecture Development

A 6-stage pipelined datapath architecture for 9/7 processor is shown in Figure 3.8.2. Tt

is formed using both the 9/7 algorithm and its DDGs shown in Figure 3.3.2. In this
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Figure 3.8.1 5/3 processor’s datapath architecture with symmetric extension

Table 3.3 symmetric extension’s control signals for 5/3

sel  sel se2 se)  sel se2
First 0 0 0 First 0 0 0
Normal 0 0 1 Normal 0 0 1
Last 1 0 1 Last 0 l 1

a) Even length signal

b) odd length signal

architecture the pipeline stages 1, 2, 4, and 5 represent the first 4 steps in the 9/7

algorithm. The implementation of step5 and step6 are incorporated in stage 6 to allow

the two steps to operate in parallel. Stage 3, which connects stage 2 with stage 4, is
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added because stage 4 requires two successive low coefficients that must be produced
by stage 2 in order to perform an operation. When the first coefficient produced by
stage 2 is in Rt of stage 4 the second coefficient will in Rt of stage 3 and will be
applied to stage 4 through the path labeled forward. The 9/7 processor shown in
Figure 3.8.2, can be thought formed by connecting together two 35/3 processors

through stage 3, assuming the 5/3 is a 2-stage pipelined processor.

The multiplexers in stages 2, 4 and 5 including the one labeled Muxe0 implement
the symmetric extension algorithm that is part of the DDGs in Figure 3.3.2. Table 3.4
shows the appropriate values of the control signals that must be issued by the control
unit to the extension multiplexers so that they perform the required functions. The
extension multiplexers in stages 2 and 5 function exactly the same way as that of the
5/3, described earlier. The normal function of the extension multiplexer labeled
muxe( is to pass the input signal X{2n + 2) to the latch, whereas function of the
extension multiplexer labeled muxe3 in stage 4, is to pass the forward

signal, ¥ "(2n + 2) to the adder. Only in the even length signals and in the calculation

of the last coefficient, muxe0 passes the input signal X(2n) to the latch and Muxe3

stagel  stage2 siage3  staged stages stage6

R Y'Qu+l) F'Q2n+1) Y'Qn+l) Y'@n+l)

: M I ,i ®Hi

) Rt MRt Rr Rt

! I I l % S r(an+n

| muxe3 7’ :

A sed ;

0 .

T i nL/ ' !

< A '

i AR .

! E se3 N w05 :

E Y'(2 + 2 v, :

X(2n) ! v

' % Y"(2) % o

: h " ' :

\ X(QH) Yﬂ(zn) Y (2]1) Y (zn) .

Figure 3.8.2 The 9/7 processor’s datapath architecture with extension
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Table 3.4 symmetric extension’s control signals for 9/7

stepl step2 step3 step4 stepl step2 step3 stepd
se0 sel se2 sed sed sed se0 sel se2 se3 sed sed
First 0 0 0 0 0 0 First 0O 0 0 0 0 0
Normal 0 0 1 0 0 1 Normal 0 0 | 0 0 1
Last i 0 1 1 0 1 Last ¢ 1 1 0 1 1

a) Odd length signals b) Even length signals

passes the delay signal V ”(Zn) to the adder instead of the forward signal Y"(Zn + 2).

Note that multiplication operations in Figure 3.8.2 can be implemented by only two

adders as illustrated in [23].
3.8.3 Row and Column Processors for 5/3 and 9/7

The 5/3 and 9/7 processor datapath architectures shown in Figures 3.8.1 and 3.8.2
were developed assuming the external memory is scanned either row-by-row or
column-by-column. The CPs in the two architectures shown in Figures 3.6.1 and
3.6.2 for overlapped and nonoverlapped scan methods, respectively, scan the high and
the low coefficients generated by RP column-by-column. But, since the CPs alternate,
in an interleave fashion, between the high and the low coefficients calculations as
indicated in Table B.1, therefore, the 5/3 CP’s datapath and both 9/7 CPs’ datapath
based on the scan method shown in Figures 3.5.1 and 3.5.3, mst be maodified to allow
interleaving in execution, The modified 5/3 and 9/7 CPs’ datapath are shown in

Figures 3.8.3 and 3.8.4, respectively.

In the 5/3 CP shown in Figure 3.8.3, registers Rd0 and RdI are added to allow
interleaving in execution. The first /7 CP shown in Figure 3.8.4(a), which is based on
the scan method of Figure 3.5.1, is obtained by splitting stage 3 of the 9/7 processor’s
datapath shown in Figure 3.8.2 into two stages to allow also interleaving of two
columns coefficients in execution. On the other hand, the second 9/7 CP shown in
Figure 3.8.4(b), which is based on the scan method shown in Figure 3.5.3, is obtained
by splitting stage 3 of the 9/7 processor’s datapath of Figure 3.8.2 into four stages and
adding 4 registers labeled R0, RI, R2, and R3 in stage 5. The multiplexers labeled
mux, control the interleaving operations. In the first run, the control signals, sc, of the

multiplexers are set 0, to allow in execution the interleaving pattern of runl, as
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illustrated in the dataflow Table B.2 (a). In all subsequent runs, the multiplexers’

control signals are set | to allow normal interleaving of two columns.

As for the 5/3 CP in the intermediate architecture shown in Figure 3.7.2, it should
be modified as shown in Figure 3.8.5. This is necessary, since the intermediate CP
scans three columns in each H and L decomposition in a run as illustrated in the
dataflow shown in Table B.3 and alternates between executing 3 high and 3 low

operations in H and L decompositions.

On the other hand, the row-processors in the proposed overlapped and
nonoverlapped architectures for 5/3 and 9/7 scan the external memory according to
one of the scan methods illustrated in Figs 3.5.1, 3.5.2 and 3.5.3. A careful
examination of the scan methods and the DDGs shows that the N high coefficients of
stepl in the 5/3 and steps 1, 2, and 3 in the 9/7 that were calculated during a run must
be kept, in order to be used in the N operations of the next run. This requires the
addition of a tempeorary line buffer (7LB) of size N in stage 2 of the 5/3 and in each of
stages 2, 3, and 5 of the 9/7. Thus, the RP’s datapath that fit into the two proposed
architectures is obtained when a 7LB is incorporated into stage 2 of the 5/3 and in
each of stages 2, 3, and 5 of the 9/7 as shown in Figure 3.8.6. The inclusion of the
TLB may decrease the speed of the architectures. To maintain the speed, the 7LB can
be placed in a separate pipeline stage as shown in Figure 3.8.7. However, inclusion of
a TLB causes a problem because the same TLB's location must be read and written in
the same clock cycle. To solve this problem, the signal labeled R/W is connected
to the clock /73 so that the 7LB can be read in the first half cycle and written in the
second half. The register labeled TLBAR (TLB address register) generates addresses
for the TLB. Initially, TLBAR is cleared to zero by asserting signal incar (increment
address register) low to point at the first location. Then to address the next location,

after each read and write, register 7LBAR is incremented by one by asserting incar
high.

Figure 3.8.7 is appropriate for 5/3 RP in overlapped and nonoverlapped
architectures. To obtain the first and the second 9/7 RPs’ datapath based on the scan

methods of Figures 3.5.1 and 3.5.3, respectively, the 9/7 datapath shown in Figure
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Figure 3.8.7 TLB in a separate pipeline stage

3.8.2 should be modified as shown in Figures 3.8.8 (a) and (b), respectively. The
operations of the multiplexers labeled mux in Figure 3.8.8 (b) can be controlled by
setting the select signals, s#, of the multiplexers 0 during the first run and 1 in all

subsequent runs.

A careful examination of the 9/7 DDGs shows that when the last run’s
computations are executed they would not yield all required cutput coefficients. Thus,
to get the remaining output coefficients, the control unit should be instructed to
execute one more run, call it, the extra run. In addition, examination of the last run’s
portion of the 9/7 DDG for odd length signals shows that the extension signal labeled
srel is required to be set 1 in order to compute the operation in the level labeled

Y"(2n) in the DDG. But, when the computation reaches level ¥'(2n), the operation in
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that level requires signal srel to be set 0. Furthermore, in the extra run, the operation

at level Y'(2n) requires signal srel to be set 1. Therefore, a circuit consisting of an

AND gate and an inverter is inserted into stages 6 and 7 of Figures 3.8.8 (a) and (b),
respectively. The circuit operates according to Table B.5 (a). However, in the case of
even length signals, according to the DDG of the 9/7, both sre/ and Q1 are set 0 in all

runs.

Similarly, examination of signal s»e@, in the last and extra runs, for both even and
odd signals, reveals that this signal should be set also according to Table B.5(a) and
the circuit consisting of the AND gate and the inverter should be inserted into
stages 4 and 5 of Figures 3.8.8 (a) and (b), respectively. For the architecture
developed based on the scan method of Figure 3.5.1, signal sre2 should be set
according to Table B.5 (b} and the circuit consisting of the AND gate the inverter
should be inserted into stage 6 of Figure 3.8.8 (a).

Furthermore, to allow TLB3 of Figure 3.8.8 (b) to store coefficients generated by
stage 6 in the first run, a circuit consisting of a multiplexer and an inverter is inserted
into stage 6 of Figure 3.8.8 (b). In addition, to allow register TLBAR3 to address the
first location of the TLB3, when a transition is made from runl to run2, a circuit
consisting of a multiplexer, two inverters, and an AND gate 1s inserted into stage 5 of

Figure 3.8.8 (b).

On the other hand, to obtain the RP datapath for 5/3 and 9/7 intermediate
architectures, stage 2 of the 5/3 and stages 2 and 5 of the 9/7 datapath architectures
shown in Figures 3.8.1 and 3.8.2 should be modified as shown in Figure 3.8.9. The
advantage of this arrangement is that the TLB is not required to be read and written in
the same clock cycle.

Furthermore, examination of step2 (Y"(2x)) in the 9/7 DDGs shows that the fourth
low coefficients labeled Y"(6) calculated for each row in a run using the third
intermediate scan method should be stored in a buffer of size N, since they are
required in the N operations of the next run. This requires the addition of another 7LAB
in stage 3 of the 9/7 datapath architecture shown in Figure 3.8.2. Figures 3.8.10 shows
how this 7LB can be incorporated into stage 3 of Figure 3.8.2 to form the required

9/7 RP for intermediate architecture. The TLB in Figure 3.8.10 is alse not required to
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Figure 3.8.8 (a) Modified first 9/7 RP based on scan method 3.5.1 for overlapped and

nonoverlapped architectures

be read and written in the same clock cycle. Figures 3.8.9 and3.8.10 form the first 5

stages of the modified 7-stage 9/7 RP for intermediate architecture and the remaining

2 stages are identical to stages 2 and 3 of Figure 3.8.9.
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3.9 Evaluation of architectures

In section 3.7.2, it is mentioned that statement! can be used to determine the

frequency f of the architectures. Pipelining the processors to & stages changes the

frequency f, which can be determined by the following statement which is a slight

modification of statement ..

StatementZ

f
casel :If ¢, > ?” then

T=1,
]
case: Else if —2— =t then
-k
T:‘"'E"'
Ik
else =1t

Wherer =1/ f, 1, =1/f,,and ¢, =1/f are the clock period, the critical path delay

of the external frame memory and the processors, respectively.

In the algorithm stated above either case 1 or case 2 can be true. Case 2 implies

the availability of a very high speed scan that can scan the three pixels required for an

operation during the specified time limit given by ¢/k If that is the case, the

architectures shown in Figures 3.6.1, 3.6.2 and 3.7.2 with their processors pipelined,

the hardware utilization is 100% and the architectures are complete. Now, suppose

7,and 7,denote the clock periods of the architectures before and after pipelining,

respectively. Then from statement !, case2

T]=7'
And from statement2 case?
_ tﬂ _['fl _4
T,=—~=—— =
Ik Ik k

The speedup factor S is given by
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.
Szr_;:—z:j!;:k (3.34)
The efficiency £ of a k-stage pipeline is defined in [58] as

p=2-2o (3.35)
Thus, the architectures with pipelined processors are k times faster than the

architectures with nonpipelined processors with efficiency 1.

On the other hand, case 1 implies low scanning frequency. That means the time
required to scan the three pixels for an operation will take at least 37,/k seconds or
three clock cycles, where £k is the stage critical path delay of the pipelined
processor. In that case, the architectures with pipelined processors will be under
utilized 2/3 of the time, since every three clock cycles yield one output. In addition,
the speedup due to pipelining is proportional to & To determine that consider the

following. From statement?2 casel,

r, =i=L'kf'_. (3.36)

s=lio n K (3.37)
r, I /k 1
The efficiency E= i = j{k_f = % (3.38)

Thus, in 9/7 architectures, a gain in speedup factor of 2 can be achieved since k = 6
and 7/ = 3 but no gain in speedup can be achieved in the case of 5/3 architectures,

since k£ = 3, by pipelining the processors and the efficiency is very low, 1/3.

The under utilization and speedup ptoblems can be alleviated, and the entire
architecture can be made to operate with frequency f = k/t, and fully utilized,
producing outputs every cycle. If the architecture is allowed to read from the external
memory the required three pixels for an operation in parallel every clock cycle instead
of one pixel at time. Of course, that will require three buses instead of one to scan the

external frame memory. The parallel scan architectures can be obtained by slight
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modifications of the architectures shown in Figures 3.6.1, 3.6.2, and 3.7.2 from RP
side only as shown in Figures 3.9.1, 3.9.2, and 3.9.3, respectively, since
modifications only affect this part of the architecture and the other parts remain the
same. The 5/3 dataflow of the pipelined parallel scan architectures for overlapped and
nonoverlapped in Figures 3.9.1 and 3.9.2, respectively, is shown in Table B.6,
whereas the dataflow of the pipelined intermediate parallel scan architecture, Figure
3.9.3, is shown in Table B.7. Tables B.6 and B.7 are derived assuming the RP and the

CP are 4- and 3-stage pipelined processor, respectively.

A problem occurs in the line buffer (LB) of Figure 3.9.2 because the same
memory location in the line buffer must be read and written in the same clock cycle.
To solve this problem, the LB is read in the first half cycle and is written in the
second half. To perform this operation the clock line is connected to the control
signal labeled E/W of the LB. When the clock is low, read takes place and the result

is loaded into Rd by the positive transition of the clock and when it is high write
operation takes place, as illustrated in Figure 3.9.2. The signal labeled El/b (enable
LB), when it is asserted high, read and write take place, otherwise, no read and write

take place.

To compare the performances of the pipelined parallel scan architectures
with the nonpipelined sequential scan architectures shown in Figures 3.6.1 and 3.6.2,
consider the following. In the architectures shown in Figures 3.6.1 and 3.6.2, p, =15
clock cycles (Table B.1) are needed to complete the execution of the first operation,
whereas p, =27 is needed in the intermediate architecture shown in Figure 3.7.2
(Table B.3). The remaining (n—1) operations require /(n-1) cycles, where /= 3 for 5/3

and 9/7. Thus, the total time required to perform ¢#) operations or tasks is

T{non),, =[p, +1-(n-1)k, (3.39)

whete 7, =1/ f, is the clock period. On the other hand, the pipelined overlapped and
nonoverlapped parallel scan architectures shown in Figures 3.9.1 and 3.9.2 require

P25 =10 cycles for 5/3 (Table B.6) to complete the execution of the first task, whereas

67



r’l
X2+ )
bus | m—p| % /7] LT p—s
» E PR
X(i,24+2) I S
bus 2 % Bl Y X S 2
L F 2 Wredlro
S f J’rZ‘cl-l
=
=]
&
r sre ()
XU2 )
bus © » =
2 R 0Py
r0 L
LL-RAM Ll
N M [ -
_x_..—
2 2

Figure 3.9.1 Pipelined overlapped parailel scan architecture

X(ﬁ'il:@’ Stage 1
Rt1 v Rt1 1=
2j+2) N
X(i, 2j+2)]
L=
Rt2 o a2
dd ? e E M
ress
5 @ —){ N l—b Rd
X(i, 2)) clock ~R/WT o sre0
' <sEINPT | B e ——te! RTO [
E " E
sib
s
LL-RAM LL

Ni2xM/2

Row-processor

Figure 3.9.2 Pipelined nonoverlapped parallel scan architecture

68




Row-processor

X0, 2j+1) Stage 1
3 el Rt1 | Rt [
E
3
X(i,2j+_2_)£_ >
E Rt2
5 » Rd
XG0, 21} =
r g Rt0
s
LL-RAM ) LL

N2xnw/2 I
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p, =14 for 5/3 (Table B.7) is needed in the pipelined intermediate parallel scan

architecture shown in Figure 3.9.3.

The remaining (n — 1) tasks require (n — 1)

cycles. The total time required to execute » tasks is given by

T(pjpe)par = [P; + (” - 1)]73

The speedup factor is then given by

B T(non)

v _ Lo+ 1 (-1,

B T(pipe)par ) [p'i

For large n, the above equation reduces

S_(nfl)(l-rl):jr,

B (nml)fz 2

The efficiency

E-S_%_4
kK k

+ (n - 1)}"3

to

o

:1 =
I-7,/k

(3.40)

(3.41)

(3.42)

(3.43)

That is the pipelined parallel scan architectures are & times faster than the

nonpipelined sequential scan architectures with efficiency 1.
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The throughput, H, which is defined as the number of tasks (operations)

performed per unit time, can be written as

_ 7 3 nf,
Hlnor),,, = o+ 1-Gi-0F,  pel-(1-)) (344)
. B n 3 nk
HGWML”_U5+1(nﬂUk2*U%+1{n—nkl (343)
_ Nk,
T (3.46)
N _ n _ n
e = o D, e T DIk 47
_ kT (3.48)
o +(n=1)

The maximum throughput, H™, occur when » is very large {n — o)and in these
architectures the maximum throughput is attainable, since n is expected to be very

large. Thus,

H(non)™ = £, /1 (3.49)

seq

and
H{pipe); = H{pipe),, =k, /! (3.50)

The pipelined parallel and sequential scan architectures® throughputs have increased

by a factor of k as compared with the nonpipelined architectures.

Based on the above evaluations, we can conclude that both pipelined sequential
and parallel scan architectures achieve the same performanze in terms of speedup,

efficiency, and throughput.

To evaluate the power consumption of the pipelined parallel scan architectures
shown in Figures 3.9.1, 3.9.2, and 3.9.3 and that of the pipelined sequential scan
architectures shown in Figures 3.6.1, 3.6.2, and 3.7.2 consider the following. First,

consider the power consumption of the pipelined parallel and sequential scan
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architectures without external memory. From Eq (3.36) the frequency of the pipelined

parailel scan architectures is

L=k, (3.51)

Whereas from Eq (3.33) the frequency of the pipelined sequential scan

architectures is

fll=kt, (3.52)

If the total the capacitance, C,yy of parallel and sequential scan architectures are

equal, then that implies they are also consume the same power.

On the other hand, the external memory power consumption of the pipelined
sequential and parallel scan architectures can be obtained as follow. The total power
consumption of the external memory for the pipelined overlapped sequential scan

architecture, Py(over),., is written as

P(over),, =Co Ve fo=Crp Vi -1 -kft,=1-k-Cp Vi f, (3.53)

sey total

Where C, . is the total capacitance of the external memory. The total external

memory power consumption for the pipelined nonoverlapped sequential scan

architecture, P, (nonover),., is written as

P, (nonover), = B-1-k-Cl V3 f, (3.54)

ey

Whereas the total external memory power consumption of the pipelined intermediate
sequential scan architecture, P,(int),., can be obtained as follow. If P,(int),., is the
power consumption due to scanning the overlapped areas of the external memory

sequentially is give by

pu(int)wq = ﬂ[} : [-k .C.':rtu! ) V02 fp/3 (355)

Where [-£.C7

total

-Voz-fp is the external memory power consumption of the

pipelined overlapped sequential scan architecture Eq(3.53), then

P, (int) = B, (nonover),,. + P, (int) (3.56)

seq seq

=lk-g-C, -Voz-fp+ﬁ0-1-k-Cj,',’m,-V02-fp/3 (3.57)

tatal
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=Lk f, Cr Vi (B+ B./3) (3.58)

On the other hand, the total external power consumption of the pipelined
overlapped and nonoverlaped parallel scan architectures P,(over)p., and

Pu(nonover),.r, respectively, are written as

Pm (Over)par = ‘[ ) C.!r:!m' ' V02 ' f] = 1 : C::.‘a.’ ' VDZ ! k/tp (359)
:['k'crﬁral 'VOZ 'fp (3.60)
P (nonover),., = B-1-k-Cl, Vi f, (3.61)

Whereas, the total external power consumption of the pipelined intermediate
parallel scan architecture, P,(int)p, can be obtained as follow. If P.fint)p., is the
power consumption due to scanning the overlapped areas of the external memory by

parallel scan architecture is give by

p.(int),, =By 1-k-Clo VE - f, /3 (3.62)

Where [ -k-C V7 [, =P, (over)pa, , then
P (int),,, = P, (nonover) ,, + P,(int) ,, (3.63)
:I'k'ﬂ'clr:.'a.' 'VOZ 'fp + By Tk Cry 'Voz fp/3 (3.64)
=1k f, Cow-Va (B+5:/3) (3.65)

The above evaluations show that the external memory power consumption of the
sequential and parallel overlapped architectures are equal (Eqs 3.53 and 3.60) and that
of the sequential and parallel nonoverlapped (Eqs 3.54 and 3.61) and the sequential
and parallel intermediate (Eqs 3.58 and 3.65).

In the following, an estimate for the total number of operations performed by the
row-processor for j levels of decomposition is derived. Number of operations

performed by the row-processor in each level of decomposition can be written as

72



]

"2 = LN/2JUM";—§J+—'U (3.67)

n3 =l}v/4J[(LA4/:J*"}) (3.68)

nd = LN/SJUL‘WSJJ“ ] U (3.69)

2

2

mi=l v/ HMU (3.70)

Then the total number of operations (n) performed by the RP for j levels of

decomposition can be estimated as

M+l M+1 *M““’fl
|| - -1
we [ N 2 ] a7
2 2| 2 41 2 2/7 2
j-1 7
- I
LI/ EPRIOL S SO L1 TR/ LA OO L. (3.72)
2 4716 64 4 24 8 2

-1 1 -1
! 4'H AR 4_H LY
n=—NM A +N[l[fJ }“N —M A +[lm(—j } (3.73}
2 3 2 2 3 2
-1
[ 4_&] ( 1y
n= —2' NM} —————— = ——:VM{4 - (-] ] (374)

J-l
Since the term (%J will be very smuall the above equation can be reduced to

n= %NM (3.75)

Eq (3.75) also estimates the total number of operations performed by the CP and the

total number of paired outputs for  levels of decomposition.
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3.10 Combined 5/3 and 9/7 Architecture

The 9/7 processor datapath architecture of Figure 3.8.2 can be viewed as formed by
connecting two 5/3 processors through stage 3, assuming 5/3 is a 2-stage pipelined
processor. That suggests the possibility of modifying the 9/7 processor datapath
architecture shown in Figure 3.8.2 such that it performs both 9/7 and 5/3 algorithms.
To obtain such processor architecture the 5/3 algorithm is incorporated in stages 1, 2,

and 3 of Figure 3.8.2 as shown in Figure 3.10.1. The control signal value of the signal

labeiedlmsless/ lossy determines which function the architecture would perform. If

lassless/ lossy is 0, the architecture performs the lossless 9/7, otherwise, performs the
lossy 5/3. The combined architecture is useful and very efficient in situations where
the encoder in one site is required to perform either lossless or lossy image
compression. The advantage of the combined architecture is that a substantial saving

in silicon area could be achieved.
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Figure 3.10.1 Combined 9/7 and 5/3 processors datapath architecture
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3.11 Conclusions

In this chapter, 3 high-speed and novel pipelined VLSI architectures, overlapped,
nonoverlapped, and intermediate architectures were developed for 5/3 and 9/7,
respectively. Pipelining technique is utilized to achieve high-speed performance. The
advantage of the overlapped and intermediate architectures is that they only require a
total temporary line buffer (TLB) of size N and 3N for 5/3 and 9/7, respectively. The
intermediate architecture, which is an alternative form for reducing the power
consumption of the overlapped areas of the external memory expressed in Eq(3.9),
reduces the external memory power consumption by 22.22 % as compared with the
external memory power consumption of the architecture based on the first overlapped
scan method. However, the intermediate architecture with the second dataflow Table
B.4 reduces the power consumption of the external memory by 48%. Therefore,
intermediate architecture could be a very good candidate in applications where power

consumption is a serious issue,

75






CHAPTER 4
PARALLEL ARCHITECTURES DEVELOPMENT
4.1 Introduction

In chapter 3, three pipelined architectures were developed. The first architecture,
which is based on the first overlapped scan method, the maximum power
consumption occurs due to overlapped external memory access. The second
architecture, which is based on the nonoverlapped scan method, the power
consumption of the external memory has been reduced to minimum by eliminating the
overlapped areas but requires the addition of a line buffer (LB) to the architecture.
The intermediate architecture, which is based on the generalized overlapped scan
method, is introduced to reduce the power consumption of the external memory
access, without using the expensive ling buffer, to somewhat between that based on

the first scan method and that based on the nonoverlapped scan method.

In this chapter, to further increase the performance in order to closely meet real-
time applications of DWT with demanding requirements, the parallel architectures
based on the first scan method and the parallel form of the intermediate architectures
will be designed. First, the parallel architectures based on the first overlapped scan

method will be developed followed by the intermediate parallel architectures.

In general, the scan frequency f; and hence the period r, =1/f, of parallel

pipelined architectures can be determined by the following statement, when the
required pixels I of an operation are scanned simultancously in parallel. Suppose ¢,

and ¢, are the processor and the external memory critical path delays, respectively.

Statement3
I, /l-k>t, then
T.’ ztp/(l'k)

else ©,=t,
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Where [ =2, 3, 4 ... denote 2, 3, and 4-parallel and ¢, / k is the stage critical path

delay of a k- stage pipelined processor.
4.2 parallel architectures based on first scan method

In this section, three parallel architectures based on the first overlapped scan method
will be developed for 5/3 and 9/7 2-D DWT algorithms. These three parallel

architectures will be referred to as
o 2-parallel pipelined architecture.
o 3-parallel pipelined architecture.
o 4-parallel pipelined architecture.

The 2-parallel, the 3-parailel, and the 4-parallel architectures each increases the
speedup by a factor of 2, 3, and 4, respectively, as compared with the single pipelined

architecture based on the first scan method developed in chapter 3.

4.2.1 2-parallel pipelined external architecture

Based on the first overlapped scan methods shown in Figures 3.5.1 and 3.5.3 and
DDGs for 5/3 and 9/7, respectively, the 2-parallel architecture shown in Fig. 4.2.1 is
developed for 5/3 and 9/7. The architecture is valid for both 3/3 and 9/7 algorithms,
since it is developed based on the observation that the DDGs for 5/3 and 9/7 are
identical when they are looked at from outside, taking into consideration only inputs

and outputs requirements.

The architecture consists of 2 k-stage pipelined row-processors labeled RP1 and
RP2 and 2 k-stage pipelined column-processors labeled CP1 and CP2. The

architecture scans external memory with frequency f; and it operates with
frequency £, /2. The buses labeled bus0, busl, and bus2 are used for transferring in
every clock cycle 3 pixels from external memory to RP’s latches Rt0), Rtl, and Ri2.
The RP1I’s latches load data every time clock f,/2 makas a positive transition,
whereas RP2’s latches load data every time a negative transition occurs as indicated

in Figure 4.2.1, assuming the first half pulse of the clocks f; and f,/2 are low.
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Figure 4.2.1 2-parallel pipelined external architecture

On the other hand, the column-processors CP1 and CP2 and their associated latches

load new data every time clock £, /2 makes a positive transition.

The DDGs for even length signals show that in the last high and low coefficients
calculations, only the last two pixels in a row, r, at locations X(r, M-2) and X(r, M-1)
are read from external memory. In addition, the extension part of the DDGs for even
length requires the pixel located at X(r, M-2) to be considered as the first and the third
inputs. This pixel must be passed to the RP2 with the second input pixel from location
X{r, M-1), to compute the last high and low coefficients in row r. Thus, the

multiplexer labeled muxre0, which is an extension multiplexer, passes in all cases data
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coming through bus2, except when the row length (M) of an image is even and only in
the calculations of the last high and low coefficients in a row r, the pixel of location X
(r,M-2), which will be read into bus0, must be allowed to pass through muxre0 and
then loaded into Rt2 as well as Rif). The two multiplexers labeled muxce0, attached to
CPs, are also extension multiplexers and operate similar to muxre0 when DWT is
applied column-wise by CPs. The three multiplexers labeled muxc allow either the
external memory or the LL-RAM data to be passed to the RP’s latches Rt0, Rt], and
Ri2.

On the other hand, when the row length of an image i3 odd, according to the
DDGs for odd length signals, to calculate the last low coefficient only one pixel the

last one at location X(r, M-1) should be passed to the RP].

The dataflow of the architecture is shown in Table B.8. This dataflow table is
derived based on the 5/3 scan method shown in Figure 3.5.1 and it is identical to 9/7
dataflow except in the first run, where 9/7 scan method shown in Fig. 3.5.3 requires
scanning of 5 pixels from each row. The 5/3 scan method shown in Figure 3.5.1 is
also a valid scan method for 9/7 and the dataflow for 5/3 shown in Table B.8 would
be identical to 9/7 dataflow derived using 5/3 scan method except in the first run
where 9/7, according to its DDGs, would not be able to yield any output coefficients.
The 9/7 RPs in the first run will be able to compute only two coefficients labeled
Y'(1} and Y"(0) in the DDGs for each row of run | and these coefficients can be
stored in TLBs so that they can be used in the next run computations. Inclusion of

TLBs will be discussed later when modified RP datapath architecture is developed.

The utilization of the 5/3 scan method as a unified scan method for both 5/3 and

9/7 gives many advantages:

¢ Similar control algorithms, if not identical, can be used for both 5/3 and

9/7.

» Ease of integration of the 5/3 into the 9/7 processor datapath architecture

for combined 5/3 and 9/7 architecture.
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For these two reasons, the 5/3 scan method as unified scan method for both 5/3 and
9/7 is preferred and therefore, will be used in all parallel architectures developed in

this chapter.

Note that according to the first overlapped scan method shown in Figure 3.5.1, in
any particular time 3 columns are considered for scanning and in every clock cycle 3
pixels are scanned one from each column until end of the columns are reached, say, to
complete a run, Then a transition is made to the beginning of the next 3 columns to
initiate another run. In the clock cycle where a transition occurs, especially when
column length of an image is odd, the external memory should not be scanned since
during that cycle the two CPs each will compute the last low coefficient as required
by the DDGs for odd length signals. That is, during that cycle no pixel is loaded into
RP2 latches while the control is atlowed to return to RP1 by the pulse ending the
cycle. This also implies that each run will begin at RP1 and the high coefficients
generated during a run, which are required in the next run computations, will be

stored in the TLB of the RP that generated them,

Figure 4.2.2 shows how stage 2 of the pipelined 5/3 RP and stages 2, 3 and 5 of
the pipelined 9/7 RP should be modified when they are incorporated into the 2-
parallel architecture processors. The modifications require addition of a 718 size of
N/2 in each stage mentioned. The TLA is necessary, according to the DDGs, to keep ¥
coefficients calculated during a run in each of stages 1, 2, and 4 of Figure 3.8.2 that
are also needed in the N operations of the next run. Signal E/ w (read/write) is
connected to the clock 7,/2 in Figure 4.2.2 so that the TLB can be read in the first half
cycle and written in the second half as required. The data read in the first half cycle,
for example, from TLBI, is stored in register Rd1 by the negative edge of the clock.

Then the positive edge of the clock loads it into the latch of the next stage. Note that
each of the 2-parallel 9/7 RP is identical to the RP shown in Figure 3.8.8 (a).

The register labeled TLBAR (TLB address register) generates addresses for the
TLB. Initially, register TLBAR is cleared to zero by asserting signal incar low to point
at the first location in the TLB. Then to address the next location after each read and
write, register TLBAR is incremented by one by asserting incar (increment address

register) high.
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Figure 4.2.2 modified 2-parallel RPs

4.2.2 3-parallel pipelined architecture

The 3-parallel pipelined architecture is shown in Figure 4.2.3 and its dataflow based
on 5/3 scan method shown in Figure 3.5.1 is given in Table B.9. The architecture has

two more processors, labeled RP3 and CP3, than the 2-parallel architecture shown in

Figure 4.2.1. The architecture operates with frequency f,/3 and scans the external

memory with frequency £, .

Figure 4.2.4 shows two waveforms for the frequency f,/3 labeled £, and f,,.
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The RPI and its associated latches use the clock f;, , whereas the RP2 and the RP3

and their associated latches use the clock f,, as indicated in Figure 4.2.3.

In every clock cycle, 3 pixels are scanned from external memory and are loaded
into the latches of one of the RPs. First, RP1 latches are loaded then RP2 latches

followed by RP3 latches and then the process repeats. The 3 row-processors latches

should be loaded with the required data during the time limit specified bytp/k before
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it repeats. The RP1 and RP2 latches are loaded every time clocks £, and f,, make a

positive transition, respectively, whereas RP3 latches are loaded each time clock

1, makes a negative transition.

The extension multiplexer’s labeled muxre0 and muxce in Figure 4.2.3, function
the same way as in the 2-parallel extension multiplexers described in section 4.2.1. In
addition, note that the RP3 has two Rt/ output latches labeled Rel3a and Rtl3b instead
of one because the dataflow in Table B.9 requires the presence of such latches. These
latches are required to hold its contents sometime for more than one clock cycle with

respect to clock f;, . Therefore, the control signals e3a and ¢3b are added to control

the loading of these two latches

The strategy adopted in this architecture is that each run must begin at RP1. The
advantage of the strategy is that it will not require any modifications to the RPs
datapath architecture shown in Figure 4.2.2 except the 3 RPs in the 3-parallel each
will has a TLB of size [~/3], while any other strategy will complicate very much the
RPs datapath and the control circuitry. Application of this strategy requires that if a
run ends at RP1, then the next run should begin after 2 clocks cycles during which the
external memory is not scanned whether the column length (V) is even or odd. But, if
a run ends at RP2, then the next run must begin after one clock cycle. The external

memory is not scanned also during this cycle whether N is even or odd.

On the other hand, if a run ends at RP3 and N is even, then the next run can begin
immediately, otherwise, if N is odd, then 3 clock cycles must elapse before the next

run can begin. These guidelines are necessary in order to avoid any conflict in the
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dataflow. To identify at which RP a run would end, a 2-bit register can be used. The
register is initially set to 0 and then is incremented by one every clock cycle to count
from 1 to 3 and repeats. When a run ends the 2-bit register will contain the RP

number.

Now, let’s move to the CPs side to see how this part of the architecture works.
According to the dataflow shown in Table B.9, CP1 and CP3 work in parallel starting
from cycle 13. However, CP1 executes high coefficients stored in Rth!, Rth2, and
Rth3, while CP3 executes low coefficients stored Reli. Ril2, and Ril3. Whereas,

starting from clock cycle 14, the CP2 alternates between executing high and low

coefficients. Moreover, both CP1 and CP3 are run by the clock labeled f,, and every

time it makes a positive transition new data are loaded simultaneously into both CP1

and CP3 latches R0, Rt/, and Rr2. CP2 is run by the clock f;, and loads new data into

its latches R¢0, Rti, and Rt2 every time the clock makes a positive transition.

In order to understand and appreciate why the 3 sets of the multiplexers labeled
muxi, mux2, and mux3 are included, why they are interconnected in that way, and
finally, how they operate, consider Table 4.1. Table 4.1 is obtained from Table B.9
and it lists groups of RPs’” output latches, identified in the table as patterns, and shows
how they are scheduled for the CPs. As shown in Table B.9 in cycle 13, patternl
latches are scheduled for CPland CP3. In cycle 14, pattern2 latches are scheduled for
CP2. In cycle 16, pattern 3 latches are scheduled for CP1 and CP3, whereas in cycle
17, patternd latches are scheduled for CP2. These scheduling patterns again repeat
starting from patternl and so on. Thus, looking at pattern 1 and pattern 3 latches, the
presence and interconnections of the three CP1 multiplexers labeled mux! and the
three CP3 multiplexers labeled mux3 can be justified. In Figure 4.2.3, patternl latches
are connected to the inputs of the multiplexers labeled 0, whereas pattern3 laiches are
connected to inputs labeled 1.The operation of the two set of the multiplexers can be
controlled by one signal labeled spl. First, spl is set to 0 to schedule pattern] and

then is set to | to schedule pattern 3 and so on.

Similarly, looking at pattern 2 and pattern 4 latches, which are used by CP2, the

inclusion of the three multiplexers, labeled mux2 and their interconnections can be
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Table 4.1 Shows scheduling patterns
for CPs and registers involved.
Pattern RP’s output latches | CP
Rthi Rl
1 Rth2  Rt2 1&3
Rth3 Rtl3a
Rth3
2 Rthil 2
H2
Rth2  RHl3a
3 Rth3 Rl 1&3
Hl Ri2
Ri2
4 Rtl3b 2
Rill

——

verified. In the architecture, pattern 2 latches are connected to the inputs of the
multiplexers labeled 0, whereas patternd latches are connected to the inputs labeled 1.
The operations of these multiplexers are controlled by one signal labeled sp2. First,
sp2 is asserted low to schedule pattern 2 and then high to schedule pattern 4 and so

on.

On the other hand, examination of tables B.9 and 4.1 starting cycle 12 until cycle
17 shows that the control signal values for signals e3a, e3b, spl, and sp2 can be
derived as shown in Table 4.2. These signal values repeat every 6 clock cycles. In

addition, as indicated in the table, signals sp/and sp2 can be combined into one signal
sp.

According to the DDGs for 5/3 and 9/7, a high coefficient calculated in a previous

operation is also required in the calculation of the next operation. This implies, since

Table 4.2 Control signal values

Cycle e3a e3b spl sp2 Sp
number

12

13

14

15

16

olo|—|lo|c|o
i E P e P
—|=|o|oloic

SIoIoe S| -

17

’:xxo.v.,v.
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CP2 interleave in execution coefficients of both H and L. decomposition generated by
the RPs, then it should be able to pass the high coefficients it generates to CP1 and
CP3, and receive high coefficients generated by CP1 and CP3. Therefore, the paths,
labeled A1, A2, 11, and {2, are added in Fig. 4.2.3 to serve this purpose.

In order for the CPs to exchange these high coefficients properly, the CPs datapath
architecture, specifically stage 2 of the 5/3 and stages 2 and 5 of the 9/7 should be
modified as shown in Figure 4.2.5. Table 4.3 provides the information necessary for
passing high coefficients between CPs. This table is used as mean in implementing
the modifications shown in Figure 4.2.5. Therefore, understanding of Table 4.3 is

essential to appreciate the changes that have been incorporated into Figure 4.2.5.

Table 4.3 shows that in cycle 16, CPl and CP3 generate the high coefficients
HHO.0 and LHO0,0, which are placed in R¢] and Rt3, respectively, by the pulse ending
the cycle. The pulse ending cycle 17 loads HHO,0 into Rd2 of the CP2 as indicated by
the arrow labeled 1. Similarly, the pulse ending cycle 20 transfers the high coefficient
LH1,0 stored in R¢3 of the CP3 to Rd2 of the CP2 as indicated by the arrow labeled 2.
Note that this pattern of scheduling high coefficients to R42 repeats again in cycles 23
and 26. Thus, since Rd2 accept data either from Rt1 of the CP1 or Re3 of the CP3, the
multiplexer labeled muxc2 is added in Figure 4.2.5 to allow Rd2 to select between
these two inputs. Similarly, the inclusion of the multiplexers, labeled muxc/ and

muxc3 attached to Rd1 of the CP1 and Rd3 of the CP3, respectively, can be verified.

Another point that needs to be addressed is that Figure 4.2.5 shows that the
operations of muxcl and muxc3 can be controlled by only one signal labeled scl. This
can be verified also with the aid of Table 4.3. For instance, the two arrows labeled 3
and 5 in Table 4.3 indicate that two data transfers take place at the same time; one is
going to Rdl of the CP1 and the other to Rd2 of the CP3. This implies that the two
data transfers can be accomplished if the data pointed by arrow 3 and that pointed by
arrow 5 are connected to input 0 of muxcl and muxc3, respectively. On the other
hand, the second data transfer indicated by the two arrows labeled 4 and 6 can be
accomplished by connecting the data pointed by arrow 4 and that pointed by arrow 6

to input | of the multiplexers muxc! and muxc3, respectively. Furthermore, Table 4.3

86



. m stage? - {E
N _'

muxrel

ngriz

scl =seld =3¢2 =sc

Figure 4.2.5 Modified CPs datapath architecture

87

crl

CP2

CP3



Table 4.3 shows how and when CPs exchange high coefficients

ck [ CP CP1 CP2 | CP3

Rtl Rdl Rt2 Rd2 | R Rd3
R R e W — LHO,0 --------
17 |2 |HHO,0 --—------ HHT,;0%H0,0 | LH0,0 --------
18 |---- [ HHO,0 - 3 HL0 HHO,0 | EHOB(5y-—--

19 | 1,3 | HH2,0 HHI40Y HH1,0 HHO,0 5l EHI,0 Lmo
20 |2 | HH2,0 HHI,0 | LH2,0 LHL® {LHI,0 LHO,0

21 |- | HH2§gHHI,0 | LH2, 0, LH1,0 LH0,0
22 | 1,3 [ HH3:0~H42,0,/ LH2,0 LH1,0 | LH3;0—£h2,0
23 |2 | HH3,0 HH2 o\jmz, 0 |LH3,0 LH20
24 | --- | HH3,0 HH2,0 @L,H‘Hri 0 HH30 | LH3.§x[H2.0

25 | 1,3 | HH5,0 HH44™~ HH4,0 HH3,0 -] LH4,0 l?H-zo
26 |2 |HH50 HH4,0 [LH50 LH4 LH4,0 LH3,0

27| | HHSQ HH4.0 | LHS0—LHA0 o) LH40 LH3,0
28 | 1,3 | HH6,0¥HH5,0 | LH6,0 LH4,0 | LH6,0—EM5,0

can be used for deriving control signal values for signals sc/=sc3 and sc2 as shown in
Table 4.4. These signal values repeat every 6 clock cycles. As indicated in the table

these two signals can be further combined into one signal sc.

A careful examination of 9/7 DDGs shows that stage 3 of the 9/7 CPs in the 3-
parallel architecture should be also modified as shown in Figure 4.2.6. This figure can
be verified using 9/7 DDGs. The operations of the 3 multiplexers, labeled rrux in
Figure 4.2.6 can be controlled simply by setting the control signal s repeatedly 3
consecutive cycles low and 3 cyeles high as soon as stage 3 latches of the CP2 are
loaded, as shown in Table 4.4 for signal sc. Figures 4.2.5 and 4.2.6 form the first 3
stages of the 6-stage 9/7 CP and the remaining two stages are identical to stages | to 2

and the last stage is the scale factor.

Table 4.4 Control signal values for signal sc

Cycle number scl=sc3 sc2 Sc
16 X 0 ()
17 X X 0
18 0 X 0
19 X 1 1
20 X X 1
21 | X |
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4.2.3 4-parrallel pipelined architecture

The 4-parallel pipelined architecture is shown in Figure 4.2.7 and its dataflow is given
in Table B.10. This architecture closely resembles the 2-parailel architecture shown in
Figure 4.2.1. The main difference is that the 2-paralle]l architecture consists of two

pipelined processors, whereas the 4-parallel consist of 4 pipelined processors. Each

pipelined processor contains one RP and one CP.

The architecture scans the external memory with frequency f; and itself operates

with frequency. The clock frequency £ can be obtained from statement3 as

£ =4kt (4.1)

Note that when degree of parallelism increases from 2 to 3 e.g., the scanning

frequency f; also increases, while the architecture frequency of operation, which is the
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reciprocal of the stage critical path delay of the pipelined processors, remains

unchanged.

Two waveforms of the frequency labeled £, and £ that can be generated from f;
are shown in Figure 4.2.8. In the architecture, RP1 and RP3, and their associate
latches employ the clock labeled fi,, whereas RP2 and RP4 and their associate latches

employ the clock labeled £, as shown in Figure 4.2.7.

As shown in Table B.10, in every clock cycle, three pixels are scanned from
external frame memory and are loaded into the latches of one of the RPs. First, RP1]
latches are loaded followed by RP2 latches then RP3 latches followed by RP4 latches,
and then the process repeats. When the scanning process return to RP1 to initiate
another operation, the RP1 should have completed its current operation in the time

specified by tp/k, and should be ready to accept the pixels of the next operation. As

indicated, in the architecture, RP! latches will be loaded with new data every time
clock £, makes a negative transition, while RP3 latches wili be loaded at the positive
transition. Whereas, RP2 and RP4 latches will be loaded at the negative and the

positive transitions of clock fy, respectively.

In the 3-parallel architecture, the strategy adopted was to allow each run to begin
at RP1. This strategy was preferred over the one that allows each new run to start its
computations in the RP that immediately comes after the RP where the previous run
end, mainly because with the later it is very difficult to come up with a simple scheme
that allows us to decide which TLB a high coefficient needed in the next run should

be stored and when it can be retrieved. However, the situation is quit different in the
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4-parallel architecture because there can be found a simple and very efficient scheme

that encourages the adoption of the later strategy.

The scheme, which can be reasoned from Table B.10, is summarized as follows.
The decision, where to store each high coefficient calculated in the previous run that
are needed in the calculations of low coefficients in the next run, can be made by
examining the two least significant bits of & . Case one; if the two least significant
bits of N are 00 or 11 then the high coefficients should be stored in the TLBs of the
RPs that generate them. Case two; if the two least significant bits of N are either 01 or
10, then the high coefficients of RP1 should be stored in the TLB of RP3 and vice
versa, and the high coefficients of RP2 should be stored in the TLB of RP4 and vice
versa. Symbolically, case two can be written as

RPl™ > RP3

, (4.2)
RP2 5 RP4

Therefore, the paths labeled Pa and Pb are added in Figure 4.2.7.

Not that the following fact is used also to arrive at the above result. In the clock
cycle where a transition from a run to the next occurs, especially when the column
length (V) of an image is odd, the external memory is not scanned and no pixels are
loaded into the RP latches. Since, during this cycle two CPs (CPI and CP3) or (CP2
and CP4) each will compute the last low coefficient using the last high and the last
low coefficients in H and L columns, respectively, as required by DDGs for odd
length signals. In Table B.10, the columns labeled Rth and Rt! represent H and L

columns, respectively.

The above scheme only affects stage 2 of the four 5/3 RPs and stages 2, 3, and 5
of the four 9/7 RPs and it can be implemented as shown in Figure 4.2.9. Signal (zs)
which control the operations of the four multiplexers labeled mux!, mux2, mux3, and
mux+4 can be generated by use of a simple 2-input XNOR gate with its two inputs
connected to the two least significant bits of . Thus, if the input to the XNOR are
gither00 or 11 (case one), zs is asserted high to pass the high coefficient generated in
stage 1 of the same RP. Otherwise (case two) it is asserted low to pass the high

coefficient stored in each register BIR (buffer input register) that have been generated
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Figure 4.2.9 Modified stage 2 of the RPs datapath architecture
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by one of the RP. Note that signal zs will only have one value during each level of
decomposition. For example, during the whole period of the first level decomposition,

zs may be equal to 1 or 0, but not both.

This scheme, even though it optimizes the performance in term of number of
clock cycles that are needed for j-level decomposition, but, it complicates very much
the operations of the 4 RPs which would require a very complex control circuitry. In
addition, it needs more hardware and long buses. The alternative scheme would be to
allow each run to begin at RP1, as in case 1. The advantage of this scheme is that it
would reduce the hardware and the control complexities to the level of case | which is
less complex and manageable. In addition, it will eliminate the long buses, the four
BIR registers, and the four multiplexers labeled mux/, mux2, mux3, and mux4. The
disadvantage of the alternative scheme is that it will increase the execution time by
M2 cycles for each decomposition level, when case2 occurs. However, since, the
hardware complexity is less; the alternative scheme will operate with higher

frequency which would compensate for the performance lost.

