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ABSTRACT 

For certain types of chemical reactors where the catalyst decays rapidly but 

reversibly, continuous operation is possible by use of a Radial Flow Moving Bed 

Reactor (RFMBR). A Continuous Catalyst Regeneration (CCR) reformer unit is one of 

the industrial units using the RFMBR. RFMBR can be simply described as a reactor 

where the catalyst flows downward by gravity and the feed gas flow radially across the 

reactor and leaves through a center pipe. 

In this type of reactor there is an upper limit on the gas flowrate imposed by a 

mechanical phenomenon called "pinning". "Pinning" is when the catalyst particles are 

pinned against the center pipe due to high gas velocity. Understanding the pinning and 

the fuctors influencing it is required for the CCR reformer process engineers before 

doing any plant optimization. By conducting the experiment we can study the effect the 

flowrate of gas to the maximum pinned film thickness. 



INTRODUCTION 

1.1 BACKGROUND 

CHAPTER I 
INTRODUCTION 

For certain types of chemical reactor whose catalyst decays rapidly but reversibly, 

continuous operation with a lower pressure drop is possible by use of a moving-bed 

radial flow reactor. In this type of reactor there is an upper limit on the gas flowrate 

imposed by the mechanical phenomenon of'pinning', or the formation of a cavity. 

A theoretical model is developed using the theories of particulate media mechanics 

to predict the dimensionless pressure drop for the initiation of the cavity. The 

theoretical results agree very well with experimental data. The shape of the interface 

between the cavity and the particle bed has also been measured. 

The pinning phenomenon was investigated respectively of two-dimensional 

rectangular moving beds, their cross-flow sections of the gas flow. In this case show 

that the bed pressure drop produced by the gas flow increases with the increase of 

gas velocity, and when the pressure drop is increased to a value high enough-the 

critical pressure drop causing pinning, some particles close to the downstream fuce 

of the gas flow would stick together on the face and stop moving downwards, then 

the pinning occurs. Due to this phenomenon, pinning can be avoid when operate the 

reactor in optimum velocity which means the maximum velocity of the gas without 

pinning occur in the reactor. So, the spoil catalyst can move down and replaced by 

another new catalyst without any pressure push the catalyst that make pinning occur. 



1.1.1 MOVING BED REACTOR 

21! 

A radial flow moving bed reactor (RFMBR) is one in which the solid, 

usually the catalyst, flows downwards under the influence of gravity, and the gas 

reactants flow radially through the solid bed, reacts before being collected as the 

product. RFMBRs are used in many applications, the most common of which are 

the Continuous Catalyst Regeneration (CCR) reforming units. 

The reforming process combines catalyst, hardware, and process techno logy 

to produce optimal results. Currently, several processes are being used in the 

refming industry. These processes are generally classified into three types: 

semi-regenerative, cyclic or moving bed. All three types mainly differ in the 

configuration of the reactor system. 

These classifications are based on the methods and the frequency of the 

reforming catalyst regeneration. The reforming catalyst, similar to any catalytic 

process, becomes less active with time due to coke accumulation on the catalyst 

surfuce. 

A moving bed unit, as the name implies, permits the catalyst to be moved 

continuously through the reactors system, to be regenerated and sent back to the 

reactors system as fresh catalyst. There are two types of moving bed units. One 

is licensed by UOP and the other is licensed by lnstitut Francais du Petrole (IFP) 

(Little, 1985) 

The coked catalyst is withdrawn from the last reactor and sent to the 

regeneration section by a lifting gas. The regenerated catalyst is then sent back to 

the first reactor also by a lifting gas. The UOP CCR unit uses three or four 

reactors. 

In the IFP CCR design, the reactors are placed separately as in a semi­

regenerative unit (Little, 1985). The catalyst moves slowly by gravity through 



each reactor. It is transferred by a lifting gas from the bottom of one reactor to 

the top of the next reactor. The coked catalyst is withdrawn from the last reactor 

and sent to a regeneration section. The regenerated catalyst is then sent back to 

the first reactor. The IFP CCR unit also uses three or four reactors. 

This continuous catalyst circulation prevents excessive coke buildup on 

the catalyst and maintains the catalyst at high activity. Catalyst circulation rates 

have been designed from as low as 200 lb/h to as high as 6000 lb/h, depending 

on the capacity and operating conditions of the reforming unit (Meyers, 1997) 161• 

A CCR unit can be operated at a very low pressure compared to the semi­

regenerative and cyclic units, since the coke buildup on the catalyst is controlled 

by the continuous catalyst circulation. Operating at low pressure increases 

reformate and hydrogen yields. The operating pressure of this unit can be as low 

as 50 psig. The reformate octane number is in the 95-108 range. 

