
CERTIFICATION OF APPROVAL

MICROCONTROLLER BASED SIGN LANGUAGE TRANSLATOR

Approved:

By

MOHAMMED OBAIDALLAH ALHARBI

A project dissertation submitted to the

Electrical & Electronic Engineering Department

Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)
(Electrical & Electronic Engineering)

!#Y
Dr. Mohd Zuki Bin Yusoff
Project supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2011

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein has not been undertaken or performed by

unspecified sources or persons.

IV

ABSTRACT

The communities of vocal impaired and deaf people who use sign language face great

communication difficulties with people who use vocal languages. This project, aims

to contribute towards bringing the gap closer by offering a tool which translates sign

languages to written messages on an LCD display. This report discusses the different

development and implementation issues including gesture modeling, sensor

interfacing, sign recognition and translation. American Sign Language is widely used

in different part of the world including Malaysia; therefore it is considered in this

project. The proposed method utilizes five potentiometers to emulate sensor output, a

microcontroller to acquire, convert, recognize, translate and display the hand gesture

on the LCD unit. The translator can recognize all 26 letters, 10 numbers, and some

phrases and words. The presented work is believed to be an entry to more promising

and rewarding sign language translation-applications in the future.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION .. 1

1.1 Background of Study .. 1

1.2 Problem Statement ... 1

1.3 Project Objectives and Scope ... 2

1.4 Limitations ... 2

1.5 Organization ofReport ... 3

CHAPTER2 LITERATURE REVIEW ... 4

2.1 Preliminaries ... 4

2.2 Related Work .. 5

2.3 Recognition and Translation Algorithm: Fuzzy Logic 6

CHAPTER 3 METHODOLOGY ... 7

3.1 Project Development Flow Chart ... 7

3.2 System Identification and Tools ... 8

3.2.1 Potentiometer ... 8

3.2.2 PIC microcontroller ... 10

3.2.3 CCS C compiler ... 11

3.2.4 PIC development kit and programmer 12

3.3 PIC Programming Methodology .. 15

3.4 Sign Language Translation Procedure ... 20

3.4.1 Sensor reading and display .. 21

3.4.2 Signs gesture representation .. 22

3.4.3 Letter matching algorithm ... 24

3.4.4 Dictionary construction ... 25

3.4.5 Translation of letters and numbers from sign language to
written language .. 29

3.5 Summary .. 31

CHAPTER 4 RESULTS AND DISCUSSION ... 32

4.1 Sensor Reading and Display .. 32

4.2 Basic Translation based on Sensors Reading 33

4.3 Translation System Using a Set of Potentiometers 35

CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS40

vi

5.1 Conclusion .. 40

5.2 Future Directions .. 40

REFERENCES .. 41

Appendix A Project Gantt Chart ... 43

Appendix B Five Sensors Reading Display (code) ... 45

Appendix C Five Sensor Interface and Basic Translation System (code) 46

Appendix D Translation System with Sign Dictionary (main.c) 47

Appendix E Translation System with Sign Dictionary (main.h) 53

Appendix F Translation System with Sign Dictionary (lcd.h) 54

Appendix G Investigating the Interface with 5DT Data Glove: A Potential Future
Work .. 56

G.l 5DT Data Glove .. 56

G.l.l Getting started with USB interface 58

G.l.2 PIC18F4550 as a USB CDC device 59

G.l.3 PIC and data glove USB interface .. 60

G.2 Getting Started with USB .. 61

G.3 PIC as Serial Port via USB .. 62

G.4 USB Interface between PIC and Data Glove 66

G.5 Discussion ... 67

Appendix H Data Glove Sensor Map ... 70

Appendix I Getting Started with USB (USB CDC Code) .. 71

Appendix J 5DT Data Glove and PIC Interface via USB (code) 73

vii

LIST OF FIGURES

Figure 1: Letter "A" in American Sign Language [2] ... 4

Figure 2: General Flow Chart of Project Work ... 7

Figure 3: System Tools (PIC, Board, LCD and Potentiometers) 8

Figure 4: Potentiometer a) Isometric View b) Internal Configuration c) Schematic 9

Figure 5: PIC18F4550 Pin Diagram ... 11

Figure 6: SK40C PIC Start-up Kit .. 13

Figure 7: UICOOB USB ICSP PIC Programmer ... 14

Figure 8: PIC Board and Prograrmner Connection ... 15

Figure 9: Microcontroller Programming Flow Chart .. 16

Figure 10: Prograrmning Step #1: PICC Project Wizard .. 17

Figure 11: Programming Step #2: Code edition ... 18

Figure 12: Programming Step #3: Building/Compilation ... 18

Figure 13: Programming Step #4: Simulation (Optional) ... 19

Figure 14: Programming Step #5: In Circuit Debugging (Optional) 19

Figure 15: Translation Flow Chart .. 21

Figure 16: Dictionary Construction Flow Chart, Bias value is 7 26

Figure 17: Full Translation Procedure Example ... 30

Figure 18: Potentiometer connected to Analog input ... 32

Figure 19: 5 Potentiometer, LCD and PIC Interfacing Circuitry 33

Figure 20: Basic Translation based on Sensors Reading (a) Displaying "M. Alharbi"
(b) Displaying "Dr. M Zuki" (c) Displaying "None" .. 34

Figure 21: Translation System Components: 5 Potentiomenters, Main Board (SK40C
board), and LCD .. 35

Figure 22: Translation System Startup, LCD is displaying the "Strarting" message .. 35

Figure 23: Sensor Readings in First Line (thumb: 123, index:l23, middle:238,
ring:242, and little:237), Second Line Displaying the Translated Sign 36

Figure 24: Sensor Readings in Volts (thumb: 2.4V, index:2.4V, middle:4.6V,
ring:4. 7V and little:4.6V) ... 37

Figure 25: Translation System Recognizing the Sign for B Equivalent to (thumb:
64+/-7, index: 0, middle: 0, ring: 0 and little: 0) ... 37

Figure 26: Recognition and Translation of the Sign for 5 (thumb: 0, index: 64+/-7,
middle: 0, ring: 64+/-7, little: 64+/-7) ... 38

viii

Figure 27: Recognition of Phrases e.g. "I Love You" (thumb: 0, index: 0, middle:
224+/-7, ring: 224+/-7, little: 0) ... 38

Figure 28: "None" Message for any Other Unrecognized Signs 39

Figure 29: Data Glove with USB Connection ... 56

Figure 30: Data Gloves Sensor Mapping .. 57

Figure 31: Startup Circuit for USB Interface .. 58

Figure 32: PIC18F4550 Oscillator and Clock Diagram for the CPU and USB
Peripheral ... 59

Figure 33: Code Snippet for Setting USB Clock .. 60

Figure 34: Block Diagram for the Proposed System .. 60

Figure 35: Circuit Components ... 61

Figure 36: PC to Microcontroller Interface via USB Port .. 62

Figure 37: GUI Interface to Read a Value from an Analog Device and Toggle the
State of LEDs Attached to Microcontroller ... 62

Figure 38: PIC showing USB is Successfully Attached (Observe the small LED light
indicator) .. 63

Figure 39: PIC showing USB is Successfully Enumerated (Observe the small 2 LED
light indicator) .. 64

Figure 40: Setting up the Serial Communication to the Microcontroller Using Serial
Monitor on CCS C Compiler ... 65

Figure 41: Display of Received Data from PC via USB Connection 65

Figure 42: 5DT data glove interface with PIC board .. 66

Figure 43: Interfacing the PIC and Data Glove (note all LED indicators are OFF) ... 67

Figure 44: Block Diagram for the System with the Proposed Serial Interface Kit 69

IX

LIST OF TABLES

Table 1: PIC18F4550 Specification .. 11

Table 2: Basic Gesture Meaning ... 23

Table 3: Numerical Representation of Gestures ... 23

Table 4: Dictionary Table (A-Z, 1-10 and I love you) .. 27

Table 5: Sensor Mappings for the 5DT Data Glove 14 Ultra 57

Table 6: Data Packet Sent by the Glove .. 68

X

CHAPTER!

INTRODUCTION

This chapter discusses the background of the study, the problem statement, project

objectives and scope.

1.1 Background of Study

A sign language is widely used by people who suffer from vocal impairment or

hearing problems in which the communicators use visually transmitted signs to

convey meanings. The deaf community which utilizes sign language is estimated to

be 0.1% of total population, which means millions of people worldwide [1]. This

large conununity faces great difficulties in communicating with normal people.

Several attempts have been made to break this gap between sign language users and

conventional vocal language communicators by introducing tools that can interpret

the meaning for both sides. This project aims to deliver a prototype which interprets

the signal made by a sign language communicator into a displayed message on LCD.

This project is believed to be a base for future work in this area.

1.2 Problem Statement

Sign language generally utilizes manual movement to convey meanings. This

language is not understood by average people. The majority of people understand

visually written letters, while sign language users can only use manual signs. In order

to break the gap, a set of sensors can be used on the signer to efficiently convert the

signs made to electrical signals which in return can be understood by a personal

co~puter (PC) and interpreted accordingly. However, the use of PC does not make

the solution mobile and easy to carry. Therefore, a simple IC based circuitry interface

(i.e. microcontroller) is required to replace the job of PC. In general, such

replacement involves several challenges due to the limited resources which are

normally found in conventional ICs (i.e. microcontrollers).

1

1.3 Project Objectives and Scope

The aim of this project is to construct a prototype which interprets basic signs into a

readable text on an LCD. In order to realize such prototype, the ASL language is

chosen for the implementation and the following objectives are considered:

1. Obtaining a numerical representation all gestures used in the sign language

2. Constructing a sign language dictionary

3. Prototyping a translation system using set of potentiometers, a microcontroller

and LCD modules.

The project is envisaged to deliver a prototype which makes use of a set of

potentiometers to model the actual sign gestures which can be later replaced to an

accurate data glove. A microcontroller with different communication modules is to be

used to acquire, manipulate and display the signs being detected by the sensors. A

display unit which is as simple as a 2 line-LCD is to be used to display detected

messages.

Throughout the implementation of the proposed translation system, only motionless

signs (i.e. static signs which do not involve any movement of hands, arms, fingers,

head or body to convey the meaning) are considered. The motions are essential for

several sign vocabulary, however they require complex detection and processing

system to detect and interpret them.

1.4 Limitations

The implementation of such project involves several challenges throughout the

different development phases. This project ultimately requires a microprocessor

system to interface with a sensor unit and to process the reading of the sensor to

deliver the final written message on a display unit. The processing of data requires

some noise filtering, data acquisition and recognition algorithms in order to robustly

deliver the final output. These processes, in addition to sign dictionary data, require

significant memory capacity which is not available on most of the commonly used

2

microcontroller systems.

Additionally, low power consumption for portable devices is a major concern. This is

to ensure convenience of usage without compromising the performance of the

proposed design. This makes an advantage of using optimized integrated components

versus separated ones. For example, a microcontroller with embedded USB peripheral

(PIC18F4550) consumes lower power than two separate units comprising a

microcontroller and USB interface modules.

1.5 Organization of Report

This report contains five chapters including Chapter 1 which consists of introductory

parts for the work and the rest is organized as follows; Chapter 2 lists some

preliminaries on sign language and the most recent translation systems developed by

researchers. The methodology adopted in this work throughout the development

stages is described in Chapter 3. The methodology discusses the components used to

develop the system, the software and tools used in the key milestones of the

development, and the algorithms used. The results and discussion are reported in

Chapter 4. Concluding remarks are reported in Chapter 5.

3

CHAPTER2

LITERATURE REVIEW

In this chapter, the previous work which is relevant to this project is presented.

2.1 Preliminaries

Sign language which is based on visual manipulation of hands and body is the

language of deaf and vocally impaired people. It is interesting to know that sign

language is not universal. Despite the fact that most vocabulary and grammar of sign

languages worldwide are quite similar, they are not typically identical [!]. For

example the particular word "women" have different sign representation in Auslan,

Israeli and DSL sign languages [1]. However, studies indicate that most of world's

sign languages have a great portion of identical vocabulary.

Figure 1: Letter "A" in American Sign Language (2)

4

On the other side, sign language does not follow the same rules of grammar as for

vocal languages [1]. The surrounding vocal language has a significant impact in

shaping a particular sign language. This exp Ia ins the difference in sign languages

globally. In this project, we will consider the American Sign Language (ASL) [2] as

it shares major similarity with Malaysian Sign Language (or in Malay: Bahasa Isyarat

Malaysia : BIM) and is well documented. The letters and the first ten numbers will be

tentatively considered in the proposed system. Figure I shows example of letter "A"

inASL.

2.2 Related Work

Several attempts have been made to translate sign language to vocal languages and

vice versa. J.M. Allen et al. in [3] presented a system which translates spoken English

to sign language. In this work, the authors discussed an algorithm implemented in

personal computer which can automate the translation of spoken and written English

language and displays the equivalent via an avatar animated sign interpreter.

P. Mekala et al. and R. Akmeliawati et al. in [4], [5] discussed an algorithm which

utilizes neural network to capture the sign from a camera and process it accordingly

to give the English translation. This method requires less expensive hardware but

more complicated algorithm to interpret the signs. In order to translate a sign, the

image is captured and tracked, then the hand posture is extracted and the

corresponding meaning is matched using a learned neural network.

Implementing a recognition system on an ARM processor is discussed in [6]. In this

work, the practical aspects of real time blabbering recognition and translation are

discussed. The system shows different practical aspects of the implementation of

language recognition in embedded systems.

Another interesting work is discussed by R.M. McGuire et al. in [7]. In this work, a

mobile sign translator based on one hand data glove and a Hidden Markov Model are

used. The proposed system shows 94% accuracy for a particular scenario whereby a

signer is seeking an apartment.

N. El-Bendary et al. attempted to implement arSLAT which recognizes sign

representation of Arabic letters and gives the written equivalence [8]. The system

processes a video which contains series of image representations for the letters. The

5

best captured image from the video undergoes several phases including

categorization, feature extraction and classification before the Arabic letter is finally

recognized. Experimental results show 91% of recognition accuracy.