Read and write operations in the 4 TLBs for case2 is somewhat complex.
Therefore, Table B.11 is provided to illustrate how read and write operations take
place in the TLBs during each run of case2. Table B.11 shows read and write
operations for RP1 and RP3, which is also identical to that, take place in TL.Bs of RP2
and RP4, respectively. Table B.11 shows that in the first run, RP1 and RP3 each uses
its TLBARa for addressing its TLB and in each cycle, reference to clock f,, the same
location is read in the first half cycle and is written in the second half cycle starting
from the first location. In the second run, as in the first run, RP1 uses only TLBAR/a
to address its TLB, while RP3 uses both TLBARa and TL.BARb to address its TLB,
which take place as follows. In each cycle two successive locations are accessed. The
first location is accessed by TLBAR3a, while the second is accessed by TLBAR3b. In
the first half cycle, reference to clock fi, TLBAR3b reads its location and loads the
result into register BOR3 by the negative transition of f3,, whereas, during the second
half cycle, TL.BAR3a write contents of register BIR3 into the location it addressing.
This writing completes by the positive transition of clock fi,. For example, Table
B.11 shows that in cycles 35 and 37, TLBAR3a is addressing location 2, while
TLBAR3b is addressing location 3.
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In addition, note that in cycle 23, where run2 begins, and cycle 25, Table B.11
shows that TLBAR3a is addressing location 4 to write the last coefficient of runi,
while TLBAR3b is addressing location 0 to read the first location which contains the

first coefficient needed in run2 first operation.

Finally, note when the control signals sal2 or sa34 of the multiplexers, labeled
muxa are set 0 in a run, each OR gate passes the clock signal to the multiplexer muxa
control signal. The clock signals of fy, or £y allow both TLBARa and TLBARb to be
used for addressing TLBs, as shown in RP3’s run2 in Table B.11. On the other hand,
when, sal2 and sa34 are set 1 in a run only TLBARa is used for addressing TLBs, as
shown in runl of Table B.11. In casel, signals sa/2 and sa34 are set 1 in all runs and

only TLBARa of each RP is used for addressing 7LB.

The control signals such as zs, incar, and sre2 etc., which are generated by the
control unit can be arranged as shown in Figure 4.2.10 (a) and its block diagram is
shown in Figure 4.2.10 (b). The control signal values issued in each clock cycle by
control unit are transferred to the first stage of the pipeline and are loaded into the
control signal latches (CSTs) to carry these signa! values from stage-to-stage. When a
stage where a signal(s) is used is reached, the signal value carried by its CST is

applied, while the remaining signals are carried on to the next stage,

Now, let’s move to the CPs side to see how this part of the architecture works,
The 4 CPs run by the clock labeled fi,. According to the dataflow shown in Table
B.10, both CP1 and CP3 execute in parallel starting from cycle 15 and load new data
every time clock /i, makes a positive transition. Similarly, both CP2 and CP4 execute
in parallel starting from cycle 17 and load new data every time clock f;, makes a
negative transition. Thereafter, all RPs and CPs in the architecture work in parallel.
However, both CP1 and CP2 execute high coefficients stored in Rthi, Rth2, Rth3 and
Rth4, whereas CP3 and CP4 execute low coefficients stored in Rei/, Ri/2, Rt!3, and
Ril4.

The two paths labeled 21 and 2 between CPl and CP2, and that labeled
I3 and /, between CP3 and CP4 are used for passing high coefficients among CPs,
since each high coefficient generated by a CP is also required in the next operation

that will be executed by another CP. Passing high coefficients occur between stages 2
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Figure 4.2.10 (a) Control signals carried by CST and (b) the block diagram

of both CP1 and CP2 or CP3 and CP4, in case of 5/3, and between stages 2 and
between stages 5 of both CP1 and CP2 or CP3 and CP4, in case of 9/7, as illustrated
in Fig. 4.2.11 for CP1 and CP2. The first 2 stages of Figure 4.2.11 represent modified
5/3 CPIl and CP3, while, stages 1 to 3 represent the first 3 stages of the modified 6-

stage 9/7 CP1 and CP3 and the following two stage are identical to stages 1 to 2.

In a control design it would be necessary to determine the clock cycle (C1) where
the first input data are loaded into the CPs latches and the clock cycle (C2) where the

first output coefficients are loaded into the CPs output latches. The following two

equations can be used to determine C1 and C2.
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Cl=1-k, +2i+1 (4.3)
C2=Cl+1-k, (4.4)
Where / = 2, 3, 4... denote 2-, 3-, 4-parallel (degree of parallzlism)and i =1,2,3 ...
denotes the first, the second, the third scan method and so on. X, and k. are the
number of pipeline stages in a RP and a CP, respectively. Note that Eqs (4.4) and

(4.5) are also valid for parallel intermediate architectures developed in section 4.3.
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Figure 4.2.11 CP1 and CP2 are modified to exchange high coefficients
4.2.4 Evaluations of architectures

To evaluate the performances of the three paralle]l architzctures developed in this
section, in terms of speedup, efficiency, hardware utilization, and power consumption
constder the following. In the single pipelined processor arcaitecture based on the first
overlapped scan method developed in chapter 3, the total time 7’1 required to execute

n operations for j-level decomposition of an NxM image is given by Eq (3.14) as
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T1=[pl+3(n -1}, @.5)
From statement?2, case 2,

=1, (k) 4.6)
Where [ = 3 for 5/3 and 9/7. Thus,

T1=[pt+3(n-1)), /3% 4.7

On the other hand, the total time, 72, required for executing »n operations for j-
level decomposition of an NxM image on the 2-parallel pipelined architecture shown

in Figure 4.2.1, can be estimated using Table B.8 as

. [p2+2(2n—1)}r2 “4.8)
From statement3, T, =t,/2k (4.9)

. [p2+2(n-1)lt, 2k

Therefore, T 5 (4.10)
The speedup factor {S2) is then given by
Tl [pl+3(n—1)]tp/3k
§2=-—= - (4.11)
72 [p2+2n-1)}, /4k
For large n, the above equation reduces to
3ln-1) 3k
S2 = b1, = (4.12)

20n-1), /4k

Eq (4.12) indicates that the 2-parallel architecture is 2 times faster than the single

pipelined architecture.

The efficiency (E)) of an /-parallel processors system is defined by [58] as

E =8,/ (4.13)
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The efficiency measures the useful portion of the total work performed by /
processors. The lowest efficiency corresponds to the case of an entire NxAf image
being decomposed on a single pipelined processor (consisting of a RP and CP). The
maximum efficiency is achieved when all / pipelined processors are fully utilized
throughout the execution period. Thus, the efficiency of the 2-parallel pipelined

architecture can be written as
E,=8,/2=1 (4.14)

Hardware utilization indicates the extent to which resources (e.g. processors) are
utilized during a parallel computation [58]. Since in parallel architectures, hardware
utilization can be measured by efficiency [40], therefore, it can be concluded that

hardware utilization in the 2-parallel architecture is 100%.

The total time (73) required to perform » operations, in j-level decomposition of

an NxM image on the 3-parallel pipelined architecture, can be written as

73 = M (4.15)
From statement3, Ty =t,/3k (4.16)
Thus, r3- 23 3("3_ Ok, 3% (4.17)
The speedup factor (53) is given by
e
For large n, S3 reduces to
s3= 270121 (4.19)
9(n—1)
The efficiency £, =85,/3=1 (4.20)
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Eq (4.19) indicates that the 3-parallel architecture is 3 time faster than the single

pipelined architecture with efficiency 1.

Similarly from Table B.10, the total time (74) require to execute » operations for j
levels of decomposition of an NxM image on the 4-parallel pipelined architecture can

be written as

g - A 2n -1k,
2

(4.21)
From statement3, ©, =t,[4k (4.22)
Thus, 74-= Lo+ 2(”2_ O, /4 (4.23)
The speedup factor (§4) is then given by
eIt
For large n, the above equation reduces to
54 = 24(n-1) —4 (4.25)
6(n - 1)
The efficiency E, =8,/4=1 (4.26)

Equations (4.25) and (4.26) imply that the 4-paralle] architecture is 4 times faster than

the single pipelined architecture and the efficiency is 1, respectively.

On the other hand, the power consumption of /-parallel pipelined architecture as
compared with the single pipelined architecture can be obtained as follows. Let P, and
P; denote the power consumption of the single and /-parallel architectures without the
external memory, and P, and P,; denote the power consumption of the external

memory for the single and /-parallel architectures, respectively. Then,

f)l = C!uluf ’ V’O2 : ﬁ/3 * P.i = l (“m!uf : I/Cl2 : _f,’/! (427)

100



2
and B L Vo WL 30 gtk Sy _g (4.28)
IDI C.‘m’a.’ ’ VO ) »f; /3 .fl I

p
where (. is the total capacitance of single pipelined architecture.

On the other hand, P, and P,y can be estimated as

Pm1 = C::m.' 'V(}z fl ’ Pm., = ['C::mf 'VOZ f.‘ 3 (429)
. I {-kft
and Pu IS, /" =] (4.30)

P, 3K/t

p

where C”

total

is the total capacitance of the external memory and /=3 is number of

buses.

From the above evaluations, it can be concluded that as the degree of parallelism
increases the speedup and the power consumption of the architecture, without external
memory, and the power consumption of the external memory increase by a factor of /,

as compared with single pipelined architecture.
4.3 Parallel form of the intermediate architectures

As mentioned before, the rational behind developing interraediate architecture is to
reduce the excess power consumption of the external memory, due to scanning
overlapped areas, to somewhat between the architecture based on the first overlapped
scan method and that based on the nonoverlapped scan method developed in chapter
3. In this section, the single pipelined intermediate architecture shown in Figure 3.7.2
will be extended to 2- and 3-parallel pipelined architectures to achieve speedup
factors of 2 and 3, respectively. The two proposed parallel architectures are intended
for used in real-time applications of 2-D DWT, where very high speed and throughput

are required.

4.3.1 2-parallel pipelined intermediate architecture

Based on the DDGs for 5/3 and 9/7 filters shown in Figures 3.3.1 and 3.3.2,
respectively, and the scan method shown in Fig. 3.7.1 (a), the 2-parallel pipelined

intermediate architecture shown in Figure 4.3.1 is developed. The dataflow of the
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architecture is given in Table B.12. The architecture consists of 2 k-stage pipelined
row-processors labeled RP1 and RP2 and 2 k-stage pipelined column-processors
labeled CP1 and CP2. In the previous chapter, the RP and the CP for the 5/3 were
pipelined into 4 and 3 stages, respectively, whereas, the RP and the CP for the 9/7

were pipelined into 8 and 6 stages, respectively.

The architecture scans the external memory with frequency /> and
operates with frequency f»/2. The buses labeled bus0, busi, and bus2 are used for
transferring every clock cycle pixels from external memory to one of the RPs latches
labeled Rt0, Rtl, and Rt2, according to the scan method in Figure 3.7.1 {(a). This scan
method requires that in the first clock cycle, the 3 buses should be used for scanning

the first 3 pixels from the first row of the external memory, whereas in the second and

L2

Edh = edl, 53 =52
Sie = shQ, it = shi

Figure 4.3.1 2-parallel pipelined intermediate architecture

third cycles each scans two pixels through bus? and bus2. Then the scan moves to the
second row to repeat the process. The RP1 latches load new data (pixels} every time

clock /2 makes a positive transition, whereas RP2 latches load new data when a
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negative transition occurs. Assume the first half cycle of the clocks f; and /5/2 are low.
On the other hand, both CP1 and CP2 and their associate latcaes load new data every

time clock /2’2 makes a positive transition.

Furthermore, since in every clock cycle, 3 pixels are required to initiate an
operation and the third pixels, according to the DDGs, is always needed in the
next operation, therefore, register Rd0 is added to hold the third pixel for the next
operation. The multiplexer labeled mux/ passes Rd0 to either R0 of RP1 or Rt of
RP2. Register Rd0 loads a new pixel from bus2 every time clock /> makes a negative

transition.

The control signal s1 of the multiplexer labeled mux/ is set to 0 in the first clock
cycle of /5 to pass data in bus0 and is set to | in the second and third clock cycles to
pass Rd0 contents. The above steps are repeated in cycles 4, 5, and 6 and so on, when

scan moves to the second row.

The multiplexer labeled muxre is an extension multiplexer, passes in all cases
data coming through bus2. Except when the row length (M) of an image is even and
only in the calculations of the last high and low coefficients in a row r, according to
the DDGs, the pixels at location X(r,M-2), which will be placed in bus@, must be
allowed to pass through muxre( and then be loaded into ReZ as well as Rt0. The two
multiplexers labeled muxce0, located at the CPs side, are also extension multiplexers
and perform the same function as that of muxre0 when DW'T is applied column-wise

by the CPs.

The registers labeled SRH!, SRHO, SRL1, and SRLO are FIFO shift registers each
holds at any time 3 coefficients. Registers SRHI, SRH(, and RdH are used for storing
high coefficients generated by RP1 and RP2, whereas SRLI, SRLO, and RdL are used
for storing low coefficients. These registers all operate with frequency £5. In addition,
the control signals s/0=sh( and si1=shl control the operation of the FIFO registers,
When they are high, the FIFOs shift in new data, otherwise, no shift take place. The
high coefficients stored in SRH0 and SRH are executed by CP1, while CP2 executes
low coefficients stored in SRLO and SRL/.

The operations of the two multiplexers, labeled muxh and mux/, can be controlled

by one control signal labeled sih. This control signal is connected to the clock fo/2.
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When £>/2 is low, both multiplexers pass coefficients generated by RP1, otherwise,
pass that generated by RP2.

Observe that the dataflow pattern between cycles 13 and 18 in Table B.12,
especially in the 4 FIFO registers including R4H and RdL, repeats each 6 clock cycles.
A careful investigation of Table B.12 from cycles 13 to 18 shows that the control
signals of the two multiplexers labeled mux2 and two multiplexers labeled mux3
including the control signals (edh and edl) of the registers labeled RdH and Rdl can
all be combined into one signal, s2. Moreover, examination of Table B.12 shows that
the control signals values for signals s2, s/0=sh0, and s/!/=sh! starting from cycles 13
to 18 can be as shown in Table 4.5. These control signal values repeat every 6 clock

cycles.

Table 4.5 Control signal values for 53, 5/0, and s/!

Cycle number | 52 | sl0 | sl]
13 0|1 |1
14 I [0 |0
15 1|1 |0
16 0 10 |1
17 11 |1
18 010 |1

According to the 5/3 DDGs shown in Figure 3.3.1, each coefficient calculated in
the first level (stepl) is also required in the calculations of two coefficients in the
second level (step 2). That implies a high coefficient calculated by RP1 in stage 1
should be passed to stage 2 of RP2 and vice versa. The 9/7 DDGs shown in Figure
3.3.2 also shows similar dependencies that exist among coefficients of two levels or
steps. Therefore, the path labeled P/ and P2 have been added in Fig. 4.3.1 so that the
two RPs can pass high coefficients to each other. However, this would require the two
RPs datapath architectures for 5/3 and 9/7 to be modified as shown in Figures 4.3.2
and 4.3.3, respectively.

In addition, if the third high coefficient of the first row labeled Y(5) in the 5/3
DDGs is stored in the first location in TLBI of RP1, then the third high coefficient of

the second row should be stored in the first location in TLB! of RP2 and so on.
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Similarly, the 9/7 coefficients labeled Y"(5), ¥"(4), and Y'(3) in the DDGs generated

by processing the first row of the first run should be stored in the first locations of
each TLBI, TLB2, and TLB3 of RPI, respectively, whereas the same coefficients
row of the first run should be stored in the first

locations of each TLB!, TLB2, and TLB3 of RP2, respectively, and so on. The same

generated by processing the second

process also applies in all other runs.
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Figure 4.3.2 Modified 5/3 RPs datapath architecture
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The control signal sf of the 8 multiplexers labeled mux/in Figure 4.3.3 can be set
0 in the first run and 1 in all other runs. It is very important to note that, especially in
the first run, the scan method in Figure 3.7.1 (a) aliows 5/3 RPs to yield 6 coefficients

where half belong to the first 3 columns of H decomposition and the other half to L
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decomposition, each time it processes 7 pixels of a row, while 9/7 yield only 4
coefficients, 2 high and 2 low coefficients by processing the same number of pixels in
a row, This implies that in the first run each 5/3 CP would process 3 columns in an
interleave fashion as shown in Table B.12, whereas each 9/7 CP would process in the
first run only two columns in an interleave fashion. However, in all other runs, except
the last, both 9/7 and 5/3 CPs would process 3 columns at a time. This interleaving
process, however, would require 9/7 and 5/3 CPs to be modified in order to allow

interleaving in execution to take place.

The advantage of this organization is that the TLBs in Figures 4.3.2 and 4.3.3 are
not required to be read and written in the same clock cycle. since, according to the
scan method shown in Figure 3.7.1 (a), 7 pixels are scanned from each row to initiate
3 successive operations and the TLB is read in the first operation and is written in the
third operation starting from the second run. Furthermore, the fact that 7 pixels are
scanned from each row to initiate 3 consecutive operations and the TLB is read in the

first operation and written in the third can be used to derive, for all runs except the last
one, the control signal values for the signals labeled ﬁ/W and incar in both TLBs

including s4, as shown in Table 4.6. These signal values repeat every 3 cycles starting
from the first cycle. However, since in the first run TLBs are only written then signal
s4 can be set 0 in the first run, whereas, in all subsequent runs it is set according to
Table 4.6. Signals in Table 4.6 including the extension mu:tiplexers control signals
which will be generated by a separate control unit can be carried by latches,
similar to pipeline latches, from the control unit to the first stage of the pipeline then
to the next stage and so on. When a stage where a signal(s) will be used is reached
that signal(s) can be dropped and the rest are carried on to the next stage and so on

until they are all used.

Table 4.6 Control signal values for signals in stage 2 of both RP1 and RP2

Cycle Number RP number E/W incar 54
1 i ] 0 i
2 2 0 0 ¢
3 | 1 i 0
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4.3.2 Transition to the last run

The description given so far including the control signal values in Tables 4.5 and 4.6
apply to all runs except the last run, which requires special handling. The last run in
any decomposition level can be determined and detected by subtracting after each run
6 from the width (M) of an image. The last run is reached when M becomes less than
or equal to 6 (M<6) and M can have one of the six different values 6, 5, 4, 3, 2, or 1,
which imply 6 different cases. These values give number of external memory columns

that will be considered for scanning in the last run.

According to the scan method, in each run 7 columns in the external memory are
considered for scanning and each 7 pixels scanned, one from each column, initiate 3
consecutive operations. Thus, since cases 6 and 5 initiate 3 operations they can be

handled as normal runs.

On the other hand, cases 4 and 3 initiate 2 operations and the dataflow in the last
run will differ from the normal dataflow given in Table B.12. Therefore, 2 dataflow
are provided in Tables B.13 and B.14 for even and odd N, respectively, so that they
can be applied when either of the two cases occurs. The dataflow shown in Table
B.13 is derived for case 4 but it can be used also for case3. Similarly, Table B.14 is
derived for case3 but it can be used also for case 4. Moreover, examination of Tables
B.13 and B.14, especially signals s2, s/0 and s//, show that after 2k+2 cycles from the
last empty cycle, where k is the number of pipeline stages of the RPs, the control
signal values of signals s2, s/0, and s//, which repeat every 4 clock cycles, should be
as shown in Table 4.7 for the rest of the decomposition level. However, during the
2k+2 and the empty cycles, the control signal values for 52, si0 and s/ follow Table
4,5, Therefore, cases 4 and 3 can be considered as one case. Only at the beginning of
the transition to the last run, if N is even, then one empty cycle is inserted, otherwise,
4 cycles are inserted, according to Table B.13 and B.14, respectively. During an

Empty cycle external memory is not scanned.

On the other hand, cases 2 and 1, each initiate one operation. Case 2 initiates an
operation each time 2 pixels, one from each column, are scanned, whereas case 1
initiate an operation each time a pixel is scanned from the last column. Therefore,

dataflow of the last run in the two cases will differ from the normal dataflow given in
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Table 4.7 Control signal values for s2, s10, and sl1 in the last run.

Cycle number 52 S st
34 a 0 1
35 1 1 1
16 1 ! 1
37 1 1 0

Table B.12. For this reason, two dataflow are given in Tables B.15 and B.16 for even
and odd N, respectively, in order to be used when either of the two cases occurs. The
dataflow in Table B.15 is derived for case 2, even /, but it czn be also applied in case
1 for even N as well. Similarly, Table B.16 is derived for case 1, odd N, but it can be
applied in case 2 for odd N. Furthermore, study of Tables E.15 and B.16 shows that
in the last run the control signal values for 52, s/¢ and s// follow Table 4.5 until the
clock cycle that is 2k+/ cycles away from the last empty cycle is reached. In that
clock cycle, change the control signal value of signal s/0 to zero instead of one. Then,
for all subsequence cycles and to the end of the decomposition level, the control
signal values for signals s/0, s//, and s2=s3 should remain a: one and ed/=edh should
alternate between 0 and 1. Therefore, cases 2 and 1 can be treated as one case. Only at
the beginning of the transition to the last run, even N requires insertion of two empty
cycle and odd N requires insertion of five cycles, according to Tables B.15 and B.186,

respectively.

Figure 4.3.4 shows the block diagram of the control unit that generates signals 5.2,
s10, and si] along with the circuits that detect the occurrencz of the last run and the 6
cases. First, A is loaded into register RM, then register K6, which contain the 2’s
complement of 6, is subtracted from RM through the 2’s complement adder circuit
and the result of the subtraction is loaded back into RM. If Lr is 1, then that implies
the last run is reached and the result of the subtraction is not transferred to RM. The 3
least significant bits of register RM is then examined by the control unit to determine
which of the 6 cases has occurred. First z/ is examined. If z/ is 1, that implies the
occurrence of either cases 6 or 5 and the control unit proceeds as usual. But, if z/ is 0,

then z2 is examined. If z2 is 1, then cases 4 and 3 are applied, otherwise cases 2 and 1.
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The above description can be generalized for determining the last run in any scan
method {first, second, or third scan method and so on) used in designing single or /-
parallel architectures. Thus, in general, the last run in any scan method can be
determined and detected by subtracting after each run 2/ from the width (A of an
image. The last run is reached when M becomes less than or equal to 2/ (A<2i}, where
i=1, 2, 3... denote the first, the second, and the third scan method and so on. A can
have one of 2i different values, when last is reached, as follows: 2i, 2i-1, 2i-2 ... 2, 1,

which implies 2/ cases.

These values give number of external memory columns that would be considered
for scanning in the last run. In addition, cases 2/ and 2/-/ can always be handled as

normal runs.

According to the 5/3 DDGs, each 5/3 CP should also interleave in execution 3
columns, if case 5 or case 6 is the last run. But, if case 3 or case 4 is the last run,
according to Tables B.13 and B.14, each CP should process 2 columns in interleave
fashion, whereas, if case | or case 2 is the last run, according to Tables B.15 and
B.16, each CP should process one column. On the other hand, each 9/7 CP, according
to the DDGs, should also interleave in execution 3 columns, if either (cases 3 and 4)
or (cases 5 and 6) is the last run. However, if case 1 or case 2 is the last run, then each

CP should interleave 2 columns in execution, as shown in Tables B.13 and B.14.

Furthermore, a careful | examination of the 9/7 DDGs, when last run is case 5 or
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Figure 4.3.4 Control circuit that determines the last run
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6, shows that the 2-paralle]l RPs would not be able to yield all required output
coefficients. Thus, to get the remaining coefficients the 4 RPs should be instructed to
execute one extra run. In the extra run, each CP would only process one column, as
shown in Tables B.15 and B.16. Signal s5 of the multiplexers labeled muxJ in Figs
4.3.2 and 4.3.3 should be set 1 only in the computations involving cases 3 and 4 of the

5/3 and cases 1 and 2 of the 9/7, otherwise, it remains at 0.

To enable each CP to process single column and interleave in execution 3 and 2
columns, each of the 5/3 and 9/7 processor’s datapath should be modified as shown in
Figures 4.3.5 (a) and (b), respectively. Through the multiplexers labeled mux the CP

control the process of executing single column, interleaving 2 or 3 columns.
4.3.3 3-parallel pipelined intermediate architecture

The 2-parallel pipelined intermediate architecture developed in section 4.3.1 can be
extended to 3-parallel pipelined intermediate architecture as shown in Figure 4.3.6.
This architecture increases the speed up by a factor of 3 as compared with single
pipelined architecture. The architecture performs its computations according to the
dataflow given in Table B.17. It operates with frequency f3/3 and scans the

external memory with

X(2n+1)
-k

f ¥ 3

Xt2n)
e

0 0 interleave 3 columns (runt to the run before last + last run of cases 5 & 6)
0 1 interleave 2 columns ( if last run is cases 3 or 4}
1 x single column (if last is cases 1 or 2)

Figure 4.3.4 (a) Modified 5/3 CP for 2-parallel intermediate architecture
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Figure 4.3.5 (b) Modified 9/7 CP for 2-parallel intermediate architecture

frequency fi. The clock frequency f; can be obtained from statement3 as

/i =3k/t, (4.31)

The waveform of the frequency f; including two waveforms of the frequency f; /3

labeled /3, and f35 that can be generated from f; are shown in Figure 4.3.7.

The RP2 loads new data into its latches every time clock f3, makes a positive
transition, whereas RP1 and RP3 load when clock /3, makes a positive and a negative
transition, respectively. On the other hand, CP1 and CP3 loads simultaneously new

data every time clock f3, makes a positive transition and CP2 loads every time clock

f3» makes

112



S
]
bust _; R
bus2 > O%
¥ 5
ErP R
rad PV
Y
re0
" _.:......
1% i
bust | & ”
0
| RH
s1
o RE2

I

R 1,
P2 P
y
!l Rt 1 f

5 srmt

-f.;ﬁ

A

Rt

8

. %

Muxce!

| SRit

¥

Rt2 A

¥

fia

-
L
RiOP™ 1, L‘[

Cr Pk —

Rth
HH

HL
RY

i,
[ d

Rittge ;

7,

mu.

3 M]3
*JB
c"-h

mux?

E 2K

Rth
HHLH

edhzs

h3 =sh2

edl =53 =512

Figure 4.3.6 3-parallel pipelined intermediate architecture

1
Clock 1,

CP1
f'la:f%/3 /;Cps //' Read TLB
———) 7
7 i :
i ¥ | el &
fu=£/3 i s CP2
\ , \ muxh
\ ! \ pass RP|
foad RP1 load RP2 load RP3 output

| Write TLB,
m;rl & mu_’c! &
muxh muxh
pass RP2  pass RPY
output output

Figure 4.3.7 waveforms of the three clocks

113



a positive transition Furthermore, for the architecture to operate properly, it is
essential the three clocks labeled f;, /3., and f; be synchronized as shown in Figure
4.3.7. Clock f3, and f3; can be generated from f; using a 2-bit register clocked by f3
and with a synchronous control signal clear. In order to obtain the divide-by-3
frequency, the register should be designed to count from 0 to 2 and then repeats. The
synchronization can then be achieved by the control unit simply by asserting the clear

signal high just before the first cycle where the external memory scanning begins.

The buses labeled bus0, busi, and bus2 are used for transferring, in every clock
cycle, 3 pixels from external memory to one of the RPs latches labeled Rt0, Rtl, and
Rt2. In the first clock cycle, 3 pixels are scanned from external memory, locations
X0.0), X0,1) and X70,2), and are loaded into RP1 latches to initiate the first
operation. While the third pixel (X70,2)) in bus2, which is required in the next
operation, is also loaded into Rd0. The second clock cycle scans 2 pixels from
external memory, locations X(0,3) and X(0,4), through bus! and busZ2 , respectively,
and loads them into RP2 latches along with the pixel in register Rd0 by the pulse
ending the cycle. This cycle also stores pixel carried by bus2 in register RdO.
Similarly, the third clock cycle transfers 2 pixels from external memory, locations
Xr0,5) and X(0,6), including the pixel in register Rd0 to RP3 latches to initiate the

third operation. The scan then moves to the second row

The paths labeled P/, P2, and P3 in Figure 4.3.6 are used for passing coefficients
between the three RPs, since a coefficient calculated in one stage of a RP is always
required in the next stage of another RP. This will require the combined three RPs
datapath architectures for 5/3 and 9/7 to be modified as shown in Figure 4.3.8 (a) and
(a, b), respectively, so that they can fit into RPs of the 3-parallel architecture shown in
Figure 4.3.6. Note that Figures 4.3.8 (a) and (b) together form the 9/7 RPs datapath
architecture, This architecture can be verified using the 9/7 DDGs. The control signal
sf of the 9 multiplexers, labeled muxf in Figure 4.3.8 is set 1 in the first run and 0 in

all other runs.

In the 5/3 datapath architecture shown in Figure 4.3.8 (a), all high coefficients,

calculated in stage | of the RP3 in a run, are stored in TL.B of stage 2 so that they can
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Figure 4.3.8 (a,b) Modified 9/7 RPs datapath for 3-parallel intermediate architecture

be used by RP1 in the calculations of low coefficients in the next run. On the other
hand, the 9/7 datapath stores, the coefficients labeled Y (5), Y (4), and Y (3) in the
DDGs that can be generated as a result of processing the first 7 pixels of every row in
the first run, in TLB1, TLB2, and TLB3, respectively. Similarly, all other runs can be
handled.

For the same reason mentioned in the 2-parallel, the 5/3 RPs will generate 6
coefficients each time they process 7 pixels of a row, while 9/7 RPs will generate 4
coefficients by processing the same number of pixels in the first run. Each 4
coefficients will be generated by RPI and RP2, while RP3 will generate invalid
coefficients during the first run. As shown in Table B.17, each CP in the 3-parallel
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architecture processes, in a run, 2 columns coefficients in an interleave fashion. This
interleave processing will also require each CP to be modified as shown in Figures

3.8.3 and 3.8.4 {(a) for 5/3 and 9/7, respectively.

In the first run the TLB is only written. However, starting from the second run
until the run before last, the TLB is read and written in the same clock cycle, with

respect to clock f3,.

The negative transition of clock f;, always brought a new high coefficient from
stage 1 into stage 2 of the RP3. During the low pulse of clock f3, the TLB is read and
the result, which is placed in the path labeled P3, is loaded by the positive transition
into latch Rt2 in stage 3 of RP1 where it will be used in the calculation of the low
coefficient. On the other hand, during the high pulse, as indicated in Figure 4.3.7, the

high coefficient in R¢/ which is needed in the next run will be stored in the TLB.

The register labeled TLBAR (TLB address register) generates addresses for the
TLB. Initially, register TLBAR is cleared to zero by asserting signal incar low to point
at the first location in the 7LB. Then to address the next location after each read and
write, register TLBAR is incremented by asserting incar high. Each time a run is
complete, register TLBAR is cleared zero to start a new run and the process is

repeated.

The two multiplexers labeled muxh and mux/ are used for passing every clock
cycle, reference to clock f3, the high and low coefficients, respectively, generated by
the three RPs. The two control signals of the two multiplexers are shown in Figure
4.3.6 connected to clocks f3, and f3,. When the two pulses of the clock f3, and f3, are
low, the two multiplexers would pass the output coefficients generated by RPI,
whereas when a high pulse of the clock f3, and a low pulse of the clock f3; occur, the
two multiplexers would pass the output coefficients generated by RP2 as indicated in
Figure 4.3.7. Finally, when the two pulses are high, the two multiplexers would pass
the output coefficient of RP3. In addition, note that the path extending from the inputs
of the multiplexer muxh, passing through muxh2, muxce0, and ending at Rt2 may
form a critical path, since signals through this path should reach Rt2 during one cycle
of clock f;.
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The registers labeled SRHI, SRHO, SRLI, and SRLO, including RdH and RdL
operate with frequency f;. Registers SRHI, SRH0, and RdH store high coefficients,
while registers SRLI, SRLO, and RdL store low coefficients, New coefficients are
loaded simultaneously into both CP1 and CP3 latches every time clock f3, makes a
positive transition, whereas CP2 latches are loaded when clock f3, makes a positive
transition. Furthermore, each time a transition from a run to the next is made, when
the column length (V) of an image is odd, the external memory should not be scanned
for 3 clock cycles, since during this period the CPs will process the last high and low
coefticients in each of the 3 columns of H and L decompositions, as required by the
DDGs for odd signals. This is also true for 2-parallel intermediate architecture. No

such situation occurs when the column length of an image is even,

It can be reasoned from Table B.17, the control signals of the two multiplexer’s
labeled muxh2, muxh3, and register RdH can all be combined into one signal, sh2.
Similarly, the control signal of the two multiplexer’s mux{2, muxi3, and register RdL
can be combined into one signal, s/2. Furthermore, a careful examination ot Table
B.17 shows that the control signal values that must be issued by the control unit for
signals shl, sho, sii, 510, sh2, and si2, starting from cycles 16 to 21 and repeat every 6

cycles, should be as shown in Table 4.8

Table 4.8 control signal values

Cycle Shi Shil st sio Sh2 52
16 1 ! 1 1 0 0
17 1 1 0 0 0 1
18 0 0 0 0 1 1

19 } 1 ] 1 1 1
20 1 0 1 1 0 1
21 1 0 1 0 ] 0

Moreover, if it is necessary to extend the 2-parallel architecture to 4-parallel
architecture, from the experience gained in designing 2- and 3-parallel architectures,
the best architecture for 4-parallel would be obtained if the fourth overlapped scan
method is used and S-parallel if the fifth scan method is used and so on. Then the
architecture design for a higher degree parallelism becomes similar to that

experienced in the 3-parallel intermediate architecture. While an attempt, e.g., to
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design 4-parallel intermediate architecture using the third scan method would require
very complex modifications in the datapath architecture of the combined 4 RPs and
complex control logic. However, the objective for choosing a higher scan method in
the first place is to reduce the power consumption due to overlapped areas scanning of
external memory. Therefore, it makes sense if 4-parallel is designed with fourth scan

method and 5-parallel with fifth scan method and so on.

4.3.4 Scale factor multipliers reduction

In the lifting-based tree-structured filter bank for 2-D DWT shown in Figure 3.1.1, it
can be observed that the high output coefficients, which form H decomposition, each
is multiplied by the scale factor £ in the first pass. In the second pass, the high output
coefficients, which form HH subband, each is multiplied by k. This implies the first
multiplication can be eliminated and the output coefficients of HH subband can be
multiplied by K using one multiplier after the second pass. While, the high output
coefficients, which form HL subband, each is multiplied by 1/k. This implies no
multiplications are required and scale multipliers along this path can be eliminated,
since HL subband coefficients are formed by multiplying each coefficient in the first

pass by & and then in the second by pass by 1/k.

On the other hand, the low output coefficients of the first pass, which form L
decomposition, each is multiplied by 1/k&. Then in the second pass, the output
coefficients, which form LH subband, each is multiplied by &, which implies no
multiplications are required along this path. While, the output coefficients of the
second pass, which form LL subband, each is multiplied by 1/k. Thus, instead of
performing two multiplications, one multiplication can be performed by 1/4° after the
second pass [22, 23, 59]. However, note that the simple computations involve in each

lifting step of the 5/3 and 9/7 algorithms have made arriving at these results possible.

This process reduces number of multipliers used for scale factor multiplications in
the tree-structured filter bank to 2 instead of 6 multipliers. When it applied to single
pipelined architectures, it reduces number of scale multipliers to 2 instead of 4,
whereas, in 2- and 3-parallel pipelined architectures, it reduces number of scale

multipliers to 2 and 4 instead of 8 and 12, respectively.
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In [23], it has been illustrated that the multipliers used for scale factor £ and

coefficients «, f,y, and & of the 9/7 filter can be implemented in hardware using

only two adders.
4.3.5 Evaluation of performance

To evaluate the performance of the two proposed parallel architectures in terms of
speedup, throughput, and power consumption as compared with the single pipelined
intermediate architecture consider the following. In the single pipelined intermediate
architecture, the total time, 7/, required to yield » paired outputs for j-level

decomposition of an NxM image is given by
T1=[p, +3(m-D, =[p, +3(n-D]t, /3% (4.32)

The dataflow of the 2-paraliel architecture in Table B.12 shows that p, =19

clock cycles are needed to yield the first 2-pair of output. The remaining (n-2)/2
outputs require 2(n-2)/2 cycles. Thus, the total time, 72, required to yield » paired

outputs is given by
T2=[p, +(n -2}, (4.33)
From statement3, t, =t,/2k then

12=[p, +(n- D}, /2k (4.34)

The speedup factor § is then given by
11 [p +3(n-1]t, 3k

S,=—= 4.35
212 o+ (-2, 2k (333)
For large »n, the above equation reduces to
s, - 2n=b@Ek (4.36)

f(n-2)3k)

Eq (4.36) implies that the proposed 2-parallel intermediate architecture is 2 times

faster than the single pipelined intermediate architecture.

On the other hand, to estimate the total time, T3, required for j-level

decomposition of an NxM image on the 3-parallel pipelined intermediate architecture,
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assume the output generated by CP2 in Table B.17 are shifted up one clock cycle so
that it parallel that of CP1 and CP3. Then, p, =25 clock cycles are needed to yield

the first 3-pair of output. The remaining (n-3)/3 3-paired outputs require 3(n-3)/3

clock cycles. Thus, the total time, 73, required to yield » paired outputs is given by

13=[p, +(n-3]; =[p, + (-3t /3k (4.37)

The speedup factor .S is then given by

71 [p, +3(n-D)t, /3% (438)

TUT3 [py+(n=3)], /3%

s, =D 5 (4.39)
(n-3)

Eq (4.39) implies that the proposed 3-parallel pipelined intermediate architecture is 3

times faster than the single pipelined intermediate architecture.

The throughput, H, which can be defined as number of output coefficients

generated per unit time, can be written for each architectures as

H(single)=n/(p, +3(n—1))t, /3% (4.40)

The maximum throughput, H™”, occurs when # is very large (n — ). Thus,

Fme (sin gge)z H(sin gle),,% 4.41)
;3-n-k-f,,/3'”zk'fp (4.

H(2 - parallel) = nf(p, +(n-2))t, [2k (4.42)

H™ (2 - parallel) = H(2 — parallel
(2 - parallel) (2-p Dnre (4.43)
=2nk-f,/n=2-k-f,

H(3 - parallel) = nf(p, +(n-3))t, [3k (4.44)

H™ (3 - parallel)= H( - parallel), ,, (.45
53-n-k'fp/nz3‘k-fp 45)

Hence, the throughputs of the 2-parallel and 3-parallel pipelined architectures have
increased by a factor of 2 and 3, respectively, as compared with single pipelined

architecture.
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To determine the amount of power reduction achieved in the external memory of
the intermediate parallel architecture as compared with first scan method based
parallel architecture, consider the following. If the power consumption of VLSI

architectures can be estimated as

P=C,, V7 (4.46)

wat Vo

where C,..; denotes the total capacitance of the architecture, V, is the supply voltage,
and £ is the clock frequency, then the power consumption due to scanning external
memory of the single pipelined architecture based on nenoverlapped scan method can

be written as
P!' (non) = ﬁ ' (’jrun‘al ) VU: ' ﬂ (4'47)

where C,., V.- f is the external memory power consumption due to first

overlapped scan method, £, is the external memory scan frequency,

andf=7, /T =2/3.T, and T, denote total external memory access time in clock

16

cycle for J levels of decomposition for architecture based on the first overlapped and

nonoverlapped scan methods, respectively.

Using the fact that the scan method shown in Figure 3.7.1 (a) reduces the power
consumption of the overlapped areas by a factor of 1/3, the power consumption due to

scanning the overlapped areas of Figure 3.7.1 (a) can be written as
P,(areas) = (B, Coun -V} 113) (4.48)

where B,=T7,/T =1/3 and T, is the excess memory access time due to

mo

overlapped areas scanning for J levels of decomposition. Thus, the external memory

power consumption of the single pipelined intermediate, P(int), is

P (inty = P (non) + P, (areas) (4.49)
=BCo VS i+ By Cooa V113 (4.50)
=Coy VS FB 3+ ) (4.51)
=3k Cop Vi By 3+ B) (4.52)

where f, =3-k-f, ,and f is processor’s frequency.
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The external memory power consumption of /-parallel pipelined intermediate

architecture, £, (int) can be written as
Pint)y=1-Cppy V7 f1- (B 3+ B) (4.53)

From statement3, 17, = f, =1-kjt , then
Pinty=1-k-1-C, V] f,(B,/3+P) (4.54)
where (/) is number of input buses and is 3 in the parallel architecture.

Similarly, the external memory power consumption of /-parallel pipelined

architecture based on the first scan, P, (firsi) can be written as

Pfirsty=1-C,py V) [y =1-k-1-Cpy V7 f, (4.55)
Thus,
Py Lk D-Cou V£, (By/3+B) (4.56)
P (first) Lok deCoy V) T,
=B,/3+8=1/9 (4.57)

implies that the intermediate parallel architecture based on scan method shown in
Figure 3.7.1 (a) reduces power consumption of the external memory by a factor of 7/9
as compared with parallel architecture based on the first scan method. On the other

hand,

P,(il’lt) :f'k'['cwmf'Vuz'fp'(ﬁo/3+ﬂ):l

: . (4.58)
}).s(lnt) 3.'ZC.C"mral' .Vn .-fp.(ﬁ01/3+ﬁ)

implies that as the degree of parallelism increases the external memory power
consumption of the intermediate parallel architecture based on the scan method in
Figure 3.7.1 (a) also increases by a factor of / as compared with single pipelined

intermediate architecture’s external memory power consumption.
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4.4 Conclusions

In this chapter, the single pipelined overlapped architecture is extended to 2-parallel,
3-parallel, and 4-parallel architectures to achieve speedup factors of 2, 3, and 4,
respectively, according to the evaluation given in section 4.2.4. Similarly, the single
pipeline intermediate architecture is extended to 2-parallel and 3-paralle!
architectures. According to the evaluation given in section 4.3.5, the 2-parallel and 3-
parallel intermediate architectures achieve speedup factors of 2 and 3, respectively.
The intermediate parallel architecture reduces the power consumption of the external
memory by a factor of 7/9 as compared with the overlapped parallel architecture,
Eq{4.57). The advantage of the parallel architectures developed in this chapter, is that
the total temporary line buffer (TLB) requirement does not increase from the single

pipelined architectures.
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CHAPTER 5
DWT MEMORY ARCHITECTURES

5.1 Introduction

DWT memory architectures have been usually overlooked in the literature. However,
since 2-D DWT memory architectures are equally important as DWT processor
architectures commonly covered in the literature, in this chapter, two novel VLSI

architectures for LL-RAM and subband memory are developed.

The general structure of a compression system is shown in Figure 5.1.1. The DWT
unit generally consists of a row-processor (RP) and a column-processor (CP). RP

reads LL-RAM, while CP writes into LL-RAM and subband memory.

DWT decomposes an NxM image into subbands, as shown in Figure 2.1.3 for 3
decomposition levels, These subbands must be stored by DWT unit in a memory such
that they can be manipulated effectively by compression unit for compression
purposes. Therefore, a memory architecture, which allows DWT unit to perform

efficiently both, reads and writes and compression unit to perform reads is necessary.

Figure 2.1.3 shows that the first decomposition generates 4 subbands labeled HL1,
HH1, LHt, and LLI1. The coefficients of the first 3 subbands would be stored in a
memory, call it subband memory, which would contain memory blocks HL1, HHI,
and LHI. The compression unit can then read the 3 subbands and compress each
independently, while subband L1l would be stored in another memory, call it, LL-

RAM or just RAM, for further decompositions.

The second decomposition generates 4 subbands, labeled HL2, HH2, LH2, LL2,
by reading subband LL1 coefficients stored in the LL-RAM. The coefficients of the 3
subbands HL2, HH2, and LH2 would be stored also in the subband memory blocks
labeled HL2, HHZ2, and LH2, while subband LL2 would be stored in the RAM for

further decomposition.
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Figure 5.1.1 General structure of a compression system.

In the discussion above, two memory components have been identified, the LL-
RAM and the subband memory, that need to be designed such that DWT unit can
perform effectively both read and write operations in the LL-RAM and
write only into subband memory, while compression can read subband memory.
Thus, in this chapter, the architectures of the LL-RAM and subband memory would
be developed. First, the LL-RAM architecture will be developed followed by subband

memory architecture.

5.2 The LL-RAM architecture development

The LL-RAM is used by the DWT unit to store the coefficients of the LL subband
that it generates in each decomposition level, for further decompositions. In the DWT
unit, the RP scans (reads) the LL-RAM, and the CP writes the LL subband
coefficients in the LL-RAM. The generalized scan method requires the RAM to be
read in every clock cycle with frequency f;, where /=123 denote single, 2- or 3-
parallel, and to be written according to the order in which each scan method generates
its output coefficients. Which implies that reads operations will coincide with writes
operations. Therefore, the RAM architecture should be designed such that both read
and write can take place in the same clock cycle. Thus, the first half cycle of clock f;

will be reserved for read and the second half cycle for write.

The RAM, which can be viewed as a 2-dimensional memory of size N/2xM/2,
where N = 2" and M = 27, can be readily constructed from M2 modules with each

module having N/2 locations.

The block diagram of the memory module that would be used in forming the

RAM architecture is shown in Figure 5.2.1. The E signal, which is active high,
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enables the module for reads and writes. The module is read and the result is placed in
the output bus when the signal labeled E/W is low, otherwise, it is written. The

address bus is used in addressing each location in the module for read or write. The
control signal labeled MS {module select} is useful when several modules are used in
forming a memory. It allows through a decoder one module to be selected for read or
write. The module can be read or written only when both signal E and MS are asserted
high.

The complete architecture of the RAM that facilitates both reads and writes is shown
in Figure 5.2.2 (a) and (b). This architecture is based on the first scan method.
However, the RAM architecture can be easily modified to handie other (or higher)
scan methods, as will be explained later. The decoder labeled deodms is responsible
for selecting modules for reads or writes. When the architecture performs read
operations, the register labeled RMSR (read module select register) determines
through muxs which modules to be enabled. When it performs write operations,
register WMSR (write module select register) is used for selecting modules. Both
registers are (m-2)-bit counters with control signal ¢/r (clear) and inc (increment) and

operate with frequency f.

The multiplexer labeled muxs, its control signal is shown connected to clock /.

When f; is low, read operation takes place and RMSR controls the decoder. On the

output bus R/IW input bus

address bus

)
— £ A{S

Figure 5.2.1 Block diagram of the memory module.
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Figure 5.2.2 (a) and (b} RAM architecture using modules

other hand, when £ is high, write operation takes place and WMSR controls the

decoder.

The circuit in the upper left corner of Figure 5.2.2 (a), consisting of 3 multiplexers

labeled muxb, a NOR gate, signal RE and the register labeled WER (write enable

register), is in charge of generating signal values for the read and write signal

labeledﬁ/ W . The contro! signals of the 3 multiplexers are alsc shown connected to
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the clock f.. When f; is low, modules are enabled for read, otherwise, are enabled for

write. Signals generated by this circuit will be described later in details.

The address bus is managed by two registers labeled RMAR (read module
address register) and WMAR (write module address register) through muxa. When the
muitiplexer control signal is driven low by clock f, read operation takes place and
RMAR provides addresses to modules, otherwise, write operation takes place and

WMAR provides address to modules.

In the following, read and write operations will be described in details. First, read

operations will be described followed by write operations.
5.2.1 The LL-RAM read operations

The LL-RAM is read according to the scan method shown in Figure 3.5.1, the first
overlapped scan method. This scan method requires reading every clock cycle 3
pixels simultaneously, one from each module as follows. When £ is low, the 3
multiplexers labeled muxb pass signal RE, which is active low, to the output signals
Y0, Y2. and YI. The three output signals enable all memory modules for read.
However, the scan method requires that in every run 3 modules should be enabled for
read as follows. First, modules 1, 2, and 3 should be enabled then modules 3, 4, and 5
followed by modules 5, 6, and 7 and so on. Thus, the role of the decoder labeled
dcodms is to guarantee that modules are enabled in the order specified above. First,
the output of the decoder labeled 0 will be activated to enable modules 1, 2, and 3.
Then, using the address bus, the first location of each enabled module is read into the
output buses. When f; makes a positive transition, the 3 pixels in the output buses are
loaded into a temporary register labeled DL (Data latch). Then the negative transition
of the clock f; loads the 3 pixels into the RPs latches. To address the second location
in each module, the negative transition of £ increments also register RMAR. This

process is repeated until the 3 enabled modules are read.

To enable the next 3 modules, register RMSR is incremented by one, which
asserts the second output of the decoder high. The decoder output labeled 1 enables
modules 3, 4, and 5 for read. When all 3 modules are read, the decoder output line

labeled 2 is activated by incrementing RMSR again by one to enable the set that
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contains modules 5, 6, and 7. This process is repeated until the whole RAM is

scanned.

