CERTIFICATION OF APPROVAL

MICROCONTROLLER BASED SIGN LANGUAGE TRANSLATOR

By

MOHAMMED OBAIDALLAH ALHARBI

A project dissertation submitted to the

Electrical & Electronic Engineering Department
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronic Engineering)

Approved:

/4

Dr. Mohd Zuki Bin Yusoff
Project supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

December 2011

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein has not been undertaken or performed by

unspecified sources or persons.

(/7

MOHA AOBAIDALLAH ALHARBI

v

ABSTRACT

The communities of vocal impaired and deaf people who use sign language face great
communication difficulties with people who use vocal languages. This project, aims
to contribute towards bringing the gap closer by offering a tool which translates sign
languages to written messages on an LCD display. This report discusses the different
development and implementation issues including gesture modeling, sensor
interfacing, sign recognition and translation. American Sign Language is widely used
in different part of the world including Malaysia; therefore it is considered in this
project. The proposed method utilizes five potentiometers to emulate sensor output, a
microcontroller to acquire, convert, recognize, translate and display the hand gesture
on the LCD unit. The translator can recognize all 26 letters, 10 numbers, and some
phrases and words. The presented work is believed to be an entry to more promising

and rewarding sign language translation-applications in the future.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ...coovvirmrarintrinmircneineicssssssssissessasssssessssssesssssasssesssssine 1
1.1 Background of Studycceeeeeeeirrieimireene e seneesssssnsessnsenenns 1

1.2 Problem Statementccoccuevmsincscseseresresmsssssssssmsmnesssesssassossassesosas 1

1.3 Project Objectives and SCOPE.....cceceveecrrerecercresrnsenreeserersssssrressasisses 2

1.4 LIMILAHONScueueniiececemsenrerincecriieceestsenecssasasssassssssssssssssessessessreaes 2

1.5 Organization of REPOIt.......cc.vveverrereerrericcernire s seeeesserssssssrrenne 3

CHAPTER 2 LITERATURE REVIEWoocrecrcrrseee s nssnsssessanssesessane 4
2.1 Preliminaries..........coeeuereeieressensrunessessnrssnresseasesessssssssnssssnrssssssssereresss 4

2.2 Related WOrK.......c.oececiniriecirreencineriresssesescsssssessssessssessssssssssssssenns 5

2.3 Recognition and Translation Algorithm: Fuzzy Logicc.cu....... 6

CHAPTER 3 METHODOLOGYoocoverririrenenresarnrersssssassssessssssssssessnessssassssssssesses 7
3.1 Project Development Flow Chart.........ccoceeeveeeecennrernnescecreeensnne. 7

3.2 System Identification and Tools.........cccereveerrvrieverrreeieccnerrrreeeenenns 8

3.2.] POLENtIOMELEToeoeeecrrreecriaessescsscennesss s s s scnss v asansans 8

3.2.2 PIC microcontrollerooveevuveeeeneererenesensevesnesesserreresnens 10

3.2.3 CCS C COMPIIELcaereririteereeeeeirereeeeee e rrsseserss s eesenssenaes 11

3.2.4 PIC development kit and programmer...........c.ccceeveievenenene., 12

3.3 PIC Programming Methodologycevrsnninnseccsessarerennsneseneenes 15

3.4 Sign Language Translation Procedureceeererrreeveereereensvenn. 20

3.4.1 Sensor reading and displaycoerevmvniiiinerernriennnninenenins 21

3.4.2 Signs gesture representationecrereseersersesesessereanes 22

3.4.3 Letter matching algorithmccoceereirnnnnnnnnsensnsevecsssenen 24

3.4.4 Dictionary CONSIIUCHONceememeererrirereeecereeeesssensaeeeseseresanes 25

3.4.5 Translation of letters and numbers from sign language to

WIItten JANGUAZE.cviviuiieieeec ettt aessssannas 29

3.5 SUMIMALY ..oovioireeereecesnereersoerasnssessesnsseesessesserassassessessssassessessesesanns 31

CHAPTER 4 RESULTS AND DISCUSSIONoooc et reeesrtrcsereennsneesssssanens 32
4.1 Sensor Reading and Displaycccvvcciriererenieresensssscnnsesssnasns 32

4.2 Basic Translation based on Sensors Reading.......coceerrnvrrereneccennnes 33

4.3 Translation System Using a Set of Potentiometers..............occevuene. 35

CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS.......cconevierrnrneeressenans 40

vi

5.1 CONCIUSION ..ottt s rte s e s eseceseseseesassssasssesenessenssesnnanns 40

5.2 FUtUre DIreCtions....ceesususssesssessssersarssssassenesssssmmensasassessacscassssssssssres 40
REFERENCES......coiiiinininirnneesssisisiismnisnssssessssssssossssssssssssssssssssossssasssssssnsns 41
Appendix A Project Gantt Chartcieiisisniniesissmsssriimemsanisssssssssssssssnesies 43
Appendix B Five Sensors Reading Display {code)........... rrerereteterts ettt snenenens 45
Appendix C Five Sensor Interface and Basic Translation System (code) 46
Appendix D Translation System with Sign Dictionary (main.c)ccccovereerrrvenenene. 47
Appendix E Translation System with Sign Dictionary (main.h)cccccecevcceirrnenee. 53
Appendix F Translation System with Sign Dictionary (Icd.h).....cccveveeeerrerrencnnnne 54
Appendix G Investigating the Interface with SDT Data Glove: A Potential Future
WOTK ...cccieticinnsnsrssseer ittt ssesstsesesesssssssssbsssseesesasssssstsesnasn sesssnansssasssrsnssassasenrasssans 56

G.1 5DT Data GIOVEcccverrrrsveneriririeneencassssssssnssssssssssesssssssssssessacsenns 56

G.1.1 Getting started with USB interface.........cccocecvuemmecccccneenee. 58
G.1.2 PIC18F4550 as a USB CDC deviceecvevrreererereaneenenennne 59
G.1.3 PIC and data glove USB interfacecccceeurrrrrcrurirecrrernnecs 60

G.2 Getting Started with USBh........coe et essneasseens 61

G.3 PIC as Serial Port via USBi..........coovnvvncrnrnnnnnrereessesssesnssensns 62

G.4 USB Interface between PIC and Data Glovecccocovvvverecceenns 66

.5 DISCUSSION ..ovevereerieirceceriinresssssserrsassssssssseserssssrnssessssassrsesssssessanns 67
Appendix H Data Glove SenSor Mapeevrereensinssssrssmssiriisnsnsnssssessssnsssnens 70
Appendix I Getting Started with USB (USB CDC Code)ocovvivrcinverevenerenninncnns 71
Appendix] 5DT Data Glove and PIC Interface via USB (Code)......ccovrveeemererrevennns 73

vit

LIST OF FIGURES

Figure 1: Letter "A" in American Sign Language [2].......ccccovvcvvmnnnnnnniiiniinenn 4
Figure 2: General Flow Chart of Project Work.........ccvvnviinncicicininee 7
Figure 3: System Tools (PIC, Board, LCD and Potentiometers)............ccoecvurinrucununaens 8
Figure 4: Potentiometer a) Isometric View b) Internal Configuration c) Schematic....9
Figure 5: PIC18F4550 Pin Diagramc.ccccecereeerrersneesscrcsssmsssssintisnssnsenssssseenenes 11
Figure 6: SK40C PIC Start-up Kit........cceeceritiiiiimommecinrenecncnnemssssesssssisisssssseneass 13
Figure 7: UICO0OB USB ICSP PIC Programmercccvvvievsnmisnseneennecsnsinsssssssinns 14
Figure 8: PIC Board and Programmer Connectioncocecccccrnmrmeusnvinescseseseseencncns 15
Figure 9: Microcontroller Programming Flow Chart.........cccceceeeenieiiinniiicennennens 16
Figure 10: Programming Step #1: PICC Project Wizard..........cccocoveiniiinrincecsnnen. 17
Figure 11: Programming Step #2: Code editioncocvvcriecvirecsincnmminnisesisssesecssisens 18
Figure 12: Programming Step #3: Building/Compilation........c.....coooverevenisisncncnce, 18
Figure 13: Programming Step #4: Simulation (Optional)..........ccoenmnvervcinscnmscniennens 19
Figure 14: Programming Step #5: In Circuit Debugging (Optional)cccevveveee... 19
Figure 15: Translation FIow Chatt............c.ccoiviveoimieninrrsniennnceceessssesinsesesesessssnsnesenens 21
Figure 16: Dictionary Construction Flow Chart, Bias value is 7.......ccocoennccccrnnnnns 26
Figure 17: Full Translation Procedure EXamplecooonvecicccemminnnnnnicecesccnen: 30
Figure 18: Potentiometer connected 10 Analog iNPutccccveerrveresssaninineccaessenennns 32
Figure 19: 5 Potentiometer, LCD and PIC Interfacing Circuitry......cc.ocovvecvnncvvcrvvenenns 33
Figure 20: Basic Translation based on Sensors Reading (a) Displaying “M. Alharbi”

{b) Displaying “Dr. M Zuki” (c) Displaying “NOne”ccccecrvmmreriiniesnsrarsrssansnns 34
Figure 21: Translation System Components: 5 Potentiomenters, Main Board (SK40C

board), ANd LCDcoviiiiiiricinceiniseessessassrsresnsssensssesesssessessssssnsassssasssssssesserss 35

Figure 22: Translation System Startup, LCD is displaying the "Strarting" message.. 35
Figure 23: Sensor Readings in First Line (thumb: 123, index:123, middie:238,

ring:242, and little:237), Second Line Displaying the Translated Sign 36
Figure 24: Sensor Readings in Volits (thumb: 2.4V, index:2.4V, middle:4.6V,
rN:4A. TV and HHIE:4.6V)....ccvirrereecececescceieeceesesssssssssssssesesesessensnssessassnnsssssses 37
Figure 25: Translation System Recognizing the Sign for B Equivalent to (thumb:
64+/-7, index: 0, middle: 0, ring: 0 and little: 0) ..c.ccerrrrveveeririinncnecieneeeenes 37
Figure 26: Recognition and Translation of the Sign for 5 (thumb: 0, index: 64+/-7,
middle: 0, ring: 64+/-7, little: 641/-T) .orvcririt e 38

viii

Figure 27: Recognition of Phrases e.g. “I Love You” (thumb: 0, index: 0, middle:

224+/-7, ring: 224+4/-7, THHE: 0)eu.rincniniririiiitivrsnsiissinse s sssistesses s s ensaneeas 38
Figure 28: “None” Message for any Other Unrecognized Signs........ccooevveveniisinnens 39
Figure 29: Data Glove with USB Connection.............cccieeerrniiemnnnnsesnnesserenssnns 56
Figure 30: Data Gloves Sensor Mapping........ccooemrericcunsinscsnnrssssnsssssssssesesss 57
Figure 31: Startup Circuit for USB Interface.......cocvenriicccmirrre s 58
Figure 32: PIC18F4550 Oscillator and Clock Diagram for the CPU and USB

PEIIPREIAl ... cvvveeeeieccecrire et sae e b b s 59
Figure 33: Code Snippet for Setting USB Clockccccvvvvrviviimnvc i 60
Figure 34: Block Diagram for the Proposed Systemcccoocomviimnmiciciinececnnnsinnnee 60
Figure 35: Circuit COMPONENTS......ccociiiiimminrciimesensi s ssne 61
Figure 36: PC to Microcontroller Interface via USB Portcocoeeomineveciniienes 62
Figure 37: GUI Interface to Read a Value from an Analog Device and Toggle the

State of LEDs Attached to Microcontroller...........cvvevinissesssnssnesssssnseseenas 62
Figure 38: PIC showing USB is Successfully Attached (Observe the small LED light

INAICALOT)erueeeiecctrreestereesereeassseneesesse s e s st s s e en s e s aesassaessessssnsasansnssaensenstnsenstestans 63
Figure 39: PIC showing USB is Successfully Enumerated (Observe the small 2 LED

HEHE INAICALOT).......rveereeeeeeeecenrrmeseeeeste et emenecscsas o ssbsss s saeresssssesebesassasnasssass 64
Figure 40: Setting up the Serial Communication to the Microcontroller Using Serial

Monitor 0n CCS C COMPIETcoreveereririerrrrriseserrermsescsssasssitserssesessensacssressessnes 65
Figure 41: Display of Received Data from PC via USB Connection...........cccouune..... 65
Figure 42; 5DT data glove interface with PIC board........cccocorcivncnnnnnnneeneenee 66
Figure 43: Interfacing the PIC and Data Glove (note all LED indicators are OFF) ... 67
Figure 44: Block Diagram for the System with the Proposed Serial Interface Kit..... 69

ix

LIST OF TABLES

Table 1: PIC18F4550 SpecifiCationcoiemieorsenmmrminnoessoresssssiareessssesesmsses 11
Table 2: Basic GeSture MEaningcocoevvvvmrverenesenrarereressssssesissessesssssssensassans 23
Table 3; Numerical Representation of GESIUTEScvceeeeerrrrrrrrererenerereseseesssensesenens 23
Table 4: Dictionary Table (A-Z, 1-10 and I love you)......cccveeeeeeereeeeeceeereeesereennne 27
Table 5: Sensor Mappings for the SDT Data Glove 14 Ultrac.coceveecreerenrecnnane. 57
Table 6: Data Packet Sent by the Glove............ccocovenmnnerninninissmeniones 68

CHAPTER1
INTRODUCTION

This chapter discusses the background of the study, the problem statement, project

objectives and scope.

1.1 Background of Study

A sign language is widely used by people who suffer from vocal impairment or
hearing problems in which the communicators use visually transmitted signs to
convey meanings. The deaf community which utilizes sign language is estimated to
be 0.1% of total population, which means millions of people worldwide [1]. This
large community faces great difficulties in communicating with normal people.
Several attempts have been made to break this gap between sign language users and
conventional vocal language communicators by introducing tools that can interpret
the meaning for both sides. This project aims to deliver a prototype which interprets
the signal made by a sign language communicator into a displayed message on LCD.

This project is believed to be a base for future work in this area.

1.2 Problem Stateme_,nt

Sign language generally utilizes manual movement to convey meanings. This
language is not understood by average people. The majority of people understand
visually written lefters, while sign language users can only use manual signs. in order
to break the gap, a set of sensors can be used on the signer to efficiently convert the
signs made to electrical signals which in return can be understood by a personal
coniputer (PC) and interpreted accordingly. However, the use of PC does not make
the solution mobile and easy to carry. Therefore, a simple 1C based circuitry interface
(i.e. microcontroller) is required to replace the job of PC. In general, such
replacement involves several challenges due to the limited resources which are

normally found in conventional ICs (i.e. microcontrollers).

1.3 Project Objectives and Scope

The aim of this project is to construct a prototype which interprets basic signs into a
readable text on an LCD. In order to realize such prototype, the ASL language is

chosen for the implementation and the following objectives are considered:
1. Obtaining a numerical representation all gestures used in the sign language
2. Constructing a sign language dictionary

3. Prototyping a translation system using set of potentiometers, a microcontroller
and LCD modules.

The project is envisaged to deliver a prototype which makes use of a set of
potentiometers to model the actual sign gestures which can be later replaced to an
accurate data glove. A microcontroller with different communication modules is to be
used to acquire, manipulate and display the signs being detected by the sensors. A
display unit which is as simple as a 2 line-LCD is to be used to display detected

messages.

Throughout the implementation of the proposed translation system, only motionless
signs (i.e. static signs which do not involve any movement of hands, arms, fingers,
head or body to convey the meaning) are considered. The motions are essential for
several sign vocabulary, however they require complex detection and processing

system to detect and interpret them.

1.4 Limitations

The implementation of such project involves several challenges throughout the
different development phases. This project ultimately requires a microprocessor
system to interface with a sensor unit and to process the reading of the sensor to
deliver the final written message on a display unit. The processing of data requires
some noise filtering, data acquisition and recognition algorithms in order to robustly
deliver the final output. These processes, in addition to sign dictionary data, require

significant memory capacity which is not available on most of the commonly used

microcontroller systems.

Additionally, low power consumption for portable devices is a major concern. This is
to ensure convenience of usage without compromising the performance of the
proposed design. This makes an advantage of using optimized integrated components
versus separated ones. For example, a microconiroller with embedded USB peripheral
(PIC18F4550) consumes lower power than two separate units comprising a

microcontroller and USB interface modules.

1.5 Organization of Report

This report contains five chapters including Chapter 1 which consists of introductory
parts for the work and the rest is organized as follows; Chapter 2 lists some
preliminaries on sign language and the most recent translation systems developed by
researchers. The methodology adopted in this work throughout the development
stages is described in Chapter 3. The methodology discusses the components used to
develop the system, the software and tools used in the key milestones of the
development, and the algorithms used. The results and discussion are reported in

Chapter 4. Concluding remarks are reported in Chapter 5.