In summary, this short listing for some of the most relevant work all around the

world, show the global potentiality of the problem. It also highlights different areas of

focus for the implementation of sign language translators. This includes: sensing

devices, processing platform (PC, embedded processors, etc.), recognition algorithms,

and output forms. In this project, the focus will be in implementing the translation

system in microcontroller processing environment.

2.3 Recognition and Translation Algorithm: Fuzzy Logic

Fuzzy logic is a form of many-valued logics; it conceptually deals with reasoning that

is approximate rather than fixed and exact. In contrast with the traditional logic

theory, where binary variables have two logic values: true or false, fuzzy logic

variables may have a truth value that ranges in degree between 0 and I. Fuzzy logic

has been extended to handle the concept of partial truth. In partial truth, the truth

value may range between completely true and completely false. Furthermore, when

linguistic variables are used, these degrees may be managed by specific functions.

The fuzzy logic is similar to some extent with the human reasoning. It allows for

approximate values and inferences as well as incomplete or ambiguous data (fuzzy

data) as opposed to only relying on crisp data (binary yes/no choices). Fuzzy logic is

able to process incomplete data and provide approximate solutions to problems other

methods find difficult to solve. The terminology used in fuzzy logic but not used in

other methods is: very high, increasing, somewhat decreased, reasonable and very

low.

It is relevant to note that fuzzy logic and probabilistic logic are similar in a

mathematical point of view, but conceptually distinct. Fuzzy logic corresponds to

"degrees of truth", while probabilistic logic corresponds to "probability, likelihood";

as these differ, fuzzy logic and probabilistic logic yield different models of the same

real-world situations [9].

6

CHAPTER3

METHODOLOGY

In this part, the methodology used to realize the project is discussed.

3.1 Project Development Flow Chart

[Start)
Literature Work

IdentifYing System Requirement and Specification

~
Emulating and Interfacing Sensing unit with

Microcontroller

No ..:l
Succeeded?

....
r

Reading Raw Data from the Sensing Unit by Microcontroller
and Displaying Them on LCD

N 0

~ I ..
Translating "A" from Sign to Text on LCD

•
Translating letters A - Z and numbers 1-10

+
[End l

Figure 2: General Flow Chart of Project Work

7

The overall flow of the project can be divided into further detailed steps which are

shown in Gantt chart in Appendix A)

3.2 System Identification and Tools

Throughout the development stage of the prototype of the project, several tools are

potentially considered as shown in Figure 3.

SYSTEM TOOLS

Figure 3: System Tools (PIC, Board, LCD and Potentiometers)

The tools used for the implementation of the translation system and the respective

functional and technical details are discussed in the following sections.

3.2.1 Potentiometer

A potentiometer is a simple three terminals variable resistor. It comes in different

values for the resistance across its ends. A third terminal in the middle is connected

via a moving knob to adjust the resistance at this terminal from 0 to full value in

relation to either ends. Figure 4 shows the isometric view, internal configuration and

schematic of the potentiometer.

8

(a)

w

(b)

+SVOC

Anaklg ruxrt 0 (AO)

0>--------.~

GNO

(c)

Figure 4: Potentiometer a) Isometric View b) Internal onfiguration c) schematic

9

The potentiometer is used to emulate and produce 0-5 V analog output. It has

generally similar output range of a possible gesture sensor; this allows it to be used as

a simplified model for gesture sensor. Therefore it can be used to emulate a fingers

gesture sensing unit.

3.2.2 PIC microcontroller

A mid range microcontroller from Microchip is to be used. This selection enables the

developers to deal with the prototype with more flexibility and efficiency.

The PIC18F4550 [11] is among the most commonly used Microchip microcontrollers

barely because of its USB communication support capabilities. The PIC18F4550 is a

40-pin high performance microcontroller which is equipped with several built-in

peripherals (Figure 5). The proposed system may require the USB support for

advanced used, therefore, the selection is made to enable future development and

flexibility of functionality expansion.

Along with the USB support, the microcontroller is featured with different processing

modes, configurable internal oscillators, extendable instruction set which makes it a

high performance yet power efficient microcontroller. The most important

specifications to consider are reported in Table 1. The 32KB flash memory allows

long programs (more than 16 thousands assembly code lines) to be executed. The data

used along the execution of the program (i.e. variables' data) are saved in SRAM

memory which is 2KB in size for the PIC18F4550 microcontroller.

Some of the peripherals of the microcontroller are not considered as the proposed

system does not require them, however, it is likely that normal I/0 operation are to be

used instead to allow access to other direct digital transmission based devices such as

LCD.

10

Table 1: PIC18F4550 Specification

Program Data
MSSP

Memory Memory
CCP/ ~

~ ~ ~

1/0 AID
~

ECCP SPP a " ~
00

~ ~ :;J Q. c E
~ .9

~
PWM < .s - ~ SPI 12C P'l 0

u u
"' g ~

~ 00
c P'l -

32K 16384 2048 256 35 13 1/1 Yes Yes Yes I 2 1/3

0

MCLRNPPIRE3 -- 1 40 --- RB7/KBI3/PGD
RAO/ANO- 2 39 - RB6/KB12/PGC
RA1/AN1- 3 38 - RB5/KBI1/PGM

RA2/AN2NREF-/CVREF -- 4 37 - RB4/AN11IKBIO/CSSPP
RA31AN31VF!EF+ - 5 36 - RB31AN9/CCP211lNPO

RA4/TOCKVC10UT/RCV -- 6 35 - RB2/AN811NT2NMO
RA5/AN41SSIHLVDIN/C20UT -- 7 34 -- RB11AN1(l/INT1/SCK/SCL

REO/AN5/CK1SPP- 8 U)Q 33 - RBOIAN12/INTOIFLTO/SOIISDA
RE11AN6/CK2SPP - 9

I() I()
32 -voo

RE2/ANVOESPP -- 10 ~~ 31 -vss
Voo- 11 coco 30 - RD7/SPP7/P1D
vss-

12 00 29 - RD6/SPP6/P1C
OSC1/CLKI- --13 a. a. 28 - RD5/SPP5/P1B

OSC2/CLKOIRA6 ,.__ 14 27 ---- RD4/SPP4
RCO!T10SOIT13CKI - 15 26 - RC7/RX/DT/SDO

RC1/T10SI/CCP;111lfUOE -- 16 25 -- RC61TX/CK
RC2/CCP11P1A, 17 24 -- RC5/D+NP

Vuss-- 18 23 -RC4/D-NM
RD{liSPPO-- 19 22 -- RD3/SPP3
RD1/SPP1-- 20 21 -RD2!SPP2

Figure 5: PIC18F4550 Pin Diagram

3.2.3 CCS C compiler

In order to program the microcontroller, a compiler is to be utilized. In this project,

the PIC C compiler from CCS is to be used.

The CCS C compiler is easy to use, and almost immediate to get started due to the

project wizard feature and the different startup codes which it offers.

Among the features ofCCS C compiler:

11

• Automatic fuses configuration

• Extensive built-in functions providing direct access t6 PIC hardware

• Extensive source code driver library

• Arithmetic library

• Integrated development environment

3.2.4 PIC development kit and programmer

To speed up the development phase, a startup kit [12] is used as the platform of the

microcontroller circuit. The use of this tool provides easier and more robust circuit to

be built. The board in Figure 6 provides several functionalities and circuitry support.

The kit is a robust development platform which offers:

• Voltage regulation circuitry (9 V input voltage to 5 V output voltage)

• Reset button

• USBport

• Connector to programmer

• Optional connection to LCD and UART

• 2 switches and 2 LEDs connected to Port B

12

Figure 6: SK40C PIC Start-up Kit

In order to transfer the C codes to the program memory of the microcontroller, USB

ICSB programmer (UICOOB) [13] is considered (see Figure 7). This programmer is a

cheap programming solution and is highly compatible with the SK40C startup kit.

13

Figure 7: UICOOB USB ICSP PIC Programmer

The programming software (PIC kit 2) takes the hex file which is produced by CCS

compiler and loads it to the microcontroller memory via the UICOOB programmer.

The interface between the PIC board and the programmer is shown in Figure 8.

14

Figure 8: PIC Board and Programmer Connection

3.3 PIC Programming Methodology

The several steps required to implement and realize the developed C codes on the

target board are discussed in this part. The steps are illustrated in the flow chart

shown in Figure 9. The steps involve the following:

• Project Creation using project wizard: (see Figure 10) In CCS C compiler

the best way to develop code is to start by project wizard. The project wizard

provides a good utility which automatically generates startup codes with the

proper fuses (configuration) setting, #include files, peripheral setups and main

function. This is very useful for beginners and produces very robust codes.

15

Start

Project Creation and Setting

Code Writing

Code Building and Compilation

Yes

Simulation using PIC Simulator IDE

Yes

Connecting the SK40C Board with the Microcontroller to UICOOB Programmer

Loading the Hex file into the Microcontroller and Verifying the Transfer

End

Figure 9: Microcontroller Programming Flow Chart

16

' , ~·

(1) =~ ... --
3.~ ~

........
~ C,..,:t!lt1._..

!c - 1f

-..-~"'
,... ho • ,,
a.ujo41

.. , ... I'D ·f'OI1•-...... --·· -•(;'-r ... , ,_........._.. .. :\, ... ,,.. , .. ,
C.,.JoiiS.

'"!~ l':~..-,

~· w~ t~
t Xl:,.IO!•

.... --.,.~
.., """'" ... -..-~ ...

r-·[}Gwo-l r• .. eo:----» ____ ...

,. ·-- ., • .,.. 1.11£. 4111lM:Il:."

=:" ,.lto!C, •li:'ILo~~
'9' ~

: .-ue u . l . Hloolll t'Ct:l JIC'•"f''• 01.~ ~O.: .. c:t ICT'a..a 1111 .. I

..... ~

..

-- ----------

Figure 10: Programming Step #1: PICC Project Wizard

• C Code edition: This is where the developer writes the actual code by editing

the main function and adding more functions according to the needs of the

application (see Figure ll). The CCS C syntax follows the syntax of the

standard ANSI C to a good extent.

17

......
.. ~ .. ~ , ~ ... """ ~, .
.... ... : -. - l :_to ,-.c:..,., ._,_,~..u
,.,._r,a !l:_:.:_ar-LU.Il
•n.,.. W\ •-= ar
... , .,. , u...a c :nr; :Jr:CII&l
......... t&.a.2 • n u ... ·.&r....a
....... ,~_ .. , , ll'" ... !'l ,.. ~ -·· ... , ..

Figure 11: Programming Step #2: Code Edition

• Building and Compilation: The C codes remam as C codes until they are

built and compiled by the compiler to produce the machine codes and hex file

specifically. In this step, the compiler checks the codes for syntax errors and

report to the programmer if any exists .

...

•r.:
• :·"C "J!IIr o4 U'"•:C~~r.:'1\:tl:

Figure 12: Programming Step #3: Building/Compilation

18

• Simulation (optional): Before loading the produced machine code (by the C

compiler), it is worthy to see how the PIC would work when the code is to be

loaded to the microcontroller. PIC simulator IDE offers realistic simulation

interface whereby all the inputs and outputs can be monitored. Input pins can

be easily stimulated and several configurable output devices are available.

Figure 13: Programming Step #4: Simulation (Optional)

• Debugging (optional): This is where the errors are rechecked and corrected

by the programmer.

.,..-.ebM"J:O.i ;:c·V"':.r ... :~: ~·:'x C< l tT. ..._
~ •1 ~ ,, -

....
• •t ,.r:•l"' 1<#1 t Y -. ~ {:-•-....c •""'"' I

..
,. ~_, IU1

) . ..,...,._.., ... ,.."'Won~, .n•1 r, .. ~ .. ~WJ r
._....,,.,:- t' .J•S -.1•¥,
\fo ' · .. ·~

•
IU.; a:s '..1. fbsJ•~

•.-.t• ·-·

Figure 14: Programming Step #5: In Circuit Debugging (Optional)

19

• Preparing the system for program loading: The microcontroller has to be

connected to the programmer (UICOOB) via certain pins as shown in the

respective datasheet. In our case, fortunately the pins are accessible to the

programmer via dedicated connection port and cable as shown in Figure 8.

The programmer has to be known for the PC hosting the PICkit software by

proper installation as described in the respective installation manual. The

UICOOB programmer is USB device.

• Loading the Hex file to the microcontroller: The PICkit is used to load the

hex file to the microcontroller. After this step the system is ready to run and

the programmer can be disconnected from the board as the microcontroller

does not require the connection anymore and in fact it may cause some

malfunction to the circuit.

3.4 Sign Language Translation Procedure

The translation procedure involves several issues, tasks and algorithms. The

following part discusses these challenges and explains the methodologies adopted in

this work. The flow chart of the translation system is shown in Figure 15.

20

Start

Initialize Device (LCD, ADC, etc.)

Initialize Dictionary

Display Starting Message

Read Sensors

Check the readings with dictionary entries

Yes

Display the Equivalent Word on LCD

End

Figure 15: Translation Flow Chart

The translation is basically a closed loop in which the sensors are read, compared and

if recognized, the results are displayed on the LCD unit The reading of the sensors is

compared to a dictionary which is created according to the ASL dictionary. The

dictionary consists of a set of numerical representation to the gestures of the five

fingers (thumb, index, middle, ring and little). The modeling and the numerical

representation of the gesture are described in the following part.

3.4.1 Sensor reading and display

The first step on the hardware development of the system is to realize the interface

between the PIC and the sensing unit. Initially the sensing unit is assumed to be

simple potentiometers and therefore, the PIC is required to establish a communication

with the potentiometers. The ADC peripheral in the PIC is used to implement this

21

function. Five pins are devoted for this purposes which are: AO, A1, A2, A3, and AS.

The first step in implementation is to set the proper configuration using the project

wizard in CCS C compiler as follows:

• Selecting PIC18F4SSO (as it is the target PIC)

• Oscillator frequency: 20,000,000 Hz (as used in the development board)

• For the oscillator fuses, choose the configuration: High speed Osc (> 4mhz,

for PCM/PCH) (> 1 Omhz for PCD)

• Unselect option : "PORTS pins are configured as analog input channels"

• For the analog configuration, the following is used:

o AO, A1, A2, A3, AS

o Range 0-Vdd

o Units: 0-2S5

o Internal 2-6)!s for the clock

A startup code is generated upon making the above settings. An LCD is used to

display the data. The full source code is listed in Appendix B.

