
STATUS OF THESIS

Title of thesis
DESIGN AND DEVELOPMENT OF KEY REPRESENTATION
AUDITING SCHEME FOR SECURE ONLINE AND DYNAMIC

STATISTICAL DATABASES

I ASIM ABDALLAH ELSHIEKH MOHAMMED AHMED

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti
Teknologi PETRONAS (UTP) with the following conditions:

I. The thesis becomes the property of UTP

2. The IRC ofUTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

D Confidential

[{] Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for years.
~~~-

Remarks on disclosure: 

Signature of Author 

Permanent address: Khartoum North 
P. 0. Box 175 Khartoum- SUDAN 

Date : 6 f <1. / '2.-o \ o 

Endorsed by 
< I 

~ 
Signature of Supervisor 

Name of Supervisor 
Assoc. Prof. Dr. P. P. D. DOMINIC 

Date: 



UNIVERSITI TEKNOLOGI PETRONAS 

DESIGN AND DEVELOPMENT OF KEY REPRESENTATION AUDITING 

SCHEME FOR SECURE ONLINE AND DYNAMIC STATISTICAL DATABASES 

by 

ASIM ABDALLAH ELSHIEKH MOHAMMED AHMED 

The undersigned certify that they have read, and recommend to the Postgraduate 
Studies Programme for acceptance this thesis for the fulfilment of the requirements 
for the degree stated. 

L.. ( DR. P. D. D. DOMINIC 
· te Professor 

Signature: L ~er& InformatiOn Sciences CJel.)anrneJ:t 
. _ ib Tekilologi PFTRONAS 

Bo·>dor Ser; I'>Kondor 11110 Tronoh 

Main Supervisor: Assoc. Prof. Dr. P. P. D. DOMI~ft0'"' 1 Rmuan, "~~'vs" 

Signature: 

Co-Supervisor: 

Signature: 

Head of Department: 

Date: 

Dr Mohd Fadzil B Hassan 
He8d 
co~nptJt~r & ir!fvrm;;tion Sdc:lr.::es DE;Jartm·"··-t 
Universlti Tek.rro!;y•i PETHOtJAS 

Dr. MOHO FADZIL BIN HASSAN 



DESIGN AND DEVELOPMENT OF KEY REPRESENTATION AUDITING 

SCHEME FOR SECURE ONLINE AND DYNAMIC STATISTICAL DATABASES 

by 

ASIM ABDALLAH ELSHIEKH MOHAMMED AHMED 

A Thesis 

Submitted to the Postgraduate Studies Programme 

as a Requirement for the Degree of 

DOCTOR OF PHILOSOPHY 

COMPUTER AND INFORMATION SCIENCES 

UNIVERSITI TEKNOLOGI PETRONAS 

BANDAR SERI ISKANDAR, 

PERAK 

SEPTEMBER 2010 



Title of thesis 

DECLARATION OF THESIS 

DESIGN AND DEVELOPMENT OF KEY REPRESENTATION 
AUDITING SCHEME FOR SECURE ONLINE AND DYNAMIC 

STATISTICAL DATABASES 

ASIM ABDALLAH ELSHIEKH MOHAMMED AHMED 

hereby declare that the thesis is based on my original work except for quotations and citations 

which have been duly acknowledged. I also declare that it has not been previously or 

concurrently submitted for any other degree at UTP or other institutions. 

Signature of Author 

Permanent address: ------

Date : b / C... f 'Lv I 0 

lV 

Witnessed by 

~ 
Signature of Supervisor 

Name of Supervisor 
Assoc. Prof. Dr. P.P.D.DOMINIC 

Date: b /C....i'L<::>\0 

OR. P. 0. 0. DOMINIC 
AsSOCialo p:liOO Scio!1COS ()epartmer.· 
compule< l I ON'S 
Univ""tti Teknllollii'ET~ ~ 
Baodor Sari Iskandar, 311,~.~~~ 
Perak oarul Ridzuan, w_..,, 



ACKNOWLEDGEMENTS 

First and foremost, I would like to thank Allah the Almighty for the innumerable gifts 

that He has granted me, for guiding me along in completing this work and for giving 

me an opportunity to undergo higher education. 

I would like to express my total appreciation to the people for their support and 

for guiding me along in completing this thesis. Very special thanks to my supervisor 

Dr. Dhanapal Durai Dominic for his invaluable time and guidance on this research 

throughout the three years. 

I would like to express my gratitude to Associate Prof. Dr. Hamidah Ibrahim, 

Department of Computer Science, Faculty of Computer Science and Information 

Technology, Universiti Putra Malaysia (UPM), who was abundantly helpful and 

offered invaluable assistance, support and guidance. Deepest gratitude is also due to 

Prof. Alan Oxley, Dr. Azween Bin Abdullah, Dr. Rohiza Binti Ahmad and Mr. Low 

Tang Jung for their invaluable comments and guidance. 

I would like to express my utmost appreciation to my dearest wife, father, 

daughter, brothers and sisters for their encouragement throughout my whole 

educational life. I could have not completed my degree without their continuous and 

immeasurable support. 

Finally, huge thanks also go to my friends for their consistent support, help and 

encouragement. 

v 



ABSTRACT 

A statistical database (SDB) publishes statistical queries (such as sum, average, count, 

etc.) on subsets of records. Sometimes by stitching the answers of some statistics, a 

malicious user (snooper) may be able to deduce confidential information about some 

individuals. When a user submits a query to statistical database, the difficult problem 

is how to decide whether the query is answerable or not; to make a decision, past 

queries must be taken into account, which is called SDB auditing. One of the major 

drawbacks of the auditing, however, is its excessive CPU time and storage 

requirements to find and retrieve the relevant records from the SDB. 

The key representation auditing scheme (KRAS) is proposed to guarantee the 

security of online and dynamic SDBs. The core idea is to convert the original 

database into a key representation database (KRDB), also this scheme involves 

converting each new user query from a string representation into a key representation 

query (KRQ) and storing it in the Audit Query table (AQ table). Three audit stages are 

proposed to repel the attacks of the snooper to the confidentiality of the individuals. 

Also, efficient algorithms for these stages are presented, namely the First Stage 

Algorithm (FSA), the Second Stage Algorithm (SSA) and the Third Stage Algorithm 

(TSA). These algorithms enable the key representation auditor (KRA) to conveniently 

specify the illegal queries which could lead to disclosing the SDB. 

A comparative study is made between the new scheme and the existing methods, 

namely a cost estimation and a statistical analysis are performed, and it illustrates the 

savings in block accesses (CPU time) and storage space that are attainable when a 

KRDB is used. Finally, an implementation of the new scheme is performed and all the 

components of the proposed system are discussed. 

VI 



ABSTRAK 

Pangkalan data statistik (SOB) menghasilkan permintaan statistik (seperti jumlah, 

purata, kiraan dan sebagainya) terhadap sesebahagian rekod. Adakalanya dengan 

menggabungkan keputusan yang didapati daripada beberapa statistik, pengguna yang 

tidak sah (pengintip) mungkin boleh mencungkil maklumat sulit ten tang seseorang 

individu. Apabila pengguna menghantar permintaan kepada pangkalan data statistik, 

masalah utama ialah bagaimanakah cara untuk mengenal pasti bahawa permintaan 

tersebut boleh dijawab atau tidak; untuk membuat keputusan, sejarah permintaan 

perlu diambil kira. Salah satu daripada kelemahan audit, ialah berlebihan masa 

diperlukan untuk unit pemprosesan pusat dan storan yang diperlukan untuk 

menyimpan dan menjalankan proses akumulasi log. Wakil kunci skim audit (KRAS) 

telah dicadangkan untuk menjamin keselamatan pangkalan data statistik secara online 

dan dinamik. Cara utama ialah dengan menukarkan pangkalan data yang asal kepada 

wakil kunci pangkalan data (KRDB), skim ini juga menukarkan setiap permintaan 

pengguna baru di dalam bentuk ayat ke dalam bentuk permintaan wakil kunci (KRQ) 

dan menyimpannya ke dalam jadual Audit Permintaan (AQ Table). Tiga peringkat 

audit disarankan untuk mengatasi serangan daripada pengintip terhadap maklumat 

sulit individu. Tambahan pula, kecekapan algoritma untuk setiap peringkat telah 

dipersembahkan, yang dinamakan Algoritma Peringkat Pertama (FSA), Algoritma 

Peringkat Kedua (SSA) dan Algoritma Peringkat Ketiga (TSA). Algoritma-algoritma 

ini membenarkan auditor wakil kunci (KRA) dengan mudah mengenalpasti 

permintaan yang tidak sepatutnya yang dikhuatiri boleh membawa kepada 

pendedahan pangkalan data statistik. Perbandingan kajian telah dijalankan di antara 

skim baru dengan cara yang sedia ada sekarang, yang dipanggil anggaran kos dan 

analisis statistik telah dijalankan, dan kami telah berjaya menunjukkan penjimatan di 

dalam blok penggunaan (CPU time) dan ruang penyimpanan yang diperlukan sewaktu 

KRDB digunakan. Akhir sekali, pelaksanaan skim yang baru ini telah dijalankan dan 

semua komponen system baru ini dibincangkan. 

vii 



In compliance with the terms of the Copyright Act 1987 and the IP Policy of the 
university, the copyright of this thesis has been reassigned by the author to the legal 
entity of the university, 

Institute of Technology PETRONAS Sdn Bhd. 

Due acknowledgement shall always be made of the use of any material contained 
in, or derived from, this thesis. 

© Asim Abdallah Elshiekh, 2010 
Institute of Technology PETRONAS Sdn Bhd 
All rights reserved. 

viii 



TABLE OF CONTENTS 

STATUS OF THESIS ............................................................................................... . 
APPROVAL PAGE................................................................................................... n 
TITLE PAGE ............................................................................................................. 111 

DECLARATION OF THESIS .................................................................................. 1v 
ACKNOWLEDGEMENTS....................................................................................... v 
ABSTRACT ............................................................................................................... Vl 

ABSTRAK ................................................................................................................. vii 
COPYRIGHT PAGE ................................................................................................. viii 
TABLE OF CONTENTS ........................................................................................... ix 
LIST OF TABLES ..................................................................................................... xii 
LIST OF FIGURES ................................................................................................... xiii 
LIST OF ABBREVIATIONS .................................................................................... XV 

Chapter 

I. INTRODUCTION......................................................................................... I 
1.1 Introduction.......................................................................................... I 
1.2 Database Security................................................................................. I 

1.2.1 Threats to Databases................................................................ 2 
1.2.2 Control Measures..................................................................... 3 

1.2.2.1 Access Control ................. ............ ............................... 3 
1.2.2.2 Inference Control . ..... ..... .. ... .. ..... .................... ..... ........ 4 
1.2.2.3 Flow Control ... ..... ..... ..... .. ... .. ......................... ............. 4 
1.2.2.4 Data Encryption ... .......... .. . .. ....... ................................. 5 

1.3 Statistical Database Security................................................................ 5 
1.3.1 Methods of Attacks.................................................................. 6 

1.3 .1.1 Small and Large Query Set Attacks............................ 6 
1.3 .1.2 Tracker Attacks........................................................... 7 
1.3 .1.3 Insertion and Deletion Attacks.................................... 9 

1.3.2 Overview of Solution Approaches .......................................... 9 
1.3.3 Attribute Classification ............................................................ II 

1.4 Problem Statement............................................................................... II 
1.5 Objectives ............................................................................................. 12 
1.6 Methodology........................................................................................ 12 
I. 7 Scope of Research................................................................................ 13 
1.8 Research Contributions ........................................................................ 14 
I. 9 Limitations of Research ........ .......... ........ .. ............... ................ ...... ...... 15 
1.10 Structure of Thesis ........... ..... ..... ..... ..... ... .. ..... .................. .................... 15 

2. LITERATURE REVIEW .............................................................................. 16 

!X 



2.1 Introduction.......................................................................................... 16 
2.2 Online Auditing.................................................................................... 16 
2.3 Offline Auditing................................................................................... 28 
2.4 Summary .............................................................................................. 33 

3. RESEARCH METHODOLOGY AND CONVERSION METHOD OF 
THE KEY REPRESENTATION AUDITING SCHEME ........................... 35 
3.1 Introduction .......................................................................................... 35 
3.2 Research Methodology ......................................................................... 35 

3.2.1 Developing a New Scheme ...................................................... 37 
3 .2.1.1 Audit Stages ............ .................................................... 3 7 

3.2.2 Comparative Study between the New Scheme and the 
Existing Methods . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . 3 8 
3.2.2.1 Cost Estimation ........................................................... 38 
3.2.2.2 Statistical Analysis ...................................................... 39 

3.2.3 Implementation of the New Scheme ....................................... 39 
3.3 Conversion Method of the Key Representation Auditing Scheme ...... 39 

3.3.1 Statistical Database Model ...................................................... 40 
3.3.2 Key Representation Database (KRDB) ................................... 40 
3.3.3 Key Representation Query (KRQ) .......................................... 42 

3.3.4 
3.3.5 

3.3.3.1 The Relational Operators in KRQ ............................... 46 
3.3.3.2 The Logical Operators in KRQ ................................... 46 
3.3.3.3 Examples ofKRQs ...................................................... 47 
Audit Query Table (AQ table) ................................................. 4 7 
Examples of SDB and its CoJTesponding KRDB .................... 48 
3.3.5.1 The First Example ....................................................... 48 
3.3.5.2 The Second Example ................................................... 51 
3.3.5.3 The Third Example ...................................................... 54 

3.4 Summary .............................................................................................. 57 

4. AUDIT STAGES OF THE KEY REPRESENTATION AUDITING 
SCHEME ....................................................................................................... 59 
4.1 Introduction.......................................................................................... 59 
4.2 Audit Stages......................................................................................... 59 

4.2.1 The First Audit Stage ............................................................... 60 
4.2.2 The Second Audit Stage.......................................................... 67 

4.2.2.1 The Second Audit Stage: Case I .............. ................... 67 
4.2.2.2 The Second Audit Stage: Case 2 ................................. 70 

4.2.3 The Third Audit Stage ............................................................. 75 
4.2.3.1 The Third Audit Stage: Case! .................................... 75 
4.2.3 .2 The Third Audit Stage: Case 2 .................................... 77 

4.3 Summary.............................................................................................. 83 

5. COST ESTIMATION FOR THE KEY REPRESENTATION AUDITING 
SCHEME ....................................................................................................... 84 
5.1 Introduction .......................................................................................... 84 
5.2 Cost Estimation.................................................................................... 84 
5.3 Parameters of the Cost Estimation ....................................................... 85 
5.4 Comparisons between the KRDB and the Original Database .............. 86 

X 



5.4.1 Case Study I- One Data Attribute .............................................. 86 
5.4.2 Case Study II- More than One Data Attribute ........................... 93 

5.5 Summary .............................................................................................. 99 

6. STATISTICAL ANALYSIS FOR THE KEY REPRESENTATION 
DATABASE AND THE ORIGINAL OAT ABASE ..................................... ! 00 
6.1 Introduction .......................................................................................... I 00 
6.2 Comparisons between the KRDB and the Original Database .............. I 00 

6.2.1 Record Size: the Original Database Vs the KRDB ..................... IOI 
6.2.1.1 Comparing the Means in terms of Record Size .......... I 03 
6.2.1.2 Comparing the Variances in terms of Record Size ..... ! 05 

6.2.2 Number of Blocks: the Original Database Vs the KRDB ........... 106 
6.2.2.1 Comparing the Means in terms of Number of Blocks I 08 
6.2.2.2 Comparing the Variances in terms of Number of 

Blocks ................................................................................................... II 0 
6.2.3 Linear Search: the Original Database Vs the KRDB .................. Ill 

6.2.3.1 Comparing the Means in terms of Linear Search ........ 113 
6.2.3 .2 Comparing the Variances in terms of Linear Search .. 115 

6.2.4 Binary Search: the Original Database Vs the KRDB .................. 116 
6.2.4.1 Comparing the Means in terms of Binary Search ....... 118 
6.2.4.2 Comparing the Variances in terms of Binary Search .. 119 

6.2.5 Sorting: the Original Database Vs the KRDB ............................ 120 
6.2.5.1 Comparing the Means in terms ofSorting .................. 122 
6.2.5.2 Comparing the Variances in terms of Sorting ............. l24 

6.3 Summary .............................................................................................. 125 

7. CONCLUSION AND FUTURE DIRECTIONS .......................................... 127 
7 .I Research Summary ............................................................................... 127 
7.2 Research Contributions ........................................................................ 129 
7.3 Future Directions .................................................................................. \30 
7.4 Research Conclusions .......................................................................... 130 

PUBLICATIONS .................................................................................................... 131 
REFERENCES ....................................................................................................... 133 
APPENDIX A ......................................................................................................... 140 
APPENDIXB ......................................................................................................... 145 
APPENDIX C ......................................................................................................... 15 5 

XI 



LIST OF TABLES 

Table 3.1: The Relational Operators in KRQ ............................................................ 46 

Table 3.2: The Logical Operators in KRQ ................................................................ 46 

Table 3.3: Example I- The Original Database D ...................................................... 49 

Table 3.4: Example I- The Key Representation Database (KRDB) D1 
.................... 50 

Table 3.5: Example I- Examples of User Queries Converted into KRQs ................ 51 

Table 3.6: Example II - The Original Database D.................................................... 52 

Table 3.7: Example II- The Key Representation Database (KRDB) D1 
.................. 53 

Table 3.8: Example II- Examples of User Queries Converted into KRQs .............. 54 

Table 3.9: Example III- The Original Database D ................................................... 56 

Table 3.10: Example III- The Key Representation Database (KRDB) D1 
................ 57 

Table 5.1: The Parameters of the Cost Estimation .................................................... 86 

Table 5.2: Case Study I - the KRDB V s the Original Database ............................... 89 

Table 5.3: Case Study II- the KRDB Vs the Original Database .............................. 95 

Table 6.1: Record Size: R V s R1 
............................................................................... ! 01 

Table 6.2: Number of Blocks: b Vs b1 
....................................................................... 1 06 

Table 6.3: Linear Search: Original DB Vs KRDB .................................................... lll 

Table 6.4: Binary Search: Original DB Vs KRDB ................................................... 116 

Table 6.5: Sorting: Original DB Vs KRDB .............................................................. 121 

Table 6.6: Statistical Analysis Results ....................................................................... 126 

XII 



LIST OF FIGURES 

Figure 1.1: Query-set-size Control........................................................................... 7 

Figure 1.2: Data Perturbation Approach ................................................................... I 0 

Figure 1.3: Output Perturbation Approach ............................................................... 10 

Figure 1.4: Query Restriction Approach ................................................................... II 

Figure 2 .I : Deletion that Causes a False Alarm .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . 18 

Figure 2.2: Deletion that Causes Disclosure of Secret Information ......................... 19 

Figure 2.3: A Related Set.......................................................................................... 20 

Figure 3 .I : Research Stages...................................................................................... 36 

Figure 3.2: The Original Database Conversion Algorithmp ..................................... 41 

Figure 3.3: The User Query Conversion Algorithm ................................................. 43 

Figure 3.4: Statistical Database Model for the Key Representation Auditing 

Scheme ................................................................................................... 45 

Figure 4.1 : The First Stage Algorithm (FSA)........................................................... 62 

Figure 4.2: Flow Chart for the First Stage Conditions (FSCs) ................................. 63 

Figure 4.3(a): The Second Stage Algorithm (SSA) ................................................... 73 

Figure 4.3(b): The Second Stage Algorithm (SSA) ................................................... 74 

Figure 4.4(a): The Third Stage Algorithm (TSA) ...................................................... 80 

Figure 4.4(b): The Third Stage Algorithm (TSA) ..................................................... 81 

Figure 4.5: Flow Chart for the Key Representation Auditing Scheme ...................... 82 

Figure 5.l(a): Case Study I- Linear Search: the Original Database Vs the KRDB .. 90 

Figure 5.l(b): Case Study I- Binary Search: the Original Database Vs the KRDB. 91 

Figure 5.l(c): Case Study I- Sorting: the Original Database Vs the KRDB ............. 92 

Figure 5.2(a): Case Study II- Linear Search: the Original Database Vs the KRDB. 96 

X111 



Figure 5.2(b): Case Study II- Binary Search: the Original Database Vs the KRDB 97 

Figure 5.2(c): Case Study II- Sorting: the Original Database Vs the KRDB ........... 98 

Figure B.l: The Main Screen .................................................................................... 146 

Figure B.2: Employee Data Screen ........................................................................... 147 

Figure B.3: Browse Employee Data Screen .............................................................. 148 

Figure B.4: Browse KRDB Data Screen ................................................................... 149 

Figure B.5: User Query Screen .................................................................................. l50 

Figure B.6: Permitted Query Result .......................................................................... 151 

Figure B.7: Prevented Query Message ...................................................................... 152 

Figure B.8: Browse Query Result Screen .................................................................. 153 

Figure B.9: Browse AQ Table Screen ....................................................................... 154 

XIV 



AQ table 

Bio 

BSc 

CE 

CPU 

cs 
DB 

DBMS 

Dept 

df 

EE 

EMP 

F 

FSA 

FSCs 

GP 

HIPAA 

KRA 

KRAS 

KRDB 

KRQ 

KS 

M 

ME 

MSc 

PE 

PhD 

LIST OF ABBREVIATIONS 

Audit Query table 

Biological 

Bachelor of Science 

Civil Engineering 

Central Processing Unit 

Computer Science 

Database 

Database Management System 

Department 

Degrees of Freedom 

Electrical Engineering 

Employee 

Female 

First Stage Algorithm 

First Stage Conditions 

Grade-Point 

Health Insurance Portability and Accountability Act. 

Key Representation Auditor 

Key Representation Auditing Scheme 

Key Representation Database 

Key Representation Query 

Knowledge Space 

Mail 

Mechanical Engineering 

Master of Science 

Petroleum Engineering 

Doctor of Philosophy 

XV 



Psy Psychology 

SAT Scholastic Aptitude Test 

SOB Statistical Database 

SQL Structured Query Language 

SSA Second Stage Algorithm 

SSN Social Security Number 

TSA Third Stage Algorithm 

TSC Third Stage Condition 

XVI 



CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In this chapter, an introduction to database security is given, its threats and its control 

measures as well. Also, an introduction to statistical database security, methods of 

attacks, overview of solution approaches and attribute classification. In addition, the 

problem statement, objectives, methodology, scope, contributions and limitations of 

this research are discussed. 

1.2 Database Security 

The increasing development of information technology in the past few years has led 

to the widespread use of computer systems in various public and private 

organizations, such as banks, universities, companies, hospitals, libraries and so on. 

The increased reliability now offered in hardware and software technologies, coupled 

with the continuous reduction of costs, the increasing professional expertise of 

information specialists and the availability of support tools, have all contributed to 

encourage the widespread use of computing services. This has meant that more data 

than ever before is now stored and managed by computer systems, or rather by the 

tools and techniques capable of supporting and meeting these application 

requirements. Such requirements have been largely satisfied by database technology 

employing Database Management Systems (DBMS.1) flJ. 

Although the increasingly widespread use of both centralized and distributed 

databases has proved necessary to support business functions, it has also posed 

serious problems of data security. The term security refers to the protection of the 



database against unauthorized access, either intentional or accidental. In fact, damage 

in a database environment does not only affect a single user or application but rather 

the whole information system. Advances in information processing techniques (tools 

and languages) aimed at a simplification of human/machine interfaces have served to 

make databases available to different types of user; consequently more serious 

security problems arise. Therefore, in computer-based information systems, 

technologies, tools and procedures concerning security are essential both to assure 

system continuity and reliability and to protect data and programs from intrusions, 

modifications, theft and unauthorized disclosure [ l] [2]. 

1.2.1 Threats of Databases 

Database security is the mechanisms that protect the database against intentional or 

accidental threats. A threat can be defined as any situation or event, whether 

intentional or accidental, that may adversely affect a system and consequently the 

organization. A threat may be caused by a situation or event involving a person, 

action or circumstance that is likely to bring harm to an organization. The harm may 

be tangible, such as loss of hardware, software or data, or intangible, such as loss of 

credibility or client confidence. The problem facing any organization is to identify all 

possible threats which result in the loss or degradation of some or all of the following 

commonly accepted security goals: integrity, availability and confidentiality [l]-[3]. 

• Loss of integrity: Database integrity refers to the requirement that 

information be protected from improper modification. Modification in data 

includes creation, insertion, modification, changing the status of data and 

deletion. Integrity is lost if unauthorized changes are made to the data by 

either intentional or accidental acts. If the loss of system or data integrity is 

not corrected, continued use of the contaminated system or corrupted data 

could result in inaccuracy, fraud or erroneous decisions. 

• Loss of availability: Database availability refers to making objects 

available to a human user or a program to which they have a legitimate 

right. 

2 



• Loss of confidentiality: Database confidentiality refers to the protection 

of data from unauthorized disclosure. The impact of unauthorized 

disclosure of confidential information can range from violation of the Data 

Privacy Act to the jeopardization of national security. Unauthorized, 

unanticipated or unintentional disclosure could result in loss of public 

confidence, embarrassment or legal action against the organization. 

To protect databases against these types of threats, it is common to implement 

four kinds of control measures: access control, inference control, ±low control and 

encryption. The following section discusses each of these. 

1.2.2 Control Measures 

There are four main control measures that are used to provide security of data in 

databases [1][3]. They are as follows: 

(I) Access Control. 

(2) Inference Control. 

(3) Flow Control. 

(4) Data Encryption. 

1.2.2.1 Access Control 

A security problem common to computer systems is that of preventing unauthorized 

persons from accessing the system itself, either to obtain information or to make 

malicious changes in a portion of the database. The security mechanism of a DBMS 

must include provisions for restricting access to the database system as a whole. This 

timction is called access control and is handled by creating user accounts and 

passwords to control the login process by the DBMS. 

3 



1.2.2.2 Inference Control 

Statistical databases (SDBs) are used to provide statistical information or summaries 

of values based on various criteria. For example, a database for population statistics 

may provide statistics based on age groups, income levels, household size, education 

levels and other criteria. Statistical database users such as government statisticians or 

market research firms are allowed to access the database to retrieve statistical 

information about a population but not to access the detailed confidential information 

about specific individuals. Security for statistical databases must ensure that 

information about individuals cannot be accessed. It is sometimes possible to deduce 

or infer certain facts concerning individuals from queries that involve only summary 

statistics on groups; consequently, this must not be permitted either. This problem is 

called statistical database security. The corresponding control measures are called 

inference control measures which aim at protecting data from indirect detection. 

1.2.2.3 Flow Control 

Flow control regulates the distribution or flow of information among accessible 

objects. A flow between object X and object Y occurs when a program reads values 

from X and writes values into Y. Flow controls check that information contained in 

some objects does not flow explicitly or implicitly into less protected objects. Thus, a 

user cannot get indirectly in Y what he or she cannot get directly in X. Most flow 

controls employ some concept of security class; the transfer of information from a 

sender to a receiver is allowed only if the receiver security class is at least as 

privileged as the sender's. 

1.2.2.4 Data Encryption 

A final control measure is data encryption, which is used to protect sensitive data 

(such as credit card numbers) that are transmitted via some type of communications 

network. Encryption can be used to provide additional protection for sensitive 

portions of a database as well. The data are encoded using some coding algorithm. An 

unauthorized user who accesses encoded data will have difficultly deciphering it, but 

4 



authorized users are given decoding or decrypting algorithms (or keys) to decipher the 

data. 

1.3 Statistical Database Security 

A statistical database (SDB) is a database that is used lor statistical queries (such as 

sum, average, count, etc.) on subsets of the database entities [I]. Many government 

agencies, businesses and nonprofit organizations need to collect, analyze and report 

data about individuals in order to support their planning activities. SDBs therefore 

contain confidential information such as income, credit ratings, type of disease or test 

scores of individuals. Such data are typically stored online and analyzed using 

sophisticated database management systems (DBMSs). On one hand, such database 

systems are expected to satisfy user requests of aggregate statistics related to non 

confidential and confidential attributes. On the other hand, the system should be 

secure enough to guard against the ability of a malicious user (snooper) to infer any 

confidential information about any individual represented in the database [4]. 

Although users are only allowed to access the statistical information from an SDB, 

malicious users (snoopers) can deduce confidential information about some 

individuals by stitching the answers of some legal queries [ 5][6]. 

Protecting an SDB means preventing and avoiding statistical inference. Inference 

in SDB means the possibility of obtaining confidential information on single entity, 

by taking advantage of (sequences of) statistical queries issued against a set of entities 

stored in the SDB. When confidential information about individuals is obtained, the 

database is said to be disclosed [ 1]. 

SDBs may be online or offline. In an online SDB, users get real-time responses to 

their statistical queries. Whereas, in an offline SDB, users do not know when their 

statistics will be processed, making disclosure more difficult. Also, SDBs may be 

static or dynamic. Static SDBs do not change during their lifetime (namely, no 

insertion or deletion operations occur), and possible changes would give rise to a new 

static database. In contrast, dynamic SDBs can change continuously. Protecting a 

dynamic SDB is more complex, since variations in the database state provide 

additional information to snoopers (malicious users) [I H 4]. 