In Figure 5.2.2 (b), the output of modules 3 and 5 are shown connected to mux0)
and mux!, respectively. These multiplexers are necessary because all modules with
odd numbers, except the first, are scanned twice. For example, in the first run, when
locations of module 3 are scanned they are placed in the bus labeled bus2, whereas in
the second run they are placed in another bus labeled hus0. Thus, to allow these
multiplexers to switch between bus2? and bus( their control signals are connected to

decoder dcodms output lines labeled 0 and 1 and so on.
5.2.2 The LL-RAM write operations

How the LL-RAM should be written can be determined by examining the scan
method or the dataflow table of the DWT architecture uncer consideration. For
example, examination of the first scan method shows that the CP would generate
output coefficients column-by-column, which implies that the RAM should be written

module-by-module.

In general, the RAM can be written as follows. When f; is high, the outputs 5/ and
b2 of the register labeled WER (write enable register), which is initially cleared to
zero, and the output of the NOR gate are passed through multiplexers to the outputs
labeled Y7, Y3, and YO, respectively. Since WER is initially zero, only Y0 will be
asserted high, which enable for write all modules /+3i, where i = 0,1, 2 ..., m-1. For
example, if m=3, then modules 1, 4, and 7 will be enabled. However, the RAM is
required to be written module-by-module and in order, i.e., first module 1, then 2
followed by 3 and so on and the function of the decoder labeled deodms is to provide
this module-by-module control. Thus, the decoder output ladeled 0 will be first

asserted high through WMSR to enable only module number 1 for write. Note that a
module is enabled for write when its both signals MS$ and E/W are asserted high and

all modules are disabled when signal E of dcodms is low.

When all locations of module 1 are written, WER is incremented by one to assert
only Y1 high. Y1 enables all modules labeled 2+3i, but since the first output of the

decoder is still high, only module 2 will be selected for write. 'When all locations of
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module 2 are written, WER is incremented again by one to assert this time Y2 high. Y2
enables all modules labeled 3+3i but since the first output of the decoder is still high,
only modules 3 will be selected for write. When all locations of module 3 are written,
WER is cleared to zero to set ¥ high, and WMSR is incremented by one to assert the
decoder second output labeled 1 high. Assertion of both Y@ and the second output of
the decoder enable only module 4 for write. This process is repeated until all modules

are written.

Note that WER is a 2-bit register that count from 0 to 2 and repeats. Furthermore,
the amount of data to be written in each decomposition level including number of
modules and number of locations to be written in each module, can be determined in
advance from the knowledge of the height and width of the image that will be

processed,
5.2.3 RAM architecture modifications for higher scan methods

The RAM architecture shown in Figure 5.2.2 can be easily modified to handle other
scan method. The circuits in the upper corner of the RAM architecture, consisting of
register WER and multiplexers labeled muxh, remain unchanged. However,
modifications for a specific scan method in general, can be obtained by eliminating
some of the OR gates whose outputs are connected to signal MS, as follows. For
example, the second scan method, which requires § modules to be considered for read
and two modules for write at a time, would require eliminating the first OR gate and
connecting the first output of the decoder labeled deodms to signal MS of each
modules mI, m2 and m3. While, connections to modules m4 and m3, remain
unchanged. Then, the connection pattern of the first 5 modules mi, m2, m3, m4, and

mJ is repeated in the next 5 modules m3, m6, m7, m&, and m9 and so on,

Similarly, the third scan method, which requires 7 modules to be considered for
read and 3 modules for write at a time, would require eliminating the first and the
second OR gates and then connecting the first output of the decoder to MS signal of
modules mI, m2, and m3 and that of the second output to signal MS of modules m+,
and m5. While connections to modules m6 and_m7, remain the same. The connection
patterns of the first 7 modules is repeated in the next 7 modules m7, m8, m9, ml10,

mll ml2 and mi3 and so on.
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Now, let’s see how read operations are performed on the RAM architecture based
on the second scan method. Since, the second scan method requires 5 modules to be
considered for read at a time, the modules labeled ml, m2 m3, m+4, and m5 will be
considered first. Thus, to read these modules location-by-location, registers RMAR
and RMSR are reset 0. This will allow register RMAR to address the first location in

each module and register RMSR to enable modules m!, m2, and m3 through the
decoder dcodms. Then, in the first clock cycle, when £ is low, the E/W signals of

modules mi, m2, and m3 are activated for read. This will allew the first location of
each modules m!, m2, and m3 to be read into the buses labeled bus0, busi, and bus2,
respectively. Then register RMSR is incremented by 1 to enable modules m4, and m5
for read. When f; is low, again in the second clock cycle, the first location in each
modules m4 and m5 are read into bus/ and bus2, respectively. When this is done,
register RMAR is incremented by 1 to point at the second location in each module.
Register RMSR is reset 0 to enable again modules m/, m2, and m3. When /) is low in
the third cycle, the second location in each modules m/, m2, and m3 are read into the
buses. Then, register RMSR is incremented by 1 to enable modules m4 and m3 and
disable m1, m2, and m3 though the decoder labeled dcodms. Again, when f; is low in
the fourth clock cycle, the second location of each modules m<4' and m5 are read into
busl and bus2, respectively. Then, register RMAR is incremented by one to address
the third location of each module and register RMSR is reset 0 to enable again
modules mi, m2, and m3. This process is repeated until the first 5 modules are read.
Then the same process is applied on the next 5 modules m5, m€, m7, m8, and m9 and

S0 On.

Similarly, the RAM architectures for third and fourth scan method etc. can be read
in the same manner described above. Note that, in the read operations described above
for the second scan method, after each read operation performed on modules m+ and
m5, the control should return to module m/ and repeat the process. The same situation
also occurs when the next 5 modules m5, m6, m7, m8, and m% are considered for read
and so on. That is, returning to module m5 from module m¢ should be remembered by
the control. Therefore, register XR is added to serve this purpose and it can be
connected to register RMSR as shown in Figure 5.2.3. A similar problem occurs with
write operations using registers WMSR and WER, and the solution shown in Figure

5.2.3 can be used, which is described in details in section 5.3.4.
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This RAM architecture would work well in DWT architectures, where pixels are
scanned in parallel, such as in the parallel architectures developed in chapter 5. But, if
a DWT architecture is required to scan RAM pixel-by-pixel, then in that case all OR
gates in Fig. 5.2.2 (a) are eliminated and each output of decoder dcodms is connected

only to signal MS of one module and the output buses are reduced to one bus.

On the other hand, how the RAM should be written would depend on the scan
method adopted. The first scan method, as described earlier, requires the RAM to be
written module-by-module. Whereas, the second scan method requires considering 2
modules for write at a time, as follows. Initially, registers WER, WMSR, and WMAR
are set 0. Setting WER and WMBR 0 while f£; is high enable module 1 for write, and
WMAR addresses the first location of module 1. This will let the first output
coefficient, LL0,0 to be stored in the first location of module 1. When the negative
transition of clock f; ending the cycle occurs, it will increment WER by one to enable
module 2 for write. During the high pulse of the second cycle of clock f;, the second
coefficient labeled LLO,1 is stored in the first location of module 2, while the negative
transition of clock f; ending the cycle clears WER to enable again module | for write
and increments WMAR to address the second location of module 1. In this location,
the third output coefficient, LL1,0 is stored during the high pulse of the third cycle of
clock /. The negative transition of clock # ending the third cycle, increments WER by
one to enable moduie 2 again for write. During the high pulse of the fourth cycle, the
fourth output coefficient, LL1,1 is stored in the second location of module 2. This
process is repeated until all required locations in the two modules are written. Then
the same process is applied on the next 2 modules m3 and m+4 and so on.  Note that
writing inte the RAM does not take place every clock cycle as reading but when it
occurs it coincides with reading and the order of writing coefficients occur as

described above.

Similarly, the third scan method requires writing into 3 modules at a time. In

general, the it/ scan method would require writing into / modules at a time,
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5.2.4 RAM architecture using banks

The decoder labeled dcodms, in the RAM architecture shown in Figure 5.2.2, is a very
large decoder. This large decoder can slow down the LL-RAM’s operations and can
degrade its performance in terms of speed and power. Therefore, it is necessary to
reduce the size of the decoder to a practical level. Furthermore, the signal labeled Y0,

Yl and Y2, each is shown in Figure 5.2.2 connected to drive read/ write signal labeled
E/W of several modules. Driving this large capacitive load in this way can also

negatively affect the performance of the RAM. For these reasons, the bank method is

introduced in Fig. 5.2.4 (a) to alleviate these problems.

Figure 5.2.4 (a) shows a bank structure with 8 modules. The bank can contain any
number of 2° modules where & = I, 2,...m-2. Read and write operations in the bank
can be performed in the same way as described for Figure 5.2.2. Figure 5.2.4 (b)
shows the block diagram of the bank. This block diagram is used in building the RAM
architecture shown in Figure 5.2.5. This architecture can be thought formed by
dividing the architecture in Figure 5.2.2, which can be considered as one big bank
holding 2™ modules, into several smaller independent banks each holding 2
modules. Inside the smaller banks reads and writes are performed as in the big bank

but faster and more efficient.

The architecture performs read or write operations bank-by-bank and in order, b/
first, b2 second followed by 53 and so on. In the architecture shown in Figure 5.2.2,
the decoder labeled dcodms is used for selecting modules, whereas the decoder
labeled dcodbs in Figure 5.2.5 is used for selecting banks. When read operation takes
place, the register labeled RBSR (read bank select register) controls the decoder but

when write operation takes place, the register labeled WBSR (write bank select
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register) controls the decoder. Both registers are (m-4)-bit counters with control

signals cfr (clear) and inc (increment).

The decoders which are attached to the banks labeled 51 and 52 etc. in the RAM
architecture shown in Figure 5.2.5, each is responsible for selecting modules when its
bank is enabled by decoder dcodbs. When the architecture performs read operations in
bank b1, for example, the register labeled RMSR (read module select register) controls
the decoder output through mux. When it performs write operations, the register
labeled WMSR (write module select register) controls output of the enabled decoder.
Registers RMSR and WMSR both are 2-bit counters that count from 0 to 3 and
repeats. When all modules in a bank are read or written, the signals labeled zbr or zbw
will be asserted high, respectively, indicating that the next bank can now be enabled
by dcodbs. To see how effective the bank method in reducing the decoder size,
consider the following. Suppose, M=2" is the largest image width that can be
processed by the DWT unit. Then, the maximum number of modules in the RAM will
be (2"”) modules with decoder size m-2; 2™°. Now, if each bank is structured to

contain 2° modules, then

2m—]/2h :zm—h-l (51)

represents number of banks and number of decoder deodbs outputs. Whereas,

2m—h—l/2m—2 — 2—h+! (5 ])
gives the reduction in the decoder size. Thus, if =3, the decoder size decreases by a

factor of 4.

5.3 Subband memory architecture development

The basic architecture of the subband memory is shown in Figure 5.3.1. The
architecture is developed with two objectives in mind to achieve, that is, write
operations by the DWT unit and read operations by compression unit, which are

somewhat complex operations, should be performed effectively.

The strategy adopted for managing subband memory architecture for an NxM
image is as follow. The first decomposition, which consist of subbands HL.1, HH]1,
and LHI, are stored in the memory blocks labeled HL!, HHI, and LH1, respectively.

Then, the compression unit is informed to read these memory blocks. The
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compression unit can read each subband memory block code-block by code-block for
EBCOT (Embedded Block Coded with Optimized Truncation) coding as required by
JPEG2000 standard [7]. The compression unit applies compression  algorithm on
each code-block independently. The compression unit first reads contents of AL/,
then HH 1, and last LH/, while, the LL1 subband coefficients, which are stored in the
RAM, ate scanned by the RPs for further decomposition.

Subbands of the second decomposition HL2, HH2, and 1.H2, are stored in the
subband memory blocks labeled HL2, HH2, and LH2, whereas, subbands of the
third decomposition are stored in the subband memory blocks labeled /L3, HH3, and
LH3, and so on. However, subbands of the last decomposition are stored in the

subband memory labeled HLjmax. HHmax, LHjmax, and LLjpex.

When the LL1 subband is decomposed into the required nuinber of decomposition
levels, the compression unit is again informed. Thus, the comprzssion unit is informed
twice during the whole decomposition process. First, when subbands of the first
decomposition are available in subband memory blocks FLI, HHI, and LHI.
Second, when all subsequence decompositions of LL1 subband are completed and are

stored in their respective subband memory blocks.
5.3.1 The bank structure used in forming subband memory

In Figure 5.3.1, each block of the subband memory labeled HLI, HHI, etc. is a 2-
dimensional memory block, size 2™x2™7, where j =1, 2, 3...jmax and jmax is the
maximum number of decomposition levels allowed. Two methods of forming a bank
containing modules are shown Figures 5.3.2 and 5.3.3. The first bank shown in Figure
5.3.2 contains 2” modules. When signal EM is asserted high, it enables the bank for
both read and writes operations. Whereas, which module to read or write is
determined by the decoder and the address lines are used to address each location in
the selected module starting from location zero to location 2"7-1. The block diagram

of the bank is shown in Figure 5.3.2 (b).
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The second bank and its block diagram are shown in Figure 5.3.3 (a) and (b),
respectively. It consists of two smali banks, the upper and the lower banks, which in
turn form a larger bank. The second bank method reduces the decoder size by 2 as
compared with the first bank method, and allows more packing of modules into a
bank. The number of modules in the larger bank is 2*, while the lower and upper
banks each contains (2°') modules as indicated in Figure 5.3.3(a). Reads or writes
into the bank take place module-by-module. Modules in the upper bank are read (or
written) first followed by the lower bank modules. When signal £ is enabled, the
upper bank is selected by asserting the signal EUB (enable upper bank), whereas the
lower bank is selected by asserting the signal £LB (enable lower bank). Modules in
the upper or lower banks are selected by the decoder. Modules are selected in the

order specified by the decoder, which selects a module at a time.
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Figure 5.3.2 (a) structure of the first bank (b) its block diagram
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Using the block diagram of the second bank, the subband memory block

architecture shown Figure 5.3.4 (a) is formed. The architecture consists of 2™
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banks, each bank contains 2° memory modules and each module contains 2
locations. The decoder labeled deodbs in Figure 5.3.4(a) selects one bank at a time for
reads or writes. Banks are selected in order, first 5/, and second 52 and so on. The

modules inside a selected bank are enabled one at a time through the lines labeled MS
{module select). The line labeled @/LB enables the upper bank when asserted low

and the lower bank when asserted high. Reads or writes occur when signal £ of

decoder dcodbs is asserted high.

The block diagram of the architecture is shown in Figure 5.3.4(b). This block is
used further for forming the subband memory architecture shown Figure 5.3.1. That

means, each block in Figure 5.3.1 is replaced by the block diagram shown in Figure
5.3.4(b).

Suppose, for instant, the largest image size that can be processed is N=M=2""_ b is
3, and the maximum number of decomposition levels, jmax is 7. Then, this implies
that the subband memory blocks labeled HLJ, HHI, and LHI for j=1, should each be
designed to contain 64 banks and each memory module in a bank should contain 2°
locations. The blocks of the second level labeled HL2, HH2, and LH?2 for j=2, each
should contain 32 banks and each module in a bank should contain 2° memaory
locations. Similarly, the sizes of the subband memory blocks for third and forth and so
on to jmaxth level can be determined. Note that the blocks of the last level labeled
HL oo HH pux, LH e, and LL . for j=jmax=7, each must be designed with one bank
with each module in the bank having 2’ memory locations. That is each block should

be 8x8.

5.3.2 Details of the subband memory architecture

The details of the subband memory architecture and its interconnections are shown in
Figures 5.3.5 and 5.3.6. These two figures together give the complete architecture of
the subband memory. The architecture is designed to allow the DWT unit to write into

subband memory and the compression unit to read it.

The two sets of registers labeled MARI and MAR2 in Figure 5.3.5 supply address
to modules that are selected for reads or writes. MAR/, which is an (n-7}-bit counter,

provides addresses to modules of the first level memory blocks labeled HLI. HHI,
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and LHI, whereas, MARZ, an (n-2)-bit counter, provides addresses to all memory
blocks that lay below the first level. Note that in Figure 5.3.6, the 3 signals labeled

RS, 5§/LB, and MS are grouped together and are connected to the output of the

register labeled SMSR (subband module select register), where BS and MS occupy the
most and the least significant bits positions, respectively. Grouping of these 3 signals
in this way facilitate banks and modules within a bank to be accessed successively.
These signals can be generated by register SMSR, which is a simple counter. This
register will drive these signals and will determine their valuzs by simply counting
from 0 to 2™, where 2™ represents number of modules to be written (or read) in each
subband memory block. The value in the SMSR gives, when & block of the subband
memory is enabled for reads (or writes), the bank number ard the module number
selected in the upper or lower bank. SMSR/ is an (m-1)-bit register and is used along
with MAR] to address only subband memory blocks of the first level. Whereas
SMSR2, which is an (m-2)-bit register, is used along with MAR2 to address all
subband memory blocks that lay after the first level.

Figures 5.3.5 and 5.3.6 also show two groups of registers labeled A4 and B. These
registers make it possible to control storing of output coefficients in the subband
memory by either single or parallel pipelined 2-D DWT architectures. Single
pipelined architectures generate two output coefficients each clock cycle, reference to
the processor’s clock. The two output coefficients might belong to either subbands
LH and LL or subbands HL and HH. In the first case, one coefficient (the high
coefficient) is stored in the subband memory block LH using group B registers, while
the other coefficient (low coefficient) is passed to LL-RAM where it is stored. In the
second case, simultaneously, the low and high coefficients are stored in the subband
memory blocks HL and HH, respectively, using group 4 registers. On the other hand,
the parallel architectures generate 4 output coefficients every ¢!ock cycle that belong
to subbands HL, HH, LH, and LL. The 3 coefficients of subbands HL, HH, and LH
are stored in the subband memory blocks HL, HH, and LH using both groups A and B
registers, while coefficient of subband LL is passed to LL-RAM.
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Suppose, now the DWT unit is requested to process, for example, a 256x200

image and to decompose it into 5 levels of decomposition. Tre first decomposition

146



will generate 4 subbands, each of size 128x100. The 3 subbands HL1, HHI1, and LH1
will be written into the subband memory blocks /L, HHI and LHI. That is, in each
subband memory blocks HLI, HHI, and LHI, 100 modules will be written and each
module addresses range from 0 to 127. SMSR/! selects a bank and a module in the
bank to be written, while MAR! generates addresses for accessing locations in the

selected module.

The second decomposition generates also 4 subbands images, each of size 64x50.
The 3 subbands HL2, HH2, and LH2 will be written into the subband memory blocks
HL2, HH2, and LH2. In each subband memory block, SMSRZ is used for selecting a
bank and a module in the bank and MAR2 is used for generating addresses for

accessing each location in the module.

The third decomposition generates 4 subbands HL3, HH3, LH3, and LL.3 each of
size 32x25. The first 3 subbands are stored in the subband memory blocks HL3, HH3,
and LH3, respectively.

The fourth decomposition generates 4 subbands HL4, HH4, LH4, and LL4.
Subbands HL4 and HH4 each is of size 16x12, while subbands LH4 and LL4 each is
of size 16x13. The first 3 subbands are stored in the subband memory blocks HL4,
HH4, and LH4, respectively.

The fifth decomposition, which is the last decomposition, generates 4 subbands
HLS5, HH5, LHS5, and LL3. Subbands HL5 and HHS each is of size 8x6, while
subbands LH5 and LL5 each is of size 8x7. These 4 subbands are stored in the
subband memory blocks HL3, HHS, LHS, and LLjp.x, respectively. Note that the LL;
subband of the last decomposition should always be stored in the subband memory

block labeled LL,,,..

The decoder labeled dcodw along with the register labeled WDER and the FFs
labeled Fbwe, Fwl, Fw2, and FLLwe are used for enabling subband memory for
writes. Whereas the decoder labeled deodr along with the two registers labeled RDER
and RBER, and the FFs labeled FRI, FR2, and FLLre are used by compression unit

for enabling subband memory for reads.
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The two registers labeled WDER (write decomposition register) and RDER (read
decomposition register) both are counter that count from 0 to /j-/. These registers are
initially designed to count from 0 to jmax-1, where Jmax is the maximum number of
decomposition allowed. In a decomposition process, the required number of
decompositions, j desired should be provided by loading ; into a register. Moreover,
the order of writing into the subband memory blocks are controlled by WDER,
whereas the order of reading them by compression unit are controlled by the two

registers labeled RDER and RBER.

To write subbands coefficients of the first level decomposition into subband
memory, the DWT unit initially clears registers SMSRI, MAR/, WDER, and the flip-
flop (FF) labeled FLLre to zero and sets the FFs labeled Fw/ and Fbwe 1. Fhwe
enables the decoder dcodw and since WDER is 0, the first output of the decoder
labeled 0 is activated. Activation of this output signal enables subband memory
blocks HLI, HHI, and LH! for write. The value in register SMSR! determines the
bank number and the module number to be written in each enabled subband memory
block. While register M4R/ is used for addressing each location in the 3 selected
modules. When all locations of the 3 modules are written, register SMSR! is
incremented by one to select the next 3 modules, one from each enabled blocks. This
process is repeated until all modules in the 3 enabled subband memory blocks are
written. The DWT unit resets FF 7w/ 0 and then informs the compression unit, say,
by asserting a FF high. The compression unit responds by reading contents of the

subband memory blocks HLI, HHI, and LH, and compresses them independently.

Meanwhile, the DWT unit moves to the second level in the subband memory by
incrementing register WDER and setting Fw2 1. This allows the DWT unit to write
subbands coefficients of the second decomposition into the subband memory.
Incrementing register WDER by one activates the second cutput of the decoder
labeled deodw. This output enables subband memory blocks labeled H1L2, HH2, and
LH2 for write. In addition, registers SMSR2 and MAR2 are reset zero. Resetting
SMSR2 zero, selects the first bank in each one of the 3 enabled blocks and enables the
first module in each selected bank for write. Register MAR2 is used for addressing
each location in the 3 enabled modules. The process of writing into these modules

proceeds as that of the first level. When all modules in the 3 enabled subband memory
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blocks are written, the third level in the subband memory is enabled by incrementing
WDER by one. This activates the third output of the decoder, which enables blocks
HL3, HH3, and LH3 for write. This process is continued until the last decomposition
level is reached. When all subbands coefficients of the last decomposition are written,
the DWT unit will inform again the compression unit. It will also reset Fhwe and

Fw2 zero to disable subband memory for writes, until it read by compression unit.

On the other hand, reading of subband memory by compression unit proceeds as
follows. As soon as the compression unit receives the first signal from DWT unit,
confirming that the first level decomposition is completed and its subbands
coefficients are available in the subband memory blocks HLI HHI, and LHI, the
compression unit clears registers RDER, RBER, SMSR1,and MARIto zero and sets FF
FRI 1. Resetting RDER and RBER zero enable the subband memory block labeled
HL] for read. While resetting SMSR/ selects the first bank in block HL! and enables
the first module in the bank. Then MAR/ is used for addressing each location in the
module for read. The next module is enabled by incrementing SMSR! by one. The
compression unit continues in this fashion until all 7./ modules are read. Then RBER
is incremented by one to enable HH 1 for read and SMSR! and MARI are reset zero to
select the first bank and enable the first module in the bank. Then, reading of block
HH I proceeds as that of HL/.

To enable block LA, the compression unit increments again RBER by one and
resets SMSR! and MAR! zero, When all modules in LHI are read and the second
signal from DWT unit is received to confirm that all subband coefficients, starting
from the second level decomposition, are available in their respective subband
memory blocks, register RDER is incremented by one to enable the second decoder
(dcod2) and RBER is reset zero to activate the first output of the decoder. In addition,
FRI is reset zero and FRZ is set 1. Activation of the first output of the second decoder
enables block HL2 for read. Then compression unit uses registers SMSR2 and MAR?2
to read block HL2 module-by-module as described in the first level. After /L2 is
read, HH2 is enabled for read then LH2. The compression unit reads subband memory
level-by-level and each level is read block-by-block and each block is read bank-by-
bank and each bank is read module-by-module until it reaches the last subband

memory block labeled LL,,.. To read block LL,y.x, the compression unit sets FLLre 1
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to enable this block for read and then uses registers SMSR2 and MAR?2 to read its

contents.
5.3.3 Subband memory architecture for higher scan methods

With first scan method, writing into each subband memory block takes place module-
by-module. That means, only one module in each block will be enabled for write at a
time. The second and the third scan methods require writing into 2 and 3 modules at
time in each block, respectively. In general, the ith scan method requires writing into i

modules in each subband memory block.

To see how this can take place consider, for example, the dataflow for the 2-
parallel intermediate architecture shown in Table B.12. The dataflow table shows that
the architecture yields 4 output coefficients every clock cycle, reference to

clockf2/2. The 3 output coefficients labeled HHO0,0, HL0,0, and LHO0,0 in Table B.12

should be stored in the first location of the first module in each subband memory
blocks HHI, HLI, and LH]I, respectively. The second output coefficients HHO,1,
HLO,1, and LHO,1 should be stored in the first location of the second module in each
subband memory blocks HHI1, HL1, and LHI, respectively. The third output
coefficients HH0,2, HL0,2, and LH0,2 should be stored in the first location of the
third module in each subband memory blocks HHI, HL1, and LH 1, respectively. The
fourth output coefficients HH1,0, HL1,0, and LH1,0 should be stored in the second
location of the first module in each subband memory blocks HHI, HLI, and LH]I,

respectively.

It is obvious, after the third output coefficients are stored, the process of storing
coefficients returns to the first module in each block to repeat the process until the
first 3 modules in each subband memory blocks HHI, HLI, and LH] are written.
Similarly, the next 3 modules in each subband memory blocks HH!, HLI, and LH/
are written and so on. When all modules in the subband memory blocks HH/I, HLI,
and LH! are written, the process moves to the second level of the subband memory
blocks HH2, HL2, and LH2 to store subbands coefficients of the second
decomposition lfevel. However, in order for the control to move =ffectively between 3

modules, the first module number ought to be remembered by the control. For this
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reason, register XR is added and is connected to register SMSR as shown in Figure

53.7.

Initially, registers SMSR, MAR and XR are reset 0. When SMSR is reset, BS
enables the first bank in each subband memory blocks HHI, HLI, and LHI, while

UB and MS enable the upper bank and the first module in each bank, respectively.
This will allow the first 3 output coefficients HHO0,0, HLO,0, and LH0,0 to be

stored in the first location of

v
M XR <

1 SMSR

i

clr e

— gy |UB|MS<]

Figure 5.3.7 Incorporation of register XR

each module in blocks HHI, HLI, and LHI, respectively, addressed by AAR. Then
register SMSR is incremented by one to enable the second module in each subband
memory blocks HHI, HLI, and LH/. This will allow the second output coefficients
HHO,1, HLO,1, and LHO,! to be stored in the first location of the second module in
each subband memory blocks HH/, HLI, and LHI, respectively. To store the third
output coefficients HHO0,2, HL0,2, and LH0,2 in the first location of the third module

in each block, register SMSR is again incremented by one.

Since, the fourth output coefficients HH1,0, HL1,0, and LHI1,0 should be stored in
the second location of the first module in each subband memory blocks HH/I, HLI,
and LHI, respectively, register XR, which is 0, is loaded into SMSR while MAR is
incremented by one to address the second location in each module. This process is
repeated until the first 3 modules in each block are written. At that point, where run 2
begins, SMSR will be 2, indicating that the third module is the last module written in
each block. To enable the fourth module in each block, register SMSR is incremented
by one and the result is loaded into XR so that this module number can be

remembered, while MAR is reset 0 to address the first location in each module. This
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will allow the first 3 output coefficients of run 2 to be stored in the first location of
gach module enabled in the subband memory blocks HH1, HL1, and LH1. Then,
register SMSR is incremented by one to enable the fifth module in each block. When
the first location of each module is written, register SMSR is incremented again by
one to enable the sixth module in each block. When the first lccation of each module
is written, register MAR is incremented by 1 and register AR is loaded into SMSR to
enable again the fourth module in each block and the process repeats. When all
modules in the first level are written, the subband memory blocks HH2, HL2, and
LH2, in the second level, are enabled and writing into these blccks proceeds as in the

first level.

A flowchart, which describes the control algorithm that can be used to control
subband memory write operations, is shown in Figure 5.3.8. In the flowchart, the
following 3 registers are used. Register RN3 holds number of locations to be written
in a module. Register RM3 holds number of modules to be written in a subband
memory block, while RS holds the scan method number. Thus, if DWT architecture is
based on the third scan method, e.g., 3 is loaded into RS to indicate number of
modules that will be considered for write in each subband memory block at a time.

Flast is a FF, when it is set 1, indicates the last run.

The flowchart remains in state SO as long as the status input signal wsub is low,
When wsub is asserted high, the process of storing subbands of the first
decomposition level begins. As the flowchart moves from states SO to S7 it resets
registers SMSR, MAR, WDER, XR, and FF Flast 0, sets FFs FW1 and #bwe 1, loads i
into RS, while number of modules and number of locations are loaded into RA3 and
RN3, respectively. In state S/, register RS is examined. As long as it is not 1, the loop
consisting of states S7 and S2 is executed, during which write operations take place in
the modules enabled in each subband memory blocks HHI, HL/, and LH. When RS
becomes I, register RN3 is examined. [f RN3 is not equal 1, the control moves to state
§3. As the control moves from states S3 to S/, register MAR is incremented and
register RN3 is decremented, while register XR and i are loaded into SMSR and RS,
respectively. If RN3 is 1, it indicates the last location is reached and the flowchart

moves to state S4. As it moves from states S/ to 54, it loads SMSR into XR and
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Figure 5.3.8 Flowchart for subband memory write control algorithm

subtracts / from RM3 to reflect number of modules that remain to be written in the

subband memory blocks that are under consideration.
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In state S4, a signal would be issued to reset MAR 0, to increment SAMSR and XR,
and to load RN3 with number of locations, while register RM3 is examined. If RM3 >
1, the flowchart moves to state S7 to consider the next / modules in each subband
memory block for write. But, if (RM3 < jj, then the last run is reached and RM3
contains number of modules that are remain in each subband memory block which
will be considered for write in the last run. Number of modules that will be considered
in the last run will be i, i-1, i-2...0or I depending on the image width M. For example,
if the architecture is based on the third scan method , then number of modules that
will be consider in the last run will be either 3, 2, or 1. In addition, if RM3 <, the
status of the next input is examined. If Flast is 0, then the control moves to state S to
begin storing the output coefficients that will be generated in the last run and as it
moves to state S/, it set Flast | and loads RM3 into BS. When Flast is 1, the flowchart
returns to its initial state SO and remains in that state until ac:ivated for the second
level decomposition. The algorithm given in Figure 5.3.8 is general and is intended to
illustrate in a broad sense how subband memory is written. However, the algorithm

can be modified to fit any specific architecture requirements.
3.4 Control Design for 4-parallel Architecture

Int this section, to demonstrate that the controls for the architectures developed in
chapter 4 and 5 are simple to design, the control algorithins for the 4-parallel
architecture shown in Figure 4.2.7 including the LL-RAM and subband memory
architectures will be developed. Control unit is responsible for issuing proper control
signals, in respond to a clock pulse, to the components of the architecture where data

processing take place.

Figure 5.4.1 (a) shows the interconnection between subband memory of Figure
53.1 and the 4-parallel pipelined architecture shown in Figure 4.2.7. The
interconnection between the two entities is accomplished through four multiplexers,
labeled mux. Furthermore, since CP1 and CP3, and CP2 and CP4 load into their

output latches four new coefficients each time clock fi, makes a positive and a
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Figure 5.4.2 DWT Control Unit

negative transition, respectively; therefore, the clock fi, is connected to the input
control signal of the four multiplexers. When £}, is high, the four multiplexers will
pass the four output coefficients generated by CP1 and CP3 to subband memory and

LL-RAM for storage. Otherwise, the four multiplexers will pass the output
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coefficients of CP2 and CP4 to subband memory and LL-RAM for storage, as
ilfustrated in Figure 5.4.1 (b).

In Figure 5.4.2, which represent the overall DWT control unit, four control units
have been identified and labeled main control unit, processors control unit, read RAM
control unit, and write RAM/subband memory control unit. The main control unit

consists of 3 units, A-unit, B-unit, and C-unit.

In the following, a description of each control unit function will be given along
with its algorithmic state machine (ASM). The ASM is a special flowchart, which
precisely specifies the control algorithm that can be used for deriving the hardware of

the control,
5.4.1 Main Control Unit
a) C-unit

This unit is basically consists of various registers, as shown in Figure 5.4.3. These
registers functions are to generate contro! signals, which will be used by all other
control units as input control signals. At the start of a decomposition process, the
height (¥) and the width (M) of an image along with the desired number of
decomposition levels () must be loaded into registers RNG, RMO, and RD,
respectively. The loading of these registers should be handled by an entity other than
the DWT unit, for example, microprocessor. Then DWT unitt is activated by asserting

the start signal of A-unit.

The signals labeled £N and EM in Figure 5.4.3 are examined by the control units
to determine whether N and M are even or odd. In section 4.2.3, two cases where
identified regarding storage of high coefficients. In the first case, if the two least
significant bits of & are either 00 or 11, then the high coefficients should be stored in
the TLBs of the RPs that generate them. In the second case, if the two least
significant bits of N are either 01 or 10, then the high coefficients of RP1 should be
stored in the TLB of RP3 and vice versa, while the high coefficients of RP2 should
be stored in the TLB of RP4 and vice versa. Thus, the signal labeled zs is formed to
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detect occurrence of these two cases. If zs is 1, it signifies occurrence of the first case,

otherwise, the second case.

Figure 5.4.3 shows that contents of RNO should be transferred to both registers
RN1 and RNC. However, if RNC is odd, which can be determined by examining
EN, it is first shifted to right (divided by 2) and then is incremented by one, otherwise,
it shifted to right only. These operations are controlled by A-unit. The result is then
loaded into two registers labeled RN2 and RN3. Register RN2 holds number of
operations in a column when DWT is applied column wise by CPs and each operation
requires 3 pixels or coefficients except the last operation, while register RN3 holds

number of locations to be written in a module.

On the other hand, contents of the register labeled RMJ0 is examined by the B-unit
to determine whether it is even or odd. If signal £M is 1, then RMO is odd and it is
shifted to right and then is incremented by one, otherwise, it is shifted only to right.

The result is then transferred to the three registers labeled RM1, RM2, and RM3.

Registers RN1 and RMI are used by the read RAM control unit. Register RM|
holds number of runs required in a level decomposition, where each run activates 3
modules for read except the last run. When the signal labeled Zr (last run) is asserted
high it indicates that the run before the last has completed. On the other hand, register
RN1 holds number of locations to be read from each module in a run. The signal
labeled z2, which is generated by an XNOR gate attached to RN, is shown connected
to RM1’s signal labeled dec (decrement). When register RN1 is counted down to 2,
signal z2 is asserted high, which in the next clock cycle will decrement register RM1
by one to reflect number of runs remaining. Signal z/ is similar to z2, but it is asserted
high when RNI is counted down to 1 and it indicates a run has completed. Then the
next run can be initiated by reloading register RN1 from RNO. Signal z5 is asserted
high when RN1 is counted down to 5. This signal will be made clear when TLB

control unit is introduced later.

The registers labeled RM3 and RN3 are used by both write control units of the
LL- RAM and subband memory to control write operations in the two memories.
Register RM3 function is to hold number of modules to be written in the RAM and in

each subband memory block enabled for write in a level decomposition. When RM3
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is counted down to zero, signal zm is asserted high to indicate all modules for this
decomposition have been written and the next decomposition level can be initiated.
On the other hand, register RN3 function is to hold number of locations to be written
in a module. When all locations in a module are written, the signal labeled zwe is
asserted high and RN3 can be then reloaded from RNC for the next module to be
written. This process is repeated until all modules in a decomposition level are

written. The occurrence of this event will be signified by assertion of signal zm.

The registers labeled RM2 and RN2 are used by the CPs control unit, which is
part of the processors control unit. Register RM2 holds number of columns, in L. and
H decompositions, to be scheduled for CPs. When all columns in L and H
decompositions are scheduled, the signal labeled z/c is asserted high to indicate that
this is the last cycle where the coefficients of the last operation in the last column will
be transferred to CPs input latches. On the other hand, register RN2 holds number of
operations in a column, where each operation requires 3 coefficients except the last
one. Each time an operation is scheduled, RNZ is decremented by one. When all
operations in a column of L and a column of H are scheduled, signal 7+ (transition) is
asserted high. That is when RN2 is counted down to 2. Assertion of signal 7r
indicates that in the clock cycle after next, the last operation in a column, before a

transition is made to the next column, will be scheduled.

The final register in C-unit is the register labeled RD. Register RD holds number
of decomposition levels (/) desired for an /NxMj-image decomposition. Each time a
decomposition level is completed, RD is decremented by one. When all J levels of
decomposition are completed, that is, when RD is counted down to zero, the signal
labeled EP! is asserted high signifying end of the process. The second signal labeled
EP2 is asserted high when RD is counted down to | to indicate this is the last

decomposition.
b) A-unit

The ASM flowchart and the block diagram for A-unit are shown in Figures 5.4.4 (a)
and (b), respectively. The ASM chart describes the control function of the A-unit,
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while the block diagram displays the input and output control signals. As soon as
registers RNO, RMO, and RD are loaded with N, M, and .J, respectively, A-unit is
activated by asserting the start signal. As long as the start signal is low the A-unit
remains in the initial state SO. The activation of A-unit starts the decomposition

process.

When start signal is asserted high, the 4-unit first initializes several registers and
flip-flops (FFs) by asserting its output signal labeled Y0 and then it moves to state S1
at the clock event. In state S1, it examines signal EN fo determine whether register
RNC is even or odd. If EN is 1, then RNC is odd and the ASM asserts the conditional
output signal labeled shnc. At the clock event, RNC is shifted to the right. In state S2,
RNC is incremented by one. If EN is 0, register RNC is shifted to the right only.
Register RNC now holds the number that will be loaded into register RN2 and RN3.
In state S3, the B-unit is activated by asserting signal stBU high. In state S4, signal
EDL (end of a decomposition level) is examined. If £DL is 0, the ASM remains in
state 84 until £DL is 1. When EDL becomes 1, register RD is decremented by one and
the ASM moves to state S5. In state S35, the status input signal labeled EP! is
examined. If £P/ is 1, then this indicates the decomposition process has completed
and the control returns to its initial state SO at the clock event. Otherwise, the control
executes the loop consisting of states 56, 57, S8, and S1. Inside the loop a new value
for RNO is computed. This value gives the height of the LL-image to be decomposed

next.
c) B-unit

The B-unit is represented by the ASM flowchart and the block diagram shown in
Figures 5.4.5 (a) and (b}, respectively. When B-unit is activated, by asserting its input
signal labeled stBU high, it immediately initializes all FFs labeled Qr, in the
processors control unit, to zero by asserting the output signal labeled initQrs and then
moves to state S1. In state S1, registers RN2 and RN1 are loaded from RNC and RNO,

respectively, while register RMO is shifted to the right one position,

In state S2, a decision is made based on signal EM, the least significant bit of
RMO. IF EM 1s |, RMO is incremented by one; otherwise, RMO is left unchanged. In
state S3, the new value in register RMO is loaded into registers RM2, RM1, and RM3.
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In state S4, the FF FE is set | to enable the LL-RAM for read and write. The
RAM is enabled when signal E of dcodms or dcodbs are high. In addition, the TLB
control unit and the CPs control unit are activated by asserting the input signals s¢7TLB
and stCPC, respectively. Furthermore, while the ASM is in state S4, signal
f5 is examined. If f5 is 0, the scanner control unit is activated to scan the original

image pixels; otherwise, read RAM control unit is activated to scan the LL-RAM.

In a decomposition process, the original image pixels are scanned first through an
image scanner. Thus, in the first level decomposition the scanner control unit is
activated to scan the original image pixels. Then in all subsequence decompositions,
read LL-RAM control unit is activated. This process is controlled by signal /s of FF
Fs. First, Fs is cleared to zero by 4-unif and then examined by B-unit in state S4. The
scanner control unit sets Fs 1 at the end of the scan to allow in all subsequence
decompositions the LL-RAM to be scanned. Signal f5 can also be used to control the
operations of the multiplexers that would be needed in Figure 4.2.7 to select between
passing the scanner or the LL-RAM data. If signal /s is 0, the multiplexers should pass
to RPs the pixels that will be scanned by the scanner, otherwise, should pass data that

will be read from the LL-RAM.
5.4.2 Processors Control Unit

The processors control unit consists of two control units, the RPs control unit and the
CPs control unit, which are in charge of issuing control signals to RPs and CPs,
respectively. The RPs control unit generates the following signals labeled zs, sre0,
sre3, srel, sre2, and incAR for the RPs. These signals are generated by the RPs
control unit by setting or resetting each of the FFs labeled Qr0, Qrl, Qr2, and Qra
shown in Figure 5.4.2. These signals are then transferred to the first stages of the RPs
and loaded into the latches labeled CST (control signal latches). These latches then
carry these signals from stage-to-stage. Each time a stage is reached; signals that are
used in that stage can be dropped from the CST and the rest are carried on until the
last stage is reached. These signals are used in both 5/3 and 9/7 processors. For
example, signal incAR which is used in stage 2 of the 5/3 is also used in stages 2 and 5
of the 9/7. This is also true for other control signals. Thus, the control developed here

can be used in both 5/3 and 9/7 architectures. Similarly, the CPs control unit generates
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four extension signals labeled sce0, sce3, sce2, and sce ! by setting or resetting each of

the FFs labeled Qc5, Qc6, and Qc7 shown in Figure 5.4.2,
a} The RPs Control Unit

The RPs control unit is further divided into two units, the TLB control unit and the

extension control unit.
i} The TLB Control Unit

The TLB control unit is in charge of the reads and writes operations that take place in
the 4 RPs’ TLBs. The control unit generates the control signal incar (increment
address register) for both TLBARa and TLBARD registers shown in Figure 4.2.9. Both
TLBARs are (n-2)-bit counters.

The ASM chart, which represents the control algorithm of the TLB control unit, is
shown in Figure 5.4.6. The control unit is activated when its status input signal stTLB
is asserted high by B-unit. Then at the clock event, the ASM moves to state S1. In
state S1, FF FEXR is set 0 and signals ETLB, sal2, and sa34 are set i, while a
decision is made based on the input signal labeled zs. If zs is 1, the control takes the
path labeled casel and in every clock cycle each location of a TLB is read in the first
half cycle and written in the second half using only TLBA4Ra as address register. But if
zs is 0, the control takes the path labeled case2 and read and write operations take

place according to Table B.11.

As explained in chapter 4, signal zs will be 1, when the two least significant bits of
N are either 00 or 11, which implies that the high coefficients of stagel will be stored
in the TLB of the RP that will generate them, starting from the TLB of RP1. This
would require FF Qra, which drives signal incar of cach TLBARa in the 4 RPs shown
Figure 4.2.9, to be set 1 a clock cycle before external memory scanning begins, as
shown in Figure 5.4.6 (a). In state S2, where scanning of the external memory begins,
the extension control unit is activated by asserting signal st£X high. When the ASM
moves to state S3, the first three pixels and content of Qra are loaded into the three

RP1 latches and CSTa, respectively.

In state 83, the control examines signal z5 and will continue executing the loop
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Figure 5.4.6 (a) ASM flowchart for TLB control unit (b) The block diagram

consisting only of S3 as long as z5 is (. Each time this loop is executed three pixels
and Qra are loaded into one of the RP latches until z5 is asserted high. Assertion of z5
allows Qra to insert zero in each of the last 4 operations that will be scheduled for the
4 RPs. The insertion of zeros occurs while the control is in state S4. These zero
values of signal incar are necessary to reset register TLBAR of each TLB zero so
that it addresses the first location at the start of the next run. The control remains in
state S4 until z/ becomes 1. When z/ is 1, the control examines signal EN. If EN is

I, then N is odd and the external memory will not be scanned in the next cycle.
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Therefore, the control sets signal ETLB 0 to disable TLB so that read and write can
not take place during the next cycle and then moves to state S5. But, if EN is 0, the

control sets FF Qra 1, which asserts signal incar high, and then moves to state S5.

In state S5, the control sets Qra 1 and examines FF FEXR and signal Lr (last run).
If both are 0, then the next run is initiated by executing the loop consisting of states
§3, 84, and S5. This loop usually will be executed for several times and each time it
executed, a new run will be initiated until signal Lr becomes 1. Signal Lr will be 1
only when last run is initiated. When signa! Lr becomes 1, signal lossy is examined.
If fossy is 0, the operation is 5/3 last run and the control returns to its initial state SO
and remains in that state until activated. Otherwise, the operation is 9/7, which
requires extra run, and the control set both FFs Q0 and FEXR | and moves to state S3
to initiate the last run. When the control reaches state S5 again, it examines FEXR. At
this time FEXR should be 1 and the control sets both FFs Q1 and Q0 0, as required by

Table B.5 (a), to initiate the extra run. Then the control moves to its initial state SO.

On the other hand, when the two least significant bits of N are either 01 or 10,
signal zs becomes 0 and the control takes the path labeled case2 to state S6. When this
path is taken, high coefficients generated by stage 1 of each RP will be stored
according to Eq{4.3) starting from TLB of RP3. Therefore, setting of Qra is delayed

until state S7.

In state S6, where scanning of the external memory begins, the extension control
unit is activated by asserting signal st£X high. When the control moves to state 87,
the first 3 pixels scanned from the external memory are loaded into RP1 latches. In
state S7, Qra is set | and signal EN is examined to determine whether N is even or
odd. If N is I, then N is odd and the control moves to state S8, where it examines
signal z2. As long as z2 is 0, the control executes the loop consisting only of S8.
Signal z2 will be 1 when register RN1 is counted down to 2 by read RAM control unit
and it indicates that in the next cycle the last operation of the current run will be
scheduled for computation. When z2 becomes 1, the control examines signal sa34.
According to Table B.11, signal sa34 will alternate between 1 and 0 values. Therefore
it has been used here to indicate whether the current run sequence is even or odd.
Signal sa34 will be 1 when a run sequence is odd and it will be 0 when the sequence

is even. Thus, at the end of the first run, sa34 will be 1 and the conditional output
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signal Qrabl will be asserted high and at the end of the second run, it will be 0 to
assert signal Orab0 high and so on. In both cases, Orab0 and Qrabl set FFs Qra,
Qrb12, and Qrb34 according to Table B.11 so that TLBARa and TLBARb of each RP
address the first location in the TLB each time a transition to a new run is made. FF
Qrb12 drives signal incar of both TLBARIb and TLBARZ2h of RP1 and RP2, whereas,
FF Qrb34 drives signal incar of both TLBAR3b and TLBAR4b in RP3 and RP4 shown
in Figure 4.2.9. FF Qra drives signal incar of all TLBARa of the 4 RPs.

In states S10 and S11, signals sal2 and sa34 are also set according to Table B.11.
State S14 is parallel to state S5 when the control takes the path labeled casel. Thus,

every thing said there is also true here.

On the other hand, if EN is 0, then N is even and the control moves to state §9
where it examines signal z3. As long as z3 is 0, the control executes the loop
consisting only of 89, until z3 is 1. Signal z3 will be 1 when register RN1 is counted
down to 3 and it indicates that in the next two clock cycles, the last two operations of
the current run will be scheduled and a new run then can be initiated. From this point
on every thing that has been said when the control takes the path £N = 1 is also true
for EN = 0.

ii) The Extension Contrel Unit

The extension control unit controls the operation of the two extension
multiplexers found in stage 3 of the four 5/3 RPs and stages 3 and 7 of the four
9/7 RPs, through the two signals labeled srel and srel. The extension control unit
generates these two signals by setting or resetting each of the two FFs labeled Qrl and
Qr2 in Figure 5.4.2.

The ASM chart for the extension control unit is shown in Figure 5.4.7 (a) and the
control block diagram is shown in Figure 5.4.7 (b). The TLB control unit
activates, by asserting its output signal st£X (start extension), the extension control
unit in the clock cycle where external memory scan begins. At the clock event, the
ASM moves from states SO to S1.In state Si, the ASM examines signal z/ and
remains in that state as long as z/ is 0. During this period where the first run takes
place, Qr2 and Qrl are left unchanged (retain zero values). The reason for this is that

the first run requires the two multiplexers to pass in each clock cycle the current
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high coefficient required in the calculation of the current low coefficient and inserting
zeros by Qr2 and Qrl during this period will guarantee the proper operation of the
multiplexers. When z/ becomes 1, the control asserts its conditional output signal sre2
to set Qr2 and Q2 1, as required by Table B.5 (b) for run2 of the 9/7, and examines
signal flossy. If lossy is 0, the control moves to state S3 to initiate run2 of the 5/3,
otherwise, it moves to state S2 to initiate run2 of the 9/7. In state 52, the control
examines signal z/ again and remains in that state until z/ becomes 1, which indicates
end of run2. As the control moves from states S2 to S3 it set FF Q2 0, as required by
Table B.5 (b) for run3 and all subsequent runs of the 9/7.