CHAPTER 2
LITERATURE REVIEW

In this chapter, the previous work which is relevant to this project is presented.

2.1 Preliminaries

Sign language which is based on visual manipulation of hands and body is the
language of deaf and vocally impaired people. It is interesting to know that sign
language is not universal. Despite the fact that most vocabulary and grammar of sign
languages worldwide are quite similar, they are not typically identical [1]. For
example the particular word “women” have different sign representation in Auslan,
Israeli and DSL sign languages [1]. However, studies indicate that most of world’s

sign languages have a great portion of identical vocabulary.

Figure 1: Letter "A" in American Sign Language [2]

On the other side, sign language does not follow the same rules of grammar as for
vocal languages [1]. The surrounding vocal language has a significant impact in
shaping a particular sign language. This explains the difference in sign languages
globally. In this project, we will consider the American Sign Language (ASL) [2] as
it shares major similarity with Malaysian Sign Language (or in Malay: Bahasa Isyarat
Malaysia : BIM) and is well documented. The letters and the first ten numbers will be
tentatively considered in the proposed system. Figure 1 shows example of letter “A”
in ASL.

2.2 Related Work

Several attempts have been made to translate sign language to vocal languages and
vice versa. J.M. Allen et al. in [3] presented a system which translates spoken English
to sign language. In this work, the authors discussed an algorithm implemented in
personal computer which can automate the translation of spoken and written English

language and displays the equivalent via an avatar animated sign interpreter.

P. Mekala et al. and R. Akmeliawati et al. in [4], [5] discussed an algorithm which
utilizes neural network to capture the sign from a camera and process it accordingly
to give the English translation. This method requires less expensive hardware but
more complicated algorithm to interpret the signs. In order to translate a sign, the
image is captured and tracked, then the hand posture is extracted and the

corresponding meaning is matched using a learned neural network.

Implementing a recognition system on an ARM processor is discussed in [6]. In this
work, the practical aspects of real time blabbering recognition and translation are
discussed. The system shows different practical aspects of the implementation of

language recognition in embedded systems.

Another interesting work is discussed by R.M. McGuire ef al. in [7]. In this work, a
mobile sign translator based on one hand data glove and a Hidden Markov Model are
used. The proposed system shows 94% accuracy for a particular scenario whereby a

signer is seeking an apartment.

N. El-Bendary et al. attempted to implement arSLAT which recognizes sign
representation of Arabic letters and gives the written equivalence [8]. The system

processes a video which contains series of image representations for the letters. The

5

best captured image from the video undergoes several phases including
categorization, feature extraction and classification before the Arabic letter is finally

recognized. Experimental results show 91% of recognition accuracy.

In summary, this short listing for some of the most relevant work all around the
world, show the global potentiality of the problem. It also highlights different areas of
focus for the implementation of sign language translators. This includes: sensing
devices, processing platform (PC, embedded processors, etc.), recognition algorithms,
and output forms. In this project, the focus will be in impleinenting the translation

system in microcontroller processing environment.

2.3 Recognition and Translation Algorithm: Fuzzy Logic

Fuzzy logic is a form of many-valued logics; it conceptually deals with reasoning that
is approximate rather than fixed and exact. In contrast with the traditional logic
theory, where binary variables have two logic values: true or false, fuzzy logic
variables may have a truth value that ranges in degree between 0 and 1. Fuzzy logic
has been extended to handle the concept of partial truth. In partial truth, the truth
value may range between completely true and completely faise. Furthermore, when

linguistic variables are used, these degrees may be managed by specific functions.

The fuzzy logic is similar to some extent with the human reasoning. It allows for
approximate values and inferences as well as incomplete or ambiguous data (fuzzy
data) as opposed to only relying on crisp data (binary yes/no choices). Fuzzy logic is
able to process incomplete data and provide approximate solutions to problems other
methods find difficult to solve. The terminology used in fuzzy logic but not used in
other methods is: very high, increasing, somewhat decreased, reasonable and very
low.

It is relevant to note that fuzzy logic and probabilistic logic are similar in a
mathematical point of view, but conceptually distinct. Fuzzy logic corresponds to
"degrees of truth", while probabilistic logic corresponds to "probability, likelihood";
as these differ, fuzzy logic and probabilistic logic yield different models of the same

real-world situations [9].

CHAPTER 3
METHODOLOGY

In this part, the methodology used to realize the project is discussed.

3.1 Project Development Flow Chart

e

[Literature Work J

v
[Identifying System Requirement and Specification]

Y

Emulating and Interfacing Sensing unit with
Microcontroller

No

Succeeded?

-
Reading Raw Data from the Sensing Unit by Microcontroller
] and Displaying Them on LCD

| Succeeded?

Translating “A” from Sign to Text on LCD

v

Translating letters A — Z and numbers 1-10

v

(e

Figure 2: General Flow Chart of Project Work

7

The overall flow of the project can be divided into further detailed steps which are

shown in Gantt chart in Appendix A)

3.2 System Identification and Tools

Throughout the development stage of the prototype of the project, several tools are

potentially considered as shown in Figure 3.

SYSTEM TOOLS

Figure 3: System Tools (PIC, Board, LCD and Potentiometers)

The tools used for the implementation of the translation system and the respective

functional and technical details are discussed in the following sections.

3.2.1 Potentiometer

A potentiometer is a simple three terminals variable resistor. It comes in different
values for the resistance across its ends. A third terminal in the middle is connected
via a moving knob to adjust the resistance at this terminal from 0 to full value in
relation to either ends. Figure 4 shows the isometric view, internal configuration and

schematic of the potentiometer.

Analog input 0 {AQ)

[———% > 10k Otm potensometer

GND
(c)

Figure 4: Potentiometer a) Isometric View b) Internal onfiguration c) schematic

The potentiometer is used to emulate and produce 0-5 V analog output. It has
generally similar output range of a possible gesture sensor; this allows it to be used as
a simplified model for gesture sensor. Therefore it can be used to emulate a fingers

gesture sensing unit.

3.2.2 PIC microcontroller

A mid range microcontroller from Microchip is to be used. This selection enables the

developers to deal with the prototype with more flexibility and efficiency.

The PIC18F4550 [11] is among the most commonly used Microchip microcontrollers
barely because of its USB communication support capabilities. The PIC18F4550 is a
40-pin high performance microcontroller which is equipped with several built-in
peripherals (Figure 5). The proposed system may require the USB support for
advanced used, therefore, the selection is made to enable future development and

flexibility of functionality expansion.

Along with the USB support, the microcontroller is featured with different processing
modes, configurable internal oscillators, extendable instruction set which makes it a
high performance yet power efficient microcontroller. The most important
specifications to consider are reported in Table 1. The 32KB flash memory allows
long programs (more than 16 thousands assembly code lines) to be executed. The data
used along the execution of the program (i.e. variables’ data) are saved in SRAM

memory which is 2KB in size for the PIC18F4550 microcontroller.

Some of the peripherals of the microcontroller are not considered as the proposed
system does not require them, however, it is likely that normal I/O operation are to be
used instead to allow access to other direct digital transmission based devices such as

LCD.

10

Table 1: PIC18F4550 Specification

Program Data
Memo Memo MSSP
& v CCP/ 5 | g
j YO | AD | ECCP | SPP E L
g p = g |
3 = o PWM < =]
£ 1% E 2 SPI | 12C¢ | ® S
&1 E | & |5
= w3
32K | 16384 | 2048 | 256 } 35 13 1M Yes Yes Yes 1 2 173
_— T
MCLRAVPPRE3 ——= [11 40 [1 «— RB7/KBI3/PGD
RAO/ANO =—[12 39 [] «—» RB&KBI2/PGC
RAT/ANT «—[]3 38 [1 +— RBS/KBI1/PGM
RAZ/ANZ/VREF-/CVREF <— [4 37 [1 =— RB4/ANTI/KBIO/CSSPP
RAYANANREF+ +—[15 36 |1 =—» RBI/ANS/CCP2(NPO
RA4/TOCKYCIOUT/RCY -—[] 6 35 [] <~ RB2/ANB/INT2/VMO
RAS/ANA/SS/HLVDIN/C20UT <—[] 7 34 {7 «—s RBI/ANTOANT1/SCK/SCL
REGQ/ANS/CK1SPP «—»[18 0o 33 [[] =—» RBO/ANI2ANTO/FLTC/SDYSDA
RE1/ANG/CK2SPP <19 g § 32 {] «——— VoD
RE2AN7/OESPP =——([{10 § 1§ 31] «—Vss
VDD —= [1 €0 © 30] «— RD7/SPP7/PID
e
Vss ——=-[112 QO 297 «—» RD6/SPP6/P1C
OSCI/CLKI —=[J13 @4 28 [] =— RD5/SPP5/P1B
OSC2/CLKOMRAS «—[] 14 27 {] «—» RD4/SPP4
RCOT10SO/M13CKI <—a-[] 15 26 {1 +— RC7/RX/DT/SDO
RC1/T10SKCCP2VUOE =[] 16 25 [1 =+— RCHTX/CK
RC2Z/CCP1P1A —= [17 24] = RC5/D4NP
Vuss «——E 18 23] =— RC4/D-VM
RDO/SPPD <—[] 19 22] «—» RD3/SPP3
RD1/SPP1 <—[] 20 21 [] =+ RD2/SPP2

Figure 5: PIC18F4550 Pin Diagram

3.23 CCS C compiler

In order to program the microcontroller, a compiler is to be utilized. In this project,

the PIC C compiler from CCS is to be used.

The CCS C compiler is easy to use, and almost immediate to get started due to the

project wizard feature and the different startup codes which it offers.

Among the features of CCS C compiler:

11

3.2.4

Automatic fuses configuration

Extensive built-in functions providing direct access to PIC hardware
Extensive source code driver iibrary

Arithmetic library

Integrated development environment

PIC development kit and programmer

To speed up the development phase, a startup kit [12] is used as the platform of the

microcontroller circuit. The use of this tool provides easier and more robust circuit to

be built. The beard in Figure 6 provides several functionalities and circuitry support.

The kit is a robust development platform which offers:

Voltage regulation circuitry (9 V input voltage to 5 V output voltage)
Reset button

USB port

Connector to programmer

Optional connection to LCD and UART

2 switches and 2 LEDs connected to Port B

12

Figure 6: SK40C PIC Start-up Kit

In order to transfer the C codes to the program memory of the microcontroller, USB
ICSB programmer (UIC00B) [13] is considered (see Figure 7). This programmer is a
cheap programming solution and is highly compatible with the SK40C startup kit.

13

Figure 7: UIC00B USB ICSP PIC Programmer

The programming software (PIC kit 2) takes the hex file which is produced by CCS
compiler and loads it to the microcontroller memory via the UICOOB programmer.

The interface between the PIC board and the programmer is shown in Figure 8.

14

Figure 8: PIC Board and Programmer Connection

3.3 PIC Programming Methodology

The several steps required to implement and realize the developed C codes on the
target board are discussed in this part. The steps are illustrated in the flow chart

shown in Figure 9. The steps involve the following:

e Project Creation using project wizard: (see Figure 10) In CCS C compiler
the best way to develop code is to start by project wizard. The project wizard
provides a good utility which automatically generates startup codes with the
proper fuses (configuration) setting, #include files, peripheral setups and main

function. This is very useful for beginners and produces very robust codes.

[s]
v

Project Creation and Setting
v

> Code Writing
v

Code Building and Compilation

—» Debugging
Syntax Errors
Yes Found?
Simulation using PIC Simulator IDE
Yes Run Time Errors

Found?

Connecting the SK40C Board with the Microcontroller to UICO0B Programmer

v
Loading the Hex file into the Microcontroller and Verifying the Transfer

¥

)

Figure 9: Microcontroller Programming Flow Chart

16

[Fomerize “rer

[Carte painctmet b ks
(I EEPF v o
RO YR

IEEETRNET
15angy

T Bt WD Y Aawy oo a TELA

¥ re e e A crmem

«
A e e e PR man

nank

Figure 10: Programming Step #1: PICC Project Wizard

C Code edition: This is where the developer writes the actual code by editing

the main function and adding more functions according to the needs of the

application (see Figure 11). The CCS C syntax follows the syntax of the

standard ANSI C to a good extent.

17

@m—‘umwwnmmn_uum e

- - - -
B S S S
Fee ST mitmew Geew o e E'I
i -
L i 2"
- -
B o
var
- mu =
g B gt MM Vvl
o+ e wor s ok g LR BV ¢
swcp_pay #i_IRaSLEs
s i DT LI ITLANIY
aevep_wi WIT_OT
1 Fevey Ttz © 3TCT NTETEAL
Fitep leser . T TltARlEr
puew tima | D PreAwLET
st up rmpr el W W W KD
i vt ags_wred ot
EESEETESE
L 8 r
Ao et * wan U pmmbon g Lokl mpinan o

Figure 11: Programming Step #2: Code Edition

¢ Building and Compilation: The C codes remain as C codes until they are
built and compiled by the compiler to produce the machine codes and hex file
specifically. In this step, the compiler checks the codes for syntax errors and
report to the programmer if any exists.

I «
Fuse B ke Woon Srwd e e foug Svmean GeTocke

& B N RSN

. ni
A pwe e e ol SO R AN I Ar N

Figure 12: Programming Step #3: Building/Compilation

18

Simulation (optional): Before loading the produced machine code (by the C
compiler), it is worthy to see how the PIC would work when the code is to be
loaded to the microcontroller. PIC simulator IDE offers realistic simulation
interface whereby all the inputs and outputs can be monitored. Input pins can

be easily stimulated and several configurable output devices are available.

Vgt wi's “epau aandar: Coam
LN I R | T | -
-l = o Fon lmel ater o g
S Sk T pim: T G i ambingew . W
Fe Ene e e
s *E€ESEI2E e Tia w3 Com
. ' - 0N W (TR0 -
W wWH o [ERs (1Y
. Ew ©F & [t¥ 0
" = « [Es 0
x T & [EWs 0
= o @ |oBs |0
i v S
i3 @ W [Oh O
w - i BU i)
w - L B (e RE1]
W i WO
W Wk o (B0
® o o [0 0
© U e & [E§ (L3
e T o w (CR (O
n W « (oo X

e

Figure 13: Programming Step #4: Simulation (Optional)

Debugging (optional): This is where the errors are rechecked and corrected

by the programmer.

Y R L UL e
oy nz F=F -ibeF ¥
W E

-

Figure 14: Programming Step #5: In Circuit Debugging (Optional)

19

e «
Torat Bl e e Oeele dees Nl Bdeg Daewr e Take
- ;
. - o -3 » " m .
. '!7 . . - ol & Sw
@FeRE1aAAR B
ek L [dwmx vl W oo A% | Bpawe
3/ Sieles ¢ merprrsie el v geel Viplorpm < WY BAkE | S0 | Pas wide
TR RO EII SAX EOtE L WA i
t Tape s, . ———
T
o
-
e
v CAreiie Gett vy | 6 | [ovet B,
-
LS - B ETLES LR S TS o
i
s
Abwen 1o e e a1

¢ Preparing the system for program loading: The microcontroller has to be
connected to the programmer (UIC00B) via certain pins as shown in the
respective datasheet. In our case, fortunately the pins are accessible to the
programmer via dedicated connection port and cable as shown in Figure 8.
The programmer has to be known for the PC hosting the PICkit software by
proper installation as described in the respective installation manual. The
UICO0B programmer is USB device.

* Loading the Hex file to the microcontroller: The PICkit is used to load the
hex file to the microcontroller. After this step the system is ready to run and
the programmer can be disconnected from the board as the microcontrolier
does not require the connection anymore and in fact it may cause some

malfunction to the circuit.

3.4 Sign Language Translation Procedure

The translation procedure involves several issues, tasks and algorithms. The
following part discusses these challenges and explains the methodologies adopted in

this work, The flow chart of the translation system is shown in Figure 15.

20

o)

2

L Initialize Device (LCD, ADC, etc.)
2

L Initialize Dictionary]
.

/ Display Starting Message /

¥
7/ Read Sensors /

Check the readings with dictionary entries

Display
“None”

4 No

Yes

/ Display the Equivalent Word on LCD /

o)

Figure 15: Translation Flow Chart

The translation is basically a closed loop in which the sensors are read, compared and
if recognized, the results are displayed on the LCD unit. The reading of the sensors is
compared to a dictionary which is created according to the ASL dictionary. The
dictionary consists of a set of numerical representation to the gestures of the five
fingers (thumb, index, middle, ring and little). The modeling and the numerical

representation of the gesture are described in the following part.