3.4.2 Signs gesture representation

It is known that each letter or word in sign language is composed of gestures made by

the five fmgers of the hand. In order to obtain a numerical representation for each

gesture, 16 gestures per finger are identified to be the basic building block for each

sign as shown in Table 2.

22

Table 2: Basic Gesture Meaning

Gesture Gesture

Code
Gesture Description

Code
Gesture Description

.

GOOOO Inflexed finger G0032 Lower joint half bent

G!OOO Upper Joint flexed Gl032 Uppert Lower joint half bent

G0200 Middle joint flexed G0232 Middle+ Lower joint half bent

G1200 Middle + Upper joint flexed G1232 Upper+ Middle+ Lower joint half bent

G0031 Lower joint tilts aside G0033 Lower joint fully bent

G1031 Upper+ Lower joint tilts aside Gl033 Upper+ Lower joint fully bent

G0231 Middle+ Lower joint tilts aside G0233 Middle+ Lower joint fully bent

G1231 Upper +Middle +Lower joint tilts aside Gl233 Upper +Middle +Lower joint fully bent

For each sign entry in the dictionary, the gesture represented by each finger is

identified according to the table above and numerical values are assigned according to

Table 3.

Each gesture is assigned to an arbitrary number from (0-255) with a 16 digits step.

The gaps between the gestures are later exploited to identify fuzzy limits between the

gestures.

Table 3: Numerical Representation of Gestures

Gesture Gesture

Code
Numerical Equivalent

Code
Numerical Equivalent

GOOOO 0 G0032 128

G!OOO 16 G1032 144

G0200 32 G0232 160

G1200 48 Gl232 176

G0031 64 G0033 192

G1031 80 Gl033 208

G0231 96 G0233 224

G1231 112 Gl233 240

23

3.4.3 Letter matching algorithm

The signals resembling letters and numbers do not have a strict set of Boolean values.

This would suggest the use of Fuzzy logic based algorithm. The signs by nature are

not exact and identical to all users. When detecting such signs, the detected signal for

the same sign but from different users will vary but should still be close. This

consequently leads us to select a fuzzy algorithm to store and match the sign language

dictionary.

In fuzzy algorithm, the values of its variable are not in simple TRUE (1) and FALSE

(0) patterns, however discrete values representing wide range of trueness and

falseness ranging from extremely true to extremely false are typically considered.

In the case of sign language translator, the variables are the reading of sensors and the

exact number of sensors depends on the type of sensor system. Each sensor is

described by 8 bits value ranging from totally flexed to totally inflexed; however for

more general case, the size of the variable (number of bits) depends on the accuracy

of the sensor.

The reading of the sensor is to be later compared to find the similar letter which the

gesture resembles. The letters, on the other hand, are to be represented by a set of

values for each sensor. The fuzzy part comes here, whereby; the values representing

each letter describe the upper limit and lower limit for each sensor value. This means,

a typical letter or word, is represented by several variables describing the upper limit

for the sensors and another set of variables describing the lower limit for the sensors.

In addition to that another variable is required to store the equivalent word itself.

The data structure comprising of the lower limit for the sign from each sensor, the

upper limit for the sign from each sensor and the equivalent word represents a single

entry in the proposed sign dictionary. A look-up table is then to be made consisting of

all data structures holding the entries for each sign and the corresponding meaning.

The entries in the look up table are to be derived empirically.

24

A simplified version of the translation system is implemented using three words

based on the reading of five sensors. The code is listed in Appendix C and the results

are shown and discussed in next chapter.

3.4.4 Dictionary construction

As explained previously, in order to enable the translation, a dictionary holding the

gesture and the equivalent word has to be constructed. The construction of the

dictionary is shown in Figure 16.

The flow shows the steps adopted in realizing the dictionary. In C programming a

struct data type is used to represent each dictionary entry. The dictionary is simply an

array of "struct" data types. The maximum number of entries depends on the size of

the data memory (RAM). In the future, a separate memory chip is required to store

larger number of entries.

25

Start

Get a Sign Entry

Identity the Gesture for a Finger

Determine the Numerical Representation of the Identified Gesture

Gesture Fuzzy High Limit = Gesture + Bias

Gesture Fuzzy Low Limit = Gesture - Bias

Find the Next Fingers

No

Record the Equivalent Word

End

Figure 16: Dictionary Construction Flow Chart, Bias value is 7

The methodology shown in Figure 16 is used to obtain and construct the sign

dictionary. The sign versions of the letters from A to Z and numbers from 1 to 10 and

the "I love you" phrase are considered from [2] and consequently the sign dictionary

is constructed in Table 4.

The entries of the table actually show the range of the five sensor values and the

equivalent word. As example the sign which gives a value in the range of (Gl031L to

Gl031) for the thumb sensor, (G0233L to G0233) for the index sensor, (G1031L to

G1031) for the middle sensor, (G1233L to G1233) for the ring sensor and (G1233L

to G1233) for the little sensor represents the letter A.

26

Table 4: Dictionary Table (A-Z, 1-10 and I love you)

Gesture Code Equivalent
Fuzzy Range

Thumb Index Middle Ring Little Word

Lower Fuzzy Limit 01031L G0233L G0233L 01233L 01233L
A

Upper Fuzzy Limit GI031H 00233H G0233H 01233H 01233H

Lower Fuzzy Limit G0031L OOOOOL GOOOOL GOOOOL GOOOOL
B

Upper Fuzzy Limit G0031H GOOOOH OOOOOH GOOOOH GOOOOH

Lower Fuzzy Limit GOOOOL G0200L G0200L G0200L G0200L
c

Upper Fuzzy Limit GOOOOH G0200H G0200H G0200H G0200H

Lower Fuzzy Limit G1200L GOOOOL 01232L 01232L G1232L
D

Upper Fuzzy Limit 01200H GOOOOH 01232H 01232H 01232H

Lower Fuzzy Limit G1231L G1200L 01200L G1200L 01200L
E

Upper Fuzzy Limit G1231H 01200H 01200H 01200H 01200H

Lower Fuzzy Limit 01032L 00232L GOOOOL G0031L 00031L
F

Upper Fuzzy Limit 01032H G0232H GOOOOH 00031H G0031H

Lower Fuzzy Limit G0032L G0032L 01233L G1233L 01233L
G

Upper Fuzzy Limit G0032H G0032H G1233H 01233H G1233H

Lower Fuzzy Limit 01232L G0032L G0032L G0233L G0233L
H

Upper Fuzzy Limit G1232H G0032H 00032H G0233H G0233H

Lower Fuzzy Limit G1200L 00233L G0233L G0233L GOOOOL
I

Upper Fuzzy Limit 01200H 00233H G0233H 00233H GOOOOH

Lower Fuzzy Limit Gl200L 00233L G0233L G0233L GOOOOL
J

Upper Fuzzy Limit 01200H G0233H G0233H 00233H GOOOOH

Lower Fuzzy Limit G0232L GOOOOL G0033L G0233L G0233L
K

Upper Fuzzy Limit 00232H GOOOOH G0033H G0233H G0233H

Lower Fuzzy Limit GOOOOL GOOOOL G0233L G0233L G0233L
L

Upper Fuzzy Limit GOOOOH GOOOOH G0233H G0233H G0233H

Lower Fuzzy Limit G0232L G0033L G0033L G0033L 01233L
M

Upper Fuzzy Limit G0232H G0033H G0033H G0033H G1233H

Lower Fuzzy Limit 01232L G0232L G0232L G0233L G0233L
N

Upper Fuzzy Limit 01232H G0232H G0232H G0233H G0233H

Lower Fuzzy Limit 01200L G1232L 01232L 01232L 01232L 0

27

Upper Fuzzy Limit Gl200H Gl232H G1232H Gl232H Gl232H

Lower Fuzzy Limit G0032L GOOOOL G0033L G0233L G0233L
p

Upper Fuzzy Limit G0032H GOOOOH G0033H G0233H G0233H

Lower Fuzzy Limit G0032L G0033L G1233L Gl233L Gl233L

Upper Fuzzy Limit G0032H G0033H G1233H Gl233H Gl233H
Q

Lower Fuzzy Limit G0232L GOOOOL G0031L G0232L G0233L
R

Upper Fuzzy Limit G0232H GOOOOH G0031H G0232H G0233H

Lower Fuzzy Limit G0232L G1233L Gl233L Gl233L G1233L
s

Upper Fuzzy Limit G0232H Gl233H Gl233H G1233H Gl233H

Lower Fuzzy Limit G0232L G0232L G0233L G0233L G0233L
T

Upper Fuzzy Limit G0232H G0232H G0233H G0233H G0233H

Lower Fuzzy Limit G0200L GOOOOL GOOOOL G0232L G0232L
u

Upper Fuzzy Limit G0200H GOOOOH GOOOOH G0232H G0232H

Lower Fuzzy Limit G0200L G0031L GOOOOL G0233L G0233L
v

Upper Fuzzy Limit G0200H G0031H GOOOOH G0233H G0233H

Lower Fuzzy Limit G0233L G0031L GOOOOL G0031L G0232L
w

Upper Fuzzy Limit G0233H G0031H GOOOOH G0031H G0232H

Lower Fuzzy Limit Gl232L Gl200L Gl233L Gl233L Gl233L
X

Upper Fuzzy Limit Gl232H Gl200H Gl233H Gl233H Gl233H

Lower Fuzzy Limit GOOOOL Gl233L Gl233L Gl233L GOOOOL
y

Upper Fuzzy Limit GOOOOH Gl233H Gl233H Gl233H GOOOOH

Lower Fuzzy Limit Gl232L GOOOOL Gl233L Gl233L Gl233L
z

Upper Fuzzy Limit Gl232H GOOOOH G1233H Gl233H Gl233H

Lower Fuzzy Limit Gl233L GOOOOL Gl233L G1233L Gl233L
I

Upper Fuzzy Limit Gl233H GOOOOH Gl233H Gl233H Gl233H

Lower Fuzzy Limit Gl232L G0031L GOOOOL G1233L Gl233L
2

Upper Fuzzy Limit Gl232H G0031H GOOOOH Gl233H Gl233H

Lower Fuzzy Limit GOOOOL G0031L GOOOOL G1233L G1233L
3

Upper Fuzzy Limit GOOOOH G0031H GOOOOH G1233H G!233H

Lower Fuzzy Limit G0233L G0031L GOOOOL G003IL G0031L
4

Upper Fuzzy Limit G0233H G0031H GOOOOH G0031H G0031H

Lower Fuzzy Limit GOOOOL G0031L GOOOOL G0031L G003IL
5

Upper Fuzzy Limit GOOOOH G0031H GOOOOH G0031H G0031H

28

Lower Fuzzy Limit G0232L G003IL GOOOOL G003IL G0232L
6

Upper Fuzzy Limit G0232H G003IH GOOOOH G003IH G0232H

Lower Fuzzy Limit G0232L G003IL GOOOOL Gl232L G003IL
7

Upper Fuzzy Limit G0232H G003IH GOOOOH Gl232H G003IH

Lower Fuzzy Limit G0200L G003IL Gl232L G003IL G003IL
8

Upper Fuzzy Limit G0200H G003IH Gl232H G003IH G003IH

Lower Fuzzy Limit G0200L Gl233L GOOOOL G003IL G003IL
9

Upper Fuzzy Limit G0200H Gl233H GOOOOH G003IH G003IH

Lower Fuzzy Limit G003IL Gl233L Gl233L Gl233L Gl233L
10

Upper Fuzzy Limit G003IH Gl233H Gl233H Gl233H Gl233H

Lower Fuzzy Limit GOOOOL GOOOOL G0233L G0233L GOOOOL
I Love You

Upper Fuzzy Limit GOOOOH GOOOOH G0233H G0233H GOOOOH

3.4.5 Translation of letters and numbers from sign language to written language

Upon the construction of the sign dictionary, the recognition phase for the full entries

would be developed. Since the aim of the project is to prove the capability of the

system to translate, this level of implementation, by considering letters and ten

numbers, is considered sufficient.

The translation is done by getting the values of the sensors and comparing with the

corresponding lower and upper fuzzy limits for each entry in the dictionary table.

Once the reading of the five sensors fall within all the corresponding lower and upper

limits of a particular entry, the associated word is recognized as the equivalent word

for the sign input.

The maximum size of entries which can be recognized is potentially governed by the

memory size of the microcontroller. The complete source code implemented is listed

and fully commented in Appendix D, Appendix E and Appendix F.

29

A full translation example is explained and shown in Figure 17.

TRANSLATION PROCEDURE

Thumb:G0031, lndex:GOOOO, Middle:GOOOO, Ring:GOOOO and
l..ltle:G1818

COdl S.ltMlf ~n.g COlli lm':5Qr

G(IIIDJI Cl +7 ~ tD +-'-7
G,_ 1C f,L/' G1G2 1.U f.L7

GUll1l I :32 t.LJ' GII2!J2 1CID +-'-1

G12Bll • +.'-7 Gt2D 11C +L7

Gem1 Cl t.l-7 GaDS m f..L7

G1C1 8D f...l-1 G14IS3 'D +.1-1

Gll!D1 s f..L7 GGDS m +>L7

G1D1 1 t2 .,l-.., G12SS JAil +.Lf'

I ~

I,

.... -~· . . ~ 11 J:h_LI'!Jb: 64 +J'- 7,_ IndeX: 0, M1ddle: 0, Ring: 0 and little; 0 ,1

Figure 17: Full Translation Procedure Example

30

3.5 Summary

The methodology in implementing the translation system including the hardware,

software and algorithm aspects is thoroughly discussed in this chapter. The results of

some experimental work are reported in the next chapter.

31

CHAPTER4

RESULTS AND DISCUSSION

This chapter reports part of the results of the work followed by a section for

discussion.

4.1 Sensor Reading and Display

In this experiment five potentiometers are used to emulate real sensor readings. The

potentiometers have three terminals (see Figure 18); when connecting the first and the

third terminals to VDD and GND, the output voltage will be in the range of 0-5 V

depending on the position of the wiper. This range of voltages are converted using the

built-in ADC in the PIC. The converted values are shown in the range of 0 to 255,

whereby 0 is 0 V and 255 is 5 V.