5 



Hence, our new auditing scheme, namely the key representation auditing scheme 

(KRAS), is proposed to protect online and dynamic SDBs from being disclosed. 

1.3.1 Methods of Attacks 

There are several kinds of threats and disclosure techniques [7], the most important of 

these threats are as follows: 

(I) Small and large query set attacks .. 

(2) Tracker attacks. 

(3) Insertion and deletion attacks. 

1.3.1.1 Small and Large Query Set Attacks 

It is easy to compromise a database that releases statistics about small and large query 

sets. To protect against this kind of attack, statistics based on small or large query sets 

must be restricted (see Figure 1.1 ). 

Query-Set-Size Control: 

A user query q is permitted only if: 

n :S I q I :S N-n 

where, Nand I q I are the database size and query-set-size, respectively. 

And n?:O is a parameter of the database. 

Restricted Permitted 

r--A---. ~---1)()()()()()(1 I 

Restricted 

r--A---. 
l)ooooo< I 

0 n-1 n N-n N-n+1 N 

Figure 1.1: Query-set-size Control 

6 



1.3.1.2 Tracker Allacks 

The basic idea is to pad small query sets with enough extra records to put them in the 

allowable range, and then subtract out the effect of the padding. The different types of 

trackers include: individual trackers, general trackers and double trackers [7)[8). 

(i) Individual Trackers: 

Suppose that a user knows an individual I who is uniquely characterized by a formula 

C. If C can be decomposed into the product C = C1.C2, such that count(CJ. C2) and 

count( C1) are both permitted: 

n :S count( C1. C2) :S count( C1) :S N- n 

The pair of formulas (C1, C1• C2) is called the individual tracker of I. 

Individual Tracker Compromise: 

Let C = C1.C2 be a formula uniquely identifying individual I, and let T= C1• C2 

Using the permitted queries q(C1) and q(T) the restricted query q(C) can be computed 

from 

q(C) = q(CI)- q(T) (1.1) 

(ii) General Trackers: 

A general tracker is any characteristic formula T such that 

2n :S I T I :S N - 2n 

The queries q(T) are always answerable because I T I is well within the allowable 

range [n, N-n]. 

7 



General Tracker Compromise: 

Let Tbe a general tracker and let q(C) be a restricted query. First calculate 

q(Al[) = q( T) + q( T) 

If I C I< n, q(C) can be computed from 

q(C) = q(C + T) + q(C + T)- q(All) (1.2) 

And if I C I > N-n, q( C) can be computed from 

q(C) = 2q(All)- q(C + T)- q(C + T) (1.3) 

If the user does not know whether the query set is too small or too large, Formula 

(1.2) can be tried first; if the queries on the right-hand side are permitted, the user can 

proceed; otherwise, Formula (1.3) can be used. Thus, q(C) can be computed with at 

most six queries. 

(iii) Double Trackers: 

A double tracker is a pair of characteristic formulas (T, lJ) for which 

TcU, 

n :S: I T I :S: N- 2n, and 

2n:S:I UI:SN-n 

Double Tracker Compromise: 

Let q(C) be a restricted query, and let (T, lJ) be a double tracker. If I C I< n, q(C) can 

be computed from 

q(C) = q(lf) + q(C+ T)- q(T)- q(C.T.lf) (1.4) 

And if I C I> N-n, q(C) can be computed from 

8 



q(C) = q(U)- q(C+ T) + q(T) + q(C.T.U) (1.5) 

Thus, q( C) can be computed with at most seven queries. 

1.3.1.3 Insertion and Deletion Attacks 

Dynamic databases that allow insertions and deletions of records are vulnerable to 

additional attacks. A query-set-size restriction of n can be subverted if records can be 

added to the database. If I q I < n, then dummy records satisfying the characteristic 

formula of q are added to the database; if I q I > N-n, then dummy records not 

satisfying the characteristic formula of q are added. 

1.3.2 Overview of Solution Approaches 

There are many inference control methods proposed to protect vanous database 

systems. Those methods for SOBs can be classified under three general approaches: 

data perturbation, output perturbation and query restriction. Data perturbation 

approach (see Figure 1.2) introduces noise in the data. The original SOB is typically 

transformed into a modified (perturbed) SOB, which is then made available to 

researchers. The output perturbation approach (see Figure 1.3) perturbs the answer to 

user queries while leaving the data in the SOB unchanged. While query restriction 

approach (see Figure 1.4) imposes extra restriction on queries, which includes query

set-size control, query-set-overlap control, auditing, cell suppression and partitioning 

[4]-[6]. 

Auditing of an SOB involves keeping up-to-date logs of all queries made by each 

user and constantly checking for possible compromise whenever a new query is 

issued. Auditing has the advantages such as allowing the SOB to provide users with 

unperturbed responses that will not be disclosed. It has long believed that auditing is 

an effective tool for protection [7]. 

9 



This work focuses on the query restriction approach, which prevents malicious 

inferences by denying illegal queries. In particular. this research deals with auditing 

online and dynamic statistical databases problem. 

/' "' Queries 
./ r-... ./ I -Data Perturbation 

Pertwbed \ Researcher 
SDB 

SDB Perturbed 

' ./ Responses 

Figure 1.2: Data Perturbation Approach 

Queries j \ 

SDB 

Perturbed Responses 

_.\Researcher/ 

Figure 1.3: Output Perturbation Approach 

/' Queries I \ 

SDB .\Researcher./ 

Exact Responses or Denials 

Figure 1.4: Query Restriction Approach 

10 



1.3.3 Attribute Classification 

Each attribute can be classified into two types: category and data attributes. The 

category attributes are used to identify and select records, and each of them contains a 

specific domain. For example, assume that the domains of the category attributes 

Gender and Department are {M, F} and {CS, EE, ME, CE, PE}, respectively. While 

the data attributes hold other information, usually numerical, for which some 

statistical queries may be desired such as Salary, Score. Income, etc [9][1 0]. 

1.4 Problem Statement 

In this research the problem of protecting an SOB is examined to prevent an SOB 

from being disclosed, through the attacks of the snoopers (malicious users) to the 

confidentiality of the individuals, and no sequence of legal queries is sufficient to 

infer protected information about any individual. When a user submits a query to 

statistical database, the difficult problem is how to decide whether the query is 

answerable or not; to make a decision, past queries must be taken into account, which 

is called SOB auditing [II]. One of the major drawbacks of the auditing is its 

excessive CPU time and storage requirements to find and retrieve the relevant records 

from the SOB. 

The problem is that statistics contain vestiges of the original information. By 

correlating different statistics, a malicious user (snooper) may be able to deduce 

confidential information about some individuals. Also, the problem in SOB protection 

is the achievement of a compromise between the privacy needs of an individual and 

the right of organizations to know and process precise and accurate information with: 

• Jess storage space, namely Jess SOB record size and number of blocks. And 

• less CPU time to retrieve the relevant records from the SOB, namely Jess 

block accesses to perform linear search, binary search and sorting. 

II 



This entails the right to release statistical information, while at the same time 

assuring that confidential information about the individuals represented in the SDB is 

maintained. 

1.5 Objectives 

Query auditing 1s an effective strategy for guarding the confidentiality of the 

individual in the statistical database [12], that is because it provide users with precise 

and accurate answers (unperturbed responses). Since a detailed examination of the 

inference problem reveals that we have not yet arrived at a general and acceptable 

solution [13], the objectives of this research can be summarized as: 

• To develop a new scheme for auditing online and dynamic SDBs. 

• To guarantee the security of online and dynamic SDBs by preventing 

illegal queries which could lead to disclosing the SDB. 

• To provide precise and accurate responses. 

• To reduce CPU time and storage space during query processing. 

1.6 Methodology 

This section provides all the sequence steps that have been followed in order to satisfy 

the research objectives. In general this research can be divided into three stages. 

In the first stage, a new scheme for auditing online and dynamic SDBs 1s 

developed, namely the key representation auditing scheme (KRAS). The core idea is 

to convert the original database, which is in both string and numerical representations, 

into a key representation database (KRDB). Also, this scheme involves converting 

each new user query from a string representation into a key representation query 

(KRQ) and storing it in the Audit Query table (AQ table). Three audit stages are 

proposed to repel the attacks of snoopers to the confidentiality of the individuals. 

Efficient algorithms for these stages are presented, namely the First Stage Algorithm 

(FSA), the Second Stage Algorithm (SSA) and the Third Stage Algorithm (TSA). 

12 



These algorithms enable the key representation auditor (KRA) to conveniently specify 

the illegal queries which could lead to disclosing the SDB. 

In the second stage, a comparative study is made between the new scheme and the 

existing methods, namely a cost estimation and a statistical analysis are performed, 

and this study illustrates the savings in block accesses (CPU time) and storage space 

that are attainable when a KRDB is used. The cost estimation comparisons between 

the KRDB and the original database are performed in terms of number of blocks, 

linear search, binary search and sorting. The statistical analysis is performed to 

compare between means and variances of the original database and the KRDB 

populations. The size of the sample drawn from each population is 13. The statistical 

analysis tests between the two populations are provided in terms of record size, 

number of blocks, linear search, binary search and sorting to examine whether the 

KRDB is better than the original database or not. 

In the final stage, the implementation of the new scheme is performed and all the 

components of the proposed system are discussed. 

1. 7 Scope of Research 

This research concentrates on protecting online and dynamic statistical databases 

(SDBs) with the least CPU time and storage space, as possible, during query 

processing. It intends to overcome one of the major drawbacks of the auditing, 

namely its excessive CPU time and storage requirements to store and process the 

accumulated logs. This research proposes the key representation auditing scheme 

(KRAS) to guarantee the security of online and dynamic SDBs. The proposed scheme 

is considered as an effective scheme to repel the attacks of snoopers (malicious users) 

to the confidentiality of the individuals. Moreover, the proposed scheme shows vast 

improvement in terms of block accesses (CPU time) and storage space that are 

attainable when a KRDB is used. 

13 



1.8 Research Contributions 

The contributions of this research can be summarized as: 

• The new scheme guarantees the security of online and dynamic SDBs. The three 

audit stages could prevent the SDB threats such as individual trackers, general 

trackers, double trackers and insertion and deletion attacks. Moreover, it could 

prevent the following three new types of threats which have not been discussed 

previously: 

(i) Stitching two answerable queries using two different category attributes. 

(ii) Hiding an unanswerable key representation query (KRQ), which satisfies 

the first stage conditions (FSCs) with one of the previous KRQs, inside the 

parts of the user query. 

(iii) Hiding a repeated unanswerable KRQ, which does not satisfy the third 

stage condition (TSC), inside the parts of the new user query. 

• The new scheme provides precise and accurate responses, while most of the 

previous works resort to estimate the value of the new response according to the 

distribution of the previous answered queries. 

• The new scheme, which depends directly on the key representation database 

(KRDB), saves CPU time and storage space compared to the original database. All 

schemes proposed by previous works depend directly on the original database. 

1.9 Limitations of Research 

In this research, our proposed scheme, namely the key representation auditing scheme 

(KRAS), includes only auditing count and sum statistical queries. The other statistical 

queries (or aggregate functions) such as average, min, max and median are not 

included in our proposed scheme. 

1.10 Structure of Thesis 

This thesis is structured in seven chapters. The first chapter gives an introduction to 

database security, its threats and its control measures. Also, this chapter gives an 

14 



introduction to statistical database security. In addition, the problem statement, 

objectives, methodology, scope, contributions and limitations of this research are 

discussed. Chapter two provides related works and mentions review of literature. 

Methodology of this research and conversion method of our proposed scheme, namely 

the key representation auditing scheme (KRAS), are illustrated in chapter three. 

Chapter four discusses the three audit stages of our proposed scheme, which is 

proposed to protect online and dynamic SDBs from being disclosed. In chapter five, a 

cost estimation for the proposed scheme is performed, and this research illustrate the 

savings in block accesses (CPU time) and storage space that are attainable when a key 

representation database (KRDB) is used. In chapter six, statistical analysis is 

performed to compare between means and variances of the original database and the 

KRDB populations. Comparisons are made between the KRDB and the original 

database in terms of record size, number of blocks, linear search, binary search and 

sorting to examine whether the KRDB is better than the original database or not. The 

last chapter is the conclusion which concludes this research and it does include some 

recommendations for further research directions. 

15 



CHAPTER2 

LITERATURE REVIEW 

2.1 Introduction 

Problems with security of SOBs have been increasing in concern recently. This 

chapter provides related work. Related work can be divided into online and offline 

auditing. In the ojjline auditing problem, the auditor is given a series of queries and 

exact answers and the goal is to decide whether a privacy breach has occurred ex post 

facto or not. In the online query auditing problem, users get real-time responses to 

their statistical queries: given a series of queries that have already been posed, their 

corresponding answers and a new query; deny the answer if privacy may be breached 

or give the true answer otherwise. 

2.2 Online Auditing 

Problems with security of SOBs have been increasing in concern recently [14). The 

problem with online query auditing is: given a sequence of queries q 1, ... , q1.1 having 

already been asked and the corresponding answers a1, ••. , a1•1, each a1 being either the 

true answer to the query q1 or "denied" for j = I, ... , t-1. Being given a new query q1, 

prevent the answer if confidentiality might be breached or provide the true answer 

otherwise. 

Audit Expert is a practical approach based on auditing, which was proposed in 

[15]. The approach maintains a matrix used for auditing the history of users' queries 

and detects all of the possible breaches. The columns of the binary matrix represent 

database entities while, the rows represent the users' queries that have already been 

answered. When a new query is issued, the matrix is updated. A row with all zeros 

16 



except for an ith column is an indicator that exact disclosure of the confidential 

attribute of the corresponding entity is possible. Whereby, the answer to the new 

query should be prevented. 

According to Chin's scheme [ 15], the SDB consists of N individuals x;, l<:J<cN. 

Each individual x; is assumed to have a single protected numerical attribute value, and 

each answered query reveals a set of individual records {x1, Xm, Xn, ... } . Therefore, 

each answered query can be represented by a vector (a1, a2, ... , aN), where a;= I if x; 

is accessed in this query, and a;= 0 otherwise. The users' knowledge space KS is the 

vector space which is spanned by the set of vectors of answered queries AQ. 

Formally, KS has the following properties: 

I) Ifq 1 €AQ, then q € KS. 

2) If q'' € KS, then b*q' € KS; b is a real number. 

I \ ', ', 
3) lfq 1, q2€KS, thenq1 +q2 € KS. 

4) Nothing else is inKS. 

A maximal set of non-redundant vectors of A Q can represent KS. 

It is noticed in [15] that the vectors in KS are linear independent. Therefore, the 

number of rows cannot exceed the number of columns in KS. The SDB is disclosed if 

there exists a vector of the form (0, ... ,0,1,0, ... ,0) inKS. 

Unfortunately, Chin's scheme faces problems with space explosion if the SDB is 

dynamically updated. In Chin's scheme, when an individual inserted to an SDB, a 

new corresponding column is inserted to the KS for this individual. Since the new 

individual has not yet been queried, all entries of the new column are zeros. On the 

other hand, for the protection of the individual information, when an individual is 

deleted, the corresponding column, called the dangling column, cannot be 

immediately removed from the KS matrix. 

If the dangling columns are removed immediately to reduce the size of KS, the 

deletion may cause both false alarms and security disclosure. A false alarm is raised 

when a vector with a single "!" is found in the audit matrix but the corresponding 

17 



individual is not disclosed. For example in Figure 2.1, the individual x3 is deleted 

from SDB. If the corresponding column c3 in the KS is removed, the audit matrix 

reports that x 5 is breached and the SDB is compromised. In fact, x5 is still unbreached 

at this time. Thus, a false alarm has been raised. 

C1 c, c, C4 C5 c1 c, C4 C5 

1 0 1 1 0 1 0 1 0 

0 0 1 0 1 
X3 is deleted from the SDB 

0 0 0 1 and c3 column is removed 
KS= 1 1 0 1 0 KS= 1 1 1 0 

1 0 1 0 1 1 0 0 1 

Figure 2.1: Deletion that Causes a False Alarm [5][6] 

On the other hand, security disclosure occurs when the audit matrix does not have 

any vector with a single "1 ", but the secret of an individual is disclosed. For example 

in Figure 2.2, the individual x 4 is deleted from the SDB. It seems reasonable to also 

remove the corresponding column c4. However, by removing this column, disclosure 

of confidential information will occur. 

cl C2 C3 C4 C5 
X4!S deleted from the 

C1 c, c, Cs 

1 0 1 1 0 1 0 1 0 

0 0 1 0 1 
SDB and the corresp-

0 0 1 1 
KS= onding column c4 is KS= 

1 1 0 1 0 removed from KS 1 1 0 0 

1 0 1 0 1 1 0 1 1 

C1 c, c, Cs 

1 0 1 0 
(1 ,0, 1 ,0) is invoked 

KS= 0 0 1 1 

1 1 0 0 

1 ) 1 1 

Figure 2.2: Deletion that Causes Disclosure of Secret Information [5][6] 

18 



Assume that a new answered query, (I ,0, I ,0), is invoked in the KS after the 

deletion. The KS will be checked by the audit scheme and considered as redundant 

answerable query, which is the same as r1. As a result, KS remains unchanged and the 

query is answered. This in tum, breaches the confidential information of the deleted 

individual X4 is disclosed. 

The two examples above demonstrate that when an individual is deleted from the 

SOB, the corresponding column in the KS cannot be arbitrarily removed. Therefore, 

the size of KS will be continuously expanded without any limit when the individuals 

of a finite-size SOB are dynamically inserted, deleted or updated. It is possible 

therefore, to have a large KS for a small SOB. Substantial memory and CPU time are 

subsequently wasted in handling the columns. It is not efficient to check the entire KS 

matrix for every query, when the number of the rows and the columns in the KS is 

large. To handle this problem, Chin imposes the restriction on the scheme that it can 

only be used in static SOBs. As a result, usage of this scheme is limited. 

The authors in [5][6] proposed an algorithm to reduce the size of the KS. Chin's 

scheme can be enhanced so that it can be used in a dynamic SOB using this algorithm. 

In order to guarantee the security of an SOB, for the most part, all dangling columns 

cannot be arbitrarily removed from the KS. However, if the deletion will not cause a 

false alarm or security disclosure, it is possible to delete some of the dangling 

columns. The removable part of the audit matrix is called a related garbage set [5][6]. 

The authors in [5][6] defined the directly and indirectly related relations in a 

related garbage set as follows: in an audit matrix, an entry can only be either 'I' or 

'0'. A column and a row are directly related if their shared entry is 'I'. Indirectly 

related relation can be defined recursively. A column/row is indirectly related to a 

column/row if a directly related column/row of the former is directly/indirectly related 

to the latter. If a column/row is directly or indirectly related to another column/row, 

then they are related. Otherwise, they are unrelated. All related columns and rows 

form a related set. All elements of a related set arc related to each other, and no 

element outside of the related set can be related to any element of the set. For 

example, in Figure 2.3, r 1 and r 4 are directly related to c1; r 1 is indirectly related to r 4; 

therefore, {ct, c3, C4, r1, r2, r4} is a related set. 

19 



t ! ! 
{ cl ' c3 ' c4 ' rl' '2 ' r4 } 

Cs C1 C2 C3 C4 
1 0 1 1 0 rl._ 

0 0 1 0 1 r2._ 
KS= 

0 1 0 0 0 lj 

1 0 1 0 1 r4._ 

Figure 2.3: A Related Set [5][6] 

Being unrelated to other columns and rows, the garbage columns and rows of a 

related set can be removed without affecting the subsequent security of the audit 

matrix. An algorithm FINDING_ GARBAGE based on the concept that garbage 

columns and rows are related was proposed in [6]. Whenever an individual is deleted, 

the algorithm is able to locate all the columns and rows related to the new dangling 

column. If these columns are also dangling, then these columns and rows are all 

garbage and can be safely removed. 

FINDING GARBAGE is effective m reducing the memory requirement and 

improving the performance of Chin's audit scheme. However, algorithm itself also 

introduces overhead for the deletion of individuals from an SDB. 

An implementation of the auditing strategy to avoid both exact and approximate 

disclosure was presented in [12]. The key data structure of their study is a graphical 

summary of answered queries in the form of a query map. Since the size of a query 

map could be exponential in the number of answered queries, a query restriction 

criterion was introduced to make every query map a graph. An auditing procedure on 

such a graph was also presented and the computational issues connected with its 

implementation were discussed. 

In [12], q is assumed to be the current query and it is not sensitive. To decide if q 

can be answered safely, the query-system must hypothesize a user (the "snooper") is 

knowledgeable and able to disaggregate the values of answered queries. Explicitly, 

such a user must be assumed to have such a semantic competence that he correctly 

guesses which queries are overlapping and which ones are not. Furthermore, he would 

20 



have to have such a computational competence that he knows how to find out all the 

aggregate data that are "inferable" from the values of answered queries. The authors 

in [12] argued that in order to repel the attacks of the snooper, the query-system will 

decide that q can be safely answered if and only if either 

-The value of q is inferable from the values of previously answered queries, or 

- There is no sensitive query among those whose values are inferable from the 

value of q and the values of previously answered queries. 

The security attacks delivered by the snooper are successfully repelled by the 

query-system if its inference model is at least as powerful as the snooper's one. Based 

on all previously answered queries and the overlapping relationships among their 

query-sets, the authors in [12] set up a system f of linear constraints which allows it 

to identify every query whose value is inferable. In the case of a large underlying 

database, the number of variables in f is always less (and is often far less) than the 

size of the database; however, it may be exponential in the number of previously 

answered queries, so that after answering a large number of queries, the query system 

will spend a lot of time deciding if the current query can be safely answered or not. To 

overcome this difficulty, the following query-restriction criterion was introduced by 

the authors in [12]. Given a set Q of answered queries and a new non sensitive query 

q with query-set R, a necessary condition for q to be safely answerable is that either 

the value of q be inferable tram Q or, for every two queries q1 and q2 from Q, 

R1nR2nR be empty, where R; is the query-set of q; (i = 1, 2). So, the number of 

variables in f is O(IQI2
). The resulting auditing procedure is as follows: 

Input: A set Q of answered queries and a new query q, all of the same 

type; the query-set R of q. 

Output: A Boolean variable safe which is TRUE if and only if q can be 

safely answered given the values of all the queries in Q. 

(Initialization) Set safe :=FALSE. 

(Phase I) If the value of q is inferable from the answers to the queries in 

Q, then set safe :=TRUE and Exit. 

21 



(Phase II) If q violates the query-overlap constraint, then Exit. 

(Phase III) If no query whose value is inferable from Q u{ q} is sensitive, 

then set safe := TRUE. Exit. 

The computational issues connected with the implementation of the above 

auditing procedure were discussed by the authors in [12]. It was shown that the 

problems related to Phases I and II could be solved efficiently, and that the problem 

related to Phase III is provably intractable. 

The authors in [I 0] focused on sum-queries whi,:h have a response variable of non 

negative real type. They proposed a compact representation of answered sum-queries, 

called an information model in "normal form". This model allows the query-system to 

decide whether the value of a new sum-query can be safely answered or not. If not, 

then the query system will issue the range of feasible values of the new sum-query 

consistent with previously answered sum-queries. 

The authors in [I 0] argued that the confidentiality of a response variable ri can be 

attacked either (in a direct way) by an intrusive sum-query or (in an indirect way) by a 

non intrusive sum-query whose value on D, combined with the responses to 

previously answered sum-queries on D, leads to an accurate estimate of the total of ri 

for some category that is sensitive in D. In the latter case, the sum-query is called 

tricky. 

An SDB can be made secure when a new instance D is created, for each 

confidential attribute ri the sensitive categories in D are identified and each of them is 

assigned a fixed non negative number which is its protection level. Such a category S 

is considered protected at a particular time if its protection level is less than the width 

of the interval of the feasible values for the total of ri for S that are permitted by the 

responses to previously answered sum-queries. This interval is known as the 

feasibility range. The authors in [10] argued that if the current sum-query Q is 

intrusive or tricky, then a non informative response to Q will be given by the query

system, by issuing the feasibility range for Q. This makes deciding whether Q is 

intrusive or not easy, since it is sufficient to check the presence of the category 

specified by Q in the list of the categories that are sensitive in D for ri. However, 

22 



deciding whether Q is tricky or not requires "auditing" the previously answered sum

queries on D with response variable CJ and comparing the protection level assigned to 

S with the width of the feasibility range for the total of CJ for S. Q can be safely 

answered and the value of Q will be issued if each sensitive category is protected. A 

special case occurs when the value of Q is uniquely determined by previously 

answered sum-queries, that means Q is evaluable; then, Q is neither intrusive nor 

tricky and it can be safely answered. 

In much of the previous work [ 4 ][ 15]-[ 19], the auditing technique was applied 

assuming that the snooper also knows the query-set of each answered sum-query. 

Thus, enabling the snooper to write down an equation for each answered sum-query, 

whose unknowns represent the unknown values of the response variable for the tuples 

in the query-set. Consequently, the size of the snooper's model is proportional to the 

size of the instance D of the SDB, which may contain a very large number of tuples 

[20]-[25]. On the other hand, it is not realistic to hypothesize that the snooper knows 

the query-sets of the answered sum-queries. It has been suggested by some authors 

that by working with categories instead of query-sets, the snooper's model could be 

made independent of the size of the instance of the SDB. 

The authors in [I 0] stated that in order to repel the attacks of the snooper, the 

query- system will make use of its own information model, which essentially is the 

same as the snooper's model and will be constructed incrementally as the value of a 

new-sum query is issued. However, such an information model might suffer from 

certain drawbacks like redundancy, so the authors in [I 0] proposed a procedure for 

getting a "compact" representation of the information model that the drawbacks are 

missing from. This model is called a normal form. Finally, the authors addressed the 

question of whether or not a new sum-query can be safely answered by using a 

normal form of the current information model. 

The authors in [I 0] discussed that answering this question has raised some 

computational problems such as recognizing evaluable sum-queries, updating the 

information model and computing a feasibility range. The solutions of these problems 

depend on the response variable data type. Standard algebraic methods can be used to 

solve all of these problems efficiently if the response variable data type is of a real 

23 



type. However, if it is of a non negative type, then linear-programming or integer 

linear-programming methods can be resorted depending on the specific data type. In 

general, if the response variable is of a non negative-integer type, it is extraordinarily 

difficult from a computational viewpoint. A general theory has not yet been 

developed to solve this problem. 

The authors' work [10], only considered the case where the response variable is of 

a non negative real type. Therefore, a natural approach consists in resorting to 

standard linear-programming algorithms for example the simplex method. 

Unfortunately, the majority of these algorithms are not polynomial. Furthermore, the 

existing polynomial linear-programming algorithms such as the ellipsoid method have 

bad performances in practice. Therefore, in order to solve the computational problems 

raised by the security of the SOB, it is convenient to make a minimal use of standard 

linear-programming algorithms, so "there is considerable interest in finding 

alternative techniques". 

In [26], the online query auditing was considered. It was illustrated how denials that 

depend on the answer to the current query may leak information and the notion of 

simulatablility to tackle this problem was introduced. Simulatable algorithms for 

auditing sum queries and max queries were provided. In addition, a probabilistic 

notion of disclosure was introduced and an algorithm for auditing sum queries over 

real-valued data drawn uniformly from a bounded range under this notion was 

provided. 

The authors' work goal was to design algorithms that never allow a sequence of 

queries that breaches the data, regardless of the actual data. Essentially, a denial is 

never required for this formulation. The authors in [26] called this type of auditing 

query monitoring or, simply monitoring. In terms of utility however, monitoring may 

be too restrictive as it may prevent queries that do not breach confidentiality. This 

concern may try to be answered by constructing auditing algorithms where every 

query is checked with respect to the data set, and a denial occurs only when an 

'unsafe' query occurs. 

24 



The authors in [26] discussed the following question: Can an ojjline auditing 

algorithm directly solve the online auditing problem? In the traditional algorithms 

literature [27]-[30], it is stated that an offline algorithm can always be used to solve 

the online problem- the only penalty is in the efficiency of the resulting algorithm. 

In clarification of the question for the auditing context, to determine whether to 

answer q,, can we consult the data set for the true answer a, and then run an offline 

algorithm to determine if providing a, would lead to a breach? 

Surprisingly, this question was answered negatively by the authors [26]. Their 

main reason being that is denials leak information. The authors in (26] stated the 

following simple example: suppose that the underlying data set is real-valued and that 

a query is denied only if some value is fully compromised. Suppose that the snooper 

poses the first query sum(x1, x2, x3) and the auditor answers 15. Suppose also that the 

snooper then poses the second query max(x~, x2, x3) and the auditor prevents the 

answer. The denial tells the snooper that if the true answer to the second query were 

given then some value could be uniquely deduced. Note that max(x1, x2, XJ) 4 5 since 

then the sum could not be 15. Further, ifmax(x1, x2, x3) > 5 then the query would not 

have been prevented since no value could be uniquely deduced. Consequently, 

max(x1, x2, x3) = 5 and the attacker learns that x1 = x2 = XJ = 5 - a confidentiality 

breach of all three entries. The problem here is the reduction of the space of possible 

consistent solutions resulting from query denials. Moreover, this reduction is not 

explicitly accounted for in existing offline auditing algorithms. 