In addition to the high reformate yield and high octane number a CCR 

unit has the advantages of eliminating the downtime for catalyst regeneration 

and maintaining a steady operation. Due to these advantages, CCR reactors 

design is applied to most of the new reforming process. Also some of the fixed 

bed reforming units were revamped to CCR units. 

A CCR unit involves complex design, operation control and multiphase 

flow of gas and solid catalyst. This research will focus on the multiphase flow 

inside the moving bed reactor. The study will be linked with the reforming 

reactor design, catalyst circulation system, and CCR unit process variables that 

are discussed in the next section 

1.1.2 REACTOR DESIGN 

31 i 

Any catalytic reactor must be designed to provide good flow distribution 

through the catalyst bed. Non-uniform flow inside the reactor may play a role 

more important than that of the kinetic or diffusion fuctors and impact the 



conversion, the temperature distribution in the reactor, the product yields and the 

normal operation of the reactor (Song et al., 1993). Reactors used in reforming 

units are classified as either axial flow or radial flow. Figure I illustrates these 

types of reactors. In an axial flow reactor, feed enters at the top and flows 

downward through the catalyst bed. The product exits at the bottom. In a radial 

flow reactor, the feed enters at the top and product exits at the bottom, however 

the feed flows across an annular catalyst bed to a center pipe. The radial flow 

reactors provide larger mean cross-sectional area and reduce distance of travel 

for flow compared to axial flow reactors. The main advantages of radial flow in 

comparison to axial flow reactors are the low pressure drop and the high flow 

capacity 

PRODUCT PRODUCT 

Figure 1: Illustrate these Types of Reactor 



1.2 PROBLEM STATEMENT 

Pinning in radial flow moving bed reactor 

Many vapor phase catalytic processes are designed with radial flow reactors. 

The main advantage of a radial flow reactor is that it has a lower bed pressure drop 

in comparison with an axial flow reactor. That means the bed pressure drop 

increase as the velocity of gas increase. Although the radial flow gives the low 

pressure drop, it can create the problem of 'pinning' which can hinder the flows of 

solid in the downward direction. Pinning occurs when the pressure drop increases 

to a critical value where some particles close to the downstream face of the gas 

flow would be pressed to the downstream filce and stop moving downward. 

Besides, the catalyst in the pinned zone will forms a dead zone and the reactor will 

get deactivated soon. This phenomena can reduces the efficiency of reactor and 

conversion 

1.3 OBJECTIVE 

The objectives ofthis project which is pinning in radial flow moving bed 

reactor are: 

• To study the relationship between gas flow velocity and thickness of 

the pinned zone as a function of the particle properties in a 2-D radial 

(gas phase) flow moving bed. 

• To study the relationship between height differences with the 

maximum pinned film thickness. 

• To study the relationship between the pressure differences with the 

maximum distance pinned. 



1.4 SCOPE OF STUDY 

. Sizes of the particle 

1 
Relationship between 

sizes of particle with 

velocity 

Research of the pinning in FMBR 

l 
Process of the FMBR 

l 
Conduct the experiment 

Gas velocity 

1 
Optimum velocity The effect of the 

pinning in FMBR 

The scope of study will he revolving around pinning in radial flow moving bed 

reactor (FMBR). First, find the infOrmation by doing some research about the pinning in 

FMBR. The study will then proceed by understanding the process in flow moving bed 

reactor. After understand about the pinning in radial flow moving bed reactor (FMBR) 

and how the reactor is operated. The study will then proceed by conducting the 

experiment about the pinning. The experiment is conducted by two parts which are 

based on between the sizes of the particle and also regarding gas velocity. 

61' 



CHAPTER2 

LITERATURE REVIEW 

2.1 LITERATURE REVIEW 

2.1.1 RADIAL FLOW REACTOR 

There are two types of radial flow reactors depending on whether the catalyst 

bed is fixed or moving inside tbe reactor. Tbey are the radial flow fiXed bed reactor 

(RFBR) and the radial flow moving bed reactor (RFMBR). Both types can be found 

in the catalytic reformer processes. An RFMBR is a reactor in which the solids 

moves at a low velocity that around I mrnls under the influence of gravity. Due to 

this low velocity, the moving bed void fraction is considered to be constant and 

therefore, the hydrodynamics of an RFBR and an RFMBR are similar. Due to this 

similarity, this work is applicable to both types. 