+5VDC

Analog input 0 (AO)

C>----1

GND

10K Ohm potentiometer

Figure 18: Potentiometer Connected to Analog input

A 2x 16 LCD is used to display the values of sensors (potentiometers) readings. The

working circuit with instantaneous conversion and display is shown in Figure 19.

This figure shows the five potentiometers connected to the PIC to pins: AO, AI, A2,

A3, and AS. The ADC unit converts the values and the PIC displays the values via the

LCD.

32

Figure 19: S Potentiometer, LCD and PIC interfacing circuitry

4.2 Basic Translation Based on Sensors Reading

In this experiment the readings from sensors are compared to different arbitrary

values to show different messages accordingly. This experiment is an important start

towards the full translation system. This is because; the translation likely comprises a

lookup table and a set of comparisons with sensor readings to show a particular word.

Three messages were used in this experiment: "M. Alharbi", "Dr. Zuki" and ''None"

when the sensors are all under 125, above 125, and otherwise, respectively. Figure 20

shows the three cases, whereby the LCD displays the reading of the sensors on the

first line while displaying the equivalent message on the second line.

33

(a)

(b)

(c)

Figure 20: Basic Translation Based on Sensors Reading (a) Displaying "M.

Alharbi" (b) Displaying "Dr. M Zuki" (c) Displaying "None"

34

4.3 Translation System Using a Set of Potentiometers

In this experiment, a translation system based on a set of potentiometers is

considered. The system is implemented based on the codes listed in Appendix D,

Appendix E and Appendix F. The system with the five potentiometers, LCD and

mother board is shown in Figure 21. Figure 22 shows the system starting message.

Figure 21: Translation System Components: 5 Potentiomenters, Main Board

(SK40C board), and LCD

Figure 22: Translation System Startup, LCD is displaying tbe "Strarting"

message

35

The gestures for the letters, numbers and some words were obtained and implemented

on the code listing. The reading of the sensors and the recognized gestures are

configured to be displayed on the first and second lines of the LCD, respectively.

Two modes of sensors reading display were shown on the LCD successfully. The two

modes of display are the digitized (0-255) and in Volts (0-5 V) and are shown in

Figure 23 and Figure 24, respectively.

Figure 23: Sensor Readings in First Line (tbumb: 123, index:123, middle:238,

ring:242, and little:237), Second Line Displaying tbe Translated Sign

Several experiments had been conducted to test the ability of the system to recognize

gestures. The experimental results for system show that it is able to recognize the

whole 26 alphabetical letters.

Capital letters are used in coding as well as in display. This is to say that the LCD

displays "B" instead of "b" to indicate the second alphabet. All the 26 letters did not

involve motion except "Z". Since it is assumed that only hand shapes are considered

therefore the hand shape component of the letter is only considered in modeling.

Figure 23, Figure 24 and Figure 25 show some of the recognized letters.

36

Figure 24: Sensor Readings in Volts (thumb: 2.4V, index:2.4V, middle:4.6V,

ring:4. 7V and little:4.6V)

Figure 25: Translation System Recognizing the Sign forB Equivalent to (thumb:

64+/-7, index: 0, middle: 0, ring: 0 and little: 0)

Additionally numbers (0-1 0) are added and recognized successfully. Moreover, the

system is able to recognize some phrases e.g. "I love you". Figure 26 and Figure 27

show some of the obtained results.

37

Figure 26: Recognition and Translation of the Sign ofS (thumb: 0, index: 64+/-7,

middle: 0, ring: 64+/-7, little: 64+/-7)

Figure 27: Recognition of Phrases e.g. "I Love You" (thumb: 0, index: 0, middle:

224+/-7, ring: 224+/-7, little: 0)

38

Figure 28: "None" Message for Any Other Unrecognized Signs

For unrecognized signs, the system displays by default ''None" message as shown in

Figure 28. This is later replaced in the coding by the message ''Not recognized!"

39

CHAPTERS

CONCLUSION AND FUTURE DIRECTIONS

In this chapter some conclusive statements on the progress of the proposed project

and the expected future work are discussed.

5.1 Conclusion

A prototype incorporating five potentiometers -to simulate a realistic sensor reading,

PIC microcontroller and LCD modules is proposed to aid sign language users to

convey their messages in a more explicit way. The proposed prototype is based on

ASL language and can support up to 75 signs and the equivalent words as a proof-of

concept. The project is envisaged to be an entry work for educational yet practical

solutions which can potentially be extended for more functionality and portability.

5.2 Future Directions

Currently the system supports the translation of up to 75 signs/words. The size of the

dictionary can be potentially extended considering the addition of memory chip to the

system. To enable the portability of the design, a 9v battery module is to be added.

Even though the system is tested without a realistic data glove, it is believed that the

systematical methodology adopted in the project will ease the realization of the

addition. A potential future work is to replace the five potentiometers by a data glove.

An investigation for such interface is carried out as a part of this project and

preliminary results are obtained and reported in Appendix G, to be exploited by future

developers.

40

REFERENCES

[I] Trevor Johnston and Adam Schembri, "Australian Sign Language (Auslan): An
Introduction to Sign Language Linguistics", Cambridge university press, 2007

[2] American Sign Language (ASL) dictionary, URL:
http://www.lifeprint.com/dictionary.htm, retrieved: Nov 2011

[3] Allen J.M., Foulds RA., "An approach to animating sign language: A spoken
english to sign english translator system", Proceedings of the Northeast Conference,
30,pp.43-44,2004

[4] Akmeliawati, R.; Ooi, M.P.-1.; Ye Chow Kuang; , "Real-Time Malaysian Sign
Language Translation using Colour Segmentation and Neural Network,"
Instrumentation and Measurement Technology Conference Proceedings, 2007. IMTC
2007. IEEE , vol., no., pp.l-6, 1-3 May 2007

[5] Mekala, P.; Gao, Y.; Fan, J.; Davari, A.; , "Real-time sign language recognition
based on neural network architecture," System Theory (SSST), 2011 IEEE 43rd
Southeastern Symposium on, vol., no., pp.l95-199, 14-16 March 2011

[6] Nijusekar, C.; Brindhu Kumari, A.; , "Translating the sign of dumb person using
ARM processor," Communication Control and Computing Technologies (ICCCCT),
2010 IEEE International Conference on, vol., no., pp.SOS-513, 7-9 Oct. 2010

[7] McGuire, R.M.; Hemandez-Rebollar, J.; Stamer, T.; Henderson, V.; Brashear, H.;
Ross, D.S.; , "Towards a one-way American sign language translator," Automatic
Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International
Conference on, vol., no., pp. 620-625, 17-19 May 2004

[8] El-Bendary, N.; Zawbaa, H.M.; Daoud, M.S.; Hassanien, A.E.; Nakamatsu, K.; ,
"ArSLAT: Arabic Sign Language Alphabets Translator," Computer Information
Systems and Industrial Management Applications (CISIM), 2010 International
Conference on , vol., no., pp.590-595, 8-10 Oct. 2010

[9] Fuzzy Logic, Wikipedia, URL: http://en.wikipedia.org/wiki!Fuzzy_logic,
retrieved: Nov 20 II

[10] USB HID PC and PIC interface implementation code using C# and CCS
compiler, Muhammad Rafique, URL:
http://www .pudn.com/downloads 195/doc/project/ detail91655 8.html, retrieved: Nov
2011

[II] Microchip Technology Inc., "PIC18F2455/2550/4455/4550 Data Sheet 28/40-
Pin High-Performance: Enhanced Flash, USB Microcontrollers with nanoWatt
Technology", U.S.A, 2006

[12] Cytron Technologies, "SK40C PIC microcontroller start-up kit: User's Manual",
Malaysia, November 2011.

41

[13] Cytron Technologies, "UICOOB USB ICSP PIC Programmer: User's Manual",
Malaysia, November 2011.

42

APPENDIX A

PROJECT GANTT CHART

43

FYP1 FYP2
No. . ._ •. 7 8 9 10 11 12 .13 14 1 2 3 4 s 6 7 8 9 10 11 12 13 14

1 SELECTION OF PROJECT TOPIC
- Project Objectives/Problem formulation •·

2 LITERATURE WORK ,
- Study about related work
- Study about microcontrollers/compilers
- Extended Proposal •
~ 3 Methodology

System identification/ Tools to be used
-Interim report

~ 4 Hardware development
-Circuit Interfacing I Testing
- Prowess report

~ s Software development
C code developing
Programming/ Testing

~
7 Prototype testing and troubleshooting

8 Prototype finalization

9 Poster presentation/ Draft report ~

10 Final Report/Viva •
e Reports Submissions

11111111 Process

44

APPENDIXB

FIVE SENSORS READING DISPLAY (CODE)

#include "main.h"
#-include "LCD.h"

void main()
{

setup_adc_ports(ANO_TO_ANSIVSS_VDD);
setup adc{ADC CLOCK INTERNAL);
setup=vsp(PSP=DISABLED);
setup spi(SPI SS DISABLED};
setup-wdt (WDT-OFF) ;
setup=timer_O(RTCC_INTERNAL);
setup timer l(Tl DISABLED);
setup=timer=2(T2=DISABLED,0,1);
setup cornparator{NC NC NC NC);
setup=vref(FALSE);- - -

//Setup_Oscillator parameter not selected from Intr Oscillator Config tab

char message! [J = "Sl 52 53 S4 85 : ";
char message2 [] = " ";

intB Sl,S2,S3,S4,S5;

lcd_init ();

led d1splay_str(O,messagel };

while (TRUE) {
set adc channel(O};
deliy uS {60i;
Sl=rea:ct_adc ();
set adc channel(!);
deliy_uS {60);
S2=read_adc();
set adc channel(2);
deliy uS (60);
S3=react _ adc () :
set adc channel(3);
ctelay_uS (60):
S4=read_adc ();
set adc channel(4);
ctelay_uS (60);
SS=read a de ();

sprintf(iiiessage2, "%03u%03u%03u%03u%03u ",Sl,S2,S3,S4,S5);
lcd_display_str(l,message2);

45

APPENDIXC

FIVE SENSOR INTERFACE AND BASIC TRANSLATION SYSTEM

void main()
{

setup_adc_ports(ANO_TO_ANSIVSS_VDD);
setup adc(ADC CLOCK INTERNAL);
setup-psp(PSP-DISABLED);
setup-spi(SPI-SS DISABLED);
setup-wdt (WDT-OFFJ ;
setup-timer O{RTCC INTERNAL);
setup-timer-l(Tl DiSABLED);
setup-timer-2(T2-DISABLED,0,1);
setup=cornpaiator(NC_NC_NC_NC);
setup_vref(FALSE);

{CODE)

//Setup_Oscillator parameter not selected from Intr Oscillator Config tab

char message! f] = "Sl S2 S3 84 85 : ";
char message2 [J - " ":
int8 Sl,S2,S3,S4,S5;

led_ init ();

while (TRUE) {
set adc channel(OJ;
deliy uS (60);
Sl=react_adc();
set adc channel(!);
ctelay_uS {60):
S2=read_adc();
set_adc_channel(2);
delay_ us (60 J ;
S3=read_adc();
set adc channel{3);
del"iy uS (60);
S4=read_adc ();
set adc channel(4);
delay uS t60l;
S5=re'ad adc();

sprintf tffiessagel, "%03u%03u%03u%03u%03u ", S1, S2, S3, S4, S5};
led display str(O,messagel);
if ((S1 < 128) && (S2 < 128) && (S3 < 128) && (S4 < 128) && (S5 < 128))
{
message2="M. Alharbi ";
lcd_display_str(1,message2);
}

else if { {Sl > 1281 && !S2 > 1281 && !S3 > 1281 && !S4 > 1281 && {SS > 1281 I
{
message2="Dr. M Zuki ";
lcd_display_str(l,message2);
}
else
{
message2="None ";
lcd_display_str{1,message2);
}
}

46

APPENDIXD

TRANSLATION SYSTEM WITH SIGN DICTIONARY (MAIN.q
#include "main.h"
#include "LCD.h"
#include <string.h>

//Setting of fuses are there
I /Nonstandard made file to communicate :-;ith the LCD
I /To enable the use of string comparison=>strcmp ()

//Definition area
#define PBl PIN_BO
#define PRESSED 0

//Push button connected to PIN_BO
I /The value when PB is pressed

#define MAX_DICT_ENTRIES 50 I /The maximum reserved number of dictionaTy entries

//Function prototype: //Description:

void init_device{);
void read_sensors();
void diet init();
void welcOme_msg();
void translate();

I /initialize the peripherals of the PIC
//Acquiring the readings from sensors at Port A
//Filling in all dictionary entries
I /Display a welcomi.ng message at system starting
I /Compare the reading and recognize the ~~·ord

I /Variables

char message{16J; //a variable for the use with LCD
char translated[16]; I Ia variable to contain the tTanslated 1vord
int8 tmb,idx,mdl,rng,ltl; //sensors reading of thumb, index, middle, ring and little
float tmb V,idx V,mdl V,rng V,lti V; //sensors reading in voltage
int8 PB_s'tate; ~ - - -/Ia dununy variable to store the last state of the PB

//The main function

void main()
{

init_device{);
dict_init{);
welcome_ msg () ;

//initialize device
//initialize the dictionary
//display welcoming message

PB_state=O;
while (TRUE)

//reset the state of the PB

{
read_sensors(); //read the values of sensors

//Toggle the state of PB when pressed
if(input(PBl)==PRESSED) //if PB pressed
{

while(input(PBl)==PRESSED) delay_ms{50);
PB_state=!PB_state;

1/Displ.ay the sensors in 0-255 or 0-5v ranges
//0-255 range

I /Keep J.ooping while PB is pressed
//'l'oggl.e the state of the PB

if (PB state=O) sprintf {message, "%03u%03u%03u%03u%03u ", tmb, idx,mdl, rng, ltl);
I 10-sV range
if(PB state==l) sprintf(message,