Posterior probabilities are computed by the new auditing algorithm by utilizing 

existing randomized algorithms. The authors in [26], to guarantee simulatability, 

made sure that the auditing algorithm does not access the data set while deciding 

whether to allow the newly posed query q, (particularly, by not computing the true 

answer to q,). Instead, the auditor draws many data sets according to the underlying 

distribution, assuming the previous queries and answers, and then computes an 

expected answer a; and checks whether revealing it would breach confidentiality for 

each of the randomly generated data sets. If the data set is not breached then the query 

is answered, otherwise the query is prevented. 

25 



The authors [26] believed that this definition overcomes some of the limitations. 

However, the current definition does not ensure that the confidentiality of a group of 

individuals or any function of a group of individuals is kept secure. Also, their model 

assumes that the data set is static, but in practice data is inserted and deleted over 

time. 

The online query auditing problem was considered in [31]. Auditors were constructed 

for max queries and bags of max and min queries in settings for both the partial and 

full disclosure. The authors' partial disclosure setting algorithm involves a novel 

application of probabilistic inference techniques. 

In much of the work done previously [32]-[36], compromise corresponds to the 

notion of full disclosure and occurs when the confidential data of any individual can 

be exactly determined. This is called classical compromise [37]-[41]. The authors in 

[26] introduced probabilistic compromise for bounded range data where a significant 

change in the snooper's confidence about the range of a data point constitutes a 

confidentiality disclosure. This is related to the notion of partial disclosure. A new 

algorithm was introduced by the authors in [31] for auditing max queries and bags of 

max and min queries under this definition. While in the case of classical compromise 

algorithms are known for auditing sum, average, min and max queries separately, 

auditing of combinations of these queries is hard to do. In the case of classical 

compromise, they presented an auditor for bags of max and min queries. 

For example, suppose a snooper asks for q1 = max{xa, Xb, Xc} and receives the 

answer 9. Later the snooper asks for q2 = max{xa, xh}. If the answer to q2 is less than 

9, then the snooper can infer that Xc must be 9 and q2 should be prevented. If however, 

the answer is exactly 9, answering q2 would not leak information under the classical 

definition of compromise. In this case, if the auditor does look at the answer to q2 

when deciding to prevent, a denial would immediately imply that Xc must be 9 and 

confidentiality is disclosed. Therefore, the auditor should ignore the true answer to the 

current query when making a decision. In reality, the snooper should be able to 

"simulate" the auditor and predict on his own when queries will be prevented. This 

would ensure that confidentiality is never disclosed. Thus, the algorithms that the 

authors in [31] looked for had to be online and simulatable. With classical 

26 



compromise, it is enough that the auditor determine if there is any possible answer to 

the current query that is consistent with past queries that could lead to breach. With 

probabilistic compromise, it is enough that the auditor determine if breach would 

occur in a large fraction of data sets drawn from the original distribution D based on 

past query answers. 

2.3 Offline Auditing 

In the problem of ojjline auditing, the auditor is given an offline set of queries q 1, ... , 

q, and true answers a1, • • • , a1 and must decide whether a compromise of 

confidentiality has occurred ex post facto or not. 

The authors in [42] proposed an auditing method based on the offline auditing 

subcube queries model used in [43]. It views an SOB as a function/from strings of k 

bits to the positive and negative integers with the keys being the domain off A query 

is always of length k bits; for example, fork= 7 a possible query could be 0** 11 *0, 

with sO's and l's (in this cases= 4) and the* standing for "do not care". The result of 

a query Q that is of length k and has sO's and l's is given by: 

Key i matches Q 

In the clinic database, for example, the key could consist of 16 bits 

xxxywwwwwwzzzzzz as follows: 

xxx is a code for the physician. 

y is a code for the patient's gender (0 =Male, 1 =Female), 

wwwwww is a code for the patient's age, 

zzzzzz is a code for the type of disease. 

Thus, the query ***1101110111001 would represent the sum of all female 

patients, independent of which physician they are with, of age 46 who have a disease 

type Ill 00 I. 

27 



The author in [ 42] stated that the amount of information gained by posing a query 

Q is given by: 

log 
( L J min(lel, L -lei) , if lei,; L or lei ,; o 

log£ , if lei= L (2.1) 

0 , otherwise 

where L and 1q are the database size and the query-set size, respectively. 

It is argued by the author that minimizing this information function corresponds to 

increasing the possibility of breaching the database. Given a query of length k bits 

issued to an SDB of 2k entities, it is shown that the expected value of the information 

gained by issuing such query is: 

( )

\lk-1 
k-(k-1) + , 

and is minimized when: 

( 
I )1/k-1 

p= -
k 

, for k >I 

where pis the probability of an* occurring in any given bit position. 

(2.2) 

A summarization of the security control method proposed in [42] is as follows: 

Audit trails of the sequence of queries can be kept in the following ways: 

• Observe the actual value of p for that sequence of queries and determine if it is 

statistically significantly close to the minimum value given by (2.2). If so, there 

is a high likelihood that the user is attempting to compromise the database. 

• Evaluate the information function for each query in the sequence and study 

statistically the deviation of this value from the minimum expected value given 

by (2.2). Based on these deviations, determine the likelihood that the user is 

attempting to compromise the database. 

28 



Since the study is preliminary in nature, no implementation details such as the 

computational time and storage requirements have been addressed [ 4]. 

The authors in [ 44] studied the Boolean auditing problem for otlline SOBs. The data 

elements of this study are Boolean and the queries are sum queries over the integers. 

Certain complexity results were proven that suggest that there is no general efficient 

solution for the auditing problem in this case. Two algorithms were proposed: the first 

is applicable when the sum queries are one-dimensional range queries (they proved 

that the problem is NP-hard even in the two-dimensional case). The second is an 

approximate algorithm that maintains security, although it may be too restrictive. 

As an example, the authors in [ 44] considered an SOB with attributes (name, age, 

score) supporting statistical queries of the form "give me the sum of scores of all 

individuals whose age x satisfies condition C(x)", where C is an arbitrary predicate on 

the domain of age, such as 35Sx:S45. They also assumed that the projection (name, 

age) is publicly available, but the attribute score is private. The authors posed the 

following question: "What measures suffice to protect the confidentiality of the 

private information?" 

It is assumed in most work in this area that the private data are real-valued and 

essentially unbounded. However, there are certain important applications where data 

may attain discrete values, or have maximum or minimum values that are fixed a 

priori and frequently attainable. In case such as these, traditional methods for 

maintaining security are inadequate. As an example of this, if a predicate only 

samples minimum values (e.g., if all individuals whose age satisfies C(x) are achieved 

the minimum legal score), then all those individual values are definitely disclosed. 

Discreteness of values has even more subtle effects. Of course, the problems of 

discrete and bounded variables are combined by Boolean attributes. For example, 

consider an SOB with the attributes (name, age, hivpos ), where the last attribute has 

values restricted to 0 or I so, sum queries are again allowed. 

The authors [ 44] studied the mathematical and algorithmic problems that always 

arise when anyone tries to audit statistical queries on Boolean attributes. A "dual" 

situation was also studied, in which the data is continuous but the query discrete. A 

29 



setting in which we have a collection of (private) Boolean variables was considered 

and the results of some statistical queries to this S(:t were also considered. Queries like 

this simply specify a subset S of the variables; the response of the returned values to 

these queries are the sum of the values of all variables in S. 

An offline auditing framework was provided by the authors in [ 45] [ 46] to determine if 

a database system adheres to its data disclosure policies or not. The auditor checks 

queries accessing confidential data by formulating an audit expression that 

declaratively specifies sensitive table cells. 

A vision for a Hippocratic database suggests ten privacy principles for managing 

confidential data responsibly. Compliance is a vital principle among these. 

Compliance reqmres the database to verify that it adheres to its declared data 

disclosure policy. 

The authors in [45][46] stated the following example of Alice who gets a blood 

test done at Healthco, a company whose privacy policy stipulates that it does not 

release patient data to external parties without the patient's consent. After some time, 

Alice starts receiving advertisements for an over-the-counter diabetes test. She 

suspects that Healthco might have released the information that she is at risk of 

developing diabetes. The United States Health Insurance Portability and 

Accountability Act (HIPAA) empowers Alice to demand from Healthco the name of 

every entity to whom Healthco has disclosed her information. The authors also 

considered the case of Bob who consented that He:althco can provide his medical data 

to its affiliates for the purposes of research, provided his personally identifiable 

information was excluded. Later on, Bob could ask Healthco to show that they indeed 

did exclude his name, social security number and address when they provided his 

medical record to the Cardio Institute. A company may institute periodic internal 

audits to proactively guard against potential exposures. 

One approach proposed by the authors to verifying that a database adheres to its 

disclosure policies could be by supporting data disclosure auditing by physically 

logging the results of each query. There are, however, some problems with this 

approach include the following: 

30 



• 

• 

it imposes a substantial overhead on normal query processing, particularly for 

queries that produce many results, and 

the actual disclosure auditing it supports is limited, since data disclosed by a 

query is not necessarily reflected by its output. 

Consider P3P [ 47] as an example of the limitations on disclosure auditing. It 

allows individuals to specify whether a particular enterprise can have access to their 

data in an aggregation. Verifying that database accesses have been compliant with 

such user preferences is not possible when only given a log of results of statistical 

queries. The authors in [45][46] addressed by stating that one might consider logging 

the tuples "read" by a query during its execution instead of its output. However, to 

determine which tuples accessed during query processing were actually breached is 

important. Moreover, a change such as this dramatically increases logging overhead 

[47]-[52]. 

A system which audits whether the database system a query in the past that 

accessed the specified data was proposed by the authors in [45][46]. During normal 

operation, using this system, the text of every query processed by the database system 

is logged along with annotations such as the time when the query was run, the user 

posing the query and the purpose of the query. Database triggers in the system are 

used to capture and record all updates to base tables in backlog tables in order to 

recover the state of the database at any past point in time. 

The authors in [45][46] stated that in order to perform an audit, audit expression 

is formulated by the auditor which declaratively specifies the data of interest. These 

audit expressions are designed to be identical to the SQL queries. This in turn allows 

to be performed at the level of an individual cell of a table. The audit query generator 

processes the audit expression. It first performs a static analysis of the expression to 

select a subset of logged queries that have the potential to breach the specified 

information. After that, the selected queries are combined and transformed into a 

single audit query by augmenting them with additional predicates derived from the 

audit expression. In this system, the audit query, expressed in standard SQL, when run 

against the backlog database yields the precise set of logged queries that accessed the 

designated data. 

31 



The authors [ 45] [ 46] stated the following assumptions: the combination of the 

results of a series of queries may, in subtle ways, reveal certain information. For 

example, it is discussed in statistical database literature how individual information 

can be inferred by running several aggregate queries. Moreover, database security 

literature shows how information can be leaked by using covert channels. The authors 

limited themselves to the problem of determining whether the specified data was 

breached or not by a single query when that query is considered isolated. It is also 

assumed that the queries do not use outside knowledge to infer information without 

detection. 

2.4 Summary 

In this chapter, the problem of auditing SDBs was discussed. Also, it provided related 

work and mentioned review of literature. Related work was divided into online and 

offline auditing. This chapter discussed auditing methods that have been proposed and 

used in the literature and their different aspects and researcher's view points. Query 

auditing is an effective strategy to protect the privacy of individuals in SDBs that is 

because it provides users with precise and accurate answers (unperturbed responses). 

Since a detailed investigation of the inference problem revealed that we have not yet 

arrived at a general and acceptable solution, a new auditing scheme is proposed in this 

work, namely the key representation auditing scheme (KRAS), which can guarantee 

the security of online and dynamic SDBs, provide precise and accurate responses, and 

moreover it needs less CPU time and storage space during query processing. In the 

next chapters, the new scheme will be discussed in detail. 

32 



CHAPTER3 

RESEARCH METHODOLOGY AND CONVERSION METHOD 

OF THE KEY REPRESENTATION AUDITING SCHEME 

3.1 Introduction 

This chapter provides all the sequence steps that have been followed in order to 

satisfY the research objectives. Also, in this chapter a new auditing scheme is 

proposed, namely the key representation auditing scheme (KRAS), and the conversion 

method is provided to convert the original database and the user query into key 

representation database (KRDB) and key representation query (KRQ), respectively. 

3.2 Research Methodology 

This research was developed in three stages. In the first stage, a new scheme for 

auditing online and dynamic SDBs was developed. In the second stage, a comparative 

study between the new scheme and the existing methods was provided. In the final 

stage, the implementation of the new scheme was performed. Figure 3.1 depicts the 

research stages. 

3.2.1 Developing a New Scheme 

In the first stage of this research, a new scheme for auditing online and dynamic SDBs 

is developed, namely the key representation auditing scheme (KRAS). The core idea 

is to convert the original database, which is in both string and numerical 

representations and consists of t category attributes and d data attributes, into a key 

33 



representation database (KRDB), which consists of (l+d) cells. The t category 

attributes in the original database are converted into one cell, and the d data attributes 

are separated by the sign '.' 

I Development of the Key Representation Auditing Scheme 

Convert the New 
User Query into KRQ 

Convert the Original 
Database into KRDB 

I 

~~-----. t 
r-~-~~----~-------------~---1 
1 . Audit Stages . 1 
I I 
I First Stage . 1 FSCs I I 
I .. I 
L •••••• • • • • • • •• •• •• c· ••• • · ··-" · ·- ------- • · · ·1 
I I 
I Query-Set- l1 
I rl Case I H Size Control[ 1 

I • Second Stage 1 I 

.-----i~ Y Case 2 FSCs j l 
I 

~. ··-.. . ...•• -•· .... --------·c •••• ~- .. c---- ·j 
I I· 1 .. I l ' ~Casell + 1 

The Final Decision 
1 Third Stage r-y TSC I I 
I Case2) t I 
I I 
L - -- I 

... 

Comparative Study between the New Scheme and the Existing Methods 

.-------'1 !.__ _____ __, 
... ... 

Statistical Analysis 

I 

l 
Implementation of 
the New Scheme 

I 

Figure 3 .I: Research Stages 

34 

Cost Estimation 

j_ 

"' .5 

" <iS 



Also, this scheme involves converting each new user query from a string 

representation into a key representation query (KRQ) and storing it in the Audit 

Query table (AQ table). The key representation query contains, for each category 

attribute, either the specific category attribute class or *. The * has the intuitive 

meaning 'any', namely all category attribute classes for the corresponding column. 

3.2.1.1 Audit Stages 

Three audit stages are proposed to repel the attacks of snoopers to the confidentiality 

of the individuals. Also, efficient algorithms for these stages are presented, namely 

the First Stage Algorithm (FSA), the Second Stage Algorithm (SSA) and the Third 

Stage Algorithm (TSA). These algorithms enable the key representation auditor 

(KRA) to conveniently specify the illegal queries which could lead to disclosing the 

SDB. The three audit stages are: 

(1) The First Audit Stage: 

In the first audit stage, the new key representation query (KRQ) is prevented if it 

satisfies the first stage conditions (FSCs) with one of the previous KRQs that has 

already been posed. Otherwise, the second audit stage will be checked by the KRA. 

(2) The Second Audit Stage: 

In the second audit stage, we have two cases. In the first case, the new KRQ is 

prevented if one of its parts does not satisfy the query-set-size control. In the second 

case, the new KRQ is prevented if one of its parts satisfies the first stage conditions 

(FSCs) with one of the previous KRQs that has already been posed. If the new KRQ 

is not prevented in this stage, the third audit stage will be checked by the KRA. 

(3) The Third Audit Stage: 

In the third audit stage, we also have two cases. In the first case, the new KRQ is 

permitted if it is equal to one of the previous KRQs that has already been posed, and 

satisfies the third stage condition (TSC). In the second case, the new KRQ is 

35 



permitted if one of its parts is equal to one of the previous KRQs that has already been 

posed, and satisfies the third stage condition (TSC). 

3.2.2 Comparative Study between the New Scheme and the Existing Methods 

In the second stage of this research, comparisons are made between the new scheme 

and the existing methods, namely a cost estimation and a statistical analysis are 

performed, and this study illustrates the savings in block accesses (CPU time) and 

storage space that are attainable when a KRDB is used. 

3.2.2.1 Cost Estimation 

The cost estimation comparisons between the KRDB and the original database are 

performed in terms of number of blocks, linear search, binary search and sorting. This 

work applies the cost estimation comparisons between the KRDB and the original 

database based on three case studies of statistical databases (SDBs) and their 

corresponding key representation databases (KRDBs). 

3.2.2.2 Statistical Analysis 

The statistical analysis is performed to compare between means and variances of the 

original database and the KRDB populations. The size of the sample drawn from each 

population is 25. The comparisons between the two populations are provided in terms 

of record size, number of blocks, linear search, binary search and sorting to examine 

whether the KRDB is better than the original database or not. This statistical analysis 

uses t-test and F-test to evaluate the differences in means and variances, respectively, 

between the two populations. This study tests the null hypothesis, that there will be no 

significant difference between the two populations' means/variances, against the 

alternative hypothesis, that there will be a significant difference between the two 

populations' means/variances. 

36 



3.2.3 Implementation of the New Scheme 

In the final stage of this research. the implementation of the new scheme is performed 

and all the components of the proposed system are discussed. And by applying the 

three audit stages, the proposed system is capable of conveniently specifying whether 

the user query is answerable or not. 

3.3 Conversion Method of the Key Representation Auditing Scheme 

In this section, a new auditing scheme is proposed, namely the key representation 

auditing scheme (KRAS), and the conversion method is provided to convert the 

original database and the user query into key representation database (KRDB) and key 

representation query (KRQ), respectively. In addition, three case studies of original 

databases and their corresponding KRDBs are provided. Moreover, some examples of 

user queries and their corresponding KRQs are presented. 

3.3.1 Statistical Database Model 

Assume that the original database D, which in both string and numerical 

representations, contains N records of individuals. Each record has t category 

attributes and d data attributes (AI, Az, ... , A" At+ I, At+2, ... , At+ct) [53]-[57]. 

Each category attribute Aj (1:99) has IAil possible values, namely the domain of 

each category attribute has IAil classes. For example, the attribute Gender whose two 

possible values (or classes) are Male and Female. Let 8ikj be the domain of the 

category attribute Aj (l<::i<::N; J<:kSIAd; 1:99), where the subsets i, k and j represent 

the record number, the category attribute class and the attribute number, respectively. 

Thus, the domains of the t category attributes are as follows: 

Domain(A2) = { 8i!2, 8m, ... , 8,1Azlz} 

Domain(Aj) = {8iij, 8,2J, ... , 8iiAM 

37 



While each data attribute Aj (t+l~9+lf) holds other information, usually 

numerical, for which some statistical queries may be desired such as Salary, Score, 

Income, etc. Let Vii (l:siSN; 1~9/) be the values of the d data attributes (At+ I, A1+2, ... 

, At+d)· Thus, the values of the d data attributes are as follows: 

3.3.2 Key Representation Database (KRDB) 

The core idea of this work is to convert the original database D into key representation 

database D1
, which consists of (l+lf) cells. The .r category attributes in the original 

database D are converted into one cell, and the d data attributes are separated by the 

sign '.'. Each category attribute value 8,ki (l:si~N; l:Sk:SIAil; 1~9) in the original 

database D is replaced by its category attribute class (k = I, 2, . . . , or IAJil· The 

converted (l+lf) cells are as follows: 

U;1Ui2 ... U;,.V;J.V;z ..... V;d 

where, Uii (l:siSN; 1~9) represents the category attribute class corresponding to the 

category attribute Aj for the record number i. And Vii (l:siSN; 1~9/) represents the d 

data attributes for the record number i separated by the sign '.'. 

Figure 3.2 shows the original database conV(!rsion algorithm, which convert the 

original database into KRDB. 

For example, let t = 4 and d = 2, also assume: the following information describe 

the record number i in the original database D: 

(8 il), 8 i12• 8 i53, 8 i34, 2000, 1500) 

This record is converted into (l+lf) cells as follows: 

3153.2000.1500 

where: 

• 3, I, 5 and 3 are the classes of the first, second, third and fourth category 

attributes, respectively. 

38 



• 2000 and 1500 are the values of the tirst and the second data attributes, 

respectively. 

Procedure Find_ Category_ Attribute_ Class (i,j, Xi,i) 
Begin 

end; 

For e = I to I Ai I 
Begin 

end; 

if (Xu == ej,D 
return( e); 

endif; 

Procedure Convert_Origina!DB_to_KRDB (N, t, d) 
Begin 

End; 

Fori= I toN 
Begin 

end; 

For j = I tot 
Begin 

end; 

K = Find_ Category_ Attribute_ Class (i,j, Xi,i); 
U =K· 

1,] ' 

For j = t+ I to t+d 
Begin 

V·=X · 1,) l,J, 

end; 

f, Figure 3.2: The Original Database Conversion Algorithm 

3.3.3 Key Representation Query (KRQ) 

Also, this scheme involves converting each new user query q from string 

representation into key representation query q1 and storing it in the Audit Query table 

(AQ table). The key representation query q1 contains, for each category attribute A1 

(1"99), either the specific category attribute class or the sign *. The * has the intuitive 

meaning 'any', namely all category attribute classes for the corresponding column. 

Also, the key representation query q1 contains, for each data attribute Aj (t+l-:j<g+d), 

the value of the data attribute itself, a logical formula over its value or over any value 

with the same data type using the relational operators(>.:>:,<,<::,=), or the sign*. 

39 



The key representation query q1 will be as follows: 

where: 

• UJ = 1 I 2 I ... IIAj I I * ' (1 <:jSt) 

• VJ = Vij I f(V) I * ' ogsN; 1<:jS4), f(V) logical formula over any value v 
with the same data type. 

Figure 3.3(a) and Figure 3.3(b) show the user query conversion algorithm, which 

convert each new user query into KRQ. 

Figure 3.4 depicts the statistical database model for the key representation 

auditing scheme. 

Procedure Find_ Category_ Attribute_ Class (j, C) 
Begin 

End; 

For e = I to I Aj I 
Begin 

end; 

if (C == e,J) 
return( e); 

endif; 

Procedure Convert_UserQuery_to_KRQ (t, d,p) 
Begin 

Form= 1 top 
Begin 

GreenNS _ ctr = 0, RedNS _ ctr 0
' 0; 

For j =I tot 
Begin 

if (Aj ==NULL) 
u·= '*'· I ' 
NS(j) = 0; 

else 
K = Find_Category_Attribute_Class (j, Val(Aj)); 
u=K J ' 
read GreenNS; 
if (GreenNS == 0) 

read RedNS; 
ifRedNS == 0 

NS(j) = 0; 
else 

Figure 3.3(a): The User Query Conversion Algorithm 

40 



end; 
End; 

else 

NS(j) = 2; 
RedNS_ctr++; 

endif; 

NSU)=l; 
GreenNS _ ctr++; 

end if; 
endif; 

end; 
if (RedNS _ ctr == I) 

//Red Not Sign should be at least for two categories 
exit; 

endif; 
for j = I to t+d 
Begin 

end; 

if (Aj ==NULL) 

else 
v·= '*'· 

J ' 

read op; 
if(op in{"=','>','>=','<',<=','<>'}) 

read value I; 
Vj = op.value I; 

elseif(op in{'[]','(]','[),'()'}) 
read value!, value2; 
vi= op.valuel,valuc2; 

endif; 
end if; 

Figure 3.3(b): The User Query Conversion Algorithm 

41 



Statistical Databas< Model 

Key Representation Auditing Scheme (KRAS) 

User Query 
KRQ 

q' 
1+--1 Conversion 1+--l--1 

Algorithm 

User Query 
q 

KRDB 
D' 

Original DB 
,----~ Conversion 

Algorithm 

Original DB 
D 

' 

KRA 

AQTable 

-----------------------------------------

SDB 
User 

Exact R sponse 
or D nials 

Figure 3.4: Statistical Database Model for the Key Representation Auditing Scheme 

42 



3. 3. 3.1 The Relational Operators in KRQ 

The relational operators in the key representation query (KRQ) are signed as follows: 

Table 3.1: The Relational Operators in KRQ 

t •i! >]!]················ ., ••. ; ··•····.··. I X})J'!lSS~OJI. i • •.• . • .. • Th ' ..•.. ' · .. ..,es·~~~q 

Greater than > ---7 

Greater than or equal > -
Less than < ~ 

Less than or equal < -
vr:Sx:Sv2 [vhv2] 

v1<x<::v2 (vhv2] 

v1:Sx<vz [vhv2) 

v1<x<v2 (vhv2) 

3.3.3.2 The Logical Operators in KRQ 

The logical operators in the key representation query (KRQ) are signed as follows: 

Table 3.2: The Logical Operators in KRQ 

1 
~~gi~~lQpet~t~~i• . T~~~~lgn inq'•·· 

And • 

Or + 

Not 

43 



3.3.3.3 Examples ofKRQs 

Lett= 4 and d = 2, and consider the following user queries: 

(1) q1 : (A2=e24)•(A4=e4,)•(As=2500) 

(2) q2: (A,=812)•(A2=821)•(A6>3000) 

(3) q3: (A2=e2•)•(AJ=eJ4)•(2000<As<4000) 

(4) q4: not((AJ=832)•(A4=843))•(A6:S2000) 

(5) qs : (A.=812)•(A2=e21)+(A,=en)•not(A2=e23) 

The key representation queries (KRQs) for tht: above string representation queries 

will be as follows: 

(1) q!l: *4*1.2500 •• 

q\ . 
-----7 

(2) 2. 21**. * .3000 

(3) I q]: * 14 * .(2000,4000). * 

- --(4) q\ . **23.*.2000 4. 

(5) q\ . 5 • 21 **.*.* + 33**.*.* 

3.3.4 Audit Query Table (AQ table) 

The Audit Query table (AQ table) is used in our proposed scheme for storing each new 

legal key representation query q\ This table consists of the following columns: 

• The key representation query: q1 

• The query result (aggregation result): R(q1
) 

• The query-set size: I q1 I 

• The latest query-set size: Ll q1 I 

Since the SDB in this scheme is online and dynamic, the individuals' records of an 

SDB need to be inserted, deleted and updated dynamically. Consequently, this scheme 

uses the latest query-set size column Llq11 to deal with the previous key representation 

44 



quenes q's, which were legal. After updating the SDB, the snooper may repeat 

invoking one of the previous queries again. By using the value of this column, the 

KRA can decide whether or not this query could lead to the disclosure of the SDB. 

3.3.5 Examples of SDB and its Corresponding KRDB 

In this section, three examples, namely three case studies, of statistical databases 

(SDBs) and their corresponding key representation databases (KRDBs) are provided. 

Also, examples of user queries which have been converted into key representation 

queries (KRQs) are presented in this section. 

3.3.5.1 The First Example 

A typical example of an SDB can be illustrated based on the data held in Table 3.3. In 

the SDB, the salary of specific individual should not be disclosed. Table 3.3 shows 

the original database D summarizing confidential information about employees. Each 

employee is classified in three categories and has one data attribute. The possible 

category attributes' values are as follows: 

• Gender: {M, F} = { 1, 2} 

• Dept: { CS, EE, PE} = { 1, 2, 3} 

• Level: {BSc, MSc, PhD}= {1, 2, 3} 

The possible data attribute's values are: 

• Salary (in$): any integer';> 0 

Table 3.4 shows the key representation database (KRDB) D\ which is the 

conversion result of the original database D by converting the three category attributes 

(Gender, Dept and Level) into one cell (Ui!U,2U,3), and the data attribute value Vii is 

separated by the sign '.'. The converted two cells are as follows: 

45 



where, the cell U;tU;zU;J represents the category attributes' classes corresponding to 

the category attributes (Gender, Dept and Level) and V; 1 represents the value of the 

data attribute (Salary). 

Table 3.3: Example I- The Original Database D 

R¢~N9 •.I.·. >iN~'?T' •. ,:. .Gender ,. J>eJ1~:·· Level' ~~J~D' ,·T.->"_<}'_U_<_L',_:;_,:·: _, , •....... · ... •·.· . 