Radial flow reactors can be classified into a z-flow type or all- flow type 

depending on the axial directions of the flow in the annular channel and the center 

pipe. Jfthe axial flow directions in the annular and in the center pipe are the same, it 

is classified as the z-flow type, and if they opposite it is classified as the ll- flow 

type. Moreover, radial flow reactors can be also classified into centripetal (CP) or 

centrifugal (CF) flow types depending on the reactor radial flow direction. In the 

CP-flow type, the gas is fed to the annular channel and travels radially inward from 

the annular channel to the center pipe. In the CF- flow configuration, the gas is fed 

to the center pipe and travels radially outward from the center pipe to the annular 

channel. Therefore, four flow configurations are possible fur a radial flow reactor. 

They are classified as CP-z, CP-ll CF-z and CF-ll configuration as shown in figure 

2. All four configurations can be applied to an RFBR and RFMBR. 



CPz-ftoN CFz-fkw 

CP~ CF~ 

Figure 2: Four possible flow configurations for a radial flow reactor 

A RADIAL FLOW MOVING BED REACTOR (RFMBR) 

In a process where the catalyst is deactivated rapidly due to coke furmation, a RFMBR 

can be used to allow regenerating the catalyst and returning it back to the reactor 

without shutting down the process as in a fixed bed reactor process. A RFMBR can be 

used fur catalytic cracking, adsorption, and granular filtration processes (Marb and 

Vortmeyer, 1988; Tsubaki and Tien, 1987). The well-known processes using RFMBR 

are the IFP and the UOP CCR refunner. 

In a RFMBR CCR reformer, catalyst moves down vertically through the reactor 

by gravity, while the reacting gas flows horizontally across the bed toward the center 

pipe. The catalyst flow rate in a moving bed reactor is very low compared to a fluidized 

81' age 



reactor. The catalyst flow in a fluidized catalytic cracking FCC unit is measured in tons 

per hour, while in CCR reforming it is measured in a few hundred or a few thousand 

pounds per hour (Little, 1985). A moving bed reactor can be a downflow radial reactor 

with a wire screen or scallops or an upflow radial reactor with a wire screen or scallops. 

Figure 3 illustrates a RFMBR. Despite its major advantage in maintaining a continuous 

operation, RFMBR suffers from a major detect which is known as the pinning 

phenomenon. 

Recycled catalyst 

Catalyst 
bed ---

Reactor 

91 Pagc 

Withdrawn catalyst to tbe 
catalyst circulation system 

Figure 3: A down flow moving bed radial reactor. 



In a radial flow moving bed reactor (RFMBR), the catalysts move down by gravity. The 

gas stream flow perpendicular to the catalyst movement. It exerts a drag force on the 

catalyst particles. This drag force is a function of the gas radial velocity. The gas radial 

velocity can be increased by increasing the gas flow rate or by a flow maldistribution in 

the reactor. Under normal condition, catalyst particles move down with normal friction 

at the upstream and downstream perforated wall. The gas enters and leaves the bed 

through the upstream and downstream perforated walls, respectively. If the drag force 

on the catalyst particles increases, the normal stress between the particles and the 

upstream waH will be decreased. When the normal stress is reduced to zero, the bed 

particles start to lose contact with the upstream wall. Under this condition, a thin cavity 

will open between the catalyst bed and the upstream wall. Under very high drag 

condition, the size of cavity adjacent to the upstream fi1ce might be increased until it 

ultimately spans the full width of the catalyst bed. At this point, the bed may not move 

down at all and bed is said to be completely pinned. 

1-t nifunn 
Distributio n 

t a ) 

n i .... trihuti~nl 

<d) 

:!-l'oor upper 
bed utilizat ion 

( b) 

', '"'i'l' 
~~--~ 
2 - l•c.M..,r u ...,..,...:r 
hcd u tili,ut iun 

Cc > 

3-l 'c>or lo " c r 
bed ut iliz.ation 

Cc) 

3 - l'oor l~""cr 
b<....U u ti l i ,.nt iun 

( t) 

Figure 4: Typical flow distributions over the bed length in radial flow reactor at the 
samefeedflow rate for CP configuration (a-c) andfor CF (d-j). The arrow length is 

represent the mass flow magnitude 
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PINNING IN RADIAL FLOW MOVNING BED REACTOR 

Gravity is the driving force for the solid particles movement through the 

RFMBR. Pressure is the driving force for the gas flow from the distributor header to the 

center pipe. When the pressure gradient along the gas flow direction is sufficiently large, 

it will cause a holdup of solid particles against the center pipe. At this stage the drag 

force exerted by the gas stream is greater than the gravitational force on the solid and 

hence the action of gravity is not enough to cause the solid particle to move down. A 

portion of or the whole solid bed can be pinned depending on the rtlagl\itude of the 

pressure drop across the reactor (Pilcher and Bridgwater, 1990). Figure 5 illustrates 

some forms of the catalyst bed inside a RFMBR. 