"%01.lf%01.lf%0l.lf%0l.lf%01.1f",trnb_V,~dx V,mdl V,rng V,ltl V);

lcd_display_str(O,message);

translate();
lcd_display_str(l,translated};
}

I /Transl.ate tl1e reading

I /Initialize the device according to project wizard setting
void init_device ()
{

setup_adc_ports(ANO_TO_AN51VSS_VDD);
setup adc(ADC CLOCK DIV 2);
setup~sp(PSP=DISAB1ED)7
setup spi(SPI SS DISABLED);
setup-spi2(SP1 sS DISABLED);
setup-wdt(WDT Orr);
setup-timer O(RTCC INTERNAL);
setup-timer-l(Tl DiSABLED);
setup-timer-2(T2-DISABLED,O,l);
setup=timer=3(T3=DISABLEDIT3_DIV_BY_l);

47

setup_comparator{NC_NC_NC_NC);
setup vref(FALSE);
set tris b(Ox03); //PIN B0-2: INPUTS, PIN_B3-7: OUTPUTS
lcd=)nit{); -

//read sensors as follows:
//AO: thumb, Al: index,)i2: middle, A3: ring, A4: little
void read_sensors()
{

set adc channel(O);
ctelay uS (60>:
tmb=react adc () :
set adc Channel{!);
delay uS (601:
idx=react _ adc () ;
set adc channel{2);
delay uS <60l:
mdl=react_adc{):
set adc channel(3);
ctelay_uS (60):
rng=read adc();
set adc Channel{4);
ctelay uS <60J:
ltl=read adc();
//convert to voltage
tmb_V=(float}5/255*tmb;
idx V=(float)5/255*idx;
mdl-V=(float)5/255*mdl;
rng-V={float)5/255*rng;
ltl=V=(float)5/255*ltl;

I I Display the !vel coming messages
void welcome_msg()
{

sprintf {message, "Trans. Sys. ");
lcd_display_str{O,message);
sprintf (message, "Starting • ");
led display str(l,message);
delay ms (100);
sprin'tf (message, "Starting .. "};
lcd_display_str(l,message);
delay_ms (100}:
sprintf {message, "Starting .•. "):
lcd_display_str{l,message);
delay ms (100);
sprint£ (message, "Starting ");
lcd_display_str(l,message);
delay ms (100);
sprint"f(message, "Starting ••••• ");
lcd_display_str{l,roessage);
delay ms (100}:
sprint£ {message, "Starting •.•••. "):
lcd_display_str{l,message);
delay_rns (100):

//Defining the data structure of ONE single sign 1vord and the equivalent:
//Sign representation:

I /dictionary enty, tmbFZL: the fuzzy low limit for thumb gesture
I /dictionary-enty. tmbFZH: the fuzzy high limit for thumb gesture
//dictionary- enty.idxFZL: the fuzzy low limit for index gesture
I /dictionary-enty. idxFZH: the fuzzy high limit for index gesture
1/dictionarv-enty.mdlFZL: the fuzzy lot-; limit faT middle gesture
I /dictionarY- enty. mdlFZH: the fuzzy high limit for middle gesture
1/dictionary-enty.rngFZL: the fuzzy low limit for ring gesture
//dictionary-enty.rngFZH: the fuzzy high limit for ring gesture
1/dictionarr=enty.ltlFZL: the fuzzy low limit for little gesture
//dictional"Y enty.ltlFZH: the fuzzy high .Iimit for little gesture

//the Equivalent in r.vriten English:
//dictionary_enty.krord: the equ.ivalent word (max size is 16 characters)

typedef struct{
int8 tmbFZL;
int8 tmbFZH;
int8 idxFZL;
int8 idxFZH;
int8 mdlFZL;

48

int8 mdlFZH;
int8 rngFZL;
int8 rngFZH;
int8 ltlFZL;
int8 ltlFZH;
char word[16];

dictionary_enty; //a dictionary containing 50 words

dictionary~enty dict[MAX_DICT_ENTRIES]; //Declare a array of dictionry_enty data structure

//Gesture lists and equivalent representation
ide fine BS 7
#define GOOOO 0
#define GOOOOL GOOOO
#define GOOOOH GOOOO+BS
#define G1000 16
#define G1000L G1000-BS
#define G1000H GlOOO+BS
#define G0200 32
#define G0200L G0200-BS
#define G0200H G0200+BS
#define G1200 48
#define Gl200L Gl200-BS
#define G1200H Gl200+BS
#define G0031 64
#define G0031L G0031-BS
#define G0031H G003l+BS
#define G1031 80
#-define G1031L G1031-BS
#define G1031H G103l+BS
#define G0231 96
#define G0231L G0231-BS
#define G0231H G0231+BS
#define G1231 112
#define G1231L G1231-BS
#define G1231H G1231+BS
#define G0032 128
#define G0032L G0032-BS
#define G0032H G0032+BS
#define G1032 144
#define G1032L G1032-BS
#define G1032H G1032+BS
#define G0232 160
#define G0232L G0232-BS
#define G0232H G0232+BS
#define G1232 176
#define G1232L G1232-BS
#define G1232H G1232+BS
#define G0033 192
#define G0033L G0033-BS
#define G0033H G0033+BS
#define G1033 208
#define G1033L G1033-BS
#define G1033H Gl033+BS
#define G0233 224
#define G0233L G0233-BS
#define G0233H G0233+BS
#define G1233 240
#define G1233L G1233-BS
#define G1233H G1233+BS
#define MAX_DICT_ENTRIES-1

//The initialization of actual dictionary
void dict_init()
{
diet [0) . word="A":
diet[0] .tmbFZL=G1031L;diet[0] .idxFZL=G0233L;dict[
O].rngFZL=G1233L;dict[0].ltlFZL=G1233L;
diet[0] .tmbFZH=Gl031H;dict[0] .idxFZH=G0233H;dict[
0].rngFZH=G1233H;diet[0].ltlFZH=G1233H;

diet[1] .word="B";
diet[l].tmbFZL=G0031L;diet[1] .idxFZL=GOOOOL;dict[
l).rngFZL=GOOOOL;diet{ l].ltlFZL=GOOOOL;
diet [1]. tmbFZH=G0031H;dict [1] .idxFZH=GOOOOH;dict I
1] .rngFZH=GOOOOH;dict[l].ltlFZH=GOOOOH;

diet[2] .word="C";

49

0].md1FZL=G0233L;dict[

0] .mdlFZH=G0233H;diet[

l].rndlFZL=GOOOOL;diet[

l].mdlFZH=GOOOOH;dict[

diet [2]. tmbFZL=G0032L;diet [2]. idxFZL=G1200L;diet [2].mdlFZL=G1200L;diet[
2] .rngFZL=G1200L;diet[2].ltlFZL=G1200L;
diet [2]. tmbFZH=G0032H;diet [21. idxFZH=G1200H;diet [2].mdlFZH=G1200H;diet[
2].rngFZH=G1200H;diet[2].ltlFZH=G1200H;

diet [3] . word="D";
diet [3]. tmbFZL=G1232L;diet [3]. idxFZL=GOOOOL;diet [3].mdlFZL=Gl232L;diet[
3].rngFZL=G1232L;diet[3],ltlFZL=Gl232L;
diet[3] .tmbFZH=G1232H;diet[3] .idxFZH=GOOOOH;diet[3].mdlFZH=Gl232H;dict[
3].rngFZH=G1232H;dict[3].ltlFZH=Gl232H;

diet [4] • word="E";
diet [4]. tmbFZL=Gl231L;diet [4], idxFZL=G1200L;dict [4].mdlFZL=Gl200L;diet[
4] .rngFZL=G1200L;diet[4].ltlFZL=G1200L;
diet[4] .tmbFZH=G1231H;dict[4].idxFZH=Gl200H;diet[4].mdlFZH=G1200H;diet[
4].rngFZH=G1200H;diet[4] .ltlFZH=G1200H;

diet [5] . word="F'1 :

diet [5] . tmbFZL=Gl032L;diet I 5]. id.xFZL=G0232L;diet I 5].mdlFZL=GOOOOL;diet[
5] .rngFZL=G0031L;diet[5].ltlFZL=G0031L;
diet [5] . tmbFZR=Gl032H; diet [5] • id.xFZH=G0232H; diet [5].rndlFZH=G0000H;dict[
5] .rngFZH=G0031H;diet[5].ltlFZH=G0031H;

diet [6]. word="G";
diet [6]. tmbFZL=G0032L;diet [6]. idxFZL=G0032L;diet [6].rndlFZL=G1233L;diet[
6].rngFZL=G1233L;dict[6].ltlFZL=G1233L;
diet [6], tmbFZH=G0032H;diet { 6]. id.xFZH=G0032H;diet [6].mdlFZH=Gl233H;dict[
6].rngFZH=G1233H;dict[6} .ltlFZH=G1233H;

diet [7] . word="H";
diet [7]. trnbFZL=G1232L;diet [7] . id.xFZL=G0032L;dict [7].rndlFZL=G0032L;dict[
7].rngFZL=G0233L;diet[7].ltlFZL=G0233L;
diet [7]. tmbFZH=G1232H;diet [7]. idxFZH=G0032H;diet [7].mdlFZH=G0032H;dict[
7],rngFZH=G0233H;dict[7] .ltlFZH=G0233H;

diet[8] .word="!";
diet (8]. tmbFZL=G1200L;dict [8]. idxFZL=G0233L;dict [BJ.mdlFZL=G0233L;diet[
8].rngFZL=G0233L;diet[S].ltlFZL=GOOOOL;
diet [8] . tmbFZH=G1200H;diet [8]. idxFZH=G0233H;diet [8].mdlFZH=G0233H;dict[
8].rngFZH=G0233H;dict[B].ltlFZH=GOOOOH;

diet [9]. word="J";
diet[9] .tmbFZL=G0200L;diet[9] .idxFZL=G0233L;dict[9].mdlFZL=G0233L;dict[
9] .rngFZL=G0233L;dict[9].ltlFZL=GOOOOL;
diet [9]. tmbFZR=G0200H;diet [9). idxFZH=G0233H;diet [9].mdlFZH=G0233H;dict[
9] .rngFZH=G0233H;dict[9}.1tlFZH=GOOOOH;

dict[lO] .word=''K";
diet[10] .tmbFZL=G0232L;diet[l0] .idxFZL=G0000L;dict[10].mdlFZL=G0032L;dict[10].rngFZL=G0233L;di
ct[lO] .ltlFZL=G0233L;
diet[lO].tmbFZH=G0232H;diet[10].idxFZH=G0000H;diet[10] .mdlFZH=G0032H;dict[l0] .rngFZH=G0233H;di
ct[10].ltlFZH=G0233H;

diet [11]. word="L";
dict[ll].trobFZL=GOOOOL;dict[ll].idxFZL=GOOOOL;dict[ll] .mdlFZL=G0233L;dict[11].rngFZL=G0233L;di
ct[ll].ltlFZL=G0233L;
dict[11].tmbFZH=GOOOOH;diet[11].idxFZH=GOOOOH;dict[l1] .mdlFZH=G0233H;diet[ll].rngFZH=G0233H;di
et[ll].ltlFZH=G0233H;

diet [12] • word="M";
diet[12].tmbFZL=G1233L;dict[12].idxFZL=G1232L;diet[l2] .rndlFZL=Gl232L;diet[12].rngFZL=G1232L;di
et[l2].ltlFZL=G0233L;
diet[12].tmbFZH=G1233H;diet[l2] .idxFZH=G1232H;dict[12].mdlFZH=G1232H;diet[12].rngFZH=G1232H;di
ct[l2].ltlFZH=G0233H;

diet[13] .word="N";
dict[l3] .tmbFZL=G1232L;diet[13] .idxFZL=G0232L;dict[13].mdlFZL=G0232L;diet[13].rngFZL=G0233L;di
ct[l3] .ltlFZL=G0233L;
dict[13].tmbFZH=G1232H;diet[13] .idxFZH=G0232H;diet[13] .mdlFZH=G0232H;dict[13] .rngFZH=G0233H;di
ct[l3] .ltlFZH=G0233H;

diet[14] .word="O";
dict[14] .trobFZL=G1232L;dict[14] ,idxFZL=G1232L;dict[14].mdlFZL=Gl232L;dict[14].rngFZL=G1232L;di
ct[l4] .ltlFZL=Gl232L;
diet[14],trnbFZH=Gl232H;diet[l4].idxFZH=Gl232H;dict[l4].mdlFZH=Gl232H;diet[l4].rngFZH=G1232H;di
ct[l4].ltlFZH=Gl232H;

diet[15].word="P";