'' ,,',' 

1 Adil M cs MSc 200 

2 Orner M EE MSc 150 

3 Sara F EE MSc 250 

4 Sari a F cs MSc 150 

5 Samy M PE MSc 180 

6 Maisoon F PE BSc 220 

7 Gasim M cs MSc 100 

8 Ahmed M EE MSc 180 

9 Fatima F cs PhD 30 

10 Nasir M PE BSc 200 

II Mahasin F EE MSc 250 

12 Khalid M cs PhD 30 

46 



Table 3.4: Example I- The Key Representation Database (KRDB) D1 

I 112.200 

2 122.150 

3 222.250 

4 212.150 

5 132.180 

6 231.220 

7 112.100 

8 122.180 

9 213.30 

10 !31.200 

II 222.250 

12 113.30 

47 



Examples of user queries qs (using the statistical query sum) for this database, 

which are converted into key representation queries (KRQs) q1s, are as follows: 

Table 3.5: Example I- Examples of User Queries Converted into KRQs 

, . User query q · . KR.Qq! .. Queryset · . I.Ariswer lq'l·• · ... · . . ' . ·' .... 
. ..... ·.······ . '· 

. , .. · .. ' '' '" 

q1 = M.CS 11 *. * {I, 7, 12} 330 3 

qz = F.(CS+EE).MSc 212. * + 222. * {3,4,11} 650 3 

- - {I, 2, 3, 5, 6, 7, 8, 
1760 10 q3=M+CS 1**.*+*1*.* 

10, 11, 12} 

q4 = Salary>200 ---';> {3, 6, 11} 720 3 
***.200 

qs = Salary::OI50 - {2, 4, 7, 9, 12} 460 5 
*** .150 

q6 = F .CS.MSc 212. * {4} 150 I 

- {I, 2, 3, 5, 6, 7, 8, 
q7= F.CS.MSc 212. * 1790 II 

9, 10, II, 12} 

3.3.5.2 The Second Example 

A second example of an SOB can be illustrated based on the data held in Table 3.6. In 

the SOB, the grade-point (GP) of a specific student should not be disclosed. Table 3.6 

shows the original database D summarizing confidential information about students. 

Each student is classified in two categories and has two data attributes. The possible 

category attributes' values are as follows: 

• Gender: {M, F} ={I, 2} 

• Dept: {CS, Math}= {I, 2} 

The possible data attributes' values are: 

• Age: 18 ::0 Age ::0 25 

• GP: 0 ::0 GP ::0 4 

48 



Table 3.7 shows the key representation database (KRDB) D1
, which is the 

conversion result of the original database D by converting the two category attributes 

(Gender and Dept) into one cell (Ui1Ui2), and the data attributes' values (V;~, V;z) are 

separated by the sign '.'. The converted three cells are as follows: 

where, the cell Uil Ui2 represents the category attributes· classes corresponding to the 

category attributes (Gender and Dept). And the cells V11.Vi2 represent the values of 

the data attributes (Age and GP). 

Table 3.6: Example II- The Original Database D 

RecNo Name Gender Dept Age GP 

1 Ahmed Male cs 20 2 

2 Sara Female cs 18 4 

3 Orner Male Math 21 3 

4 Gasim Male Math 21 2 

5 Fatima Female Math 20 1 

6 Adil Male Math 21 2 

7 Maisoon Female Math 20 1 

8 Nasir Male cs 21 2 

9 Khalid Male cs 19 2 

10 Ebrahim Male cs 18 2 

11 Jaafar Male cs 19 4 

12 Mahasin Female Math 19 4 

13 Samy Male cs 23 4 

14 Fady Male Math 22 4 

49 



Table 3.7: Example II- The Key Representation Database (KRDB) D1 

RecNo Record's Key U;IUi2•VH.Vi2 

l 11.20.2 

2 21.18.4 

3 12.21.3 

4 12.21.2 

5 22.20.1 

6 12.21.2 

7 22.20.1 

8 11.21.2 

9 11.119.2 

10 11.18.2 

II 11.119.4 

12 22.!9.4 

13 11.23.4 

14 12.22.4 

50 



Examples of user queries qs (using the statistical query sum) for this database, 

which are converted into key representation queries (KRQs) q1s, are as follows: 

Table 3.8: Example II- Examples of User Queries Converted into KRQs 

User query q KRQq' Query set Answer I q'l 
q1 = M.CS II.*.* {I, 8, 9, 10, II, 13} 16 6 

q2 = F.(CS+Math) 21. *. * + 22. *. * {2, 5, 7, 12} 10 4 

- {I, 3, 4, 5, 6, 7, 8, 9, 10, 
- 33 13 q3=M+CS !*.*.* + *1.* .* II, 12, 13, 14} 

q4= Age> 20 -7 
{3, 4, 6, 8, 13, 14} 17 6 ** .20. * 

qs=GP:<:3 - {I, 3, 4, 5, 6. 7, 8, 9, 10} 17 9 
**. * .3 

q6= F.CS 21.*.* {2} 4 I 

-- -
{I, 3, 4, 5, 6, 7, 8, 9, 10, 

q7 = F.CS 21.* .* 33 13 
11,12,13,14} 

3.3.5.3 The Third Example 

The third example of an SOB can be illustrated based on the data held in Table 3.9. In 

the SOB, the Scholastic Aptitude Test (SAT) and the Grade-Point (GP) of a specific 

student should not be disclosed. Table 3.9 shows the original database D summarizing 

confidential information about students. Each student is classified in three categories 

and has two data attributes. The possible category attributes' values are as follows: 

• Gender: {Male, Female}= {I, 2} 

• Major: {Bio, CS, EE, Psy} ={I, 2, 3, 4} 

• Class: { 1978, 1979, 1980, 1981} = {I, 2, 3, 4} 

The possible data attributes' values are: 

• SAT: 300 :<: SAT :<: 800 

51 



• GP: 0 :0 GP :0 4 

Table 3.10 shows the key representation database (KRDB) D 1
, which is the 

conversion result of the original database D by converting the three category attributes 

(Gender, Major and Class) into one cell (Uii U1zlJiJ), and the data attributes' values 

(Vi1, Vi2) are separated by the sign'.'. The converted three cells are as follows: 

where, the cell Ui1 Uiz1Ji3 represents the category attributes' classes corresponding to 

the category attributes (Gender, Major and Class) and the cells Vi1.Vi2 represent the 

values of the data attributes (SAT and GP). 

Table 3.9: Example III- The Original Database D 

RecNo .·.· Name Gend.er Major'•· Chtss: SAT GP . . ·· .. .··, 

I Allen Female cs 1980 600 3.4 

2 Baker Female EE 1980 520 2.5 

3 Cook Male EE 1978 630 3.5 

4 Davis Female cs 1978 800 4.0 

5 Evans Male Bio 1979 500 2.2 

6 Frank Male EE 1981 580 3.0 

7 Good Male cs 1978 700 3.8 

8 Hall Female Psy 1979 580 2.8 

9 lies Male cs 1981 600 3.2 

10 Jones Female Bio 1979 750 3.8 

11 Kline Female Psy 1981 500 2.5 

12 Lane Male EE 1978 600 3.0 

13 Moore Male cs 1979 650 3.5 

52 



Table 3.10: Example III- The Key Representation Database (KRDB) D1 

223.600.3 .4 

2 233.520.2.5 

3 131.630.3.5 

4 221.800.4.0 

5 112.500.2.2 

6 134.580.3.0 

7 121.700.3.8 

8 242.580.2.8 

9 124.600.3.2 

10 212.750.3.8 

11 244.500.2.5 

12 131.600.3.0 

13 122.650.3.5 

3.4 Summary 

In this chapter all the sequences and several stages that have been followed in this 

research to successfully accomplish the objectives were clearly discussed. In general, 

this research was divided into three stages. In the first stage, a new scheme for 

auditing online and dynamic SOBs was developed. In the second stage, comparisons 

were made between the new scheme and the existing methods. In the final stage, the 

implementation of the new scheme was performed. Also, the new auditing scheme 

was discussed, namely the key representation auditing scheme (KRAS), which was 

proposed to protect online and dynamic SOBs from being disclosed. Also, this chapter 

provided the statistical database model for the proposed scheme, the key 

representation database (KRDB) and the key representation query (KRQ). Moreover, 

three case studies of original SOBs and their corresponding KRDBs were provided. In 

53 



addition, some examples of user queries and their corresponding key representation 

queries (KRQs) were presented. 

54 



CHAPTER4 

AUDIT STAGES OF THE KEY REPRESENTATION AUDITING 

SCHEME 

4.1 Introduction 

This work provides presentation of an auditing method that can be used to repel the 

attacks of the snooper to the confidentiality of the individual data in the SDB. In this 

chapter, three audit stages are proposed to protect online and dynamic SDBs from 

being disclosed. Also, efficient algorithms for these stages are presented, namely the 

First Stage Algorithm (FSA), the Second Stage Algorithm (SSA) and the Third Stage 

Algorithm (TSA). These algorithms enable the key representation auditor (KRA) to 

conveniently specify the illegal queries which could lead to disclosing the SDB. 

4.2 Audit Stages 

Before implementing the audit stages, the new user query-set size must fall in the 

allowable range [ n, N-n ], for some positive integer n. That is, the new user query q 

must satisfy the query-set-size control [ 1]. 

Query-Set-Size Control: 

A user query q is permitted only if: 

n <:: I q I <:: N-n, 

Where, n2:0 is a parameter of a database. 

55 



Given a sequence of key representation queri,~s q1
1, q1z, ... , q1

h that have already 

been posed and stored in the Audit Query table (AQ table), and a new key 
. I 

representatiOn query q h+ 1: 

'(l:si~h) 

To decide whether the new key representation query q1
h+t should be answered or 

not, the following audit stages should be applied [54]-[57]. 

4.2.1 The First Audit Stage 

Consider a sequence of key representation queries q\ (I :si~h) and a new key 

representation query q1
h+l· For the sake of simplicity, we shall write Xij (l:si~h; 

1-:jSt+d) to denote both Uij (l:si~h; 1-:jSt) and Vii (l:si~h; 1-:j~. 

'(l:si~h) 

It is assumed that a= i and b = h+l, if I q\ 1>1 q1
h+tl· Otherwise, a= h+l and b = i. 

Accordingly, the new key representation query q1
h+t should be prevented if the KRA 

found q1
1 (for some i € { 1, 2, ... , h}) satisfies the following conditions: 

The First Stage Conditions (FSCs): 

A new KRQ q1
h+t is prevented if: 

(ii) Each Xbj (1-:jSt+d), in q1
b, corresponds, in q1

,, to either * or Xaj where X,.i = 

Xbj, namely each cell Xaj should not correspond to a different value in q1
b cells. 

And 

56 



(iii) The result query q1
, returns one record, where q1

, can be computed by 

subtracting the cells of the query q1
b from its corresponding cells in q1

3 , 

excluding the common cells between them. 

The proposed First Stage Algorithm (FSA) is shown in Figure 4.1, and Figure 4.2 

depicts the flow chart for the first stage conditions (FSCs ). 

Individual trackers can be prevented by using the first audit stage; examples 4.1, 

4.4 and 4.5 below show how the proposed scheme could prevent this attack. 

Moreover, example 4.2 shows that this stage could prevent another new threat which 

can occur by stitching two answerable queries using two different category attributes. 

On the other hand, Example 4.3 shows that this stage permits the query which does 

not satisfy FSCs. 

Example 4.1: 

Based on Table 3.3 and Table 3.4, assume that the following query has already been 

posed and stored in the AQ table: 

then, q1
1 = 2**.* = {3, 4, 6, 9, 11} 

And the new user query is posed as follows: 

qz = F.CS.MSc 

I -
then, q2 = 212.* = {3, 6, 9, II} 

57 



{ 
I I I } AQ = q ,, q2, ... , qh 

//q1
; = X;,Xi2 .. . X;,.X; t+I·X; t+2· ... • X; t+ct . 'I • 

Procedure First_ Stage (qh+i) 
Begin 

End; 

Prevent = False; 
For each q\ in AQ 
Begin 

end; 

if (ABS(I q\ H q1h+tl) == I) 
if <I q\ I> I q1

h+ID 

end if; 

else 

end if; 

a= i; 
b = h+l; 

a= h+l; 
b = i; 

For each Xij in q\ 
Begin 

if (Xbj == Xaj) 
Prevent= True; 

elseif ((Xbj !='*')and (Xaj == '*')) 
Prevent= True; 

elseif ((XbJ =='*')and (Xaj != '*')) 
Prevent= True; 

else 

end if; 

Prevent = False; 
break; 

end· 
I q

1
, I= I q

1
• H q1

b I; 
if ((Prevent== True) and (I q1

, I== I)) 
Inform the SOB to prevent q1h+I; 
return Prevent; 

end if; 

if (Prevent == False) 

endif; 

Inform the SOB to permit q1h+ 1; 

return Prevent; 

Figure 4.1: The First Stage Algorithm (FSA) 

58 



False 

False 

Start 

True 

Return Prevent 

False 

False 

True 

True 

True 

Prevent= True 
j = j +I 

Figure 4.2: Flow Chart for the First Stage Conditions (FSCs) 

59 

End 



By using the KRA, the new user query q12 should be prevented, since (i) lq\ I - lq12l 

=I, and (ii) each X2j (I~Yf), in q1
2, corresponds, in q1 ~, to either* or X1j where X2j = 

Xij (l~Yf). And, (iii) by subtracting the cells of the query q1
2 from its corresponding 

cells in q\, excluding the common cells between them, the result query q1
, would 

return one record (see Appendix A). 

Example 4.2: 

Based on Table 3.3 and Table 3.4, assume that the following query has already been 

posed and stored in the AQ table: 

then,q11 =*3*.*={5,6, 10} 

And the new user query is posed as follows: 

q2 = BSc 

then, q12 = **!.* = {6, 10} 

By using the KRA, the new user query q12 should be prevented, since (i) lq11l - lq12l 

= I, and (ii) each X2j (l~Yf). in q1
2, corresponds, in q1

1, to either* or X 1j where X2j = 

X1j (l~Y/). And, (iii) by subtracting the cells of the query q1
2 from its corresponding 

cells in q1
1, the result query q1

, would return one re,:ord (see Appendix A). 

Example 4.3: 

Based on Table 3.3 and Table 3.4, assume that the following query has already been 

posed and stored in the AQ table: 

60 



then, q1
1 = **1.* = {6, 10} 

And the new user query is posed as follows: 

q2 = M.CS 

then, q1z = II*.* = {I, 7, 12} 

By using the KRA, the new user query q1
2 should be permitted, since by subtracting 

the cells of the query q1
1 from its corresponding cells in q1

2, the result query q1
, would 

return more than one record (see Appendix A). 

q\=q1
2 -q1

1 =11*.*-**1.*= lll.* ={!, 7, 12} • 

Example 4.4: 

Based on Table 3.6 and Table 3.7, assume that the following query has already been 

posed and stored in the AQ table: 

then, q1
1 =*!.*.*={I, 2, 8, 9, 10, II, 13} 

And the new user query is posed as follows: 

q2 = F.CS 

then, q1z = 2!.*.* ={I, 8, 9, 10, II, 13} 

By using the KRA, the new user query q1
2 should be prevented, since (i) lq11l- lq12l 

= I, and (ii) each X2i (l<j-::4), in q1
2, corresponds, in q1

1, to either* or X 1J where X 1j = 

X2i (I <J-::4). And, (iii) by subtracting the cells of the query q1
2 from its corresponding 

cells in q1
1, excluding the common cells between them, the result query q1

, would 

return one record (see Appendix A). 

61 



Example 4.5: 

Based on Table 3.6 and Table 3.7, assume that the following query has already been 

posed and stored in the AQ table: 

q1 = Math.Age=21 

then, q1
1 = *2.21. * = {3, 4, 6} 

And the new user query is posed as follows: 

q2 = Age=21 

then, q1
2 = **.21.* = {3, 4, 6, 8} 

By using the KRA, the new user query q12 should be prevented, since (i) lq12l - lq1Ji 

=I, and (ii) each X 1j (1:1-::4), in q1
1, corresponds, in q1

2, to either* or X2j where X2j = 

X 1j (1:1-::4). And, (iii) by subtracting the cells of1:he query q1
1 from its corresponding 

cells in q1
2, the result query q1

, would return one record (see Appendix A) . 

• 

4.2.2 The Second Audit Stage 

If the new key representation query q1
h+ 1 consists of p parts, for some positive integer 

p. 

I I I I 
q h+l = q h+l,l + q h+l,2 + ". + q h+!,p, 

the query will need to be checked by the second audit stage. 

The proposed Second Stage Algorithm (SSA) is shown in Figure 4.3(a) and 

Figure 4.3(b). For this stage we have the following two cases: 

62 



4.2.2.1 The Second Audit Stage: Case 1 

If one of the q 1
h+l parts returns one record, namely lq1

h+t.kl =I (for some k € {I, 2, ... , 

p}), the new key representation query q
1
h+l should be prevented. This is because if the 

KRA permitted this query and the snooper poses another query q1
h+Z with the same 

parts of q 1
h+l excluding the kth part, then he can deduce the individual's information 

by subtracting the answers of the two queries. 

But if at least two of its parts return one record for each part, namely lq
1
h+J.kl = 1 

and lq
1
h+Jj = I (for some k, j € {I, 2, ... , p} and k t j), the new key representation 

query q1
h+ 1 should be permitted. 

General trackers and double trackers can be prevented by using the second audit 

stage, examples 4.6 and 4.7 below show how the proposed scheme can prevent the 

general tracker. 

Example 4.6: 

Based on Table 3.3 and Table 3.4, the query q = F.CS.MSc uniquely identifies the 

employee "Saria". A general tracker's query set size must fall in the range [2n, N-2n] 

[7][8], that is [4, 8] with n=2 and N=l2. The formula T = M qualifies as a general 

tracker since I T I = 7. The snooper applies the following equation to discover S, the 

total sum of all salaries. 

S = sum(M; Salary)+ sum(M; Salary) 

= 1040 + 900 = 1940 

A tracker is obtained by defining: 

• A query: 

q 1 = F.CS.MSc + M 

then, q1
1=212.* + 1**.* = {4} +{I, 2, 5, 7, 8, 10, 12} 

63 



={I, 2, 4, 5, 7, 8, 10, 12} 

sum(q1; Salary)= 1190 

• And, a second query: 

qz = F.CS.MSc + M 

then,q1
2 =212.* + l**.*= {4} + {3, 4, 6, 9, II} 

= {3, 4, 6, 9, II} 

sum(q2; Salary)= 900 

The forbidden query q = F.CS.MSc can be computed using the following formula: 

sum(q; Salary)= sum(q1; Salary)+ sum(qz; Salary)- S 

= 1190 + 900- 1940 = !50 • 

r:JT' This is Saria's Salary. 

By using the KRA, the query q1
1 = 212. * + I**.* should be prevented, since one of 

I I -
its parts q 1.1 = 212. * returns one record. Also, the query q 2 = 212. * + I**.* should be 

prevented, since one of its parts q1
2.1 = 212.* returns one record. 

Example 4. 7: 

Based on Table 3.6 and Table 3.7, the query q = F.CS uniquely identifies the student 

"Sara". A general tracker's query set size must fall in the range [2n, N-2n] [7][8], that 

is [4, 10] with n=2 and N=l4. The formula T = M qualifies as a general tracker since 

IT I = I 0. The snooper applies the following equation to discoverS, the total sum of all 

GPs. 

S = sum(M; GP) + sum( M ; GP) 

=27+ 10=37 

64 



A tracker is obtained by defining: 

• A query: 

q1 =F.CS +M 

then, q1
1 = 21. *.*+I*.*.* 

= {2} +{I, 3, 4, 6, 8, 9, 10, II, 13, 14} 

={I, 2, 3, 4, 6, 8, 9, 10, II, 13, 14} 

sum(q1; GP) = 31 

• And, a second query: 

q2 = F.CS + M 

then, q1
2 = 21.*.* + l*.*.* = {2} + {2, 5, 7, 12} 

= {2, 5, 7, 12} 

sum(q2; GP) = 10 

The forbidden query q = F .CS can be computed using the following fonnula: 

sum(q; GP) = sum(q1; GP) + sum(q2; GP)- S 

=31+10-37=4 • 

r:Jr This is Sara's GP. 

By using the KRA, the query q1
1 = 21. *. * + I*.*.* should be prevented, since one 

of its parts q\ 1 = 21. *. * returns one record. Also, the query q1
2=21. *. * + l*. *. * should 

be prevented, since one of its parts q1
2.1 = 21. *. * returns one record. 

65 



4.2.2.2 The Second Audit Stage: Case 2 

If one of the q1
h+I parts, say q1

h+I.k (for some k € {I, 2, ... , p} ), satisfies the first stage 

conditions (FSCs) with one of the previous KRQs .. say q1
1 (for some i € {I, 2, ... , lz}), 

that has already been posed and stored in the AQ table. And if: 

(1$<0[! andj # k) 

then, the new key representation query q1
h+ 1 should be prevented. That is because if 

the KRA permitted this query and the snooper poses another query q1
h+l with the same 

parts of q1
h+I excluding the kth part, then he can deduce the individual's information 

by subtracting the answers ofthese queries. 

Examples 4.8 and 4.9 show that this stage could prevent another new threat which 

can occur by hiding an unanswerable KRQ, which satisfies the FSCs, inside the p 

parts of the new user query. 

Example 4.8: 

Based on Table 3.3 and Table 3.4, assume that the following query has already been 

posed and stored in the AQ table: 

then, q1
1 = *3*.* = {5, 6, 10} , qld = 3 

sum(q1; Salary)= 600 

And, the new user query is posed as follows: 

qz = BSc + MSc 

then, q1z = **1.* + **2.* 

={6, 10}+{1,2,3,4,5, 7,8, 11}={1,2,3,4,5,6, 7,8, 10, 11}, lq1zl=l0 

sum(qz; Salary)= 1880 

66 



Then the snooper can pose the following query: 

q3 = MSc 

then,q1
3 =**2.* = {1,2,3,4,5, 7,8, II} 

sum(q3; Salary)= 1460 

The snooper applies the following formula to deduce Samy' s salary: 

Salary= sum(q1; Salary)- (sum(q2; Salary)- sum(q3; Salary)) 

= 600- (1880 -1460) = 180 • 

rff" This is Samy's Salary. 

By using the KRA, the query q1
2 = * * !. * + * *2. * should be prevented, since one of 

its parts q2_1 = **!.* satisfied thefirst stage conditions (FSCs) with the query q1
1 = 

*3*.* and q1
2,1n q1z,2= Ill. 

Example 4.9: 

Based on Table 3.6 and Table 3.7, assume that the following query has already been 

posed and stored in the AQ table: 

q1 =CS 

then, q1
1 =*!.*.*={I, 2, 8, 9, 10, II, 13} 

sum(q1; GP) = 20 

And, the new user query is posed as follows: 

qz =Math+ F.CS 

then, q1
2 = *2. *. * + 2"1. *. * 

67 



= {3, 4, 5, 6, 7, 12, 14} +{I, 8, 9, 10, II, 13} 

={I, 3, 4, 5, 6, 7, 8, 9, 10, II, 12, 13, 14} 

sum(q2; GP) = 33 

Then the snooper can pose the following query: 

q3 =Math 

then, q1
3 = *2.* .* = {3, 4, 5, 6, 7, 12, 14} 

sum(q3; GP) = 17 

The snooper applies the following formula to deduce Sara's GP: 

GP = sum(q1; GP)- (sum(q2; GP)- sum(q3; GP)) 

= 20- (33- 17) = 4 • 

(jj"' This is Sara's GP. 

By using the KRA, the query q1
2 = *2. *. * +21. *. * should be prevented, since one of its 

parts q2,1 = 21.*.* satisfied the first stage conditions (FSCs) with the query q1
1 = 

*I.*.* and q12,1 n q12,2 =<D. 

I { I I I } q h+l = q h+l,!o q h+\,2, ... 'q h+l,p 

Procedure Second_ Stage (q1
h+IoP) 

Begin 
II The Second Stage: Case 1 
counter= 0; 
Prevent= False; 
F h I · I or eac q h+1,k m q h+1 

Begin 
if(l q

1
h+1,kl ==I) 

counter++; 
end if; 

end; 

Figure 4.3(a): The Second Stage Algorithm (SSA) 

68 



End; 

if (counter== 1) 
Prevent = True; 

end if; 

Inform the SDB to prevent q1
h+I; 

return Prevent; 

II The Second Stage: Case 2 
counter= 0; 
Prevent = False; 
F h I · I or eac q h+I,k m q h+I 

Begin 

end; 

Intersection = False; 
if (First_Stage (q1

h+I.k) ==True) 

end if; 

F h I · I or eac q h+Ij m q h+I 

Begin 

end; 

if(j !=k) 

endif; 

if (q
1
h+l.k n q1

h+lj !=<D) 
Intersection= True; 
break; 

end if; 

if (Intersection == False) 
counter++; 

endif; 

if (counter== 1) 
Prevent= True; 

else 

endif; 

Inform the SDB to prevent q1
h+I; 

return Prevent; 

Prevent= False; 
Inform the SDB to permit q1

h+ 1; 

return Prevent; 

Figure 4.3(b): The Second Stage Algorithm (SSA) 

69 



4.2.3 The Third Audit Stage 

Since the SOB in this scheme is online and dynamic, the individuals' records of an 

SOB need to be inserted, deleted and updated dynamically. After updating the SOB, 

the snooper may repeat invoking one of the previous queries again. In this case the 

third audit stage can be used to decide whether the new user query is legal or not. The 

proposed Third Stage Algorithm (TSA) is shown in Figure 4.4(a) and Figure 4.4(b), 

while Figure 4.5 depicts the flow chart for the key representation auditing scheme 

(KRAS). 

Insertion and deletion attacks can be prevented by using the third audit stage; 

examples 4.10 and 4.11 below show how the proposed scheme could prevent this 

attack. Moreover, examples 4.12 and 4.13 show that this stage could prevent another 

new threat which can occur by hiding a repeated unanswerable KRQ, which does not 

satisfy TSC, inside the p parts of the new user query. 

For this stage we have the following two cases: 

4. 2. 3.1 The Third Audit Stage: Case 1 

If the new key representation query q1
h+ 1 is equal to one of the prevwus key 

representation queries which has already been posed and stored in the AQ table, 

namely q1
h+l = q\ (for some i € {I, 2, ... , h} ), then the KRA compares between the 

query-set size column and the latest query-set size column, namely lq1,1 and Llq\1, 
respectively. 

The Third Stage Condition (TSC): 

A new KRQ q1
h+l is permitted if: 

, (for some i € {I, 2, ... , h}) 

where, n::>O is a parameter of a database. 

If the above condition is satisfied, then invoking the query q1
h+ 1 again is permitted. 

Otherwise, the query q1
h+ 1 is prevented. 

70 



Example 4.10: 

Based on Table 3.3 and Table 3.4, let us suppose that the user posed the query: 

q=PE 

then, q1 = *3*.* = {5, 6,10} , lq11 = 3, Llq11 = 3 

After inserting a new record (13, Farid, M, PE, MSc, 250), the Llq1l value will be 4. If 

the user posed the query q = PE again, 

Then, q1 = *3*.* = {5, 6,10, 13} , lq11 = 3, Llq11 = 4 

By using the KRA with n=2, the query q1 = *3*. * should be prevented, since 

ABS(Iq\1-Liq\1) = I doesn't satisfy the third stage condition (TSC). 

Example 4.11: 

Based on Table 3.6 and Table 3.7, let us suppose that the user posed the query: 

q =Math 

then, q1 = *2.*.* = {3, 4, 5, 6, 7, 12, 14} , lq'1=7, Llq11=7 

After inserting a new record (15, Zainab, F, Math, 22, 3), the Llq11 value will be 8. If 

the user posed the query q = Math again, 

then, q1 = *2.*.* = {3, 4, 5, 6, 7, 12, 14, 15} , lq11=7, Llq11=8 

By using the KRA with n=2, the query q1 = *2. *. * should be prevented, since 

ABS(Iq\1 - Llq\1) = I doesn't satisfy the third stage condition (TSC). 

4.2.3.2 The Third Audit Stage: Case 2 

If the new key representation query q1
h+l consists of p parts, for some positive integer 

p: 

71 



I I I I 
q h+l = q h+l,l + q h+l,2 + ... + q h+l,p. 

and one of its parts, say q1h+t,k (for some k € { 1, 2, ... , p} ), is equal to one of the 

previous KRQs which has already been posed and stored in the AQ table, namely 

q1h+t,k= q\ (for some i € {I, 2, ... , h} ), and if: 

(!~~ andj fc k) 

then the KRA checks the third stage condition (ISC). If the condition is satisfied, then 

the new user query q1h+J is permitted, otherwise the query q1h+J is prevented. That is 

because if the KRA permitted this query and the snooper poses another query q1
h+Z 

with the same parts of q1h+J excluding the kth part, then he can deduce the individual's 

information by subtracting the answers of these queries. 

Example 4.12: 

Based on Table 3.3 and Table 3.4, let us suppose that the user posed the query: 

then, q\ = *3*.* = {5, 6, 10} , I q\1=3, Ll q11l= 3 

sum(qt; Salary)= 600 

After inserting a new record (13, Farid, M, PE, MSc, 250), the Ll q1tl value will be 4. 