3.4.1 Sensor reading and display

The first step on the hardware development of the system is to realize the interface
between the PIC and the sensing unit. Initially the sensing unit is assumed to be
simple potentiometers and therefore, the PIC is required to establish a communication

with the potentiometers. The ADC peripheral in the PIC is used to implement this

21

function. Five pins are devoted for this purposes which are: A0, Al, A2, A3, and AS.
The first step in implementation is to set the proper configuration using the project

wizard in CCS C compiler as follows:
o Selecting PIC18F4550 (as it is the target PIC)
» Oscillator frequency: 20,000,000 Hz (as used in the development board)

¢ For the oscillator fuses, choose the configuration: High speed Osc (> 4mhz,
for PCM/PCH) (>10mhz for PCD)

e Unselect option : “PORTB pins are configured as analog input channels”
+ For the analog configuration, the following is used:

o A0, Al, A2, A3, AS

o Range 0-Vdd

o Units: 0-255

o Internal 2-6ps for the clock

A startup code is generated upon making the above settings. An LCD is used to
display the data. The full source code is listed in Appendix B.

3.4.2 Signs gesture representation

It is known that each letter or word in sign language is composed of gestures made by
the five fingers of the hand. In order to obtain a numerical representation for each
gesiure, 16 gestures per finger are identified to be the basic building block for each

sign as shown in Table 2.

22

Table 2: Basic Gesture Meaning

Gesture Gesture
Gesture Description Gesture Description

Code | Code

G0000 Inflexed finger G0032 Lower joint half bent
G1000 Upper Joint flexed G1032 Uppert+ Lower joint half bent
G0200 Middle joint flexed G0232 Middie+ Lower joint half bent
G1200 Middle + Upper joint flexed G1232 | Upper+ Middle+ Lower joint half bent
G0031 Lower joint tilts aside G0033 Lower joint fully bent
G1031 Upper+ Lower joint tilts aside G1033 Upper+ Lower joint fully bent
G0231 Middle+ Lower joint tilts aside G0233 Middle+ Lower joint fully bent
G1231 Upper +Middle +Lower joint tilts aside | G1233 | Upper+Middle +Lower joint fully bent

For each sign entry in the dictionary, the gesture represented by each finger is
identified according to the table above and numerical values are assigned according to

Table 3.

Each gesture is assigned to an arbitrary number from (0-255) with a 16 digits step.
The gaps between the gestures are later exploited to identify fuzzy limits between the

gestures.
Table 3: Numerical Representation of Gestures
Gesture Gesture .
Numerical Equivalent Numerical Equivalent

Code Code
G0000 0 G0032 128
G1000 16 G1032 144
G0200 32 G0232 160
G1200 48 G1232 176
G0031 64 G0033 192
G1031 80 G1033 208
G0231 96 G0233 224
G1231 112 G1233 240

23

3.4.3 Letter matching algorithm

The signals resembling letters and numbers do not have a strict set of Boolean values.
This would suggest the use of Fuzzy logic based algorithm. The signs by nature are
not exact and identical to all users. When detecting such signs, the detected signal for
the same sign but from different users will vary but should still be close. This
consequently leads us to select a fuzzy algorithm to store and match the sign language

dictionary.

In fuzzy algorithm, the values of its variable are not in simple TRUE (1) and FALSE
(0) patterns, however discrete values representing wide range of trueness and

falseness ranging from extremely true to extremely false are typically considered.

In the case of sign language translator, the variables are the reading of sensors and the
exact number of sensors depends on the type of sensor system. Each sensor is
described by 8 bits value ranging from totally flexed to totally inflexed; however for
more general case, the size of the variable (number of bits) depends on the accuracy

of the sensor.

The reading of the sensor is to be later compared to find the similar letter which the
gesture resembles. The letters, on the other hand, are to be represented by a set of
values for each sensor. The fuzzy part comes here, whereby; the values representing
each letter describe the upper limit and lower limit for each sensor value. This means,
a typical letter or word, is represented by several variables describing the upper limit
for the sensors and another set of variables describing the lower limit for the sensors.

In addition to that another variable is required to store the equivalent word itself.

The data structure comprising of the lower limit for the sign from each sensor, the
upper limit for the sign from each sensor and the equivalent word represents a single
entry in the proposed sign dictionary. A look-up table is then to be made consisting of
all data structures holding the entries for each sign and the corresponding meaning.

The entries in the look up table are to be derived empirically.

24

A simplified version of the translation system is implemented using three words
based on the reading of five sensors. The code is listed in Appendix C and the results

are shown and discussed in next chapter.

3.4.4 Dictionary construction

As explained previously, in order to enable the translation, a dictionary holding the
gesture and the equivalent word has to be constructed. The construction of the

dictionary is shown in Figure 16.

The flow shows the steps adopted in realizing the dictionary. In C programming a
struct data type is used to represent each dictionary entry. The dictionary is simply an
array of “struct” data types. The maximum number of entries depends on the size of
the data memory (RAM). In the future, a separate memory chip is required to store

larger number of entries.

25

s
)
L Get a Sign Entry]
L]
Identify the Gesture for a Finger

v
Determine the Numerical Representation of the Identified Gesture

v
Gesture Fuzzy High Limit = Gesture + Bias

h 4

Gesture Fuzzy Low Limit = Gesture - Bias

-
Find the Next Fingers

No

Last Finger

/ Record the Equivalent Word /

)

Figure 16: Dictionary Construction Flow Chart, Bias value is 7

The methodology shown in Figure 16 is used to obtain and construct the sign
dictionary. The sign versions of the letters from A to Z and numbers from | to 10 and
the “I love you” phrase are considered from {2] and consequently the sign dictionary
is constructed in Table 4.

The entries of the table actually show the range of the five sensor values and the
equivalent word. As example the sign which gives a value in the range of (G1031L to
G1031) for the thumb sensor, (G0233L to G0233) for the index sensor, (G1031L to
G1031) for the middle sensor, (G1233L to G1233) for the ring sensor and (G1233L
to G1233) for the little sensor represents the letter A.

26

Table 4: Dictionary Table (A-Z, 1-10 and I love you)

Gesture Code Equivalent
Fuzzy Range Thumb | Index | Middle | Ring Little Word

Lower Fuzzy Limit | G1031L | G0233L | G0233L | G1233L | G1233L

Upper Fuzzy Limit { G1031H | G0233H | G0233H | G1233H | G1233H A
Lower Fuzzy Limit | GO031L | GO0OOL | GOOOOL | GOOOOL | GOOOOL

Upper Fuzzy Limit | GGO31H | GOO0OH | G0000H | GOOOOH | GOO0OH 8
Lower Fuzzy Limit | GOOOOL | G0200L | GO200L | GO200L | GO200L

Upper Fuzzy Limit | GO000OH | G0200H | GO200H | G0200H | G0200H ¢
Lower Fuzzy Limit | G1200L [GOOOOL | G1232L | G1232L | G1232L

Upper Fuzzy Limit | G1200H | GG00OH | G1232H | G1232H | G1232H b
Lower Fuzzy Limit | GI1231L | G1200L | G1200L | G1200L | G1200L B
Upper Fuzzy Limit | G1231H1 | G1200H | G1200H | G1200H | G1200H

Lower Fuzzy Limit | G1032L | G0232L | GOOOOL | GOO31L | GOO31L .
Upper Fuzzy Limit | G1032H | G0232H } GO000H | G0031H | GOO31H

Lower Fuzzy Limit | G0032L | G0032L | G1233L | G1233L | G1233L

Upper Fuzzy Limit { G0032H | G0032H | G1233H { G1233H | G1233H ©
Lower Fuzzy Limit | G1232L | G0032L | G0032L | G0233L | G0233L i
Upper Fuzzy Limit | G1232H | G0032H | G0032H | G0233H | G0233H

Lower Fuzzy Limit | G1200L | G0233L | G0233L | G0233L | GOOOOL "
Upper Fuzzy Limit | G1200H { G0233H | G0233H | G0233H | G0000H

Lower Fuzzy Limit | G1200L | G0233L | G0233L | G0233L | GOOOOL |
Upper Fuzzy Limit | G1200H | G0233H | G0233H | G0233H | GO000H

Lower Fuzzy Limit | G0232L | GO0OOL | GOO33L | GO233L | G0233L K
Upper Fuzzy Limit | G0232H | GOOOOH | GO033H | G0233H | G0233H

Lower Fuzzy Limit | GOOOOL | GOOOOL | G0233L | GO233L | G0233L L
Upper Fuzzy Limit | GOO00OH | GO0OOH | GO233H | G0233H | G0233H

Lower Fuzzy Limit { G0232L | G0033L | G0033L | GOO33L | G1233L M
Upper Fuzzy Limit | G0232H | G0033H | GO033H | GO033H | G1233H

Lower Fuzzy Limit | G1232L | G0232L | G0232L | G0233L { G0233L N
Upper Fuzzy Limit | G1232H | G0232H | G0232H | G0233H | G0233H

Lower Fuzzy Limit | G1200L | G1232L | G1232L | G1232L | G1232L 0]

27

Upper Fuzzy Limit

G1200H

G1232H

G1232H

G1232H

G1232H

Lower Fuzzy Limit

G0032L

GOOOOL

G0033L

G0233L

G0233L

Upper Fuzzy Limit

G0032H

GO000H

G0033H

G0233H

G0233H

Lower Fuzzy Limit

G0032L

G0O033L

G1233L

G1233L

G1233L

Upper Fuzzy Limit

G0032H

GO0033H

Gi1233H

G1233H

G1233H

Lower Fuzzy Limit

G0232L

GO000L

GO031L

G0232L

G0233L

Upper Fuzzy Limit

G0232H

GO0GOH

GO031H

G0232H

G0233H

Lower Fuzzy Limit

G0232L

G1233L

G1233L

G1233L

G1233L

Upper Fuzzy Limit

G0232H

G1233H

G1233H

GI1233H

G1233H

Lower Fuzzy Limit

GO0232L

G02321L

G0233L

G0233L

G0233L

Upper Fuzzy Limit

G0232H

G0232H

G0233H

G0233H

G0233H

Lower Fuzzy Limit

G0200L

GODOOL

GOOOOL

G0232L

G0232L

Upper Fuzzy Limit

G0200H

GO0000H

G0000H

G0232H

G0232H

Lower Fuzzy Limit

G0200L

GOO31L

GOO0OL

G0233L

GO0233L

Upper Fuzzy Limit

G0200H

GO031H

GOOOOH

G0233H

G0233H

Lower Fuzzy Limit

G0233L

GOO031L

GOOOOL

GO03iL

G0232L

Upper Fuzzy Limit

G0233H

GO031H

GOO00H

G0031H

G0232H

Lower Fuzzy Limit

G12321L

G1200L

G1233L

-G1233L

G1233L

Upper Fuzzy Limit

GI1232H

G1200H

G1233H

G1233H

G1233H

Lower Fuzzy Limit

GO000OOL

G1233L

G1233L

G1233L

GOOOOL

Upper Fuzzy Limit

GO00CH

G1233H

G1233H

G1233H

GO00OH

Lower Fuzzy Limit

G1232L

G0000L

G1233L

G1233L

G1233L

Upper Fuzzy Limit

G1232H

GO000H

G1233H

G1233H

G1233H

Lower Fuzzy Limit

G1233L

GO00OL

G1233L

G1233L

GI1233L

Upper Fuzzy Limit

G1233H

G0000H

G1233H

G1233H

G1233H

Lower Fuzzy Limit

G12321.

GOO31L

GOOOOL

G1233L

G1233L

Upper Fuzzy Limit

G1232H

GO031H

GO000H

G1233H

G1233H

Lower Fuzzy Limit

GO00OL

GO0031L

G0000OL

G1233L

G1233L

Upper Fuzzy Limit

G0000H

GOO31H

GO0000H

G1233H

G1233H

Lower Fuzzy Limit

G0233L

GO0031L

GOO00L

GO0031L

GO031L

Upper Fuzzy Limit

G0233H

GO031H

GO00OH

G0031H

GO031H

Lower Fuzzy Limit

G0000L

GO031L

G0000L

G0031L

GO0031L

Upper Fuzzy Limit

GO000H

GO0031H

GO0000H

GO0031H

GO031H

28

Lower Fuzzy Limit | G0232L | G0031L | GOOOOL | GOO31L | G0232L

Upper Fuzzy Limit | G0232H | G0031H | G0000H | G0031H | G0232H °
Lower Fuzzy Limit | G0232L | G0031L | G000OL | G1232L | G0O31L

Upper Fuzzy Limit | G0232H [G0031H | GO000H { G1232H | G0031H ’
Lower Fuzzy Limit | G0200L | GO031L | G1232L | G0O031L | GO031L

Upper Fuzzy Limit | GO200H | G0031H | G1232H | GO031H | G0031H ¥
Lower Fuzzy Limit | GO200L | G1233L | GOOOOL. | GOO31L | GOO31L

Upper Fuzzy Limit | G0200H | G1233H | G000CH | G0031H | G003 1H i
Lower Fuzzy Limit { GOO31L | G1233L | G1233L | G1233L | G1233L

Upper Fuzzy Limit [GO031H | G1233H | G1233H [G1233H | G1233H 10
Lower Fuzzy Limit | GO000L | GOOOOL | G0233L | G0233L | GOOOOL | o o
Upper Fuzzy Limit | G0000H | G0000H | G0233H | G0233H | G0OOOH

3.4.5 Translation of letters and numbers from sign language to written language

Upon the construction of the sign dictionary, the recognition phase for the full entries
would be developed. Since the aim of the project is to prove the capability of the
system to translate, this level of implementation, by considering letters and ten

numbers, is considered sufficient.

The translation is done by getting the values of the sensors and comparing with the
corresponding lower and upper fuzzy limits for each eniry in the dictionary table.
Once the reading of the five sensors fall within all the corresponding lower and upper
limits of a particular entry, the associated word is recognized as the equivalent word

for the sign input.

The maximum size of entries which can be recognized is potentially governed by the
memoty size of the microcontroller. The complete source code implemented is listed

and fully commented in Appendix D, Appendix E and Appendix F.

29

A full translation example is explained and shown in Figure 17.

TRANSLATION PROCEDURE

Figure 17: Full Translation Procedure Example

30

3.5 Summary

The methodology in implementing the translation system including the hardware,
software and algorithm aspects is thoroughly discussed in this chapter. The results of

some experimental work are reported in the next chapter.

31

CHAPTER 4
RESULTS AND DISCUSSION

This chapter reports part of the results of the work followed by a section for

discussion.

4.1 Sensor Reading and Display

In this experiment five potentiometers are used to emulate real sensor readings. The
potentiometers have three terminals (see Figure 18); when connecting the first and the
third terminals to VDD and GND, the output voltage will be in the range of 0-5 V
depending on the position of the wiper. This range of voltages are converted using the
built-in ADC in the PIC. The converted values are shown in the range of 0 to 255,
whereby 0isO Vand 255is5 V.

+5VDC
Analog input 0 (AD)
[> —> 10K Ohm potentiometar
GND

Figure 18: Potentiometer Connected to Analog input

A 2x16 LCD is used to display the values of sensors (potentiometers) readings. The
working circuit with instantaneous conversion and display is shown in Figure 19.
This figure shows the five potentiometers connected to the PIC to pins: A0, Al, A2,
A3, and A5. The ADC unit converts the values and the PIC displays the values via the

LCD.

32

4 MhdER EREEs
“mp

*n dseww

Figure 19: § Potentiometer, LCD and PIC interfacing circuitry

4.2 Basic Translation Based on Sensors Reading

In this experiment the readings from sensors are compared to different arbitrary
values to show different messages accordingly. This experiment is an important start
towards the full translation system. This is because; the translation likely comprises a

lookup table and a set of comparisons with sensor readings to show a particular word.

Three messages were used in this experiment: “M. Alharbi”, “Dr. Zuki” and “None” -
when the sensors are all under 125, above 125, and otherwise, respectively. Figure 20
shows the three cases, whereby the LCD displays the reading of the sensors on the

first line while displaying the equivalent message on the second line.

33

e tetd

N S R T

RBA i rasrsrsenia pured
"

.t dab ‘
X5 I : AR St T Lesarwaon
SR
aee Fﬁmo i:
apentbes
ire ShansrEemesss

svess SENEE FELEE RERes

Seas siess pavdy ddnid

(c)

Figure 20: Basic Translation Based on Sensors Reading (a) Displaying “M.
Alharbi” (b) Displaying “Dr. M Zuki” (c) Displaying “None”

34

4.3 Translation System Using a Set of Potentiometers

In this experiment, a translation system based on a set of potentiometers is
considered. The system is implemented based on the codes listed in Appendix D,

Appendix E and Appendix F. The system with the five potentiometers, LCD and

mother board is shown in Figure 21. Figure 22 shows the system starting message.