In state S3, the first run of the 5/3 or the second run of the 9/7 end and the
intermediate runs begin. Intermediate refers to the runs that are between the first and
last run. During intermediate runs the two multiplexers are required to pass both the
current high coefficient and the previous high coefficient read from TLB. Thus, for
the multiplexers to be able to accomplish this task, Qr2 is set 1 while Qrl is left
unchanged (zero) during the whole intermediate period. In addition, in state S3, a
decision is made based on signal EM, the least significant bit of register RMO, to
determine whether the width A of the image is even or odd. If EA i1s 0, then M is
even and the control returns to its initial state S0, since, as in the intermediate runs,

even M requires Qr2 and Qrl to be set 1 and 0, respectively, in the last run.

On the other hand, if £M is 1, then M is odd and the last run would require both
Qr2 and Qrl to be 1. Therefore, in state S4, the ASM waits in a loop controlled by Zr
until the last run is reached. The last run is reached when Lr equals 1. Then, the ASM

sets Qrl and Q1 | and returns to the initial state SO0.

Finally, note that the output of the XNOR gate attached to register RNO
will generate the control signal zs, whereas signals sre( and sre3 will be obtained by

directly connecting signal ser of Qr0 to signal Lr, as indicated in Figure 5.4.2.
b} The CPs Control Unit

The CPs contro! unit is in charge of issuing the four extension signals labeled sce(,
sce3, sce2, and scel that control the operations of the extension multiplexers in the
four pipelined CPs. The CPs control unit generates these signals by setting each of the
FFs labeled Qc5, Qc6, and Qc7 in Figure 5.4.2 either 1 or 0. According to Tables 3.3
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and 3.4, since CPs compute DWT column-by-column, (Qc5 which drives both signals
sce0 and sce3 should be set to 1 every time the last operation in a column is scheduled
for execution; otherwise, it remains at zero. On other hand, the two signals sce! and
sce2, which control the two multiplexers in stage 3 of the 5/3 and stages 3 and 7 of the
9/7 processors, according to Tables 3.3 and 3.4, should be set as follows. Every time
the first operation in a column is scheduled, both Qc6 and Qc7 should be set zero, All
operations between the first and last operations in a column require Qcé and Qc7 to
be set | and 0, respectively. The last operation in each column requires Qc6 and Qc7
to be set 1 if the column length is odd, otherwise, Qc6 and Qc7 are set | and 0,

respectively.

The cycle number (C1) at which the first input data are loaded into both CP1 and
CP3 latches for both 5/3 and 9/7 is given by Eq (4.4). For 5/3 C1 is 19, since its RPs
are pipelined into 4 stages, whereas C1 is 35 for 9/7, since its RPs are pipelined into 8
stages. In order to detect occurrence of this event, register RC is added to the CPs
control unit as shown in Figure 5.4.8 (b). Register RC is a down counter with control
signals sef and dec (decrement). Initially, RC is set to 18 or 34 by asserting signal se¢
high. Register RC then is decremented by one every clock cycle starting from the
cycle where scanning of external memory begins, When RC becomes 0, it sets signal
z¢ high to indicate that the pulse ending this cycle will load CP1 and CP3 latches with

data for the first time,

The ASM chart for the CPs control unit and its block diagram are shown in Figure
5.4.8, respectively. The CPs control unit is activated when its input signal stCPC is
asserted high by the TLB control unit. As the ASM moves from states SO to S1,
register RC is set to its initial value. In state S1, FFs Qc5, Qc6, and Qc7 are set 0. In
state S2, where scanning of external memory begins, register RC is decremented by

one.

In state 83, the ASM executes the loop consisting only of state S3 and controlled
by signal z¢. Each time this loop is executed, RC is decremented by one. When z¢ is
[, the control exits the loop and moves to state S4. As the control moves from states
S3 to state S4, it activates the write subband memory control unit by asserting the

output control signal labeled wsubd and checks the input signal EP2. If EP2 is 0, the
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ASM asserts its conditional output signal labeled Y/ to activate the write RAM
control unit and decrement register RN2 by one. The control will execute this path
and activate the write LL-RAM control unit in all decomposition levels except in the
last level decomposition. The reason is that, the LL-subband of the last
level decomposition should be stored in the subband memory block labeled LLma,
not in the LL-RAM. When EP2 becomes 1, it indicates that the last level

decomposition is in process.

In addition, note that when the ASM makes a transition from states $3 to 84, CP1
and CP3 latches will be loaded for the first time with high and low coefficients of the
first operations, respectively. In state S4, Qc6 is set 1, since all operations between the
first and last operations in a column, as explained before, require Qc6 and Qc7 to be

set | and 0, respectively.

In state S5, a decision is made based on signal 7, which is the output of the
XNOR gate attached to register RN2. As long as, 7r is 0, the loop consisting of states
S5 and S6 is executed and register RN2, which hold number of operations in a
column, is decremented by one to reflect number of operations left. Register RN2 is
decremented each time a high and a low operation are scheduled from H and L
decompositions, respectively. Note that, the actual scheduling of operations is done
internally by clock f4a, as indicated in the architecture shown in Figure 4.2.7, and
during execution of the above loop. However, all operations scheduled for CPs during

this foop execution are that between the first and last operation in a column.

Signal 7r becomes 1 when RN2 is decremented to 2. When 7r is 1, the decision
box with input signal EN is examined to determine whether N is even or odd. If EN is
1, then N is odd and Qc7 is set 1 in order to satisfy the requirement that both Qc7 and
Qc6 must bel in the last operation. Otherwise, Qc7 is left unchanged. Then the

control moves to state 87,

In state S7, the ASM asserts the output signal labeled Y5. This output signal
decrements register RM2, which holds number of column to be scheduled for CPs, by
one and sets Qc5 1. Setting Qc5 1 for the last operation in a column, which will be
scheduled in the next state (S8), will allow the extension multiplexers controlled by

signals scef) and sce3 to pass data of the bus connected to the input of the extension
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multiplexers labeled 1 instead of 0 to R¢2 as a third input, as recuired when N is even.

In state S8, where the last operation in a column is scheduled for execution, a
decision is made based on signal z/c, which is the output of the XNOR gate attached
to register RM2. If z/c is 1, it indicates that all columns in L and H decompositions
have been scheduled and the control returns to its initial state S0, On the other hand, if
zlc is 0, the control moves to state S9 to initiate processing of tiie next column. As the
control moves from states S8 to §9, it loads again register RN2 and clears FFs Qc5,
Qc6 and Qc7 to zero by asserting its conditional output signal labeled Y6. When the
control moves from S10 to S4 it loads coefficients of the first operation of the next

column in each H and L decomposition into CP1 and CP3 or CP2 and CP4 latches.
5.4.3 Read LL-RAM Control Unit

Read LL-RAM control unit is responsible for reading LL-RAM memory according to
the scan method shown in Figure 3.5.1. Two control algorithms (or ASM charts) will
be developed, one for the RAM architecture designed using modules shown in Figure
5.2.2 and the other for the RAM architecture designed using banks shown in Figure
5.2.5. Remember, the LL-RAM architecture is designed to allow both read and write
to take place in the same clock cycle. Read takes place in the first half cycle and write

in the second half cycle.

The ASM chart for read RAM control unit and its block diagram that controls the
read operations of the RAM architecture shown in Figure 5.2.2 are given in Figures
5.4.9 The ASM chart of the control unit is activated when its input signal rram is
asserted high by B-unit. As a result, the control moves from states S0 to S1. In state
S1, both registers RA4R (read module address register) and RAMSR (read model select
register) are set zero. Register RMSR enables the first 3 modules for read, while
register RMAR points to the first location in each module. Then, the control moves
unconditionally to state S2, where the process of scanning the RAM begins. When the
control moves from states S2 to S3 three pixels are scanned, one from each module,
and then are loaded into the RP1’s latches. In addition, register RMAR is incremented
by one so that it addresses the second location in each module, while register RN1 is
decremented by one to reflect that one read operation has been performed. Register

RN1 hold number of locations to be read from each module in a run.
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175



In state S3, the control executes the loop consisting only of state S3 and controlled
by signal z/. This loop allows the control to continue reading the enabled RAM
modules. Each time the loop is executed, register RMAR is incremented so that it
points to the next location, while register RN1 is decremented by one. When RNI1 is
decremented to 1, it asserts signal z/ high to indicate the three modules enabled in the
current run all have been read and the next 3 modules for next run can be initiated. As
the ASM moves from states S3 to S4, to get ready for the next run, register RN1 is
again loaded with the same value, register RMAR is set 0, and register RMSR is
incremented by one to select the next three modules that would be read in the next

rumn.

In state S4, where a run ends and another begins, signal £N is examined, the least
significant bit of RNO. If £N is 1, then N is odd and no read will take place when the
control moves to S85. This will satisfy the condition required by the 4-parallel
architecture, when a transition is made from a run to the next and if ¥ is odd, no data
is read from external memory. Otherwise, N is even and the first read operation in the

new run is immediately performed. In both cases, the next state is S5.

In state S35, signal Lr (last run) is examined to determine whether the last run is
reached. As long as, Lr is 0, the last run is not reached and the ASM executes the loop
consisting of states S3, 54, and S5 until Lr becomes 1. When Lr becomes 1, it
indicates that the run before the last one is now completed and the last run is in
progress. Then, the ASM moves to state S6 to continue with the last run. Signal Zr,
which is the output of the XNOR gate attached to register RM1, becomes 1  when
RM1 is decremented to 1. Note that register RMI is decremented internally by the

signal labeled z2 in C-unit.

In state S6, the ASM chart executes the loop consisting only of state S6 and
controlled by signal z/. As long as, signal z7 is 0, this loop will be executed and read
operations required in the last run will be performed. When z/ becomes 1, it indicates
that all required reads in the last run have been performed. Then at the clock event,

the control returns to its initial state SQ.

The ASM chart for the second read RAM control unit and its block diagram,

which controls the read operations of the RAM architecture (Figure 5.2.5) designed
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using banks, are given in Figure 5.4.10. The ASM chart showr. in Figure 5.4.10 (a) is
basically identical in every aspect to the one shown in Figure 5.4.9 (a). Except, it has
one extra decision box between states S3 and S4 with the control input signal labeled
zbr (see Figure 5.2.5). When all modules in a bank are read, signal zbr becomes 1.
When zbr becomes 1, register RN1 is loaded again with thz same value, register
RMAR is set 0, and register RBSR (read bank select register) and RMSR are
incremented to select the first three modules in the new bank. Otherwise, the control

will continue reading the same bank. In both cases, the next state is S4.
5.4.4 Write RAM/Subband Memory Control Unit

Write RAM/subband memory control unit consist of two control units, write RAM
control unit and write subband memory control unit. Write RAM and subband
memory control units are responsible for performing write operations in the LL-RAM
and subband memory, respectively. Both control units are activated at the same time,
when signals wsub and wram are asserted high by the CPs contro! unit and are
terminated at the same time. However, in the last level decomposition, only write
subband memory control unit will be activated, since the LL-subband of the last
decomposition is required to be stored in the subband memory block labeled LL,pu

not in the LL-RAM.

On the other hand, number of clock cycles that would elapse between the cycle,
where the first inputs are loaded into CP1 and CP3 latches and the cycle where the
first output coefficients generated CP1 and CP3 are loaded into the output latches, can
be obtained from Eqs (4.4) and (4.5) as follows.

C2-Cl=4k, (5.3)

In order to detect occurrence of this event, register RFO is added to write subband
memory control unit shown in Figure 5.4.11 (b). Register RFO is a down counter with
control signals set and dec (decrement). Initially, RFO is set equal to 4k, by asserting
signal set high. This register is then decremented by one every clock cycle. When
RFQO is decremented to 1, it will assert signal z/o high to indicate that the first output
coefficients will be availabie in CP1 and CP3 output latches at the end of the cycle.
According to the dataflow table of the 4-parallel architecture, once the first four

output coefficients are produced, then in every other clock cycle four new output
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coefficients will be produced until the process of decomposing a level into subbands

is completed.
a) Write Subband Memory Control Unit

The ASM chart that describes write subband memory control unit is shown in Figure
5.4.11 (a) and its block diagram is shown in Figure 5.4.11 (b). The ASM chart is
derived such that the control unit can write into subband memory according to the
strategy explained in section 5.3.2, which can be summarized as follows. The strategy
begins by storing the first three subbands of the first level decomposition in the
subband memory blocks labeled HL1, HHI, and LHI1. As soon as, the three subbands
are written, the compression unit is informed by setting the FF labeled Fcomp high.
Then the compression unit can read each subband block and compress it
independently, while the DWT unit continues to further decompose the LL-subband
of the first level decomposition. First, the compression unit will reset Fcomp zero
and then will go on with compression process. When all levels after the first are
decomposed and their subbands are stored in their respective subband memory blocks,

the compression unit is again informed by asserting FF Fcomp high.

Write subband memory control unit, represented by the ASM chart shown in
Figure 5.4.11 (a), is activated when the input signal wsub of the ASM is asserted high
by the CPs control unit. Then the ASM moves from its initial state SO to state S1. As
the control moves from state SO to SI, register RN3 is loaded with number of
locations to be written in a module and register RFO is set equal 4k, while the input

latches of CP1 and CP3 are loaded internally with data of the first operation.

In state S1, the ASM execute the loop controlled by signal zfe, which consists of
state S1 and the conditional output labeled ¥/. As long as zfo is 0, this loop is
executed and register RFO is decremented by one, while the control remains in the
same state, S1. When register RFO is decremented to 1, it asserts its output signal zfo
high, which indicates that the first output coefficients generated by CP1 and CP3 will
be loaded into the output latches by the pulse ending the cycle (when the control
moves from states Si to 82). In addition, when signal zfo is |, two status input signals
EP2 and fi are examined. If both signals are 0, which will be true only if this is the

first level decomposition, the ASM will follow the path leading to state S2. But, if
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Figure 5.4.11 (a) ASM chart for write subband memory control unit
(b) The block diagram
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EP2is 1, then it implies that the final decomposition is in progress and the conditional
output labeled Y2 is executed as the control moves from states S1 to $5. Execution of
Y2 sets FF Fllwe 1, which enables the subband memory biock labeled LL;p.. to store
the last subband LL-image. However, in all decomposition levels that are between the
first and the last decomposition, signal EP2 and f5 will be 0 and 1, respectively, and
the path leading to state S5 through the conditional output labeled Y3 will be

executed.

In state S2, the ASM executes the loop consisting of states S2 and $§3. Each time
this loop is executed three coefficients from CPs output latches will be simultaneously
transferred to subband memory, where each coefficient will be stored in the first
module of each subband blocks labeled HL1, HH, and LHI1, starting from the first
location. In addition, register RN3, which holds number of locations to be written in a
module, is decremented by one and register MARI is incremented by one so that it

points to the next location in the three enabled modules that will be written next.

When register RN3 is decremented to 1, it asserts signal zwc high to indicate that
all locations in the three enabled modules are written and the next three modules can
be enabled for write. Then the ASM moves from states S2 to S4. As the ASM moves
from states S2 to 84, register RM3, which holds number of modules to be written in
each subband memory block, is decremented by one. In state S4, register RN3 is
loaded again with the same value and register MARI is reset 0, while register SMSR
is incremented by one to select the next 3 modules, one from each subband memory

blocks labeled HL1, HH1, and LH1 that will be written next,

In state S4, a decision is made based on signal zm. If zm is 0, the loop consisting
of states $2, S3, and $4 is executed. This loop will execute several times before zm
becomes 1. Signal zm becomes 1, when register RM3J is decremented to 0, which
confirms that all modules in the first level are written. Then the control moves from
states S4 to S8 during which register WDER is incremented by one to enable the next
3 subband memory blocks labeled HL2, HH2, and LH2 for writing the second level
decomposition. In addition, Fwl is reset ¢ and Fw2 is set | to prevent further writing
in the first level of the subband memory and to enable the second level for write,

respectively. Furthermore, FF Fcomp is set 1 to inform the compression unit that the
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first level decomposition is completed and its subbands are now available in the

subband memory blocks HL.1, HH1, and LH! for compression.

In state S8, the output signal labeled EDL (end of a decomposition level) is
asserted high to inform the A-unit that the first level decomposition has completed and
the next level decomposition can be initiated. Then at the clock event, the control
returns to its initial state SO and remains in that state until it is activated for

the next level decomposition.

In all decomposition levels except the first, the second path leading to state S5 is
executed. The second path executes a loop identical to the one in the first path. So
every thing that has been said for the loop in the first path is a.so true for the loop in

the second path.

At the end of the second loop, when signal zm is 1, the status input signal £P2 is
examined again, this time to determine if the last decomposition is completed. Signal
EP2 becomes 1 only when register RD is decremented to 1. Thus, the path labeled 0
leading to state S8 through the conditional output signal labeled Y9 is always executed
until the last decomposition is completed. When the last decomposition completes,
signal £P2 will be still 1. Then, at the clock event as the ASM moves to state S8, FFs
Fllwe, Fbwe, and Fw2 are reset 0 to disable subband memory so that no further writes
take place until it is read by the compression unit and the compression unit is

informed by setting Fcomp 1.

In state S8, the output signal £DL is asserted high and at the clock event, the
control returns to its initial state S0 and remains in that state until  activated

for decomposition of another image.
bj Write LL-RAM Control Unit

In following, two ASM charts for write LL-RAM control unit will be derived, one for
the RAM architecture  designed using modules shown in Figure 5.2.2  and the

other for the RAM architecture designed using banks shown in Figure 5.2.5.

The first ASM chart that describes write RAM control unit for the RAM architecture

shown in Figure 5.2.2 is given in Figure 5.4.12 (a) and its block diagram is shown in
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Figure 5.4.12 (b). This control unit is activated when its input signal wram is asserted
high by the CPs control unit. As the control moves from states SO to S1 the FF labeled
FM is set 0. FM is a FF with two signals c/r (clear) and 7 (toggle). This FF is initially
cleared to O and each time signal 7 is high it toggles. Since, the decoder labeled
dcodms enables at a time 3 modules and writing is required to take place module-by-
module, FM is used for determining the time at which register WMSR should be
incremented such that the next 3 modules are enabled by the decoder at appropriate
time, while writing into only one module at a time is still possible. Looking at the
architecture in Figure 5.2.2 it can be determined that as soon as module number
(2m) is written, where m=1, 2, 3, .., register WMSR can be incremented so that the
decoder can safely select the next 3 modules. In other words, register WMSR will be
incremented first after module number 2 is written then after module number 4 is

written and so on. Thus, FM is used to serve this purpose.

In state S1, the ASM executes a loop exactly identical to the one in state S1 of the
write subband memory control unit. This might suggest the possibility of eliminating
this loop and the control can be activated from write subband memory control unit
instead. Any way, as the control moves from states S1 and S2 register WMSR,
WMAR, and WER are reset (. Registers WMSR and WER together determine which
module will be enabled for write, whereas register WMAR is used to address each

location in the enabled module.

In state S2, two loops are executed, the inner loop which is controlled by signal zwe
and the outer loop which is controlled by signal zm. These two loops are similar to the
two loops that are in states S2 and S4 of the ASM chart for write subband memory
control unit. The inner loop writes into the enabled module through register WMAR,
which serves as address pointer starting from the first location. On the other hand, the
outer loop selects the next module to be written through registers WER and WMSR.
When all modules are written, signal zm becomes 1. Then, at the clock event the
control moves to state S5. As the control moves to state S5, FF FE, which its output
should be connected to the enable signal of the decoder labeled dcodms in Figure
5.2.2 (a), is set 0 to disable the LL-RAM so that it safeguard its contents until next

level decomposition is initiated.

183



0 @ 1
Y0
S1
1

CP1 & CP3 are loaded
for the first time

0

Y1
(WMSR, WMAR, WER « 0)
ry
52 The first output coefficients are loaded

into CP1 & CP3 output latches

0 1

53 54
WER — WER+1, Toggle FM,
0 Zwe - all locations in the
enabled module are written
1 Y3

Zm : last module is written

S5
WMAR, WMSR, WER « 0

(a}

wram YO
zfo Y1

Write
2 oam 53

M control 54
fm  Unit Y2

Reset Y3

j; S5

(b)

W
IERE RN

i

clog

2EEERE

'

Write Write Write
ﬁ Read RAM | RAM | Read RAM | RAM | Read RAM | RAM
begns ends begins

(c)
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In state S5, registers WMAR, WMSR, and WER are reset 0. This step is necessary
to prevent modification of stored data by illegal writes during the period where the
RAM is enabled and only read operations are taking place. This occurs always at
the beginning of each decomposition level, since the I.L-RAM is designed to allow
both read and write to take place in the same clock cycle. This step will force the first
module to be enabled and register WMAR to point at the first location. Thus, during
this period all illegal writes will occur in the first location of the first module which
will be read before the first illegal write takes place. Then, at the clock event the ASM

moves from states S5 to SO and remains in that state until it is activated again.

The second ASM chart shown in Figure 5.4.13 (a) describes the write RAM
control unit for the RAM architecture designed using bank shown in Figure 5.2.5.
The block diagram of the control unit is shown in Figure 5.4.13 (b). This ASM is
basically identical in every part to the one shown in Figure 5.4.12 (a). Except that
it has one extra decision box with a status input signal zbw (see Figure 5.2.5) and one
conditional output box labeled ¥4 immediately inserted after the conditional output
labeled ¥2. When all modules in a bank are written, signal zbw is asserted high. Thus,
every time signal zbw is 1, register WBSR (write bank select register) is incremented

by one to enable the next bank for write and the control moves to state S2.

Finally, before closing this section, a very important issue regarding clock f;
would be addressed. As mentioned before, the LL-RAM architecture is designed to
support both reading and writing operations to take place in the same clock cycle.
Read occurs in the first half cycle and write in the second half cycle. This might
suggest the low and high pulses of clock f; should be equal. But, from the dataflow
given in Table B.10 it can be seen that the CPs yield four output coefficients every
other clock cycle, reference to clock f;. That means these output coefficients remain in
the output latches for two clock cycles before the next output coefficients are loaded.
Thus, using a clock with equal pulses will be definitely inefficient. For example, if
read is performed during the time where the first pulse of the clock is low and write is
performed during the time where the second pulse of the clock is high, then in every
two clock cycles, the second pulse of the first cycle will be used for writing, but the

second pulse of the second cycle will be unused. Thus, in order to use the whole
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period effectively, a clock signal of the form shown in Figure 5.4.12 (c) is proposed.
In this clock, the low pulse width is longer than the high pulse width and write
operation which starts at a high pulse is allowed to complete in the next high pulse of
the clock as indicated in Figure 5.4.12 (¢). In addition, the fact that memory read

operation takes more time than write operation makes this solution more attractive.
5.5 Conclusions

In this chapter, two novel VLSI memory architectures for 2-D DWT architectures for
5/3 and 9/7 are developed. Banking technigue is utilized to form more efficient DWT
memory architectures in term of speed. The advantage of the two proposed
architectures is that they can be easily incorporated into single or parallel DWT
architectures. Furthermore, to show that the architectures developed in this research
are simple to control, the control algorithms for 4-parallel architecture including the
LL-RAM and the subband memory were developed. To ease the control development,
the overall system control is divided into several smaller units. Then, the algorithmic
state machine (ASM) for each unit is developed. The control algorithms developed

here can be used to derive the hardware of the control.
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CHAPTER 6

2-DIMENSIONAL INVERSE DISCRETE WAVELETS TRANSFORM
ARCHITECTURE DEVELOPMENT

6.1 Introduction

In chapter 3, architectures for 2-dimensional forward discrete wavelet transform (2-D
FDWT) for 5/3 and 9/7 algorithms were developed. In this chapter, architectures for
2-dimensional inverse discrete wavelet transform (2-D) IDWT) for 5/3 and 9/7

algorithms will be developed.

The function of the 2-D FDWT in a compression system is to decorrelate image
pixels prior to compression step, whereas the function of the 2-D IDWT is to

reconstruct and completely recover the original image from the decorretated image.

The 2-DFDWT decomposes an NxM image into subbands as shown in Figure
6.1.1 for 3-level decomposition. The decorrelated image shown in Figure 6.1.1 can be
reconstructed by using 2-D IDWT as follows. First, it reconstructs in the column
direction subbands LL3 and LH3 column-by-column to recover L3 decompostion.
Similarly, subbands HL.3 and HH3 are reconstructed to obtain H3 decomposition,
Then L3 and H3 decompositions are combined row-wise to reconstruct subband [.1.2.

This process is repeated in each level until the whole image is reconstructed.

The reconstruction process described above implies that the task of the
reconstruction can achieved by using 2 processors. The first processor (the column-
processor) computes column-wise to combine subbands LL and LH into L and
subbands HL and HH into H, while the second processor (the row-processor)
compiites row-wise to combine L and H into the next level subband. The decorrelated
image represented in Figure 6.1.1 is assumed to be residing with the same format in

an external memory.
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Figure 6.1.1 Subband decomposition of an NxM image into 3 levels.

6.2 Lifting-based 5/3 and 9/7 synthesis algorithms and data dependency graphs

The 5/3 and the 9/7 inverse discrete wavelet transforms algorithms are defined by the
JPEG2000 image compression standard for 1-D signal Y(n) containing N samples as

follow:

5/3 synthesis algorithm

stepl: X(2n) = ¥(2n) _{YQH -D+Y(2n+ 1)+ 2J

4
XQ2n)+X(2n+2)
2

step2 : X(2n+1)=Y(2n+1) +\; J where n=01,2..N -1

9/7 synthesis algorithm

Stepl: Y'(2m) =1/k-Y (2n)

Step2: V'2n+1D)=k-Y(2n+1)

Step3: Y"(2n) = Y'(2n) = S(Y'(2n -1+ ¥'2n+1)
Stepd: Y'2n+1) = Y'(2n+1) - »(Y"(2n)+ Y"(2n +2))
Steps: X(2n) = Y"(2n) - BY"Cn-1)+ " (2n+1)
Step6: XQ2n+D=Y"Cn+)-a(X2n)+X(2n+2))

The data dependency graphs (DDGs) for 5/3 and 9/7 derived from the synthesis
algorithms are shown in Figures 6.2.1 and 6.2.2, respectively. The DDGs are very
useful tools in architecture development and provide the information necessary for the
designer to develop more accurate architectures. The symmetric extension algorithm
recommended by JPEG2000 is incorporated into the DDGs to handle the boundaries

problems. The boundary treatment is necessary to keep number of wavelet coefficient
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Figure 6.2.1 5/3 synthesis algorithm’s DDGs for (a) odd and (b) even length signals
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the same as that of the original input. The boundary treatment is only applied at the
beginning and ending of the process. The nodes circled with the same numbers are
considered redundant computations, which will be computed once and used thereafter.

Note that the inputs coefficients with even numbers in the DDGs are low coefficients
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Figure 6.2.2  9/7 synthesis algorithm’s DDGs for (a) odd and (b} even length signals

and that with odd numbers are high coefficients.

The strategy or the approach used in chapter 4 for developing 2-D FDWT

architectures can be also used in 2-D IDWT architectures development. To ease the

architecture development, the strategy divides the details of the development into two

parts or steps each having less information to handle. In the first step, the DDGs are

looked at from the outside, which is specified by the dotted boxes in the DDGs, in
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terms of the inputs and outputs requirements. It can be observed that the DDGs for 5/3
and 9/7 are identical when they are looked at from outside, taking into consideration
only the input and output requirements, which can be specifiec for each algorithm by
adopting appropriate scan method; but differ in the internal details Based on this
observation, the first level of the architecture, call it, the external architecture is
developed. In the second step, the internal details of the DDGs are considered for the
development of the processors’ datapath architectures, since the DDGs internally

define and specify the internal structure of the processors.

6.3 Scan methods

The first step in developing external architecture for 5/3 and 9/7, which would consist
of a column-processor {(CP) and a row-processor (RP), is to specify an appropriate
scan method for each processor. Therefore, in Figures 6.3.1 and 6.3.2, two scan
methods for 5/3 and 9/7 CP are illustrated, respectively. Similarly, two scan methods
are illustrated in Figures 6.3.3 and 6.3.4 for 5/3 and 9/7 RP, respectively. These scan
methods are developed mainly with one objective in mind to achieve, that is, to make
the external architecture for both 5/3 and 9/7 algorithms identical. Note that the boxes
labeled (@) in Figures 6.3.1 and 6.3.2 are formed for illustration purposes by merging
together subbands L1 and LH, where LL-subband coefficients occupy even rows and
LH-subband coefficients occupy odd rows. Similarly, the boxes labeled (b} in Figures
6.3.1 and 6.3.2 are formed by merging HL and HH together.

The 5/3 CP scans the external memory column-by-column according to the scan
method shown in Figure 6.3.1. The scan method illustrated in Figure 6.3.1 (a) scans
the sections of the external memory labeled LL and LH as follows. First, the low
coefficient, LL0O,0 is scanned followed by the high coefficient, LH0,0 to initiate the
first operation. The second operation is initiated by scanring coefficient LL1,0
followed by LHI,0 and so on. Note that coefficient LH0,0 is also required in the
second operation. This process is repeated until the first column in both LL and LH
are scanned. Then the scan moves to the second column in both LL and LH to repeat
the process and so on. Similarly, sections HL and HH of the external memory are

scanned.
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Figure 6.3.2 9/7 CP scan method(a) merging of LL and LH
(b} merging of HL and HH

However, in order to allow the RP, which operates on data generated by the CP, to
work in parallel with the CP as soon as possible, the (a)’s (LL+LH) first column
coefficients are interleaved in execution with the (b)'s (HL+HH) first column
coefficients. Then the second column coefficients in both (a) and (b) are interleaved
and so on. This columns coefficients interleaving process take place as follow, First,
two coefficients LL0,0 and LH0,0 are scanned from the first column of (a) followed
by another two coefficients HL0,0 and HHO0,0 from the first column of (b). Then the
scan moves to (a)’s first column and scans LL1,0 and LH1,0 tfellowed by HL1,0 and
HH1,0 from the first column of (b). This is repeated until the two columns are
processed, say, to complete a run. The second run, similarly, processes the second
column in both (a) and (b) and so on. The advantage of interleaving process not only

it speedups the computations by allowing the two processors to work in parallel
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Figure 6.3.4 9/7 RP scan method

earlier during the computations, but also reduces the internal memory requirement

between CP and RP to a few registers.

The scan method for 5/3 CP and the DDGs suggest that the 5/3 RP should scan its
coefficients, which are generated by CP, according to the scan method illustrated in
Figure 6.3.3. This figure is formed, for illustration purposes, by merging L and H
decompositions, even though they are actually separate. In Figure 6.3.3, L’s
coefficients occupy even columns, while /s coefficients occupy odd columns. In the
first run, coefficients of columns 0 and 1 are scanned by RP as shown in Figure 6.3.3.

In the second run, coefficients of columns 2 and 3 are scanned and so on.

The scan method shown in Figure 6.3.2 for the 9/7 CP is basically identical in all
runs to that of the 5/3 CP except in the first run which requires, according to 9/7
DDGs, interleaving of 4 columns; two from each (a) and (b) of Figure 6.3.2 as
follows. First, coefficients LL0,0, HL0O,0 from the first column of (@) are scanned.

Second, coefficients HL(0,0 and HHO,0 from the first column of (5) are scanned, then
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LLO,1 and LHO,1 from the second column of (a@) followed by HLO,1 and HHO,1
from the second column of (b) are scanned. The scanning process then returns to the

first column of (@) to repeat the process and so on.

The scan method for 9/7 RP is illustrated in Figure 6.3.4, which is basically also
identical to the 5/3 RP scan method except in the first run. In the first run, the 9/7
RP’s scan method requires considering the first four columns for scanning as follows.
First, coefficients L0,0 and H0,0 from row O followed by Li,0 and H1,0 from row 1
are scanned. Then the scan returns to row 0 and scans coefficients L0O,1 and HO0,1
followed by L1,1 and H1,1. This process is repeated as shown in Figure 6.3.4 until

the first run completes.

6.4 Proposed External Architecture

Based on the scan methods and the DDGs for 5/3 and 9/7, the architecture shown in
Figure 6.4.1 (a) is proposed for 2-D IDWT. This architecture is also valid for
combined 5/3 and 9/7 architecture, The architecture consists of two fully pipelined
processor labeled CP and RP which will be developed later. The proposed
architecture scans the external memory with frequency f, while the architecture
operates with frequency /72 as indicated in Fig. 6.4.1 (a). The waveforms of the two
clocks are shown in Figure 6.4.1 (b). The CP and the RP latches load new data every

time clock f72 makes a positive transition.

The CP in the proposed architecture scans the external memory according to the
scan methods shown in Figures 6.3.1 and 6.3.2 for 5/3 and 9/7, respectively, whereas
RP scans the output latches of the CP labeled R#/0, Rt/], and Rth according to scan
method illustrated in Figure 6.3.3 and 6.3.4 for 5/3 and 9/7, respectively. The
architecture reconstructs a decorrelated image stored in the external memory such as
the one shown in Figure 6.1.1 as follows. The CP begins the reconstruction process by
scanning column-by-column the external memory’s sections labeled LL3 and
[LH3.and that labeled HL3 and HH3 in an interleave manner to yield L3 and H3
decomposition, which are passed to RP through the latches labeled Rt0, R//, and
Rth. L3’s coefficients are stored in Rtl0 and Rtil, whereas H3’s coefficients are stored

in Rth before they are read by RP.
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Figure 6.4.1 (a) Proposed external architecture for 5/3 and 9/7 and combined
5/3 and 9/7 2-D IDWT (b) Waveform for clock fand /72

To be specific consider the dataflow of the architecture when it executes 5/3
algorithm. In the first clock cycle, coefficient LL0,0 from the first column of LL3 in
the external memory, is scanned and is loaded into Rd? by the positive transition of
clock £ The second clock cycle scans coefficient LHO,0 from the first column of LH3
and places it in the path labeled ¥7i,j). Then the positive transition of clock /2 loads
Rd0 and LHO,0 into CP latches Rt0 and Rt, respectively.

In the third clock cycle, coefficient HL0O,0, from the first column of HL3, is
scanned and is loaded into Rd0 by the positive transition of the clock f. The fourth
clock cycle scans coefficient HHO,0 from the first column of HH3 in the external
memory and places it in the path labeled Y¢i /). Then the positive transition of clock
172 loads contents of Rd0 and HHO,0 into the CP’s latches labeled Rt0 and Rtl,
respectively. The scanning process then returns to subband LL3 in the external

memory to repeat this interleaving process.

The CP generates every clock cycle two output coefficients. The first two output
coefficients, 10,0 and L1,0 which belong to L3 decomposition are loaded into Rtlf}
and Rr!/l, respectively, by the positive transition of clock /2. During the next clock
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cycle, say, cycle n coefficients H0,0 and H1,0 which belong to H3 decomposition,
will be placed in the output paths labeled L and H, respectively. Then the positive
transition of the clock ending the cycle transfers Rtl0 and H0,0 in the output path, L,
to the RP’s latches labeled Rt0 and Rtl, respectively, through the two multiplexers
labeled muxr, while H1,0 in the output path labeled H is loaded int Rth. The second
two output coefficients of L3, L2,0 and L3,0 are loaded into Rt/0 and Rtll,
respectively, by the positive transition of the clock ending cycle n+1, while contents
of Rill and Rth are transferred to RP latches Ri0) and Ri1, respectively. This process is

repeated according to the scan method illustrated in Figure 6.3.3.

On the other hand, the dataflow of the 9/7 architecture, which differs mainly in the
first run from that of the 5/3 by requiring interleaving of 4 columns instead of two, is
as follow. However, since the dataflow of the 9/7 CP is same as that of the 5/3 up to
the fourth clock cycle, the dataflow description would continue from the fifth cycle.
In the fifth clock cycle, the scanning process returns to LL3 and scans coefficient
LLO,1 from the second column and loads it into Rd0 by the positive transition of the
clock ending the cycle. The sixth clock cycle scans coefficients LHO,1 from the
second column of LH3 and places it in the path labeled ¥yijj. Then the positive
transition of the clock f72 loads RdJ(0 and LHO,l into CP’s latches Rt0 and Ril,
respectively. In the seventh clock cycle, the scan moves to HL3 in the external
memory and scans coefficient HLO,1 from the second column and loads it into Rd0 by
the pulse ending the cycle. The eighth clock cycle, scans coefficient HHO,1 from the
second column of HH3 and places it in the path labeled ¥7ij). Then the positive
transition of the clock f2 loads Rd0 and HO,1 into CP’s latches Rt and Rif,
respectively. The scanning process then returns to subband LL3 in the external
memory to repeat the process until the first run completes. In the second run, the third
column in both (a) and (b) of Figure 6.3.2 are consider for processing and proceeds as
that of the 5/3 described earlier. Remember, in Figure 6.3.2 (a), coefficients of
subband LI occupy even rows, while subband LH coefficients occupy odd row.
Similarly, in Figure 6.3.2 (b), coefficients of subband HL occupy even row, while

subband HH coefficients occupy odd rows.

Now, let’s look at the dataflow of the 9/7 from RP side. The CP yields every clock

cycle two output coefficients. The first two output coefficients, L0,0 and L1,0 from
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L3 decomposition are loaded into R/ and Rtll, respectively, by the positive
transition of clock f72. During the next clock cycle, say, cycle n, coefficients HO,0
and H1,0 from H3 decomposition will be placed in the output path labeled L and H,
respectively. Then, the positive transition of the clock ending the cycle, transfers Rt/
and coefficient HO,0 in the output path labeled L, to RP’s latches R/ and Rtl,
respectively, while H1,0 in path H is loaded into Rth. In cycle n+1, coefficients in
Rtll and Rth are transferred to RP’s latches Rt0 and Rt/, respectively, while the two
output coefficients L0,1 and L.1,1 from L3 decomposition are loaded into Rt/0 and
Rtll, respectively, by the positive transition of the clock ending the cycle. During
cycle n+2, two output coefficients HO,1 and H1,1 from H3 decomposition will be
placed in the output path labeled L and H, respectively. Then the positive transition of
the clock ending the cycle, transfers R¢/0 and HO,1 in path L to RP latches Rt and
Rtl, respectively, while HI,1 in path H is loaded into Rth. Cycle n+3 transfers
contents of Rt/ and Rtk to RP latches Ri0) and Rel, respectively, while the two new
output coefficients, L2,0 and L3,0 from L3 decomposition generated by CP are loaded
into Rt/0 and Rtll, respectively. This process is repeated according to the scan method
shown in Figure 6.3.4. The dataflow table of the architecture will be given later after

the two processor, labeled CP and RP in Figure 6.4.1 are developed.

One important point, if number of columns in (@) and (b} of Figures 6.3.1 and
6.3.2 are not equal, then the last run will consist of only one column of ¢@). In that
case, scan the last column of (a) every other clock cycle, reference to clock f72, so that
CP yields a valid pair of output coefficients every other clock cycle. Because, an
attempt to scan the last column every clock cycle of /72 will result in CP generating
more coefficients than that can be handled by RP. The dataflow from RP side is as
follow. Suppose, at clock cycle » the first two output coefficients of the CP LO,m and
L1,m of the last column m are loaded into R and Rt/1, respectively. In the next
clock cycle, cycle n+1, Rtl0 is transferred to Rt0 of RP, while data in path L and H
generated by CP during the cvcle are not loaded into Rtl0 and Rtll, since they are
invalid coefficients. In cycle n+2, coefficients L2,m and L3,mn generated by CP are
loaded into Rtl0 and Rtil, respectively, while content of Rtl/ is transferred to RP

latch Rt through muxr. This process is repeated until the run completes.
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The control signal values for signals Eth, Etl, and sr that could be issued by a
control unit are derived in Table 6.1 starting from clock cycle » where the first two
output coefficients generated by CP are loaded into Rt/ and Rtll. However, note that
signal Eth can be eliminated, since it alternates between don’t-care and 1. In addition,
since the first value of signal sr is a don’t-care and the rest of the signal values are

same as that of signal £y/, then signal s» and £¢/ can be combined into one signal sr,

Table 6.1 Control signal
values for Eth, Etl, and sr

CK 72 | Eth | Etl | sr
N X |1 |X
nt+l | 0 |0
n+2 X 11 1
n+3 ] 0 |0
n+4 X |1 1

6.5 Processors’ architecture development
6.5.1 Inverse 5/3 processor’s architecture development

To complete the architecture for 2-D IDWT, the last phase is to design the row and
column processors’ datapath architectures for 5/3 and 9/7 algorithms separately that
can be incorporated into CP and RP of the external architecture shown in Figure 6.4.1
(a). First, the datapath architecture for 5/3 will developed followed 9/7 in the next

section.

Based on the algorithm (6.1) and the DDGs shown in Figure 6.2.1, the inverse 5/3
processor datapath architecture shown in Figure 6.5.1 is obtained. The multiplexers
labeled muxel), muxel, and muxe2 implement the symmetric extension algorithm
incorporated into the DDGs. This 3-stage pipelined processor is formed by mapping
the two lifting steps of the inverse 5/3 algorithm into two pipeline stages. Steps 1 and
2 are mapped into stages 1 and 3 in Figure 6.5.1, respectively. Then, stages 1 and 3
are connected through stage 2 to form a 3-stage pipelined processor. Stage 2 is
necessary because stage3, which implements step 2, requires two successive low
coefficients from stage 1 to perform an operation. When the first coefficient generated
by stage 1 is in Rt0 of stage 3, the second coefficient will be in Rt0 of stage 2 and will
be applied to stage 3 through the path labeled X(2n+2), the Forward path. The nodes
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circled with even number in the DDGs, which represent step | of the algorithm, are
all computed in stage 1 in the order indicated in the DDGs. Similarly, nodes circled
with odd number, which represent step2, are computed in stage 3 in the order

specified in the DDGs.

In the following the operations of the extension multiplexers are explained. First,
according to DDGs for 5/3, in the calculation of the first low coefficient X0, the
second input ¥/ must be allowed in stage 1 to pass through the two multiplexers,
labeled muxe( and muxel to the adder. Second, in the calculation of the last
coefficient, for example, X8 in the DDG for odd length signals, the input coefficient
Y7, which will be in Rt/ of stage 2, must be allowed to pass through both muxe( and
muxel to the adder. On the other hand, during the normal computations, which take
place between the first and last calculations, the current input coefficient in Rt/ of
stage 1 and the previous coefticient in Rt/ of stage 2 are allowed to pass through
muxe0 and muxel, respectively, to the adder. However, note that in even length
signals, according to the DDG in Figure 6.2.1 (b), the last high and low coefficients

calculations take place as normal calculations. As for the extension multiplexer

Y(2n-1) Yz 1)
Yi2n+1 Stage | Stage 2 Stage 3 X(2nt])
>> 1
Forward 6

-~ +

!

£

% se2

X(2n}
Rt} P| R} b >/
X(2n) X(2n)

Figure 6.5.1 Inverse 5/3 processor datapath architecture with symmetric extension

labeled muxe?2 in stage 3, its normal function is to pass in all cases the forward signal,
X2n+2), to the adder in stage 3, except in the even length signals and in the

calculation of the last coefficients, multipiexer muxe2 passes the coefficient stored in
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Rt0 of stage 3 to the adder instead of the one in the Forward path. Table 6.2 shows the
control signal values that are required to be issued by the control unit order for the

extension multiplexers to perform the required functions.

Table 6.2 Extension’s control signals

sel | sel | se2 sel | Sel | se2

First 0 |0 |0 First 0 |0 0

Normal | 0 1 0 Normal | 0 1 0

Last 1 1 0 Last 0 | 1
a) Odd length signals b) Even length signals

6.5.2 Inverse 9/7 processor’s datapath architecture

Based on the 9/7 algorithm 6.2 and its DDGs shown in Figure 6.2.2, the inverse 9/7
processor datapath architecture is shown in Figure 6.5.2. This processor architecture is
formed by mapping steps 3, 4, 5, and 6 of the algorithm into stages 2, 4, 5, and 7,
respectively, while steps 1 and 2 are mapped into stage 1 to allow the two steps to
perform in parallel. This architecture also can be thought formed by connecting two

5/3 processors at stage 4.

The multiplexers in stages 2, 4, 5, and 7 implement the symmetric extension
algorithm that is part of the DDGs shown in Figure 6.2.2. Table 6.2 also provides
appropriate control signal values that must be issued by the control unit to the 9/7
extension multiplexers so that they can perform their required functions. These
extension multiplexers functions exactly the same way as that of the 5/3 described

garler.
6.5.3 Combined inverse 9/7 and 5/3 processors architecture

The 9/7 processor architecture shown in Figure 6.5.2 can be modified as shown in
Figure 6.5.3 to give the combined processor architecture for both 9/7 and 5/3. The 5/3

processor is incorporated into the 9/7 processor by modifying stages 1, 2, and 4, while
the remaining stages remain the same. The control signal labeled !ossy/ lossless
enables the architecture to be selected either to perform 9/7 or 5/3 algorithms. Thus, if

signal lossy/ lossless is 1, the architecture reconstructs the image using 9/7 algorithm,
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otherwise, it reconstructs the image using 5/3 algorithm. The combined architecture
could be a very useful and efficient in situations where the decoder in one site is
required to perform either lossless or lossy image reconstruction. In addition, the
advantage of the combined architecture is that a great saving in silicon area can be

achieved.
6.5.4 Modified row and column processors for 5/3 and 9/7 external architecture

The 5/3 and 9/7 processors datapath architectures shown in Figures 6.5.1 and 6.5.2
were developed assuming the processors scan coefficients from external memory row-
by-row or column-by-column. The CPs for 5/3 and 9/7 exteral architecture do,
according to the scan methods shown in Figures 6.3.1 and €.3.2, scan the external
memory column-by-column. However, since the CPs for both 5/3 and 9/7 are required
to rotate between executing coefficients of subbands LL and [.LH with that of HL and
HH in an interleave fashion, the processor datapath architectures for 5/3 and 9/7
shown in Figures 6.5.1 and 6.5.2 should be modified as shown in Figures 6.5.4 and
6.5.5, respectively, in order to allow interleaving in execution. The 5/3 processor
shown in Figure 6.5.1 is modified by adding one stage between stages 2 and 3, since it
interieaves two column in execution, to obtain a 4-stage CP shown in Figure 6.5.4

that fit into 5/3 external architecture.

On the other hand, the 7-stage 9/7 processor datapath architecture shown in Figure
6.5.2 is modified by adding 3 stages between stages 3 and 4 and stages 6 and 7 each,
since it is required to interleave 4 columns in the first run, to obtain a 13-stage CP
shown in Figure 6.5.5 for 9/7 external architecture. Figure 6.5.5 show only the first
seven stages, since the remaining 6 stages are identical to stages 2 to 7. Tables B.18
and B.19 (a) show the dataflow of the 5/3 and the 9/7 architectures, respectively,

which illustrate how interleave execution takes place.

In Figure 6.5.5, the control signal, s of the two multiplexers labeled mux is set 1 in
the first run to allow interleaving of 4 columns, whereas in all other runs it is set 0 to
allow interleaving of 2 columns as required by scan method shown in Figure 6.3.2,
which is identical to 5/3 scan method shown in Figure 6.3.1 in all runs except the first

run. This also implies that reference to Figure 6.5.3, Figure 6.5.5 can be easily
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Figure 6.5.5 Modified CP for 9/7 and combined 5/3 and 9/7 datapath architecture

modified as a CP for combined 5/3 and 9/7 external architecture shown in Figure
6.4.1. Thus, when signalslossy/loss!ess of Figure 6.5.3 and s both are zero the

architecture performs 3/3; otherwise, it performs 9/7.

On the other hand, the RP in the proposed external architecture scans coefficients
of the high (H) and low (L) decompositions generated by CP according to scan
methods shown in Figure 6.3.3 and 6.3.4 for 5/3 and 9/7, respectively. Thus, this
would require modifying the 5/3 and the 9/7 processor datapath architectures shown
in Figures 6.5.1 and 6.5.2, respectively, as follows. Looking at the input conditions of
the 5/3 and the 9/7 in the DDGs and the scan methods shown in Figures 6.3.3 and
6.3.4 one can immediately recognize that all input coefficients occupying odd
columns in Figures 6.3.3 and 6.3.4 in each run need to be stored in a temporary line

buffer (TLB) of size N, since they are required in next run’s computations. Therefore,

a TLB should be added in both Figures 6.5.1 and 6.5.2.