If the user posed the query: 

qz =PhD+ PE 

then, q1z = **3.* + *3*.* = {9, 12} + {5, 6, 10, 13} = {5, 6, 9, 10, 12, 13} 

sum(qz; Salary)= 910 

Then the snooper can pose the following query: 

q3 =PhD 

72 



then, q1
3 = **3.* = {9, 12} 

sum(q3; Salary)= 60 

The snooper applies the following formula to deduce Farid's salary: 

Salary= sum(qz; Salary)- sum(q3; Salary)- sum(qi; Salary) 

=910-60-600=250 • 

(ffr This is Farid' s Salary. 

By using the KRA with n = 2, the query q1
2 = **3. * + *3*. * should be prevented, 

since one of its parts q1z.z= *3*.* is equal to one of the previous KRQs and ABS(Iq\1-

Liq\1)=1 doesn't satisfy the third stage condition (TSC). 

Example 4.13: 

Based on Table 3.6 and Table 3.7, let us suppose that the user posed the query: 

then, q1
1 = *2.*.* = {3, 4, 5, 6, 7, 12, 14} 

sum(qi; GP) = 17 

After inserting a new record (15, Salih, M, Math, 22, 3), the Ll q11l value will be 8. 

If the user posed the query: 

qz = F.CS +Math 

then, q1
2 = 21. *. * + *2. *. * = {I, 8, 9, I 0, II, 13} + {3, 4, 5, 6, 7, 12, 14, 15} 

={I, 3, 4, 5, 6, 7, 8, 9, 10, II, 12, 13, 14, 15} 

sum(qz; GP) = 36 

73 



Then the snooper can pose the following query: 

q1 = F.CS 

then, q1
3 = 21.•.• = {1, 8, 9, 10, 11, 13} 

sum(q3; GP) = 16 

The snooper applies the following formula to deduce Salih's GP: 

=36-16-17=3 • 

(ff' This is Salih's GP. 

By using the KRA with n = 2, the query q1
2 = 21. *. * + *2. *. * should be prevented, 

since one of its parts q12.2 = *2. *. * is equal to one of the previous KRQs and ABS(Iq\I

Liq\1)=1 doesn't satisfy the third stage condition (TSC). 

AQ = {q1
1, q12, ... , q1h} 

I { I I I } qh+I = qh+I,I, qh+J,2, ... , qh+l,p 
Procedure Third _Stage_Condition (q1m) 
Begin 

If (((I q1
m I-Ll q

1
mi)==O) or (ABS(I q1

m I-Ll q1ml) >= n)) 
return True; 

else 
return False; 

end if; 
End· 
Pro~edure Third_Stage (q1

h+I) 

Begin 
II The Third Stage: Case 1 
Permit= False; 
For each q\ in AQ 
Begin 

If (q1h+l == q\) 

Figure 4.4(a): The Third Stage Algorithm (TSA) 

74 



End; 

endif; 
end; 

If(Third_Stage_Condition (q\) ==True) 
Permit= True; 

else 

end if; 

Inform the SOB to permit q 1
h+I; 

return Permit; 

Permit= False; 
Inform the SOB to prevent q1

h+ 1; 

return Permit; 

II The Third Stage : Case 2 
counter= 0; 
Permit= False; 
F h I · I or eac qh+I,k m qh+I 

Begin 

end; 

Intersection = False; 
If (Third_Stage(q1

h+I k) ==True) 
I ' I 

endif; 

For each q h+IJ in q h+I 

Begin 

end; 

If(j !=k) 

end if; 

If (q1
h+l.k n q 1

h+IJ !=<D) 
Intersection= True; 
break; 

end if; 

if (Intersection== False) 
counter++; 

end if; 

If (counter>= I) 
Permit = True; 

else 

end if; 

Inform the SOB to permit q1
h+I; 

return Permit; 

Permit= False; 
Inform the SOB to prevent q 1

h+I; 

return Permit; 

Figure 4.4(b): The Third Stage Algorithm (TSA) 

75 



'Tl 
ciQ" 

"' ..., 
(1) 

:1'-
U> 

'Tl 
0 
::E 
n 
::;-

"' ;:1. 

8' ..., 
~ 

::;-
(1) 

;;-:: 
-..) (1) 

a-- '< 

~ 
"' ..., 

(D 

"' (I) 

= ~ 

"' ~ a· 
= > 
"' e, 
~ s· 

ao 
[JJ 
0 

~ 
8 
(I) 

if 
TSCis 

~
True/satisfi~d and :q/lj" 

=~ 

False 

if 

True 

True 

~ .f; q ,..,_, q ,.,,~ ) • (_ 
1"5j,k5p,j~J.f 

True 

False 

if 
q·,..,_,.J=l 

(Hk~p) 

False 

if 
q n-l,;:=q',; 

(19<5p, 
Jgg,) 

if 
~1~ s.at:is.fie

FSCs with q; 

False 

False 
if 

q·:rl consists 
of one part 

True 

if 
q'rl=qi 

(Jgg,) 

False 

if 
ABS(q;'
:tf~!:)=l 
(Jgg,) 

True 

True 

if 
TSCis 

<atisfied 

False 

if 
FSCs are 
satisfied ./ 

True 

True 

False+ • I 

lnformSDBtoJ~---------------------------------------------" 
prevent q':r.+l 

~------------------------------------~--------------------~~. perrrutqTl _4-----------_J ~ I 
Inform_ SDB to I 

End 4 + 



4.3 Summary 

Three audit stages of our proposed scheme were provided in this chapter, these stages 

were proposed to protect online and dynamic SDBs from being disclosed. Efficient 

algorithms for these stages were presented. These algorithms enable the key 

representation auditor (KRA) to conveniently specify the illegal queries which could 

lead to disclosing the SDB. In addition, many examples for each stage were provided. 

These examples showed how the KRA could prevent the SDB threats such as 

individual trackers, general trackers, double trackers and insertion and deletion 

attacks. Also, the new scheme could prevent another three new types of threats which 

can occur by stitching two answerable queries using two different category attributes, 

hiding an unanswerable KRQ, which satisfies the FSCs, inside the p parts of the new 

user query and hiding a repeated unanswerable KRQ, which does not satisfy the TSC, 

inside the p parts of the new user query. 

77 



CHAPTERS 

COST ESTIMATION FOR THE KEY REPRESENTATION 

AUDITING SCHEME 

5.1 Introduction 

This chapter provides cost estimation for our proposed scheme (KRAS), and this 

study illustrates the savings in block accesses (CPU time) and storage space that are 

attainable when a KRDB is used. Comparisons between the KRDB and the original 

database are provided in terms of number of blocks, linear search, binary search and 

sorting. The results of the comparisons showed that there is vast improvement in 

terms of number of blocks, linear search and sorting. And slight improvement in 

terms of binary search. The proposed scheme (KRAS) depends directly on the KRDB, 

which saves block accesses (CPU time) and storage space compared to the original 

database, while all the schemes proposed by previous works depend directly on the 

original database. 

5.2 Cost Estimation 

The records of a table must be allocated to disk blocks, because a block is the unit of 

data transfer between disk and memory [3]. The key representation database (KRDB) 

D 1 needs substantially fewer blocks than does the original database D. That is because 

each KRDB record is typically smaller in size than an original database record since it 

has only two attributes; consequently, more KRDB records than original database 

records can fit in one block. 

78 



5.3 Parameters of the Cost Estimation 

Suppose that the block size is B bytes. For the original database D of fixed-length 

records of size R bytes, with B?R, we can fit hfr = l Bl Rj records per block, where 

"l J" denotes flooring (round down to nearest integer). The value hfr is called the 

blocking factor for the table [3][2]. R can be computed as follows: 

t+d 

R = ~Size(Aj) 
j~l 

The number of blocks h needed for the original database of N records is h = 

IN 1 hfr l blocks, where" 11" denotes ceiling (round up to nearest integer). 

For the KRDB Di of fixed-length records of size Ri bytes, we can fit hfri = 

L B I R' J records per block. Ri can be computed as follows: 

l+tl 

Ri=t+d+ ~Size(A) 
I=t+l 

because for each KRDB record there are only t bytes for the t category attributes (A1, 

A2, ••. , A1), d bytes for the d data attributes' separators and d data attributes (At+ I, 

A1+2, •.. , At+ct). The number of blocks hi needed for the KRDB of N records is hi = 

IN I hfr'l blocks. 

Table 5.1 shows the parameters of the cost estimation for the original database D 

and the key representation database D\ 

79 



Table 5.1: The Parameters of the Cost Estimation 

Original Database 
KRDBD1 

D 

Record Size t+d t+d 

R= l:Size(Aj) R1= t+ d+ L:size(Aj) 
(bytes) i""l j==l+\ 

Blocking Factor 
bfr= lBIRj bfr1 = LBI R'j 

(Record/Block) 

Number of Blocks 
b =IN I bfr l b

1 =IN I bfr'l 
(Blocks) 

5.4 Comparisons between the KRDB and the Original Database 

This section provides comparisons between the KRDB and the original database in 

terms of number of blocks, linear search, binary search and sorting. These 

comparisons are performed for the following two case studies. The results of the 

comparisons showed that there is vast improvement in terms of number of blocks, 

linear search and sorting. And slight improvement in terms of binary search [56][57]. 

In this section, the terms vast, slight and fair improvement can be used as follows: 

• Vast: if Reduction 2: 70%, 

• Slight: if Reduction<:; 40%, 

• Fair: otherwise. 

5.4.1 Case Study I- One Data Attribute 

Based on the first example which has been stated in section 3.3.5.1, consider the 

following two examples which compare the original database with its corresponding 

KRDB. These examples illustrate the savings in block accesses (CPU time) and 

storage space that are attainable when a KRDB is used (see Table 5.2). 

80 



Example 5.1: 

The fixed-length records of the original database in Table 3.3 have a record size of R 

= 4 + 20 + I + 2 + 3 + 4 = 34 bytes. Suppose that this table contains N = 30,000 

records on a disk with a block size of B = I 024 bytes. The blocking factor for the 

table would be hfr= LB I Rj = L!024/34j = 30 record/block. 

• The number of blocks needed for this table is h = IN I hfr l = 130,000/30 l = 

1000 blocks. 

• A linear search on this table would need h = I 000 block accesses. 

• To perform a binary search on this table, in case it is an ordered table, would 

need approximately I log, h l = llog, I 000 l = I 0 block accesses. 

• If a table has to be sorted, we would have to add the cost of the sort, which 

would need approximately I h iog2 h l = II OOO!og2 1000 l = 9966 block 

accesses. 

Example 5.2: 

Consider the KRDB Di in Table 3 .4, which its fixed-length records have a record size 

of Ri = 3 + I + 4 = 8 bytes. Suppose that this table also contains N = 30,000 records 

on a disk with a block size of B = I 024 bytes. The blocking factor for the table would 

be hfri = LB I R'j = Ll024/8j = 128 record/block. 

• The number of blocks needed for this table is hi = IN I hfr'l = l30,000/128l 

= 235 blocks. This is a vast improvement over the number of blocks needed 

for the original database D, which required 1000 blocks. 

• A linear search on this table would need hi= 235 block accesses. This is a vast 

improvement over the 1000 block accesses needed for a linear search on the 

original database D (see Figure 5.l(a)). 

81 



o A binary search on this table, would need approximately jlog2 b'l = 

jlog2 235l = 8 block accesses. This is a slight improvement over the I 0 block 

accesses needed for a binary search on tlle original database D (see Figure 

5.l(b)). 

o The cost for sorting this table would need approximately I b' log, b'l = 

j235log2 235l = 1851 block accesses. Tllis is a vast improvement over the 

9966 block accesses needed for sorting the original database D (see Figure 

5.l(c)). 

Table 5.2: Case Study I- The KRDB D 1 VS the Original Database D 

b = 1000 76.5% Vast 

76.5% Vast 

Slight 

jblog2 bl=9966 jb'log, b'l=I851 81.4% Vast 

82 



Linear Search The Original D3t3base Vs The KRDB 

90 

80 

70 

60 

s 
• • 50 • • • ---+-- Lir~ear Search 0 
~ • 40 ~ 

-Lmear Search 0\ 

~ 
~ 

3D 

20 

1 D 

SOD 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Num11e1 of Records fNI 

Figure 5.l(a): Case Study I- Linear Search: the Original Database Vs the KRDB 

SOD 1000 1500 

Binary Search The Original Database Vs The KRDB 

2000 2500 3000 3500 4000 4500 

N•uube• ofReco1<1s (N) 

5000 

.......-- Bmary Search D 
-Binary Search D\ 

Figure 5.l(b): Case Study I- Binary Search: the Original Database Vs the KRDB 

83 



Sorting The Original Database \Is The KRDB 

14DD 

12DO 

1000 

s: 
• 800 • • • • 
~ • 
" 600 ~ • 

400 

200 

50D 1 ODD 150D 20DD 250D 3000 3500 4DDO 4500 50DO 

Nlllllhfll of Records (N) 

Figure 5.l(c): Case Study I- Sorting: the Original Database Vs the KRDB 

5.4.2 Case Study II- More than One Data Attributes 

Based on the second example which has been stated in section 3.3.5.2, consider the 

following two examples which compare the original database with its corresponding 

KRDB. These examples illustrate the savings m block accesses (CPU time) and 

storage space that are attainable when a KRDB is used (see Table 5.3). 

Example 5.3: 

The fixed-length records of the original database in Table 3.6 have a record size of R 

= 4 + 20 + 6 + 4 + 4 + 4 = 42 bytes. Suppose that this table contains N = 30,000 

records on a disk with a block size of B = 1024 bytes. The blocking factor for the 

table would be bfr = LB I Rj = Ll0241 42j = 24 record/block. 

• The number of blocks needed for this table is b = IN I bfr l = 130,000 I 24l = 

1250 blocks. 

84 



• A linear search on this table would need b = 1250 block accesses. 

• To perform a binary search on this table, in case it is an ordered table, would 

need approximately flog, b l = flog 2 1250 l =II block accesses. 

• If a table has to be sorted, we would have to add the cost of the sort, which 

would need approximately f b log, b l = f!250 log, 1250 l = 12860 block 

accesses. 

Example 5.4: 

Consider the KRDB D1 in Table 3.7, which its fixed-length records have a record size 

of R1 = 2 + 2 + 4 + 4 = 12 bytes. Suppose that this table also contains N = 30,000 

records on a disk with a block size of B = I 024 bytes. The blocking factor for the 

table would be bfr1 = LB I R'j = L1024112j = 85 record/block. 

• The number of blocks needed for this table is b1 = f N I bfr'l = f 30,000185l = 

353 blocks. This is a vast improvement over the number of blocks needed for 

the original database D, which required 1250 blocks. 

• A linear search on this table would need b1 = 353 block accesses. This is a vast 

improvement over the 1250 block accesses needed for a linear search on the 

original database D (see Figure 5.2(a)). 

• A binary search on this table, would need approximately flog, b'l = 

flog, 353l = 9 block accesses. This is a slight improvement over the II block 

accesses needed for a binary search on the original database D (see Figure 

5.2(b)). 

• The cost for sorting this table would need approximately f b'log2 b'l = 

f353log 2 353l = 2988 block accesses. This is a vast improvement over the 

12860 block accesses needed for sorting the original database D (see Figure 

5.2(c)) 

85 



250 

200 

~ 150 

~ 
"' ~ 
g 100 
a; 

50 

Table 5.3: Case Study II- The KRDB D1 VS the Original Database D 

b = 1250 b1 = 353 71.8% 

b = 1250 b1 = 353 71.8% 

flog, b l = 11 flog, b'l = 9 18.2% 

r b log, b l =12860 r b'log, b'l =2988 76.8% 

Linear search: The Original Database Vs The KRDB 

500 1 000 1500 2000 2500 3000 350[) 4000 4500 5000 

Number of R~cor ds (N) 

Vast 

Vast 

Slight 

Vast 

......-unearSearch D 

...,._Linear Search D\ 

Figure 5.2(a): Case Study II- Linear Search: the Original Database Vs the KRDB 

86 



7 

I' 
~ 
< 4 

~ 
• 

3 

500 1000 1500 

Binary Sureh: The OrigiMI Database Vs The KRDB 

2000 2500 3000 3500 4000 4500 

llumber ofRe~ords (Nj 

5000 

-+-Binary Search D 
....._Binary search m 

Figure 5.2(b): Case Study II- Binary Search: the Original Database Vs the KRDB 

Sorting: Thl! Orlgin<ll Databasl! Vs Thl! KRDB 

1 SOD 

1600 

1400 

1200 

" • • 1000 • • 
~ 
0 
< BOO ~ 

-+-Sorting D 

-.-sortmQ m 

" s • 
600 

<00 

200 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Nmnher of Records !N) 

Figure 5.2(c): Case Study II- Sorting: the Original Database Vs the KRDB 

87 



5.5 Summary 

In this chapter, cost estimation for our proposed scheme (KRAS) was performed, and 

it illustrated the savings in block accesses (CPU time) and storage space that are 

attainable when a KRDB is used. Comparisons were made between the KRDB and 

the original database in terms of number of blocks, linear search, binary search and 

sorting. These comparisons were performed for two case studies which have been 

presented in section 3.3.5. The results of the comparisons showed that there is vast 

improvement in terms of number of blocks, linear search and sorting. And slight 

improvement in terms of binary search. All the schemes proposed by previous works 

depend directly on the original database, while our proposed scheme (KRAS) depends 

directly on the KRDB, which saves block accesses (CPU time) and storage space 

compared to the original database. 

88 



CHAPTER6 

STATISTICAL ANALYSIS FOR THE KEY REPRESENTATION 

DATABASE AND THE ORIGINAL DATABASE 

6.1 Introduction 

This chapter provides statistical analysis and comparative study to compare between 

means and variances of the original database and the KRDB populations. 

Comparisons between the KRDB and the original database are provided in terms of 

record size, number of blocks, linear search, binary search and sorting to examine 

whether the KRDB is better than the original database or not. The statistical analysis 

uses t-test and F-test to evaluate the differences in means and variances, respectively, 

between the two populations. The size of the sample drawn from each population is 

25. The null hypothesis, that there will be no significant difference between the two 

populations' means/variances, against the alternative hypothesis, that there will be a 

significant difference between the two populations' means/variances are tested. The 

results of the tests showed that the differences between means/variances are 

statistically significant, except in one case, namely the difference between the 

variances in terms of binary search. 

6.2 Comparisons between the KRDB and the Original Database 

Statistical analysis and comparative study were provided to compare between means 

and variances of the original database and the KRDB populations. The comparisons 

were made in terms of record size, number of blocks, linear search, binary search and 

sorting to examine whether the KRDB is better than the original database or not. The 

89 



t-test and F-test were used to evaluate the differences m means and vanances, 

respectively, between the two populations [58]-[63]. 

6.2.1 Record Size: the Original Database Vs tho~ KRDB 

Table 6.1 shows record sizes of the original databases (Rs) in comparison to their 

KRDBs (R1s). The size of each sample is 25. Rand R1 can be computed as follows: 

where: 

l+d 

R = Lsize(A
1

) 

j=d 

t+d 

R 1 =t+d+ Lsize(A1) 
j=t+l 

t =the number of category attributes 

d =the number of data attributes 

A1 =the attribute number j in the original database 

Table 6.1: Record Size: R V s R1 

Original DB 
KRDB Record Size 

Trial Runs Record Size 
R 

Rl 

I 34 8 

2 42 12 

3 57 15 

4 66 13 

90 



Table 6.1 -Continued 

Original DB KRDB Record Size Trial Runs Record Size Rl 
R 

5 87 9 

6 59 7 

7 57 8 

8 69 12 

9 64 13 

10 56 16 

11 74 8 

12 77 9 

13 66 22 

14 63 II 

15 94 11 

16 96 10 

17 II 0 15 

18 104 15 

19 139 14 

20 115 15 

21 78 14 

22 75 14 

23 85 15 

91 



Table 6.1 -Continued 

Original DB 
KRDB Record Size 

Trial Runs Record Size 
R 

R' 

24 110 11 

25 100 15 

X; 79.08 12.48 

s2 
' 

614.74 11.51 

The first trial run in Table 6.1 shows: 

• The record size of the original database which has been stated in Table 3.3 (R = 

4 + 20 + 1 + 2 + 3 + 4 = 34 bytes). 

• The record size of the key representation database (KRDB) which has been 

stated in Table 3.4 (R1 = 3 + I+ 4 = 8 bytes). 

6. 2.1.1 Comparing the Means in terms of Record Size 

In order to compare the record size means of the two types of databases, namely the 

original database and the KRDB, hypothesis was tested. The null hypothesis Ho: >tt = 

>t2, says that there will be no significant difference between the two populations' 

means, and the alternative hypothesis H.: >tt t- >t2. says that there will be a significant 

difference between the two populations' means, with a significant level of a= 0.05. 

The pooled variance S! can be computed as follows: 

= 24*614.74+24*11.51 =313.13 
48 

92 



The standard error of the difference between means S x -x can be computed as 
' ' 

follows: 

= 313.13*(-
1 
+-

1
) = 5.005 

25 25 

The calculated value t, can be computed as follows: 

= 
79.08-12.48 

13.31 
5.005 

The critical value t,, obtained from a table of t-values, corresponding to the 

significant level of a= 0.05 with df= n, + n, -2 = 48 degrees of freedom, is: 

@"'With a= 0.05, reject H0 if t, > t,. 

By comparing the calculated value t, = 13.31 with the tabled value t, =2.009, the 

null hypothesis Ho should be rejected, and it can be concluded that there is a 

statistically significant difference between the means of the KRDB and the original 

database. 

6.2.1.2 Comparing the Variances in terms of Record Size 

Furthermore, in order to compare record size variances between the original database 

and the KRDB, another hypothesis was tested. The null hypothesis H0: G; = G;, says 

that there will be no significant difference between the two populations' vanances, 

93 



and the alternative hypothesis Ha: cr; t cr;, says that there will be a significant 

difference between the two populations' variances, with a significant level of a = 

0.05. 

The calculated value F, can be computed as follows: 

F = st' 
, s' 

2 

= 614.74 = 53.41 
11.51 

The critical values F, and F, , obtained from a table ofF -values, corresponding to 
' ' 

the significant level of a= 0.05 with dft = n1-I ·~ 24 and df2 = n2-I = 24 degrees of 

freedom, are: 

I~~ 

F - F 2 - F 0
·
97

' - 2 2693 t1 - (n1-l,n2 -1) - (24,24) - · 

F - F~ - F 0·025 - I = I 0 4407 
t, - (n,-l,n,-1) - (24,24) - F0975 = ' 

(24,24) 2.2693 

C1r With a= 0.05, reject H0 if F, < F, or F, :e: F, 
' ' 

By comparing the calculated value F, •= 53.41 with the tabled values 

F, = 2.2693 and F, = 0.4407, the null hypothesis H0 should be rejected, it can be 
' ' 

concluded that there is a statistically significant difference between the variances of 

the KRDB and the original database. 

6.2.2 Number of Blocks: the Original Database Vs the KRDB 

Besides record size, number of blocks was also compared between the original 

database and the KRDB. Table 6.2 shows the result of the comparison. The size of 

94 



each sample is 25. h, which is the number of blocks of the original database, and hi, 

which is number of blocks of the corresponding KRDB, can be computed as follows: 

h = fN I hfr l 

where: 

hfr = lBI Rj, hfri = LB I R'j, 

t+d t+d 

R= LSize(Aj),Ri=t+d+ LSize(A) 
j=l 

B = the block size, 

N = the database size. 

t = the number of category attributes 

d = the number of data attributes 

Table 6.2: Number of Blocks: h Vs hi 

Original DB KRDB 
Trial Runs Number of Blocks Number of Blocks 

h hi 

I 1000 235 

2 1250 353 

3 1765 442 

4 2000 385 

95 



Table 6.2 - Continued 

Original DB KRDB 
Trial Runs Number of Blocks Number of Blocks 

b b\ 

5 2728 266 

6 1765 206 

7 1765 235 

8 2143 353 

9 1875 385 

10 1667 469 

11 2308 235 

12 2308 266 

13 2000 653 

14 1875 323 

15 3000 323 

16 3000 295 

17 3334 442 

18 3334 442 

19 4286 411 

20 3750 442 

21 2308 411 

22 2308 411 

23 2500 442 

96 



Table 6.2- Continued 

Original DB KRDB 
Trial Runs Number of Blocks Number of Blocks 

h h' 

24 3334 323 

25 3000 442 

X, 2,424.12 367.60 

s' I 632,509.28 10,099.00 

In the first trial run in Table 6.2, h = 1000 blocks and bi = 235 blocks, namely the 

number of blocks of the original database and the KRDB, respectively, can be 

computed as follows: 

Suppose that the database contains N = 30,000 records on a disk with a block size 

of B = I 024 bytes. From the first trial run in Table 6.1, R = 34 and Ri = 8. Then, hfr 

and hfri can be computed as follows: 

hfr = LB I Rj = LI024/34j = 30 record/block 

bfri = LB I R'j = L!024/8j = 128 record/block. 

Then, b and hi can be computed as follows: 

h = l N I hfr l = j30,000/30 l = 1000 blocks 

hi= l N I hfr'l = j30,0001128l = 235 blocks. 

6. 2. 2.1 Comparing the Means in terms of Number of Blocks 

Again, the number of blocks means of the two databases was compared. The null 

hypothesis H0: ~1 = ~2, says that there will be no significant difference between the 

97 



two populations' means, and the alternative hypothesis H,: J.!l # J.!z, says that there will 

be a significant difference between the two populations' means, with a significant 

level of a.= 0.05. 

The pooled variance S! can be computed as follows: 

S' = (n, -1)S,' + (n 2 -1)Si 
' (n, + n2 - 2) 

= 24*632,509.28+24*10,099.00 = 321304.14 
48 , 

The standard error of the difference between means S" -x can be computed as . ' ' 

follows: 

= 321,304.14*(-
1 
+-

1
) = 160.33 

25 25 

The calculated value t, can be computed as follows: 

= 2,424.12-367.60 = 12.77 
160.33 

The critical value t1 , obtained from a table: of t-values, corresponding to the 

significant level of a.= 0.05 with df= n1 + n2 - 2 = 48 degrees of freedom, is: 

Gr With a.= 0.05, reject Ho if t, > t1 • 

98 



By comparing the calculated value t,= 12.77 with the tabled valuet,=2.009, the 

null hypothesis Ho should be rejected, and it can be concluded that there is a 

statistically significant difference between the means of the KRDB and the original 

database. 

6.2.2.2 Comparing the Variances in terms ofNumber of Blocks 

Moreover, the null hypothesis H0: cr; = cri, that there will be no significant 

difference between the two populations' variances, and the alternative hypothesis 

H,: cr; i cr;, that there will be a significant difference between the two populations' 

variances, were tested with a significant level of a= 0.05. 

The calculated value F, can be computed as follows: 

s' 
F 

__ I 

' - 2 s, 

632,509.28 
= 

10,099.00 
62.63 

The critical values F,, and F,, , obtained from a table ofF -values, corresponding to 

the significant level of a = 0.05 with df1 = n 1-l = 24 and df2 = n2-l = 24 degrees of 

freedom, are: 

F =F~ =F 0025 = I = I =0.4407 
r, (n,-l,n,-1) (24,24) F0975 2.2693 (24,24) 

r:tF With a= 0.05, reject H0 if F,. < F,, or F, :e: F,, 

By comparing the calculated value F, = 62.63 with the tabled values 

F,, = 2.2693 and F,, = 0.4407, the null hypothesis H0 should be rejected, and it can 

99 



be concluded that there is a statistically significant difference between the variances 

of the KRDB and the original database. 

6.2.3 Linear Search: the Original Database Vs the KRDB 

As shown in Table 6.3, the results of comparisons between a linear search on the 

original databases and its corresponding KRDBs are presented. The size of each 

sample is 25. The linear search needs as follows: 

• On the original database b block acc(:sses . 

• On the KRDB b1 block accesses . 

Table 6.3: Linear Search: Original DB Vs KRDB 

Trial Runs 
Original DB 

KRDB Linear Search 
Linear Search 

I 1000 235 

2 1250 353 

3 1765 442 

4 2000 385 

5 2728 266 

6 1765 206 

7 1765 235 

100 



Table 6.3 - Continued 

Trial Runs Original DB KRDB Linear Search Linear Search 

8 2143 353 

9 1875 385 

10 1667 469 

II 2308 235 

12 2308 266 

13 2000 653 

14 1875 323 

IS 3000 323 

16 3000 295 

17 3334 442 

18 3334 442 

19 4286 411 

20 3750 442 

21 2308 411 

22 2308 411 

23 2500 442 

101 



Table 6.3 -Continued 

Trial Runs 
Original DB 

KRDB Linear Search 
Linear Search 

24 3334 323 

25 3000 442 

-
X; 2,424.12 367.60 

s2 
' 

632,509.28 10,099.00 

In the first trial run in Table 6.3: 

• The linear search of the original database would need b block accesses. From the 

first trial run in Table 6.2: b = 1000. 