Figure 21: Translation System Components: 5 Potentiomenters, Main Board
(SK40C board), and LCD

Figure 22: Translation System Startup, LCD is displaying the "Strarting"

message

35

The gestures for the letters, numbers and some words were obtained and implemented
on the code listing. The reading of the sensors and the recognized gestures are
configured to be displayed on the first and second lines of the LCD, respectively.
Two modes of sensors reading display were shown on the LCD successfully. The two
modes of display are the digitized (0-255) and in Volts (0-5 V) and are shown in
Figure 23 and Figure 24, respectively.

Figure 23: Sensor Readings in First Line (thumb: 123, index:123, middle:238,

ring:242, and little:237), Second Line Displaying the Translated Sign

Several experiments had been conducted to test the ability of the system to recognize
gestures. The experimental results for system show that it is able to recognize the

whole 26 alphabetical letters.

Capital letters are used in coding as well as in display. This is to say that the LCD
displays “B” instead of “b” to indicate the second alphabet. All the 26 letters did not
involve motion except “Z”. Since it is assumed that only hand shapes are considered

therefore the hand shape component of the letter is only considered in modeling.

Figure 23, Figure 24 and Figure 25 show some of the recognized letters.

36

Figure 24: Sensor Readings in Volts (thumb: 2.4V, index:2.4V, middle:4.6V,
ring:4.7V and little:4.6V)

Figure 25: Translation System Recognizing the Sign for B Equivalent to (thumb:
64+/-7, index: 0, middle: 0, ring: 0 and little: 0)

Additionally numbers (0-10) are added and recognized successfully. Moreover, the
system is able to recognize some phrases e.g. “I love you”. Figure 26 and Figure 27

show some of the obtained results.

37

Figure 26: Recognition and Translation of the Sign of 5 (thumb: 0, index: 64+/-7,
middle: 0, ring: 64+/-7, little: 64+/-7)

S

LEEmILEL EUEE sever s s

Figure 27: Recognition of Phrases e.g. “I Love You” (thumb: 0, index: 0, middle:
224+/-7, ring: 224+/-7, little: 0)

38

EEEERER R Rar o
{ AEORE R e
TTILL EEANCARE
aEn ‘TR
FRETR

-+ -
L

Figure 28: “None” Message for Any Other Unrecognized Signs

For unrecognized signs, the system displays by default “None” message as shown in

Figure 28. This is later replaced in the coding by the message “Not recognized!”

39

CHAPTER 5
CONCLUSION AND FUTURE DIRECTIONS

In this chapter some conclusive statements on the progress of the proposed project

and the expected future work are discussed.

5.1 Conclusion

A prototype incorporating five potentiometers — to simulate a realistic sensor reading,
PIC microcontroller and LCD meodules is proposed to aid sign language users to
convey their messages in a more explicit way. The proposed prototype is based on
ASL language and can support up to 75 signs and the equivalent words as a proof-of-
concept. The project is envisaged to be an entry work for educational yet practical

solutions which can potentially be extended for more functionality and portability.

5.2 Future Directions

Currently the system supports the translation of up to 75 signs/words. The size of the
dictionary can be potentially extended considering the addition of memory chip to the
system. To enable the portability of the design, a 9v battery module is to be added.
Even though the system is tested without a realistic data glove, it is believed that the
systematical methodology adopted in the project will ease the realization of the
addition. A potential future work is to replace the five potentiometers by a data glove.
An investigation for such interface is carried out as a part of this project and
preliminary results are obtained and reported in Appendix G, to be exploited by future

developers.

40

REFERENCES

[1] Trevor Johnston and Adam Schembri, “Australian Sign Language (Auslan): An
Introduction to Sign Language Linguistics”, Cambridge university press, 2007

2] American Sign Language {ASL) dictionary, URL:
http://www lifeprint.com/dictionary. htm, retrieved: Nov 2011

{3} Allen J.M., Foulds R.A., “An approach to animating sign language: A spoken
english to sign english translator system”, Proceedings of the Northeast Conference,
30, pp. 43-44, 2004

{4} Akmeliawati, R.; Ooi, M.P.-L.; Ye Chow Kuang; , "Real-Time Malaysian Sign
Language Translation using Colour Segmentation and Neural Network,"
Instrumentation and Measurement Technology Conference Proceedings, 2007. IMTC
2007. IEEE, vol., no., pp.1-6, 1-3 May 2007

[5] Mekala, P.; Gao, Y.; Fan, J.; Davari, A.; , "Real-time sign language recognition
based on neural network architecture,” System Theory (SSST), 2011 IEEE 43rd
Southeastern Symposium on , vol., no., pp.195-199, 14-16 March 2011

[6] Nijusekar, C.; Brindhu Kumari, A.; , "Translating the sign of dumb person using
ARM processor," Communication Control and Computing Technologies (ICCCCT),
2010 IEEE International Conference on , vol., no., pp.508-513, 7-9 Oct. 2010

[7] McGuire, R M.; Hernandez-Rebollar, J.; Starner, T.; Henderson, V.; Brashear, H.;
Ross, D.S.; , "Towards a one-way American sign language translator," Automatic
Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International
Conference on , vol., no., pp. 620- 625, 17-19 May 2004

[8] El-Bendary, N.; Zawbaa, HM.; Daoud, M.S.; Hassanien, A.E.; Nakamatsu, K.; ,
"ArSLAT: Arabic Sign Language Alphabets Translator," Computer Information
Systems and Industrial Management Applications (CISIM), 2010 International
Conference on , vol., no., pp.590-595, 8-10 Oct. 2010

[9] Fuzzy Logic, Wikipedia, URL: http://en.wikipedia.org/wiki/Fuzzy logic,
retrieved: Nov 2011

[10] USB HID PC and PIC interface implementation code using C# and CCS
compiler, Muhammad Rafique, URL:
hitp://www.pudn.com/downloads195/doc/project/detail916558.html, retrieved: Nov
2011

[11] Microchip Technology Inc., “PIC18F2455/2550/4455/4550 Data Sheet 28/40-
Pin High-Performance: Enhanced Flash, USB Microcontrollers with nanoWatt
Technology”, U.S.A, 2006

[12] Cytron Technologies, “SK40C PIC microcontroller start-up kit: User’s Manual”,
Malaysia, November 2011,

41

{13] Cytron Technologies, “UIC00B USB ICSP PIC Programmer: User’s Manual”,
Malaysia, November 2011.

42

APPENDIX A
PROJECT GANTT CHART

43

No.

Phase

FYP 2

10

11

12{13

14

10111

12

13

14

SELECTION OF PROJECT TOPIC

- Project Objectives/Problem formulation

LITERATURE WORK

- Study about related work

- Study about microcontroliers/compilers

- Extended Proposal

Methodolggy

System identification/ Tools t0 be used

-Interim report

Hardware development

- Circuit Interfacing / Testing

- Progress report

Software development

C code developing

Programming/ Testing

Prototype testing and troubleshooting

Prototype finalization

Poster presentation/ Draft report

10

Final Report/Viva

e Reports Submissions

Process

44

APPENDIX B
FIVE SENSORS READING DISPLAY (CODE)

#include "main.h"
#include "LCD.h"

void main{)

{

getup adc ports (ANO TO ANS|VS5_VDD);
setup adc(ADC_CLOCK INTERNMAL);

setup psp (PSP_DISABLED) ;
setup_spi(SPI_SS_DISABLED};
setup wdt (WDT_OFF) ;
setup_timer_ O (RTCC_INTERNAL};

setup timer_ 1(T1 DISABLED);
setup_timer 2 (T2 DISABLED,0,1);
setup_ corparator (NC_NC _NC _NC);
setup vref (FALSE);

//8etup_Oscillator parameter not selected from Intr Oscillator Config tab

char messagel[] = "S1 52 83 sS4 55 :";
char messagez([] = " "
int8 81,82,83,54,85;

led_init{);
lcd display str{0,messagel }:

while {TRUE) {
set_adc_channel {0} ;

delay us{60);

Sl=read_adc():
set_ade_channel (1} ;
delay us (60);

S2=read_adc();
set_adc_channel {2} ;

delay us(60);

S33=read_adc(}:

set_adc channel(3);

delay us{60);

Sd=read_adec();
set_adc_channel (4);

delay us(60);

S5=read ade();
sprintf(message2, "$03u%03u%03u%03u303u *,51,52,53,84,35});
lcd display str{l,message2);

}

45

APPENDIX C

FIVE SENSOR INTERFACE AND BASIC TRANSLATION SYSTEM

void main()

{

(CODK)

setup adc _ports (AN0_TO _ANS|VSS_VDD)};

setup adc(ADC_CLOCK_INTERNAL) ;
setup_psp (PSP_DISABLED) ;
setup_spi (SPI_SS DISABLED);
setup | wdt(WDT COFF} ;

setup timer O{RTCC __INTERNAL) ;
setup_timer 1(T1 DISABLED);
setup timer 2(T2 DISABLED,Q,1):
setup_comparator (RC_NC_NC_NC);
setup vref (FALSE);

//8etup_Oscillator

char messagel(}
char message2{]

int8 81,52,83,54,35;

led_init () ;

while (TRUE) {

set_adc_channel (0} ;

delay_us (60);
81=read_adc() ;

set_adc_channel (1};

delay us{60);
82=read_adc{();

set_adc_channel(2);

delay us{80);
$3=read adc();

set_adc_channel({3};

delay_us (60);
S4=read adc();

set_adc_channel (4} ;

delay us(60);
S5=read_adc(};

sprintf (messagel,
lcd display str{0,messagel);
if ((81 < 12B) &&

{

message2="M. Alharbi
led _display str(l,message? }:

}

else if ((51 > 128)

{

message2="Dr, M Zuki
icd display str(l,message?),

}

else

{
message2="None

lcd display str{l,message2):

}
}

parameter not selected from Intr Oscillator Config tabk

"S1l 52 83 84 S5

’

’

"%03u%03u%03u%03ut03u ", 51,52,53,54,55});

(52 < 128) && (53 < 12B) && (84 < 128) && (85 < 128))

&& (83 > 128) && (84 > 128) && (85 > 128))

46

APPENDIX D
TRANSLATION SYSTEM WITH SIGN DICTIONARY (MAIN.C)

#include "main.h” //Setting of fuses are there
#inciude "LCD.hH" //Nonstandard mede file to communicate with the LCD
#$inciude <string.h> //To enable the use of string comparison=>strcmp()

//Definition area

j§define PB1 PIN_BO //Push button connected to PIN B@

#define PRESSED O //The value when PB is pressed

#define MAX DICT ENTRIES S0 //The maximuom reserved number of dictionary entries
//Function prototype: //Deseription:

void init device(); //initialize the peripherals of the PIC

void read_sensors(); //Acquiring the readings from sensors at Port A

void dict_init(); //Filling in all dictionary entries

void welcome msg{): //Display a welcoming message at system starting

void translate(); //Compare the reading and recognize the word
//Variables

char message[l6]; //a variable for the use with LCD

char translated(16]; //a variable to contain the translated word

int8 tmb,idx,md},rng,ltl; //sensors reading of thumb, index, middle, ring and little
float tmb V,idx V,mdl V,rng V,1tl V; //sensors reading in voltage

int8 PB_state; //a dummy variahble to store the last state of the PB

//The main function

void main()

{

init_device{); //initialize device
dict_init{}; //initialize the dictionary
welcaome msg() ; //display welcoming message
FB_state=0; //reset the state of the PB
while (TRUE)

{

read_sensors(): //read the values of sensors

//Toggle the state of PB when pressed

if{input (PB1}==PRESSED) //if PB pressed

{
while {inpul (FBl) ==PRESSED) delay ms(30}; //Keep looping while PB is pressed
PB_state=!FB_state; //Toggle the state of the PB

i

//PRisplay the sensors in 0-255 or 0-5v ranges

//0-255 range

if (PB state==0) sprintf{message, "%03u%03u%03u%03u%03u ", twb,idx,mdl, rng, itl);

//0-5v range

if (PB_state==1) sprintf (message,

"$01.1£%01.1£%01.1£%01.1£%01.1€%, tmb_V, idx V,mdl V,rng V,1tl V);
led display str(0,message);

translate(); //Translate the reading
led display str(l,translated);
}

}

//Initialize the device according to project wizard setting
void init_device ()
{
setup_adc_ports (AN0O_TO_ANS|VSS_VDD);
setup_adc (ADC_CLOCK DIV _2);
setup_psp (PSP_DISABLED) ;
setup_spi (SPI_S5_DISABLED) ;
setup spiZ2 (SPI_S5_DISRBLED);
setup_wdt (WDT_OFF) ;
setup_timer C(RTCC_INTERNAL);
setup_timer_ 1(T1 DISABLED);
setup timer 2(T2_DISABLED,O0,1);
setup_timer 3(T3_DISABLED|T3_DIV_BY 1);

47

setup comparator {NC_NC NC_NC):
setup vref (FALSE) ;
set_tris b(0x03}; //PIN BO-2: INPUTS, PIN B3-7: OQUTPUTS
led _init():
}

//read sensors as follows:

//A0: thumb, Al: index, AZ: middle, A3: ring, A4: little

void read_sensors()

{
set_adc_channel (0) ;
delay us(60);
tmb=read_adc () ;
set_adc_Ehannel(l);
delay_us(60);
idx=read_adc{};
set_adc channel (2} ;
delay us(60);
mdi=read_adc(};
set_ade_channel (3) ;
delay_us(60);
rag=read adc(};
set_adc_channel {4) ;
delay_us{60)¢
itl=read adc()s
//convert to voltage
tob V={float}5/255%tmb;
idx_v=(float)5/255%idx;
mdl_V={float)5/255*mdl;
rng_V={(float)5/255*rng;
1tl_V={float)5/255*1t1;

}

// Display the welcoming messages

veid welcome msg()

{
sprintf (message, "Trans, Sys.");
led_display str{0,message);
sprintf(message, "Starting .™);
lcd_display str(l,message);
delay ms (100);
sprintf (message, "Starting .."):
lcd_display str(l,message):
delay ms (100}
sprintf (message, "Starting ..."):
led_display_str(l,message);
delay ms (100):
sprintf (message, "Starting");
lcd_display_str(l,message);
delay ms(100);
sprintf {message, "Starting LT
led display str(l,message);
delay_ms (100} ;
sprintf (message, "Starting ")
lcd display str{l,message;:
delay ms (100);

}

//Defining the data structure of ONE single sign word and the eguivalent:

//8ign representation:
//dictionary enty.tmbFZL: the fuzzy low limit for thumb gesture
//dictionary_enty.tmbFZH: the fuzgzy high limit for thumb gesture
//dictionary_enty.idxFSL: the fuzzy low limit for index gesture
//dictionary enty.idxFSH: the fuzzy high limit for index gesture
f/dictionary_enty.mdlFEL: the fuzzy low limit for middle gesture
//dictionary_enty.mdlFZH: the fuzzy high limit for middle gesture
//dictionary_enty.rngFEL: the fuzzy low limit for ring gesture
//dictionary_enty.rngFEH: the fuzzy high limit for ring gesture
//dictionary enty.ltlFEL: the fuzzy low limit for little gesture
//dictionary_enty.ltlFZH: the fuzzy high limit for little gesture

//the Eguivalent in writen English:

//dictionary enty.word: the equivalent word (max size is 16 characiers)

typedef struct{
int8 tmbFZL;
int8 tmbFZH;
int8 idxFzZL;
int8 idxFZH;
int8 mdlFZL;

48

int8 mdlFZH;
int8 rngFzL;
int8 rngFzZH:
int8 1tlFZL;
int8 1tl¥2H;
char wordilé]:

} dictionary enty:; //a dictionary containing 50 words

dictionary enty dict[MAX DICT ENTRIES]: //Declare a array of dictionry enty data structure

//Gesture lists and equivalent representation

#define BS i
$define GOQQO 0
#define GOOOOL GO000
#define GOOOOH GO0004+BS
#define G1000 16
#define GI000L G1000-Bs
#define G1000H 61000483
#define GO200 3z
#define GO200L G0200-B5
#define GO200H G0200+BS
#define G1200 48
#define G1200L G1200-BS
#define G1200H G1200+85
#define G031 64
#define GOO31L G0031-BS
#define GOO31H GO031+4Bs3
#define G1031 80
#define G1031L GLl031-BS
#define G1031H G1031+BS
#define GO231 1)
#define G0231L G0231-BS
#define GO231H G0231+83
#define G1231 112
#define Gi231L 51231-8B5
#define G1231iR G1Z31+BS
#define GO0O32 128
$define GOO32L G0032-BS
#define GOO32H GO032+BS
#define G1032 144
#define G1032L G1032-Bs§
#define G1032H 1032483
#define GD232 160
#define GO0232L G0232~-B3
#define G0232H G0232+BS
#define G1232 176
#define G1232L G1232-BS
#define G1232H G1232+BS
#define GO033 192
#define GOO33L GO033-BS
#define GUOO33H GO0334BS
#define GL1033 208
#define GLG33L G1033-Bs
#define G10334 G1033+BS
#define G0233 224
#define GO233L G0233-Bs
#define GO0233E G0233+BS
#define G1233 240
#define G1233L G1l233-BS
#define 612334 (1233+4Bs
#define _ MAX DICT ENTRIES-1
//The initialization of actupal dictionary
void dict _init{)