Furthermore, according to the 5/3 DDGs, applying the scan method shown in

Figure 6.3.3 would require addition of another TLB of size N in order to store low

coefficients of a run calculated in stage 1 of Figure 6.5.1, since they are required in
high coefficients that would be calculated in stage 3 in the next run. When these
changes are incorporated into Figure 6.5.1, the 4-stage RP shown in Figure 6.5.6, is

abtained for 5/3 externa! architecture. Table B.18 shows the dataflow of the 5/3
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architecture, In this dataflow table, the first location of TLBI, for example, contains
coefficient YO(1) and the second location contains Y1(1) followed by Y2(1) in the
third location and so on. In the first run, TLBs are only written, whereas starting from
the second run, the TLBs are read and written in the same clock cycle. For instance, in
the second run at cycle 30, Table B.18 shows that the first location of TLB1 is read

into Rt2 of stage 2 and a new coefficient labeled YO(3) is written into it.

fl
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Figure 6.5.6 Modified inverse 5/3 RP datapath architecture with symmetric extension

On the other hand, according to the 9/7 DDGs, applying the scan method shown in
Figure 6.3.4 would require addition of three TLBs each of size N in the datapath
architecture shown in Figure 6.5.2. The first TLB is needed because all coefficients
calculated in stage 2 of Fig. 6.5.2, in a run, are required in stage 4 in the next run. The
second TLB is needed for storing N coefficients calculated in stage 4 in a run, which
are required in the calculations that take place in stage 5 in the next run. The third
TLB is necessary to keep N coefficients calculated in stage 5 ina run, which are
required in stage 7 calculation in the next run. When these changes are
incorporated into Figure 6.5.2, the 9-stage RP shown in Figure 6.5.7, is obtained for

9/7 external architecture.
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Figure 6.5.7 Modified RP for 9/7 and combined 5/3 and 9/7 datapath architecture

The registers labeled R0 and R1 in stage 3 of Figure 6.5.7 are added because the
scan method for 9/7 illustrated in Figure 6.3.4 requires in the first run, for example,
storing the second input coefficient of both rows 0 and | in Figure 6.3.4, labeled H0,0
and H1,0, since these two coefficients are required in the second operation of rows 0
and 1, respectively. Whereas, registers R0 and R1 in stage 4 are added to store in the
first run, the first two coefficients computed in stage 3 for each two rows using the
first two input coefficients of each row, since they are required in the two successive
computations that take place in stage 5. Note that the control signal s of the two
multiplexers, labeled mux in stages 3 and 4 of Figure 6.5.7 is set 1 in the first run to
pass coefficients stored in RO and R1 and 0 in all other runs to pass coefficients stored

in TLBI and TLB2,
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The details of the 9/7 architecture dataflow from RP side is given in Table B.19
(b). This table shows that in the first run each two outputs are followed by two empty
cycles. To see why this occurs can be determined by looking at column 5 (stage 5) in
the dataflow Table B.19 (b), which shows that in clock cycle 22 and 23 no data are
passed to stage 5 from 4. Similarly, in clock cycles 26 and 27, and so on, This
mainly is a consequence of the scan method adopted in the first run, which forces
stage 5 to wait each time on two successive coefficients calculated in stage 3 before it
can proceed. However, in all subsequent runs, the 9/7 architecture would yield a pair

of output every clock cycle.

It is very important to note that when the RP executes its last set of input
coefficients, according to 9/7 DDGs for odd and even signals shown in Figure 6.2.2 it
will not yield all required output coefficients as expected by the last run. For example,
in the DDGs for odd length signals shown in Figure 6.2.2 (a), when the last input
coefficient labeled Y8 is applied to RP it will yield output coefficient X5 and X6. To
get the last remaining two coefficients X7 and X8, the RP must execute another run,
which will be the last run in order to compute the remaining two output coefficients.
Similarly, when the last two input coefficients labeled Y6 and Y7 in the DDG for
even length signals shown in Fig. 6.2.2 (b) are applied to 9/7 RP it will yield output
coefficients X3 and X4. To obtain the remaining output coefficients X5, X6, and X7,
two more runs should be executed by RP according to the DDG. The first run will
yield X5 and X6, whereas the last run will yield X7. The details of the computations
that take place during each of these runs can be determined by examining the specific
area of the DDGs.

Control signals of a pipelined processor such as the signals of the pipeline 9/7 RP
shown in Figure 6.5.7 can be issued every clock cycle by a control unit. The control
signal values issued in each clock cycle are transferred to the first stage of the pipeline
and are loaded into the control signal latches (CSTs) that are similar to the pipeline
latches, to carry these signal values from stage-to-stage. When a stage where a signal
(or signals) is used is reached, the signal value carried by its CST is applied, while the
remaining signals are carried to the next stage. For example, in Table 6.3 starting

from cycle 14, the control signal values for signals incar, clar, ETLB, se0, etc. for 4
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Table 6.3 Control signal values for 9/7 RP

CK incar clar ETLRB S sefl) sel sel
14 0 0 0 1 0 0 0
15 0 1 0 1 0 0 0
16 1 0 1 1 0 1 0
17 1 0 1 1 0 1 0

cycles are derived. In cycle 14, the control signal values listed at cycle 14 in Table 6.3
would be loaded by the control unit into CSTs of the first pipeline stage. Similarly, in
cycle 15, the control signal values listed at cycle 15 in the table would be transferred
to CSTs of the first stage, while the control signal values issued in cycle 14 would be

transferred to CSTs of the next stage and so on.

In addition, observe that if registers RO and Rl in stages 3 and 4 are
eliminated, the RP for 9/7 from stages 2 to 5 and from 6 to 9 are similar in structure to
the 4-stage 5/3 RP shown in Figure 6.5.6. This implies that the RP for 9/7 can be

easily modified to work as a RP for the combined 5/3 and 9/7 external architecture.

In the combined architecture, signal s of the two multiplexers, labeled mux in
stages 3 and 4 of Fig, 6.5.7 is set 0 if the architecture is to perform 5/3; otherwise, it is
set 1 in the first run and 0 in all other run if the architecture is to perform 9/7.
Moreover, the multiplexer labeled muxco in stage 5 is only needed in the combined
5/3 and 9/7 architecture, otherwise, it can be eliminated and Rt2 output can be
connected directly to the input of the Rt0 of the next stage. Thus, in the combined
architecture signal sco of muxco is set 0 if the architecture have to perform 5/3,

otherwise, it is set 1 if the architecture have to perform 9/7.

Note that the TLBs in Figures 6.5.6 and 6.5.7 are required to be read and written
in the same clock. Therefore, signal E/W is connected to clock 72 so that the TLB

can be read in the first half c¢ycle and written in the second half cycle. The register
labeled TLBAR (TLB address register) generates addresses for TLB. Initially,
TLBAR is cleared to zero to point at the first location. Then to address the next

location, after each read and write, register TLBAR is incremented by one.
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6.6 Performance Evaluation

Suppose t, and 1, are the critical path delays of the external memory and the non-
pipelined processor architecture, respectively. [ is the number of input coefficients
scanned from external memory for each operation. /=2 for both inverse 5/3 and 9/7.
Then the scan clock period r and hence the scan frequency f of the proposed
architecture can be determined by the following algorithm.
Statement4

case \ :f 1, 2 t, [k then

= {

"

T
case 2 : Else if ¢, /4 -k =1, then

thp/l-k
else T = ¢

"

In the algorithm above either case | or case 2 can be truz. Case 2 implies the
availability of a very high speed scan that can scan the two pixels required for an
operation during the specified time limit given by #/k If that is the case-the
architecture shown in Figure 6.4.1 with it processor pipelined-the hardware utilization
is 100% and the architecture is complete. Now, suppose 7, and 7,denote the scan
clock periods of the architecture before and after pipelining, respectively. Then

T, :fp/f. (6.1)
And from statementd, case2
t,=t,/l-k=1-1/l-k=r/[k. (6.2)

The speedup factor S is then given by

S=r/r,=1,/(r,/k)=k (6.3)
The efficiency E of k-stage pipeline is defined as

E=8/k=kik=1 (6.4)

Thus, the architecture with pipelined processors is & times faster than the architecture

with non-pipelined processors with efficiency 1.

On the other hand, case 1 implies low scanning frequency. That means the time
required to scan the two pixels for an operation will take at least 21,/k seconds or two

clock cycles, where ¢,/k is the stage critical path delay of the pipelined processor. In
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that case, the proposed architecture would not only be slow but would be under
utilized half of the time, since every 2 clock cycles would yield one output. To
remedy this problem, the proposed architecture can be allowed to read from external
memory the required 2 coefficients for an operation in parallel every clock cycle
instead of one coefficient at a time, if the frequency of the pipelined architecture and
the external memory scan frequency are made equal. This would require two buses

instead of one to scan the external memory in the parallel scan architecture.

If the clock period 7, for both external memory and the pipelined architecture are

made equal to £,/k, then the speedup factor S of the pipelined parallel scan architecture

as compared with the non-pipelined architecture is given by

f
sl _ v g (6.5)

The efficiency  E=S/k=1

That is the parallel scan architecture is & times faster than nonpipelined architecture

with efficiency 1.

On the other hand, to compare the power consumption of the pipelined parallel
and sequential scan architectures consider the following. First, since both pipelined
parallel and sequential scan architectures operate with frequency /¢, and are equal in
capacitance, therefore, they consume the same power. Second, the external memory
power consumption in the pipelined parallel scan architecture, P, (pipe),. and that in
the pipelined sequential scan architecture, P,.(pipe)s., can be determined as follow, If

the power consumption of VLSI architecture can be estimated as

P = (’Y!u!uﬂ' ! [/uz ' f (66)

where Cy denotes the total capacitance of the architecture, V, is the supply voltage,

and f'is the clock frequency, then
P (pipe)y,, =1l V) s =1-Clog VK1, 6.7)

o

Pm (plpe)seq = C!,:la.' ’ I/f ) f2 = C,‘:?la.' ’ 1/02 ' ]/IZ = ] ) C:)’luf ) I/u2 ' k/tp (6'8)

Cowar s the total capacitance of the external memory.
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Based on the above evaluations, it can be concluded that both pipelined parallel
and sequential scan architectures achieve the same performance in terms of speedup,

efficiency and they consume the same power.
6.7 Parallel Architecture Development

In order to best meet real-time applications 2-D DWT with demanding requirements,
in this section, parallelism will be explored. The single pipelined architecture
developed in the previous sections will be extended to 2- and 4-parallel pipelined
architectures to achieve speedup factors of 2 and 4, respectively. First, the 2-parallel
pipelined architecture for 5/3 and 9/7 will be developed followed by the 4-parallel

pipelined architecture.
6.7.1 Proposed 2-parallel external architecture

Based on the scan methods and the DDGs for 5/3 and 9/7, the 2-parallel external
architecture shown in Fig. 6.7.1 (a) is proposed for 5/3 and 9/7 and combined 5/3 and
9/7 for 2-D IDWT. The architecture consists of two k-stage pipelined column-
processors labeled CP1 and CP2 and two 4-stage pipelined row-processors labeled
RP1 and RP2. The waveforms of the two clocks £, and f,/2 that are used in the
architecture are shown in Fig. 6.7.1 (b). The clock frequency f, is determined from

statement3 as

fy =2k/1, (6.9)

The architecture scans the external memory with frequency j, and it operates with
frequency £, /2. Each clock cycle two new coefficients are scanned from external
memory through the two buses labeled bus0O and busi. The two new coefficients are
loaded into CP1 or CP2 latches Rt0 and Rt/ every time clock f,/2 makes a negative

or a positive transition, respectively. On the other hand, both RP1 and RP2 latches

Rt0 and Rt/ load simultanecusly new data from CP1 and CP2 output latches each time

clock £,/2 makes a negative transition.

The dataflow for 5/3 2-parallel architecture is shown in Table B.20, where CPs

and RPs are assumed to be 4-stage pipelined processors. This 5/3 dataflow table is

211



1/2
| RIO {0 L RUO foeeeeeeep! RIO {10 L1 RIO >
]
CP1 RP1
LD W N1 Hi| Rt —> Rt1 {11 H{ Rt >
|
l )
70 M L —| RthO Rt
e sallt 1 ro bl io LI Rto B>
L_|
CP2 RP2
»i Rt (N1 Himeede| RERT > Rt1 il 1 HPp| RET B
T | * )|
(a}
fz E 1 H 2 M 3 :_
1/2 E——l ) Load
: RP1 & RP2

Load CP1  Load CP2
(b

Figure 6.7.1 (a) Proposed 2-paraliel pipelined external architecture for 5/3 and 9/7 and
combined 5/3 and 9/7 for 2-D IDWT (b) Waveforms of the clocks

derived based on the 9/7 scan methods shown in Figs. 6.3.2 and 6.3.4 instead of 5/3
scan method shown in Figs. 6.3.1. The reason is to show that 9/7 scan methods can be
used for 5/3 as well. In addition, a unified scan method for both 9/7 and 5/3 make
their control algorithms identical, which is advantageous especially in combined 5/3
and 9/7 architecture. The dataflow for 9/7 2-parallel architecture is similar, in all runs,
to the 5/3 dataflow except in the first run, where RP1 and RP2 of the 9/7 architecture
each would generate one output coefficient every other clock cycle, reference to

clock 1,/2 . The reason is that the first 4 coefficients of each row processed in the first

run by either RP1 or RP2 of the 9/7 would require, according to the DDGs, two

successive low coefficients from the first level of the DDGs labeled v"(2» in order to
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carry out node 1 computations in the second level labeled y*(2n+1y. In Table B.20, the
output coefficients in Rf0 of both RP1 and RP2 at cycles 19, 23, and 27 and so on

represent the output coefficients of the 9/7 in the first run,

The strategy adopted for scheduling memory columns for CP1 and CP2 of the 5/3
and 9/7 2-parallel architectures, which are scanned according to the scan method
shown in Figure 6.3.2, is as follow. In the first run, both 5/3 and 9/7 2-parallel
architectures are scheduled for executing 4 columns of memory, two from each (A)
and (B) of Figure 6.3.2 . The first two columns of Fig. 6.3.2 (A) are executed in an
interleaved fashion by CP1, while the first two columns of Fig. 6.3.2 (B) are executed
by CP2 also in an interleaved fashion as shown in the dataflow Table B.20. In all
subsequent runs, 2 columns are scheduled for execution at a time. Each time one
column from (A) of Fig. 6.3.2 will be scheduled for execution by CP1, while another
from (B) will be scheduled for CP2. However, if number of columns in (A) and (B) of
Fig. 6.3.2 is not equal, then the last run will consist of only one column of (A). In that
case, schedule the last column in CP1 only, but its output coefficients will be executed
by both RP1 and RP2. The reason is that if the last column is scheduled for execution
by both CP1 and CP2, they will yield more coefficients than that can be handled by
both RP1 and RP2.

On the other hand, scheduling RP1 and RP2 of 5/3 and 9/7 2-parallel architectures
occurs according to scan method shown in Fig. 6.3.4. In this scheduling strategy, all
rows of even and odd numbers in Fig. 6.3.4 will be scheduled for execution by RP1
and RP2, respectively. In the first run, 4 coefficients from each 2 consecutive rows
will be scheduled for RP1 and RP2, whereas in all subsequent runs, two coefficients
of each 2 consecutive rows will be scheduled for RP1 and RF2, as shown in Figure
6.3.4. However, if the number of columns in Figure 6.3.4 is odd, that occurs when
number of columns in (A) and (B) of Fig. 6.3.2 is not equal, then the last run would

require scheduling one coefficient of each 2 successive rows to RP1 and RP2,

In general, all coefficients belong to columns of even numbers in Fig. 6.3.4 will be
generated by CPl and all coefficients belong to columns of odd numbers will be
generated by CP2. For example, in run 1, first, CP1 will gererate two coefficients
labeled 1.0,0 and L1,0 that belong to locations 0.0 and 1,0 in Fig. 6.3.4, while CP2
will generate coefficient HO0,0 and H1,0 that belong to locations 0,1 and 1,1. Then

213



coefficients in locations 0,0 and 0,1 are executed by RP1, while coefficients of
locations 1,0 and 1,1 are executed by RP2. Second, CP1 will generate two coefficients
for locations 0,2 and 1,2, while CP2 will generate two coefficients for locations 0,3
and 1,3. Then coefficients in locations 0,2 and 0,3 are executed by RP1, while
coefficients in locations 1,2 and 1,3 are executed by RP2. The same process is

repeated in the next two rows and so on.

In the second run, first, CPl generates coefficients for locations 0,4 and 1,4,
whereas CP2 generates coefficients for locations 0,5 and 1,5 in Fig. 6.3.4. Then
coefficients in locations 0,4 and 0,5 are executed by RPI1, while coefficients in
focations 1,4 and 1,5 are executed by RP2. This process is repeated until the run
completes. However, in the even that the last run processes only one column of (A),
CP1 would generate first coefficients of locations O,m and 1,m where m refers to the
last column. Then coefficients of location O,m is passed to RP1, while coefficient of
location 1,m is passed to RP2. in the second time, CP1 would generate coefficients of

locations 2,m and 3,m. Then 2,m is passed to RP1 and 3.m to RP2 and so on.
6.7.2 Modified CPs and RPs for 5/3 and 9/7 2-parallel external architecture

Each CP of the 2-parallel external architecture is required to execute two columns in
an interleave fashion in the first run and one column in all other runs. Therefore, Fig.
6.5.1 should be modified as shown in Fig. 6.7.2 by adding one more stage between
stages 2 and 3 for 5/3 2- paralle]l external architecture to allow interleaving of two
columns as described in the dataflow Table B.20. Through the two multiplexers
labeled mux the processor controls between executing 2 columns and one column,
Thus, in the first run, the two multiplexers’ control signal labeled s is set 1 to allow
interleaving in execution and 0 in all other runs. The modified 9-stage CP for 9/7 2-

parallel external architecture can be obtained by cascading two copies of Figure 6.7.2.

On the other hand, RP1 and RP2 of the proposed 2-parallel architecture for 5/3
and 9/7 are required to scan coefficients of H and L. decompositions generated
by CP1 and CP2 according to the scan method shown in Fig. 6.3.4. In this scan

method, all rows of even numbers are executed by RPI and all rows of odds numbers
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Figure 6.7.2 Modified inverse 5/3 CP for 2-parallel external architecture

are executed by RP2. That is, while RP1 is executing row0 coefficients, RP2 will be
executing rowl coefficients and so on. In addition, looking at the DDGs for 5/3 and
9/7 one might immediately observe that applying the scan methods shown in Fig.
6.3.4 wouid require inclusion of temporary line buffers (TLBs) in RP1 and RP2 of the
proposed 2-parallel external architecture as follows. In the first run, the fourth input
coefficient of each row in the DDGs and the output coefficients labeled X(2) in the
5/3 DDGs and that labeled Y"(2), Y"(1), and X(0) in the 9/7 DDGs, generated by
considering 4 inputs coefficients in each row, should be stored in TLBs, since they
are required in the next run’s computations. Similarly, in the second run, the sixth
input coefficient of each row and the output coefficients labelec X(4) in the 5/3 DDGs
and that labeled Y"(4), Y"(3), and X(2) in the 9/7 DDGs generated by considering 2
inputs coefficients in each row, should be stored in TLBs. Accordingly, 5/3 would
require addition of 2 TLBs each of size N, whereas 9/7 would require addition of 4
TLBs each of size N. However, since 2-parallel architecture consists of two RPs, each
5/3 RP will has 2 TLBs each of size N/2 and each 9/7 RP will has 4 TLBs each of
size N/2 as shown in Fig. 6.7.3. Figure 6.7.3 (a) represents the 5/3 modified RP,
while both (a) and (b) represent the 9/7 modified RP for 2- parallel architecture.

To have more insight into the two RPs operations, the dstaflow for 5/3 RP1 is
given in Table 6.4 for first and second runs. Note that stage 1 input coefficients in
Table 6.4 are exactly the same input coefficients of RP1 in Table B.20. In the first

run, TLBs are only written, but in the second run and in all subsequent runs, TLBs are
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Figure 6.7.3 Modified RP for 2-parallel architecture (a) 5/3 (a, b) 9/7

read in the first half ¢ycle and written in the second half cycle. In the cycle 15, Table
6.4 shows that coefficients HO,I is stored in the first location of TLBI, while
coefficient H2,1 is stored in the second location in cycle 19 and so on. Run 2 starts at
cycle 27. In cycle 28, the first location of TLB1, which contains coefficients HO,1 is
read during the first half cycle and is loaded into RdI by the positive transition of the
cycle, whereas coefficient H0,2 is written into the same location in the second half
cycle. Then, the negative transition of clock cycle 10 transfers contents of Rd/ to Re2

in stage 2.

In Figure 6.7.3, the control signal, s, of the two multiplexers’ labeled mux is set 1

during run 1 to pass RO of both stages 2 and 3, whereas in all other runs, it is set 0 to
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Table 6.4 Dataflow of the 5/3 RP1

CK | RPI input latches RPleutput

12 STAGE | STAGE 2 STAGE3 STAGE 4 latches
Rt0 Rt] TLB] | Rt0 RtZ Rtl RO | Rt0 Rtl RO TLB2 | Rt} Ril R Rtd Rt
I foHoo0 {0 L] e e
13 | Lo,1 Ho, Lo - HOO | ] e e
15 | L2,0 H2,0 HO,T | LO,1 -—— HO1HO00 | X00 - - | | eeem oo
Z 17 1 L21 H21 L2, —- H2,0 - X0,2 HO,0 X0,0 X0,0 ---n coee | e e
% 19 | L4,0 H4,0 H2,1 | 12,1 - H21H20 | X2,0 -~ - X0,2 | X0,2H0,0 X000 | X00 -----
= 20 | L4.1 H4.l 14,0 --—- H4,0-—-- X2,2 H2,0 X2,0 K20 wem e X0,2 X0l
23 [L6,0 H6,0 Ha,1 | 14,1 ---- H4,1 H40 | X4,0 --—- - X22 [ X22H2,0 X0.2 [ X2.0 -
25 | L6,1 He,l L6,0 ---- H6,0 ----- X4,2 H40 X4,0 N X2,2 X2.1
27 [ L02 HO2 H6,1 | L6,1 -~ H6,1 HE,0 | X6,0 - ---m- X4.2 | K42 H4,0 X4,0 | X4,0 -
29 | 122 H22 HO.2 | L02 HO,1 HO,2 -—-- X6,2 H6,0 X6,0 X6,0 -vome aemeen X4,2 X4,1
; 3 | L42 H42 H22 | L22 H2,1 H22--—- X0,4 HO1 ----- X6,2 | X6,2H6,0 X6,0 | X6,0 -----
- |33 | L62 H62 H42 | L42 H4,1H42 - ' X2.4 H2,1----- X0.4 | X0,4HO,1 X0,2 | X6,2 X6,1
S T p— H6,2 | L6,2 HA,1 HE2 «-a-- X4,4 H4,1 ----- X241 X24H21 X22 | X04 X03
e el e X6,4 H6,1 - X441 X44H4,1 X42 | X24 X273
K e Bl e el Ml et X6.4 [ X6,4H6,1 X6,2 | X44 X4.3
L e B el B R X6,4 X6,3

pass coefficients read from TLB1 and TLB2.
6.8 Proposed 4-parallel external architecture

To further increase speed of computations twice as that of the 2-parallel architecture,
the 2-parallel architecture is extended to 4-parallel architecture as shown in Fig. 6.8.1
(a). This architecture is valid for 5/3, 9/7, and combined 5/3 and 9/7. It consists of 4 k-
stage pipelined CPs and 4 k-stage pipelined RPs. The waveforms of the 3 clocks £,
Jia and f3p used in the architecture are shown in Fig. 6.8.1 (b). The frequency
of clock f; is determined from statement3 as

£, z4k/tp (6.10)

The architecture scans the external memory with frequency 74 and it operates with
frequency f., and f,. Every time clock £}, makes a negative transition CP1 loads into
its input latches Rt0 and Rtl two new coefficients scanned from external memory
through the buses labeled bus0 and bus!, whereas CP3 loads every time clock 77,
makes a positive transition. CP2 and CP4 load every time clock f;» makes a negative
and a positive transition, respectively. On the other hand, both RP1 and RP2 load
simultancously new data into their input latches Rf0 and Rrl each time clock fi,
makes a negative transition, whereas RP3 and RP4 loads each time clock £, makes a

negative transition.
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Figure 6.8.1 (a) Proposed 2-D IDWT 4-parallel pipelined external architecture for 5/3
and 9/7 and combined 5/3 and 9/7 (b) Waveforms of the clocks
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The dataflow for 4-parallel 5/3 external architecture is given in Table B.21, where
CPs and RPs are assumed to be 3- and 4-stage pipelined processors, respectively. The
dataflow table for 4-parallel 9/7 external architecture is similar in all runs to the 5/3
dataflow except in the first run, where RPs of the 9/7 architecture, specifically RP3
and RP4 generate a pattern of output coefficients different from that of the 5/3. RP3
and RP4 of the 9/7 architecture generate every clock cycle, reference to clock fis, two
output coefficients as follows. Suppose, at cycle number » the first two coefficients
X{0,0) and X(1,0) generated by RP3 and RP4, respectively, are loaded into cutput
latch Rt0 of both processors. Then, in ¢ycle n+1, RP3 and RP4 generate coefficients
X(2,0) and X(3,0) followed by coefficients X(4,0) and X(5,0) in cycle n+1 and so on.
Note that these output coefficients are the coefficients generated by both RP1 and
RP2 in Table B.21.

The strategy used for scheduling memory columns for CPs of the 5/3 and 9/7 4-
parallel architecture, which resemble the one adopted for 2-parallel architecture, is as
follow. In the first run, both 5/3 and 9/7 4-parallel architecture will be scheduled to
execute 4 columns of memory, two from (A) and the other two from (B), both of Fig.
6.3.2. Each CP will be assigned to execute one column of memory coefficients as
illustrated in the first run of the dataflow shown in Table B.21, whereas in all
subsequent runs, 2 columns at a time will be scheduled for execution by the 4 CPs.
One column from Fig. 6.3.2 (A) will be assigned to both CFP1 and CP3, while the
other from Fig. 6.3.2 (B) will be assigned to both CPP2 and CP4 as shown in the
second run of Table B.21. However, if number of columns in {(A) and (B) of Fig. 6.3.2
is not equal, then the last run will consist of only one column of (A). In that case,
schedule the last column’s coefficients in both CP1 and CP3 as shown in the third run
of Table B.21, since an attempt to execute the last column using 4 CPs would result

in more output coefficients been generated than that can be handled by the 4 RPs.

On the other hand, scheduling rows coefficients for RPs, which take place
according to scan method shown in Fig. 6.3.4, can be undersiood by examining the
dataflow shown in Table B.21. In cycle 17 and 18, the first two rows coefficients are
scheduled for RPs as shown in Table B.21, while CPs generate coefficients of the next
two rows, row2 and row3. Table B.21 shows that the first 4 coefficients of row O are

scheduled for execution by RP1 and RP3, while, the first 4 coefficients of row | are
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scheduled for RP2 and RP4. In addition, note that all coefficients generated by CP4,
which belong to column 3 in Fig. 6.3.4, are required in the second run’s computations,
according to the DDGs. Therefore, this would require inclusion of a TLB of size N/4
in each of the 4 RPs to store these coefficients. The second run, however, requires
these coefficients to be stored in the 4 TLBs as follows. Coefficients H0,1 and H1,1
generated by CP4 in cycle 16 should be stored in the first location of TLB of RP1 and
RP2, respectively. These two coefficients would be passed to their respective TLB
through the input latches of RP1 and RP2 labeled Rt2, as shown in cycle 17 of Table
B.21. Whereas, coefficients H2,1 and H3,1 generated by CP4 at ¢ycle 20 should be
stored in the first location of TLLB of RP3 and RP4, respectively. These two
coefficients are passed to their respective TLB through the input latches of RP3 and
RP4 {abeled Rtl, as shown in cycle 22 of Table B.21. Similarly, coefficients H4,1 and
HS5,1 generated by CP4 at cycle 24 should be stored in the second location of TLB of
RP1 and RP2, respectively, and so on. These TLBs are labeled TLB1 in Fig. 6.8.1 (a).

6.8.1 Column and row processors for 5/3 and 9/7 4-parallel external architecture

The 5/3 and the 9/7 processors datapath architectures shown in Figs. 6.5.1 and 6.5.2
were developed assuming the processors scan external memory either row by row
or column by column. However, CPs and RPs of the 4-parallel architecture are
required to scan external memory according to scan methods shown in Figs. 6.3.2 and
6.3.4, respectively. The 4-parallel architecture, in addition, introduces the requirement
for communications among the processors in order to accomplish their task.
Therefore, the processors datapath architectures shown in Figs. 6.5.1 and 6.5.2 should
be modified according to the scan methods and the communications requirements so
that they fit into the 4-parallel’s processors. Thus, in the following, the modified 4
CPs will be developed first followed by the 4 RPs.

6.8.2 Modified CPs for 4-parallel architecture

The 4 CPs of the 4-parallel architecture each is required in the first run to execute
one column at a time. That means the first run requires no modifications of the 5/3
and 9/7 datapath architectures shown in Figs. 6.5.1 and 6.5.2. However, in all
subsequent runs, each two processors (CP1 and CP3 or CP2 and CP4) are assigned to

execute one column together, which requires interactions between the two processors
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to accomplish the required task. Therefore, both CPs 1 and 3, similarly, CPs 2 and 4
should be modified as shown in Fig. 6.8.2 to allow communications. The two
processors communicate or interact through the paths (buses) labeled PI, P2, P3, and
P4. Fig. 6.8.2 shows modified 5/3 CPs | and 3 which is identical to CPs 2 and 4. Fig.
6.8.2 also represents the first 3 stages of 9/7 CPs 1 and 3 (and 9/7 CPs 2 and 4) and
the remaining stages are identical to stages 1 to 3. Note that since the first 3 stages of
5/3 and 9/3 are similar in structure, the 5/3 processor can be easily incorporated into

9/7 processor to obtain the combined 5/3 and 9/7 processor for 4-parallel architecture.

The controt signal, s of the 4 multiplexers, labeled mux is set 0 in the first run to
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Figure 6.8.2 Modified 5/3 CPs 1 & 3 for 4-parallel architecture
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allow each processor to execute one column and 1 in all other runs to allow execution

of one column by two processors.
6.8.3 Modified RPs for 4-parallell architecture

In section 6.7.2, it has been pointed out the reasons for including TLBs in the two RPs
of the 2-parallel architecture. For the same reasons, it is also necessary to include
TLBs in the 4 RPs of the 4-parallel architecture, as shown in Figures 6.8.3 (a) and
(a,b) for 5/3 and 9/7, respectively. The processor datapath for both RP1 and RP3,
which is also identical to the processor datapath of both RP2 and RP4, are drawn

together in Figs.6.8.3 (a) and (a,b) for 5/3 and 9/7, respectively, since in the first run,
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Figure 6.8.3 (a) Modified 5/3 RPs | and 3 for 4-parallel external architecture
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both processors are required to execute together the first 4 ccefficients of each row.
Which implies interactions between the two processors during the computations and
that take place through the paths (buses) labeled P17, P2, P3, and P4. However, in all
subsequent runs, according to the scan method shown in Fig. 6.3.4, each RP will be
scheduled to execute each time two coefficients of a row as shown in cycles 37 and 38
of Table B.21. The advantage of this organization is that the total size of the TLBs
does not increase from that of the single pipelined architecture, when it is extended to

2- and 4- parallel architecture.

In the first run, all TLBs in Fig. 6.8.3 will be written only, whereas, in all other
runs, the same location of a TLB will be read in the first half cycle and written

in the second half cycle with respect to clock £, or f1.
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The control signal, 5 of the six multiplexers, labeled mux in Fig, 6.8.3, is set 0 in
the first run to allow in the RPI, coefficient coming through path 0 of each
multiplexer to be stored in its respective TLB, whereas in the RP3, it allows contents
of Rt2 and Rdl in stages 1 and 3, respectively, to be passed to the next stage, In all

subsequent runs, s is set | to pass coefficients read from TLBs to next stage.

Note that during run 2 all RPs execute independently with no interactions
among them. In addition, in the first run, if the first coefficient generated by stage 2 of
RP3 is stored in TLB2 of RP1, then the second coefficient should be stored in TLB2
of RP3 and so on. Similarly, TLB1, TLB3, and TLB4 of both RP1 and RP3 are
handled. Furthermore, during the whole period of run 1, the control signals of the
three extension multiplexers labeled muxe0, muxel, and muxe2 in RP1 should be set
0, according to Table 6.2, whereas those in RP3 should be set normal as shown in the
second line of Table 6.2, since RP3 will execute normal computations during the
period. However, in the second run and in all subsequent runs except the last run, the
extension multiplexers control signals in all RPs are set normal. Moreover, the
multiplexers labeled muxco in stage 4 is only needed in the combined 5/3 and 9/7
architecture, otherwise, it can be eliminated and Rt2 output can be connected directly
to R10 input of the next stage in case of 9/7, whereas in 5/3, Rt0 is connected directly
to output latch Rt0. In the combined architecture, signal sco of muxco is set 0 if the
architecture is to perform 5/3; otherwise, it is set 1 if the architecture is to perform

9/7.
6.9 performance evaluation

In order to evaluate performance of the two proposed parallel pipelined architectures
in terms of speedup and throughput as compared with single pipelined architecture
consider the following., Assume subbands HH, HL, LH, and LL of each level are
equal in size. The dataflow for single pipelined architecture shown in Table B.18
shows that p, = 20 clock cycles are needed to yield the first output. Then, the total
number of output coefficients in the first run of the J™ level reconstruction can be

estimated with the help of Table B.18 as
N2/ (6.11)

and the total number of cycles in runl is given by
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2N/277 (6.12)

The total time, 71, required to yield » pairs of output coefficients for the 1" level

reconstruction by single pipelined architecture can be estimated as

T1=(p, +28/2 + 20— /28/2' ), = (o, + N/2"™ + 20, 2k (6.13)

On the other hand, the dataflow Table B.20 for the 2-parallel pipelined
architecture shows that p, =19 clock cycles are needed to vield the first 2 output

coefficients. Then, the total numbers of paired output coefficients in the first run of

the I level reconstruction can be estimated as

32N/27. (6.14)

The total number of 2-paired output coefficients is given by

3/4 N/2'7 (6.15)
and the total number of cycles in run 1 is

2N/27" (6.16)

Note that the total number of paired output coefficients of the first run in each level of

reconstruction starting from the first level can be written as

3/2N,3/2N/2,3/2N/ 4. 3/2N/27 (6.17)

where the last term is Eq (6.14).

The total time, 72, required to yield » pairs of output coefticients for the 1M level

reconstruction of an NxAf image on the 2-paralle! architecture can be estimated as
72 =(p, +2N/2"" + 2(nf2-3/4N/2" V), (6.18)
T2=({p, + Y2N/2'" +n), [2k (6.19)
The term 2(n/2 -3/4 N/Z“H) in (6.18) represents the total number of cycles of run 2

and all subsequent runs.

The speedup factor, 52, is then given by

71 o+ N2+ 2n), 2k
§2=2= -
T2 {p, +1/2N/2"" +n)t, /2K

(6.20)
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For large n, the above equation reduces to

{myt~1
52 - Z(I/QN;’% RSO
W2N2 "+

(6.21)

That means the 2-parallel architecture is 2 times faster than the single pipelined

architecture.

Similarly, the dataflow Table B.21 for the 4-parallel pipelined architecture shows
that p, =33 clock cycles are needed to yield the first two output coefficients. In
addition, with the help of the dataflow table of the 4-paralell architecture it can be
estimated that both RP1 and RP2, in the first run of each level reconstruction, yield
(N/27"")/2 pairs of output coefficients, while both RP3 and RP4 yield N/2’" pairs
of output coefficients, a total of 3/2N/2”"" pairs of output coefficients. The total

number of cycles in run 1 is then given by

4N/2' /2 (6.22)

Thus, the total time, T4, required to yield » pairs of output coefficients for the 1" Jevel

reconstruction of an NxM image on the 4-parallel architecture can be estimated as

T4=(p, +2N/2" + 2n—-3/2N/2"" )2, (6.23)
T4=(p, +2N/27 1 - 3/2N/2"7 e, 4k (6.24)
T4 =(p, +1/2N/2"" +n), [4k (6.25)

The term (n— 3/2 N/Z'H) represents the total cycles of run 2 and all subsequent runs.

The speedup factor, 54, is then given by
Tl (p, + Nf27 +2n)rp/2k

sqdl_ , (6.26)
T4 (p, +1/2N/2" +n)t, j4k
For large # it reduces to
J-1
4 4(1/2N/2" +n) 4 627)

U 2N/2T m)
Thus, the 4-parallel architecture is 4 times faster than the single pipelined architecture.

The throughput, H, which can be defined as number of output coefficients

generated per unit time, can be written for each architecture as
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H(single)=n/(p, + N/2'" +2m)1, |2k (6.28)

The maximum throughput, ™, occurs when # is very large (n—c0), thus,

H™ (sin gle) = H(single),.,, = nkf, [(I/2N/2"" 4+ n) (6.29)
H(2 - parallel) = nf(p, +V2N/2" +n)t, [2k (6.30)
H"™ (2~ parallel) = H(2 - parallel), ,, = 2knf, [(L2N/2"" +n)  (631)
H(4 - parallel) = nf(p, +1/2N/2"" +n)t, [4k (6.32)

H"™ (4~ parallel) = H(4— parallel),_,, = 4knf, [(I/2N/2"" +n)  (6.33)

Thus, the throughputs of the 2-parallel and the 4-parallel pipelined architectures have
increased by factors of 2 and 4, respectively, as compared with the single pipelined

architecture.
6.10 Conclusions

In this chapter, to show the effectiveness of the approach adopted for developing
forward architectures in chapters 3 and 4, the architectures for 2-dimensional inverse
discrete wavelet transform (2-D IDWT) for 5/3 and 9/7 were developed. First, a high-
speed single pipelined inverse architecture including its column-processor (RP) and
row-processor (CP) were developed. Then, the single pipelined architecture is
extended to 2-parallel and 4-parallel to achieve speedup factors of 2 and 4,
respectively, according to the evaluation given in section 6.9. The advantage of the
single pipelined architecture developed here is that it only requires a total temporary
line buffer (TLBs) of sizes 2N and 4N for 5/3 and 9/7, respectively, and the TLB
requirement does not increase when it extended to parallel architecture. The
interleaving technique is utilized to speedup the computations by allowing the two
processors to work in parallel earlier during the computations and to reduce TLB

requirement between CP and RP to a few registers.
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CHAPTER 7
EXPERIMENTAL RESULTS
7.1 Performance analysis

In chapter 3, two scan methods were developed for 9/7 algorithm. The first scan
method shown in Figure 3.5.1 can be used for both 9/7 and 5/3 algorithms.
Architecture developed based on this scan method will not yield any output
coefficients in the first run. However, starting from the second run its dataflow is
same as that of the 5/3 dataflow shown in Table B.6. On the other hand, the 9/7
architecture developed based on the second scan method shown in Figure 3.5.3 will
vield output coefficients starting from the first run, as illustrated in the dataflow
shown in Table B.2(a}. This might give the impression that the second scan method
performs better than the first scan method. To show that both scan methods achieve
the same performance in terms of the total number of cycies and throughput, consider
the following. From the RP and the CP of the 9/7 shown in Figures 3.8.8(a) and
3.8.4(a), respectively, which are based on the scan method shown in Figure 3.5.1, it
can be shown that {p +») cycles are needed to yield the first pair of output
coefficients. The remaining (n-1) pairs of output coefficients, which will be produced
according to Table B.6, would require (#-1) cycles. Thus, the total time 7/ required to
yield »n pairs of output coefficients for j-level decomposition of an NxM image is

given by
TI={p, + N+(n-1)k, (7.1)

where 7, = rﬂ/k is the clock period. The throughput f is given by

H=nf(p, + N+(n-1))r, (7.2)
The maximum throughput, H ™ occurs when n is very large (#—w), thus,

H™ =H,_ =nkf,[N+n (71.3)
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On the other hand, Table B.2 of the architecture based on the scan method shown
in Figure 3.5.3, indicates p, =23 cycles are needed to yield the first pair of output
coefficients. In addition, the total number of paired output coefficients and the total
number of cycles in the first run are & and 2N-2, respectively. Thus, the total time T2
required to yield » pairs of output coefficients for j-level decomposition is estimated

as

(ps + 2N =2+ (n-N)k, (7.4)
where 7, = tp/k. The throughput H is given by

H=n{(p, +2N +{n- N))r, (7.5)
H™ =H__, :nkfp/N+n (7.6)

Similar analysis also can be carried out for intermediate architectures based on the
scan methods shown in Figures 3.7.1 (a) and (b). Equations 7.1, 7.3, 7.4, and 7.6,
show that the architectures developed based on both scan methods give the same
performance in terms of the number of clock cycles and throughput, if r, =7,.

However, the hardware and the control complexities of the architecture based on the
second scan method, as indicated in Figures 3.8.4(b) and 3.8.8(b) are more complex
than the one based on the first scan method shown in Figures 3.8.4(a) and 3.8.8(a).
The situation becomes even more complex and worse when the architecture is
extended to parallel. Furthermore, the implementation results in Figurers C.3.3 and
C.4.3 show the speed advantage of the first scan method. Figure C.3.3 shows that the
first scan method architecture operates with frequency 147.95 MHz, while Figure
C.4.3 shows the second scan method architecture operates with frequency 136.04
MHz. For these reasons, therefore, the first scan method is adopted for all parallel

architectures developed in chapter 4.
7.2 Performance evaluations and comparisons

This section evaluates and compares architectures developed in this research with
most recent architectures in the literatures. The architectures are evaluated in terms of
hardware complexity, hardware utilization, computing complexity, and control
complexity. Hardware complexity is measured by the number of multipliers, the

number of adders, the total size of the line buffer, and the complexity of the control

229



circuits [40]. Computing complexity for 2-D DWT is estimated by the number of

clock cycles required to scan an NxM image for j levels of decomposition.

Table 7.1 shows the performance comparison results. The line-based architecture
presented in [1] requires a line buffer of size 5.5N implemented in two-port RAM,
Besides, its critical path delay is large, 4Tm + 87a Whereas the proposed
architectures use single-port RAMs of sizes 3N and 4N for overlapped and

nonoverlapped architectures, respectively.

Flipping structure [2] introduces a new method to shorten the critical path of the
lifting-based architecture to one multiplier delay but requires a line buffer of size /1IN
[43]. In [21], a modified view of the flipping structure, which shortens the critical
path delay to one multiplier and reduces the size of the line buffer required to
4N, is presented. In fact, [2, 21] have only introduced a method not an architecture,
which aims at shorting the critical path delay of lifting- based to one multiplier delay.
However, this issue becomes less important after the fact that scale factors and
coefficients of the 9/7 filter can be implemented in hardware using only two adders as
illustrated in [23]. The proposed overlapped and nonoverlapped architectures require
a total line buffer of size 3 and 4N, respectively. However, note that by adding a line

buffer of size N in the nonoverlapped architecture, the power consumption has been

Table 7.1 Comparisons of severall-level (9/7) 2-D DWT architectures

Architecture Multi | Adders | Line | Computing Critical
buffer | Time Path
Generic RAM-based [1] 10 16 55N | 2(1-47 )NM 4Tm +8Ta
Flipping [2] 10 16 1IN | 2(1-4")NM Tm
Chao [60] & 8 55N | 2(1-47)NM Tm
PLSA [21] 12 16 4N N/A Tm
Bing [43] 3 8 55N | 2(1-4)NM | Tm
Lan [29] 12 12 6N 2(1-4")NM Tm
Jain [61] 9 16 10N | 2(1-47)NM Tm+Ta
Cheng [22](2-parallel) 18 32 55N | {1-4)NM N/A
FIDF [62](2-parallel) 24 32 5N {1-4")NM Tm+2Ta
Proposed (overlapped) 10 16 IN 2(1-47)NM Tm+2Ta
Proposed (nonoverlapped) 10 16 4N 2(1-4*)NM Tm+2Ta
Proposed (2-parallel) I8 32 IN {1-4")NM Tm+2Ta
Proposed (4-parallel) 36 64 IN 172(1-47)NM | Tm+2Ta
Prop. {2-parallel intermediate) | 18 32 IN {1-47 )NM Tm+2Ta
Prop. (3-parallel intermediate) | 28 43 3N 2/3(1-47INM | Tm+2Ta
Prop. (single pipelined inverse) | 10 16 4N 2(1-47 WM Tm+2Ta
Proposed (2-parallel inverse) 18 32 4N {1-47INM Tm+2Ta
Proposed (4-paralie] inverse) 36 64 AN 1/2(1-4")NM | Tm+2Ta
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reduced to minimum. Thus, the nonoverlapped architecture cculd be a very efficient

alternative in applications where power consumption is a serious concern.

In [43, 60], by reordering the lifting-based DWT of the 9/7 filter, the critical path
of the pipelined architectures have been reduced to one multiplier delay but requires a
total line buffer of size 5.5N. However, [43] requires two row processors and [60]
requires 4 processing elements (PEs), two in each horizontal and vertical processors,
to perform prediction lifting and update lifting. In addition, both [43, 60] require the
use of real multipliers with long delay that cannot be implemented by using arithmetic
shift method [23]. The architecture proposed in [29] achieves a critical path of one
multiplier delay using very large number of pipeline registers. In addition, it requires
a total line buffer of size 6/. In the efficient pipelined architecture [61], a critical path
delay of Tm+Ta is achieved through optimized data flow graph but requires a total
line buffer of size 10N.

On the other hand, the architectures proposed in [22, 62], like the proposed 2-
parallel architectures, achieve a speedup factor of 2. Howsaver, [62], the deeply
parallel architecture requires a total line buffer of size 5N, whereas [22] requires a
total line buffer of size 5.5N. The advantage of the parallel architectures developed in
this research is that the total line buffer does not increase from that of the proposed
single pipeline architectures when the degree of parallelism is increased. In addition,
the architectures proposed in this research are real architectures, which compared with

architectures listed in Table 7.1 are accurate and complete.
7.3 Experimental results and comparisons

To further verify that the architectures developed here are accurate, efficient and
practically can be implemented, we have chosen for FPGA implementation five
architectures, which are representative of the other architectures: the 5/3 forward
overlapped scan architecture shown in Figure 3.6.1, the inverse 5/3 architecture
shown in Figure 6.4.1, two 9/7 forward overlapped architectures, one is based on the
scan method shown in Figure 3.5.1 and the other is based on the scan method shown
in Figure 3.5.3, and the 5/3 2-parallel architecture shown in Figure 4.2.1. First, the
Verilog HDL descriptions for the five architectures are developed and then

implemented on Altera FPGA with 16-bit word length for internal datapath. The
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Verilog HDL program codes for the five architectures are named as module
“decorrelate_processor” for forward 5/3 architecture, module “reconst_processsor”
for inverse 5/3 architecture, module “decrrelation2 processor9 77 for the first 9/7
architecture based on the scan method of Figure 3.5.1, module
“decorelation_processor9_7” for the second 9/7 architecture based on the scan method
of Figure 3.5.3, and module “two_parallel DWT" for the 5/3 2-paralle!l architecture.
The Verilog descriptions of the five architectures are compiled and synthesized on
Altera FPGA Stratix 1T device EP2515F484C3 using Quartus IT CAD software. This
software provides automatic mapping of designs written in Verilog into Field

Programmable Gate Arrays (FPGAs).

The compilation and the synthesis reports for module “decorrelate_processor” are
shown in Figures C.1.1, C.1.2, and C.1.3, whereas, the compilation reports for module
“reconst_processor” are shown in Figures C.2.1, C.2.2, and C.2.3. The forward 9/7
compilation reports for module * decrrelation2_processor9_7" are shown in Figures
C.3.1, C3.2 and C.3.3, while that of module “decorelation_processor9_7” are shown
in Figures C.4.1, C.4.2, and C.4.3. The 2-parallel architecture compilation reports for
module “two_paralle]l_DWT” are shown in Figures C.5.1, C.5.2, and C.5.3.

The compilation report in Figure C.1.1 shows that the design uses 93 pins, a total
of 438 logic cells, and a total of 434 registers, whereas, the compilation report shown
in Figure C.1.2 indicates that the total power dissipation of the design is 500.46 mW.
On the other hand, the Compilation Report-Timing Analyzer Summary shown in
Figure C.1.3 lists four parameters. The first parameter 1,, indicates the worse-case
setup time required is 3.195 ns and it is from Ed3 to REd3. This parameter means
that signal Ed3 must have a stable value at least 3.195 ns before each active edge of
the clock. The second parameter ¢, indicates the worse-case clock-to-output delay is
6.301 ns from register L_data_out[8] to pin L _data_out[8]. In other words, it indicates
the time elapsed from an active edge of the clock at the clock pin until an output
signal is produced at an output pin [65]. The third parameter in the Timing Analyzer
Summary is ¢, which give the worse-case hold time, and it is 1.831 ns for the path
from pin data_inQ[0] to register Rt0_1[10]. Hence, the signal at pin data_in0[0] must
maintain a stable value for at least 1.831 ns after each active edge of the clock. The

last parameter in the list gives the maximum frequency, which is often called £, at
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which the synthesized circuit can operate is185.74 MHz. This is a useful indicator of
performance. The maximum frequency is determined by the path with longest
propagation delay, often called the critical path, between any two registers (flip-flops)

in the circuit.