• The linear search of the KRDB would need b1 block accesses. From the first trial 

run in Table 6.2: b1 
= 235. 

6.2.3.1 Comparing the Means in terms of Linear Search 

The null hypothesis Ho: Ill= Jlz. that there will be no significant difference between 

the two populations' means, and the alternative hypothesis H.: Jl1 # Jlz, that there will 

be a significant difference between the two populations' means, were then tested with 

a significant level of a.= 0.05. 

The pooled variance S~ can be computed as follows: 

S' = (n1 -1)S1
2 + (n 2 -1)Si 

P (n
1 
+ n2 - 2) 

= 24 * 632,509.28 + 24 * 10,099.00 = 321,304.14 
48 

102 



The standard error of the difference between means S x _ x can be computed as 
' l 

follows: 

= 321,304.14*(-
1 
+-

1
) =160.33 

25 25 

The calculated value t, can be computed as follows: 

x,-x, 
t = ---'---'-
' S X -X-

' ' 

= 2,424.12-367.60 = 12.77 
160.33 

The critical value 11 , obtained from a table of t-values, corresponding to the 

significant level of a= 0.05 with df= n1 + n2 - 2 = 48 degrees of freedom, is: 

r::tr With a= 0.05, reject H0 if t, > t,. 

By comparing the calculated value t, = 12.77 with the tabled valuer, =2.009, the 

null hypothesis H0 should be rejected, and it can be concluded that there is a 

statistically significant difference between the means of the KRDB and the original 

database. 

6.2.3.2 Comparing the Variances in terms of Linear Search 

Another hypothesis was then tested for comparing the variances, in terms of linear 

search that needs to be performed in order to find relevant records from the original 

database and the KRDB. The null hypothesis H11 : ai = a;, says that there will be no 

103 



significant difference between the two populations' vanances, and the alternative 

hypothesis H.: cri # cr;, says that there will be a significant difference between the 

two populations' variances, with a significant level of a= 0.05. 

The calculated value F, can be computed as follows: 

F = s,2 
, s2 

2 

= 632,509.28 62.63 
10,099.00 

The critical values F, and F, , obtained from a table ofF -values, corresponding to 
' ' 

the significant level of a= 0.05 with dft = nt-1 = 24 and df2 = n2-l = 24 degrees of 

freedom, are: 

1-~ 
F - F 2 - F 0

·''' - 2 2693 t - (n -In -I) - (24 24) - • I I ' 2 ' 

" 
F -F2 -F 0025 

- I = I =0.4407 
t, - (n,-l,n,-1) - (24,24) - Fo 975 2.2693 (24,24) 

rir With a= 0.05, reject Ho if F, < F,, or F, ;>: F,, 

By comparing the calculated value F, •= 62.63 with the tabled values 

F, = 2.2693 and F, = 0.4407, the null hypothesis Ho should be rejected, and it can 
' ' 

be concluded that there is a statistically significant difference between the variances 

of the KRDB and the original database. 

6.2.4 Binary Search: the Original Database Vs the KRDB 

As shown in Table 6.4, the results of performing binary search on the original 

databases and its corresponding KRDBs are presented. The size of each sample is 25. 

The binary search needs as follows: 

104 



• On the original database, approximately, I log, b l block accesses. 

• On the KRDB, approximately, !Jog, b'l block accesses. 

Table 6.4: Binary Search: Original DB Vs KRDB 

Trial Runs 
Original DB KRDB 

Binary Search Binary Search 

I 10 8 

2 II 9 

3 II 9 

4 II 9 

5 12 9 

6 II 8 

7 II 8 

8 12 8 

9 II 9 

10 II 9 

II 12 8 

12 12 9 

13 11 10 

14 I 1 9 

15 12 9 

16 12 9 

105 



Table 6.4- Continued 

Original DB KRDB 
Trial Runs 

Binary Search Binary Search 

17 12 9 

18 12 9 

19 13 9 

20 12 9 

21 12 9 

22 12 9 

23 12 9 

24 12 9 

25 12 9 

x, 11.60 8.88 

s: • 0.42 0.19 

In the first trial run in Table 6.4: 

• The binary search of the original database would need flog 2 b l = flog, 1000 l = 

10 block accesses. From the first trial run in Table 6.2: b = 1000. 

• The binary search of the KRDB would ne(:d flog, b'l = flog, 2351 = 8 block 

accesses. From the first trial run in Table 6.2: b1 = 235. 

6.2.4.1 Comparing the Means in terms of Binary Search 

The null hypothesis Ho: J.lt = J.lz, that there will be no significant difference between 

the two populations' means, and the alternative hypothesis H,: J.lt t J.lz, that there will 

106 



be a significant difference between the two populations' means, were tested with a 

significant level of a= 0.05. 

The pooled variance s; can be computed as follows: 

S' = (n1 -l)S1
2 

+ (n, -l)S~ 
P (n1 + n2 - 2) 

= 24 * 0.42 + 24 * 0.19 = 0.31 
48 

The standard error of the difference between means S x _, 1s computed can be 
' . ' 

follows: 

= 0.31 ·(-
1 
+-

1
) = 0.157 

25 25 

The calculated value t, can be computed as follows: 

= 11.60-8.88 17.32 
0.157 

The critical value t,, obtained from a table of !-values, corresponding to the 

significant level of a= 0.05 with df= n1 + n2 - 2 = 48 degrees of freedom, is: 

r:ir With a= 0.05, reject H0 if t, > t,. 

107 



By comparing the calculated value ( = 17.32 with the tabled value t, =2.009, the 

null hypothesis Ho should be rejected, and it can be concluded that there is a 

statistically significant difference between the means of the KRDB and the original 

database. 

6.2.4.2 Comparing the Variances in terms of Binary Search 

The null hypothesis Ho: cri = cr;, that there will be no significant difference between 

the two populations' variances, against the alternative hypothesis H.: cri # cr;, that 

there will be a significant difference between the two populations' vanances, were 

tested with a significant level of a= 0.05. 

The calculated value F, can be computed as follows: 

F = sl' 
, s' 

2 

= 0.42 = 2.2105 
0.19 

The critical values F, and F, , obtained from a table ofF-values, corresponding to 
' ' 

the significant level of a= 0.05 with df1 = n1-l = 24 and df2 = n2-l = 24 degrees of 

freedom, are: 

1-~ 
F - F 2 - Fo·''s - 2 2693 t - (n -In -1) - (24 24) - · 

1 I '2 ' 

- F ~ -Fools - I . = I = 0.4407 F,, - (n,-l,n,-1) - (24.24) - £0.975 2.2693 (24.241 

rJr With a= 0.05, reiect H0 if F. < F, or F. <: F, 
~ C 2 C 1 

By comparing the calculated value F, =' 2.2105 with the tabled values 

F, = 2.2693 and F, = 0.4407, the null hypothesis H0 should be accepted, and it can 
' ' 

108 



be concluded that there is no a statistically significant difference between the 

variances of the KRDB and the original database. 

6.2.5 Sorting: the Original Database Vs the KRDB 

As shown in Table 6.5, the results of sorting original databases and its corresponding 

KRDBs are presented. The size of each sample is 25. Sorting needs as follows: 

• For the original database, approximately, I b log 2 b l block accesses. 

• For the KRDB, approximately, I b' log, b'l block accesses. 

Table 6.5: Sorting: Original DB Vs KRDB 

Trial Runs 
Sorting Original 

Sorting KRDB 
DB 

I 9,966 I ,851 

2 12,860 2,988 

3 19,037 3,885 

4 21,932 3,307 

5 31,137 2,143 

6 19,037 1,584 

7 19,037 1,851 

8 23,714 1,851 

9 20,387 3,307 

10 17,842 4,162 

11 25,786 1,851 

12 25,786 2,143 

109 



Table 6.5 -Continued 

Trial Runs 
Sorting Original 

Sorting KRDB DB 

13 21,932 6,107 

14 20,387 2,693 

15 34,653 2,693 

16 34,653 2,421 

17 39,018 3,885 

18 39,018 3,885 

19 51,713 3,569 

20 44,523 3,885 

21 25,786 3,569 

22 25,786 3,569 

23 28,220 3,885 

24 39,018 2,693 

25 34,653 3,885 

X; 27,435.24 3,151.96 

s' i 102,515,708.86 [ 1,014,098.37 

In the first trial run in Table 6.5: 

• Sorting the original database would need ['b log, b l = 11000 log, 1000 l = 9966 

block accesses. From the first trial run in Table 6.2: b = I 000. 

110 



• Sorting the KRDB would need I b'log2 b'l = I 235log2 235l = 1851 block 

accesses. From the first trial run in Table 6.2: b1 
= 235. 

6.2.5.1 Comparing the Means in terms of Sorting 

The null hypothesis Ho: f.ll = f.l2, that there will be no significant difference between 

the two populations' means, and the alternative hypothesis H,: ~1 1 j f.l2, that there will 

be a significant difference between the two populations' means, were tested with a 

significant level of a= 0.05. 

The pooled variance S~ can be computed as follows: 

S' = (n, -l)S1
2 + (n, -l)Si 

P (n, + n2 - 2) 

= 24*102,515,708.86+24*1,014,098.37 = 51764903.615 
48 ' ' 

The standard error of the difference between means S'i,-x, can be computed as 

follows: 

= 51,764,903.615*(-
1 
+-

1
) = 2,034.99 

25 25 

The calculated value t, an be computed as follows: 

Ill 



= 27,435.24-3,151.96 = 11.93 
2,034.99 

The critical value t,, obtained from a table of t-values, corresponding to the 

significant level of a= 0.05 with df = n1 + n2 - 2 = 48 degrees of freedom, is: 

CJfF With a= 0.05, reject H0 if t, > t,. 

By comparing the calculated value t, = 11.93 with the tabled value t, =2.009, the 

null hypothesis Ho should be rejected, and it can be concluded that there is a 

statistically significant difference between the means of the KRDB and the original 

database. 

6.2.5.2 Comparing the Variances in terms of Sorting 

The null hypothesis H0: cri = cr;, that there will be no significant difference between 

the two populations' variances, against the alternative hypothesis H,: cr; 'fc cr;, that 

there will be a significant difference between the two populations' variances, were 

tested with a significant level of a= 0.05. 

The calculated value F, can be computed as follows: 

s' 
F 

__ I 

' - 2 s, 

= 102,515,708.86 = 101.09 
1,014,098.3 7 

The critical values F, and F, , obtained from a table ofF -values, corresponding to 
' ' 

the significant level of a= 0.05 with df1 = n1-l = 24 and df2 = n2-1 = 24 degrees of 

freedom, are: 

112 



--=0.4407 
2.2693 

Gr With a= 0.05, reJ· ect Ho if F < F, or F. 2: F, 
C 2 ' I 

By comparing the calculated value F, = I 01.09 with the tabled values 

F, = 2.2693 and F, = 0.4407, the null hypothesis Ho should be rejected, and it can 
' ' 

be concluded conclude that there is a statistically significant difference between the 

variances of the KRDB and the original database. 

6.3 Summary 

In this chapter, a statistical analysis was performed to compare between means and 

variances of the original database and the KRDB populations. Comparisons were 

made between the KRDB and the original database in terms of record size, number of 

blocks, linear search, binary search and sorting to examine whether the KRDB is 

better than the original database or not. This analysis used t-test and F -test to evaluate 

the differences in means and variances, respectively, between the two populations. 

The sample size for each population was 25. The null hypothesis, that there will be no 

significant difference between the two populations' means/variances, against the 

alternative hypothesis, that there will be a significant difference between the two 

populations' means/variances were tested. The results of the tests showed that the 

differences between means/variances are statistically significant, except in one case, 

namely the difference between the variances in terms of binary search. Table 6.6 

summarizes the statistical analysis results. 

113 



Table 6.6: Statistical Analysis Results 

Statistical 
Characteristics Conclusion 

Test Result 

Means Ho Rejected Significant difference 

1 Record Size 

Variances Ho Rejected Significant difference 

Means Ho Rejected Significant difference 

2 Number of Blocks 

Variances Ho Rejected Significant difference 

Means Ho Rej•:cted Significant difference 

3 Linear Search 

Variances Ho Rej,:cted Significant difference 

Means Ho Rej,:cted Significant difference 

4 Binary Search 

Variances HoAccepted No significant difference 

Means Ho Rejected Significant difference 

5 Sorting 

Variances HoRejected Significant difference 

114 



CHAPTER 7 

CONCLUSION AND FUTURE DIRECTIONS 

7.1 Research Summary 

This research mainly introduces a new scheme for auditing online and dynamic SDBs 

to guarantee the security of online and dynamic SDBs, and to repel the attacks of 

snoopers (malicious users) to the confidentiality of the individuals. In addition, it is 

introduced to conveniently specify the illegal queries which could lead to disclosing 

the SDB. Since some of the major drawbacks of an auditing strategy is its excessive 

CPU time and storage requirements to process the retrieval of relevant records from 

the SDB, the main purpose of introducing this scheme is to reduce CPU time and 

storage space during query processing. 

The proposed scheme is called the key representation auditing scheme (KRAS). 

The core idea of this scheme is to convert the original database, which is in both 

string and numerical representations, into a key representation database (KRDB). 

Also, this scheme involves converting each new user query from string representation 

into a key representation query (KRQ) and storing it in the Audit Query table (AQ 

table). Hence, the first objective which is to develop a new scheme for auditing online 

and dynamic SDBs has been achieved. 

Three audit stages are also proposed in order to protect the confidentiality of the 

individuals. The three audit stages could prevent the SDB threats such as individual 

trackers, general trackers, double trackers, insertion and deletion attacks and all the 

other types of threats which can occur by stitching the answerable queries. 

Also, efficient algorithms for these stages are presented, namely the First Stage 

Algorithm (FSA), the Second Stage Algorithm (SSA) and the Third Stage Algorithm 

115 



(TSA). These algorithms enable the Key Representation Auditor (KRA) to 

conveniently specify the illegal queries which could lead to disclose the SDB. Hence, 

the second objective which is to guarantee the security of online and dynamic SDBs 

has been achieved. 

Since the new scheme does not resort to estimate the value of the new query 

response according to the distribution of the previous answered queries, the third 

objective which is to provide precise and accurate responses has been achieved. 

Cost estimation for the proposed scheme is pe:rformed. It is illustrated that there is 

savings in block accesses (CPU time) and storage space are attainable when a KRDB 

is used. Cost estimation comparisons between the KRDB and the original database in 

terms of number of blocks, linear search, binary search and sorting were also 

provided. The results of the comparisons show that there is a vast improvement in 

terms of the number of blocks, linear search and sorting. And there is a slight 

improvement in terms of the binary search. All the schemes proposed by previous 

works depend directly on the original database, while the proposed scheme (KRAS) 

depends directly on the KRDB, which saves block accesses (CPU time) and storage 

space compared to the original database. 

In addition, a statistical analysis and a comparative study to compare between the 

means and variances of the original database and the KRDB populations is also 

presented. The statistical analysis tests were made in terms of record size, number of 

blocks, linear search, binary search and sorting to examine whether the KRDB is 

better than the original database or not. T -test and F -test were used to evaluate the 

differences in means and variances, respectively, between the two populations. The 

null hypothesis, that there will be no significant difference between the two 

populations' means/variances, against the alternative hypothesis, that there will be a 

significant difference between the two populations' means/variances was tested. The 

results of the tests show that the differences, between means/variances, are 

statistically significant. Hence, the fourth objective which is to reduce CPU time and 

storage space during query processing has been also achieved. 

116 



Finally, the implementation of the new scheme was performed, and the 

components of the proposed system were discussed. In addition, the graphical user 

interface and its logical interaction were also developed. Moreover, by applying the 

three audit stages, the proposed system is capable of conveniently specifying whether 

the user query is answerable or not. 

7.2 Research Contributions 

This section presents the contributions of this study which is discussed in the earlier 

chapters of this thesis: 

• The new scheme guarantees the security of online and dynamic SOBs. The three 

audit stages could prevent the SOB threats such as individual trackers, general 

trackers, double trackers and insertion and deletion attacks. Moreover, it could 

prevent another new three types of threats which can occur by stitching two 

answerable queries using two different category attributes, hiding an unanswerable 

key representation query (KRQ), which satisfies the first stage conditions (FSCs) 

with one of the previous KRQs, inside the parts of the user query, and hiding a 

repeated unanswerable KRQ, which does not satisfy the third stage condition (TSC), 

inside the parts of the new user query. 

• The new scheme provides precise and accurate responses, while most of the 

previous works resort to estimate the value of the new response according to the 

distribution of the previous answered queries. 

• The new scheme, which depends directly on the key representation database 

(KROB), saves CPU time and storage space compared to the original database. All 

schemes proposed by previous works depend directly on the original database. 

117 



7.3 Future Directions 

Since the proposed scheme, namely the key representation auditing scheme (KRAS), 

includes only auditing count and sum statistilcal queries, for future work, the 

followings can be enhanced: 

• Online and dynamic auditing of other statistical quenes, including 

auditing of average, min, max and median queries. 

• Auditing of combinations of these queries. 

• Optimization of the algorithms. 

7.4 Research Conclusions 

In conclusion, the outcome of this research has provided an enhanced approach for 

efficient block accesses and space reduction audit scheme for statistical databases. It 

has fulfilled the research objectives which are to develop a new audit scheme for 

auditing online and dynamic SOBs, to guarantee: the security of online and dynamic 

SOBs by preventing illegal queries which could lead to disclosing the SOB, to 

provide precise and accurate responses and to reduce CPU time and storage space 

during query processing. 

118 



PUBLICATIONS 

1. Asim A. Elshiekh and P. D. D. Dominic, "A New Auditing Scheme for Securing 

Statistical Databases," IEEE, International Symposium on Information Technology 

2008 (ITSIM 08), KLCC, Kuala Lumpur, Malaysia, 26-29 August, 2008, pp. 234-

238. 

2. Asim A. Elshiekh and P. D. D. Dominic, "The Key Representation Auditing 

Scheme for Securing Statistical Databases," IEEE, Proceedings of 2008 Student 

Conference on Research and Development (SCOReD 2008), Johor, Malaysia, 26-

27 Nov, 2008, pp. 238.1-238.4. 

3. Asim A. Elshiekh and P. D. D. Dominic, "Three Audit Stages for Securing 

Statistical Databases," 2009 International Conference on Information Management 

and Engineering (ICIME 2009), 2009, pp. 283-286, 

4. Asim A. Elshiekh and P. D. D. Dominic, "Cost Estimation for the Key 

Representation Auditing Scheme," 2009 International Conference on Computer 

Design and Applications (ICCDA2009), Nanyang Executive Centre, Singapore, 

15-17 May, 2009. 

5. Asim A. Elshiekh and P. D. D. Dominic, "Efficient Algorithms for the Key 

Representation Auditing Scheme," International Journal of Computer and 

Electrical Engineering (IJCEE), Vol. I, No.3, August 2009, pp. 340-349. 

6. Asim A. Elshiekh and P. D. D. Dominic, "Statistical Analysis for the Key 

Representation Database and the Original Database," IEEE, International 

Symposium on Information Technology 2010 (ITSIM 2010), KLCC, Kuala 

Lumpur, Malaysia, 15-17 June, 2010. 

7. Asim A. Elshiekh and P. D. D. Dominic, "Performance Comparison between the 

Key Representation Database and the Original Database," International Journal of 

119 



Multimedia and Security (IJMIS), INDERSCIENCE Publishers, (Accepted July 

201 0). 

8. Asim A. Elshiekh and P. D. D. Dominic, "Statistical Analysis for Comparison of 

the Key Representation Database with the Original Database," International 

Journal of Business Information Systems (IJBIS), INDERSCIENCE Publishers, 

(Accepted July 2010). 

120 



REFERENCES 

[I] S. Castano, M. Fugini, G. Martella and P. Samarati, Database Security, 1st ed, 

Addison-Wesley, 1995, pp. 291-341. 

[2] T. Connolly and C. Begg, Database Systems: A practical Approach to Design, 

Implementation and Management, 3'ded, Addison-Wesley, 2002, pp. 604-649. 

[3] R. Elmasri and S. Navathe, Fundamentals of Database Management Systems, 

5th ed, Addison-Wesley, 2007, pp. 463-591. 

[4] J. Wortmann and N. Adam, "Security-Control Methods for Statistics Databases: 

A Comparative Study," ACM Computing Surveys, Vol. 21(4), Dec. 1989, pp. 

515-554. 

[5] S. Shieh and C. Lin, "Information Protection in Dynamic Statistical Databases," 

Invited paper for Encyclopedia of Computer Science and Technology, 1999. 

[6] S. Shieh and C. Lin, "Auditing User Queries in Dynamic Statistical Databases," 

Information Science, Vol. 113(1-2), January 1999, pp. 131-146. 

[7] D. Denning, Cryptography and Data Security, Addison-Wesley Publishing 

Company, Inc., 1982,pp. 313-387. 

[8] R. Anderson, Security Engineering: A Guide to Building Dependable 

Distributed Systems, 2nd ed, Wiley, April 2008, pp. 172-179. 

[9] E. Unger, S. McNulty and P. Conell, "Natural Change in Dynamic Databases as 

a Deterrent to Compromise by Trackers," Digital Object Identifier 

10.1109/CSAC.1990.143760, 1990, pp. 116-124. 

[10] F. Malvestuto, M. Mezzini and M. Moscarini, "Auditing Sum-Queries to Make 

a Statistical Database Secure," ACM Transactions on Information and System 

121 



Security (TISSEC), Volume 9, Issue I (February 2006), ISSN:I094-9224, 2006, 

pp. 31-60. 

[II] J. Domingo-Ferrer and J. Maria, "Current Directions in Statistical Data 

Protection", Proceedings of the Statistical Data Protection (SDP98), 1998, pp. 

105-112. 

[12] F. Malvestuto and M. Moscarini, "Computational Issues Connected with the 

Protection of Sensitive Statistics by Auditing Sum-Queries," In Proc. Of IEEE 

Scientific and Statistical Database Management, 1998, pp. 134-144. 

[13] R. Huebner, "Automated Mechanisms for Controlling Inference in Database 

Systems," Project Proposal, January, 2004. 

[14] R. Ahlswede and H. Aydinian, "On Security of Statistical Databases," Digital 

Object Identifier: 10.1109/ISIT.2006.261767, 2006, pp. 506-508. 

[15] F. Chin and G. Ozsoyoglu, "Auditing and Inference Control m Statistical 

Databases," IEEE Trans. on Softw. Eng., (Apr. 1982), pp. 574-582. 

[16] G. Duncan, S. Fienberg, R. Krishnan, R. Padman and S. Roehrig, "Disclosure 

Limitation Methods and Information Loss for Tabular Data," In Confidentiality, 

Disclosure and Data Access, P. Doyle, J. Lane, J. Theeuwes, L. Zayatz, Eds. 

Elsevier, New York, 2001, pp. 135-166. 

[17] F. Malvestuto and M. Mezzini, "On the Hardness of Protecting Sensitive 

Information in a Statistical Database," In Proceedings of the W odd 

Multiconference on Systemics, Cybernetics and Informatics, Vol. XIV, 2001, 

pp. 504-509. 

[18] F. Malvestuto and M. Mezzini, "A Linear Algorithm for Finding the Invariant 

Edges of an Edge-weighted Graph," SIAM J. Computing 31, 2002, pp. 1438-

1455. 

122 



[19] F. Ma1vestuto and M. Mezzini, "Auditing Sum-Queries," In Proceedings of the 

International Conference on Database Theory, Lecture Notes in Computer 

Sciences, 2003, pp. 504-509. 

[20] F. Malvestuto and M. Mezzini, "Privacy Preserving and Data Mining in an On

line Statistical Database of Additive Type," In Proceedings of the International 

Conference on Privacy in Statistical Databases, Barcelona, 2004. 

[21] F. Malvestuto and M. Moscarini, "An Audit Expert for Large Statistical 

Databases," In Statistical Data Protection, EUROSTAT, 1999, pp. 29--43. 

[22] F. Malvestuto and M. Moscarini, "Privacy in Multidimensional Databases," In 

Multidimensional Databases, M. Rafanelli, Ed., Idea Group Pub., Hershey, PA. 

2003,pp. 310-360. 

[23] L. Wang, D. Wijekera and S. Jajodia, "Cardinality-based Inference Control in 

Datacubes," J. Comp. Security 12, 2004, pp. 655-692. 

[24] L. Willenborg and T. Dewaal, "Elements of Statistical Disclosure. Lecture 

Notes in Statistics," 155. Springer-Verlag, New York, 2000. 

[25] N. Zhang, W. ZHAO and J. CHEN, "Cardinality-based Inference Control in 

OLAP Systems: An Information Theoretic Approach," In Proceedings of the 

ACM Internatinal Workshop on Data Warehousing and OLAP (DOLAP 2004), 

2004, pp. 59-64. 

[26] K. Kenthapadi, N. Mishra and K. Nissim, "Simulatable Auditing," In Proc. of 

ACM Principles ofDatabse Systems (PODS), 2005, pp. 118-127. 

[27] I. Dinur and K. Nissim, "Revealing Information while Preserving Privacy," In 

Symposium on Principles ofDatabse Systems (PODS), 2003, pp. 202-210. 

[28] C. Dwork and K. Nissim, "Privacy-preserving Data Mining on Vertically 

Partitioned Databases," In Proceedings of the 24th Annual International 

123 



Cryptology Conference (CRYPTO 2004), Santa Barbara, CA, August 2004, pp. 

528-544. 

[29] A. Evfimievski, J. Gehrke and R. Srikant, "Limiting Privacy Breaches in 

Privacy Preserving Data Mining," In Proceedings of the twenty-second ACM 

SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 

ACM Press, 2003, pp. 211-222. 

[30] Y. Li, L. Wang, X. Wang and S. Jajodia, "Auditing Interval-based Inference," In 

Proceedings of the 141
h International Conference on Advanced Information 

Systems Engineering, 2002, pp. 553-567. 

[31] S. Nabar, B. Marthi, K. Kenthapadi, N. Mishra and R. Motwani, "Towards 

Robustness in Query Auditing," Proceedings of the 32nd International 

Conference on Very Large Databases (VLDB), 2006, pp. 151-162. 

[32] R. Agrawal and R. Srikant, "Privacy-preserving Data Mining," In Proc. of ACM 

SIGMOD, 2000, pp. 439-450. 

[33] R. Agrawal, R. Srikant and D. Thomas, "Privacy Preserving OLAP," In Proc. of 

ACM SIGMOD, 2005, pp. 251-262. 

[34] J. Biskup and P. Bonatti, "Controlled Query Evaluation for Known Policies by 

Combining Lying and Refusal," Annals of Mathematics and Arti cia! 

Intelligence, 2004, 40(1-2):37-62. 

[35] A. Blum, C. Dwork, F. McSherry and K. Nissim, "Practical Privacy: the SuLQ 

Framework," In Symposium on Principles of Databse Systems (PODS), 2005, 

pp. 128-138. 

[36] S. Chawla, C. Dwork, F. McSherry, A. Smith and H. Wee, "Toward Privacy in 

Public Databases," In the Theory of Cryptography Conference (TCC), 2005, pp. 

363-385. 

124 



[37] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov and M. Naor, "Our Data, 

Ourselves: Privacy via Distributed Noise Generation," Advances in 

Cryptography (EUROCRYPT 2006), 2006, pp.486-503. 

[38] C. Dwork, F. McSherry, K. Nissim and A. Smith, "Calibrating Noise to 

Sensitivity in Private Data Analysis," In the third Theory of Cryptography 

Conference (ICC), 2006, pp. 265-284. 

[39] 0. Goldreich, Foundations of Cryptography, Volumes I and II, Cambridge 

University Press, 2004. 

[ 40] http://www.stat.cmu.edu/ hwainer/bertinoro.htm, CS-Statistics Workshop On 

Privacy and Con_dentiality, 2005. 

[41] N. Mishra and M. Sandler, "Privacy via Pseudorandom Sketches," Proc. 25th 

ACM Symp., Principles ofDatabse Systems (PODS), 2006, pp. 143-152. 

[42] M. McLeish, "An Information Theoretic Approach to Statistical Databases and 

Their Security: A Preliminary Report," In Proceedings of the 2nd International 

Workshop on Statistical Database Management, 1983, pp. 355-359. 