{

dict[0].woxra="A";

dict[0] . tmbFZE=G1031L;dict [
0).rngF2L=G1233L;dict{ 0].1tlFZL=G1233L;
dictl 0].tmbFZH=~G1031H;dict [

0).rngFZ2E=G1233H;dict{ 0].1tlFZE=G1233H;

dict[1].word="B";

dict{ 11 .+mbFZL=G0031L;dict [
1] . rngFZl=G0000L;dict{ 1].1t1FZI~GO000L;
digt{ 1].tmbFzH=G0031H; dict [

1] .rngFZH=GO0C0H s dict [11.1tl1FZH=GOOOOH;

dict{ 2].word="C";

0].1id8F2L=G0233L;dict|

0].1idxFZH=G0233H;dict [

13.1dxFZL=G0000L; dict]

11.idxF2H=G0000H :dict [

49

0] .mAlF2L=G0233L;dict|

071 .md1FZH=G0233H;dict [

1].md1FZL=GO000L;dict [

11 .md1FzZH=G0000H dict [

dict[2] .tmbFZL=G0032L;dict [
2] engF2L=G1200L;dict[2].1tlF2L=G1200L;
dict[2] . tmbFZE=G0032H;dict [
2] .ragF2H=G1200H;;dict [2] .1t1F2H=G1200H;

dict[3].word="D";

dict [3] .tmbFZL=G1232L;dict [
31.rngF2L=G1232L;dict{ 3].1t}FZL=G1232L;
dict(3].tmbFZH=G1232H:dict [

3] .tngFZH=G1232H; dict [3] .1t1FZH~G1232H;

dict[4].word="E";

dict[4] .tmbFZL=G1231L;dict [
4] . tngFPZl~G12001.:; dict(4].1tlFZL=G1200L;
dict] 4% . tmbFZH=G1231K;dict[

4] .rngFZH=G1200H;dict[4].1ltl1FZH=G1200H;

dict[5].word="p";

dict[51 .tmbFEZL=G1032L;dict]
%] .rngFZL=G0031L;dict{ 5].1t1FZL=G0O031L;
dict[5] .,tmbFZH=G1032H;dict [

5].rngFEH=G00314;dict | %].1t1FZA=GO031H;

dict] 61.word="G";

dict[6] .tmbFZL=G0032L;dict{
6].rngF2L=Gi233L;dict[6].1t1FZL=G1233L;
dict[6] . tmbFZHR=GC032H;dict [

6] .rngFZH=G1233H;dict[©61.1t1F28=6G1233H;

dict[7].word="H";

dicti{ 7].tmbFZL=G1232L;dict[
7] .rngFEL=G0233L;dict[7].1tl1¥zZl=G0233L;
dict(7] .tmbFZH=G1232H;dict [

7). rngFZH=G0233H;dict [7].1tiFZH=G0233H;

dict{ 8].word="I";

dict{ 8] . tmbFZL=G1200L;dict[
81.rngFZL~=G0233L;dict{ 8].1tlFZL=GOO0OOL;
dict[8] .tmbF2H=G1200H; dict [

8] .rngF2H=G0233H;dict[8].1t1FZH=GQ000H;

dict[9] .word="Jgv;

dict[9] .tmbFZL=G0200L;dict [
9] .rngF2l=G0233L;dict[9].1tlFZL=G0000L;
dictl 9].tmbFZHE~G0200H; dict [

9] . rngFZH=GO233H dict { 21.1t1FZH=GO000H;

dict[10] .word="K";

2).1dxFZL=G1200L;dict [

2].1idxF2H=61200H;dict [

3] . idxFZL=G0000L;dict [

3].1d=FZH=GO000R;dict [

4],1idxF2L=G1200L;dict{

4] .idxFEH=G1200R;dict[

3].1dxFZL=G0232L;dict|

5].1dxFZH=G0232H;dict [

6] .1dxFZL~G0632L;dict |

6] .1dxFZHE=G0032H;dict |

7] . 1dxFEL=G0032L;dict [

7].idxFZH=G0032H;dict [

8] . idxFZL=G0233L;dict |

8].idxFZA=G0233H;dict [

9].1dxFZL=G0233L;dict{

9].1dxFZH=G0233H dict {

2] .mdiFZL=G1200L;dict [

2].md1FEH=G1200H; dict [

3] .mdiFZL=G1232L;dict|

3].mdiFZE=G1232H; dict [

4] .md1FZL=G1200L:dict [

4] .md1FZH=G1200KE; dict [

5] .md1FZL=GOCO0L;dict|

5].mdlFZE=GO000H; dict [

6] .md1F2L=G1233L;dict [

6] .mdlFZH=G1233H;dict [

71.mdlFZL=G0032L;dict{

71.mdiFZHE=60032Hdict |

8] .mdlF2L=G0233L;dict[

8] .md1FZHE=G0233H;dict[

9).md1lFZL=G0233L;dict [

9] .mdl1FEZH=G0233H,dict [

dict[10] .tmbFZL=G0232L;dict{10] .idxFZL=G0000L;dict [10] ,md1FEL=G0032L;dict [10].rngFal=60233L;di

ct{10].1tiFZL=6G0233L;

dict[10].tmbFZH=~G0232H;dict [10].1dxFZH=G0000K; dict {10] .md1FZH=G0032H;dict [10] . rngFZH=G0233H;di

ct[10].1tlFZH=G0233E;

dict[11] .word="1";

dict (11} . tmbFZL=G0000L; dict [11] .1 dxFZI=G0000L,; dict 111] .mdiFZL=G0233L; dict {11] . rngFal=G0233L;di

ct[11].1t1FZL=6G0233L;

dict[11].tmbFZH=GO000H dict[11].idxFZH=GO000H dict [11] . md1FZH=G0233H;dict[11].rngFZH=G0233H,di

ct[11].31t1FZHE=G0233H;

dict[12] .word="M";

dict[12].tmbFZL=G1233L;dict[12].1dxFZL=G1232L;dict{12] .md1FEL=G1232L;dict[12].rngFZLl=G1232L;di

ct[12].1tiFZL=G0233L;

dict[12].tmbFZH=G1233H;dict[12].1idxFZA=G1232H;dict [12] .md1FZA=G1232H;dict[12].rngF2a~61232H;di

ct(12].1C1FZH=G0233H;

dict[13] .woxrd="N";

dict[13].tmbFEL=G1232L;dict [13] . 1dxFZL=60232L;dict [13] .md1FEL=G0232L;dict [13].rngF2l=G0233L;di

ct[13].1t1F2L=G0233L;

dict[13].tmbFEZE=G1232E;dict[13].1dxFZE=G0232H;dict [13] .md1FZH~G0232H;dict [13].rngF2H=G0233H;di

ct[13].1t1FEBR=G0233H;

dict{14] .word="0";

dict[14]) . tmbFZL=G1232L;dict (147 .1d®FZ1=G1232L;dict [14] dlFal~G1l232L;dict [14], rngFal=G1232L;di

cti{14].1t1F2L=G1232L;

dict[14].tmbFZH=G1232H;dict [14) .1dxFZH=G1232H;dict [14] .md1FZH=G1232H;dict [14] .rngF2A=G1232H;di

ct[14}.1t1FZH~G1232H;

diet[15].word="pP";

50

dict[15].tmbFZL~GO032L; dict [15] . idxF2I~G0000L;dict [151 .md1FZL=GO033L;dict [15] . rngFZL=G0233Ld1
ct[153]).1t1F2L=G0233L;
dict [15].tmbFZH=G0032H;dict [15] . idxFZR=GCO000H; dict [15) .mdA1FZH=GO033H; dict [15] . rngFZH=G0233H;di
ct[15] . t1FZA=G0233H;

dict[i6].word="Q";
dict[16].tnbF21=G0032L;dict[16}.1dxF2L=G0033L;dict [16] .md1lFZL=G1233L;dict [16] . rngFEL=6G1233L;di
ct[16] .1t1FZL=G1233L;

dict[186] .tmbFZH=GO0032H;dict [16].1dxF2H=G0033H;dict [16] .md1FZH=G1233H;dict[16].rngFZH=G1233H;di
ct[16] . 1tlFZE=G1233H;

dict[17] .word="R";

dict[17] .tmbFEL=G0232L;dict [17].1dxF21=G0031L;dict[17] .md1FZL=GO000L;dict [17] .rngFZL=G0232L;di
ct[17]) . 1t1FZL=G0233L;

dict [17].tmbF2H=G0232H;dict [17] . 1dxF2H=GC031H;dict [17} .md1lFZH=GO000H; dict [17].rngFZh=G0232H; di
ctf{l?].1tlFZH=G0233H;

dict (18] .word="8";
dict[18].tmbFZL=G0232L;dict [18] .1dXFZL=G1233L;dict (18] .m31F21~G1233%;dict{18] .rngFaL=G1233L; di
ct[18].1t1FZL=G1233L;

dict (18] .tmbFZH=G02324;dict [18].1dxFZH=G1233H; dict [18] .mdlFZH=61233H; dict {18].rngF2H=6G1233H;di
¢t [18] .1t1FEH=G1233H;

dict[19] .woxrd="T";
dict[19].tmbFZI~G0232L;dict [19].1d¥FZL=G0232L,;dict [19] .md1FZL=G0233L;dict[19].rngFZl=G0233L,di
ct[18] . 1t1FZL=G0233L;

dict[19].tmbF2H=G0232H;dict [19].idxF2H=G0232K;dict[19] .md1FZH=G0233H;dict [19].rngFZH=G0233H; di
ct(19] . 1t1FZR=G0233H;

dict[20].word="0";
dict[20].tmbF2L=G0232L;dict[20] .idxFEZL=G0000L;dict[20] .md1FZL=G0000L; dict [20] . rngF4L=G0232L;di
ct[20]. 1t1FZL=G0232L;

dict[20] .tmbFZ8=G0232H;dict [20] .1dxF2E=G0000H; dict [20} .mdlFZH=G0Q00H; dict [20] . rngFZH=G0232H;di
ct[20] . 1t1F2ZH=G0232H;

dict[21] .word="V";

dict{21} . tnbF2L~G0232L;dict{21]) .idxFZL=G0031L;dict{21] .mdiFZL=G0031L;dict (21].xngF2I~G0233L;d1i
ct[21] .1t1FZL=G0233L;
dict[21].tmbF2H=G0232H;dict [2]1].idxFZH~=G0031Hdict (21} .mdlFZH=G0031H; dict [21] . rngF2H=G0233Hd1i
ct[21}.1t1FZH=G0233H;

dicti22] .word="w";

dict[22] .tmbFZL=60233L;dict [22] . 1dxFZL=G0031L;dict[22] .md1FZL=G0000L; dict [22] . rngF2L=G0031L; di
ct{22].1t1F2L=G0232L;
dict[22]).tmbFZH=G0233H;dict[22].idxFEE=GCO031H,;dict[22] .md1FZH=G0O00H; dict [22]. rngFZH=G0031H;di
ct{22] .1 1FZE=GO2320;

diet[23) .word="%X";

dict[23] .tmbF2L=G1232L:dict[23].1dxF2L=G1200L;dict[23] .md1lFZ1L=G1233L;dict [23).rngFZL=G1233L;di
ct[23].1t]1F21=G1233L;

dict{23] .tmbFZH=G1232H;dict [23].1dxF2H=G1200H;dict [23] .md1FZH=G1233H;dict[23] .xngFEH=G1233H; di
¢t {23].1t1FZH=G1233H;

dict[24} . .word="Y";

dict (247 ,tmbF2L=60000Ldict {24] . idxF2L=G1233L;dict [24] .md1F2E=G1233L;dict124] .rngF2L=G1233L;di
ct[24] .1t1F2L=G0000L;

dict [24] . tmbFZH=G0000H dict [24] . 1dxFZH=G1233H;;dict [24] .mdlFZH=G1233H;dict [24] .rngFaR=G1233H;d]i
ct[24].1t1FZH=G0000H;

dict[25] .word="Z"; //motiocnless Z

dict (251 .tnbFZL=G1232L;dict [25] .1dRFEL=G0000L;dict {25] .mdl1FZL=G1233L;dict {25] .rngFZL=G1233L;di
ct[25).3t1FEL~=G1233L;
dict[25].tmbF2H=G1232H;dict [25] . idxFZE=G0000H; dict [25] .mdlF2H=G1233H;dict [25] . rngFZE~=G1233E di
cti257.1t1F2H=G1233H;

dict[26] .woxrd="1";
dict[26].tmbFZ2L=G1233L;dict[26].1dxFEZL=GO000L; dict [26] .md1FEL=G1233L;dict [26].rngFaL=G1233Ldi
ct[26].1tiFZL=G1233L;
dict[26],tmbFZH=G1233H;dict [26] .idxXFZE=G0000H; dict [26] .md1FEZH=G1233H;dict [26].rngFZH=G1233H;di
¢ct[26].1t1FZH=G1233H;

dict([27] .word="2";
dict[27].tnbFZL=61232L;dict§27] . 1dxF2L=G0031L; dict [27] .md1FZL=GO0000L; dict[27].rngF2L=G1233L;di
ct[27].1t1P2L=G1233L;

dict[27] .twbFZH=G1232H;dict {271 .1dxFZH=G0031H;dict [27] .md1FZH=GO000H; dict [27] .rngFEH=G1233H; di
ct[27].1t1FZH=G1233H;

31

dict [28] .word="3";

dict[28] .tmbFZL=GO000L; dict [28] .1dXFZ1=G0031L;dict [28] .md1FZ1=G0000L; dict {28] .rngFZLl=G1233L;di
ct[28]).1C1FZL=G1233L;

dict[28].tmbFZH=G0000H; dict [28] .1dxFZH=G0031H;dict [28] .mdl1FZH=GO000H; dict [28] . xngFZR=G1233H;di
et[28].1t1FZH=G1233H;

dict[29] .word="4";

dict[29] .tmbFZL=G0233L;dict [29].1dXFZL~G0031L;dict[29] .md1FZL=G0000L;dict[29] . rngFZL=G0031L;di
ct{29].1t1FZL=GO031L;
dict[29].tmbFZH=G0233H;dict [29] . 1dxFZH~=GO031H;dict[29] .md1F2ZH=G0000K; dict [29] . rngFZH=GC031R;di
ct[29].1t1FZH=GO031H;

dict[30}.word="5";

dict [30] . tmbFZL=GO000L;dict [30].idxXFEL=GO031L;dict {30] .mdlFEL=GO000L;dict[30] . rngFEZL=GA031L;d1
ct[30] .. 1t1FZL=GO031L;

dict[301.tmbFZH=G0000H; dict {30] .1dxFZH=G0031H; dict [30) .mdlFZR=G0000H; dict [30].rngFZH=G0031H;d1
ct[30].1t1FZR=G0031H;

dict[31] .word="6";
dict[31].tmbFEL=60232L;dict{31].1dxFAL=60031L; dict [31] .md1FEL=C0000L; dict [31] , rngFZL=G0031L;di
ct[31].1t1FZL=G0232L;
dict([31].tnbFZA=G0232H;dict [31] .1dxFZH=G0031H;dict [31] .md1FZH=GO000H; dict [31].rngFZHE=GO031H;di
ct[31}.1t1FZH=GO232H4;

dict([32] .word="7";
dict[32}.tmb¥FZL=G0232L;dict[32].1idFZL=G0031L;dict [32] .mdl1FAL~GO000L: dict [32].rngFaL=G1232L.di
ct[32].1t1F2L=G0031L;
dict[321.tmbFEZH=G0232K;dict{32] . 1dxFEH=G0031H;dict [32) .md1FZH=GO000H; dict [32].rngFZH=G1232H;di
ct[3237.1t1FZE=G0CG31H;

dict[33] .word="8";

dict[33] . tmbF2I=G0200L;dict [33] . idxFEL=G0031L;dict{33] .md1F2L=6G1232L;dict [33].rngFZL=G0031L;d1
ct[33].1t1F25=G0031L;

dict {33] .tmbFZH=G0Z200H;dict [33].1dxFZH=G0031H;dict[33] .mdlFEH=G1232H;dict [33].rngFZH=C0031H,dL
ct{33].1t1FZH=G0031KE;

dict[34] .woxg="9";

dict[34].tmbFZL=G0200L; dict 134] .1dxFEL=G1233L;dict [34] .md1FAL=G0000L; dict [34] . rngF2L=G0031L;di
ct[34].1t1FZL=GO031L;

dict[34].tmbFZH=G0200H; dict [34] .1dxF2H=G1233H;dict [34] .md1F2H~GO0000H; dict [34] . rngFZH~G0031H;d1
ct{34].1t1FZE=G0031H;

dict{35] .word="10";
dict[35].tmbF2L=G0031L;dict [35].1dxFZL=6G1233L;dict {35] .mdlFEL=G1233L;dict [35].rngFal=G1233L;di
ct[35].1tlFiL=G1233L;
dict{35].tmbF2H=G0031H:dict [35] .1idxFZH=G1233H;dict [35] .md1FZH=G1233H;dict [35].rngFeH=G1233H;di
ct[35].1t1F2E=G1233H;

dict{36].word="I Love You";

dict[36].tmbFAL=G0000L; dict [36].1dxFaL=G0000L;dict [36] . md1F2L=6G0233L;dict [36].rngFaL=G0233L;di
ct{36].1t1F2L=G0000L;

dict[36].tubFZH=G0000K; dict [36] .1dxFZE=GO000H; dict [36] .md1FZH=G0233H;dict [36] . rngFZE=G0233K: di
ct[36].1t1FZHE=G0000H;

dict[_] .word="";
dict[”*].tmeZL=G0000L;dict[__].idxFZL&GOODOL;dict[__].mleZL=G0000L:dict[__].rngFZL=GOOOOL;di
cti_ 1.1t1FZ2L=GO000L;

dict[_ 1.tmbFZH=GO0000H:dict[_].idxFZH=GOO00H;dict[__J.mdlFZH=GO000H;dict[_].rngFZH~GOO00H;di
ct{_1.)ltlFZH=GOO00H;