50

dict[l5].tmbFZL=G0032L;dict[15] .idxFZL=G0000L;dict[l5].mdlFZL=G0033L;dict[l5].rngFZL=G0233L;di
ct[l5].1tlFZL~G0233L;

dict[l5].tmbFZH=G0032H;dict[15] .idxFZH=G0000H;dict[15].mdlFZH=G0033H;diet[15].rngFZH=G0233H;di
ct[l5].lt1FZH~G0233H;

diet [16]. word="Q";
dict[l6] .tmbFZL=G0032L;dict[16].idxFZL=G0033L;dict[l6] .mdlFZL=G1233L;dict[16].rngFZL=Gl233L;di
ct[l6] .lt1FZL~G1233L;
dict[l6] .tmbFZH=G0032H;dict[l6].idxFZH=G0033H;dict[l6] .mdlFZH=Gl233H;dict[l6].rngFZH=Gl233H;di
ct[16] .ltlFZH=Gl233H;

diet [17] • word="R":
dict[l7].tmbFZL=G0232L;dict[l7}.idxFZL=G0031L;dict[17].mdlFZL=GOOOOL;dict[17].rngFZL=G0232L;di
ct[17].ltlFZL~G0233L;

dict[17] .tmbFZH=G0232H;dict[l7].idxFZH=G0031H;dict[l7].mdlFZH=G0000H;dict[l7] .rngFZH=G0232H;di
ct[17] .ltlFZH~G0233H;

dict[18] .word="S'';
dict[18] .tmbFZL=G0232L;dict[18] .idxFZL=G1233L;dict[18] .mdlFZL=G1233L;dict[18] .rngFZL=Gl233L;di
ct[18] .ltlFZL~G1233L;
dict[l8] .tmbFZH=G0232H;dict[l8].idxFZH=Gl233H;dict[l8] .mdlFZH=G1233H;dict[l8}.rngFZH=Gl233H;di
ct[18] .ltlFZH=G1233H;

diet [19]. word="T";
dict[l9].tmbFZL=G0232L;dict[l9].idxFZL=G0232L;dict[l9] .mdlFZL=G0233L;dict[19].rngFZL=G0233L;di
ct[19].ltlFZL~G0233L;

dict[19] .tmbFZH=G0232H;dict[19].idxFZH=G0232H;dict[l9] .mdlFZH=G0233H;dict[19].rngFZH=G0233H;di
ct[19].ltlFZH=G0233H;

diet [20]. word:::"O":
dict[20].tmbFZL=G0232L;dict[20].idxFZL=G0000L;dict[20].mdlFZL=G0000L;dict[20].rngFZL=G0232L;di
ct[20] .ltlFZL~G0232L;
dict[20].tmbFZH=G0232H;dict[20] .idxFZH=G0000H;dict[20].mdlFZH=GOOOOH;dict[20].rngFZH=G0232H;di
ct[20].ltlFZH~G0232H;

diet [21] .word="V";
dict[21].tmbFZL=G0232L;dict[2l].idxFZL=G0031L;dict[21] .mdlFZL=G0031L;dict[21].rngFZL=G0233L;di
ct[21] .ltlFZL~G0233L;
dict[21].tmbFZH=G0232H;dict[21] .idxFZH=G0031H;dict[21].mdlFZH=G0031H;dict[2l].rngFZH=G0233H;di
ct[21].ltlFZH~G0233H;

dict[22] .word="W";
dict[22] .tmbFZL=G0233L;dict[22].idxFZL=G0031L;dict[22] .mdlFZL=G0000L;dict[22] .rngFZL=G0031L;di
ct[22].ltlFZL~G0232L;

dict[22].tmbFZH=G0233H;dict[22].idxFZH=G0031H;dict[22].mdlFZH=GOOOOH;dict[22].rngFZH=G0031H;di
ct[22] .ltlFZH=G0232H;

dict[23].word="X";
dict[23].tmbFZL=Gl232L;dict[23].idxFZL=G1200L;dict[23] .mdlFZL=G1233L;dict[23].rngFZL=Gl233L;di
ct[23].ltlFZL~G1233L;
dict[23] .tmbFZH=Gl232H;dict[23].idxFZH=Gl200H;dict[23] .mdlFZH=Gl233H;dict[23] .rngFZH=Gl233H;di
ct[23] .ltlFZH~G1233H;

dict[24].word="Y";
dict[24] .tmbFZL=GOOOOL;dict[24].idxFZL=G1233L;dict[24] .mdlFZL=G1233L;dict[24] .rngFZL=G1233L;di
ct[24] .ltlFZL~GOOOOL;
dict[24].tmbFZH=G0000H;dict[24].idxFZH=G1233H;dict[24] .mdlFZH=G1233H;dict[24].rngFZH=G1233H;di
ct[24].ltlFZH=GOOOOH;

dict[25].word="Z"; //motionless Z
dict[25].trobFZL=G1232L;dict[25].idxFZL=GOOOOL;dict[25] .mdlFZL=G1233L;dict[25] .rngFZL=Gl233L;di
ct[25].lt1FZL=G1233L;
dict[2S].trobFZH=G1232H;dict[25] .idxFZH=GOOOOH;diet[25] .mdlFZH=G1233H;dict[25].rngFZH=G1233H;di
ct[25].ltlFZH=G1233H;

dict[26] .word="!";
dict[26].tmbFZL=G1233L;dict[26].idxFZL=G0000L;diet[26].mdlFZL-G1233L;dict[26].rngFZL=Gl233L;di
ct[26] .ltlFZL~Gl233L;
dict[26].tmbFZH=G1233H;dict[26].idxFZH=G0000H;dict[26] .mdlFZH=G1233H;dict[26].rngFZH=G1233H;di
ct[26].ltlFZH~Gl233H;

dict[27] .word="2";
dict[27].tmbFZL=G1232L;dict[27] .idxFZL=G0031L;dict[27).mdlFZL=GOOOOL;dict[27].rngFZL=G1233L;di
ct[27] .lt1FZL=G1233L;
dict[27].tmbFZH=G1232H;dict[27].idxFZH=G0031H;dict[27] .mdlFZH=GOOOOH;dict[27].rngFZH=Gl233H;di
ct[27].ltlFZH=G1233H;

51

dict[28].word="3";
dict(28] .tmbFZL:G0000L;dict[28] .idxFZL=G0031L;dict[28] .mdlFZL=GOOOOL;dict[28] .rngFZL=Gl233L;di
ct[28] .ltlFZL=Gl233L;
dict[28] .tmbFZH=GOOOOH;dict[28].idxFZH=G0031H;dict{28] .mdlFZH=GOOOOH;dict[28].rngFZH=Gl233H;di
ct(28].ltlFZH=G1233H;

dict[29] .word="4";
dict[29] .tmbFZL=G0233L;dict(29].idxFZL=G0031L;dict[29] .rodlFZL=G0000L;dict[29] .rngFZL=G0031L;di
ct[29] .ltlFZL=G0031L;
dict[29] .tmbFZH=G0233H;dict[29].idxFZH=G0031H;dict[29] .rodlFZH=G0000H;dict[29].rngFZH=G0031H;di
ct[29] .ltlFZH=G0031H;

dict{30] .word="S";
dict[30].tmbFZL=GOOOOL;dict[30].idxFZL=G0031L;dict[30].mdlFZL=G0000L;dict[30].rngFZL=G0031L;di
ct[30] .ltlFZL=G0031L;
dict[30].tmbFZH=GOOOOH;dict[30] .idxFZH=G0031H;dict[30].mdlFZH=G0000H;dict[30].rngFZH=G0031H;di
ct[30].ltlFZH=G0031H;

diet [31] .word="6";
dict[31] .tmbFZL=G0232L;dict[3l],idXFZL=G0031L;dict[3l].mdlFZL=GOOOOL;dict[31].rngFZL=G0031L;di
ct[3l].ltlFZL=G0232L;
dict[3l].tmbFZH=G0232H;dict[31] .idxFZH=G0031H;dict[31].mdlFZH=G0000H;dict[31].rngFZH=G0031H;di
ct[31].ltlFZH=G0232H;

dict[32] .word="?";
dict[32].tmbFZL=G0232L;dict[32].idxFZL=G0031L;dict[32].rodlFZL=G0000L;dict[32].rngFZL=Gl232L;di
ct[32].ltlFZL=G0031L;
dict[32].tmbFZH=G0232H;dict[32] .idxFZH=G0031H;dict[32].mdlFZH=GOOOOH;dict[32].rngFZH=G1232H;di
ct[32].ltlFZH=G0031H;

diet[33] .word="B";
dict[33].tmbFZL=G0200L;dict{33].idxFZL=G0031L;dict[33].mdlFZL=Gl232L;dict[33].rngFZL=G0031L;di
ct[33] .ltlFZL=G003lL;
dict[33].tmbFZH=G0200H;dict[33].idxFZH=G0031H;dict[33}.mdlFZH=G1232H;dict[33].rngFZH=G0031H;di
ct[33].ltlFZH=G0031H;

dict[34].word="9";
dict[34].tmbFZL=G0200L;dict[34] .idxFZL=G1233L;dict[34].rodlFZL=GOOOOL;dict[34].rngFZL=G0031L;di
et[34].ltlFZL=G0031L;
diet[34] .tmbFZH=G0200H;dict[34].idxFZH=Gl233H;diet[34] .mdlFZH=G0000H;diet[34].rngFZH=G0031H;di
et[34].ltlFZH=G0031H;

diet[35] .word="lO";
diet[35].tmbFZL=G0031L;diet[35] .idxFZL=Gl233L;dict[35] .mdlFZL=Gl233L;dict[35].rngFZL=Gl233L;di
ct[35].ltlFZL=G1233L;
dict[35].tmbFZH=G0031H;diet[35] .idxFZH=Gl233H;diet[35].mdlFZH=Gl233H;diet[35].rngFZH=Gl233H;di
ct[35].ltlFZH=G1233H;

diet [36]. word="I Love You";
diet[36].tmbFZL=GOOOOL;diet[36].idxFZL=G0000L;diet['36].md1FZL=G0233L;diett36].rngFZL=G0233L;di
et[36].ltlFZL=GOOOOL;
dict[36].tmbFZH=G0000H;dict[36].idxFZH=G0000H;dict[36].mdlFZH=G0233H;dict[36].rngFZH=G0233H;di
ct[36].ltlFZH=GOOOOH;

diet [] . word=" 11
;

diet[--] .tmbFZL=GOOOOL;dict[].idxFZL=GOOOOL;dict[].mdlFZL=GOOOOL;dict[] .rngFZL=GOOOOL;di
ct[__ ~ltlFZL=GOOOOL; --
diet[].tmbFZH=GOOOOH;dict[] .idxFZH=GOOOOH;diet[__].mdlFZH=GOOOOH;dict[__].rngFZH=GOOOOH;di
ct[__ ~1t1FZH=G0000H;
}

//Make the translation by comparing and fuzzy high and fuzzy low limit for each gesture
void translate ()
\
intB i;

for(i=O;i<MAX_ DICT ENTRIES;i++}
diet [i]. tmbFZL if ((tmb >= &&

&& (idx >= diet [i] .idxFZL &&
&& (mdl >= diet [i] .mdlFZL &&
&& (rng >= dict[i].rngFZL &&
&& (ltl >= diet[i] .ltlFZL &&

\ strcpy(translated,dict[i].word);
else

strepy (translated, "*Not Recognized!'') ;
Recognized!"
}

tmb <= diet[i] .tmbFZH \
idx <= dict[i] .idxFZH \
mdl <= diet [i] .mdlFZH \
rng <= diet[i] .rngFZH \
ltl <= diet [i] .ltlFZH I
break;}

I /If nothing recognized display "*Not

52

APPENDIXE

TRANSLATION SYSTEM WITH SIGN DICTIONARY (MAIN.B)
#include <18F4550.h>
#device adc=8

#FUSES NOWDT
#FUSES WDT128
#FUSES HS
#FUSES NOPROTECT
#FUSES NOBROWNOUT
#FUSES BORV20
#FUSES NOPUT
#FUSES NOCPD
#FUSES STVREN
#FUSES NODEBUG
#FUSES NOLVP
#FUSES NOWRT
#FUSES NOWRTD
#FUSES IESO
#FUSES FCMEN
#FUSES PBADEN
#FUSES NOWRTC
#FUSES NOWRTB
#FUSES NOEBTR
#FUSES NOEBTRB
#FUSES NOCPB
#FUSES MCLR
#FUSES LPTlOSC
#FUSES NOXINST
(Legacy mode)
#FUSES PLL12
#FUSES CPODIV4
#FUSES USBDIV
:JI:FUSES VREGEN
#FUSES ICPRT

#use delay(clock=20000000)

//No Watch Dog Timer
//Watch Dog Timer uses 1:128 Postscale
I /High speed Osc (> 4mhz for PCM/PCH) (>10mhz for PCD)
//Code not protected from reading
//No brownout reset
//Brownout reset at 2.0V
//No Power Up Timer
//No EE protection
//Stack full/underflow will cause reset
//No Debug mode for ICD
//No low voltage prgroing, B3{PIC16) or B5{PIC18) used for I/O
//Program memory not write protected
//Data EEPROM not write protected
//Internal External Switch Over mode enabled
//Fail-safe clock monitor enabled
//PORTB pins are configured as analog input channels on RESET
//configuration not registers write protected
//Boot block not write protected
//Memory not protected from table reads
//Boot block not protected from table reads
//No Boot Block code protection
//Master Clear pin enabled
//Timerl configured for low-power operation
//Extended set extension and Indexed Addressing mode disabled

//Divide By 12(48MHz oscillator input)
//System Clock by 4
//USB clock source comes from PLL divide by 2
//USB voltage regulator enabled
//ICPRT enabled

#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8)

53

APPENDIXF

TRANSLATION SYSTEM Wim SIGN DICTIONARY (LCD.H)
/*===========;=============================
8-BIT LCD DRIVER FOR PIC18F4550 CCSC
=====================~==================*/
111
II CCS C Compiler
II LCD 16x2
II
II by Nisar Ahmed
II 2009103127
II lately edited by Alharbi
I I 2011111130
11

#define NCHAR PER LINE 16
#define LCD RS - PIN 84

II max char numbers per line

#define LCD~)w PIN_B3
#define LCD E PIN 85
#define Lco::::OAT PORT D

#define PORT_A 0 II define for function output()
#define PORT B 1
#define PORT C 2
#define PORT_D 3
#define PORT E 4

111 output()
//led data bus output
void output(int8 port, int8 dat)
{

switch(port)
(

case
case
case
case
case

PORT A:
PORT B:
PORT C:
PORT D:
PORT_E:

default :

output_a(dat);
output_b (dat);
output_c(dat);
output_d(dat);
output_ e(dat);

//???port maybe
break;

l I lend output()

break;
break;
break;
break;
break;
error!