[ 43] J. Kam and J. Ullman, "A Model of Statistical Databases and Their Security," 

ACM Trans. Database Syst. 2, I, 1977, pp.l-10. 

[44] J. Kleinberg, C. Papadimitriou and P. Raghavan, "Auditing Boolean Attributes," 

Journal of Computer and System Sciences, 2003, pp. 6:244-253. 

[45] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau and R. Srikant, 

"Auditing Compliance with a Hippocratic Database," In Proceedings of the 30th 

International Conference on Very Large Databases (VLDB), 2004, pp. 516-527. 

[46] R. Agrawal, J. Kiernan, R. Srikant andY. Xu, "Hippocratic Databases," In 28th 

Int'l Conference on Very Large Databases, Hong Kong, China, 2002, pp. 143-

154. 

125 



[47] L. Cranor, M. Langheimich, M. Marchiori, M. Pressler-Marshall and J. Reagle, 

"The Platform for Privacy Preferences l.O (P3Pl.O) Specification," W3C 

Recommendation, April 2002. 

[48] J. Chen, D. DeWitt, F. Tian andY. Wang, "NiagaraCQ: A Scalable Continuous 

Query System for Internet Databases," In ACM SIGMOD Conference on 

Management of Data, Dallas, Texas, 2000, pp. 379-390. 

[49] R. Dechter, Constraint Processing, Morgan Kaufman Publishers, 2003. 

[50] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu and D. DeWitt, 

"Limiting Disclosure in Hippocratic Databases," In 301
h Int'l Conf. on Very 

Large Data Bases, Toronto, Canada, 2004, pp. 108-119. 

[51] A. Nanda and D. Burleson, Oracle Privacy Security Auditing, Rampant, 2003. 

[52] R. Ramakrishnan and J. Gehrke, Database Management Systems, McGraw-Hill, 

2000. 

[53] A. Elshiekh and P. Dominic, "A New Auditing Scheme for Securing Statistical 

Databases," International symposium on information technology 2008 (ITSIM 

08), KLCC, Kuala Lumpur, Malaysia, 26-29 August, 2008, pp. 234-238. 

[54] A. Elshiekh and P. Dominic, "The Key Representation Auditing Scheme for 

Securing Statistical Databases," Proceedings of 2008 Student Conference on 

Research and Development (SCOReD 2008), Johor, Malaysia, 26-27 Nov, 

2008, pp. 238.1-238.4. 

[55] A. Elshiekh and P. Dominic, 'Three Audit Stages for Securing Statistical 

Databases," 2009 International Conference on Information Management and 

Engineering (!ClME 2009), 2009, pp. 283-286. 

[56] A. Elshiekh and P. Dominic, "Cost Estimation for the Key Representation 

Auditing Scheme," 2009 International Conference on Computer Design and 

126 



Applications (ICCDA2009), Nanyang Executive Centre, Singapore, 

I 0.1109/ICSPS.2009.135, 15-17 May, 2009, pp. 469-473. 

[57] A. Elshiekh and P. Dominic, "Efficient Algorithms for the Key Representation 

Auditing Scheme," International Journal of Computer and Electrical 

Engineering (IJCEE), Vol. I, No.3, August 2009, pp. 340-349. 

[58] S. Washington, M. Karlaftis and F. Mannering, Statistical and Econometric 

Methods for Transportation Data Analysis, Champan Hall/CRC, 2003, pp. 23-

59. 

(59] D. Morien, Business Statistics, Thomson, 2007, pp. 150-177. 

[ 60] A. Glenberg and M. Andrzejewski, Learning from Data: An Introduction to 

Statistical Reasoning, 3'ct ed, Taylor & Francis Group, LLC., 2008, pp. 263-295. 

[ 61] T. Urdan, Statistics in plain English, 2"d ed, Lawrence Erlbaum Associates, Inc., 

2005, pp. 89-100. 

[62] R. Ott and M. Longnecker, An Introduction to Statistical Methods and Data 

Analysis, 61
h ed, Brooks/Cole, Cengage Learning, 2008, pp. 360-40 I. 

[63] D. Anderson, D. Sweeney and T. Williams, Statistics for Business and 

Economics, lOth ed, Thomson South-Western, 2009, pp. 338-392. 

127 



APPENDIX A 

SUBTRACTING P CELLS 

A.1 Consider Example 4.1 in Section 4.2.1 

• Here the first cell and the fourth cell should be excluded, because these 

cells are the common cells between q1
1 and q1

2. So, the first and the 

fourth cells in q1
, should be 2 and*, respectively. 

• The second cell (Dept= {1, 2, 3}) (refer to Table 3.4): 

q\. 
I· * implies { 1, 2, 3} 

q1
2: 1 implies {2, 3} 

Then,*-1 ={1,2,3}-{2,3}={1}=1 

• The third cell (Level= { 1, 2, 3} ): 

q1
,: * implies {1, 2, 3} 

q1
2: 2 implies {I, 3} 

Then, * - 2 = { 1, 2, 3} - { 1, 3} = { 2} = 2 

• Accordingly, q\ = q1
1 - q1

2 = 2**.*- 212.* = 212.* = {4} 

128 



• The answer of the result query q1
,, referring to Table 3.3 and Table 3.4, is 

the fourth record. That means the fourth record, namely Sari a's record, 

can be disclosed if the query q1
2 is permitted. 

A.2 Consider Example 4.2 in Section 4.2.1 

ql _ql ql -*3* * **I* r- 1~ 2- •- • 

• Here the first and the fourth cells should be excluded. So, the first and the 

fourth cells in q1
, should be * and *. 

• The second cell (Dept= {I, 2, 3}) (refer to Table 3.4): 

q1
2: * implies {I, 2, 3} 

Then, 3 - * = { 3} - { I, 2, 3} = <D 

WIn this case assume without loss of generality that 

lfXbj- Xaj = <D, then let Xrj = Xbj· 

Consequently, 3- * = {3}- {I, 2, 3} = {3} = 3 

• The third cell (Level= {I, 2, 3} ): 

ql. J. 

ql. 2· 

* implies {I, 2, 3} 

I implies {I} 

Then, * - I = { I, 2, 3} - { I } = { 2, 3} = I 

• Accordingly, q1
, = q1

1 - q1
2 = *3*.*- **I.*= *31.* = {5} 

129 



• The answer of the result query q\, referring to Table 3.3 and Table 3 .4, is 

the fifth record. That means the fifth record, namely Samy's record, can 

be disclosed if the query q1
2 is permitted. 

A.3 Consider Example 4.3 in Section 4.2.1 

• Here the fourth cell should be excluded. So, the fourth cell in q1
, should 

be*. 

• The first cell (Gender= {I, 2}) (refer to Table 4.4): 

q\. l· 

I . qz. 

I implies {I} 

* implies{1,2} 

Then, I - * = { I } - { I, 2} = <D 

r:iF In this case assume, as mentioned earlier, without loss of 

generality that 

Consequently, I-* = {1}- {1, 2} = {1} = 1 

• The second cell (Dept = { 1, 2, 3} ): 

q\. l· 1 implies { 1} 

* implies {I, 2, 3} 

Then, 1 - * = { 1} - { 1, 2, 3} = <!> 

r:iF In this case assume, as mentioned earlier, without loss of 

generality that 

130 



If Xbj - Xaj = <D, then let Xrj = Xbj. 

Consequently, 1- * = {1}- {1, 2, 3} = {1} = 1 

• The third cell (Level = { 1, 2, 3} ): 

q\. 
l· * implies { 1, 2, 3} 

q\. 
2· implies { 1} 

Then,*-1={1,2,3}-{1}={2,3}= 1 

• Accordingly,q\=q11-q1
2 =11*.*-**1.*= 11l.* ={1,7,12} 

• The answer of the result query q1
,, referring to Table 3.3 and Table 3.4, is 

the first, seventh and 12'11 records. That means permitting the query q1
2 

would not disclose the SDB. 

A.4 Consider Example 4.4 in Section 4.2.1 

q\ = q1 
- q1 = * 1 * * - 2-1 * * r 1 2 • • • • 

• Here the second, the third and the fourth cells should be excluded. So, the 

second, the third and the fourth cells in q\ should be 1, * and *, 

respectively. 

• The first cell (Gender= {1, 2}) (refer to Table 3.7): 

q\. I· 

I . qz. 

* implies {I, 2} 

2 implies { 1} 

-
Then, * - 2 = { 1, 2} - { 1 } = { 2} = 2 

• Accordingly,q1,=q1
1 -q1

2 =*1.*.*- 21.*.*=21.*.*={2} 

131 



• The answer of the result query q1
,, referring to Table 3.6 and Table 3.7, is 

the second record. That means the second record, namely Sara's record, 

can be disclosed if the query q1
2 is permitted. 

A.S Consider Example 4.5 in Section 4.2.1 

• Here the first, the third and the fourth cells should be excluded. So, the 

first, the third and the fourth cells in q1
, should be *, 21 and * 

respectively. 

• The second cell (Dept = { 1, 2}) (refer to Table 3. 7): 

q11: * implies {1, 2} 

Then,* -2= {1,2}- {2} = {1} = 2 

• Accordingly,q1,=q11-q1
2 =**.21.*-*2.21.*= *2.21.*={8} 

• The answer of the result query q1
,, referring to Table 3.6 and Table 3.7, is 

the g'h record. That means the gth record, namely Nasir's record, can be 

disclosed ifthe query q1
2 is permitted. 

132 



APPENDIXB 

DEVELOPMENT OF KEY REPRESENTATION AUDITING SOFTWARE 

B.l The Proposed Key Representation Auditing Software 

The proposed system can be set as a core of auditing online and dynamic SDBs, and it 

will play a vital role to guarantee the security of SDBs among the three audit stages 

which discussed previously in chapter four. 

The database of the proposed system contains various tables with relationships 

among them. It stores all the required data such as the original data about the 

individuals, the key representation data and the answered key representation queries. 

It does provide the system with all the needed data in order to obtain the final decision 

and to specify the illegal queries which could lead to disclosing the SDB. 

Basically the inputs for this system can be identified in two major groups. Firstly, 

the original information about individuals, including category and data attributes, such 

as name, gender, department, salary, etc. Secondly, the user query which may consists 

of one part or more than one part. The system converts the original data and the user 

query into key representation data and key representation query, respectively. When a 

user submits a query to the system, the three audit stages will be applied to decide 

whether the query is answerable or not. 

Considering the first example which was stated earlier in section 3.3.5.1, the next 

section gives a glimpse of the input screens of the proposed system as well as the 

system output. 

133 



8.2 The Graphical User Interface 

From the main screen, the SDB user has three different options available. The first 

option is storing the basic information of employees using the Employee Data button. 

The second option is allowing the user to enter his query using the User Query button. 

The final option is closing the system using the Exit button. Figure B. l depicts the 

main screen of the system. 

The Main Menu 

KRAS for Securing Statistical Database 

~ ~ " __ ... -
Employee Data 

{Tser Query 

Exit 

Figure B.l: The Main Screen 

134 



B.2.1 Employee Data Screen 

From the main screen, when the Employee Data button has been pressed, the 

employee data screen will immediately appear, as shown below in Figure B.2, which 

contains fields for entering the employee data. The SDB user can add more employees 

or manipulate the data using the buttons Add, Save, Cancel, Search, Edit and Delete. 

Whereas, the buttons Employee Data and KRDB Data are only allowable for the SDB 

administrator to show him the original data (see Figure B.3) and the key 

representation data (see Figure B.4), respectively. 

Employee Data 

Employee Name: IAdil 

Gender: I Male ~ 
OeJ>artment: 1 cs ~ 
Level: I MSc ~ 
Salary: J200 

8dd ~dve Cancel 

Searc!1 fdit D.elete Close 

Employee Data KRDB Data 

Figure B.2: Employee Data Screen 

135 



Browse Employees Data 

N 
1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 

0 N 
Adil 
Omer 
Sara 
Sari a 
Sa my 
Zainah 
Gasim 
Ahmed 
Fatima 
Nasir 
Mahasin 
Khalid 

a me G d en er 
Male 
Male 
Fem.lle 
Female 
Male 
Female 
Male 

Female 
Male 
Female 
Male 

D t ep1 
cs 
EE 
EE 
cs 
PE 
PE 
cs 

cs 
PE 
EE 
cs 

Close 

l eve 
MSc 
MSc 
MSc 
MSc 
MSc 
BSc 
MSc 

PhD 
BSc 
MSc 
PhD 

Figure B.3 : Browse Employees Data Screen 

136 

200 
150 
150 
150 
180 
220 
100 

30 
200 
250 
30 

Sl c1 <Hy 



Browse KRDB Data 

No Record's Ke 
1 112.200 
2 122.150 
3 222.150 
4 212.150 
5 132.180 
6 231.220 
7 112.100 

122.180 
9 213.30 
10 131.200 
11 222.250 
12 113.30 

Close 

Figure B.4: Browse KRDB Data Screen 

137 



B.2.2 User Query Screen 

From the main screen, when the User Query button has been pressed, the user query 

screen will immediately appear, as shown below in Figure B.S. This screen contains 

all the category and data attributes, and it allows the user to determine all the 

conditions of his query. Also, it allows the user to add new parts for the query using 

the OR button or remove some parts from the query using the X button. For each 

category attribute, there are two types of Not Sign (NS). The first type is the green not 

sign (green NS), namely the not sign for the specific category attribute. The 

corresponding values of the green NS are either 0 if it is not checked or 1 if it is 

checked by the user. The second type is the red not sign (red NS), namely the not sign 

for at least two category attributes. The corresponding values of the red NS are either 

0 if it is not checked or 2 if it is checked by the user. 

User Query 

Gender Dept Level Salary 

r Not I r Not Male _:j r Not i PE r Not _:j r Not i• r Not _:j n ___2j 

r Not , . _:j 
P" Not 

_:j r Not I* _:j [i.i3 1100 1500 OR I ~ r Not r Not I cs r Not 

New Query Ill Query Result ]~ • _ .. H-~ - ........ ... ~- ". 

Browse Result I Browse AQ table 
1 

Exit 

Figure B.5: User Query Screen 

138 



By hitting the Query Result button, the system will apply the three audit stages to 

decide whether the query could lead to disclosing the SDB or not. If the current user 

query is answerable, namely it could not lead to disclosing the SDB, the result of the 

query will immediately appear (see Figure B.6). But if the current user query is not 

answerable, namely it could lead to disclosing the SOB, a message will appear to 

show the user that this query is prevented (see Figure B.7). 

~· 
User 9.~!Y,.,..>~.. _... . . , • ' N "• • • -- ·'"' ~- .. -.... • .. ·- .... .,. .,., • -- • .--· • ·c •.• , .•• , . c 

Gender Dept Level Salary 

r Not r Not r Not 1• .:J OR ] r Not I Male .:J r NotiPE .:J r Not n 
r Not ]• Ji7 Not 3 r Not I• 3 fiJ3]100 jsoo OR ' ~ r Not 3 r NotiCS r Not 

Query Result ~~ 

~ i" ) "'\? The query total Sun- 1330 

OK 

II Query Result I ~ 
--~~~~~~~~~~~~:~'----------', Exit Browse Result . Browse AQ table . 

New Query 

Figure B.6: Permitted Query Result 

139 



2.J 

Gender Dept level Salary 

r Not · -r Not I Female .:J r Not 
r Not I CS .:J 

r Not 
r Not I MSc .:J n 

r Not· - r Not 1· r Not I• r Not I Female .:J ::J ::J 1>- ::J 1100 r Not r Not 

Check the query rgj 

0 Tlls query is PREVENTED. 

___ N_e_w_Q_ue_ry __ __.ll Query Result 

__ s_ro_w_s_e _Re_s_ut_t _ _.I Browse AQ table 

I ~-·· I 
j___:__J 

Figure B.7: Prevented Query Message 

140 

~ 

OR I 



The buttons Browse Result and Browse AQ Table are only allowable for the SDB 

administrator, to show him the result of the current query (see Figure B.8) and the 

answered key representation queries (see Figure B.9), respectively. 

Browse Query Result 

The KRO: 
13'".•s.O.O 000 
*1*.0.100.500 010 

Sum: 11330 

Count: j7 

Close 

Figure B.8: Browse Query Result Screen 

141 



Browse AQ Table 

KRQ 
1- ... s.O.O 
11*.'"'s.O.O 

11"'."s.O.O 
1"2.<=.500.0 
11" ."s.O.O 
13' .'s.O.O 
*1".0.100.500 

Close 

Figure B.9: Browse AQ Table Screen 

142 



APPENDIXC 

THE PROGRAM CODE 

C. I Main Form 

Private Sub cmdEmployeeData _Click() 

frmEmployeeForm.Show 

End Sub 

Private Sub cmdExit_ Click() 

End 

End Sub 

Private Sub cmdUserQuery _Click() 

frm U serQuery. Show 

End Sub 

C.2 Employee Data Form 

Dim Found As Boolean 

Dim Answer As String 

Dim CurrentRecNo As Integer 

Private Sub Form Load() 

Me.cmdSave.Enabled = False 

Me.cmdCancel.Enabled =False 

143 



Me.cmdEdit.Enabled = False 

Me.cmdDelete.Enabled = False 

Me.cmdAdd.Enabled = True 

Me.cmdClose.Enabled =True 

Me.cmdSearch.Enabled = True 

Me.txtName.Text = '"' 

EraseTextBoxes 

End Sub 

Private Sub cmdAdd Click() 

Me.cmdSave.Enabled = True 

Me.cmdCancel.Enabled = True 

Me.cmdEdit.Enabled =False 

Me.cmdDelete.Enabled =False 

Me.cmdAdd.Enabled = False 

Me.cmdClose.Enabled = False 

Me.cmdSearch.Enabled =False 

Me.txtName.Text = "" 

Erase TextBoxes 

Me.txtName.SetFocus 

End Sub 

Private Sub cmdBrowseEmployee Click() 

On Error Go To Err Handler 

frrnBrowseEmployees.lstRecNo. Clear 

frmBrowseEmployees.lstName.Clear 

frmBrowseEmployees.lstGender.Clear 

144 



frmBrowseEmployees.lstDept.Clear 

frmBrowseEmployees.lstLevel.Clear 

frmBrowseEmployees.lstSalary.Clear 

With Me.datEmployeeData.Recordset 

.MoveFirst 

Do While Not .EOF 

frmBrowseEmployees.lstRecNo.Additem .Fields!recNo 

frmBrowseEmployees.lstName.Addltem .Fields!empName 

frmBrowseEmployees.lstGender.Additem .Fields!Gender 

frmBrowseEmployees.lstDept.Additem .Fields! Dept 

frmBrowseEmployees.lstLevel.Additem .Fields! I ,eve! 

frmBrowseEmployees .lstSalary .Addltem .Fields! Salary 

.MoveNext 

Loop 

End With 

frmBrowseEmployees.Show 

Exit Sub 

Err Handler: 

If Err = 3021 Then 

MsgBox "Sorry Employee Table IS empty now.", vbinformation, "Employee 
Table" 

End If 

End Sub 

Private Sub cmdBrowseKRDB _Click() 

On Error Go To Err Handler 

frmBrowseKRDB.lstRecNo.Ciear 

145 



frmBrowseKRDB.lstCategoryKeys.Clear 

With Me.datKRDB.Recordset 

.MoveFirst 

Do While Not .EOF 

frmBrowseKRDB.lstRecNo.Additem .Fields!recNo 

frmBrowseKRDB.lstCategoryKeys.Addltem .Fields!caO & .Fields!cal & 
.Fields!ca2 & "." & .Fields! Salary 

.MoveNext 

Loop 

End With 

frmBrowseKRDB.Show 

Err Handler: 

If Err= 3021 Then 

MsgBox "Sorry Key Representation Database Table 1s empty now.", 
vbinformation, "KRDB Table" 

End If 

End Sub 

Private Sub cmdBrwoseAQtbl Click() 

On Error Go To Err Handler 

With Me.datAQtbl.Recordset 

.MoveFirst 

Do While Not .EOF 

frmBrowse_AQ_tbl.lstKRQ.Additem .Fields!caO & .Fields!cal & .Fields!ca2 
&H." 

& .Fields!Op & "." & .Fields!Vl & "." & .Fields!V2 

frmBrowse_AQ_tbl.lstNS.Addltem .Fields!NSO & .Fields!NSI & .Fields!NS2 

frmBrowse _ AQ_tbl.lst_ q__set_size.Addltem .Fields !q__set_size 

146 



frmBrowse_AQ_tbi.lst_ L _ q_set_size.Addltem .Fields!L _q_set_size 

.MoveNext 

Loop 

End With 

frmBrowse AQ tbl.Show 

Exit Sub 

Err Handler: 

If Err= 3021 Then 

MsgBox "Sorry Audit Query Table is empty now.", vbinformation, "AQ Table" 

End If 

End Sub 

Private Sub cmdCancel_ Click() 

Me.txtName.Text = "" 

EraseTextBoxes 

MsgBox "Insertion, modification or deletion IS cancelled.", vbinformation, 
"Cancelling" 

Me.cmdSave.Enabled =False 

Me.cmdCancel.Enabled = False 

Me.cmdEdit.Enabled =False 

Me.cmdDelete.Enabled =False 

Me.cmdAdd.Enabled =True 

Me.cmdClose.Enabled =True 

Me.cmdSearch.Enabled =True 

Me.cmdAdd.SetFocus 

End Sub 

Private Sub cmdClose_Click() 

147 



Unload Me 

End Sub 

Private Sub cmdDelete _Click() 

Dim myCriteria As String 

Dim kr As KRDB rec 

myCriteria = "recNo=" & CurrentRecNo 

If Found= True Then 

Answer = MsgBox("Are you sure?", vbYesNo + vbDefaultButton2 + 
vbQuestion, "Deletion") 

If Answer = vb Yes Then 

Me.datEmployeeData.Recordset.Delete 

With Me.datKRDB.Recordset 

.FindFirst (myCriteria) 

If Not .NoMatch Then 

kr.ca(O) = .Fields!caO 

kr.ca(l) = .Fields!cal 

kr.ca(2) = .Fields!ca2 

kr.Sal = .Fields!Salary 

.Delete 

End If 

End With 

MsgBox "Record is deleted.", vbinformation, "Deletion" 

Found= False 

End If 

Else 

MsgBox "This name is not found.", vbCritical, "Not found" 

148 



End If 

Call Update_L_q__ Set_Size_AQtbl(kr, "Del") 

Me.cmdSave.Enabled =False 

Me.cmdCancel.Enabled = False 

Me.cmdEdit.Enabled = False 

Me.cmdDelete.Enabled =False 

Me.cmdAdd.Enabled = True 

Me.cmdClose.Enabled = True 

Me.cmdSearch.Enabled = True 

Me.txtName.Text = "" 

EraseTextBoxes 

Me.cmdAdd.SetFocus 

End Sub 

Private Sub cmdEdit Click() 

Dim myCriteria As String 

Dim Old rec As KRDB rec - -

Dim New rec As KRDB rec - -

myCriteria = "recNo=" & CurrentRecNo 

If Found Then 

If Trim(Me.txtName) <> "" And Trim(Mc.txtSalary) <> '"' And 
Trim(Me.cmbGender) <> "" And Trim(Me.cmbDept) <> "" And Trim(Me.cmbLevel) 
<>''"Then 

IflsNumeric(Me.txtName) Or Not IsNumeric(Me.txtSalary) Then 

MsgBox "Type mismatch.", vbCritical, "Type error" 

Me.txtName.SetFocus 

Else 

149 



With Me.datEmployeeData.Recordset 

.FindFirst (myCriteria) 

.Edit 

.Fields!empName = Me.txtName 

.Fields!Gender = Me.cmbGender 

.Fields!Dept = Me.cmbDept 

.Fields!Level = Me.cmbLevel 

.Fields!Salary = Me.txtSalary 

.Update 

End With 

With Me.datKRDB.Recordset 

.FindFirst (myCriteria) 

If Not .NoMatch Then 

Old_rec.ca(O) = .Fields!caO 

Old_rec.ca(l) =.Fields! cal 

Old_rec.ca(2) = .Fields!ca2 

Old rec.Sal = .Fields!Salary 

.Edit 

.Fields! Salary = Me. txtSalary 

Select Case Me.cmbGender 

Case "Male" 

.Fields!caO ="I" 

Case "Female" 

.Fields!caO = "2" 

End Select 

!50 



Select Case Me.cmbDept 

Case "CS" 

.Fields!cal ="I" 

Case "EE" 

.Fields!cal = "2" 

Case "PE" 

.Fields!cal = "3" 

End Select 

Select Case Me.cmbLevel 

Case "BSc" 

.Fields !ca2 = "I" 

Case "MSc" 

.Fields!ca2 = "2" 

Case "PhD" 

.Fields!ca2 = "3" 

End Select 

New rec.ca(O) = .Fields!caO 

New rec.ca(l) = .Fields!cal 

New rec.ca(2) = .Fields!ca2 

New_rec.Sal =.Fields! Salary 

If New rec.ca(O) <> Old rec.ca(O) Or - - -

New_rec.ca(l) <> Old_rec.ca(l) Or_ 

New rec.ca(2) <>Old rec.ca(2) Or 
- - -

New rec.Sal <>Old rec.Sal Then - -

Call Update_L_q_Set_Size_AQtbl(Old_rec, "Del") 

151 



Else 

Call Update_ L _ q_ Set_ Size _AQtbl(New _rec, "Add") 

MsgBox "Data is modified", vblnformation, "Edit Data" 

MsgBox "Data is not changed", vbCritical, "Edit Data" 

Me.txtName.Text = '"' 

Erase TextBoxes 

Me.cmdSave.Enabled =False 

Me.cmdCancel.Enabled =False 

Me.cmdEdit.Enabled =False 