}

//Make the tramslation by comparing and fuzzy high and fuzzy low limit for each gesture
void translate{)
{
int8 i;
for {i=0;i<MAX DICT_ENTRIES;it++)

if (tmb »>= dict[i].tmbFZL Y E& ([tmb <= dict[i].tmbFZH VY

&& { idx >= dict[i].id=FZL) &8 { ddx <= dict[i].idxFZH I

&& { mdl >= dict[i].mdlFZ2L) && { mdl <= dict{i].mdlFEZH YN

&& { rng >= dict[i].rngFiL) && { rng <= dict{i].rngFiH A

&& { 1ltl >= dict{i].ltlF2L) && (1tl <= dict[i].l1tlF2H))

{ strcpyltranslated,dict[i].word}; break;}
else
stropy (transiated, "*Not Recognized!"}; //If nothing recognized display "*Not
Recognized!"

}

52

APPENDIX E

TRANSLATION SYSTEM WITH SIGN DICTIONARY (MAIN.H)

#include <1i8F4550.h>

#device adc=8

#FUSES NOWDT
#FUSES WDT1286
#FUSES HS
$FUSES NOPROTECT
#FUSES NOBROWNOUT
#FUSES BORVZ20
#FUSES NOPUT
#FUSES NOCPD
#FUSES STVREN
#FUSES NODERUG
#FUSES NOLVP
#FUSES NOWRT
#FUSES NOWRTD
$FUSES IESO
#FUSES FCMEN
#FUSES PRADEN
#FUSES NOWRTC
#FUSES NOWRTB
#FUSES NOEBTR
#FUSES NOEBTRB
#FUSES NOCPB
$FUSES MCLR
#FUSES LPT10SC
#FUSES NOXINST
{Legacy mode)
#FUSES PLL12
#FUSES CPUDIV4
#FUSES USBDIV
$FUSES VREGEN
#FUSES ICPRT

#use delay(clock=20000000)

/ /Mo Watch Dog Timer

//Watch Dog Timer uses 1:128 Postscale

//High speed Osc (> 4mhz for PCM/PCH)} (>10mhz for PCD)

//Code not protected from reading

//No brownout reset

//Brownout reset at 2.0V

//Wo Power Up Timer

//No EE protection

//Stack full/underflow will cause reset

//No Debug mode for ICD

/Yo low voltage prgming, B3(PIC16) or B5(PICIB) used for I/0
//Program memory not write protected

//Data BEFROM not write protected

//internal External Switch Over mode enabled

//Fail-safe clock monitor enabled

//PORTE pins are configured as analog input channels on RESET
//configuration not registers write protected

//Boot block not write protected

//Memory not protected from table reads

//Boot block not protected from table reads

//¥o Boot Block code protection

//Master Clear pin enabled

//Timeril configured for low-power operation

//Extended set extension and Indexed Addressing mode disabled

//Divide By 12 (48MHz oscillator input}
//8ystem Clock by 4

//USB clock source comes from PLL divide by 2
//USB voltage regulator enabled

//ICPRT enabled

#use rs232 (baud=9600,parity=N,xmit=PIN C6, rev=PIN_C7,bits=8)

53

APPENDIX F
TRANSLATION SYSTEM WITH SIGN DICTIONARY (LCD.H)

/*
8-BIT LCD DRIVER FOR PICiBF4550 CCSC

*/f
Rt niiaiiii
// €C8 C Compiler

/f 1LD 16x2

/!

// by Nisar ahmed

// 2009/03/27

// lately edited by Alharbi

// 2011/11/30

LEELLIETEERPRITE I FIPETEI I F LTI T LfiPTTIiitiiiriiiiiiti/

#define WCHAR PER_LINE 16 // max char mumbers per line
#define LCD RS PIN B4
#define LCD_RW PIN B3
#define ILCD_E PIN B5
#define LCD DAT PORT D

fdefine PORT_A
#define PORT_B
#define PORT C
#define PORT_D
#define PORT E

// define for function output(}

oW N = o

FEELELLELIETEP I P ETF RS LRI 7177770 f777/171/ cutputi()
//led data bus output
void output (int8 port, intf8 dat)
{
switch(port)
{

case PORT_A: output_a(dat); break;

case PORT B: output_b(dat); break;

case PORT_C: output c(dat); break;

case PCRT D: output_d(dat): break;

case PORT E: output_e(dat}; break;

default : //7?? port maybe error!
break;

}
}//end cutput ()

LELLELELILPLLLIL 7RI P78 0P80 0000770771 17777/ Led write_cmd()
/
void lcd write_cmd (int8 cmd)
{
delay us (400} ;
output_low{(LCD RS);:
output_low{ILCD RW):
output (LCD_DAT, cmd);

output_high(LCD_E);

delay_us (4060) ;

output_low({LCD E}:
}//end led write_cmd()

PLEFIELEZEREL A7 000070000800 000770777 717777/ Lled_write dat{)
/
void led write dat (intB8 dat)
{
delay_us (400} ;
output_high (LCD_RS};
cutput_low (LCD _RW);
output (LCD_DAT, dat);

cutput_high(LCD_E);

delay_us (400) 5

output_low (LCD E};
}//end lcd_write_dat{)

JEPEEEREPFREIII A2 R7 870710000 0017277777/7 led_dnit()
/

54

void lcd init (void)

{

output_low (LCD_E) ; // Let LCD E line low
lcd_write _cmd(0x38); // ILCD 16x2, 5x7, 8hits data
delay ms (15);

lcd_write cmd (0xC1}; // Clear LCD display
delay ms (10);

led_write_cmd (0xOf); // Open display & current
delay ms(10);

led write cmd(0z06); // Window fixed

delay ms(10);
}//end led init(}

LEELITIRPELPEEIIEIIET70 20770070777 7/17747 Led display_chard)
/
void lcd display char(int8 line, int8 pos, intB8 ch}
{
int® tmp;

line
pos

= {line==0) ? 0 : 1;

= (pos >NCHAR_PER LINE) ? NCHAR PER LINE : pos;
tmp = (x80 + 0x40*line + pos;
lcd_write_cmd(tmp) ;
lcd_write_dat (ch);

}//end led_display chaz()

FEELELELE LI AEER 22000007 iriiieflri7i77/ led_display str{)
/

void lcd_display str(int8 line, char strl])

{

int8 i;

for (i=0; i<NCHARhPERFLINE; i)
{
if(stxr[i] == *\0") break:;
led display char(line, i, str[i]};
j
for{ ; i<NCHAR PER _LINE; i++)
led_display_char{line, i, (char) * ');
}//end lcd display_str()

LIPEHIFLEEEEIE A0 P78 801747777171/ Led display str()
/
vold clear_ lcd line(int8 line)
{
int8 i; char str[]l=" H
for(i=0; i<NCHAR PER_LINE; i-++)}
{
if(str{i] == '\0") break;
led display char(line, i, str(il);
}
}//end clear lecd display line()

55

APPENDIX G
INVESTIGATING THE INTERFACE WITH 5DT DATA GLOVE: A
POTENTIAL FUTURE WORK

G.1 5DT Data Glove

A data glove is a device which detects the motions made by hand and converts it into
slectrical signals transmitted via a USB interface. The device incorporates 14 sensors mapped

in different locations to detect realistic movements made by hand. (see Figure 30).

5DT Data Glove14 Ultra

Rj12 Connector
TRRaT USB “A” Connector \

B—]3]

PC
Data Glove Series USB Cable

Figure 29: Data Glove with USB connection

56

Figure 30: Data Gloves Sensor Mapping

Figure 30 and Table 5 illustrate the sensor mapping of the SDT data glove.

Table 5: Sensor Mappings for the SDT Data Glove 14 Ultra

Sensor RERSEETERES Description

Index
0 0 Thumb flexure (lower joint)
1 1 Thumb flexure (second joint)
2 2 Thumb-index finger abduction
3 3 Index finger flexure (at knuckle)
4 < Index finger flexure (second joint)
5 5 Index-middle finger abduction
6 6 Middle finger flexure (at knuckle)
7 74 Middle finger flexure (second joint)
8 8 Middle-ring finger abduction
9 9 Ring finger flexure (at knuckle)
10 10 Ring finger flexure (second joint)
11 1 Ring-little finger abduction
12 12 Little finger flexure (at knuckle)
13 13 Little finger flexure (second joint)

57

G.1.1 Getting started with USB interface

PC

GUI + USB driver

Analog Device
g (Potentiometer)

Switches/ LED
indicators =

(A81D1d) 32[]ONUOI0IIA

Figure 31: Startup Circuit for USB interface

In order to realize the interface between the microcontroller and the data glove, a prior step
which is the familiarization with USB interface is required. Since USB communication is
much complex compared to other serial protocols, the aim at this stage is to acquire the basic
configuration for the USB interface to work. To get started with the USB interface, a previous
project [10] which used the same microcontroller (PIC18F4550) is implemented in this work.

Figure 31 shows the block diagram for the proposed system. The SK40C board has a built-in
USB port directly connected to the appropriate pins at the PIC18F4550 microcontroller. A
USB cable is to be used to make the interface. However, having the connection while not
defining the microcontroller to the PC would not allow any transmission of data from or to the

microcontroller.

58

A visual C# project and dll files are used at the PC side to install required drivers and GUI
interface. The microcontroller acts as a slave in this configuration, allowing responses when
being acquired by the PC. A simple program reading analog values from AD conversion units
and switches and LEDs are used in the program. The source codes are available in [10] and

the results are shown in the following sections.
G.1.2 PICI8F4550 as a USB CDC device

USB devices can communicate differently according to the way they are defined to the host.
In the previous section the PIC is defined as HID (Human Interface Device); however, it is
more relevant to use it as a serial port to eliminate the need of using user defined application
(like C# program). Therefore, an example file provided in the CCS compiler titled
“ex_USBCDC.c” is used to realize this scenario. The code is used as is, but important
modification is to set the right clocking options. This is essential because the USB peripheral
and CPU of the PIC use the same oscillator but their clocking requirements are different. The
schematic diagram for the clocking circuitry of the CPU and the USB is shown in the

following figure.

l
! FLbw USE Clork Source
i .l
! =38
! P anie
patassammwsy U § e .
+Pramury Dualbiiar. : g o8 o MR lapn Daly) -
| B -
s O i Eisrhasl J 8 | o iy e B o
A : E [=
. .
SN 71 B A o PP -
1 i
g = =" eap1 TERL, S e
1 TP, TEPD Sorphoal
| PSR ey
el P
cmowy ! ST
SRR XM
o 2 I - PN I
<3 i 18 :
B HE B (-:;m__i T _— . el o SRR) :’;
I e ji] st
- 23] Cotk cirn
............... |3 FCECETDECD
+ Secuntbey Oecilieler — spprores
) ‘ h s
’W"E S :) o T|:=.E§ =
: | Jraecen
|WIM :T T~ Osestater :
ST tomsl Cemilat
CECCOM.&4 . aQam: ',_' e
e R N cun] -
Colicer 3 LY. et
ITE f4 LR
T = 500 aiz llé FOSCIFOSCE OSCCON«A.Os
o Bakaaet B) =T
o 3 1Y ook searee Upon
T — __:r] Bl tor £ Lieddes
CHCTUNET-
ST PwET FE0w
2me Two-Sped Tanup

Figure 32: PIC18F4550 oscillator and clock diagram for the CPU and USB peripheral

59

As far as coding is concerned, some configuration bits have to be set to match the USB
requirements. In the following figure, a code snippet describing the setting of some

configuration/fuses bits is shown.

uses HSPLL,NOWDT,NOPROTECT, NOLVP,NODEBUG, USBDIV, PLLS5, CPUDIV1, VREGEN . NOBROWNOUT , MCLR

The Z0 mhz external crystal 1s pre scalled by div 5 (PLL5) to 4mhz
PLL multiplies by 16 to 96Mhz US acales with div by 2 to 48MHZ
CPU clock 1s post scaled with CPUDIV1 by with div by 2 for 48 HMHZ

:e delay (clock=48000000 |
Figure 33: Code snippet for setting USB Clock

The modified codes based on USB CDC example is attached in Appendix L.

G.1.3 PIC and data glove USB interface

SDT Data Glove 14 Ultra

Interface

I

Switches/ LED LCD display unit

indicators <

(481D1d) 32[10NU00IIN

Figure 34: Block Diagram for the Proposed System

60

When the PIC is configured successfully to utilize the USB peripheral, then the possibility of
interfacing the data glove can be verified. In order to do that, the PIC is configured to
continuously read data from the attached device and display them on an LCD. This enables
the monitoring of data transmission between the two devices. The code used to do that is
provided in Appendix J. After loading the code into the PIC, a direct connection using USB
cables is used between the PIC and the data glove. The result of the interface is shown and

discussed in the next sections.

G.2 Getting Started with USB

In this experiment a USB communication between the PIC and the PC is to be established.
This is because the ultimate goal of the work on USB is to establish a communication between
the PIC and data glove. Since the data glove is designed to communicate via USB, the ability
to use USB by PIC could help in establishing a connection with the data glove. The

components used are shown in Figure 35 and Figure 36.

Figure 35: Circuit Components

61

Figure 36: PC to Microcontroller Interface via USB Port

The PIC is programmed to communicate as HID (Human Interface Device) class. A GUI
windows application is used to read the ADC values and switch status from the

microcontroller and to toggle the status of LED as shown in Figure 37.

| p |

ADC Cherrel Samyles voks

IF.u.l S 1 8 u

Sitches and 1505

[ches] Si=0FF S2-GFF w [e

Figure 37: GUI Interface to Read a Value from an Analog Device and Toggle the State of
LEDs Attached to Microcontroller

G.3 PIC as Serial Port via USB

The previous experiment requires some installation of USB drivers, whereas in the case of

data glove, there is no room for installing any driver, so we need to rely on a supported

62

configuration without the need for installing additional drivers. In this experiment, the PIC is
to be configured to work as a serial port which is more familiar to work which requires the use

of hyper-terminal-like programs.

USB CDC example provided by CCS is used to make the configuration. The clocking setting

for USB and CPU are made as explained in previous section.

Figure 38: PIC Showing USB Is Successfully Attached (Observe the small LED light

indicator)

Figure 39: PIC Showing USB Is Successfully Enumerated (Observe the small 2 LED
light indicator)

The proper setup was made and the PIC was successfully recognized/attached and enumerated
by the PC as shown in Figure 38 and Figure 39 respectively. In order to send and receive data
to and from the PC to the PIC, hyper terminal or any similar tool which communicates with
serial port can be used; however the right setting has to be made. A window showing the

COM port options is shown in Figure 40.

Soripl ngut O put Man e

psn B pco® s B mag @ t.-1
ARCH

Cow ARCCORIC2 Conge et
——— e

Figure 40: Setting up the Serial Communication to the Microcontroller Using Serial
Monitor on CCS C Compiler

After making the setting, the communication is successfully established and the user can send
data and receive it on LCD attached to the PIC as the PIC has been programmed to work.