1 
CD 

2 CD 3 CD 

CD ·:·:·:·:·:·:·: L: CD ~~······· 
L: 

CD tt:• fj ... '- I I I I - '-
. . '-a. EO a. 

·:..z~:····· E.S a. 
trO EO ·a. ·!!8;!·!·:·: o'S ·a 

~~ 
·a ~ .. :;-: o'S 

'- ·:·:·:·:·:·:·: ~~ '- ;;.~.···· '- :~~ ~; ~.c 
.!! CD ~:~:~·:·:·:· ~.b 

CD 
~= !•'•'•'•'•'•'• c ... ......... 

c: ~(#) 
:::.:.:•:•!•!• o.!! c: o..!! CD .·.~:·.····· 0.- CD CD :· :~ 

0 •!!~:·:·:·:·: 1;::"0 (.) 1
t I I 111 I I 1;::"0 

0 .· ~"0 

mas w- rn-·······:·,····· •:Y,•,•,•,•, as~ j ~:ot., .. 
~ .~ •'t'•'•'•'•'•' ~.~ '•'•'•'•'•'•'• (!) .~ 

.. ~~.,;.~ 

~Moving catalyst 

I Pinned catalyst 

Figure 5: (1) Total moving bed, (2) Partially pinned bed, (3) Totally pinned bed 

The main cause of pinning is the high gas flow rate to the reactor. If pinning 

occurs, it will cause maldistribution inside the reactor which will lead to low reactor 

performance. In any CCR process, pinning is a major concern, because the pinned 

catalyst can become highly coked and may then flow to the regeneration system. The 

highly coked catalyst may contain coke higher than the design limitation for the 
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regeneration system. If the highly coked catalyst bums in the regeneration system it will 

cause equipment damage. Due to that pinning is the first limitation to be evaluated 

before increasing the feed rate above the design value for the CCR process. 

Ginestra and Jackson (1985) conducted an experimental study for the same 

rectangular geometry to validate the theoretical analysis. The cavity growth process was 

qualitatively similar to that predicted theoretically. Figure 6 shows the theoretical and 

the experimental cavity growth process. In the experimental study cavity growth process 

was observed by photographing through a transparent wall of the bed. They observed 

good agreement between the theoretical and experimental cavity wall profiles at 

complete pinning. 

Theoretical ca,ity growth 
:t=0.67 ca,ity initiation at .lp:> 

- ---
:-c=0.8 ca\ity wall bet"·een ..lpo and ..lpt 
:t=0.8 ca,ity wall at ..lpt complete pinning 

let 

Experimental ca,ity growth 
(a) Ca,ity"·all between ..lpo and ..lpi 
(b) Ca\itywall at ..lp1 complete pinning 

Figure 6: Theoretical and experimental cavity wall profiles. 

Doyle eta/. (1986) generalized the cavity growth theory by Ginestra and Jackson 

( 1985) 131 to theoretically describe the pinning phenomena in a simple RFMBR 

configuration which is shown in Figure 3.4. The reactor is z-flow type. They applied the 

theoretical analysis to CP and CF z-tlow configurations. It was found that the CP flow 

type is preferable, since a large gas flow can be achieved before pinning. They 
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performed an experimental study for the same geometry and the resuhs were in good 

qualitatively agreement. Doyle et al. (1986) 121 concluded that the CP flow type can 

sustain more pressure drop before pinning than the CF flow type. 

Ahhough the geometries used by Ginestra and Jackson ( 1985) and Doyle et a/. 

(1986) are simple, they give a good idea of the pinning mechanics. Both works are 

based on the cavity growth which initiates first at the upstream porous and then 

propagates to the downstream porous fuce as the pressure drop increases. The cavity 

growth theory that was used by Ginestra and Jackson ( 1985) and Doyle et al. ( 1986) 121 

may be applicable for a bed with small thickness and uniform flow distribution. 