Me.cmdDelete.Enabled =False 

Me.cmdAdd.Enabled =True 

Me.cmdClose.Enabled = True 

Me.cmdSearch.Enabled = True 

Me.cmdAdd.SetFocus 

.Cancel Update 

Exit Sub 

End If 

.Update 

End If 

End With 

End If 

Else 

MsgBox "Data is incomplete.", vbCritieal, "Incomplete Data" 

Me. txtN ame.SetF ocus 

Exit Sub 

152 



End If 

Else 

MsgBox "This name is not found.", vbCritical, "Not Found" 

Endlf 

Me.txtName.Text = '"' 

EraseTextBoxes 

Me.cmdSave.Enabled = False 

Me.cmdCancel.Enabled =False 

Me.cmdEdit.Enab!ed =False 

Me.cmdDelete.Enabled =False 

Me.cmdAdd.Enabled =True 

Me.cmdC!ose.Enabled = True 

Me.cmdSearch.Enabled = True 

Me.cmdAdd.SetFocus 

End Sub 

Private Sub cmdSave Click() 

On Error Resume Next 

Dim myRecNo As Integer 

Dim kr As KRDB rec 

If Trim(Me.txtName) <> "" And Trim(Me.txtSalary) <> "" And 
Trim(Me.cmbGender) <>""And Trim(Me.cmbDept) <>""And Trim(Me.cmbLevel) 
<> ••u Then 

If IsNumeric(Me.txtName) Or Not lsNumeric(Me.txtSalary) Then 

MsgBox "Type mismatch.", vbCritical, "Type error" 

Me.txtName.SetFocus 

Else 

!53 



With Me.datEmployeeData.Recordset 

.Move Last 

If .Record Count = 0 Then 

myRecNo = .RecordCount + 1 

Else 

myRecNo = .Fields!recNo + 1 

Endlf 

.AddNew 

.Fields!recNo = myRecNo 

.Fields!empName = Me.txtName 

.Fields!Gender = Me.cmbGender 

.Fields!Dept = Me.cmbDept 

.Fields!Level = Me.cmbLevel 

.Fields!Salary = Me.txtSalary 

.Update 

End With 

With Me.datKRDB.Recordset 

.AddNew 

.Fields!recNo = myRecNo 

.Fields!Salary = Me.txtSalary 

Select Case Me.cmbGender 

Case "Male" 

.Fields!caO ="I" 

Case "Female" 

.Fields!caO = "2" 

154 



End Select 

Select Case Me.cmbDept 

Case "CS" 

.Fields!cal ="I" 

Case "EE" 

.Fields!cal = "2" 

Case "PE" 

.Fields!cal = "3" 

End Select 

Select Case Me.cmbLevel 

Case "BSc" 

.Fields!ca2 ="I" 

Case "MSc" 

.Fields!ca2 = "2" 

Case "PhD" 

.Fields!ca2 = "3" 

End Select 

kr.ca(O) = .Fields!caO 

kr.ca(l) = .Fields!cal 

kr.ca(2) = .Fields!ca2 

kr.Sal = .Fields!Salary 

.Update 

End With 

Call Update_L_q_Set_Size_AQtbl(kr, "Add") 

MsgBox "Data is saved", vblnformation, "Save Data" 

!55 



Me.txtName.Text = "" 

EraseTextBoxes 

Me.cmdSave.Enabled =False 

Me.cmdCancel.Enabled =False 

Me.cmdEdit.Enabled =False 

Me.cmdDelete.Enabled =False 

Me.cmdAdd.Enabled = True 

Me.cmdClose.Enabled = True 

Me.cmdSearch.Enabled = True 

Me.cmdAdd.SetFocus 

End If 

Else 

MsgBox "Data is incomplete.", vbCritical, "Incomplete Data" 

Me. txtN ame.SetF ocus 

Exit Sub 

End If 

End Sub 

Private Sub cmdSearch_Click() 

Dim myName As String 

myName = InputBox("Enter Employee name you want:", "Search Name") 

IfSearchName(myName) =True Then 

Me.cmdSave.Enabled =False 

Me.cmdCancel.Enabled = True 

Me.cmdEdit.Enabled = True 

Me.cmdDelete.Enabled = True 

!56 



Me.cmdAdd.Enabled = False 

Me.cmdClose.Enabled = False 

Me.cmdSearch.Enabled =False 

Me.txtName.SctFocus 

Else 

Me.cmdSave.Enabled = False 

Me.cmdCancel.Enabled = False 

Me.cmdEdit.Enabled =False 

Me.cmdDelete.Enabled =False 

Me.cmdAdd.Enabled = True 

Me.cmdClose.Enabled =True 

Me.cmdSearch.Enabled = True 

Me.cmdAdd.SetFocus 

End If 

End Sub 

C.3 Browse Employee Data Form 

Private Sub cmdClose _Click() 

Unload Me 

End Sub 

Private Sub cmdRefresh Click() 

On Error Resume Next 

Me.lstRecNo.Clear 

Me.lstName.Clear 

157 



Me.lstGender.Clear 

Me .lstDept. Clear 

Me.lstLevel.Clear 

Me.lstSalary. Clear 

With Me.datEmployeeData.Recordset 

.MoveFirst 

Do While Not .EOF 

Me.lstRecNo.Addltem .Fields!recNo 

Me.lstName.Addltem .Fields!empName 

Me.lstGender.Addltem .Fields!Gender 

Me.lstDept.Addltem .Fields!Dept 

Me.lstLevel.Addltem .Fields!Level 

Me.lstSalary.Addltem .Fields!Salary 

.MoveNext 

Loop 

End With 

End Sub 

Private Sub lstDept_ Click() 

Me.lstRecNo.Selected(Me.lstDept.Listlndex) =True 

Me.lstName.Selected(Me.lstDept.Listlndex) =True 

Me.lstGender.Selected(Me.lstDept.Listlndex) =True 

Me.lstLevel.Selected(Me.lstDept.Listlndex) =True 

Me.lstSalary.Selected(Me.lstDept.Listlndex) =True 

End Sub 

Private Sub lstGender Click() 

158 



Me.lstRecNo.Selected(Me.lstGender.Listlndex) =True 

Me.lstName.Selected(Me.IstGender.Listlndex) =True 

Me.lstDept.Selected(Me.lstGender.Listlndex) =True 

Me.lstLevel.Selected(Me.IstGender.Listlndex) =True 

Me.lstSalary.Selected(Me.lstGender.Listlndcx) =True 

End Sub 

Private Sub lstLevel~ Click() 

Me.lstRecNo.Selected(Me.lstLevel.Listlndex) =True 

Me.lstName.Selected(Me.lstLevel.Listlndex) =True 

Me.IstGender.Selected(Me.lstLevel.Listlndex) =True 

Me.lstDept.Selected(Me.lstLevel.Listlndex) =True 

Me.lstSalary.Selected(Me.lstLevel.Listlndex) =True 

End Sub 

Private Sub lstName~ Click() 

Me.lstRecNo.Selected(Me.lstName.Listlndex) =True 

Me.lstGender.Selected(Me.lstName.Listlndex) =True 

Me.lstDept.Selected(Me.IstName.Listlndex) =True 

Me.lstLevel.Selected(Me.lstName.Listlndex) =True 

Me.lstSalary.Selected(Me.lstName.Listlndex) =True 

End Sub 

Private Sub lstRecNo~Click() 

Me.lstName.Selected(Me.lstRecNo.Listlndex) =True 

Me.lstGender.Selected(Me.lstRecNo.Listlndex) =True 

Me.lstDept.Selected(Me.lstRecNo.Listlndex) =True 

Mc.lstLevel.Selected(Me.lstRecNo.Listlndex) =True 

!59 



Me.lstSalary.Selected(Me.lstRecNo.Listlndex) =True 

End Sub 

Private Sub lstSalary _Click() 

Me.lstRecN o. Selected(Me.lstSalary. Listlndex) = True 

Me.lstName.Selected(Me.lstSalary.Listlndex) =True 

Me.lstGender.Selected(Me.lstSalary.Listlndex) =True 

Me.lstDept.Selected(Me.lstSalary.Listlndex) =o True 

Me.lstLevel.Selected(Me.lstSalary.Listlndex) =True 

End Sub 

C.4 Browse KRDB Form 

Private Sub cmdClose _Click() 

Unload Me 

End Sub 

Private Sub cmdRefresh Click() 

On Error Resume Next 

Me.lstRecNo.Clear 

Me.lstCategoryKeys.Clear 

With Me.datKRDB.Recordset 

.MoveFirst 

Do While Not .EOF 

Me.lstRecNo.Addltem .Fields!recNo 

Me.lstCategoryKeys.Addltem .Fields!caO & .Fields!cal & .Fields!ca2 & "." & 
.Fields!Salary 

.MoveNext 

160 



Loop 

End With 

End Sub 

Private Sub lstCategoryKeys _Click() 

Me.lstRecNo.Selected(Me.lstCategoryKeys.Listlndex) =True 

End Sub 

Private Sub lstRecNo Click() 

Me.lstCategoryKeys.Selected(Me.lstRecNo.Listlndex) =True 

End Sub 

C.S Browse AQ Table Form 

Private Sub cmdC!ose_ Click(Index As Integer) 

Unload Me 

End Sub 

Private Sub 1st_ L _ q_ set_ size_ Click() 

Me.lstKRQ.Selected(Me.lst_ L _ q_ set_ size.Listlndex) = True 

Me.lstNS.Selected(Me.lst_ L_ q_set_size.Listlndex) = True 

Me.lst_ q_set_size.Selected(Me.lst_ L_ q_set_ size.Listlndex) = True 

End Sub 

Private Sub 1st_ q_ set_size _Click() 

Me.lstKRQ.Selected(Me.lst_ q_ set_ size.Listlndex) = True 

Me.lstNS.Selected(Me.lst_q_set_size.Listlndex) =True 

Me.lst_ L _ q_set_size.Selected(Me.lst_ q_ set_ size.Listlndex) = True 

End Sub 

161 



Private Sub lstKRQ_ Click() 

Me.lstNS.Selected(Me.lstKRQ.Listlndex) =True 

Me.lst_ g_ set_ size.Selected(Me.lstKRQ.Listlndex) = True 

Me.lst_L_g_set_ size.Selected(Me.lstKRQ.Listlndex) =True 

End Sub 

Private Sub lstNS _Click() 

Me.lstKRQ.Selected(Me.lstNS.Listlndex) =True 

Me.lst_g_set_size.Selected(Me.lstKRQ.Listlndex) =True 

Me.lst_L _g_set_size.Selected(Me.lstNS.Listlndex) =True 

End Sub 

C.6 User Query Form 

Private Sub chki_NSO_l_Click() 

lfMe.chkl NSO !.Value= I Then - -

Me.chkl NSO 2.Value = 0 - -

End If 

End Sub 

Private Sub chki_NS0_2_Click() 

lfMe.chkl NSO 2.Value =I Then - -

Me.chkl NSO !.Value= 0 - -

End If 

End Sub 

Private Sub chki_NSI_l_Click() 

IfMe.chkl NSI !.Value= I Then - -

162 



Me.chkl NSI 2.Value = 0 - -

End If 

End Sub 

Private Sub chki_NS1_2_Click() 

IfMe.chkl NSI 2.Value =I Then 
- -

Me.chkl NSl !.Value= 0 - -

End If 

End Sub 

Private Sub chk I_ NS2 _I_ Click() 

IfMe.chkl NS2 !.Value= I Then - -

Me.chkl NS2 2.Value = 0 - -

End If 

End Sub 

Private Sub chk I_ NS2 _ 2 _Click() 

IfMe.chkl NS2 2.Value =I Then - -

Me.chkl NS2 !.Value= 0 - -

End If 

End Sub 

Private Sub chk2 _ NSO _I_ Click() 

IfMe.chk2 NSO !.Value= 1 Then 
- -

Me.chk2 NSO 2.Value = 0 - -

End If 

End Sub 

Private Sub chk2 NSO 2 Click() - --

IfMe.chk2 NSO 2.Value= 1 Then - -

163 



Me.chk2_NSO_l.Value = 0 

End If 

End Sub 

Private Sub chk2 _ NS 1_1_ Click() 

IfMe.chk2_NSI_l.Value =I Then 

Me.chk2 NSI 2.Value = 0 
- -

End If 

End Sub 

Private Sub chk2_NS1_2_Click() 

IfMe.chk2_NS1_2.Value =I Then 

Me.chk2 NSI !.Value= 0 
- -

End If 

End Sub 

Private Sub chk2 _ NS2 _I_ Click() 

IfMe.chk2_NS2_l.Valuc =I Then 

Me.chk2 NS2 2.Value = 0 - -

End If 

End Sub 

Private Sub chk2 NS2 2 Click() - --

IfMe.chk2_NS2_2.Value =I Then 

Me.chk2 NS2 !.Value= 0 - -

End If 

End Sub 

Private Sub chk3 _ NSO _I Click() 

IfMe.chk3_NSO_l.Value =I Then 

164 



Me.chk3 NSO 2.Value = 0 
- -

End If 

End Sub 

Private Sub chk3 _NSO _ 2 _Click() 

IfMe.chk3 NSO 2.Value = I Then - -

Me.chk3 NSO !.Value= 0 
- -

End If 

End Sub 

Private Sub chk3 _ NS 1_1_ Click() 

IfMe.chk3 NSl !.Value= I Then - -

Me.chk3 NSI 2.Value = 0 - -

End If 

End Sub 

Private Sub chk3_NS1_2_Click() 

IfMe.chk3 NSI 2.Value =I Then 
- -

Me.chk3 NSI !.Value= 0 
- -

End If 

End Sub 

Private Sub chk3 _ NS2 _I_ Click() 

IfMe.chk3 NS2 !.Value= 1 Then - -

Me.chk3 NS2 2.Value = 0 - -

End If 

End Sub 

Private Sub chk3_NS2_2_Click() 

IfMe.chk3 NS2 2.Value= I Then 
- -

165 



Me.chk3 NS2 !.Value= 0 - -

End If 

End Sub 

Private Sub chk4_NSO_l_ Click() 

IfMe.chk4 NSO !.Value= I Then - -

Me.chk4 NSO 2.Value = 0 - -

End If 

End Sub 

Private Sub chk4 NSO 2 Click() - --

IfMe.chk4 NSO 2.Value =I Then - -

Me.chk4 NSO !.Value= 0 - -

End If 

End Sub 

Private Sub chk4_NSI_l_Click() 

IfMe.chk4 NSl !.Value= I Then - -

Me.chk4 NSI 2.Value = 0 
- -

End If 

End Sub 

Private Sub chk4_NSI_2_Click() 

IfMe.chk4 NSI 2.Value =I Then - -

Me.chk4 NSI !.Value= 0 - -

End If 

End Sub 

Private Sub chk4_NS2_l_Click() 

IfMe.chk4 NS2 !.Value= I Then - -

166 



Me.chk4 NS2 2.Value = 0 - -

End If 

End Sub 

Private Sub chk4_NS2_2_Click() 

IfMe.chk4 NS2 2.Value =I Then - -

Me.chk4 NS2 !.Value= 0 - -

End If 

End Sub 

Private Sub chk5 _ NSO _I_ Click() 

IfMe.chk5 NSO !.Value= I Then - -

Me.chk5 NSO 2.Value = 0 - -

End If 

End Sub 

Private Sub chk5_NS0_2_Click() 

lfMe.chk5 NSO 2.Value =I Then - -

Me.chk5 NSO !.Value= 0 - -

End If 

End Sub 

Private Sub chk5 _ NS 1_1_ Click() 

IfMe.chk5 NSI !.Value= I Then - -

Me.chk5 NSI 2.Value = 0 - -

End If 

End Sub 

Private Sub chk5_NSI_2_Click() 

lfMe.chk5 NSI 2.Value =I Then - -

167 



Me.chk5 NSI !.Value= 0 - -

End If 

End Sub 

Private Sub chk5 NS2 I Click() - --

IfMe.chk5 NS2 !.Value= I Then - -

Me.chk5 NS2 2.Value = 0 - -

End If 

End Sub 

Private Sub chk5 NS2 2 Click() - --

IfMe.chk5 NS2 2.Value =I Then - -

Me.chk5 NS2 !.Value= 0 - -

End if 

End Sub 

Private Sub cmb I Dept Click() - -

IfMe.cmbi_Dept.List(Me.cmbi_Dept.Listlndex) ="*"Then 

Me.chkl NSI !.Value= 0 - -

Me.chkl NSI 2.Value=O - -

End If 

End Sub 

Private Sub cmbl Gender Click() - -

If Me.cmb I_ Gender.List(Me.cmb I_ Gender.Listlndex) = "*" Then 

Me.chkl NSO !.Value= 0 
- -

Me.chkl NSO 2.Value = 0 - -

End If 

End Sub 

168 



Private Sub cmb I Level Click() - -

If Me.cmb I_ Level.List(Me.cmb I_ Level.Listlndex) = "*" Then 

Me.chkl NS2 !.Value= 0 - -

Me.chkl NS2 2.Value = 0 - -

End If 

End Sub 

Private Sub cmbl_Op_Click() 

Me. txt I VI. Text = '"' 

Me. txt! V2.Text = "" 

IfMe.cmbi_Op.List(Me.cmbl_Op.Listlndex) ="*"Then 

Me. txt! Vl.Visible =False 

Me.txtl V2.Visible =False 

ElselfMe.cmbl_Op.List(Me.cmbl_Op.Listlndex) ="="Or_ 

Me.cmbl_Op.List(Me.cmbi_Op.Listlndex) ="<>"Or_ 

Me.cmbl_Op.List(Me.cmbi_Op.Listlndex) =">"Or_ 

Me.cmbl_Op.List(Me.cmbi_Op.Listlndex) =">="Or_ 

Me.cmbi_Op.List(Me.cmbi_Op.Listlndex) ="<"Or_ 

Me.cmbl_Op.List(Me.cmbi_Op.Listlndex) ="<="Then 

Me.txtl VI. Visible= True 

Me. txt I V2.Visible =False 

ElselfMe.cmbl_Op.List(Me.cmbl_Op.Listlndex) ="[,]"Or_ 

Me.cmbi_Op.List(Me.cmbl_Op.Listlndex) ="(,]"Or_ 

Me.cmb I_ Op.List(Me.cmbl_ Op.Listlndex) = "[,)" Or_ 

Me.cmb I_ Op.List(Me.cmb I_ Op.Listlndex) = "(,)" Then 

Me.txtl Vl.Visible =True 

169 



Me.txtl V2.Visible =True 

End If 

End Sub 

Private Sub cmd 1_ Or_ Click() 

If Part! Validation= False Then 

Exit Sub 

End If 

Parts ctr = Parts ctr + I - -

Fill_krqO 

Me.txt2 Vl.Visible =False 

Me.txt2 V2. Visible= False 

Me.chk2 NSO !.Value= 0 - -

Me.chk2 NSO 2.Value = 0 - -

Me.chk2 NSI !.Value= 0 
- -

Me.chk2 NSI 2.Value = 0 - -

Me.chk2 NS2 !.Value= 0 - -

Me.chk2 NS2 2.Value = 0 - -

Me.chk2 NSO !.Visible= True 
- -

Me.chk2 NSO 2.Visible =True - -

Me.chk2 NS 1 !.Visible= True 
- -

Me.chk2 NSI 2.Visible =True - -

Me.chk2 NS2 !.Visible= True - -

Me.chk2 NS2 2.Visible =True 
- -

Me.cmd2 Cancel. Visible= True 

Me.cmb2 Gender. Visible= True 

170 



Me.cmb2_Dept.Visible =True 

Me.cmb2 Level. Visible= True 

Me.cmb2_0p.Visible =True 

Me.cmd2 Or. Visible= True 

Me.h L4.Visible =True 

Me.chk2 NSO I = 0 - -

Me.chk2 NSO 2 = 0 - -

Me.cmb2 Gender. Text="" 

Me.chk2 NSI I = 0 - -

Me.chk2 NSI 2 = 0 - -

Me.cmb2_Dept.Text = "" 

Me.chk2 NS2 l = 0 - -

Me.chk2 NS2 2 = 0 
- -

Me.cmb2 Level. Text="" 

Me.cmb2 _ Op.Text = '"' 

Me.txt2 VI. Text="" 

Me.txt2 V2.Text = "" 

Me.cmb2 Gender.SetFocus 

Me.cmdl Or.Enabled =False 

Me.cmdBrowseResult.Enabled = False 

End Sub 

Private Sub cmd2_Cancel_Click() 

Dim Answer As String 

If Parts ctr > 2 Then 

If Parts ctr = 3 Then 

171 



MsgBox "You have to remove (Part 3) before removing this part.", vbCritical, 
"Removing the current part" 

Exit Sub 

End If 

IfParts ctr = 4 Then 

MsgBox "You have to remove (Part 4 and Part 3) before removing this part.", 
vbCritical, "Removing the current part" 

Exit Sub 

End If 

If Parts ctr = 5 Then 

MsgBox "You have to remove (Part 5, Part 4, and Part 3) before removing this 
part.", vbCritical, "Removing the current part" 

Exit Sub 

End If 

End If 

Answer= MsgBox("Are you sure you want to remove this part (Part 2) from your 
query?", vb Y esNo + vbQuestion, "Removing the current part") 

If Answer= vb Yes Then 

Parts ctr = Parts ctr - I - -

Me.chk2 NSO I. Visible = False 
- -

Me.chk2 NSO 2.Visible =False - -

Me.chk2 NS I I. Visible= False - -

Me.chk2 NS I 2.Visible =False - -

Me.chk2 NS2 !.Visible= False - -

Me.chk2 NS2 2.Visible =False - -

Me.cmdl Or.Enabled =True 

Me.cmdBrowseResult.Enabled =False 

172 



Me.cmd I Or.SetFocus 

Me.cmd2 Cancel. Visible= False 

Me.cmb2 Gender. Visible= False 

Me.cmb2 _Dept. Visible = False 

Me.cmb2 Level. Visible= False 

Me.cmb2_0p.Visible =False 

Me.txt2 Vl.Visible =False 

Me.txt2 V2.Visible =False 

Me.cmd2 Or. Visible = False 

Me.h L4.Visible =False 

Else 

Exit Sub 

End If 

End Sub 

Private Sub cmdBrowseResult Click() 

frmBrowseQueryResult.Show 

Me.cmdBrowseResult.Enabled = False 

End Sub 

Private Sub cmdClear_Click() 

Me.Cls 

End Sub 

Private Sub cmdBrwoseAQtbl Click() 

On Error Go To Err Handler 

With Me.datAQ table.Recordset 

.MoveFirst 

173 



Do While Not .EOF 

frmBrowse AQ tbl.lstKRQ.Addltem .Fields!caO & .Fields!cal & .Fields!ca2 
&!t.tl 

& .Fields!Op & "." & .Fields!Vl & "." & .Fields!V2 

frmBrowse_AQ_tbl.lstNS.Addltem .Fields!NSO & .Fields!NSI & .Fields!NS2 

frmBrowse _ AQ_ tbl.lst_ q_ set_ size.Addltem .Fields! q_ set_ size 

frmBrowse _ AQ_tbl.lst_ L _ q_ set_size.Addltem .Fields! L _ q_ set_ size 

.MoveNext 

Loop 

End With 

frmBrowse AQ tbl.Show 

Exit Sub 

Err Handler: 

If Err = 3021 Then 

MsgBox "Sorry Audit Query Table is empty now.", vblnformation, "AQ Table" 

End If 

End Sub 

Private Sub cmdExit_ Click() 

Unload Me 

End Sub 

Private Sub cmdNewQuery _Click() 

Me. txt! VI. Visible= False 

Me. txt! V2.Visible =False 

Me.cmdBrowseResult.Enabled =False 

Me.cmdl Or.Enabled =True 

Parts ctr = I 

174 



Me.chkl NSO !.Value= 0 - -

Me.chkl NSO 2.Value = 0 - -

Me.chkl NSI !.Value= 0 
- -

Me.chkl NSI 2.Value = 0 
- -

Me.chkl NS2 !.Value= 0 - -

Me.chkl NS2 2.Value = 0 - -

Me.chk2 NSO !.Visible= False - -

Me.chk2 NSO 2.Visible =False - -

Me.chk2 NS I !.Visible= False - -

Me.chk2 NS I 2.Visible =False - -

Me.chk2 NS2 !.Visible= False 
- -

Me.chk2 NS2 2.Visible =False - -

Me.cmd2 Cancel. Visible= False 

Me.cmb2 Gender. Visible = False 

Me.cmb2_Dept.Visible =False 

Me.cmb2 Level. Visible= False 

Me.cmb2_0p.Visible =False 

Me.txt2 Vl.Visible =False 

Me.txt2 V2.Visible =False 

Me.cmd2 Or. Visible= False 

Me.chk3 NSO !.Visible= False 
- -

Me.chk3 NSO 2.Visible =False - -

Me.chk3 NS I !.Visible= False - -

Me.chk3 NS I 2.Visible =False 
- -

Me.chk3 NS2 !.Visible= False 
- -

175 



Me.chk3 NS2 2.Visible =False - -

Me.cmd3 Cancel. Visible= False 

Me.cmb3 Gender. Visible= False 

Me.cmb3 Dept. Visible= False 

Me.cmb3 Level. Visible= False 

Me.cmb3 Op.Visible =False 

Me.txt3 Vl.Visible =False 

Me.txt3 V2.Visible =False 

Me.cmd3 Or. Visible= False 

Me.chk4 NSO !.Visible= False - -

Me.chk4 NSO 2.Visible =False - -

Me.chk4 NSI !.Visible= False - -

Me.chk4 NSI 2.Visible =False - -

Me.chk4 NS2 !.Visible= False - -

Me.chk4 NS2 2.Visible =False - -

Me.cmd4 Cancel. Visible= False 

Me.cmb4 Gender. Visible= False 

Me.cmb4_Dept.Visible =False 

Me.cmb4 Level. Visible= False 

Me.cmb4_0p.Visible =False 

Me.txt4 Vl.Visible =False 

Me.txt4 V2.Visible =False 

Me.cmd4 Or. Visible= False 

Me.chk5 NSO !.Visible= False - -

Me.chk5 NSO 2.Visible =False - -

176 



Me.chk5 NSl !.Visible= False - -

Me.chk5 NSl 2.Visible =False - -

Me.chk5 NS2 !.Visible= False - -

Me.chk5 NS2 2.Visible =False - -

Me.cmd5 Cancel. Visible = False 

Me.cmb5 Gender. Visible= False 

Me.cmb5 _Dept. Visible= False 

Me.cmb5 Level. Visible= False 

Me.cmb5 _Op.Visible =False 

Me.txt5 Vl.Visible =False 

Me.txt5 V2.Visible =False 

Me.h L4.Visible =False 

Me.h L5.Visible =False 

Me.h L6.Visible =False 

Me.h L7.Visible =False 

Me.chkl NSO I = 0 
- -

Me.chkl NSO 2 = 0 - -

Me.cmbl Gender. Text='"' 

Me.chkl NSI I= 0 - -

Me.chkl NSI 2 = 0 - -

Me.cmbl_Dept.Text = "" 

Me.chkl NS2 I = 0 - -

Me.chkl NS2 2 = 0 - -

Me.cmbl Level. Text="" 

Me.cmbl_Op.Text = "" 

177 



Me.txt1 Vl.Text = "" 

Me.txt1 V2.Text = "" 

Me.cmbl Gender.SetFocus 

For x = 0 To no of _parts- 1 

For y = 0 To 2 

krq(x).ca(y) = "" 

krq(x).NS(y) = 0 

Nexty 

krq(x).Op = "" 

krq(x).V1 = 0 

krq(x).V2 = 0 

Part_ Size(x) = 0 

Nextx 

End Sub 

Private Sub cmdQueryResult Click() 

Dim Part _Index As Integer 

For x = 0 To (no_of_parts- 1) 

Fory = 0 To 2 

krq(x).ca(y) = "" 

krq(x).NS(y) = 0 

Next y 

krq(x).Op = "" 

krq(x).V1 = 0 

krq(x).V2 = 0 

Part Size(x) = 0 

178 



Next x 

frmBrowseQueryResult.lstKRQ.Clear 

frmBrowseQueryResult.lstRecNo.Clear 

frmBrowseQueryResult.lstCategoryKeys.Clear 

If Parts ctr = I Then 

IfPartl Validation= False Then 

Me.cmb I Gender.SetFocus 

Exit Sub 

End If 

Fill_krqO 

Elself Parts ctr = 2 Then 

If Part! Validation= False Then 

Me.cmbl Gender.SetFocus 

Exit Sub 

End If 

IfPart2 Validation= False Then 

Me.cmb2 Gender.SetFocus 

Exit Sub 

End If 

Fill_ krqO 

Fill_krql 

Elself Parts ctr = 3 Then 

If Part! Validation= False Then 

Me.cmb I Gender.SetFocus 

Exit Sub 

179 



End If 

If Part2 V aiidation = False Then 

Me.cmb2 Gender.SetFocus 

Exit Sub 

End If 

IfPart3 Validation= False Then 

Me.cmb3 Gender.SetFocus 

Exit Sub 

End If 

Fill_krqO 

Fill_krq 1 

Fill_krq2 

Elseif Parts ctr = 4 Then 

If Part 1 Validation = False Then 

Me.cmb1 Gender.SetFocus 

Exit Sub 

End If 

If Part2 Validation =False Then 

Me.cmb2 Gender.SetFocus 

Exit Sub 

End If 

If Part3 Validation = False Then 

Me.cmb3 Gender.SetFocus 

Exit Sub 

End If 

180 



IfPart4 Validation= False Then 

Me.cmb4 Gender.SetFocus 

Exit Sub 

End If 

Fill krqO 

Fill krql 

Fill krq2 

Fill krq3 

Else if Parts ctr = 5 Then 

If Part! Validation= False Then 

Me.cmb I Gender.SetF ocus 

Exit Sub 

End If 

If Part2 Validation= False Then 

Me.cmb2 Gender.SetFocus 

Exit Sub 

End If 

IfPart3 Validation= False Then 

Me.cmb3 Gender.SetFocus 

Exit Sub 

End If 

If Part4 Validation= False Then 

Me.cmb4 Gender.SetFocus 

Exit Sub 

End If 

181 



If PartS Validation= False Then 

Me.cmb5 Gender.SetFocus 

Exit Sub 

End If 

Fill_krqO 

Fill krq I 

Fill_krq2 

Fill krq3 

Fill krq4 

End If 

If Query_ Validation = False Then 

Me.cmbl Gender.SetFocus 

Exit Sub 

End If 

Intersection= 0 

q_Sum=O 

q_Count= 0 

j=O 

For Part_ Index= 0 To (Parts_ctr- I) 

Call Select_Recs(krq(Part_Index), Part_Index) 

Next Part Index 

frmBrowseQueryResult.txtSum = q_Sum 

frmBrowseQueryResult.txtCount = q_ Count 

Call Check_ the_ Query 

Me.cmdBrowseResult.Enabled = True 

182 



End Sub 

C.7 Browse Query Result Form 

Private Sub cmdClose ~Click() 

Unload Me 

End Sub 

Private Sub lstCategoryKeys Click() 

Me.lstRecNo.Selected(Me.lstCategoryKeys.Listlndex) =True 

End Sub 

Private Sub lstRecNo~Click() 

Me.lstCategoryKeys.Selected(Me.lstRecNo.Listlndex) =True 

End Sub 

183 