Figure 41 shows the working circuitry.

Figure 41: Display of Received Data from PC via USB Connection

65

As the figure shows, the PIC continuously read data from the USB bus and continuously
displaying in on the LCD screen. This setting is made to assist in reading data from the data

glove, regardless what it represents.

G.4 USB Interface between PIC and Data Glove

After doing the previous experiment, we feel confident to try the interfacing via USB cable.
As PIC board is using mini USB female board and the data glove uses normal male USB

cable, a converter cable was acquired and used in the experiment.

The PIC and glove are connected via the converter cable and the circuit is powered and the
status of the connection is monitored on the LCD and the LED indicators. As shown in Figure
42 and Figure 43, the LED indicators are OFF which implies that the devices were not able to

establish connection.

Figure 42: 5DT Data Glove Interface with PIC Board

66

Figure 43: Interfacing the PIC and Data Glove (note all LED indicators are OFF)

.5 Discussion

As far as interfacing the data glove is concerned, after conducting the pre-mentioned set of
2xperiments, we realized that there is a great distinction between USB as serial
sommunication and conventional RS232 protocol. The concept of slave and master in USB
srotocol and the required hardware support makes it significantly different than RS232

orotocol which does not have this concept.

The USB communication has a special protocol which primarily enables up to 127 devices to
e connected to the same bus. However it is important to note that the communication via
USB is Host controlled (requires host device not like the normal RS232 protocol) and its
topology can typically have: Host, Hub, and device. Therefore, the hardware and software
specifications of the Host and device are different. Interestingly, to enable USB devices to

communicate to other USB devices the USB On-The-Go devices were developed with some

67

limitations, but anyway they have different hardware specifications.

The PIC18F4550 is a slave device in a USB protocol, and it is technically impossible to
initiate and control data communication to other slave devices like the SDT data gloves.
Additionally, if another microcontroller is used to take the role of a master in the proposed
project (PIC24F series), some function and drivers have to be defined to the microcontroller in
the form of hex, assembly or C files which is not provided by the 5DT company.

These reasons make it impossible to realize the interface using a USB connection. As a
solution, a serial interface kit provided by the same company has to be acquired. The serial
interface kit utilizes the conventional RS232 protocol with clearly defined packet data as
specified in the data sheet of the product (see Table 6).
Figure 44 shows the proposed modification of the system with the addition of the serial

interface kit in the design.

Table 6: Data Packet Sent by the Glove

Byte No. | Byte Byte No. | Byte

1 Start 17 gLl | 10H!
2 Type Byte |18 10Lu | 10LI
3 Version 19 11HI [11Lu
4 1HI | 1Lh |20 11L1 [12HI
5 1L 2HI 21 12Lu {12L
6 2luj2Ll |22 13HI |13Lu
7 3HI | 3Llu |23 13L1 |14H1
8 3LI | 4HI 24 14Lu |14LI
9 4Luj4ll |25 15HI |15Lu
10 S5HI| 5Lu | 26 15L1 |16HI
11 5L1| 6HI 27 16Lu |16LI
12 6LujeLl |28 Checksum
13 7HI | 7Lu | 29 Footer

14 7L1| 8HI

15 8Lu | 8LI

16 SHi | SLu

68

Interfacing the SDT data glove with the PIC is essential to realize the sign language trainer.
However, the USB communication is not a viable option and requires the use of serial
interface Kit. Instead, a prototype incorporating five potentiometers — to simulate a data glove,

PIC microcontroller and LCD modules is considered for implementation.

5DT Data Glove14 Ultra

hRﬂ? Connector

Serial Interface Kit *

Switches/ LED LCD display unit

indicators S

A

(A81D1d) 12[]0DUO0IIA

Figure 44: Block Diagram for the System with the Proposed Serial Interface Kit

he implementation of a translation system is applicable to other sign languages as long as the
testures in that language are sensible by the sensing device. The system is also extendable to

iccommodate the use of data glove as long as the proper interfacing devices are used.

[he limitation of the current implementation of the system is that it does not support or make
ny consideration to the motion of the hand and gesture of the face during conversation. Since
nost of the signs involve many motions, this will severely limit the performance of the
iystem. However, it is believed that with the proper wearable sensing technology, the motions

:an be interpreted, modeled and translated using similar concepts described in the project.

69

APPENDIX H

DATA GLOVE SENSOR MAP
& Rirg frger pont S Ring-rae. .ger port 5 Itn.::'t!m 'r:‘w:.mu;:;'u

399

121 Lt arg Fergam poet Ttk e R &) Y wibee g poet *51 Pl twwndd
rort
Gesture | Flexure (O=flexed, =unflexed) | Gesture Description Fig.
Number
0 0 |0 [0 (O Fist 0
1 0 |0 |0 |1 Index finger point 1
2 0. [.% 11].0 Middle finger point 2
3 0 (@ {9 11 Two finger point 3
4 0 |1 1010 Ring finger point 4
5 o113 16 19 Ring index point 5
6 0 |1 (1]0 Ring middle point 6
7 0 |1 |1 |1 Three finger point 7
8 1]0 J0 |0 Little finger point 8
9 110 |0 |1 Index and little finger 9
point
10 1 10 [41 [0 Little middle point 10
11 g T 17 ¢ T Not ring finger point 11
12 T /1]0 |0 Little ring point 12
13 T 11 _J0- |1 Not middle finger point 13
14 R) T Not index finger point 14
15 I T) VO s Flat hand 15

70

APPENDIX 1
GETTING STARTED WITH USB (USB CDC CODE)

kinclude "main.h"
Finclude <usb_cdc.h>

H¥DEFINE LED1 PIN_B7
#define LED2 PIN_B6
ftdefine LED3 PIN_BS
#define LED_ ON (x) output_high{x)
fdefine LED OFF(x) output_low (x}

kdefine BUTTON_ PRESSED()} tinput (PIN_BO)
#include "LCD.h™

finclude «string.h>

/f4define USB_CON_SENSE PIN PIN B2

void usb_debug_task(void)

{
static int8 last_connected;
static int8 last enumerated;
int8 new_conmnected;
int8 new enumerated;
static int8 last cde;
int8 new_cdc;

new_connected=usb_attached():
new_enumerated=usb_enumerated():
new_cdc=usb_cdc_connected() ;

if (new_enumerated)
LED ON(LED1):
else
LED QFF (LED1) ¢

if (new_cdc)

LED QN (LED2) ;
else

LED _OFF (LEDZ) ;

if {usb_cdc carrier.dte present)
LED_CN({(LED3) ;

else
LED_OFF(LED3) ;

if (new_connected && !last_connected)
printf ("USB connected, waiting for enumaration...\r\n\n"):
if (!new_connected && last_connected)
printf{"USB disconnected, waiting for connection...\r\n\n");
if (new_enumerated && !last_enumerated)
printf ("USB emumerated by PC/HOST\r\n\n");
if (!new_enumerated && last_enumerated}
printf ("USB unenumerated by PC/HOST, waiting for enumeration...\r\n\n");
if (new_cdc && !last cdc}
printf("Serial program initiated on USB<->UART COM Portir\n\n");

last_connected=new connected;
last_enumerated=mnew enumerated;
last cdc=new cdc;

}

void main({void)
{

setup_adc_ports (ANQ_TO AN4{VSS_VDD);
setup_adc (ADC_CLOCE_INTERNAL) ;
setup_psp (PSP_DISABLED) ;
setup_spi(SPI_SS5_DISABLED);
setup_wdt (WDT_OFF) ¢
setup_timer O (RTCC_INTERNAL);
setup_timer 1(T1_DISABLED):
setup_timer 2(TZ_DISABLED,C,1);
setup comparator (NC_NC_NC_NC};
setup_vref (FALSE);

ted init{);

char c¢;

71

LED_OFF{LED1);
LED_OFF (LED2) ;
LED_OFF {LED3) ;

printf ("\r\r\nCCS CDC (Virtual RS232) Example\r\n"};

printf ("\r\npCH: v");
printf(_ PCH_ };
printf ("\r\n");

usb_init_cs();

char messagel[16], message2[16];
strepy (messagel, "Helle World"};
lcd display str(0,messagel);
strcpy (message2, "Line2");
lcd_display str(l,message?):

char pcll command[16];

while (TRUE)

{
usb_task{};
usb_debug task():

if (usb_cdc_kbhit())

{

c=usp_cdc_getc();

if {c=='d") printf{usb cdc_putc,"\r\nportd is a digital cutput porti\rin"):

else

if {c=='a') printf{usb_cdc_pute,"\r\nporta is an analog input port\z\n");

else

if (c=='b') printf(usb_cdc_putc,"\r\nportb is a digital output porti\ri\n");

else

if (c=='c'") printf(usb_cdc_putc,"\r\nportec is unavailable\n"):

else

if {o=="1"} printf(usb_cdc_putc,“\r\nEELLOMWORLD—HELLO—WORLD—HELLO—WORLDvHELLO—WORLD—
HELLO-WORLD\r\n") ;

else

printf(usb_cdc_putc,c);

}

72

APPENDIX J
SDT DATA GLOVE AND PIC INTERFACE VIA USB (CODE)

finciude "main.h"
#include <usb_cdc.h>

¥DEFINE LED1 PIN B7
kdefine 1ED2 PIN B6
kdefine LED3 PIX_BS

fdefine LED ON(x} output_high (x)
kdefine LED OFF () output_low (x)
fdefine BUTTCN PRESSED() tinput (PIN_BO)

finclude “LCD.h"™
tinclude <string.h>

void usb_debug_task(void)

{
astatic int8 last_connected;
static int8 last_enumerated;
int8 new_connected;
int8 new_enumerated;
static int8 last cdc;
int8 new_cdc:

new_connected=usb attached();
new enumerated=usb_enumerated();
new_cdc=usb_cdc_connected(};

if (new_enumerated)
LED_OM({LED1) ;
else
LED OFF(LED1}:

if {(new_cdc)

LED ON{LED2);
else

LED OFF(LEDZ};

if (usb_cdc_carrier.dte present)
LED_OMN(LED3);

else
LED QFF (LED3);

if (new_connected && !last connected)
printf("USB connected, waiting for enumaration...\r\n\n");
if (!new_connected && last_connected)
printf{"USB disconnected, waiting for comnection...\r\n\n");
if (new enumerated && !last_enumerated)
printf ("USB enumerated by PC/HOST\r\n\n"):;
if (lnew_enumerated && last enumerated)
printf ("USB unenumerated by PC/HOST, waiting for enumeration...\r\n\n");
if (new_cdc && !last_cdc)
printf("Serial program initiated on USB<->TART COM Porti\r\n\n");

last_connected=new_connected;
last_enumerated=new_enumerated;
last_cdc=new_cdc:

}

void main{void}
{

setup adc ports(ANO TO AN4|VS3_VDD);
setup_adec (ADC_CLCCK_JNTERNAL) »
setup_psp (PSP_DISABLED) ;
setup_spi(SPI_S3_DISABLED):
setup wdt (WDT_OFF) ;

setup timer O(RTCC_INTERNAL);
setup_timer 1{T1_DISABLED):
setup timer 2{T2_DISABLED,0,1):
setup_comparator (NC_NC_NC_NC}:
setup vref (FALSE) ;

led_init ()

char c;

73

LED_OFF (LED1) ;
LED_OFF (LED2) ;
LED_OFF (LED3) ;

printf{"\r\n\nCCs CDC (Virtual RS232) Example\r\n"}:

printf ("\r\nPCH: v"};
printf{_PBCH_};

printf{("\r\n");

usb_init_cs(};

char messagel[16], message2il6];
strcpy{messagel, "Hello World™):
led display_str(0,messagel):
strcpy(message2, "USB CDC Comm.!"};
lcd display str(l,messageZ);

unsigned char recieved packet[29];
int8 i;

for (i=0:;1<29;i++)

{
}

recieved packet[i]='\0';

i=0;

while (TRUE)

{
usb_task():
usb_debug task():

if {usbk_cdec_kbhit{))
{
recieved packet[i]=usb_cdc_getc();
led display char({int8) {(i/15), (int8} (i%15}, recieved packet[i]);
i++;
if{ i»>=29) ({lcd _display char(1,14,' '); i=0;}

74

Microcontroller Based Sign Language Translator

Mohammed Obaidallah Alharbi!, Mohd Zuki Bin Yusoff 2

IStudent Support Services
Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Email: mohammed_jd_sa@hotmail.com

?Electrical and Electronics Engineering Programme
Univrsiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Tel: +60-5-3687807, Email: mzuki_yusoffi@petronas.com.my

ACT

twnities of vocal impaired and deaf people who use
uage face great communication difficulties with
ho use vocal languages. This project, aims to
' towards bringing the gap closer by offering a ool
nslates sign languages o written messages on an
lay. This report discusses the different development
ementation issues Including gesture modeling
ferfacing, sign recognition and translation.
Sign Language is widely used in different part of
"including Malaysia; therefore it is considered in
yject. The proposed method utilizes five
efers to emulate sensor output, a microcontroller
e, convert, recognize, franslate and display the
ure on the LCD unit. The translator can recognize
ers, 10 numbers, and some phrases and words. The
work is believed to be an entry to more promising
rding sign language translation-applications in the

DRDS
sage, ASL, Microcontroller, Gesture detection,
V.

DUCTION

nguage is widely used by people who suffer from
ipairment or hearing problems in which the
cators use visually transmitted signs to convey
. The deaf community which utilizes sign language
ted to be 0.1% of total population, which means
of people worldwide [1]. This large community
sat difficulties in communicating with normal
everal attempts have been made to break this gap
signh language users and conventional vocal
communicators by introducing tools that can
the meaning for both sides. This project aims o
prototype which interprets the signal made by a

sign language communicator into a displayed message on
LCD. This projeet is believed to be a base for future work in
this area.

Sign language generally utilizes manual movement to
convey meanings. This language is not understood by
average people. The majority of people understand visually
written letters, while sign language users can only use
manual signs. In order to break the gap, a set of sensors can
be used on the signer to efficiently convert the signs made to
electrical signals which in return can be understood by a
personal computer (PC) and interpreted accordingly.
However, the use of PC does not make the solution mobile
and easy to carry. Therefore, a simple IC based circuitry
interface (i.e. microcontroller) is required to replace the job
of PC. In general, such replacement involves several
challenges dug to the limited resources which are rorrially
found in conventional ICs (i.e. microcontrollers).

Therefore, the aim of this project is to construct a prototype
which interprets basic signs into a readable text on an LCD,
In order to realize such prototype, the ASL language is
chosen for the implementation and the following objectives
are considered: obtaining a numerical representation all
gestures used in the sign language, consiructing a sign
language dictionary, and prototyping a translation system
using set of potentiometers, a microcontroller and LCD
modules:

The project is envisaged to deliver a prototype which makes
use of a set of poientiometers to model the actual sign
gestures which can be later replaced to an accurate data
glove. A microcontroller with different communication
modules is to be used to acquire, manipulate and display the
signs being detected by the sensors. A display unit which is
as simple as a 2 line=LCD is to be used to display detected
messages.

PRELIMINARIES

Sign language which is based on visual manipulation of
hands and body is the language of deaf and vocally impaired
peopie. It is interesting to know that sign language is not
universal. Despite the fact that most vocabulary and
grammar of sign languages worldwide are quite similar, they

ypically identical {1]. For example the particular
men” have different sign representation in Auslan,
id DSL sign languages [1]. However, studies
hat most of world’s sign languages have a great
"identical vocabulary.

1: Letter "A" in American Sign Language |2]
ther side, sign language does not follow the same

grammar as for vocal languages [1]. The
ng vocal language has a significant impact in
a particular sign language. This explains the
» in sign languages globally. In this project, we will
the American Sign Language (ASL) [2] as it shares
milarity with Malaysian Sign Language (or in
Bahasa Isyarat Malaysia : BIM) and is well
ted. The letters and the first ten numbers will be
y considered in the proposed system. Figure 1
ample of letter “A” in ASL.

[ED WORK

ttempts have been made to translate sign language
languages and vice versa. J.M. Allen et al. in [3]
i a system which translates spoken English to sign
. In this work, the authors discussed an algorithm
tted in personal computer which can automate the
n of spoken and written English language and
the equivalent via an avatar animated sign
T,
la et al. and R. Akmeliawati et al. in {4], [5]
| an algorithm which utilizes neural network to
1¢ sign from a camera and process it accordingly to
English translation. This method requires less
¢ hardwaré but micoré comiplicated algorithm to
the signs. In order to translate a sign, the image is
and tracked, then the hand posture is extracted and
sponding meaning is matched using a leamed neural

Implementing a recognition system on an ARM processor is
discussed in [6]. In this work, the practical aspects of real
time blabbering recognition and translation are discussed.
The system shows different practical aspects of the
implementation of language recognition in embedded
systems.