11 lcd_write_cmd()
II
void lcd_write_cmd(int8 cmd)
(

delay us (400};
output low{LCD RS);
output=low{LCD=RW);
output{LCD_DAT, cmd);

output high{LCD E);
delayjls (400): -
output low{LCD E);

}//end lcd_write_cmd()-

111 lcd_write_dat()
II
void lcd_write_dat(intB dat)
{

delay us(400);
output high(LCD RS);
output=low(LCD_RW);
output(LCD_DAT, dat);

output high {LCD E);
delay_U:s(400);
output low(LCD E);

)//end lcd_write_dat{)-

11 lcd_init()
II

54

void lcd_init(void)
{

output_low(LCD_E); II

II

II

Let LCD E

LCD 16x2,

Clear LCD

line low

5x7, Sbits data

display

led write cmd(Ox38);
delay ms (is) ;
lcd_wiite_cmd(Ox01);
delay ros {101;
lcd_wiite_cmd(OxOf);
delay_ms{lOJ;

II Open display & current

led write cmd(Ox06);
delay_ms (iOJ;

}//end lcd_init{}

II Window fixed

111 lcd_display_char{l
II
void lcd_display_char(int8 line, int8 pos, int8 ch)
{

int8 tmp;

line (line==O) ? 0 : 1;
pos (pos >NCHAR_PER_LINE) ? NCHAR PER LINE pos;

tmp = Ox80 + Ox40*line + pos;
lcd_wr1te crnd{tmp);
led write dat(ch);

}//end lcd_displaY_char()

111 lcd_display_str(l
II
void lcd_display_str(int8 line, char str[])
{

int8 i;

for(i=O; i<NCHAR PER LINE; i++)
{
if(str[i] ;~ '\0') break;
lcd_display_char(line, i, str[i]);
I

for (; i <NCHAR PER LINE; i ++)
lcd_display_char(line, i, (char) ' ');

}//end lcd_display_str()

111 lcd_display_str{l
II
void clear_lcd_line(int8 line)
{

int8 i; char str[]=" ";
for(i=O; i<NCHAR_PER_LINE; i++}

{
if(str(iJ == '\0') break;
lcd_display_char(line, i, str[i]);
I

}//end clear_lcd_display_line(}

55

APPENDIXG

INVESTIGATING THE INTERFACE WITH SDT DATA GLOVE: A

POTENTIAL FUTURE WORK

G.l 5DT Data Glove

A data glove is a device which detects the motions made by hand and converts it into

~lectrical signals transmitted via a USB interface. The device incorporates 14 sensors mapped

in different locations to detect realistic movements made by hand. (see Figure 30).

SOT Data Glove 14 Ultra

~j12 Connector

PC
Data Glove Series USB Cable

Figure 29: Data Glove witb USB connection

56

Figure 30: Data Gloves Sensor Mapping

Figure 30 and Table 5 illustrate the sensor mapping of the 5DT data glove.

Table 5: Sensor Mappings for the 5DT Data Glove 14 Ultra

Driver Sensor
Sensor Description

Index

0 0 Thumb flexure (lower joint)

1 1 Thumb flexure (second joint)

2 2 Thumb-index finger abduction

3 3 Index finger flexure (at knuckle)

4 4 Index finger flexure (second joint)

5 5 Index-middle finger abduction

6 6 Middle finger flexure (at knuckle)

7 7 Middle finger flexure (second joint)

8 8 Middle-ring finger abduction

9 9 Ring finger flexure (at knuckle)

10 10 Ring finger flexure (second joint)

11 11 Ring-little finger abduction

12 12 Little finger flexure (at knuckle)

13 13 Little finger flexure (second joint)

57

G.l.J Getting started with USB interface

PC
GUI + USB driver

USB Port

Switches/ LED t
indicators >

.......____

Analog Device
(Potentiometer)

Figure 31 : Startup Circuit for USB interface

In order to realize the interface between the microcontroller and the data glove, a prior step

which is the familiarization with USB interface is required. Since USB communication is

much complex compared to other serial protocols, the aim at this stage is to acquire the basic

configuration for the USB interface to work. To get started with the USB interface, a previous

project [10] which used the same microcontroller (PIC18F4550) is implemented in this work.

Figure 31 shows the block diagram for the proposed system. The SK40C board has a built-in

USB port directly connected to the appropriate pins at the PIC18F4550 microcontroller. A

USB cable is to be used to make the interface. However, having the connection while not

defining the microcontroller to the PC would not allow any transmission of data from or to the

microcontroller.

58

A visual C# project and dll files are used at the PC side to install required drivers and GU1

interface. The microcontroller acts as a slave in this configuration, allowing responses when

being acquired by the PC. A simple program reading analog values from AD conversion units

and switches and LEOs are used in the program. The source codes are available in [I 0] and

the results are shown in the following sections.

G.J.2 PIC18F4550 as a USB CDC device

USB devices can communicate differently according to the way they are defined to the host.

In the previous section the PIC is defined as HID (Human Interface Device); however, it is

more relevant to use it as a serial port to eliminate the need of using user defined application

(like C# program). Therefore, an example file provided in the CCS compiler titled

"ex_ USBCDC.c" is used to realize this scenario. The code is used as is, but important

modification is to set the right clocking options. This is essential because the USB peripheral

and CPU of the PIC use the same oscillator but their clocking requirements are different. The

schematic diagram for the clocking circuitry of the CPU and the USB is shown in the

following figure.

r----------------------------- --------· •r----------------

'-"~"'._, ...
...... i...J._
& 11'H1 I :._:o

ZM't,..,

'"" I ~
~C~I: I i
SoH~

Figure 32: PIC 18F4550 oscillator and clock diagram for the CPU and USB peripheral

59

As far as coding is concerned, some configuration bits have to be set to match the USB

requirements. In the following figure, a code snippet describing the setting of some

configuration/fuses bits is shown.

use~ HSPLL NOiDT NOPROT!CT NOLVP NODEBUG USBDIV PLLS CPUDIVl VRlGEN NOBROVNOUl BCLR
ThL - r·,h~ _:·: c1.. p.. e

PLL mult1pl1es by 16 to 96Hh~ USBDIV post scales Wlth d1v by Z to 48MHZ
I - ~ - ~ caled Wlth CPUDIVl by Wlth d1v by 2 for 48 HHZ

delay clock 48000000

Figure 33: Code snippet for setting USB Clock

The modified codes based on USB CDC example is attached in Appendix I.

G.J.J PIC and data glove USB interface

Rj12 Connector

h'
Interface

~ r;·
""

i=
0

LCD display unit Switches/ LED
(')
0
::s

indicators 8 ""1

(r

"" -=a -(") -00
"r:1 -

Figure 34: Block Diagram for the Proposed System

60

When the PIC is configured successfully to utilize the USB peripheral, then the possibility of

interfacing the data glove can be verified. ln order to do that, the PIC is configured to

continuously read data from the attached device and display them on an LCD. This enables

the monitoring of data transmission between the two devices. The code used to do that is

provided in Appendix J. After loading the code into the PIC, a direct connection using USB

cables is used between the PIC and the data glove. The result of the interface is shown and

discussed in the next sections.

G.2 Getting Started with USB

ln this experiment a USB communication between the PIC and the PC is to be established.

This is because the ultimate goal of the work on USB is to establish a communication between

the PIC and data glove. Since the data glove is designed to communicate via USB, the ability

to use USB by PIC could help in establishing a connection with the data glove. The

components used are shown in Figure 35 and Figure 36.

Figure 35: Circuit Components

61

Figure 36: PC to Microcontroller Interface via USB Port

The PIC is programmed to communicate as HID (Human Interface Device) class. A GUI

windows application is used to read the ADC values and switch status from the

microcontroller and to toggle the status of LED as shown in Figure 37.

11))'1

PICID USD fxomp!R Ely RafjquB4m@gmorl Cl!m

n :;

<..h!O. S: -~ !2-0" I UDl l [IL.'C.!

Figure 37: GUI Interface to Read a Value from an Analog Device and Toggle tbe State of

LEDs Attached to Microcontroller

G.3 PIC as Serial Port via USB

The previous experiment requires some installation of USB drivers, whereas in the case of

data glove, there is no room for installing any driver, so we need to rely on a supported

62

configuration without the need for installing additional drivers. In this experiment, the PIC is

to be configured to work as a serial port which is more familiar to work which requires the use

of hyper-terminal-like programs.

USB CDC example provided by CCS is used to make the configuration. The clocking setting

for USB and CPU are made as explained in previous section.

Figure 38: PIC Showing USB Is Successfully Attached (Observe the small LED light

indicator)

63

Figure 39: PIC Showing USB Is Successfully Enumerated (Observe the small 2 LED

light indicator)

The proper setup was made and the PIC was successfully recognized/attached and enumerated

by the PC as shown in Figure 38 and Figure 39 respectively. In order to send and receive data

to and from the PC to the PIC, hyper terminal or any similar tool which communicates with

serial port can be used; however the right setting has to be made. A window showing the

COM port options is shown in Figure 40.

64

i.J ,... . t :llf' I . .
.)!'» , ...

._.....,

0111 • oco • en • 111oe • r

,..,..,tlr.JII rte

[: ... ~ .
[_ ... , 1

[_ - en
r="'.-t:t

Figure 40: Setting up the Serial Communication to the Micr<K:ontroUer Using Serial

Monitor on CCS C Compiler

After making the setting, the communication is successfully established and the user can send

data and receive it on LCD attached to the PIC as the PIC has been programmed to work.

Figure 41 shows the working circuitry.

Figure 41 : Display of Received Data from PC via USB Connection

65

As the figure shows, the PIC continuously read data from the USB bus and continuously

displaying in on the LCD screen. This setting is made to assist in reading data from the data

glove, regardless what it represents.

G.4 USB Interface between PIC and Data Glove

After doing the previous experiment, we feel confident to try the interfacing via USB cable.

As PIC board is using mini USB female board and the data glove uses normal male USB

cable, a converter cable was acquired and used in the experiment.

The PIC and glove are connected via the converter cable and the circuit is powered and the

status of the connection is monitored on the LCD and the LED indicators. As shown in Figure

42 and Figure 43, the LED indicators are OFF which implies that the devices were not able to

establish connection.

Figure 42: 5DT Data Glove Interface with PIC Board

66

Figure 43: Interfacing the PIC and Data Glove (note all LED indicators are OFF)

G.S Discussion

<\.s far as interfacing the data glove is concerned, after conducting the pre-mentioned set of

~xperiments, we realized that there is a great distinction between USB as serial

:;ommunication and conventional RS232 protocol. The concept of slave and master in USB

)rotocol and the required hardware support makes it significantly different than RS232

protocol which does not have this concept.

fhe USB communication has a special protocol which primarily enables up to 127 devices to

t>e connected to the same bus. However it is important to note that the communication via

USB is Host controiJed (requires host device not like the normal RS232 protocol) and its

topology can typicaHy have: Host, Hub, and device. Therefore, the hardware and software

,pecifications of the Host and device are different. Interestingly, to enable USB devices to

;;ommunicate to other USB devices the USB On-The-Go devices were developed with some

67

limitations, but anyway they have different hardware specifications.

fhe PIC18F4550 is a slave device in a USB protocol, and it is technically impossible to

initiate and control data communication to other slave devices like the 5DT data gloves.

1\dditionally, if another microcontroller is used to take the role of a master in the proposed

project (PIC24F series), some function and drivers have to be defined to the microcontroller in

the form of hex, assembly or C files which is not provided by the 5DT company.

These reasons make it impossible to realize the interface using a USB connection. As a

>olution, a serial interface kit provided by the same company has to be acquired. The serial

interface kit utilizes the conventional RS232 protocol with clearly defined packet data as

>pecified in the data sheet of the product (see Table 6).

Figure 44 shows the proposed modification of the system with the addition of the serial

interface kit in the design.

Table 6: Data Packet Sent by the Glove

Byte No. Byte Byte No. Byte

1 Start 17 9LII10HI

2 Type Byte 18 10Lu 110LI

3 Version 19 11HI111Lu

4 1HI11Lh 20 11 LII12HI

5 1LI12HI 21 12Lu 112LI

6 2Lu 12LI 22 13HI113Lu

7 3HI13Lu 23 13LII14HI

8 3LI14HI 24 14Lu I14LI

9 4Lu 14LI 25 15HI115Lu

10 5HI15Lu 26 15LII16HI

11 5LI16HI 27 16Lu 116LI

12 6Lu 16LI 28 Checksum

13 7HI17Lu 29 Footer

14 7LIIBHI

15 Blu IBLI

16 9HII9Lu

68

lnterfacing the 5DT data glove with the PIC is essential to realize the sign language trainer.

However, the USB communication is not a viable option and requires the use of serial

interface kit. Instead, a prototype incorporating five potentiometers - to simulate a data glove,

PIC microcontroller and LCD modules is considered for implementation.

SOT Data Glove14 Ultra

h Rj12 Connector

Serial Interface Kit*

Switches/ LED +=
indicators >

--
LCD display unit

Figure 44: Block Diagram for the System with the Proposed Serial Interface Kit

rhe implementation of a translation system is applicable to other sign languages as long as the

~estures in that language are sensible by the sensing device. The system is also extendable to

LCcommodate the use of data glove as long as the proper interfacing devices are used.

rhe limitation of the current implementation of the system is that it does not support or make

tny consideration to the motion of the hand and gesture of the face during conversation. Since

nost of the signs involve many motions, this will severely limit the performance of the

:ystem. However, it is believed that with the proper wearable sensing technology, the motions

~an be interpreted, modeled and translated using similar concepts described in the project.