Figure C.1.3, shows that the maximum operating frequency F,.,, of the module is
determined by the TLB operations where the path with longest delay occurs. This is
expected since the overlapped architecture requires both read and write operations in
the TLB to take place in the same clock cycle. However, since the intermediate
architecture for 5/3 shown, in Fig 3.7.2, does not require such constraint on its TLB,
therefore, the intermediate architecture would operate with higher frequency.
Furthermore, the synthesis results shown in Figures C.1.3, C.2.3, C.3.3, and C.4.3,
which show the maximum frequencies of the four implemented architectures, imply
that the parallel forms of these architectures will also operate with the same
frequencies. In fact, the 5/3 2-parallel architecture operating with frequency of 186.01
MHz, which is the parallel form of the single 5/3 pipelined architecture operating with
frequency of 185.74 MHz, verifies that the 2-parallel architecture is 2 times faster
than the single pipelined architecture. This result is also in agreement with the

theoretical evaluation given in section 4.2.4.

To compare the implementation results of our architectures with other
implementations in the literature, Table 7.2 is provided which summarizes the
experimental results of several implemented architectures. This fable shows that the
5/3 implementations in [ 3, 24] with 8-bit word length operate with frequencies of 110
MHz and 129.93 MHz, respectively, whereas, the proposed £/3 forward and inverse
with 16-bit word length operate with maximum frequencies of 185.74 MHz and
188.32 MHz, respectively. In addition, the implementation in [3] requires a large
number of FPGA logic cells and registers. On the other hand, the 5/3 2-paraliel
architecture in [62], which is implemented on the same FPGA device, operates with a
frequency of 145.54 MHz, whereas, the proposed 5/3 2-parallel architecture operates
with frequency of 186.01 MHz.

The last 3 implementations in Table 7.2 are 9/7 architectures. Comparing the two

9/7 architectures, in term of speed, with the architectures proposed in [30, 401, shows
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Table 7.2 Experimental results and comparisons

Architectures Type | Logical | Regs | Max Power Word
cells frequency dissipation length |

Zewail [24] 5/3 473 149 | 112.93 MHz N/A 8-bit
FIDF[62] 5/3 1316 466 | 145.54 MHz N/A 16-bit
2-parallel

Gregory[3] 543 1741 2542 | 110 MHz N/A 8-bit
PLSA[21] 9/7 416 192 | 152,39 MHz N/A 16-bit
Xiong[40] 9/7 2992 N/A | 50 MHz 393.62 mw 16-bit
Sandro[30] 9/7 1002 N/A | 105 MHz N/A 8-bit
Proposed forward 5/3 438 434 | 185.74 MHz | 500.46 mw 16-bit
Proposed inverse 5/3 446 457 | 188.32 MHz | 46539 mw 16-bit
Proposed 573 872 697 | 186.01 MHz | 580.98 mw 16-bit
2-parallel forward

Proposed first 9/7 2036 858 | 147.95 MHz | 673.37 mw 16-bit
Proposed second 97 2529 1049 | 136.04 MHz | 739.36 mw 16-bt

that the 9/7 architectures implemented in this work operate with higher frequencies. In

addition, the implementation in [40] requires more logic «cells and the
operating frequency is very slow, 50 MHz. The implementation in [21], operates with
a frequency of 152.39 MHz, which is slightly higher than the first proposed 9/7
implementation, which operate with a maximum frequency of 147.95 MHz. However,
[21] introduced only a method, not architecture, for reducing the critical path delay to
one multiplier and had implemented only one processor for 1-D DWT, while 2-D

DWT architectures usually consist of two processors.

The final stage of the implementation is the timing simulation, To verify that both
forward and inverse 5/3 architectures, the 5/3 2-parallel architecture, and both 9/7
architectures perform their intended logical functions accurately in the worst case
timing of the target device; we have applied test input patterns and have simulated the
implemented architectures’ hardware modules. Figures 7.3.1, 7.3.2, 7.3.3, 7.3.4, and
7.3.5 show the simulation waveform results for the five implemented architectures.
The forward 5/3 module “decorrelate_processor” is simulated by applying a 2-
dimensional array of size 6x5 containing random numbers. This 6x5 image is
scheduled according to the scan method shown in Figure 3.5.1, which requires 3
pixels to be fed into the circuit every clock cycle. The 3 pixels are indicated as
data_in0, data_inl, and data_in2 in Figure 7.3.1. In cycle number 2 of Figure
7.3.1, the first 3 pixels 22, 143, and 65 of the first row are applied to the hardware
module. In cycle 3, the first 3 pixels 62, 5, and 222 of the second row are applied to
the hardware module. In cycle 7, the last 3 pixels 64, 121, and 34 of the last row are
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applied to complete the first run. The second run begins at cycle 8, where pixels 65,
192, and 115 are applied, and ends at cycle 13 with pixels 34, 143, and 32. The last
run begins at cycle 14 and ends at cycle 19. Note that pixels of the last column are
applied to the circuit one pixel at a time as shown in Figure 7.3.1, which is in

accordance with the scan method.

The first two outputs of runl simulation, which are shown under the labels
L data_out and H_data out in Figure 7.3.1, appear at cycle 12 with output
coefficients 21 and -103. These two coefficients belong to the first locations in
subbands LL and LH, respectively. The second two output coefficients -3 and -207
belong to the first locations in subbands HL and HH, respectively. The hardware
module alternates between generating output coefficients for subbands LL and LH
and subbands HL and HH until the run ends. The first rur. ends by the positive
transitions of clock cycle 18 with output coefficients 2 and 33. The positive transition
of cycle 18 marks the ending of runl and the beginning of run 2 with coefficients 131
and 29. These two output coefficients belong to the first location of the second
column in each subbands LL and LH, respectively. The positive transition of clock
cycle 24 marks the ending and the beginning of run 2 and the last run, respectively.
The last run generates only output coefficients for subbands LL and LH. The
simulation results in Figure 7.3.1 show that the hardware module for

“decorretate_processor” precisely performs its function and according to Table B.6.

The signal between data_in2 and L_data_out in Figure 7.3.  are control signals for
RP and CP of Figures 3.8.7 and 3.8.3, respectively. The control signals sre0, srel, and
sre2 are control signals for RP's extension multiplexers, whereas, signals sce0, scel,
and sce2 are the control signals for CP’s extension multiplexers. Signals incar and
rst. TLBAR control the operation of the TLBAR (TLB address register), while signal
ETLB is used for enabling TLB for read and write operations. The control signals
Ed2, Ed3, and Ed4 control the operations of the registers and multiplexers that exist
between the RP and the CP in Figure 3.6.1 and are set in Figure 7.3.1 according to
Table 3.2.

In order to validate the inverse architecture, the output coefficients generated by
module “decorrelate_processor” are fed into the inverse hardware module

“reconst_processor” as shown in Figure 7.3.2. The coefficients are scheduled
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Fig. 7.3.3 Simulation Waveforms for first 9/7 module “decrrelation2_processor”
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Fig 7.3.5 Simulation Report — Simulation Waveforms for the 5/5 2-parallel’s module
“decorelation_processor”

according to the scan method shown in Figure 6.3.1. The output of the simulation in

Figure 7.3.2 indicates that the hardware module “reconst processor” accurately
reconstructs the original image pixels. In Figure 7.3.2, the first six outputs of runl
under L_data_out are valid output pixels, while the first output of H_data_out are not,
according to the Table B.18. The first six outputs of L _data_out represent pixels of
the first column in the 6x5 image. The second and the last runs each yield two
columns to complete the 5 columns of the 6x5 image. The CP and the RP of the
inverse external architecture implement the datapath architectures shown in Figures
6.5.4 and 6.5.6, respectively. The control signal sr of the external architecture is set in

Figure 7.3.2 according to Table 6.1.

The hardware modules for both 9/7 forward pipelined overlapped architectures are
tested by applying an image of size 6x8. This image is scenned into the first 9/7
hardware module “decrrelation2_processor” according to the scan method shown in
Figure 3.5.1 and the results of the simulation are shown in Figure 7.3.3. This module
does not yield any output coefficients in the first run, but start:ng from the second run

it generates output patterns that are similar to the 5/3 forward overlapped
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architecture. It yields its first pair of output coefficients 26, and 44 at clock cycle 25,
as shown in Figure 7.3.3. The positive transition of clock cycie 31 marks the ending
of the second run, with output coefficients 104 and -50, and the beginning of the third
run with output coefficients 262 and 8. This hardware module implements the RP and
the CP datapath shown in Figures 3.8.8 (a) and 3.8.4 (a), respectively. The control
signals sre0, QO, srel, QIl, sre2, and Q2, which are issued according to Table B.5, are
control signal for RP’s extension multiplexers. The control signals Ed2, Ed3, and Ed4

in Figure 7.3.3 are set according to Table B.2 (c).

On other hand, in the second 9/7 hardware module “decorelation_processor9_7%,
the image is scanned into the module according to the scan method shown in Figure
3.5.3. The simulation results are shown in Figure 7.3.4. The difference between this
module and the first 9/7 module is that this module generates output coefficients
starting from the first run and according to Table B.2. In Figure 7.3.4, its first pair of
output coefficients 26 and 44 appears at cycle 25. The positive transition of clock
cycle 35 marks the ending of the first run, with output coefficients 104 and -50, and
the beginning of the second run with output coefficients 262 and 8. The simulation
results shown in Figures 7.3.3 and 7.3.4 for both 9/7 module verify that both hardware
modules perform their logical functions accurately in the worse case timing
simulation, This hardware module implements the RP and CP datapath architectures
shown in Figures 3.8.8 (b} and 3.8.4 (b), respectively. A table similar to Table B.2 (c),
which contains control signal values, was derived from Table B.2 (b} for signals Ed2,

Ed3, and Ed4 and then was used in Figure 7.3.4 for setting these signals.

The 5/3 2-parallel hardware module “two_parallel DWT” is simulated by
applying an image of size 6x5 which is identical to the one applied to the single
pipelined architecture’s module “decorrelate_processor”. The image pixels are
scanned info the hardware module according to the scan method shown in Figure
3.5.1. The simuiation results are shown in Figure 7.3.5. In this figure, the first 4
output coefficients 21, -103, -3, and -207 appear at cycle 11. The positive transition of
clock cycle 14 marks the ending of the first run with output coefticients 66, 39, 2, and
33 and the beginning of the second run with output coefficients 131, 29, 103, and 1.
Cycle 17 marks the ending of the second run with output coefficients 188, 130, 85,
and 55 and the beginning of the last run with output coefficients 169 and 5. In the last
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run, only CP2 generates output coefficients for subbands LL and LH. The 5/3 2-
parallel’s simulation results shown in Figure 7.3.5 are identical to the 5/3 single
pipelined architecture’s simulation results shown in Figure 7.3.1 and that verifies that
the 2-parallel architecture performs its intended computations correctly as required.
The 2-parallel hardware module implements the RP and the CF datapath architectures
shown in Figure 4.2.2 and 3.8.1, respectively. In Figure 7.3.5, RP1 input latches are
loaded with 3 pixels every time the clock makes a negative transition, whereas, RP2

input latches are loaded on the positive transition of the clock.

The six papers listed in Table 7.2, which had implemented their architectures on
FPGA, had only provided synthesis results such as shown in Table 7.2 without any
simulation waveforms results. Simulation results such as shown in Figs 7.3.1, 7.3.2,
7.3.3, 7.3.4, and 7.3.5 serve as prove the implemented architectures perform their

functions correctly under the worse case timing of the target FPGA device.

7.4 Conclusions

In this chapter, 5 seclective architectures, which are representative of the other
architectures developed in this work, are implemented and synthesized on Altera
FPGA. The compilation results of the implementation and comparisons are
summarized in Table 7.2. the comparison results given in Table 7.1 and 7.2 including
simulation results shown in Figs 7.3.1, 7.3.2, 7.3.3, 7.3.4, and 7.3.5 verify that the
architectures implemented in this work not only are accurate and fast but are efficient
in terms of power dissipation and hardware complexity. In addition, the synthesis
results of the 2-paralle]l architecture shown in Fig C.5.3 confirm that the 2-parallel
pipelined architecture is 2 times faster than the single pipelined architecture.
Furthermore, the compilation results given in Figs C.3.1, C.3.2, and C.3.3 for the first
9/7 architecture and compilation results shown in Figs C.4.1, C.4.2, and C.4.3 for the
second 9/7 architecture show that the first 9/7 architecture parforms better than the
second 9/7 architecture in terms of speed, power consumption, and hardware

complexity.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS
8.1 Conclusions

In this research, two highly efficient and novel architectures for 2-D DWT are
proposed that meet the high speed, low power, and memory requirements for real-
time applications. The most noticeable accomplishment is the e¢limination of the
internal memories, between row and column processors, which dominates the
hardware cost. In the proposed pipelined architecture based on the nonoverlapped
scan method, the power consumption due to the external frame memory access is
reduced to minimum and it could be a very efficient alternative in applications where

the power consumption is a serious issue.

In the development of the architectures, two cases were identified based on the
scanning frequencies; casel, low scan frequency and case2, high scan frequency. In
casel, the optimal performances of the pipelined architectures in terms of speed,
efficiency, and hardware utilization are achieved by scanning 3 pixels in parallel each
cycle. This requires slight modifications of the architectures developed in the first part
that scan the external memory pixel-by-pixel. In case2, the optimal performances of
the architectures are immediately obtained by pipelining the processors with no

further modifications of the architectures developed in the first part.

Furthermore, the critical path delay of the proposed pipelined architectures can be
reduced to four adders delays when multiplications operations in the 9/7 processors
are implemented by adders only. The advantage of the approach adopted in the
development of the two proposed architectures is that it can be used in developing
architecture for any 2-D DWT algorithm and it is certain to yield very efficient
architectures in terms of hardware complexity, speedup, and power consumption with

manageable control complexity.
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Based on the generalization of the overlapped scan method, the intermediate
architecture is developed, which aims at reducing the power consumption of the
overlapped areas without using the expensive line buffer to somewhat between the
two extreme architectures, the overlapped and nonoverlapped. Compared with the
power consumption of scanning the external memory for the architecture based on the
first scan method, the intermediate architecture decreases the power by 22% with no
lost in speed. While the intermediate architecture with the second dataflow decreases
the power consumption of scanning the external memory by 48%. However, the
second dataflow increases the total execution time by 16.7% over the architecture
based on the first scan method and the intermediate architecture using the first
dataflow. In addition, since the reduction in the power consumption is achieved
without using a line buffer, the intermediate architecture occupies less silicon area.
Therefore, intermediate architecture could be a very efficient alternative for high-

speed, low cost, and low power applications such as mobile video phone.

To further improve performance in terms of speed and throughput to best meet
real-time applications of 2-D DWT with demanding requirements, parallel
architectures were developed. The single pipelined overlapped architecture is
extended to 2-parallel, 3-parallel, and 4-parallel architectures to achieve speedup
factors of 2, 3, and 4, respectively, according to the evaluation given in section 4.2.4.
The scheme adopted in the development of the 4-parallel architecture optimizes the
performance, in term of number of clock cycles requires for j levels of decomposition,
as compared with the alternative scheme which increases the execution time by
M/27" cycles for each level of decomposition, when case 2 occurs. Similarly, the
single pipeline intermediate architecture is extended to 2-paralle! and 3-parallel
architectures. According to the evaluation given in section 4.3.5, the 2-paralle! and 3-
parallel intermediate architectures achieve speedup factors of 2 and 3, respectively.
The intermediate parallel architecture reduces the power consumption of the external
memory by a factor of 7/9 as compared with the overlapped parallel architecture,

Eq(4.57).

The advantage of the proposed parallel architectures developed in this research is
that the total temporary line buffer (TLB) does not increase from that of the proposed

single pipelined architectures, when degree of parallelism is increased. In addition, the
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comparison results show that single and parallel architectures developed in this
research compared with most recent architectures in the literature require only a total
TLB of size N in the 5/3 processor datapath and 3N in the 9/7, while other
architectures listed in Table 10 require more TLBs, which are very expensive memory
components. In addition, the control architecture that detects occurrence of the last
run and the 6 cases of the intermediate architectures is also designed, Furthermore, to
reduce control designs effort, several tables giving the control signal values for

several control signals are provided.

This research has also addressed in details one of the important issues that
have been overlooked so far, that is, the 2-D DWT memory architectures and
management and has proposed two novel VLSI memory architectures, the LL-RAM
and subband memory, which are based on the first scan method. The LL-RAM and
subband memory were designed such that DWT unit performs effectively both read
and write operation in the LL-RAM and write only into suband memory while
compression unit reads subband memory. How the two memory architectures can be
modified for higher scan method is also illustrated. The banking technique is used to
further improve and form more efficient memory architectures in terms of speed and
power consumption. The bank-based architecture can be thought formed by dividing
the module-based RAM architecture, which can be considered as one big bank, into
several smaller independent banks. Inside the smaller banks reads and writes are
performed as in the big bank but faster and more efficiently. The advantage of the two
proposed memory architectures is that they can be easily incorporated into single or

paralle] 2-D DWT processor architectures.

To show that the architectures developed in this research are simple to control, the
control algorithms for 4-parallel architecture including the LL-RAM and the subband
memory were developed. To ease the control development, the overall system control
is divided into several smaller units. Then, the algorithmic state machine (ASM) for
each unit is developed. The control algorithms developed here can be used to derive

the hardware of the control,

Furthermore, based on data dependency graphs (DDGs) and scan methods
specifically developed for inverse 5/3 and 9/7, the external architectures for single and

parallel 5/3, 9/7, and combined 5/3 and 9/7 were developed. First, a high-speed single
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pipelined inverse architecture including its column-processor (RP) and row-processor
(CP) were developed. Then, the single pipelined architecture is extended to 2-parallel
and 4-parallel to achieve speedup factors of 2 and 4, respectively. The advantage of
the single pipelined architecture developed here is that it only requires a total
temporary line buffer (TLBs) of sizes 2N and 4N for 5/3 and 9/7, respectively, and the
TLB requirement does not increase when it extended to parallel architecture. The
combined architecture is very useful and efficient in situations where a decoder in one
site is required to perform either lossless 5/3 or lossy 9/7 image reconstruction. In
addition, the advantage of the combined architecture is that a considerable saving in
silicon area can be achieved. The proposed architectures besides precisely
implementing the two algorithms, their control complexity is simple. Specifically the
external architecture’s control signals of the single pipelined inverse architecture
shown in Figure 6.4.1 were reduced to only one control signal. The interleave
technique used by CP for combing subbands not only speeds up the computations by
allowing RP to work in parallel with CP as early as possible, but reduces internal

memory requirement between CP and RP to a few registers.

The processor datapath architectures were first developed assuming the external
memory is scanned either row-by-row or column-by-column. However, since the
external architectures developed in this work scan the exterral memory differently,
the processors datapath for single and parallel architectures are modified in order to fit

into the external architectures’ processors.

The symmetric extension algorithm is incorporated in the data dependency graphs
(DDGs) to handle the boundary problem and then implemented by all architectures
developed in this work. Symmetric extension is a necessary treatment to prevent

distortion from appearing at the tmage boundaries.

The scan method adopted, for development of architectures, not only reduces the
internal memory between RPs and CPs to a few registers, but also reduces the internal
memory or number of TLBs in the RP to minimum. In addition, it allows CPs to work
in parallel with RPs earlier during the computation, which leads in reducing the

latency to a few cycles.

The approach or the strategy adopted in the development of the proposed single
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and parallel architectures can be used in architecture development for any 2-D DWT
algorithm and it is certain to yield very efficient architectures in terms of hardware

complexity, speedup, and power consumption with manageable control complexity.

The simulation results of the five architectures implemented and synthesized on
Altera FPGA verify that the architectures developed in this work not only are accurate
and fast but are efficient in terms of power dissipation and hardware complexity. In
addition, the synthesis results of the 2-parallel architecture shown in Figure C.5.3
confirm that the 2-parallel pipelined architecture is 2 times faster than the single
pipelined architecture. Furthermore, the compilation results given in Figures C.3.1,
C.3.2, and C.3.3 for the first 9/7 architecture and compilation results shown in Figures
C4.1, C4.2, and C.4.3 for the second 9/7 architecture show that the first 9/7
architecture performs better than the second 9/7 architecture in terms of speed, power

consumption, and hardware complexity.

The Verilog version used in Altera FPGA Quartus II does not have the capability
of supporting simulation using real images. This limitation has forced my to use
images of sizes 6x5 and 6x8 containing random numbers in the final simulation.
Another limitation is that the architectures developed in this work are designed to
process the whole image as one tile. JPEG2000 allows (optionally) an image to be
divided into a number of smaller non-overlapping rectangular blocks known as “tiles”
and then each tile is processed independently by DWT unit. This mechanism is a
useful to use for computing 2-D DWT of a large image independent of its size with
the use of the smaller intermediate memory (LL-RAM) to store “LL” coefficients for
next level of decomposition. Thus a control algorithm is needed to divide a large

image into tiles and then passes each tile to the DWT unit for processing,.

8.2 Recommendations

The possible future work would be to extend the approach and the techniques
acquired from this research to develop architectures for any 2-D DWT algorithms
including development of VLSI architectures for signal and image processing
algorithms. This work also could be extended to develop architectures for 3-

dimensional images where computational requirements are very intensive with
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complex and large memory requirements. Furthermore, the concept and techniques
developed in this work also can aid in the development of VLSI architectures for
Turbo decoder. Turbo code is one of the most attractive error correction codes and it

is an essential component in digital communication and data storage systems

Another possibility would be to extend this work to develop architecture for
compression part of the system, which uses EBCOT (Embedded Block Code with
Optimized Truncation), to independently code each subband coefficients. EBCOT
contains Tier 1 and Tier 2. Tier | is implemented in hardware, whereas, Tier 2 is
implemented in software. The insight gained from this work would aid the designer to
develop compression architecture that can be integrated into the 2-D DWT

architecture.

Moreover, this research includes many in-depth and optimized designs and
therefore, can be available reference for graduate students and researchers pursuing

in-depth study in this field.
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APPENDIX A
SOFTWARE SIMULATION PROGRAM DEVELOPMENT

A1 Introduction

It will be of a great benefit to start this research by developing a software simulation program that
computes both forward and inverse 2-D DWT using lifting-based 5/3 algorithms. The forward operations
decorrelate the original image to be amenable to compression, whereas the inverse operations reconstruct
the original image from the decorrelated image. Developing a simulation program will give the hardware
architecture designer available opportunity to learn in details the behavior of the algorithm and acquire a

firm understanding, which in turn will enable him to develop more accurate architecture.
A.2 Forward and inverse lifting-based 5/3 algorithms and software development

Lifting-based forward and inverse 5/3 wavelet transform algorithms are defined by the JPEG2000 image

compression standard as follow s [7, 27, 29].

5/3 forward algorithm

stepl:Y(Zj+1)=X(2j+1)_v((2j')+;\’(2j+Z)J
StepZ:Y(Zj)=X(2j)+[Y(2j_1)+§(21'+1)+QJ

5/3 inverse algorithm

4
X(2j)+X(2j+2)J
2

stepl: X (2/)=Y(2n) - [Y(zf —D+YQ2j+D+ ZJ

step2:X(2j+1)=Y(2j+1)+{

Based on the above two algorithms, the data dependency graphs (DDGs) for forward and inverse,
shown in Figures 3.3.1 and 6.2.1, respectively, are derived. The symmetric extension algorithm
recommended by JFEG2000 is also incorporated into the DDGs to handle boundary problems. Based on

forward and inverse algorithms and the DDGs, the software simulation program listed below is developed.
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* This software is developed by Ibrahim Saeed Koko at *
* Universiti Teknologi PETRONAS (UTP) *
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FORWARD PROGRAM

% program fdwt

X1 = imread('cameraman.tif'); %read image and store it in

% array X
X1 = rgb2gray (X1); % Separates image from cclors
X = double(Xl); % convert pixels from grayscale

% numbers to signed rumbers

m,n] = size(X);

YH = horizontalf (X); % first level decomposition
YL = horizontalfl (X, YH);

YHH1 = verticalf (YH);

YHL1 = verticalFL(YE,YHEl);

YLH1 = verticalf(YL);

YLL1 = verticalFL{YL,YLH1);

YH = {]; ¥L =[1; tfree YH and YL

[m,n] = size(YLL1l);

YHE = horizontalf (YLL1};

YL, = horizontalfl (YLL1, YH) ; % second level decomposition

YHH2 = verticalf (YH);
YHL2 = verticalFL(YH,YHH2):

YLH2Z = verticalf (YL);
YLL2 = verticalFL(YL,YLH2);
YH = [(]; YL = []: YLLI = [];

[m,n] = size(YLL2);

YH = horizontalf (YLL2); % third level decomposition
YL = horizontalfl (YLL2,YH);

YHH3 = verticalf (YH);

YHL3 = wverticalFL{YH,YHH3);
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YLH3 = verticalf(YL);

YLL3 = verticalFL{YL,YLH3);

YLL2 = [1; YH = []; YL = [];

function YH= horizontalf (z0) $horizontal highpass decomposition

[m,n]= size(z0);

k = fix(n/2);
for i = 1:m
for j = 1:k
if g < k) | (k ~=n/2)
YH{i,3) = zo(i,2*]j) - fix({z0{i,2*3-1)+z0(i,2%3+1}}/2);
else
YH(i,]) = z0{i,2%j) - z0(i,2%]j-1);
end
end
end
function YL= horizontalfl (z0,YH) Shorizontal lowpass decomposition
[m,n]= size(z20};
k = fix{(n/2);
if k ~= n/2
k =k + 1;
end
for i = 1:m
for j = 1:k
if § ==1
YL{1i,3) = =z0(i,2*%j-1) + f£ix{(YH(i,3j)/2};
else if (fix{n/2) == n/2) | (§ < k)

YL{i,3) = 20(i,2%3-1) + Fix((YH(i,J-1)+YH(i,3)}+2)/4);
else
YL{i,j) = z0(i,2*%3-1) + f£ix(YH(i,7-1)/2);
end
end
end

end
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function ZL= verticalFLi{z1l, ZH} ¥vertical lowpass decompositien

[m,n] = size{zl);
k = fix{m/2);
if k ~= m/2
k =k + 1;
end
for i = 1:n
for § = 1:k
if § == 1
ZL{J,1) = =z1(2*j-1,1i)+fix(ZH(],1)/2);
else if (fix(m/2) == n/2) | ( < X
ZL{3, 1) = 21(2%*9-1,1i)+£fix({2H(J-1,L)+2ZH (], 1) +2)/4);

else ZL(J,1} = =zl(2%j-1,1i) + fix{zH(j-1,1)/2);,

end
end
end

end

function ZH = verticalf (zl} svertical highpass decomposition

[m,n} = sizel{zl};
k = fix(m/2);
for i = 1:n
for § = 1:k
if (J < k)|
ZH(j,1) =
else
ZH(j,1) =
end
end

end

{k ~= m/2)

21 (2%, 1) ~Fix((z1(2%5-1,1) +z1(2*§+1,1))/2) ;

z1(2%5,i)-21(2%9-1,1);

% function f2dwt

fdwt;

¥3

Y2

[YHH2 YLH2; YHL2

o

call main program.

[YHH3 YLH3;YHL3 YLL3]; % combine subbands to obtain

a@

¥Y3]; decorrelated image
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¥l = [YHH1 YLH1; YHL1 Y¥2I]; ¥decomposed image

Y = mat2gray(Yl); Ycovert a data to a grayscale image
figure, imshow(Y); % Display decorrelated image

title('Decorrelated image'}

[m,n] = size(Y1l);

Y = 1l:1:m;

X = 1l:1:n;

[x,¥} = meshgrid(x,y);

figure, meshix,y,¥Y1l);

title('This figure shows the decomposed image pixels are
decorrelated!')

figure, mesh(x,y,X);

title('This figure shows the original image pixels highly are

Correlated!')

INVERSE PROGRAM

$program idwt

fdawt; % activate fdwt to compute the fdwt.
YL = verticalR(YLH3,YLL3); % first level reconstruction

YH = verticalR (YHH3,YHL3};

YLLZ = horizontalR(YH,YL);

YH = []; YL = [];
YL = verticalR(YLHZ2,YLL2}; % second level reconstruction
YH = verticalR{YHH2,YHL2};

YLL1 = horizontalR(YH,YL) ;

YL = []J YH = []I

YL = verticalR{YLH1,YLL1); % third level reconstruction

YH = verticalR{YHH1,YHL1);

Xrl = horizontalR(YH,YL); % reconstructed image

Xr = mat2gray(xrl); % convert matlab image tc a grayscale image.
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tigure, imshow (xr)

title {'Reconstructed image')
figure, imshow (X1}
title('Original image')

DIFF = difference{xrl, X}

9
k)

% disgplay the reconstructed image.

display the original mage.

%call function difference

function Xrec =

horizontalR (YH, YL)

%horizontal reconstruction

[m,nl] = size{YL};
[m,n] = size(YH}; Xrec = zeros{m,n+nl);
for 1 = 1:m
for j = 1l:nl thorizontal lowpass reconstructicn
if § == 1
Xrec(i,2*j-1) = YL(i,3) - Eix(YH(i,3)/2};
else if (nl == n) | (j < nl)
Xrec(i,2*j-1) = YL{i,3) - Eix({YH(i,3-1)+YH(1,]}+2)/4);
else Xrec{i,2*j-1) = YL(i,]j) - fix{YH({i,3-1)/2};
end
end
end
end
for i = 1:m
for § = 1:n % horizontal highpass reconstruction
if (J < n) | (n1 ~=n)
Xrec{i,2*§) = YE(i,]) + fix{(Xrec(i,2*j-1) +

Xrec{i,2*j+1})/2);

elge

Xrec(i,2*j)
end
end

end

YH{i,J)

+ Xrec{i,2*j-1);

function YL = verticalR (YLH,YLL)}

[m,n] = size{YLH);
[ml,n) = size(YLL);
if mi ~=m

YL = zeros{2*m+l,n);

elgse YL = zeros(2*m,n);

¥vertical reconstruction.
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for 1 = 1:n % vertical lowpass reconstruction

for j = 1:m1

if § == 1
YL{2*%3-1,1) = YLL{j,i) - fix(YLH(3,1i)/2);
else if (ml == m) | (] < ml)
YL{2%§-1,1) = YLL{j,1i} - Eix((YLH(j-1,i}+YLH{],i)+2)/4);
else YL{2*j-1,1i) = YLL(j,i) - fix(YLH(j-1,1i}/2);
end
end
end
end
for i = 1:n %vertical highpass reconstruction
for 4 = 1:m
if (3 < m) | {ml ~= m)
YL{2*%j,1) = YLH(j,1) + fix((YL{2*j-1,1} + YL{2*¥3j+1,1))/2});
else
YL{(2*j,1) = YLH(j,1) + YL(2*%*3-1,1);
end
end
end

function diff = difference(x1,x2)% This function computes the
difference %between the original image and the reconstructed image.

[m, n] size (x2};

z=0;
for i =1 :m
for 3 =1 :n
z =z + {x1(i,3) - x2{(i,7)); % compute differences.
end
end
if z =0
disp('the orginal and the reconstructed images are identical!')
disp('We have a perfect reconstruction')
end
else disp({‘the original and the reconstructed images are not

identical’)
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The flowcharts for both forward and inverse 2-D DWT programs are shown in Figures A.3.1 and
A.3.2, respectively. Note that in the forward program, the flowcharts for functions verticalFL and verticalf
are similar to the flowcharts for functions horizontalfl and horizontalf, respectively. The only difference is

that the vertical functions compute column-wise, whereas, the horizontal functions compute row-wise.

Program fdwt

¥

Read an mxn image and store
itin X1

¥

Convert pixels from grayscale
to signed numbers

v

Get image size (m,n)

v

Call function horizontalf
To compute YH (highpass
decomposition)

+

Call function horizontalfl
To compute YL (lowpass
decomposition)

!

Call function verticalf
To compute subband YHH

¥

Call fdwt Call function verticalFL
To decorrelate an To compute subband YHL
mxn image l
,L Call function verticalf
Combine subband to To compute subband YLH
obtain decorrelated _.L
Image Call function verticalFL
‘L To complute subband YLL
Convert data of the v
decorrelated image to Repeat the last 6 calls or
grayscale image and steps for 3 levels
then display it decompositions
=
(a) (b)

Figure A.3.1 (a) Main program (b) Forward program.
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Function
horizontalf

v

Get image size
(m.n)

v

k=Tn/2]
Sefi=t1andj=1

outer loop

»l

»

inner loop

i =i+
j:

A 4 Y

YH(ij} = x(1.2)) - x(1.2)-1) YHG, j} = 5(,25) - [ (x(6,25 = 1) + x(5,2) + 1))/ 2]
j=i+1 N
J=j+l

()

Figure A.3.1 (¢) Horizontal highpass decomposition flowchart
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Function
horizontalfl

!

Get image size
(m,n)

¥

k=[n/2]
Seti=tfandj=1

No yes

outer loop

Y

Inner loop

b=+

j:

YLG, j) = x(.2) - D) +[YH(, j)/ 2]
j=j+l

Na

is[nf2)=nf20r j<k?

A 4

A 4

YL( ) = x(4,2) 1) +[YH (i, j = 1)/2]

YLG, ) = x(i,2 - 1)~ [(YH (i, j— 1)+ YH(i, jy + 2)/ 4]
J=j+l

j=i

l

A 4

Figure A.3.1 (d) Horizontal lowpass decomposition flowchart.
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Call fdwt
To decorrelate an mxn image

A 4

Call function verticalR
To reconstruct YL

¥

Call function verticalR
To reconstruct YH

Y

Call function horizontaR
To reconstruct YLL

A 4
Repeat steps 2, 3, and 4 until

the whole image is
reconstructed

Y

Convert reconstructed matlab image
to a grayscale image and display it
along with the original image

v

Call function psnr
to compute mean square error

Y

( stop )

(a)

Figure A.3.2 (a) Inverse Program
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Function verticalR

¥

Vertical lowpass
reconstruction

Get YLH size {m,n)
Get YLL size (m1,n)

YL = zeros(2m+1,n) 2

yes

| YL = zeros(2m+1,n)

i =i+
j:

Y

YI(2j=1i) = YLL(j.i)~[YLH(, j)/ 2]
f=j+1

h 4

Y2/ -1,0) = YLL(j, iy - [ YLH (j -1.1)/2 |
J=j+1

YL(2j-Li) = YLL(j, i)~ [(VLH(j = 1,i)+ YLH (j,i) + 2)/ 4

—

¥

J=j+]
1n&nH

Continue to the next page

(b)

Figure A.3.2 (b) Vertical lowpass flowchart.
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Vertical highpass
reconstruction
Seti&j=1
No Is yes End
i=n?
b 4
i=i+1 | yes Is No
j=1 j=m?
No isf<mormi#m? ves
¥ 3
YL(2j,i) = YLH(j,i}+ YL(2j - 1,i) YL(27,0) = YLH(, D) - [(YL(2j - L) + YL(2j +1,1))/ 2
j=j+l j=j+1

()

Figure A.3.2 (c) Vertical highpass reconstruction flowchart.
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Function
horizontalR

v

horizontal lowpass
reconstruction

Get YL size (m,n1)
Get YH size (m,n)
Setidj=1

No

End )

i=i+1

j:

Y

x(G,27 -1y = FLG, ) -[YH{, j - /2]
j=j+

x(i,2j -1y = YLU, j)~[ YA, j)/ 2]
j=j+l

v

h 4

Xi,2/ =1) = YLG, H=[ (V. - D)+ YHG, /) +2)/4]

j=i+l

1X&YH

Continue to the next page

(d)

Figure A.3.2 (d) Horizontal lowpass flowchart.
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Outer loop

Horizontal
highpass
reconstruction

!

Seti=1&j=1

Inner loop

P=i+1
j:

b 4

X(6,2])=YH(@, j)+ x(i,2j - 1)

yes

isj<nornt#n?

b 4

x(i2))= YH(i,j)+f(x(i,2j -D+x(,2)+ 1))/2]
J=j+1

(el

Figure A.3.2 (e} Horizontal highpass reconstruction flowchart.

The forward program consists of 6 parts: program fdw!, reads in the original image to be decomposed
and then calls appropriate functions to decompose {decorrelate) it, the horizontalf and horizontalfL
functions compute DWT in the horizontal direction to yield the highpass (H) and
decompositions, respectively, the verticalfl function computes DWT in the vertical direction to decompose
H into subbands HH and HL, the verticalfl function computes DWT in the vertical direction to decompose
L into subbands LH and LL. The last part of the forward program is program f2dwt (the main program).
This program combines subbands of the decomposed image to form the decorrelated image. Then, it
displays the decorrelated image and plots pixels of the original and decorrelated images to show correlation

and decorrelation properties, respectively.
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The forward program is activated by typing at the prompt “f2dwt”, which activates the main program.
The main program in turn calls f@wt. The four functions named horizontalf, horizontalfl, verticalf and
verticalF'L are called from program fowi, for example, in the first level decomposition as follows. First, the
horizontalf function is called followed by the horizontalfl function to yield H and L. decompositions, which
are stored in YH and YL, respectively. Then, function verticalf is called with YH as a parameter to yield
HH, which is stored in YHHI. Next function verticalFL is called with YH and YHH1 as parameters to
yield subband HL which is stored in YHLI. Again, function verticalf is callzd, with YL as a parameter, to
yield subband LH which is stored in YLHI1. Then, function verticalFL is called with YL and YLHI as
parameters (o yield subband LL which is stored in YLL1. This process is repeated in each decomposition

level until the entire image is decomposed into the desire number of levels.

On the other hand, the inverse program consists of 4 parts (functions): iawt, verticalR, horizontalR, and
psnr. The verticalR function reconstructs the original by combining in each level subbands LH and LL into
L and subband HH and HL into H. Whereas, the function of horizontalR, in each level, is to combine H and

L decompositions to form the next LL subband..

The difference function computes the difference between the original image (X1) and the reconstructed

image {X2) using the following formula [8, 15].

M N
2= Y (X1G, )= X2, /) (AD)

=l =]
If the difference (z) is zero, the two images’ pixels are identical; otherwise, the two images’ pixels are not

identical.

The function of the idw! is to reconstruct the original image by calling vertica/R and horizobntalR.
The inverse program is activated by typing at the prompt “idwt”, which activates program fdwt. Then, idwt
calls f@wt to decorrelate the image. The reconstruction process for the first level begin by calling verticalR
with YLH3 and YLL3 as parameters to yield L3 decomposition which is stored in YL. Again, function
verticalR is called with YHH3 and YHL3 as parameters to yield H3 decomposition which is stored in YH.
Then, function horizontalR is called with YH and YL as parameters to yield subband LL2 which is stored
in YLL2. This completes the first level reconstruction. For each subsequence level reconstruction the above
steps are repeated until the whole image is reconstructed. When this is done, idwt dislays both the original
and reconstructed images and then call psrr to compute signal-to-neise ratio (SNR) between the original

image and reconstructed image.

The following figures show simulation results of applying an original image to the software simulation
program. When the image shown in Figure A.3.3 (a) was processed by the forward simulation program, the
result was the image shown in Figure A.3.3 (b), which is the wavelet representation of the decorrelated

image. Then the decorrelated image is applied to the inverse software program to yield the image shown in
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Figure A.3.3 (c) which is a perfect reconstruction of the original image without distortion in the image

boundaries.

On the other hand, the result of the simulation in Figures A.3.4 and A.3.5 show clearly the correlation
and decorrelation properties, respectively. Figure A.6 shows the original image pixels are highly correlated,
while Figure A.3.5 shows the image pixels, which are the result of applying FDWT to the original image
pixel, are decorrelated.

The original image Decorrelated image Reconstruoted image

@) ) ' ©

Figure A.3.3 (a) The original image (b) Decorretated image (c) Reconstructed image

This figure shows 1he ariginal image pixels are highly cormeiated

Figure A.3.4 Original image pixels highly correlated

This figure shows the cdescomposed image pixels are decorrelated

Figure A.3.5 decomposed image pixels decorrelated
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APPENDIX B

DATAFLOW AND CONTROL SIGNALS TABLES

Dataflow tables of chapter 3

Table B.1 Dataflow for 5/3 overlapped and overlapped scan architectures

k RP’s input Cp’s input latches | Cp’s output
latches RP’s output latches atches
Rd0 Rd! Rd LB Rt RtZ2 Rtl Rd0 Rd3  Rd4 Rdé  Rd5 Rt3 Rtd RtS Rt6 Ri7

-~ 0

x0,0

x0.0 x0,1

....... x(,2 x0,0 x0,2 x0,1

E———) xLOXL2XLL | LO.0 -  H00 - oomn

oo| ~a| o | wa| =) we] ra|—
S
—
=@
-
ok
—

9 |- - x22 x2,0x22x2,1 | LO0 L1,0 HOO ---- HI0

12 | oo - x3.2 x3,0x32x3.1 | L2,0 ---- HO00 H2,0 HI.0 | LO,0L2.0 LLO

Run 1

15 | en e x42 x4,0x4.2 x4,1 | 12,0 L3.0 H2,0 ----- H3,0 | HO.0 H2,0 H1,0 | LHO,0 LLOO

1B | - --- x5,2 x5,0x52x5.1 | L40 -- H20 H4,0 13,0 § L2.014.0 1L.3,0 | HHO.0 HLOO

21 [ e - %62 x6,0x6,2x6,1 | L4.0 L5.0 H4.0 ----r H5,0 | H2,0 H4,0 H3.0 | LH1.0 LL1,0

Pl e i L6,0 ---- H40 H6,0 H50 | L4.01.6.0 L5.0 | HH1.0 HL1.0

25 1 x0,2 --

26 | x0,2 x0,3

27 | weme e x0,4 x0,2x0.4 x0,3 | L6,0 ----- H6.0 woree e H4.0 H6,0 H5,0 | LH2,0 LL2.0

28 | x1,2 --- x0.4

29 | x1,2x1.3

30 | ceen ame x1.4 x1,2x1.4x1.3 [ LOT -~ H6,0 HO,1 ----- L6.0 ----s - HH2,0 HL2.0

3L [ x22 —— x4

3 0 e e x2.4 x2,2x24x23 | LOTLT,1 HOD - HI,1 | H6,0 --s-- o= | oo LL3,0

34 | x3,2 - x2.4

Run 2

36 | meer amen x3.4 x3.2x34x33 | L2} -  HO, H2,1 HL.1 § LOIL21LI1 | weeeen HE3.0

37 | x4.2 o 3.4

38 | x4.2x4,3

39 | e e x4.4 x4,2x4,4x43 | L20L3,1 H2,1 ----- H3,1 | HO,1 H2,1 HI,1 | LHO,l LLO,I

40 | %x5,2 ---- x4.4

41 | x5,2x5,3

A2 | e e x5,4 x5,2x3,4x5,3 | L4]1 ----  H2I1 H41 H31 | L2,114,1L3,1 HH{(.1 HLO.1

43 | x6,2 ---- x5.4

44 | x6,2 x6,3

45 | cmem eeee x6.4 x6,2x6,4x63 | L41L5.1 H4.1 ----- H51 | H2,1 H4,1 H3.1 | LHI.l LLLI
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Note that in Table B.1 at cycles 22, 23, and 24 the external memory is not scanned and no pixels are
loaded into RP latches Rt0, Rtl, and Ri2 at cycle 24 where a transition from run 1 o run 2 is made. This is

only required every time a transition from a run to the next is made when the column length N of an image
is odd.

Dataflow tables for the second 9/7 pipelined overlapped architecture, developed based on the scan
method shown in Figure 3.5.3, are shown in Tables B.2 (a) and (b), respectively. Note that when the
column length N of an image is odd, after the second run, an empty cycle should be inserted whenever a

transition is made from a run to the next as shown for example at cycle 22 in Table B.2 (b).

Control signal values for signals Ed2, Ed3, Ed4, Ed3, Edé, S0, and S1 derived from Table B.2(a)
are shown in Table B.2 (c¢}. Note that number of control signais in Table B.2 (c) can be reduced to 3 signals

by observing that signals Ed2, Ed6, SO and S1 are equal and so are signals Ed3 and EdS5.