Another interesting work is discussed by RM. McGuire ef
al. in [7]. In this work, a mobile sign translator based on one
hand data glove and a Hidden Markov Model are used. The
proposed system shows 94% accuracy for a particular
scenario whereby a signer is seeking an apartment.

N. El-Bendary et al. attempted to implement arSLAT which
recognizes sign representation of Arabic letters and gives the
written equivalence [8]. The system processes a video which
contfains series of image representations for the letters. The
best captured image from the video undergoes several phases
including categorization, feature extraction and classification
before the Arabic letter is finally recognized. Experimental
results show 91% of recognition accuracy.

In summary, this shoft listing for soriie of the most relevant
work all around the world, show the global potentiality of
the problem. It also highlights different areas of focus for the
implementation of sign language translators. This includes:
sensing devices, processing platform (PC, embedded
processors, etc.), recognition algorithms, and output forms.
In this project, the focus will be in implementing the
translation system in microcontroller processing
environment.

An essential component of the translation system is the
recognition algorithm. Several recognition algorithms have
been used in previous studies. In this work fuzzy logic based
algorithm is considered for immplementation.

Fuzzy logic is a form of many-valued logics; it conceptually
deals with reasoning that is approximate rather than fixed
and exact [9]. In contrast with the traditional logic theory,
where binary variables have two logic values: true or false,
fuzzy logic variables may have a truth value that ranges in
degree between 0 and 1. Fuzzy logic has been extended to
handle the concept of partial truth. In partial truth, the truth
value may range between completely true and completely
false. Furthermore, when linguistic variables are used, these
degrees may be managed by specific functions [9].

METHODOLOGY

1. System Identification and Tools

Throughout the development stage of the prototype of the
project, several tools are potentially considered. The tools
used for the implementation of the translation system and the
respective functional and technical details are discussed as
follows,

‘otentiometer

ymeter is a simple threc terminals variable resistor.
n different values for the resistance across its ends.
aminal in the middle is connected via a moving
djust the resistance at this terminal from 0 to fufl
zlation to either ends. The potentiometer is used to
nd produce 0-5 V analog output. It has generally
tput range of a possible gesture sensor; this allows
used as a simplified model for gesture sensor.
it can be used to emulate a fingers gesture sensing

nicrocontroller

1ge microcontroller from Microchip is to be used.
ction enables the developers to deal with the
with more flexibility and efficiency.

8F4550 [11} is among the most commonly used
y microcontrollers barely because of its USB
sation support capabilities. The PIC18F4550 is a
th performance microcontroller which is equipped
ral built-in peripherals. The proposed system may
ie USB support for advanced used, therefore, the
is made to enable future development and
of functionality expansion.
th the USB support, the microcontroller is featured
erent processing modes, configurable internal
1, extendable instruction set which makes it a high
1ce yet power efficient microcontrolier. The 32KB
mory allows long programs (more than 16
+ assembly code lines} to be executed. The data
g the execution of the program (i.e. variables’ data)
in SRAM memory which is 2KB in size for the
150 microcontroller.

the peripherals of the microcontroller are not
d as the proposed system does not require them,
it is likely that normal J/O operation are to be used
» allow access to other direct digital transmission
ices such as LCD.

C compiler
o program the microcontroller, a compiler is to be
nt ihiis project, the PIC C compiler from CCS is to

C compiler is easy to use, and almost immediate to
1 due to the project wizard feature and the different
Jes which it offers.

1¢ features of CCS C compiler:

Automatic fuses configuration

Ixtensive built=in finctions providing direct access
0 PIC hardware

ixtensive source code driver library

Arithmetic library

Integrated development environment

development kit and programmer

up the development phase, a startup kit [12] is used
tform of the microcontroller circuit. The use of this

tool provides easier and more robust circuit to be built. The
board provides several functionalities and circuitry support.
The kit is a robust development platform which offers;

e Voltage regulation circuitry (9 V input voltage to §

V output voltage)
e Resct button
s USBport
« Connector to programmer
» Optional connection to LCD and UART

s 2 switches and 2 LEDs connected to Port B

In order to transfer the C codes to the program memory of
the microcontroller, USB 1CSB programmer (UIC00B) [13]
is considered. This programmer is a cheap programming
solution and is highly compatible with the SK40C startup
kit.

The programming software (PIC kit 2) takes the hex file
which is produced by CCS compiler and loads it to the
microcontroller memory via the UICO0B programmer.

2. Sign Language Translation Procedure

The translation procedure involves several issues, tasks and
algorithms. The following part discusses these challenges
and explains the methodologies adopted in this work. The
flow chart of the translation system is shown in Figure 2.

[Initialize Device (LCD, ADC, ete.)]
X

[7 Initialize Dictionary]

[

Display Starting Message

]
— Read Sensors

e

¥

Disglay the Equivaient Word on LED

Figure 2: Translation Flow Chart

The translation is basically a closed loop in which the
sensors are read, compared and if recognized, the results are
displayed on the LCD unit. The reading of the sensors is
compared to a dictionary which is created according to the
ASL dictionary. The dictionary consists of a set of numerical
representation to the gestures of the five fingers (thumb,
index, middle, ring and little). The modeling and the
numerical representation of the gesture are described in the
following part.

ensor reading and display
step on the hardware development of the system is
the interface between the PIC and the sensing unit.
the sensing unit is assumed to be simple
eters and therefore, the PIC is required to establish
mication with the potentiometers. The ADC
in the PIC is used to implement this function. Five
levoted for this purposes which are: AG, Al, A2,
\5. The first step in implementation is to set the
nfiguration using the project wizard in CCS C
1s follows:
electing PIC18F4550 (as it is the target PIC)
)scillator frequency: 20,000,000 Hz (as used in the
evelopment board)
'or the oscillator fuses, choose thie corifiguration:
figh speed Osc (> 4mhz, for PCM/PCH) (>10mhz
or PCDY
Inselect the option : “PORTB pins are configured
s analog input channels™
‘'or the analog configuration, the following is used:

o AD, Al, A2, A3, AS

o Range 0-Vdd

¢ Units: 0-255

o Internal 2-6u for the clock

code is generated upon making the above settings.
s used to display the data.

ligns Gesture Representation

wn that each letter or word in sign language is
. of gestures made by the five fingers of the hand.
to obtain a numerical representation for each
6 gestures per finger are identified to be the basic
lock for each sign as shown in Table 1.

Table 1: Basic Gesture Meaning
Jode 1 Gesture Description
| inflexed finger
vt UpperJointflexed
Middle joint flexed
Middle + Upper joint flexed
Lower joint tilts aside
Upper+ Lower joint tilts aside
-| Middle+ Lower joint tilts aside
Upper +Middle +Lower joint tilts aside
Lower joint half bent
Upper+ Lower joint half bent
Middle+ Lower joint hatf bent
Upper+ Middle+ Lower joint half bent
Lower joint fully bent
Upper+ Lower joint fully bent
Middlet Lower joint fully bent
Upper +Middle +Lower joint fully bent

sign entry in the dictionary, the gesture represented
nger is identified according to the table above and
values are assigned according to Table 2.

Each gesture is assigned to an arbitrary number from (0-255)
with a 16 digits step. The gaps between the gestures are later
exploited to identify fuzzy limits between the gestures.

Table 2: Numerical Representation of Gestures

Gesture Code | Numerical Equivalent
G0000 0
G1000 16
GO200 32
G1200 48
GO031 64
G1031 80
G231 96
G123] 112
| G032 128
G1032 144
G0232 160
Gl1232 176
- GO033 192
G1033 208
G0233 224
G1233 240

C Letter Matching Algorithm

The signals resembling letters and numbers do not have a
strict set of Boolean values. This would suggest the use of
Fuzzy logic based algorithm. The signs by nature are not
exact and identical to all users. When detecting such signs,
the detected signal for the same sign but from different users
will vary but should still be close. This consequently leads us
to select a fuzzy algorithm to store and match the sign
language dictionary.

In fuzzy algorithm, the values of its variable are not in
simple TRUE (1) and FALSE (0) patterns, however discrete
values representing wide range of trueness and falseness
ranging from extremely true to extremely false are typically
considered.

In the case of sign language translator, the variables are the
reading of sensors and the exact number of sensors depends
on the type of sensor system. Each sensor is described by §
bits value ranging from totally flexed to totally inflexed;
however for more general case, the size of the variable
(number of bits) depends on the accuracy of the sensor.

The reading of the sensor is to he later compared to find the
similar letter which the gesture resembles. The letters, on the
other hand, are to be represented by a set of values for each
sensor, The fuzzy part comes here, whereby; the values
representing each letter describe the upper limit and Tower
limit for each sensor value. This means, a typical letter or
word, is represented by several variables describing the
upper limit for the sensors and another set of variables
describing the lower limit for the sensors. In addition to that
another variable is required to store the equivalent word
itself.

structure comprising of the lower limit for the sign
1 sensor, the upper limit for the sign from each
1 the equivalent word represents a single entry in
sed sign dictionary. A look-up table is then to be
sisting of all data structures holding the entries for
and the corresponding meaning. The entries in the
ble are to be derived empirically.

ified version of the translation system is
ted using three words based on the reading of five
he code is developed and the results are shown and
in next sections.

dictionary Construction

ned previously, in order to enable the translation, a

holding the gesture and the equivalent word has to
icted. The construction of the dictionary is shown
3.

shows the steps adopted in realizing the dictionary.
rramming a struct data type is used to represent
onary entry. The dictionary is simply an array of
data types. The maximum number of entries
n the size of the data memory (RAM). In the
separate memory chip is required to store larger
f entries.

| Stan

S —
Get a Sign Entry
[]

—-I identifv the Gesture for 2 Finger |
']
Determine the Numerical Representation of the ldentified Gtsnurl

[}
Gesture Fuzzy High Limyit = Gesture = Bias

Gesture Fuzzy Low Limit = Gesture - Bias

Find the Next Fingers }

e

. — —
—'\“<:\ Last Finger e
oy i
Ve
/
— Record the Equivalent Word - //

| £nd

+ 3: Dictionary Construction Flow Chart, Bias
value is 7

odology shown in Figure 3 is used to obtain and
the sign dictionary. The sign versions of the letters
» Z and numbers from 1 to 10 and the “I love you”
e considered from [2] and consequently the sign
7 is constructed.

es of the table actually show the range of the five
lues and the equivalent word. As example the sign
res a value in the range of (G1031L to G1031) for

the thumb sensor, (G0233L to G0233) for the index sensor,
(G1031L to G1031) for the middle sensor, (G1233L to
G1233) for the ring sensor and (G1233L to G1233) for the
little sensor represents the letter A.

RESULTS

The translation system based on a set of potentiometers is
constructed. The sysiem is implemented by developing C
codes based on the methodology explained previously. The
system with the five potentiometers, LCD and mother board
is shown in Figure 4. Figure 5 shows the system starting
message.

Figure 4: Translation System Components: 5
Potentiomenters, Main Board (SK40C bhoard), and LCD

St P —

Figure 5: Translation System Startup, LCD is displaying
the "Strarting" message

The gestures for the letters, numbers and some words were
obtained and implemented on the code listing. The reading
of the sensors and the recognized gestures are configured to
be displayed on the first and second lines of the LCD,
respectively. Two modes of sensors reading display were
shown on the LCD successfully. The two modes of display
are the digitized (0-255) and in Volts (0-5 V) and are shown
in Figure 6 and Figure 7, respectively.

: Semsor readings in first line (thumb: 123,
}, middle:238, ring:242, and little:237), Second
aying the translated sign

iperiments had been conducted to test the ability of
n to recognize gestures. The experimental results
n show that it is able to recognize the whole 26
al letters.

tters are used in coding as well as in display. This
hat the LCD displays “B” instead of “b” to indicate
1 alphabet. All the 26 letters did not involve motion
. Since it is assumed that only hand shapes are
d therefore the hand shape component of the letter
nsidered in modeling.

Figure 7 and Figure 8 show some of the recognized

re 7: Sensor readings in Volts (thumb: 2.4V,
:2.4V, middle:4.6V, ring:4.7V and little:4.6V)

Figure 8: Translation system recognizing the sign for B
equivalent to (thumb: 64+/-7, index: 0, middle: 0, ring: 0
and little: 0)

Additionally numbers (0-10) are added and recognized
successfully. Moreover, the system is able to recognize some
phrases e.g. “I love you”. Figure 9 and Figure 10 show some
of the obtained results.

Figure 9: Recognition and translation of the sign for 5
(thumb: 0, index: 64+/-7, middle: 0, ring: 64+/-7, little:
64+/-T)

Figure 10: Recognition of phrases e.g. “I Love You”
(thumb: 0, index: 0, middle: 224+/-7, ring: 224+/-7, little:
0)

re 11: “None” message for any other unrecognized
signs

recognized signs, the system displays by default
¢” message as shown in Figure 11. This is later
ed in the coding by the message “Not recognized!”.

CLUSION

totype incorporating five potentiometers — to simulate a
ic sensor reading, PIC microcontroller and LCD
les is proposed to aid sign language users to convey
essages in a more explicit way. The proposed
pe is based on ASL language and can support up to
pns and the equivalent words as a proof-of-concept. The
is envisaged to be an entry work for educational yet
cal solutions which can potentially be extended for
functionality and portability.

I'URE DIRECTIONS

ntly the system supports the translation of up to 75
'words. The size of the dictionary can be potentially
ded considering the addition of memory chip to the
. To enable the portability of the design, a 9v battery
e is to be added. Even though the system is tested
but a realistic data glove, it is believed that the
atical methodology adopted in the project will ease
alization of the addition. A potential future work is to
e the five potentiometers by a data glove.

RENCES

revor Johnston and Adam Schembri, “Australian Sign
uage (Auslan): An Introduction to Sign Language
istics”, Cambridge university press, 2007

American Sign Language (ASL) dictionary, URL:
/www_lifeprint.com/dictionary.htm, retrieved: Nov

llen J.M., Foulds R.A., “An approach to animating sign
age: A spoken english to sign english translator

system”, Proceedings of the Northeast Conference, 30, pp.
43-44, 2004

[4] Akmeliawati, R.; Ooi, M.P.-L.; Ye Chow Kuang; , "Real-
Time Malaysian Sign Language Translation using Colour
Segmentation and Neural Network," Instrumentation and
Measurement Technology Conference Proceedings, 2007.
IMTC 2007. IEEE , vol., no., pp.1-6, 1-3 May 2007

[5] Mekala, P.; Gao, Y.; Fan, J.; Davari, A.; , "Real-time
sign language recognition based on neural network
architecture," System Theory (SSST), 2011 IEEE 43rd
Southeastern Symposium on , vol., no., pp.195-199, 14-16
March 2011

[6] Nijusekar, C.; Brindhu Kumari, A.; , "Translating the
sign of dumb person using ARM processor,"
Communication Control and Computing Technologies
(ICCCCT), 2010 IEEE International Conference on , vol.,
no., pp.508-513, 7-9 Oct. 2010

[7] McGuire, R.M.; Hernandez-Rebollar, J.; Starmer, T.;
Henderson, V.; Brashear, H.; Ross, D.S.; , "Towards a one-
way American sign language translator," Automatic Face
and Gesture Recognition, 2004. Proceedings. Sixth IEEE
International Conference on , vol., no., pp. 620- 625, 17-19
May 2004

[8] El-Bendary, N.; Zawbaa, H.M.; Daoud, M.S.; Hassanien,
A.E.; Nakamatsu, K.; , "ArSLAT: Arabic Sign Language
Alphabets Translator,” Computer Information Systems and
Industrial Management Applications (CISIM), 2010
International Conference on , vol., no., pp.590-595, 8-10
Oct. 2010

[9] Fuzzy Logic, Wikipedia, URL:
http://en.wikipedia.org/wiki/Fuzzy logic, retrieved: Nov
2011

[10] USB HID PC and PIC interface implementation code
using C# and CCS compiler, Muhammad Rafique, URL:
http://www.pudn.com/downloads195/doc/project/detail9165
58.html, retrieved: Nov 2011

[11] Microchip Technology Inc.,
“PIC18F2455/2550/4455/4550 Data Sheet 28/40-Pin High-
Performance: Enhanced Flash, USB Microcontrollers with
nanoWatt Technology™, U.S.A, 2006

[12] Cytron Technologies, “SK40C PIC microcontroller
start-up kit: User’s Manual”, Malaysia, November 2011.
[13] Cytron Technologies, “UIC00B USB ICSP PIC
Programmer: User’s Manual”, Malaysia, November 2011.