However for large bed and not completely uniform flow the situation will be different. 

The cavity may initiate within the bed particles depending on the location of the highest 

drag force exerted by the gas. Therefore it may better to solve the flow profile inside a 

RFMBR simuhaneously with a pinning model. 

Tsubaki and Tien ( 1987) performed analytical study for solid movement in cross 

flow moving bed filters similar to the configuration in Figure 3.2. The analysis was done 

by obtaining the stress distribution throughout the solid phase. It was found that the 

solid velocity profile depends on the gas pressure drop and the frictional stress between 

the partie les and between the particle and the surfuce of the filters. The results were 

found to agree reasonably well with available experimental data. 

Pilcher and Bridwater (1990) experimentally studied the pinning in a rectangular 

moving bed reactor similar to the configuration. They investigated the effects of the 

shape and the size of the solid particles and the distance separating the upstream and 

downstream porous fuces. They observed the same cavity growth process that was 

observed by Ginestra and Jackson (1985) and Doyle eta/. (1986). Pilcher and Bridwater 

( 1990) 1'1 experimental setup was more advanced than that of Ginestra and Jackson 

( 1985) and Doyle et al. (1986) 121• This allowed them to record the cavity initiation and 

the partial pinning, where the cavity encompasses a part of the bed width and not all of 

it. 

131 



It was concluded from this study that the pressure drop required for the cavity 

initiation is independent of the equipment size. This conclusion contradicts Ginestra et 

a/. (1985) and Doyle eta/. (1986) theoretical analysis. Also it was concluded that the 

cavity initiation, cavity wall profile and complete pinning depend on the shape and the 

size of the solid particles. 

Song et a/. (1993) performed experimental study for the effects of the gas flow 

rate on RFMBR. They found that at high gas flow rate, the drag force exerted on the 

particles enhances friction between the particles and the downstream wall which is 

sufficient to prevent bed motion. 

Kareeri Zughbi and AI- Ali studied effects of radial flow maldistribution and 

flow direction of gas flow due to non-uniformity on radial flow reactor performance. To 

have a uniform flow distribution, the gas mass flow should be equally divided to 

produce an even carbon concentration over the catalyst bed height. If the mass flow not 

equally divided, some parts of the bed will be under-utilized and non-uniform carbon 

concentration over the catalyst bed height. 
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3. METHODOLOGY 

3.1 PROJECT WORK 

CHAPTER3 

METHODOLOGY 

Title Selection 

Preliminary Research/ Literature Review 

Experimental Setup 

Experrrnental VVork 

Analysis of Result 

Discussion of Analysis 

Report VVriting 

Figure 7: Flow chart of the research methodology 

Title selection: 

An appropriate title is chosen for the final project 

Preliminary research: 

This would be reading related research journal papers to better understanding the 

theory and concept of the project which is pinning in radial flow moving bed reactor 

Experrrnental setup: 

The pinning in radial flow moving bed reactor will be performed the experiment 

with using apparatus which is vacuum, box and soil with difference sizes. This 

ISJ· · 



experiment will be conduct with different velocity of vacuum (velocity of gas). The 

vacuum hose will be tied up with cloth and start the vacuum with different velocity. 

Then, the particles that stick at the cloth will be weighted. 

EXPERIMENT: PINNING IN RADIAL FLOW MOVING BED REACTOR. 

Apparatus: L-valve, hose, particles, compressor air. 

Procedure: 

I) The experiment was conducted as shown below in figure 8. 

2) The particles were put in the hopper. 

3) A hose from the pipe was connected between compressor air and standpipe. 

4) Compressor was started. The air flow is then started and is increased in discrete 

steps until the initiation of the cavity is observed. 

5) Air flow is then increased further until a full cavity, pinning, is formed which 

results in stopping the solids above the perforated section from flowing. 

6) The resuh will be recorded in the I 0 minutes. Maximum pinned film thickness 

measured. 

7) The experiment was repeated with the different velocity of gas in standpipe 

8) Plot the resuh collected between the maximum pinned film thickness versus 

volume metric flowrate and also between maximum pinned film thickness versus 

pressure differences. 

161: 
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(a) (b) 

Figure 8: (a) Experiment setup and (b) actual experiment of pinning in radial flow. 

Experimental work: 

The experiment wiJJ be conducted to collect the result based on the 

amount of the soil with the variables velocity. The result wiJI record in the table 

). 