Table B.2 (a) Dataflow of the second 9/7 pipelined overlapped architecture for even N

ck | RP’s input RP’s autput Latches CP’s input CP’s output
latches Latches Eatches
Rt) Ri2 Rtl Rd2 Rd3 Rd4 Rd6 Rd5 Rt3 Rt Ri5 | Rt6 Rt7

1 x0,0 x0,2 x0,1
2 x0,2 x0.4 x0,3
3 ®1.0x1.2x1,1
4 x12x1,4x13

= 5 x2,0x2.2 x2,1

= 6 | x2,2x24x23
7 x3,0x3,2x3,1
3 x3,2x3.4x33
9 x4,0 x4.2 x4,1
10 | x42x44x43 | LOO --- | HOO
1L} x5,0x52x51 | LOO - HO,0
12 | x5,2x54x53 | LOO LI,0O | HOO ---— HI,0
13 | x0,4x0,6x0,5 | LOO L1L,0 | HOO ---- HI0
4 1 x14xt6x15 | E20 -- HCOH20HIO ) LOO L20 LIO

o 15| x24x26x25 | L20 - HOO0 H2 0HIL0 HO‘()_ H2,0 HL,0

@ | 16] x3,4x3.6x3,5 | £2,0 L3.0 | H2.0 - H30 [ = wooem —ooee
17 xddxdex45 | L20 L30D | H20 - H30 | ---- -ovom —ooee
18 | x54x56x55 | L40 - [ H2OGH40H3IO | 1.20 14,0 L30
19 | x0,6x08x0,7 | t40 --- [ H2O0H40H30 | H20 H4,0 H30

- 20| x16 xLBXL7 | 40 L350 | HA0 - H50 | o-vor wrenn aeees

5 21 | x2,6x28x2,7 | L4,0 L50 | H40Q - H50 | == - -

= 22 | ®x36x38x37 | LOT --- H40HO 1 H50 | L40 14,0 L50
23 [ x46x48x4,7 | LOJT L11 [ HGI - HI1 | H40 H4O0H50 ¢ LHO,0 LLOG
24 | x5,6x58x5.7 | L2] --- HO,l H2,1 HI L § Lo,0 L2,1 L1,1 ! HHO,0 HLO,0
25 121 131 | H2 1 ---- H3 1 HO1 H2,0 HI,Ll | emeemem aoeeeee
26 L4l - H2,0 H4,1 H3, 1 | 12,1 141 131 | wmemms coomeen
27 i4,1 151 | H4,1 ---- H51 | H2,1l H4 1 H3,1 { LHI0 LL1,0
28 102 --- H41HO2H51 | 141 14,1 L5 HEILLO HILI1,0
29 102 L12 | HG2 ---- H3,1 | H41 H4,1 H5.] | --ocoem waeeee
30 122 --- HOZI122101,2 | 102 122 112 | ~meeeee oo
3! 12,2 132 [ H22 --—- H32 | HO2 H22 HIL,2 | LH2O LL20
32 142 ---- | HZ2H42H32 [ 1.22 142 [.32 | HH20 HL2,0
33 142 L52 | H4,2 ---- H52 | H2.2 H42 H32 | LHO,! LLO,)
34 [42 142 L52 | HHO,1 HLO,I
35 HA42 H42H52 | LHI 1 LLL1
36 HHI1,1 HLI1,I
37 1LH21 L1121
38 HH2,1 HL2 1
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Table B.2 (b) Dataflow of the second 9/7 pipelined overlapped architecture for odd N

ck RP’s input RP’s output Latches CP's input CP’s output
latches Latches Latches
Rt) Ri2 Rtl Rd2 Rd} Rd4 Rd6 Rd5 | Ri3 Rt4 Ri5 | Ri6 Rt7
G x40 x4,2 x4,1
— 10 | xd42x44x43 | LOO --- | HOO
g 11 | x50x52%5.1 | L0,0 - [ HOO
= 12 1 x5,2x54x53 [ LOO L1O | HOO -—--- HI0
13 x6,0x6,2x6,1 | LOO L1,0 | HO,0 ---- HI.0
14 | x6,2x64x63 | L20 --- | HOOH20H10 | LOO 120 LLO
15 x04x06x0,5 | L20 «- | HOOHZOHLO | HO0 HIQHL0
16 | x14x1,6x1,5 [ L2,0 L30 [ H20 e H3O | —or —omem —men
o 17 [ x24x26x25 | L20 130 [ H20 - H30 | worme oomem —mm-
& 18 | x34x36x35 | 140 --- [ HZLOH40H30 | 12,0 140 L3.0
19 | x44x46x45 | L40 - | H2.0H40H30 | H2,0 H40F30
20 [ x54x56x5,5 | L40 L350 | H40 aee H5,0 | -mo-m —oomm -oee-
21 | x64%66x%x65 | L4.0 L350 | HAD oo H50 | —ner =emem —eee
P 16,0 ---- | H40DH6,0HS5,0 | L40 160 L50
23 [ x06x0,8x0,7 | L6,0 ---- | H60 s oeen H4.0 H60 H50 | LHO,0 LLOO
- 24 x1,6x1,8x1,7 | LO,1 ---- § H6,0 HO 1 ---- | L60 ---- - HED.0 HLO,O
£ 25 x2,6x28x27 | LO1 LI1,1 | HO1 - HI ! H60 - e | i e
[ 26 | x36x38%x37 [ L2,1 - | HOTH2 T HIN | LOL L2 LL1 | ceveon ememeee
27 | x46x48%x4,7 | L21 L3l | H2,1 —- H3!1 | HO,I H2 L HIL,1 | LHI,0 LL1,0
28 x5,6x5,8x57 | L4,1 ---- | H2Z1H41H3,1 | L21 14,1 L3,1 | HHLG HL1D
20 | x6,6x68x6,7 | L41 LS54 | H41 --—- H51 | H2.l H4,1 H3,1 | cmoomm oo
10 16,0 - | H&,THE 1 HS.1 | L4 16,1 L5101 | -coeree wmmeeen
3! L6, 1 - | H6l --em eeeee H4,l H6,1 H5,1 | LH20 LL20
32 L02 -—— [ H61H02 - | [6,] --om -om HH2.0 HL2.0
33 L02 L12 | HO2 ---- H12 | H6,| -evme vemem | eee LL3,0
34 122 - [HO2H22HI2 | LO2 L22 112 | —emv HL3 0
35 122 132 | H22 - HM32 | HO2 H22H12 | LHO{ LLO]
36 142 - [ H22H42H32 | [22 142 132 § HHO,1 HLO,I
37 142 152 | H4,2 - H52 | H22 H4,2H3,2 | LHI.! LLI1
38 L6,2 ---- | H4,2H62 H52 | 14,2 L6,2 152 | HEIL1 HLIL
19 16,2 ——- | H62 —n seree H4,2 H62 H52 | LH2.1 LL2.1
40 H6,2 - oo 16,2 ---- ----- HH2,1 HL21
41 HB,2 —mom ceen | emeee LL3,1
------ HL3,1
LHG,3 LLO3
HHO0,3 HLG,3

Table B.2 (¢) Control signal values

clock

Ed2 | Ed3 | Ed4 | Ed5

Ed6

o]
[

10

11

12

13

14

15

Run ]

16

17

I8

19

20

21

22

23

24

25

Run 2

26

27

28

29

30

—lo|—|ci=|c|—|=|—lo|le|o| ~|e|o|lo|—|o|le|o|—
b3 ol =t B Rl = el P 2o Rl 2 R el 2 o o et B
o|—|o|=|o|=|o|—|cloe|—|o|o|lo|—|c|o|o|eje|—

o|—|ci—|o[—]|o|—|ole|=|c|ole|=|o|o|al— ||

Ed it P o] P et i B e P P o Il fed g o ) ]

bl P Rl 2] Ll 2 ot -l 2 B K] Bl o i RS] ol 0 1 P P2
l.ﬁcp—-C|-—-|o-—-o-—-><xi’._:—><xu—><xr<)<“
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Table B.3 Dataflow of the intermediate architecture

YH YL
SRO SR2 SRI SRO SR1
Clk RdC Rdl RtD Rt2 Rtl R2 RI RO R2 Rl RO R2RI RO R2 RI RO R2 Rl RGC Rt3 Rtd RiS Ri6

Rt7
1 %06 - S R T - - - -
2 x006x01 - - - . - - - - - - - - -
3 0x0,2 - x00x02x0,1 - - - - -
4 x0.2x0.3 - - .
5 %0.2x03 -
6 x04 - x02x04x03 h00
7 %04 x05 - - - - - - . - - - - -
8 x0.4x0,5 - - - - -

|
.
.
.
oy
=
=3
.
.
.

9 - - x04x06x05hC1HOO - - - - - - - LOINe -
10 x1,0 - - - .- - - - -
11 x1,0x1,1 - - - - - - - -
12 x1,2 - x1,0x1,2x1,1 h02h0,1 OO - - - - - - LO2L01LOGO -
13 x1.2x13 - - - - - - - -
14 x1.2xl3 - - - - -

15 xt4 - x12x14x1,3 h02h0,1K00 - - - hi0 - - LO2010100011,0 -
16 x14x15 - -

17 x1Ax15 - - -
18 - - x1Ax16x1,5 002001000 - - - hiIhlO - LOZLOLLOO LI,LLLO
19 x2,0 - - - -

20 x2,0x2,1 - - - -
21 x2,2 - x20x22x2,1 h02h0,0h00 - - - h12hl,1h10 LO2LO1LOC L12LLILI0
22 x2,2x23 - - - - - - - -
23 x2.2x23 - - - - - - - -
24 x24 - x22x24x23 hG2RO,0K00 K20 - - h12Zhl1hl0 12010210t - LI2L1I1100L20L1,0

25 x24x25 - - - -
26 x24x25

27 - - x24x26x25 W02 h0,1 h0,0 02,1 h2,0 - h12Zhl, 1 k10 L2,1 L2,0L0O2 - - L12 Le,1L2,1 L1,1 LhOO LIO0
28 x30

29 x3.0x3,1 -

30 x3,2 - x3,0x3,2x3,1 h02001h00 h22h21h20 h12h11h10 L22121020 - - - L0Z2L2Z0L12 LhO!LLOI
31 %3.2x3.3

32 x32x33

33 %34 - x32x34x33 h2,00h02h0,1 - h22h21 h3OhIZ2hHI1 L2212 1L20 L3O - - hG,0h20h1,0 Lh(,211.0,2
34 x34x35

35 x34x35

36 - - x34x36x35h21h20h02 - - h22 h3Lh3I0h12 L220211L2,0 13,1 L3,0 - hC1h21hl,1 hh0,0hLO0
37 x40 -

38 x40 x4,1

39 %42 - x40x%x42x4,1h22h21020 - - - h32h31h3,0 L220L2,1L20 1;3,213,11.3.0 h0,2h2.2 h1,2 hhO,] hLO, 1
40 x4.2 x4.3

41 x42x43

42 x44 - x42x44x43h22h2,10h20 hd 0 - - h32h31h30 L40L221210 - L32L131 L20L4.0L3 0500258102
43 %44 x4,5

44 x4 4 x4.5

45 - - o x44x46x45h22h21h20 hd Th4 0 - h32h3,1Hh30 141140022 - - 132 £2,1L4,1 L3,1 Lhl,0LL1,0

It is important to keep in mind that each time a transition from a run to the next is made, when the
column length of an image is odd, the external memory is not scanned for / consecutive clock cycles
reference to the processor clock, where i = 1,2, 3,... denotes first, second, third scan methods, and so on.
The reason is that during this period the CP would be processing the last coefficient in 7 columns of each H
and L decomposition that were under consideration in the previous run as required by the DDG for odd

length signals. No such situation arises when the column length of an image is even.
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Table B.4 Second dataflow for intermediate architezture

x44 x4,6 x4,5h2.2h2,1 h2,0 hd,1h40 -

YH YL
SRO SR2 SR1 SRO SR1

Clk Rd0 Rdl RtO Rt2 Rtl R2 R! RO R2 Rl RO R2 Rl RGC R2 RI RO R2 Rl RO Rtl R4 Rt5 Rt6  Ri7

I x00 - - - « . - . . . - - - - - - - - - - - - - -

2 x00x0,1 - - - - - - - - - - - - - - - - - - - -

3 x02 - x00x02x0,1 - - - - - - - - - - - - -

4 x0,2x0,3 D T R T - - - - - - - - - -

5 x04 - x02x04x03h00 - - - - - - - s - - - - - - - - -

6 x04x05 R - - - - - - - - - - - -

7 - - x04x0,6x05hC1H00 - - - - - - LOJILOC - - - - - - -

8§ x10 - N - - - - - - - -

g x10xl,1 - - - - - - - . - - - - - -

10 x1,2 - xi0x12x11 h02h0,{hOO - - - - - LO2 Lo L0 -0 - - - - - - -

11 x1,2x1,3 - - - - - - - - - - - - -

12 %14 - x12x14x1,3 h02hC,1K00 - - - h1CG - - LO2LOILOOLIO - - - - - - -

13 xt4xl.5 - . - - - - - - -
14 - - xL4xl1,6x1,5 h02h0,1h0,0 h1,1h1,0 - LOZLOILO0 LIILID - - -

15 x2,0 - - - - - - - - -

16 x2,0x2.1 - - - - - - -
17 %22 - %20x22x2,1 hO2h0,1 KO0 - - hi,2ht,1h1,0 LO,2L0,1L0.0 L1,2L1,IL1G - - - - -
18 x2.2x2.3 - - - - - -
19 %24 - %22x24x23 h0,2h0,1 10,0 h2,0 h1,2hl,1 h1,0 L2,0 LO,2 10,1 L2010 LooL20L10 0 - -

20 x24x2,5 - - - -
21 - - x24x2,6x2,5 h02h0,1 h0,0 h2 1 h20 h12hl,1h1,0 L2,1 L2,0102 Li.2 LO,IL2,1L1,1 LhOOLLOO
22 %30 - -

23 x3,0x3,1 -

24 x32 - x3,0x3,2x3,1 h02h0,1 K00 h2,2h2,1 h2,0 h1,2hl.1h1,0 L22021L20 - - 10,2022 L12 Lh,1 LLO,I
25 x32x33

26 x34 - x32x34x33 h2,0h02h0,1 - h22h2,1 h30hl12h11 L2212 1020 L3D - h0,0h20h1,0 Lh02LLO,2
27 %34 %35
28 - - x34x3.6x35 h2,1 h20h0.2 h2,2 h3,1h30h1,2 L221L2,1 L20 L3, L3D h0,1 h2.1 h1,1 hh0,0 hLD,0
29 x40 -
30 x4,0 x4,1
31 x4,2 x4,0x42 x4, 1 h22h2 1 h20 - - - h32h3,1h3,0 L22L0L2,1020 L;3.2L3,1L3,0 h0,2h22h1,2 hhO,1 hLO,1
32 x42x43
33 x4.4 x4,2 x4 4 x43h2,2h21h2,0 h4,0 - h32h3,1h3,0 L40L221L2,1 L32L3,1 L2,0L4,0L3,0hh0,2 hLO,2
34 x4,4x4.5
35 -

h3.2h3,1 h3,0 L4,114,0L22 - L32 L2,1 LA1 L3,1 Lh1,OLLLO

Control signals such as sre0, srel, sre2, and incar etc., are issued by the control unit and are loaded, in

every clock cycle, into the first stage of the RP. Then, these signals are carried from stage-to-stage. When a

stage where a signal is used is reached that signal is applied and the reset are carried on to the next stage

until the last stage is reached. However, in the 9/7, applying the scan metiods such as shown in Figures

3.5.1, 3.5.3, and 3.8.1 would require these signals values of the RP to change as they move from stage-to-

stage, especially in the last and extra runs. Tables B.5 (a) and (b} and the circuit shown in Figure B.1.1,

which operate according to Table B.5, are provided in order to be applied as described in section 3.8.3.

¢  Signal srel takes on the signal values of Table B.5 (a), when the row length of an image is odd. In

the case of even length both srel and Q1 are set 0 in all runs.

¢ Table B.5 (a) is used for signal sre0 for both odd and even length.
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Table B.5 (b) is applied only in the architecture developed based on the scan method of Figure
3.5.1. For the architecture based on the scan method of Figure 3.5.3, signal sre2 is set to alternate
between 0 and t, while Q2 is set 0, in the first run. In all subsequent runs, sre2 and Q2 are set 1

and 0, respectively, as shown in the third row of Table B.5 (b).

Table B.5 (a) control signal values

sreQ | QO

srel | QI
0 0 | O] Runlto
0 0 | 0| the run
0 0 | 0| before
0 o |0 last
1 1 0 | Lastrun
1 0 1 | Extra nin

Table B.5 {b) control signal values for sre2

sre2 | (2
0 X | Runl
| 1 Run 2
| 0 { Run 3 toextra run,
sSre

sre

Q[

Figure B.1.1 circuit

Table B.6 5/3 Dataflow for overlapped and nonoverlapped
parallel scan architecture

Clk RtC Ri2 Rtl Rd2 Rd3 Rd4 Rd6 Rd5 Rt3 Rtd Rt3 Rt6  Rt7

I x0,0x02x0,} - - - - - - - - -

2 x1,0x1,2x11 - - - - - - - - - -

3 0x20x22x21 - - - - - - . - - .

4 x30x32x30 e - -

5 x4,0x42x4,1 Log - oo - - - - - - -

6 x50x52x5.0 LGOLIOHO® -  HIO - - - -

7 x60%62x61 120 - HOOH20 HIO LOO 120 LLO ;

8 x70x72x7,1 12,0 [L3,0 H20 - H3,0 HOOH2OHLLG - -

9 x80x82x81 L40 - H20H40 H30 L20 L40 L300 - -

0 x9.0x9.2x9,1 140 L50 H40 -  HSO H20H40ML,0 LHOOLLOO
I x100x102x10,1 L60 - H4,0H60 HS50 L4,0 L6,0 L5,0 HHO,0 HLO,0
12 x11.0x112x11,1 L60 L7.0 H6D . H70 H40H60HS0 LHIOLLID
13 x12,0x122xi2,1L80 - Hs0H80 H70 Le60 L80 L7.0 HHI,0HLLD
14 x13,0x132x13,1 180 L90 H8O - H90 H60HS0H7O LH20LL20
15 x14,0x142x14,1L10,0 - H8,0HIOLHS 0 LROLIOOLSC HH2OHL20
16 x150x152x151L10,0L11,01110,0 - HUIL,0H80HIC0HS0LH30LL3O
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Table B.7 5/3 Dataflow for intermediate parallel scan architecture

YL YH

SRO SRi SRO SR2 SR1
Clk Rd Ri0 Rt2 Rtl R2 Rt RO R2 Rl RO R2 RI R0 R2ZRI RO R2 Rl RO Rt Rtd Rt5 Rt Rt7
T o x02 x0,0x02x01 - - - - - - .- - - - - - - - - - - - -
2 x04 x02x04x03 - - - - - - - - - - - - - - - - - - -
3 x06 x04x06x05 - - - - - - - - - - - - - - - - - - -
4 x12x10x12x1,1 - - . - - - - - - - - - - - - - - - - -
5 xl4 x12x14x13 LOO - - - - - HOO - - - - - - - - .- - -
6 x16 xi4x16x1,5 LO,1L00 - - - - HO,IHOQC - - - - - - - - - - - -
7 0x22x20x22x21 LO2LOGILOO - - -  HO2HOIHOO - - - - - - - - -
8 x24 x22x24x23 LO2LC1LOO LIO - - HO2HO, 1 HOO - - - HIO - - - - - - -
9 x26 x24x26x25102L0,1L00 L1,ILI0 -  HO2HOTHOO - - - HLIHLE - - - - - -
10 x3,2 x3.0x3,2x3,1 L0,2L0,1 LO,0 L1,21.1,1 L1,0 HC,2 HO,l HO,0 - - H12Hl LHIO - - - -
11 x34 x32x34x33 L20L0,20L0,1 - LL2LILA IIOZHO]HUOH.’ZU - - HIL2ZHI1IHLD EOOIZOLIO - -
12 x36 x3,4x3,6x3,5 L2,1L20L02 - - L1,2 HO2HO,1 HO,GH2,1 H2,0 - HI2H. LHL0 LO,IE2/1 L1
13 x42 x40x42x4,1 L22L2,11L20 - - - }[02H01HOOH22H21H20H12H] 1HLLO LO2L22L12 -
14 x44 x42x44x43 122021020 L30 - - H20HO0Z2HO1 - H22H21H30H12HL1HOOH20HIL) LHOO LLO 0
15 x46 xddx46x4,5 L220L2,1L2,0 L3,1L30 - H2}H20H02 . - H2,2 H3,1 H3,0H1 2 HO,l H2,1 HI,1 LHG, 1 LLO.)
16 x52 x50x52x5,1 L2,2L2,1L2,0 L3,2L3,1L3,0 H22H2,1 H20 - - - H3Z2H31H30HO2H22 HI,2 LHO,2 LLO.2
17 x54 x52x54x5,3 140022121 - L32L3,1 H22H21H20H40 - - H32H3,1H301.20L4,0L3,0 HHC0HLSO
18 x56 x54x56x55 14,1 L40L22 - - L32 H22H2,l H20H4,1 H4,0 - H32H3,1 H3,0 L2,1 L4,1 L3,1 HHO,1 HLO,L
19 x62 x6,0x6,2x6,1 142141040 - - - H22H21H20H42H41HI0H32H3 I HIO L2,214,2132 HHO,1 HLO, L
0 x64 x62x64x63 142041040 150 - - H4,0H22H21 - H42H41H50H3I2H3 I H20H40H3,0LHI0 LLLD
21 x6,6 x6,4 x66x6,5 1421411040 L51L50 - H4,1HIOHZ2 - - H4,2 H5,1 H50H32 H2,1 H4,1 H3,1 LHi 1 LL1.1

B.2 Dataflow tables of chapter 4

Table B.8 Dataflow for 2-parallel architecture

CK { RP RP1 & RP2 Rth  Ril CP1 input latches CP2 input latches CP1 & CP2 QUTPUTS
Rt0 Rt2 Rtl Rt0  Rt2 Rtl R0 Ei2  Rt! Ri)  Ril Rt(} Ril
| 1 x0,0 x0,2 x0,1
2 2 x1,0 xI1,2 xl.1
3 ] x2,0 x22 x21
4 2 x3,0 x3,2 x3.1
5 1 x40 x42 x4,
6 2 x50 %52 x3,1
7 1 x6,0 x62 x6.1 HO,0 LOG
8 2 x7,0 x72 x71 H10 LIL,0
9 1 x8,0 x82 x8,1 Hz,0 L2.0 HO,0 H2,0 HIL0 L0,0 L20 LIDO
10 2 x9,0 x9.2 x9,1 H30 L30
1 1 x10,0 x10,2 x10.1 [ H4,0 L4,0 H2,0 H4,0 H30 L20 L40 1L3,0
12 ]2 x11,0 x11,2 x11,1 [ H50 LS5,0
13 1 x12,0 x12,2 %121 [ H6,0 L6,0 H4,0 H6,0 HS5.0 [4,0 160 L5350
14 12 x130 x13,2 x13,1 [ H70 L70
15 |1 x140 x14,2 x14,1 | H80 L8O H6,0 H8,0 H7.0 L6,0 L&C L70 HHO0,0 HLO,0 LHOO LLOO
16 |2 x150 x152 x15,1 [ H9.0 L%0
17 11 x16,0 x16,2 x16,1 | HIOOL100 | H8,0 HI0O HS.0 L8,0 LICC L9O HH!.0 HL1,0 LH!0 LLID
18 | 2 x17.0 x17.2 x17.1 | Hi1,OL11,0
19 |1 x180 x182 x18.1 | Hi20L120 | HI00 H12,0 HIL,0 | L10,0 L1206 LI1,0 | HH2.0 HL2.0 LH20 LL2.0
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Table B9 dataflow of the 3-paralle] architecture

Ck | RP RP’s input latches RP’s output latches ( CP1 & CP3) /CP2 input latches

i Rt0 Rt2  Rtl Rth Rtl  Rtl3b R0 R12 Rtl R0 Rt2  Rtl

| 1 x00 x02 x0,1

2 2 xL0 xI,2 xI11

3 3 x2,0 x22 x21

4 1 x3,0 x32 x31

5 2 x40 x42 x4l

6 3 x50 x52 x5l

7 1 x6,0 x62 x6,1

8 2 x70 x72 x71

9 3 x80 x82 x81

10 |1 x90 x92 x91 H0,0 L0

1|2 x 100 x102 x101 H1,0 Li.0

12 | 3 x11,0 x11,2 x11,1 H2,0 L20

13 |1 x120 x122 x121 H3.0 L3.0 HO,0 H2,0 HI,0 LO0 120 L1,0
14 (2 x13,0 x13,2 x13,1 H4,0 L40 | ;e H2,0 H4,0 H3.0
15 13 x 14,0 %142 x 14,1 H5,0 L20 L350

16 {1 x 150 x152 x15,1 H6,0 L6,0 ----eee- H4,0 H60 H50 L2.0 L40 L30
17 |2 x 16,0 x162 x16,1 H7.0 L7.0 ---mems | s L4 160 L1590
18 | 3 x17.0 x172 x17.1 H8O L&D ------

19 |1 x180 x182 xI181 H9,0 L9990 ---—--- H6,0 HEO0 H7.0 Ls0 L80G L7.0
20 | 2 x190 x192 x19,1 H10.0 L10,0 H8.0 11100 19,0
21 | 3 x20,0 x202 x201 HI1LLO 180 LILO | -

22 11 x21.0 x21.2 x21.1 HI2,0 LI20 - HI00 1M20 H11,0 L8O L10,0 190
23 |2 x22.0 x222 x221 H13,0 LI13,0 L10,0 L12,0 LI1,0
24 3 x230 x232 x231 HI40 L1440 - u

25 |1 x240 x242 x24,1 H1560 LI5S0 - H12.0 HI140 HI30 1L12,0 L14,0 Li3,0
26 |2 x250 x252 x25, HI88 LIGQ ---oom | rmemmmmmmmree e H14,0 H16,0 H15,0
27 3 x26,0 x26.2 x26,1 H17.0 L1440 LL17.0 -

28 |1 x27.0 x27.2 x27.1 Hi8,0 Li8.O ------ H16.0 H180 HI7.0 L14,0 L16,0 L15,0
29 |2 x28.0 x282 x28.1 HISO LI9D - | e L16,0 L18,0 L17.0
CK CP1 & CP3 output latches | CP2 output latches
Rth  Rtl Rth Rt Rth Ril

22 | HHO,0 HLO,0 LHO.0LLO.O

23 11,0 HL1,0

24 | emrmmemmem e | et e
25 | HH2,0 HL2,0 LHLOLLIO | ---=mmormemmmmem oo
26 LH2.0 LL2.0

B B I
28 | HH3.0 HL3,0 LH3.0 LL3.0 | --eserosacicmmasenmennnns
29 HH40 ~ HLAG
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Table B.10 5/3 4-parallel architecture’s dataflow

ck [ RP | RP’s input latches RP’s output latches CP1 & CP3 input latches
Rt0 Rt2 Rtl Rth Ril Rt0 Rt2 Ril Rt0 Ri2  Rtl
1 l x00 x02 x01
2 2 x1,0 x1,2 xl,1
3 3 x2,0 x22 x21
4 4 x30 x32 x3l
5 1 x40 x4,2 x4,
6 2 x50 x52 x§1
7 3 x60 x62 x6,1
8 4 x7.0 x72 x7.1
9 1 x80 x82 =x§1I
10 {2 x90 x92 x91
11 {3 x 10,0 x102 x 10,1
12 | 4 x 11,0 x11.2 x11,1
13 1 x120 x122 x121 HO0,0 L0,0
14 |2 x 13,0 x13,2 x13,1 H1,0 L1,0
15 |3 x 140 x142 x 14,1 H2,0 L2,0 HO,0 H2,0 HI1.0 LOG L20 L1,0
16 |4 x 150 x152 x 151 H3,0 L3,0 -
17 {1 x160 x162 x16.1 H4,0 L4,0 -
18 |2 x 17,0 x17.2 x 17,1 H5.0 L5,0 --
19 |3 x 180 x182 x181 | H6,0 L6,0 H4,0 Hé6(: H50 140 L6.0 LS50
20 1 4 x190 x192 x19t [ H7,0 L7.0
PARN x20,0 x202 x20,1 H8.0 L8,0
22 12 x21.0 x21.2 x21,1 H9.0 L.9,0
23 |3 x220 x222 x221 H10,0 L10,0 HE0 HIJX0 H9.0 L8O L10.0 [90
24 | 4 x23.0 x232 x23.1 H1L,0 LILO | -
25 11 x240 x242 x24.1 HI12.0 LI120 | ----
26 |2 x25,0 x252 x25,1 H13.0 LI30 | -
27 | 3 x26,0 x262 x26,1 H14.0 L14.0 H12,0 H140 HI13.0 L12,0 1.14,0 L13,0
28 | 4 x270 x27.2 x27.1 H15.0 Li50 | wee-s B s LEEEE R T A P
29 |1 x28.0 x282 x28,l H16.,0 L1640 | -eem- B
CP2 &CP4 input latches CP1 & CP3 output latches CP2 & CP4 output latches
CK | Rt Ri2 Rtl R0  Rt2 Rtl Rthl Rtll  Rth3 Ru3 | Rth2 Rt2 Rthd Ril4
17 | H2,0 H4,6 H30 L[20 L4080 L3O
18
19
20
21 | H6,0 HEO0 H7Z0 L60 L8O L70
22
23
24
25 | H10,0 H12,0 H11,0 L10,0 L12,0L11,0
26
27 HH0,0 HLO,0 LHO,0 LLC,0
28 R
29 | H14,0 HI6,0 HI5,0 L14,0 L16,0L15,0 --- | HH1,0 HL1,0 LHL.0 LL1.¢
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Table B.11 4-parallel’s TLBs read and write dataflow for case 2

279

RP1
Stage 2 Stage 3
Ck | Ri0 Rtl Sal2 | 1a | Ib | BIR1 TLBI BORI1 ; Ri2 Rt} Rtl
L
5 !'x0,0 HO,0 | I e T T e
7 x0.0 HO0,0 1 )
9 [ x40 H4.0 1 6 |0 |H20 [ || e x0,0 HO0,0
11 | x4,0 H4.0 1 o 0 (H20 ¢ ] e x0,0 HO0,0
E 13 | x80 H8,0 1 1 |0 |H60 | H20 [ e x40 H4.0
& | 15 | x8.0 H8D 1 1 |0 |H60 tH20 ] e x40 H4.0
17 | xi2,0HI2,0 ] 2 |0 |HI0O | H2O0HeOD | e x8.0 H3.0
19 | x12,0 H12,0 1 2 |0 |HI00 fH20He b e x8,0 H3,0
21 | x16,0 H16,0 1 3 /0 |HI40 | H2ZO0H60HI0,0 1 | e x12,0 HI12.0
23 ! x16,0 H160 1 3 |0 | HI40 | H2ZO0H60HI00 | e x12,0 H12,0
25 1x22 H21 1 60 |0 | HO [ H2ZO0H6OHIOOHIA0 | | - x16,0 H16,0
27 1 x22 H21 1 0 |0 [HOI | H20H6,0HI0,0HI40 H2.0 | - x16,0 H16,0
29 1 x6,2 H6,1 1 1 0 [ H4,1 HO,1 H6,0 H10.0 H14,0 H2,0 H2,2 x22 H2,1
231 x6,2 Hel ] 1 |0 | H41 | HO.1 H6,0 H10,0 H14,0 He0 | H22 x22 H2]
& | 33 | x10.2H10.1 1 2 |0 | H§1 | 10,1 14,1 H10,0 1114.0 16,0 : H6,0 x6,2 Ha.l
35 | xI0,2HIo 1 1 2 |0 | H81 | HOIH41HI0O0HI40 H10,0 | He,0 %62 Hé.l
37 ¢ x142HI4,1 ] 3 /0 | HI12,1 | HO.1 H4,1 H8.0 HI14,0 H10.0 | H10.0 x10,2 H10.1
39 | x14.2 H14,1 1 3 /0 | HI21 | HO.1H4.1H8,1 HI40 H14.0 { H10,0 x10.2 H10,1
41 | x04 HO0,2 0 4 |0 [HIs1 | HOIH41HE1 HI21 H14,0 | H14,0x14,2 H14,1
e | 43 | x0,4 HD2 0 4 |0 | Hle,1 | HO.1 H4,1 HR,1 HI2,] Ho.1 H14,0x14,2 HI14,1
E [45 [ x44 H42 0 0 |1 JH22 | - H4,1 H8,1 HI12,1 HI6,1 [ HO,1 | HO.1 x0,4 HO2
% 47 x4,4 H4.2 0 0 |1 | H22 | ----- H4.1 H8,1 HI2,1HI6, 1 | H41 | HO1 x04 HO2
49 | x84 HS8.2 0 1 |2 | H62 | H2.2 ----- H8,1 HI21HI61 | H4,1 ] H4.l x44 H42
RP3
Stage 2 Stage 3
Ck | Rt Rti Sa34 | 3a | 3b | BIR3 TLB3 BOR3 | Rt2 Rt0 Rtl
f
7 | x20 H20 1 o0 | HOO | || e e oo
9 | x20 H20 1 0 [0 |HOO \ ] e ememe oo
11 | x6,0 He( 1 1 {0 |H4O |HOO )] - x2.0 H2.0
= |13 | x6,0 H6.0 1 1 [0 [H40 {HO® | [ x2,0 H20
2 [ 15 [ x100H100 | 1 |2 |0 |H8O |HO.OHAD | | ceeme %6,0 H6D
17 | x10,6 H10,0 1 2 |0 |HRO |{HOOH4OD | | eees- x0.0 H6,0
19 | x14,0 H14.0 1 3 [0 | HI20 | HOOH40H8O | [ e x10.0 H10.0
21 | x14,0 HI4.0 1 3 10 | HI20 | HOOH40H80O [ | e x10.0 H10.0
23 | x0.2 Hol O |4 |0 |His0|HOOH4OHEO HI2ZO | | - x14,0 H14,0
25 | x0,2 HO.1 0 |4 10 | Hl60 | HO,0 H4,0 H8.0 HI20 HO0 | - x14.0 H14,0
27 | x4.2 H4 O |0 |1 | H2T | -~ H4,0 H8,0 HI2.0Hl16,0 | HO.0 | HO.O x0.2 HO,I
29 | x4,2 H4,1 0 0 |1 H2,1 | =nee- H4.0 H8,0 HI2 0 H16.0 | H4,0 H0.0 x0.2 HO.1
‘%5 31 | x8.2 H8.] 0 1 2 | Hea.1 12,1 -eee- H8,0 HI2.0H16,0 | H4.0 H4.0 x4.2 H41
& |33 | x82 HS§I 0 1 |2 [ Hed | H21 ----- H8.0 HI2.0Hi6.0 | HE.0 | H40 x4.2 H4.1
35 | x12.2HI12,1 0 |2 |3 | HID | H21 HE, 1 ---mm- HI12,6 Hi16,0 | H80 | HRO x82 HS,I
37 | x12,2H12,1 0 |2 |3 [HI01 | H21 He 1 ------ HI12,0 HI6,0 | H12.0 | H8.0 x82 HS.1
39 | xle,2 Hio,l 0 |3 |4 | Hi41 | H2,1 He,1 HIO,1 ------ Hie0 | H12,0 | HI12.0x12.2 H12,1
41 | x16,2 Hl6.1 0 |3 |4 | HI41 {1121 H6.1 HIG T - Hle.0 [ Hle.0 | HI2,0x12,2HI2,1
43 | x2,4 H22 1 0 |0 | HO2 | H21 H6,1 HI10,1HI14,1------ | H16,0 [ HI16,0 x16,2 HI61
2 145 | x24 H22 1 0 [0 | HOZ | HZ1 H6.1 HI0,1 H14,1 +-—- H2.1 H16,0 x16,2 H16.1
= |47 | x64 H62 1 1 [0 | H42 | HO2 H6 1 HIG1HI4 T --ommn H2,1 | H2,1 x24 H22
49 | x6.4 H62 1 1 [0 | H42 | HO2 H6,1 HIO 1 HI4,f ----- H2.1 | H2,1 x24 H22
la: TLBARla, 1b:TLBARIb, 3a:TLBAR3a, 3b:TLBAR3b




Table B.12 Dataflow for 2-parallel intermediate architecture (k=3)

Ck RP | Rd0 RP’s input latches | RdH SRHO SRHI Rd_ SRLO SRL1

Rt0 Rt2 Rtl RZ Rl RO R2Z Rl RO R2 Rl RO R2Z Rl RO
| 1 x02 | x0,0x02 x0,1
2 2 x04 | x02 x04 x03
3 1 x06 | x04 x006 x0,5
4 2 x12 [ x,0x12x1,1
3 1 x14 | x1,.2 x14x13
G 2 x16 [ x14 x16x15
7 1 x22 1 x20x22x2]1 HO,0 --eer e LO0 —oee e
8 2 x24 § x22x24 x23 HC,1 HO,G —---- Lol OO -
9 1 x26 | x24 x26 x25 HO,2 HO,I HO,0 L02 10,1 LOC
10 2 x3,2 | x30x32x31 H10 —e eeee- LI e e
It 1 x34 | x32 x34 x33 HI.l HLO ----- LETLLO -
12 P x3,6 | x34 x36x35 H0,2 HO,l HOO H1,2 HI,] HLD L02 LO,1 LOO LIZL11 L1,0
13 1 x42 | x40 x42 x4,1 H2,0 HO,2 HO,l | --=ee HIL2 H1L1 L2,0 LO2 L0l | - L1,2 LLI
14 2 xd44 [ x42 x44 x4.3 H2,1 | H2,0 H0,2 HO,1 --— H1,2 HI1 L2,1 | L2.0 10,2 Lol | —eeem- L1,2 L1,i
15 1 x46 [ x44 x46 x4,5 H22 | H2,1 H2,0 H(Q,2 ----- HIL,2 HI,1 L2,2 | L2,1 12,6 LO.2 | ------ L1.2 LI}
16 2 x52 | x50 x352 x5,1 H22 | H2,1 H2,0 H(,.2 H3,0 --—- H1,2 L2,2 | L2,1 L2,0 LO.2 L3O - L1,2
17 1 x54 | x52 x34 x53 | -ee- H22 H2,1 H2,0 H3,1 H3,0 - | «res L22 121 129 L31 L3,0 -----
18 2 x56 1 x54 x56 x55 | --n- H22 H2,1H20 H3,2 H33 H30 | - £22 L2,1 L2, L322 L3113
19 1 x62 | x60 x62 x6,1 | - H4,0 H22 H2,1 | < H32 H31 | - 140 L2.2 L2 | - L3.2 L3,1
20 2 x64 | x62 x64 x6,3 H4,1 | H4,0 H2.2 H2.1 |} —-- H3,2 H3,1 Leb | L40 122 121 | -eemem L3.2 L3.1
21 1 X606 [ x64 x6,6 x6,5 H4,2 | H4,1 H4,0 H22 | —--- H3,2 H3,1 L2 | 14 140 22 | - 13,2 13.1
22 2 x72 | x70x72 x7.1 H4,2 | H4,1 H4,0 H2.2 H5.,0 «--—-- H32 [£2 | L4,1 140 L22 L3O ----- 1.3.2
23 1 74 | x72 xT74 x73 | e-ee- H4,2 H4,! 40 H5,1 H50 --ores ] omee- L4.2 4,1 L40 L5,0 L50 -
24 2 x7.6 | x74 x76 x75 - | H4,2 H4,1 H40 H5.2 H51 H50 | - L4.2 [4,] L0 L52 L51L50
25 1 x82 | x80 x82 x81 j ---em- iH6,0 H4,2 H4,! | ———-- H5.2 H5,1 | - L60 14,2 14,1 | e L5,2 L5.1

ck RP CP1 &CP2 input latches CP! & CP2 output latches

R0 RiZ Rt} R0 Ri2 Ril Rtl Rtd Ril Rt

13 1 HC,o H20 HiO LOO 120 LIO

14 2

15 1 Hel H21 HILL L0 L21 Lil

i6 2

17 1 HO2 H22 HI12 L2 122 L2

18 I s — —

19 i H20 H40 H30 120 140 L30 HHG,0 HLJ,0 LHO,Q LLO0

20 D T R t—

21 1 H2,1 H4,1 H3,1 12,1 14,1 131 HHO,1 HLJ,1 LHO,1 LLO,]

22 2 T

23 1 H22 H42 H32 122 [42 L32 HHO,2 HLO,2 LHO2 LLO2

24 2

25 1 H4,0 H60 H50 L40 L60 [50 HHi,0 HL1,O LH1,0 LLLO
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Table B.13 Dataflow of the last run for cases 4 and 3 when N is even

Ck | RP | RdO RP’s input latches RdH SRHO SRHI RdL SRLO SRLI
Ri0 Rt2 Rtl R2 Rl RO R2 Rl RO R2 Rl RO R2 Ri RO

25 | 1| e | e | e H6,0 H4.2 H4l | - H5.2 H51 | ---- L6,0 L42 L4l | -eee L5,2 13,1
26 |2 x08 | X06 x08 207 H6,1 | H6,0 H4.2 H4,1 | -—----- H5.2 HS,! Lo, | 160 142 141 | ---- L52 L5,1
27 I e X038 x08 %09 H6,2 | H6,] H60 H42 [ —-- H5.2 H5,1 L62 | L6,1 L6O L42 | weene L52 L5,1
28 |2 x1.8 [ x16x1.8x1,7 H6,2 | H6,1 H6,0 H42 H7,0 —---- H52 [ L62 | L6l 16,0 L4.2 L70 - L52
28 11 | e x18 x18x19 [ - 16,2 Hé,1 He0 H7,1 H10 ---es | e L6,2 L6,1 L6, L7,l L7,0---—-
30 2 x2.8 | X26 x28 x27 | - H6,2 He,l H&,0 H?7,2 H7,1 H70 | --e- L62 L6,1 L60 17,2 L7,1L70
|1 | - x2.8 x2.8 x2.9 | cooer | —v H6,2 H6,L | -omn H72 H7l | or | e L62 L6 | —m L7.2 17,1
32 [ 2 [ x38 | x3.6 x38 x37 | HO3 | — H6,2 H6,L | —mr 72 070 | L03 | —— £6.2 L61 | L72 L7.1
33 R x3.8 x3,8x3% HO4 | HO3 - HE,2 | «eeem- H7.2 H7.l LO.4 LO3 weeee- Le2 | - L72 L7
4 12 x48 | x46 x48 x4.7 HO4 | HO3 ----- H6.2 H1,3 -——- H7.2 104 L03 —- L&2 L1,3 ceeen- 1.7,2
35 11 | eeeee x48 x48 x48 | cenene HOA4 HO3 - HI4 HI3 n | —ooen LO4 10,3 -mmv .14 L1,3 ——
36 12 x58 | x56 x58 x57 H23 | --e- H0,4 HO,3 | - H14 HI3 | L23 | - LO4 LO3 | - L1,4L13
R B S x58 x58 x59 H24 | H23 - HO4 | ----- H14 HI3 | L24 | 123 - L04 | -ees L14L13
38 |2 x68 | x6,6 x6,8 x6,7 H24 | 123 < HOM4 H3.3 - Hi4 | L24 | 12,3 - L0.4 L33 - L1.4
39 01 | x68 x68 x69 | ----- H24 H23 - H34 H33 - | —ee- 124 123 - L34 L33 -
40 | 2 X718 | x76 x718 x77 H4,3 | ----- H24 H23 | - H3,4 H33 L43 | - L2,4 L23 | - L34L33
41 1] eeeens x78 x78x79 H44 | H43 - H24 | - H3,4 H33 [44 | L43 --——- L24 | ----- L34L33
42 | 2 e | s H4,4 | H4,3 - H2.4 H53 - H34 L4d | 143 weeee L2.4 L53 - L3.4
L T B B [t e, R H44 H4 3 -—--- H54 H33 - | —omee- 144 [4,3 ---- L34 L53 -
44 | 2 | -eeee- H63 { - f44 H43 | - H54 H53 | 163 - B44 143 | - L54L53
T3 ST p— H64 | H63 - TR — H54 H33 | 164 | L63 - L4d | - 154153
A | 2 | semee | meeeemeeeeeeemennee H64 | H63 --——- H44 [ H73 - H54 | L64 | L63 - L44 L7.3 - L5.4
L2 T [ (TR E— 16,4 1163 -ee- H74 HI3 —er | ooee- 164 163 L74 17,3 -
L3 I S A S — Hb64 H63 | - H74 H73 | oo | e L64 L63 | - 174173
49 [ 1 | e e | o H6A | -eme H74 HI3 | coemn | coomm ome L64 | e 174173
T [ | R [ HE6A | —mor e TR IEU [ [ -3 [ —— L7.4

Ck | RP CPl &CP2 input latches CP1 & CP2 output latches

Rt0  Ri2  Ril Ri0  Rt2 Ritl Rt Rt Rt Rt

29 1 H42 H62 H52 142 16,2 L52 | HHl,2 HL12 LHI,2 LL12

30 -

3l 1 H60 H60 H70 160 160 L70 | HH20 HL20 LH20 LL2Q

32 |2

33 | He,l Ho.l H71 Lé! Lel 171 | HI21 HL2! 1LH2,} LL2]

34 2| e | vneeas

15 1 16,2 H6,2 HI2 L62 162 1792 HH22 Hl122 LH22 1L22

6 |2

37 | HO3 H23 HL3  L03 23 L13 [ HH3,0 HL3.0 LH3,0 LL30

I I S S,

39 | HOs 24 H14 104 124 L1d4 [ HH31 HL3 1 LH3 I LL3,)

40 2 e ] e

41 1 H23 M43 H3I3 123 143 [.33 | HH3 2 HL32 LH3,2 LL32

42 e M

43 1 H24 144 H34 124 144 L34 | HHOI HLO3 LHO3 1103

44 | 2 U

45 1 H43 H63 H53 L43 163 L53 | HHO4 HI.G4 LHO4 LLOA

46 P - e e

47 1 H44 16,4 HS4 144 164 L54 | HH! 3 HL13 LHI3 LLL3

48 L D T

49 1 H6,3 16,3 H73 163 163 L73 | HHlI4 HL14 LHI4 LL14

50 P D

Sl 1 H64 H64 H74 164 L64 L74 | HH23 HL23 LH23 LL23
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Table B.14 Dataflow of the last run for cases 4 and 3 when N is odd

Ck | RP [ Rd0 | RP’sinput latches | RdH SRHO SRH|{ RdL SRLO SRLIL

Rt0 Rt2 Rtl R2 Rl RO R2 Rl RO R2Z Rl RO [R2 Rl RO
2212 e E e H42 | H41 H4O0H22 | H50 - H32 | L42 | L4,1140L22 | L50 ---- L32
23 11 el Il i H4.2 H4,1 H4,0 | H5,1 H50 ----- seeew | L421L4,1040 | L5,1E50 —---
24 12 | o | e — | A2 H4TH40 | H52 H5, 1 H5,0 | —— | L42L41140 | L52 L5,1150
25 ¢ il e A H60 H4,2 H4,1 | »oe H52H51 | —- | L6,0OL42L41 | - L52 L5,]
26 |2 x0,8 | x0,6 x08 x0,7 | H6! | H6,0 H42 H4,1 | - H52H51 | L61 | L6,0L4,2L4,1 | woem- L5.2 L5,1
27 |1 e | X08 e s H6,2 | H6,1 H6,0 H4.2 | -—-- H52H5,1 | L6z | L6,1L60L42 | - L52 L5,1
28 |2 x1.8 | x1,6 x1.8 x1.,7 | H62 | H6,1 H6,0 H42 | ---r me- H52 | L6Z | 16,1 L60L42 | ---ov weee L52
29 1 | b R B H6,2 H6,l HO0 | —memrmmemmmeee | e L6216, 1 L60 | ---mmmmeemeeeee
30 (2 x2,8 | X26 x28 x27 | -—- H6,2 H6,1 H60 | - [ omeen L6,2 L6, 1 LE,0 | —-emeemmmsiceanne
I e X28 oo e | e | e H62 HE,l | wemommemmmmmceeee | ememe [ e A T I
322 x3,8 | x3,6 x38 x37 | HO3 | - H62 HO, L | -eeemmeeommmrnneeae LO: | -mmr A U B
B | - R R i T HO,3 --eeer H62 | —mermmmmcemeeeee L0 | LG,3 - L2 | —rmmeormmeans
34 72 x48 | x4,6 x48 x47 | -eeeee HO,3 ------ H6.2 | HLL3 -oem eee- LOs | L3 - L62 | L13 —oer oemee
I | - R i e R HO.3 - | e HL3 e | L04 LO3 - | L14 L13 -t
3o | 2 x5.8 [ x5,6 x58 x5,7 | H23 | - -omm- HO3 | —eer - HIL3 | L2,3 [ - Lo4 L0O3 | - L1,4 L13
K B X 5.8 —mooem e | e [ R - - HL3 | L24 | L23 -—--L04 | - L14 L1,3
3812 x6,8 | x66 x68 x6,7 | - HZ3 e eeen H33 - e L24 [ L2,3 LG4 | L33 - Li4
Wl | - LR N T e R HZ3 -em | s H33 - | L24 L23 - | L34 133 -
) | 2 | e | - 2 R H23 | - - H33 | L43 | -eeeee L24 123 | -—-- L34

L33

L B I B Tl Eaaeaa et e CEeE R PSP H43 e oomm | e s H3,3 | 144 [ L43 - L24 | - L34 L33
42 | 2 | e | e | e H4,3 —em - H5,3 —eeee e L44 | 143 - L24 | L53 --- L34

Ck | RP CP1 &CP2 input latches CPl & CP2 output latches

Ri0 Rt2 Rtl R0 Rt2 Rtl Rt Rt Rt Rt

D I I R el M

23 1 H22 H42 H32 122 [42 132 | HHO,2 HLO,2 LHO2 LLO2

4 |2 Smeomommememmsamenmsososssesscasesssssssssresss | ssssssssesssosasiooee

25 1 H4,C H6,0 H50 140 L60 L50 | HHLC HLLY LH10 LL10D

26 | 2 SRR O —

27 1 H4,1 He,1 H51 14,1 L6171 L31 | HHL1 HLLI LH11 LL1,1I

28 |2 — -

29 1 H42 Hs2 H52 [42 162 L52 | HHL,2 HLI,2 LH12 LL12

L I R —— -

31 1 H6,0 —-ooee ooeoe- L60  --orme ooeee- HH2,0 HL2,0 LH2,0 LL2,0

32 |2 ] e

33 1 B e L8,1 - oee- HH2,1 BL2,1 LHZ,1 LL2)]

4 12 e

35 1 H6,2 --aee oo 62 - - HH2.2 HL2,2 LH22 LL122

36 |2 | e -

37 l HO3 H23 HI3 L6G3 L23 L13 LL3.0

38 |2 | -

1% | Lod4 L24 L14 LL3,1

40 P e [

41 1 H23 H43 H33 [23 L43 L33 L.L3,2

2 |2 -
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Table B.15 Dataflow of the last run for cases 2 and 1 when N is even

Ck RP [ Rd0 | RP’sinput latches | RdH SRHO SRH1 RdL SRLO SRL1
Ri) R2 Ru R2 Rl RO R2 Rl RO R2 R! RO R2 R! RO