Discussion of analysis: 

The expected analysis from the experiment would be to find relationship 

between velocities of the gas with the amount soils collected. Besides that, it 

may know the effect of the velocity to the pinning. In this experiment that 

investigated the the relationship between gas flow velocity and thickness of the 

pinned zone. As shown below in figure 9 when X equal to L the flow moving in 

the reactor in good condition. When X equal to zero the flow moving in the 

reactor in bad condition. Besides, different between X and L is callaed pinned 

area. 
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L 

Figure 9: Pinned area in radial flow moving bed 

The expected result for this experiment is shown in the figure 10. We can 

see that when the velocity of gas increases the area of pinned will be increase. 

Besides, when size of the particles increase the area of pinned will be decrease. 

that mean velocity of gas is proportional with the area pinned and the size of the 

particles is not proportional with the area pinned. So, the phenomena of the 

pinning can be reducing by using low velocity of gas and large size of the 

particles. 

181 age 
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P!Nl\"ED 

SMALL SIZE 
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BIG SIZE 
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Figure 10: Expected result for pinning experiment 



CHAPTER4 

RESULT AND DISCUSSION 

Based on the experiment of pinning in radial flow moving beds reactor that 

conducted which result as: 

Table 1: Datafor Maximum Distance Pinned 

Ml(m) Maximum Distance Pinned (m) 

SET 1 SET2 SET3 Average 

0.145 0.011 0.012 0.01 0.033 

0.255 0.019 0.018 0.019 0.056 

0.315 0.023 0.022 0.024 0.069 

0.465 0.027 0.026 0.029 0.082 

Ml =0.145m MJ=0.255m Ah = 0315m M=0.465m 
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Table 2: Data of Maximum Pinned Thickness (L-X) 

Maximum Pinned thickness, L-X (m) Bed Length L 
Ah (m) orifice meter 

SET I SET2 SET3 Average 

0.145 O.oJI 0.012 0.01 0.011 

0.255 0.019 0.018 0.019 0.01867 

0.315 0.023 0.022 0.024 0.023 

0.465 0.027 0.026 0.029 0.02733 

Table 3: Data of Non-maximum Thickness and (L-X) IX 

Non-pinned thickness, X (m) (L-X)/X (m) 

SET 1 SET2 SET3 Average SET I SET2 SET3 

0.076 0.075 0.077 0.228 0.14473 0.16 0.1298701 

0.068 0.069 0.068 0.205 0.27941 0.26086956 0.2794117 

0.064 0.065 0.063 0.192 0.35937 0.33846153 0.3809523 

0.06 0.061 0.058 0.179 0.45 0.426229508 0.5 

Orifice Meter 

The orifice meter consists of a primary element and secondary element(s). The 

primary element includes a section of straight run pipe with a constrictive device, most 

commonly and orifice plate, which causes change in energy's. The energy changes in 

the form of a loss in static pressure and increased velocity through the orifice. The 

secondary element senses the change in pressure, or differential pressure. This 

differential pressure combined with correction factors for the primary device and 

physical characteristics of the fluid being measured allows computation of rate of flow. 

Proven flow filctors and established procedures convert the differential pressure into 

flow rate. These filctors and I or coefficients are based on measurable dimensions ofthe 

primary device, such as the pipe inside diameter and the orifice bore diameter, along 
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(m) 

0.087 

0.087 

0.087 

0.087 

Average 

0.43460 

0.81969 

1.07878 

1.37623 
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with the physical properties of the fluid being measured, such as specific gravity, 

density, and viscosity 

Upstream pr-essure tap ""p, Downstrearrl p.-essure sensor 

P2/ 
\P = P1 -Pz 

1 tOo 
Density " ! / 

Orifice Plate / 

Figure II: Orifice meter 

As long as the fluid speed is sufficiently subsonic, the incompressible 

Bernoulli's equation describes the flow reasonably well. Applying this equation to a 

streamline traveling down the axis ofthe horizontal tubes gives, 

1 1 
!J.p = p1- p2 = Z pVf- 2 pVf 

Where location I is upstream of the orifice and location 2 is slightly behind the 

orifice. It is recommended that location I be positioned one pipe diameter upstream of 

the orifice, and location 2 be positioned one -half pipe diameter downstream of the 

orifice. Since the pressure at I will be higher than the pressure at 2 which is for flow 

moving from I to 2), the pressure difference as defined will be a positive quantity. 

From continuity, the velocities can be replaced by cross-sectional areas of the 

flow and the volumetric flowrate Q, 

1 1 [ A 
2

] !J.p = - pQ2 2 1 - (2) 
2 A2 A1 

By continuity equation: 
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Q Q 
V1 = A

1 
and V2 = Az 

Solving for air flow rate, Q: 

For the pressure difference in pivot tube, 

P1- P2 = ll.P = pg!J.h 

So, 

hP =(I 000 kg/m3
) x (9.81 m/s2

) x (0.145m) 

= 1422.45 kg/ms2 

The results for pressure difference (hP) are shown as below: 

Table 4: Data of Pressure Difference 

hP (kg/ms2
) Diameter I (m) Diameter 2 (m) D2/DI (D2/DI)"4 

1422.45 0.026 0.006 0.230769231 0.002836035 

2501.55 0.026 0.006 0.230769231 0.002836035 

3090.15 0.026 0.006 0.230769231 0.002836035 

4561.65 0.026 0.006 0.230769231 0.002836035 
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Based on the value of pressure difference, we can fmd the volume metric flowrate, Q. 

So, when t.P =1422.45 kg/ms2 

1 
Q = (0.6) X 2.82743E- OS 

1
_ (0.00

283603
5)4 "2(1422.45)/1.275 

Q =0.00800212 m3/s 

The data for volume metric tlowrate, Q when t.P at 2501.5545 kg/ms2 

3090.1545 kg/ms2 4561.6545 kg/ms2 are shown in the table below: 

Table 5: Data of Volume Metric Flowrate, Q 

Volumemetric flowrate, Q 

Area 1(m2) Area 2(m') (2(t.P)/density air)"'.S (m3/s) 

0.000530929 2.82743£-05 47.23657606 
0.000800212 

0.000530929 2.82743£-05 62.64183905 
0.001061185 

0.000530929 2.82743£-05 69.62251157 
0.001179441 

0.000530929 2.82743£-05 84.5903624 
0.001433004 

Let say that a thickness of"X" while the rest (L-X) is pinned. By using the 

Ergun's equation, the stress acting on the particles downstream of plane X due to flow of 

gas from the perforated wall can be estimated as: 

_ _ (180(1- E)2 JlUo 1.80(1- E) pu~) 
P1 Px - X £3 d2 + £3 d 

p p 

This stress acts on the particles downstream to pin particles between the plane X 

and downstream perforated wall by developing frictional resistances to counter the 

movement due to the weight of particles per unit area. 
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The two equations can be combined to obtain 

So, 

L((180(1- E)2 J1~9 + 1.80(1- E)pdu~)t 
( L - X) £3 dP £3 P 

=~--------~~~~--~-
X L(pp- p9 )(1- E)g 

(L-X) _ (P1 - Pz)f 

X - L(pP- p9 )(1- E)g 

(L -X) Pinned thickness 
= 

X Non- pinned thicknes 

(Pl- Pz)fL 
(L-~=-L(~p-P---~~)~(1~--E~)g~+~(P-1 ---P-2 )-f 

Table 6: Data of Ergun Equation 

Standard Gravity, g ( m!s2) 

Density of Air,p (kglm3
) 

Density of Particle, p (kglm3
) 

Viscosity, J.l 

Porosity ,E (kg/m.s)' 

9.81 

1.275 

1100 

1.8 X 10-5 

0.5 

Based on the data above, we can calculate the maximum pinned thickness by 

using the Ergun equation. 

At volume metric flowrate, Q =0.000800212 m3/s 

(12562.74) (0.0055)(0.087) 
(L-X) = 0.087(1098.725)(1- 0.5)9.81 + (12562.74)0.0055 

(L-X)= 0.012134299 
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The data for maximum pinned thickness (L-X) when Qat 0.00106lm3/s, 

0.0011794m3/s, 0.0021433m3/s are shown in the table below: 

Table 7: Maximum Pinned Thickness with Difference Flowrate 

Volumemetric flowrate, 
Calculated Estimated Experiment 

Velocity (rnls) PI-P2 L-X Q (m3/s) 
_(Pinned) f 

0.000800212 2.857899368 4809.017 0.011719348 0.0138 
0.001061185 3. 789945995 8147.542 0.0181572 0.0138 
0.001179441 4.212289468 9946.995 0.021190612 0.0138 
0.001433004 5.117871858 14407.98 0.027671387 0.0138 

To conduct an experimental run the particle flow was ftrst adjusted so that the 

particles moved downward steadily. The cross flow of air was increase progressively 

until pinning occurred. The sequence of events in the aerated section was meanwhile 

obseved, both through the transparent side wall of the column and using the transparent 

graph tu measure the area of pinning ocurred. Since this face is the primary seat of 

pinning, the latter obeservation was valuable for determining when particles in contact 

with the fuce to come rest. 