25 | e Paaanana e e SR I H6,0 H42 HAL | ----s H52 H51 | - L60 142 L4 | - L52 L5,!
26 2| H6,1 | H6,0 H4,2 H4l | ---eme 15,2 H5,1 L6l | 160 L42 [41 | - L5,2 15,1
27 | x0,6 x0,6 x0,7 H62 | H6,1 H6,0 H42 | -oneee 15,2 H5,1 L62 | L61 L60 [42 | - L52 L5}
28 A x16x16x1,7 H6.2 1 H6,1 Hs,0 H4.2 H7,0 - H52 L62 | L6,1 160 142 L7,0 ------ L52
29 [ X26 x2.6 x2,7 | - | H62 H6,1 H60 | H7,1 H7D s | coeees 162 161 L6,0 170 17,0 emv
30 2| - x36 x36 x37 | - H6,2 H6,1 HO0 H7.2 H7l H70 | - 16,2 L61 L6 L7.2 L7,1 L7.0
31 [ x46 x46 x4T | weere | weee HOZ HE1 | - H7.2 H1,1 | e | e Le,2 Lot | - L7,2 L7,1
32 2 x56 x56 x57 | ------ | - H62 H6,1 [ ----- H7,2 H7,]  § —eee | -oeee- L62 L6,1 | --mee- L7,2 L7,1
33 I x6,6 x6,6 x6,7 HO3 w-ee- BI7,2 HT,1 Le3 | - L2 L6l | - L7,2 L7.1
34 A R x76 x76 x17 | - H13 -oeenr H7.2 | - L0} - L6,2 L1} - L7.2
35 il [ T T H23 | - H03 - | - HL3 - L2,3 | - L03 e | - LL3 -
36 2| - H2.3 H3,3 - HL3 L23 | L23 —-- LO,3 £33 - 1.1.3
37 B H43 | - H23 - | —--- H3,3 - L4.3 | - [ e L33 -
38 2| e H4,3 H53 ------ H33 [43 | 143 - L2.3 L53 e L33
39 | el e H63 | —---H43 - | - H5.3 ---em- L63 | - L43 - | - L33 -
40 N Bt H6,3 H7.3 ---e- H3.3 L63 | L3 - L4.3 173 - 1.5.3
41 [T N ST R SR ¥T % SR [ [T J S U R [T — L73 —-e-
42 2 S S N 7Y R I — [TEIE I [ L63 | - - L7.3
43 U | cooomm | oo | oo | | T
44 R R el T S S B T T e SRR
45 | R e LTI ECRE T IR B B et B B e BIE LS EEE R EE e L e P
46 A T M T T I BTl Hi e [P
47 [ e | e | s B I I e s e EESP R TSP EETT
48 2| e | ST | T T |
49 N B e e [ B e aaaas o tESEEE I [JEEERRREREREERE

ck RP CPl &CP2 input latches CPl & CP2 output latches

Rt) RCZ Ril Ri0  Rt2 Ril Rt Rt Rt Rt

28 | 2 | e e | s

29 1 H42 H62 H52 142 162 152 | HHI.2 HL1.2 LHI2 LL12

30 P e e

31 1 He,0 HeD H70 160 L60 L70 | HH20 HL20 LH20 LL2J

2 L e —

33 1 Hé6,1 He !l H7! Lel 161 171 | HH21 HL21 LH21 L121

34 L el M

35 1 H62 H62 HT2 162 162 L72 | HH22 HL22 TH22 1122

ET I I [ R

37 1 HO3 123 HI3  Lo3 123 L13 | HH3O HL30 LH30 L13Q0

B [ 2 | e

39 1 H23 H43 H33 123 143 L33 | HH3} HL3.1 LH31 LL3,i

L I T el Mo

41 1 H43 H63 H53 143 163 L53 | HH3.2 HL32 LH32 LL32

42 I e

43 | He3 163 H73 163 163 17,3 | HHII03 HLO3 LHO3 LLO3

44 T e s

45 | HHI1.3 HLI,3 LHL3 LLL3

LT I I

47 | HH23 HL23 LH23 1123

T I

49 | e — HI13,3 HL33 1LH3,3 1133
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Table B.16 Dataflow of the last run for cases 2 and 1 when N is odd

Ck | RP | Rd0 | RP’s input lalches | RdH SRHO SRHI RdL SRLO SRLI
RO Ri2 Ril R2 RI RO RZ Rl RO R2 RI RO RZ Rl RO
P I HiZ | W4 40 122 | H50 —— H32 | 142 | 141 140 122 | L50 132
pE] T ) [ - H42 14,1 Ha0 | H5.0 H50 - - | 142 141 140 | L51L50 -
Y J A N [ USSR I H42 H4! 1140 | H52 H51 H50 | -eor L42 41 L40 | L52ZL51L50
25 T [0 VU, S, HE0 HA2 HAL | —— H52 H5,1 | 160 142 Lal | - 15,215,
T I —— 16,0 | H60 HAZ Ha,l | =~ H52 H51 | 16,1 | L60 42 L4l | - L5205,
27 |1 ] Y X —— H62 | H6,l H6,0 HA2 | — HSZ Hsl | L62 | Lol L60 142 | —— L5215,
28 | 2 | [P ——— H62 | H6 H60 HA2 | v oo H5,2 | 162 | L6 L60 L&z | —- — 152
9 |1 | - J N f— H6,2 HB,I HB0 | -—omommomrmommieees | mmeiom 162 161 LEO | cmeemeeemoces
30 |2 | X 3,6 e e | 2o H6,2 HE,1 HG,0 | ~oommmmrmommeoes | <o TR TR N e ——
3 1| — Y- RS p— (VI R S [ p— TR AR I —
32 |3 [ P J S, I J— H6,2 HE, L | womrmmmmemommiare | oo | ooeeee TN e ——
33 T — P U ISR [ ——— T e — 103 | e TR L —
N I S | U [ —— HB,2 | —rommmemmrmenmeones 103 [ L3 L62 | L1,3 weemm woer
35 (S U U R— 123 | o [T )5 J S — L3
T PR i L23 | L2.3 oommr 103 | L33 — L3
EX N D T [ [ | —— 143 | s [k p— L33 e
LI N D U [N R— L43 | 143 —m L2,3 | L53 - L33
EC I S I [ (IO [— [ f— [ p— 153
T N S [ 163 | 163 —m (I I N ——— L53
41 [ R | VUSSR SR [ T —
eI N I el |, OSSR Jyunit S R | ———— 16,3
43 (T g U || Ry—————— [

ck RP CPI1 &CP2 input latches CP1 & CP2 autput latches
Rt} Ri2 Ritl Rt0  Ri2 Rtl Rt Rt Rt Rt

22 P e Tl e

23 { H2,2 H42 H32 122 L42 132 | HHO.2 HLO,2 LHO2 LLO2

24 2| e

25 1| H4,0 H6,0 H50 140 160 L50 | HHI,0 HLL,0 LHLO LLLO

26 P

27 1 H4,l He,1 H51 L41 L6l L51 | HHI.1 HL1,I LH11 LLiI

28 M

29 1 H42 H62 H52 142 162 152 | HHI2 HL12 LH12 LLI2

30 2| -

31 1 H6,0 ceecer wimeee L6 - e HH2,0 HL2,0 LH20 1120

32 2

33 | | I L6l - eeeen HH2,1 HL2,1 LH21 LL2/1

34 I B el T

35 | 5 (<0 — T e — HH22 HL22 LH22 L1L22

36 2

37 [ P — 03 L23 L13 | -—---- HL3,0 ----ee- LL30

38 2 - --

I I e — 123 143 L33 [ - HL3,1 —-eee LL3,1

40 |2 |- . -

T 143 163 L33 | - HLI2 —oreee LL32

42 2| e e

43 | I — L6,3  —mmem aveme | cumesns cameeons LHO,3 LLO,3

44 D et it

45 |1 | e LHI1,3 LL13

46 2 el [

L T I O S — .H23 LL23

48 D T e

L T T T L — LL3,3
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Table B.17 Dataflow of the 3-parallel intermediate architecture

Ck RdO RP’s input RdH SRHO SRHI RdL SRLO SRL1
latches R2 R1 RO R2 R1 RO R1 RO R2 R! RO R2 Rl RO
Rt0) R12 Rt
1 x6,2 | x00 x0.2x0,1
2 2 | x0,4 | x02 x04x0,3
3 3 | %06 | x04 x06x05
4 | x1.2 ] x1,0 x1,2xL.1
5 2 x14 | x12x14x13
5] 3 x16 [ x1,4 x[,6x1.,5
7 1 x2,2 | x2,0 x22x2,1
8 2 x24 1 x22 x24x23
9 3 x2.6 | x24 x26x2,5
10 I x3,2 | x30 x32x3,1 HOQ ~m-ee e | KA —
L] 2 | x3,4 ] x3,2 x34x33 HO,1 HO,0 -+ 10,1 L0 -
12 [ 3 | %36 | x34 x36x3,35 HO0,2 HO, 1 HO,0 L2 10,1 LOO
13 | x4,2 | x4,0 x4,2x4,1 HO2 HO,l HOO0 | HLD veeee oeee L0,2 LO,ILO0 | L1,Oemees e
14 2 x4,4 | x42 x44x43 HO,2 HO,1 HO,0 HI,1 HI1,0 - L0,2 LO1LOO0 | L1, L1,0 -----
13 3 x4,6 | x44 x46x4,5 H(,2 HO,1 HO,0 | HIL,2 HI,I HI,0 10,2 LO,J LOO0 | L1,2 LT LIO
16 I | x5,2 | x50 x52x5,1 H2,0 HO,2 HO,l | ~--- Hi,2 H1,1 L2,0 LO2LOT | - L1,2 1)1
17| 2 | %54 | 52 x54%5.3 | —— HZI 20002 | v s HIZ | 12,1 — |120 002001 | —— LL2 LI
IB 1 3 | x56 | x54 x356x55 | H22 | HLIHZ0HO02 | - - Hl,2 122121 | L2,0 LO2LOY | - L1,2 LLI
19 I | x62 | x6,0 x62x6,1 | - H22 H2,IH 2,0 | H3,0 - eeeeee | -ome- L2,2 | L2,1 L201L02 | L3O - L1,2
20 | 2 | %64 | x62 x64%63 | H22 H2,1H 2.0 | H3,1 H3,0 —mmv L22 L3120 | L3,0 L30
21 3| %0,6 | x6,4 x6,6x5,5 | --e- H22 H2,1H2,0 | H3,2 H3,} H30 —em - | L22 12,1120 ) L32 L3,1L1L30
22 I [ %72 | x70 x72x7,1 | - H4,0 H22 H2,1 | ----- H3,2H3,l | --memm e L4,0 L22121 | -~ L3.2 13,1
23 ) 2 [ %740 x72x74x73 | - H4,1 H30H22 | ----mn - H3,2 L4,1 - L4,0 122121 | --—-- £3.2 131
241 3 | x76 ) x4 x76x75 § H42 | H4,1 H4 022 | —---em —-eeme H3,2 42 L4,1 | 14,0 L22L21 | = L3,2 13,1
25 %82 | xB0 x82x81 | - H4,2 H4,1 H40 | H50 comemmcmeeee | oeee 142 | L4,1 L40L22 | L5,0 ==ea 132
26 2 [ x84 x82 x84x83 | - H4.2 H4,1 H4,0 | H51 HS,0 wememe | comom - 142 14,1140 | L51 L50 ----
271 3 [ x86 | x84 x88x85 | - H42 H4,1 H40 | H52 HS,1 H50 | -o--em - 14,2 14,1 L4,0 | L5.2 L5,1 L5,0
28 x92 | x9,0 x92x91 | - H6,0 H42 H4,1 | - H35,2 H3,1 16,0 L4,214,1 | -—- L52 15,1
29 x94 1 x92x94 x93 | - H6,1 HO6,0 H4,2 | —--=mn -eeme Hs,2 L6, 1 ------ 16,0 L4214 | ----- L52 L5,1
30 x96 | x94x96 x9.5 [ H6,2 | HE,1 HE,0 H4,2 | wmomee ommeme H5.2 162 L6,1 | Le0 L4204, | «-mm- L52 L5,1
RP CP1 & CP3 input latches CP2 input latches | CP1 & CP3 output latches CP2 output latches
Ri0 Rtz Ril Rt0  RiZ2 Rtl | R0 RE Ril Rtk Ril Rth Ril Rth Rtl
16 1 H0.0 H20 110 100 120 L10
17 2 (0,1 1121 HI{
18 13
19 1 HO,2 H22 HI2Z L0 L2l Li ] | e-mmemememeeee
20 |2 L02 122 L12
21 3
22 11 H20 H40 H3.0 (2,0 140 L3.0 | ccommemrmamrmaans
23 |2 2.0 He,1 H31
24 |3
25 1 H22 H42 H32 12,1 L41 L3,1 | -vweersmommemceoeeeee HHO,6 HLO,0 [LHO,0 LLOO
26 |2 - 122 042 132 | cemmmeememmmemeee oo HHO,1 1ILO,!
27 [ 3 - - [ I
28 | | I T T e — A T e —
29 [ 2| e . 1HO2 LLO2
0 13
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B.3 Dataflow tables of chapter 5

In Table B.19 (a), the pipeline stages 4, 7, and 10 of Figure 6.5.5 have not included, since they are in the
first run, which ends at cycle 20, only pass coefficients of the previous stage to the next, whereas in the
second run, which begins at cycle 25, and in all subsequent runs, stages 4 and 10 are bypassed, as shown in
Table B.19 (a). For instance, Rt0 and Rtl of stage 2 are shown holding coefficients YL'2,0 and YL'2,1 in
cycle 26, during which coefticient YL"2,0 is computed. Then in cycle 27 YL"2,0 is loaded into Rt0 of stage
3 while YL'2,1 is loaded into Rt1 of stage 5 through the multiplexer labeled mux bypassing stages 3 and 4.
In cycle 28, YL'2,1 in Rtl of stage 5 is loaded into Rtl of stage 6, while YL"2,0 in RtQ of stage 3 is
transferred to Rt0 of stage 6 bypassing stages 4 and 5, where the two coefficients proceed together until

stage 8.

Note that the first indexes in YL, YH, XL, and XH in Tables B.18 and B.19 (a) refer to column
numbers in Figures 6.3.2 {A) and (B). While the second indexes refer to input numbers in each column in
accordance with the convention followed in the DDGs. On the other hand, the first indexes of Y and X in
Tables B.18 and B.19 (b) refer to input numbers in each row in accordance with the convention followed in

the DDGs which is also indicated in the processors datapath architecture.
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Table B.18 Dataflow of the 5/3 architecture

Ck 1 2 3 4 CP output latches 1 2 3 4 RP output

I CP input latches RP input latches latches
Rd0 R0 Rtl [ Rid Ril Rt0 Rtl Rt0 Rel Ril6 Rtll  Rth Ri0 Rtl TLBI | R0 Rtl Ri2 Rt0  Rtl TLB2 | R0 Ril R12 Ri0  Rti

| LLOQ -oemmr oo

2| - LLO.G LHO,0

3 HLOO LLO0 LHO0

4 | - - HL0,0 HHO,0 | XLO(0) YLO(1)

5 LL1,0 HLO,0 HHG0 X100y YLO(1)

6 | - LL1,0 LH1,G | XHO(O) YHO(I) | XLO(0) YL.O(1)

7 HL1.0 LL1,0 LHL0 | XHO) YHO) | XLO@) YLG()

8 | - HL1,0 HH1,0 | XLO(2) YLO(3) | XHO0Y YHO(1) | XLO(O) YLO(1}

9 [ LL20HL10 HH10 | XLG(2) YLO(3) | XHO(0) YHO() | XLo©) YLO(1Y

16 | --—--- LL2,0 LH20 [ XHO(2)YHO(3) | XLO(2) YLO(3) [ XHO0) YHO(1) [ LOO LIO —--

17 | HL2.0 LL2,0 LH2,0 | X1H0(2) YHO(3) | X1L0¢2) YLO(3) | XHHO0 YHO(I) | Lo.0 LI0 ——

12 [ - HL20 HH2,0 [ XLO(4) YLG(5) [ XHO(2) YHO(3) | XL0(2) YLO(3) [ - LI.0 HI0 | LO,0 HOQ -----

13 { LL3,0HL2,0 HH20 | XLO(4) YLO(S) | XHOR) YHO(3) | XLo2) YLO(3) | - Lt,0 HI0 | LOC HOO -

14 | -——- LL30 --——- [ XHO(4) YHO(5) [ XLO{#$) YLO(5) | XHO(2) YHO(3) [ L2,0 L3.0 --—- L1,G HL0 YO(l) | YO(O) YO() ----

15 { HL30Q LE3.G ------- XHO(4) YHO(5) | XLO(4) YLO(S) | XHO2) YHO(3) [ 1L.2.0 L3O ----e- L1.C H10 YOO YO(l) —-

16 | -—— HL3,0 -—--m XL6) -------- XHO#) YHO(S) | XLO(A) YLO(S) | -— 130 H30 | 120 HZOYI() | YI(O) YI(Q) - XO(0) -

17 1 1100 HLE3,0 ———-— | XLO{6} ------m- XHO(4) YHO(5) | XLO(4) YLO(S) | ----- L30 H30 | L20 H20 Y1(0) YI{1) ---- XO0) -----

18 | v Lo 1 LHUT | XHO6) -----— | XLOE) ——— | XHO@) YHOS) [ 14,0 150 - L3.0 H3.0 Y2(1) | Y2(0) YXI) - XI{0) - XO(0) | XO(O0) o e

19 { HLo 1 1101 LHY L | XHO6) ------- XHO(4) YHO(S) | 140 150 -—--m- L3,0 H3.0 Y2(0) Y2(1) ---- X0y - XO{0) - -—

20 | --eeee- FLOE BB | X0 YR | XHOG) ------- XLO(B) -----e- | ---- L5.0 H5.0 [ L4.0 H4.0 Y3(1) | Y3(0) Y3(1) - X2(0) -——— X1(0) | XI{0) == -—- X(0,0) -—-

21 [ LLEY (0 HHOg | XLL0Y YLD | XHOB) - XLO(6) —wommeee | oo L50 H50 | L4,0 H40 Y3(0) Y3(1) —- X2(0) ——-- XI{0) = - X(0.0) -

22 | R R T B AR B T e T — L50 H50 Y4(1) | ¥Y4(Q) Y4(1) —- X3H0) - X0 | X2O) - - X(1.0) —-

23 | L LR LR L Xy YHID [ XL NPy | XHO6) -} 16,0 —smeer =maan L5,0 H50 Y4(Q) Y4(1) ---- X3(0) --— X2{0) - - X(1,0) -

24 | e 1.1 HI g Ry YERG) | XHHOy YRy | XERO YL | o-meem e o | 16,0 H6.0 Y5(1) | Y5(0) Y5(1) -—-- X4(0) ----- X3(0) | X30) ----  ---- X(2,0) -----

25 L1200 T g NER2y YR | XU YHIA | NPy YED il I B2 U 3 XY Y5(0) Y5(1) ---- X4(0) - X300y - X(2,0) -—--

26 | e LE20 LE2 U [ XD YHIG) | XEIEY YLES) | XHI@) Y | Lot LI cceee | oo —oeee Y&(1) | Y6(0) Y6(1) - X5(0) -—-— X4(0) | X4(0) - - X(3,0) —--

27 [ W22 Lz | NIy YRR | XD YRS [ NHI@) Y [ TO00 L1 e | cemee meeee Y6(0) Y6(1) —-- X5(0) ---— XHO) -~ - X(3,0) -—---

28 | - - 20 T2 | NEded)y YERSY [ XHIY YIS ) | NP2y Yided) | - 11,1 H1A Lol HOL ] e el X6(0) ——— X50) | X50) -——-  --—- X(4.0) -—--

249 VES T HE2 D 2 NI g3y YRS | XHUY YR | XE1H2y YUy | - 12,0 11 1Ol HGd f mmemee emeee - X6(0) - X50) - - X(4,0) -—--

30 ) -0 D13 ceeeeee XHEH YHIGY | XEHD YRSy | XHICRYHI3) | L2083 - [ LLE T YO | Y)Y YD) ] e === XB(0) | X6{0) == -——- X(5,0) -----

T EN N - NHEA YA | NLIdy YISy [ Xan2 YHI13) [ L2t 23 e 1.1 HL] Y02 YOOG)Y Y1) | oo —omme X6(0) - - X(5,0) —--

32 | --ee- HLLA T weenees XLI6) - NHICGh YDy | X Ty YLy | 131 Hil L2 H2Z Y [ YROYUD) YD P X2y Yehy | e e —--- X(6,0) -----
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Table B.19 (a) dataflow for 9/7 architecture from CP side

Ck 1 2 3 5 6 & 9 11 12 13 CP output

72 | CPinput latches latches
Rt0  Rtl Rt0 Rtl Rt0 Rtl Rid Rtl Ri0 Rtl RtO Ril Rt0 Rtl | R Rtl Rt0 Rtl Rt0 Rtl | RUG Rell Rth

1 LLO,0 LHO0

2 HLO0,0 HHO,0 YL'0.0 YL'O

3 LLO,1 LHO1 YH'0,0 YH'0,1 | YL"0,0 YL'01

4 HI.0,1 HHO 1 YL'1,0 YL'1,1 YH"0,0 YH'Q,1

5 LLEOLHI0 YH1,0YH1,1 | YE"M,0YL1,1 | YL"0,0 YL'O,1

6 HL1,0 HH1.0 YL'0.2YL'03 | YH1.0YH1,1 | YH"GOYHO,1 | YL"0,0YL'OA1

7 LL1,1 LH1,] YH'0,2 YH'0,3 | YL"0,2 YL'0,3 | YL™,0YL'",1 YH"0,0 YH'0,1

8 HL.1,1 HH1 1 YL1,2YL'1,3 | YH'0,2YH'G,3 | YH"1,0YH1,1 | YL"1,0YU'1,1 | YL"O,0YL"0,1

9 LL2,0 LH2,0 YH1,2YH1,3 | YL".,2YL1,3 ] YL"0,2YL'0,3 | YH"1,0YH1,1 | ¥YH"0,0 YH"0,1 | XLO,0YL"0,1

10 | HL2,0 HH2 0 YL'04YL'0,5 | YH",2YH"1,3 | YH"0,.2YH'0,3 | YL"0,.2YL'0,3 | YL",0¥YL",1 [ XHO.0 YH"0Q,1

i | LL2,1 LH21 YHO0,4 YH'05 | YL'O4YL05 | YL"1,2¥YL'1,3 | YH"'0,2 YH'0,3 | YH"1,0YH"1,1 | XL1,0YL™ 1 | XLO,0 YL"01

12 | HL2,1 HH2 t YL'1,4YL'1,5 | YH'O4 YH(S5 | YH™,2YH1,3 | YL"1,2YL',3 | YL"0,2YL"0,3 | XH1,0YH"1,1 | XHO,0 YH"0,1 | XLO.OYL"0,1

13 | LL30LH3,0 YH1,4 YH1,5 | YL"4YL15 | YL"0O4YL'05 | YH",2YH1,3 | YH"0,2 YH"0,3 ; XL0,2YL"0,3 | XL1,0¥L"1 1 XH0,0 YH"0,1 [ XLO,0¥YL"0,1

14 | HL3,0 HH3,0 YL'06YL0,7 | YH" 4YH1,5; YH'O04YHOS5 [ YL"0,4YL'05 | YL",2YE",3 ¢ XHO,2YH"0,3 [ XH1,0 YH"1,1 [ XL1,0¥L"1,1 | XHO,0 YH"0,1 [ LOOLLO ----

15 1 LL3,1 LH3,1 YH0.6 YH'0.7 | YL"0.6 YL'0.7 | YL"1,4¥L"1,5 | YH"0O4YH0,5 | YH"M2YH",3 1 XL1,2Y¥YL",3 | XLO2YL"03 | XH1,0YH"1 1 | XL1,0YL",4 | - LI,OHLO
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I YH?Z.8 ------- L e M YH'2EYH2T7 | YH"24YH"25 | X123 - —— YL"25 | XH22VYH"23 [ X122 ¥YL"2.3 | —— LL2HL2

E e Bt - YH"2.8 -~ semmmeesremees YL"28 ——— | YL2B8YL"27 | XH2 4 oo | e YH"2,5 | X124 YLU2.5 | NH22YH"2.3 | L22132 ——

37 | oo e | mmme eenn | meoen oo | e YH28 . YH2BYA2.7 | xlo6 - | T YL2.7 | MEZAYH25 | 224 YU'25 | —— L32H32

L e e e T e YL'28 —— [ XH26 - ——— YH27 | X126 Y27 [ XIDAYH"25 | 142152 ——

19 e B - B [ e e YH"2.8 - NE2 8 o | e e NH2AYH2,7 | X126 YLU"2.7 | ---— L52H52

40 | . | = SR O [ — S F PN (S — NI2H  oooeee XH26YH2.7 | L62L72 -

T A )t DU [ [ N VT — Nich - L712H72

R T e e T T T T Tt [ e e e e R AR P — L82 -oomm ooee-

43 e B e e M el Bt el B T Bl -

288




Table B.19 (b) datatlow for 9/7 architecture from RP side

Ck 1 2 3 4 5 6 7 8 9 RP out

F2 | RPnput latches
Rt) Ril | R0 Ril TLBI [ R10 Rt] R12 Rl RO Rt0 Rtl TLB2 R1 RO Rt} Rtl  Rt2 | R0 Rtl TLB2 | Rt0 Rtl Ri2 Rt0 Ril TLB4 | Rt0 Rtl RiZ [ Rt Rtl

14 | -=-- -

15 | LO0 HO0

16 1+ L1,0H10 | YO,0Y01

17 | L0, HO,1 | ¥1,0Y11 Y0, 0Y0 1 — -— ——

18 | LLTHLL § ¥Y0,2Y0,3 Y1,0v1,4 —¥0,1 — I Y00 ~— - — -——

19 | 12,0120} Y1,2Y1.3Y0,3 { ¥02Y03 -——Y1,1Y01 | Y10 — — Y00 —-

20 [ L30H30 | Y20Y21Y13 | Y12Y13 — — Y11 | ¥Y0,2Y0,1—- ¥Y10Y00

21 | L21H2,1 | ¥Y3,0Y31 Y20¥Y21 — -— — | ¥Y1,2Y11Y0,2 — Y10 [ Y0,2Y0,1Y0,0

22 PL3,1H31 | Y¥22Y23 Y3.0Y34 —Y¥21 —- | Y20 ----¥12 — — ¥1,2Y1,1¥1,0 | YOO0Y0,1 —-

23 [ L40H40 | ¥32Y33Y23 ,Y22Y23 —Y¥31Y21 ] Y10 — Y2,0— | s o oo ¥1,0¥1,1¥0,1 ¥0,0 ¥0,1 —

24 | L50H50 [ Y40Y4,1Y33 | ¥32Y33 — — ¥3,1 |1 ¥32Y2A1 Y3.0vy20 | - - R A Y1.0Y1t — | x0.0 — -

25 | L4,1 H4,1 | Y5,0Y51 Y40Y41 — — —- | ¥32Y¥31Y22 — Y30 | ¥Y22Y21Y20 [ - - - | x1,0 ---- x0,0 | x0,0 - —--—-

26 [ L51H5.1 | Y42Y473 ¥Y50Y51 — Y41 — | Y40 — Y32 — — ¥32¥3,1Y30 | Y20Y¥21 el il M. T L B et x0,0 ----

27 | L60H60 | ¥Y5,2Y53Y4,3 | Y42Y43 —Y51Y41 [ Y50 — Y4,0 — mmmm e - Y3.0¥3,1Y21 Y20v21 — | -—— — cmom e = | x1,0 -

28 | L70H70 [ Y6,0Y6,1¥53 | ¥Y52Y53 — -— Y51 | Y42Y41 Y50Y4,0 | --os emom cemee | oo oo Y3,1 Y30Y31 — [ x20 --- | e e e i

26 | Le.lH6l | Y7.0 Y71 Y6,0Y61 — -— -— 1 ¥Y52Y51Y42 — Y50 | Y42Y¥41Y40 | - e e - x3,0 — x2,0 | x20 — — | e

36 | L7,1 H7,1 | YB,2Y¥6,3 Y70Y71 —Y¥61 — | Y60 — ¥52 — — Y52 ¥5,1Y50 | Y4.0Y41 i Bl x3.0 | x30 —— -—- | x2,0 —-

31 [ L8OH80 | Y72Y73Y63 | ¥6.2Y63 —Y7,1Y6,1 [ Y70 —- Y6,0 --—- e e ¥Y50¥51Y41 Y40Y41 ——— } comm ceme | meee o e x30 ----

32 | e - Y80Y83Y73 1 ¥Y72Y73 — — Y71 [ ¥Y6.2Y61 Y7,0Y60 [ -~ oo oo i £ Y5,0¥5,1 ——— | x40 === | seems e emmen | e s

33 | L8, 1 HR1 | v Y8.0Y81 — - ——- | ¥Y72Y71Y62 — Y70 [ ¥6,2Y61Y6,0 | ----v-em | e s e x50 - x40 | x40 - - - -
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Table B.20 Dataflow for 2-parallel inverse 5/3 architecture

Ck | CP | CP1 &CP2 CPI output | CP2 output | RPI input RP2 input Output latches of
I input latches latches latches latches latches RPI RP2
Rt0 Rtl Rtl0 Rill | RthO0 Rthl Ri0  Rtl Rt0  Ril R0 Rtl Rt Ritl
1 |1 [ LL0O LHOO
2 2 HL0,0 HHO,0
3 1 LLO,1 EHO,1
4 2 HLO,1 HHO,1
3 | LL1,0 LHI0
] 2 HL!,0 HHIL,C
7 1 LE1,1 LHI.]
T8 2 HL!,1 HHI,1
% 9 1 LL2,0 LH2,0 | L0O,0 LI10
“ 10 [ 2 | HL2.0 HIZO HOO0 HI0
11 1 LL2} LH2}1 10,1 L1 LOO HOO | L1, HI0
12 |2 HL2,1 HH2,] HC,1 HIL
13 1 LL3D LH30 | 120 L30 LO1 HO1 | L1,1 Hi 1
14 |2 11L.3,0 HH3 0 H2,0 H30
15 |1 LL3,1 LH3,1 | L2,1 L3I L2,0 H2,0 | L3.0 H30
16 | 2 HL3,1 HH3,1 H2,1 H3,1
17 1 LLO,2 LHC2 | L40 L50 L2,1 H2,1 | L3,1 H3]I
18 |2 HLO,2 HHO 2 H4,0 H50
. 19 1 LLL1,2 LHI_2 L4,1 L51 L4,0 H40 [ L50 HS0 | X0,0 ---me X1,0 --meee
z |20 ]2 HL1,2 HHL,2 H4,1 H5,1
E 21 1 LL2,2 LH22 | L60 L7,0 L4,1 H41 | LS1 H51 | X02 X0,1 X122 X1,1
22 |2 HL2.2 HH22 H6,0 H70
23 1 LL3,2 LH32 | Lel L7 L6,0 H6,0 | L7,0 H70 | X20 - X300 -
24 |2 HL3,2 HH3.2 H6,1 H7.
25 |1 Le2 L1,2 L6,1 He6,1 [ L7,1 H7,1 | X222 X2,| X32 X3,1
26 |2 HO,2 H1.2
27 |1 L2,2 L32 L02 HO2  LI,2 HI2 | X40 --m-- K50 —-emee
28 12 H22 H32
29 1 L4,2 L52 L2,2 H22 | 132 H32 | X42 X411 X52 X351
30 |2 H42 H5.2
3t (1 62 L7.2 [42 H4,2 | L52 H52 | X6,0 ---- X7.0 -
3212 H62 H72
3311 L6,2 H62 | L72 H72 | X622 X6,1 X72 X7.1
4|2
3511 X04 X0,3 X144 X13
36 |2
3711 X24 X23 X34 X33
38 |2
39 11 X44 X431 X54 X53
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Table B.21 Dataflow for 4-parallel inverse 5/3 architecture

CK [ CP | CPsinput CPs1&3 | CPs2&4 | RPs! &3 RPs2 & 4 input RPs1 &3 | RPs2&4
fi Latches Out latches | Outlatches | input latches latches (Ot latches | Out latches
Rt) Rt RtI0 Rtll | Rthd Rthl | RPR1O Rtl Rt2 [ RPRi0 Rol R2 | R Rul Ri) Ril
1 1 LLC,0 LHO.0
2 2 | HLOH HHO0
3 3 [ LLC,I LHO.1
4 4 | HLO,! HHO,
5 1 LL1,0 LHID
6 2 | HL1,0 HHLD
7 3 [ LLL1 LHII
8 4 | HLI] HHI1.1
- 19 i LL2,0 LH2,0
> 10 [2 [HL2,0 HH20
= |11 |3 | LL21 LH2,)
12 | 4 | HL2,1 HH2,1
13 |1 LL3,0 LH30 | LOO L1O
14 | 2 | HL3,0 HH3 O HO0 HIO
15 13 LL3,1 LH3.1 | Lol LI,
16 | 4 | HL3,1 HH3,1 HO,l HI L
17 |1 LL40 - L2.0 L30 1 .00 HO0 HO,1 | 2 L1,0 H1.,0 Hi.l
18 |2 | HL4Q --—-— H20 H30 | 3 L0 HO1 HOO | 4 L1,1 HI,1 Hi.0
19 |3 [N 12,1 L3,
20 |4 | HL4,l - H2,| H3,l
21 [ 1 L.0.2 LHO2 [ 14,0 L5,0 1 120 H20 - 2 L3.0 H3,0 -
22 |2 | HLO2 HHO2 H4,0 H5.0 | 3 12,1 H21 H20 | 4 13,1 H3.1 130
23 [ 3 [ LL12 LHI2 [ L4 1511
24 |4 [ HLi,2 HHI2 H4,1 H35.1
e 1025 |1 12,2 LH22 [ L60 L70 | L4.0 H4,0 H41 | 2 15,0 H5,0 HS5.1
> |26 |2 | HL22 HH22 H60 H7.0 | 3 L4, H4,1 H40 | 4 15,1 H3,1 HS0
5 27 |3 | LL32 LH32 | L6.1 L7.1
= 28 [ 4 [ HL32 HH32 H6,1 H7.1
29 |1 LL42 emeee L8.0 ---- UL60 HED - 2 L7,0 HI,G -
30 12 | HL42 - HE80 ---- 3061 H61 He0 | 4 L7.1 HZ1 H70
TR L8,] ----
BRI g — HE.| -
31 |1 LLO,3 LHO3 | L0Z L1.2 1 L0 HEO HE1 |2 0 — [ X000 — [ X10 -
34 |2 10,2 H12 | 3 181 HB1 H8O | 4 <ol e - | X02 X000 | X12 XIA
35 3 EL!13 LHL3 [ 122132
3% [ 4 H2,2 H12
37 |1 L1123 IH23 [ 142 152 1 L0,2 HO2 - 2 L12 H12 weem- X20 - | X30 -
“ [38 |2 H42 H3.2 | 3122 H22 4132 H32 - X222 X201 | X32 X3.1
Zz [39 {3 | LL33 LH33 [Le2 172
= [40 [4 H62 H7.2
4 |1 LL43 - 182 - 1 14,2 H42 - 2152 H52 - X4,0 - | X50 -
42 |2 H82 - 3 16,2 H62 - 4172 H12 X42 X4,1 | X52 X5.1
43 [ 3 | e el
44 [ 4 | oo e | D
45 [ 1 Lc3 L13 { 82 HE2 7 o | Xb0 — NX70 -
w12 T | Y L e e 4 - | X6,2 X6,1 | X72 X7.1
47 |3 L2,3 13,3
a8 |4 VT e
49 |1 143 L33 TR —— I I —— X80 - | woves eene-
so [2 | 7 e ER R —— FE I — X872 X8| [ -oee -
51 |3 163 L73
sa T4 [ T e
53 11 L83 - [T — P e — X044 X03 | XI4 X123
s4 (2 | T T e s 3 16,3 cceee e R — X24 X2.3 [ X34 X33
55 |3 [ [
s6 |4 | T e e
57 |1 1 18,3 wneeee —oomv p— - | X44 X43 | X54 X53
58 |2 S — O — - | X644 X6,3 | X7,4 X7.3
59 |3
60 | 4
6l |1 X84 X83 [ - -
P D D sy — ]
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APPENDIX C

FPGA COMPILATION AND SYNTHESIS RESULTS

C.I Compilation reports for forward 5/3 module “decorrelate_processor”

Flow Status
Quartus Il Version

Successful - Tue Apr 20 13:11:30 2010
9.0 Build 235 06/17/2009 SF 2 SJ Web Edition

Revision Name decorielate_processar
Top-level Entity Name decorrelats_processor
F amily Stratiz |l
Met timing requirements Yes
Logic utilization 6%
Combinational ALLITs 438/12480(4 %)
Dedicated logic registers 434 /12,4B0(3 %)
Total registers 434
Total pins S3/343(27 %)
Total vittual pins o
Total block memaory bits 4,150/ 419,.328(<1 %)
DSP block S-bit elemants 0/96(0%]
Total PLLs 0/6(0%)
Total DLLs 0/2{0%)
Device EP2515F4B84C3
Timing Madeals Final

Figure C.1.1 Compilation Report — Flow Summary for forward 5/3 module “decorrelate_processor”.

PowerPlay Power Analyzer Status
Quartus il Version

Revision Narme

Top-level Entily Name

Successiul - TueApr 201371130 20010

9.0 Build 235 D6/17/2008 5P 2 SJ Web Edition
decomnelats _processor

decorrelate_processor

F amily Stratix 1

Device " EPRS15F494C3
Power Models Final

Total Thermal Power Dissipation 50046 mw/
Core Dynamic Tharmal Powar Dissipation  B0.96 mw

Core Static Thermal Power Dissipation 304.80 mw/

/0 Thermal Power Dissipation 114.70 mw

Power E stimation Confidence Medium: user provided mi:&:leratel_v compiete toggle rate data

Figure C.1.2 Compilation Report — Power Analyzer summary for forward 5/3 module “decorrelate_processor”.

4 Quartus il - C:/tutorial;overlapp_architecture; decorrelate_processor - decorrefate_processor - [Compilation Repaost -
Dl Ed Vew Project Assignnents Processing Tools Window Hep

TR

& Compitation Report - Timing Analyzer Summary |

AN s7@BGITPwn 00| 2|80 2|0

Idetorre\ate_prncessor

q A
Tywe Slack | Toqured | Actud From ‘ To

1§ Worst-case tsu N/A  Nare 3195 ng Ed3 RE43

2| Wostcaseteo - [NA_ Nore  \6301ns L_dats_out8]"1eg L_data_otB]

(3| wostcaseth WA Nore  |183Tns g _ RO

4| Clack Setup: ‘clock’ NiA :None 185.74 MHz {;;ﬁ;&z . n_s_?é\lﬁgr_;cram:TLB_III_Q[ahg}[nctgmftpi, o ge_n_q_e_raledkam_b{qqlglaﬂ’fpoﬂh_arddrerss_rggj’&ﬁg[grj o

2 Total number of falled paths ‘

Figure C.1.3 Compilation Report — Timing Analyzer Summary for forward 5/3 module “decorrelate_processor”
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C.2 Compilation reports for inverse 5/3 module “reconst_procossor”

Flow Status

Quartus |l Version

Revision Name

Topdevel Entity Name

Family

Met timing requirements

Logic utilizatian
Combinational ALUT &
Dedicated logic registers

T otal registers

Total ping

Total virtual pins

Tatal block mermory bits

DSP block S-bit elements

Total PLLs

Total DLLs

Device

Timing Models

Successful - Tue Apr 2013:28:12 2010
9.0 Build 235 06/17/2009 SP 2 SJ ‘Web Edition
reconst_processor

reconst_processot

Stratix 1

Yes

6%

446 /12,480 4
457 712,480 (4
45¢
75/343(22 %)
0
8192/419328{2%)
/9 (0%)
0/6[{0%)
072{(0%)
EPZ2515F484C3

Final

%)
%)

Figures C.2.1 Compilation Report — Flow Summary for inverse 5/3 module “reconst_processor”

PoweiPlay Power Analyzer Status
Quartus Il Version

Aevision Name

Top-evel Entity Name

Family
Device

Power Models
Total Tharmal Powsr Dissipation

Eore Dynamic Thermal Power Dissipation

Core Static Thermal Power Dissipation
10 T hermal Power Dissipation
Power E stimation Confidence

Successful - Tus Apr 20 13:28:12 2010

9.0 Build 235 06/17/2009 SP 2 5J Web Edition
reconst_processor

reconhst_processor

Stratix Il

EP2515F484C3

Final

465.39 mw

85.26 mw

304.44 mivw/

75.70 mw

Medium: user provided moderately complete toggls rate data

Figure C.2.2 Compilation Report — Power Analyzer summary for inverse 3/3 module “reconst_processor”.

DeHd|gliee

e Hrecunst_processur

IR s@9¢ 0> 0n 00 % 9|0

@ Compdation Report - Timing Analyzes Summary |

4 Timing Analyzer Sumnary

Total rumber of falled paths

Type Slack |oaaed. | Act Fiom To f
1} Worst-case bsu N/ [Nore  12933ns data_in1{1] Rl
2} Worstcase tco N/ IMore  '60%ns L data ouf8lred o L date_ouf8] ck
3| Worst-case th M None  -1.802ns data_in0[13) Ry -
i _f:‘luckSetup: ‘clock’ N <N0_ne
§

18832 MHz [ period = 5.310ns ]Yalls_uncramtTLB2_rlLUIwaJl§gnv§!§m‘t;i1 'ayigﬁgrelat}ed@g@j\ocﬂ aﬂ’igorlb_ada[égs;_{gg’?dEﬁq2[§] cl

Fig. C.2.3 Compilation Report—Timing Analyzer Summary for inverse 5/2 module “reconst_processor”
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C.3 Compilation reports for first forward 9/7 module “decorrelation2_processor9 7"

Flow Status Successful - Tue Apr 20 13:47:13 2010
Quartus 1| Version 9.0 Build 235 08217/2009 SP 2 5J Web Edition
Revision Name decrstation2_processord_7

Top-levet Entity Name decirelation?_processord_7

Family Stratix 1

Met timing requiremerts Yes

Logic utilization 20%

Combinational ALUT $ 2036/12480(16%)
Dedicated logic registers 858 / 12.4BE_I {__7 %}

Total tegisters 858
T otal ping S5/343{28%)
T otal virtua! ping 0

Total block memory bits 12,288/413328(3%)
-DSP block 8-bit elements 0/396(0%}

Total PLLs 0/6(0%)
Total DLLs 0/2{0%)
Device EF2515F484C3
Timing Models Final

Fig. C.3.1Compilation Report — Flow Summary for first 9/7 module “decrrelation2 processor”

PowerPlay Power Analyzer Status Successful - Tue Apr 20 13:47:13 2010

Quartus Il Version 9.0 Build 235 06/17/2009 SP 2 SJ \Web Edition_
Revision Hame decrrelation2_processorg_7 '
Top-level Entity Name decrnelation2_processord_7

F amily Stratix Il

Device EP2S15F484C3

Power Models Final

Total Thermal Power Dissipation 673.37 mw

Core Dynamic Thermal Power Dissipaiion 264.78 mw
Core Static Thermal Power Dissipation 306.60 mw
10 Thermal Power Dissipation 101.98 mw
Power E stimation Confidence Medium: user provided moderately complete toggle rate data

Figure C.3.2 Compilation Report — Power Analyzer summary for first 9/7 module “decrrelation2_processor”.

@ File Edt View Project Assignments Processihg Tools Window Help

“ Dwdd |§| = | %3 £ ||decrrelation?_processord_7 :”u ALK ‘ 1] 1 (S 11'{1

£ decrelation2_processord_7.v | & Compilation Report - Timing Analpzer Summary I
Timing Analyzer Summary
o 2 I AN

1} Worst-case tsu N/A  |None 3.497 ns data_in2[2] 'RI2_1[2] - ‘clock |0
2| Worst-case tco N/4  |None 6.128Bns H_data_out[1]~req0!H_data_out{1]|clock .- 0
3| Worstcaseth N/ [None  |-2268ns date_in0t2] R0 |- .clck |0
4] Clock Setup: ‘clock’  {N/A [None  |147.95 MHz [ period = 6.753 ns )| Rt5_2{0] betacl15]  |clock clock |0
5| Total number of faiied ;Jallj_sE 1 0

Figure C.3.3 Compilation Report — Timing Analyzer Summary for first 9/7 module “decrrelation2_processor”
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C.4 Compilation reports for second forward 9/7 module “decorrelation_processord 7"

Flow Status Successful - Tue Apr 20 14:01:55 2010
Quartus Hl Version 9.0 Build 235 06/17/2009 SP 2 SJ 'Web Edition
Revision Name decorelation_processard_7

Top-level Entity Name decorelation_processar9_7

Family Stratix I

Met timing requirements Yas

Logic utiization 5%

Combinational ALUTs 2529/12480(20%)
Dedicated logic registers  1.049/12,480(8%)

Total registers 1043
Total pins 98/343[(29%)
Total vitual pins 0

Total block memory bits ~ 12.288/ 419,328 (3% )
DSP block 9bit elements  0/96(0%)

Total PLLs 0/6(0%)
Total DLLs 0/2{0%)
Device EP2S15F484C3
Timing Models Final

Figure C.4.1 Compilation Report — Flow Summary for second 9/7 modul2 “decorelation_processor”

PowerPlay Power Analyzer Status Successful - Tue Apr 20 14:01:55 2010
Quartus || Version 9.0 Build 235 06117 /2009 SP 2 S| Web Edition
Revision Name decorelation_processord_7

Top-level Entity NMame . decorelation_processorS_7

F amily Stratix H

Deavice EP2S15F484C3

Power Models Final

Total Thermal Power Dissipation 739.36 mw

Core Dynamic Thermal Power Dissipation  316.61 mw
Core Static Thermal Power Dissipation 307.29 mw/
1/0 Thermal Power Dissipation 115.45 mw
Power E stimation Confidence Medium: user provided moderately complete toggle rate data

Figure C.4.2 Compilation Report — Power Analyzer summary for second 9/7 module “decorelation_processor”.

@ File Edit View Project Assignments Processing Tooks Window Help

” DeHa lé l % B I I Cu Idecora|a1ian_prncessor9_7 j \ ¥ 2 @ @ @ E T t AL ‘.ff?}

{b} decorelation_piocessoi3_7.v | @ Compilation Report - Timing Analyzer Summary |

Timing Analyzer Summary

Type Slack [ Foied o0 From To Clock | ik, {Patee
1} Warst-case tsu N/ |None 3423 ns data_in2[11] Rt2 1[11] - clock !0 '
i Worst-case teo N/A  iNone 6.212ns H_data_out[7]|"regl|H_data_out{7]iclock 0
3| Worst-case th N/A  iNone 1.829 ns data_m1 [14]“%" F%ﬂtﬂ [14] - clock 10
| 4| Clock Setup: ‘clock’ N/A  iNore  1136.04 MHz [ period = 7.351 ns ) Rt5_2[0] 7 bét:anchué]w clock clock {0
5| Total number of faled paths B ! __ MW,,,,, 7 D

Fig. C.4.3 Compilation Report — Timing Analyzer Summary for second 9/7 module “decrrelation_processor”
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C.5 Compilation reports for 3/3 2-parallel module “two_parallel DWT7"

Flow Status Successful - Tue Apr 20 12:21:07 2010
Quartus |l Version 9.0 Build 235 06/17/2003 SP 2 SJ ‘Web Edition
Pevision Name two_parallel_DWT

Top-level Entity Name two_parafiel_DwT

Family Stratj ||

Device EP2S15F484C3

Timing Models Final

Met timing requirements Yes

Logic wtilization 10%

Combinational ALUT s 872/12480(7 %)
Dedicated logic registers 697 /12,480 (6 %)

Total registers 697
Total pins 122/ 343136 %)
Total virtual pins 0

Total block memory bits 83007419328 (2 %)
DSP Block 9-bit elements 0/9(0%)

Total PLLs 0/6(0%)

Total DLLs 0/2(0%)

Figure C.5.1 Compilation Report — Flow Summary for 5/3 2-parallel module “twe parallel DWT

PowerPlay Power Analyzer Status Succassful - Tue Apr 20 12:21:07 2010
Quartus || Yersion 9.0 Build 235 06/17/2009 SP 2 5J Web Edition
Revision Name two_parallel_DwWT

Top-level Entity Name two_paraliel_D'WT

F amiiy Stratix 1|

Device EP25S15F484C3

Power Models Final

Total Thermal Power Dissipation 5B80.98 mw

Core Dynamic Themmal Power Dissipation 130,02 mw

Core Static Thermal Power Dissipation J05.64 mw

170 Thermal Power Dissipation 14533 mwW

Power Estimation Confidence Medium: user provided moderately complete toggle rate data

Figure C.5.2 Compilation Report — Power Analyzer summary for 5/3 2-parallel module “two_pararllet DWT".

@ Fie Ed View Project Asskments Processng Tods Window Help

Dt‘.‘“l-lﬂ‘éﬁi-‘ '~“|;l0_paral|ELDWT ﬂnf@@@ oo e D 5\@ ®;Hi-ﬂi
€ two_paralel DWT v | 1 wo_paralel DWT vl | & Compilation Report - Timing Analyzer
o ok 1250 [ - 2
1| Wworstcase sy MHit  Mone 3340ns N data_in2[2] I Rt2_12_12]
i Worst-case tca Wik None £493ns HH_out(3]regli _HH_OU'Hi
3| woerst-case th NAA - None 2048 ns scel _Fscel c1_1
4| Clock Setup “ciock N/ None 186.01 MHz | perad = 5 378 ns | altsyrcram TLBZ 41 Valtspnct am_thl ama_generatedlram_biock‘aD”pmlt,address_leg?'HdEES‘]
E Total numbe of taled paths

Fig. €.5.3 Compilation Report - Timing Analyzer Summary for 5/3 2-parallel module “decrrelation_processor”
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