The particles used are sago with diameter in the range 1.25-1.75mm. These are 

large enough to be held in the column by the perforated walls of the aerated section but 

small enough in relation to the column dimensions. The bulk density of the bed is about 

II 00 kg/ m3
, larger than that of a bed of reljlrmeing catalyst pellets in the range 900-

1000 kg!m3
, so relatively large air flows are needed for pinning. However, the cleaness 

and resisitance to attrition of the sago are conducive to achieving reproducible result in 

experimental runs. 

The radial drag on particles can push the particles to the downstream perforated 

wall and the friction between the bed and the downstream perfOrated wall can hold the 

particles unless the gravitational force is larger. The gas flow (air) in perpendicular 

direction will drags the particles to hold against the downstream perforated wall and the 

weight of particles will rise up the pressing drag due to gas flow and friction at the 

downstream wall. As the graph shown below when the volume metric flowrate increase 
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the pinned film thickness will be increase. That means the pinned thickness is 

proportional with the volume metric flowrate. 

0.03 

x 
..:. 0.025 -"' 

Pinned Thickness Versus Volumemetric 
Flowrate 

; 0.02 ----
c: 
~ 
~ 0.015 

1 0.01 
c: c: 
iL 0.005 

0 
0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 

Volume metric Flowrate, (m3/s) 

_._Calculated 

-Experiment 

Figure 12: Pinned Thickness versus Volumemetric Flowrate 

Based on the graph below, we can say that the maximum pinned thickness is 

proportional with the pressure difference. If the pressure difference increases, the 

maximum pinned will be increases. Radial flow in the packed bed, the particles 

experience drag force in the radial direction while they are trying to move downward by 

gravitational force. If the drag force on particles increases, the normal stress between the 

particles and the upstream wall will be decreased. The bed particles start to Jose contact 

with the normal stress is reduced to zero. The pinned could occur between the catalysts 

bed and the upstream wall. When the pressure increase the pinned thickness will be 

increase. 
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Pinned thickness versus Pressure Difference 
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Figure 13: Pinned Thickness versus Pressure Difference 
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Figure 14: Pinned Factor versus Pressure Difference 
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As the graph shown below, increasing the height difference will be effect the 
maximum pinned thickness. By using Bernoulli equation which is: 

Based on the equation when the height difference (~h) increase the pressure 
difference will be increase (~P). So, increasing the pressure difference will affected the 
maximum pinned thickness. 
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CHAPTERS 

CONCLUSION & RECOMMENDATIONS 

CONCLUSION 

In our industry the radial flow moving bed reactor is has many useful 

application. For example certain catalyst of chemical reactor, whose catalyst decays 

reversibly and rather quickly, continuous operation, is possible by use of a moving bed 

of catalyst which slide down through the reactor under the gravity, while the reaction 

mixture is passed horizontally through the bed. There is then an upper limit of the flow 

rate of reactants, imposed by the mechanical phenomena of 'Pinning', in which the drag 

force exerted on the particles by the flowing reaction mixture pressed the bed against the 

wall of the reactor so hard that friction at this wall prevents the bed from sliding 

downward. So, the phenomena of pinning can be reducing the efficiency of radial flow 

moving bed reactors. 

By using Ergun's equation we can calculate the maximum pinned film 

thickness. From this equation, it can be seen that pinning film thickness increase with 

volume metric flowrate, and the bed can get pinned for small particles, low particles 

densities and at high gas velocities. Hence, pinning can be reduced by using larger and 

high density particles and minimizing the wall friction at the downstream perforated 

wall. 
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RECOMMENDATIONS 

The topic of pinning in radial flow moving bed reactors received very little 

attention in academic circles though they are widely used in the industry. Present work 

explored in flow moving bed reactors and also other reactor such as radial flow fixed 

bed reactor, fluid bed, packed bed and others need to be evaluated. Very little is known 

about the flow distribution in radial flow reactor and pinning of bed of particles in 

reactor. These need to be explored in greater detail. 

For the further study I would recommend this project also can conduct by using 

the differences aspect or parameters which are: 

• Using difference sizes of particles 

• Using low and high particle densities 

• Using the difference length of beds 
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