69

APPENDIXH

DATA GLOVE SENSOR MAP

"Al"<hC'!' Jor.t s. "-..""'0-f'.st l • •«tCid"':: & '~~~ ·"Qft .. -~~~t:lr
J::W!f r d ~ partj

; ltefr' .. "!'f_ 4 ~-1(l l ftjoo........ t: Lr,.,,....SP.,..,... P ht r-;"'Vf' ' .,
pol-e fDU

1 ~ltr-. ft"'l# f."'7"' p; • l •)i •j: l t~ I" , . N~tthc fr7"" Jill'rl · ~ F\.;'tw;,r;;l

Gesture Flexure (O=flexed, =unflexed) Gesture Description Fig.
Number
0 0 0 0 0 Fist 0
1 0 0 0 1 Index finger point 1
2 0 0 1 0 Middle finger point 2
3 0 0 1 1 Two finger point 3
4 0 1 0 0 Ring finger point 4
5 0 1 0 1 Ring index point 5
6 0 1 1 0 Ring middle point 6
7 0 1 1 1 Three finger point 7
8 1 0 0 0 Little finger point 8
9 1 0 0 1 Index and little finger 9

point
10 1 0 1 0 Little middle point 10
11 1 0 1 1 Not ring fing_er point 11
12 1 1 0 0 Little ring point 12
13 1 1 0 1 Not middle finger point 13
14 1 1 1 0 Not index finger point 14
15 1 1 1 1 Flat hand 15

70

APPENDIX I

GETTING STARTED Wim USB (USB CDC CODE)
lfinclude "main.h"
lfinclude <usb_cdc.h>
ltDEFINE LEDl
lf;define LED2
~define LED3
ltdefine LED_ON(x)
ltdefine LED_OFF(X)
ltdefine BUTTON PRESSED(}
Hnclude "LCD. h"
lfinclude <string.h>
//#define USB_CON_SENSE_PIN

~oid usb_debug_task(void)
{

PIN B7
PIN-86
PIN B5
outPut_high(x)
output low(x)
!input(PIN_BO)

PIN 82

static int8 last connected;
static int8 last-enumerated;
int8 new connect9ct;
int8 new:enumerated;
static intB last_cdc;
int8 new_cdc;

new connected=usb_attached(J;
new_enumerated=usb_enumerated();
new_cdc=usb_cdc_connected{);

if (new_enumerated)
LED_ON{LEDl);

else
LED_OFF(LEDl};

if (new_cdc)
LED_ON{LED2);

else
LED_ OFF (LED2);

if (usb_cdc_carrier.dte_present)
LED_ON{LED3);

else
LED_OFF(LED3);

if {new connected && !last connected)
prin'tf{"USB connected, ;aiting for enumaration.,, \r\n\n");

if {!new connected && last connected)
printf{"USB disconnected, waiting for connection ... \r\n\n");

if (new enumerated && !last enumerated)
print"£ {"USB enumerated bY PC/HOST\r\n\n");

if (!new_enumerated && last_enumerated)
print£ {"USB unenumerated by PC/HOST, waiting for enumeration .•• \r\n\n");

if (new_cdc && !last_cdc)
printf("Serial program initiated on USB<->UART COM Port\r\n\n");

last connected=new connected;
last=enumerated=neW_enumerated;
last_cdc=new_cdc;

void main(void)
{

setup_adc_ports(ANO_TO_AN41VSS_VDD);
setup_adc(ADC_CLOCK_INTERNAL);
setup_psp(PSP_DISABLED);
setup spi(SPI SS DISABLED);
setup-wdt(WDT-OFF);
setup-timer O(RTCC INTERNAL);
setup-timer-l{Tl DiSABLED);
setup-timer-2(T2-DISABLED,O,l);
setup=comparator(NC_NC_NC_NC};
setup vref(FALSE};
lcd_iilit ();
char c;

71

LED OFF(LEDl);
LED-OFF(LED2);
LED= OFF (LED3) ;

printf ("\r\n\nCCS CDC (Virtual RS232) Example\r\n");

printf ("\r\nPCH: v") :
printf (PCH) ;
printf ("\r\n");

usb_init_cs ();
char messagel[l6], message2[16];
strcpy {message!, "Hello World");
lcd_display_str(O,messagel);
strcpy(message2, "Line2"):
lcd_display_str(l,message2);

char poll_command[16];

while (TRUE)

I
usb_task();
usb_debug_task();

if (usb_cdc_kbhit())
I
c=usb cdc getc();
if (c~=' ct~") printf (usb_cdc_putc, "\r\nportd is a digital output port\r\n");
else
if {c""='a') printf(usb_cdc_putc, "\r\nporta is an analog input port\r\n");
else
if (c=='b') printf (usb_cdc_putc, "\r\nportb is a digital output port\r\n");
else
if (c==' c•) printf (usb cdc putc, "\r\nportc is unavailable\n");
else
if {c==•!'} printf (usb _cdc _putc, "\r \nHELLO-WORLD-HELLO-WORLD-HELLD-WORLD-HELLO-WORLD-

HELLO-WORLD\r\n"} i
else
printf(usb_cdc_putc,c);
I

72

APPENDIXJ

SDT DATA GLOVE AND PIC INTERFACE VIA USB (CODE)

Unclude "main.h"
~include <usb cdc.h>
~DEFINE LEDl -
Mefine LED2
Mefine LED3
~define LED ON(x)
~define LED=OFF(X)
~define BUTTON PRESSED()
Hnclude "LCD.h"
~include <string.h>

void usb_debug_task(void)
(

PIN_B7
PIN B6
PIN-B5

output_high(x)
output_low(x)
!input(P!N_BO)

static int8 last connected;
static int8 last=enumerated;
int8 new connected;
int8 new-enumerated;
static inta last cdc;
intS new_cdc; -

new connected=usb_attached{);
new enumerated=usb enumerated();
new=cdc=usb_cdc_cofinected();

if (new_enumerated)
LED ON (LED!);

else -
LED_OFF(LEDl};

if {new_cdc)
LED ON (LED2) ,·

else -
LED_OFF(LED2);

if (usb_cdc_carrier.dte_present)
LED_ON(LED3);

else
LED_OFF(LED3);

if (new connected && !last connected)
printf ("USB connected, Waiting for enumaration .•• \r\n\n");

if (!new connected && last connected)
printf ("USB disconnected, waiting for connection ••• \r\n\n");

if (new enumerated && !last enumerated)
print'f("USB enumerated bY PC/HOST\r\n\n");

if (!new enumerated && last enumerated}
printf("OSB unenumerated-by PC/HOST, waiting for enumeration •.• \r\n\n");

if (new cdc && !last cdc)
printf("Serial prOgram initiated on USB<->UART COM Port\r\n\n"l;

last_connected=new_connected;
last enumerated=new enumerated;
last=cdc=new_cdc; -

void main(void)
(

setup adc ports(ANO TO AN4IVSS VDD);
setup=adc(ADC_CLOCK=INTERNAL);
setup_psp(PSP_DISABLED);
setup_spi(SPI_SS_DISABLED);
setup_wdt{WDT_OFF);
setup timer O{RTCC INTERNAL);
setup=timer=l{Tl_DiSABLED);
setup timer 2{T2 DISABLED,O,l);
setup-comparator{NC NC NC NC);
setup-vref(FALSE);- - -
lcd_i'Dit ();
char c;

73

LED_OFF{LEDl);
LED OFF { LED2 I ;
LED::OFF{LED3);

printf { "\r\n\nCCS CDC (Virtual RS232) Example\r\n");

printf ("\r\nPCH: v");
printf (PCH) ;
printf ("\r\nii);

usb init cs ();
char mesSagel[l6], message2[16];
strcpy(messagel, "Hello World");
led display str(O,messagel);
strCpy (message2, "USB CDC Comm. ! "} ;
lcd_display_str(l,rnessage2);

unsigned char recieved_packet[29];
int8 i;

for(i=O;i<29;i++)
{

recieved_packet[i]='\0';

i=O;

while (TRUE)
{

usb_task{):
usb_debug_task();

if (usb_cdc_kbhit())
{

recieved_packet[i]=usb_cdc_getc();
lcd_display_char((intB) {i/15), (int8} (i%15), recieved_packet[i));
i++;
if(i>::=:29) {lcd_display_char(1,14,' '); i=O;}

74

Microcontroller Based Sign Language Translator

Mohammed Obaidallah Alharbe, Mohd Zuki Bin Yusoff 2

1 Student Support Services
Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

Email: mohammed_jd_sa@hotmail.com
2 Electrical and Electronics Engineering Programme

Univrsiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Tel: +60-5-3687807, Email: mzukiyusoj}@petronas.com.my

ACT
runities of vocal impaired and deaf people who use
uage face great communication difficulties with
ho use vocal languages. This project, aims to
' towards bringing the gap closer by offering a tool
nslates sign languages to written messages on an
!ay. This report discusses the different development
ementation issues including gesture modeling,
~teitacing, sign recognition and translation.
Sign Language is widely used in different part of
' including Malaysia; therefore it is considered in
ifect. The proposed method utiiizes five
eters to emulate sensor output, a microcontroller
e, convert, recognize, translate and display the
ure on the LCD unit. The translator can recognize
ers, 10 numbers, and some phrases and words. The
work is believed to be an entry to more promising
rding sign language translation-applications in the

ORDS
•age, ASL, Microcontroller, Gesture detection,
y.

DUCTION

ngnage is widely used by people who suffer from
tpairment or hearing problems in which the
eators use visually transmitted signs to oonv~y
: The deaf comnmnity which utilizes sign language
led to be 0.1% of total population, which means
of people worldwide [1). This large community
lat difficulties in communicating with normal
everal attempts have been made to break this gap
sign language users and conventional vocal
communicators by introducing tools that can

the meaning for both sides. This project aims to
prototype which interprets the signal made by a

sign language communicator into a displayed message on
LCD. This projw is believed to be a base for fu~ work in
this area.
Sign langnage generally utilizes manual movement to
convey meanings. This language is not understood by
average people. The majority of people understand visually
written letters, while sign language users can only use
manual signs. In order to break the gap, a set of sensors can
be used .on the signer to efficiently convert the signs made to
electrical signals which in return can be understood by a
personal computer (PC) and interpreted accordingly.
However, the use of PC does not make the solution mobile
and easy to carry. Therefore, a simple IC based circuitrY
interface (i.e. microcontroller) is required to replace the job
of PC. In general, such replacement involves several
challenges due to the limited resources which are normally
found in conventional ICs (i.e. microcontrollers).
Therefore, the aim of this project is to construct a prototype
which interprets basic signs into a readable text on an LCD.
In order to realize such prototype, the ASL language is
chosen for the implementation and the following objectives
are considered: obtaining a numerical representation all
gestures used in the sign language, constructing a sign
language dictionary, and prototyping a translation system
using set of potentiometers, a microcontroller and LCD
modules,
The project is envisaged to deliver a prototype which makes
use of a set of potentiometers to model the actual sign
gestures which can be later replaced to an accurate data
glove. A microcontruller with different communication
modules is to be used to acquire, manipulate and display the
signs being detected by the sensors. A display unit which is
as simple as a 2 line"LCD is to be used to display detected
messages.

PRELIMINARIES
Sign language which is based on visual manipulation of
hands and body is the language of deaf and vocally impaired
people. it Is interesting to know that sign language is not
universal. Despite the fact that most vocabulary and
grammar of sign languages worldwide are quite similar, they

1pically identical [1). For example the particular
~men" have different sign representation in Auslan,
td DSL sign languages [I]. However, studies
hat most of world's sign languages have a great
'identical vocabulary.

lher side, sign language does not follow the same
grammar as for vocal languages [1). The

ng vocal language has a significant impact in
a particular sign language. This explains the
~in sign languages globally. In this project, we will
the American Sign Language (ASL) [2) as it shares
rnilarity with Malaysian Sign Language (or in
~asa lsyarat Malaysia : BIM) and is well
ted. The letters and the first ten numbers will be
y considered in the proposed system. Figure 1
ample ofletter "A" in ASL.

rED WORK
!tempts have been made to translate sign language
languages and vice versa. J.M. Allen et a/. in [3)
i a system which translates spoken English to sign
. In this work, the authors discussed an algorithm
tted in personal computer which can automate the
n of spoken and written English language and
the equivalent via an avatar animated sign

)f.

Ia et al. and R Alorneliawati et al. in [4), [5)
I an algorithm which utilizes neural network to
1e sign from a camera and process it accordingly to

English translation. This method requires less
e hardware but more c6111plicated alg6rithm to
the signs. In order to translate a sign, the image is
and tracked, then the hand posture is extracted and
sponding meaning is matched using a learned neural

Implementing a recognition system on an ARM processor is
discussed in [6). In this work, the practical aspects of real
time blabbering recognition and translation are discussed.
The system shows different practical aspects of the
implementation of language recognition in embedded
systents.
Another interesting work is discussed by RM McGuire et
a/. in [7). In this work, a mobile sign translator based on one
hand data glove and a Hidden Markov Model are used. The
proposed system shows 94% accuracy for a particular
scenario whereby a signer is seeking an apartment.
N. El-Bendary et al. attempted to implement arSLAT which
recognizes sign representation of Arabic letters and gives the
written equivalence [8). The system processes a video which
contains series of image representations for the letters. The
best captured image from the video undergoes several phases
including categorization, feature extraction and classification
before the Arabic letter is finally recognized. Experimental
results show 91% of recognition accuracy.

In summary, this short listing for some of the most relevliilt
work all around the world, show the global potentiality of
the problem. It also highlights different areas of focus for the
implementation of sign language translators. This includes:
sensing devices, processing platfonrn (PC, embedded
processors, etc.), recognition algorithms, and output forms.
In this project, the focus will be in implementing the
translation system in microcontroller processing
environment.

An essential component of the translation system is the
recognition algorithm. Several recognition algorithms have
been used in previous studies. In this work fuzzy logic based
algorithm is considered for implementation.
Fuzzy logic is a form of many-valued logics; it conceptually
deals with reasoning that is approximate rather than fixed
and exact [9). In contrast with the traditional logic theory,
where binary variables have two logic values: true or false,
fuzzy logic variables may have a truth value that ranges in
degree between 0 and I. Fuzzy logic has been extended to
handle the concept of partial truth. In partial truth, the truth
value may range between completely true and completely
fulse. Furthermore, when linguistic variables are used, these
degrees may be managed by specific functions [9).

METHODOLOGY

1. System Identification and Tools
Throughout the development stage of the prototype of the
project, several tools are potentially considered. The tools
used for the implementation of the translation system and the
respective functional and technical details are discussed as
follows.

'otentiometer
>meter is a simple three terminals variable resistor.
n different values for the resistance across its ends.
>rminal in the middle is connected via a moving
djust the resistance at this terminal from 0 to full
~lation to either ends. The potentiometer is used to
nd produce 0-5 V analog output. It has generally
.tput range of a possible gestore sensor; this allows
used as a simplified model for gestore sensor.
it can be used to emulate a fingers gesture sensing

nicrocontroller
1ge microcontroller from Microchip is to be used.
ction enables the developers to deal with the
with more flexibility and efficiency.
8F4550 [II) is among the most commonly used
> microcontrollers barely because of its USB
:ation support capabilities. The PICI8F4550 is a
!h performance microcontroller which is equipped
ml built-in peripbemls. The proposed system may
te USB support for advanced used, therefore, the
is made to enable futore development and
of functionality expansion.

lh the USB support, the microcontroller is featored
'erent processing modes, configumble internal
1, extendable instruction set which makes it a high
1ce yet power efficient microcontroller. The 32KB
:mory allows long progmms (more than 16
: assembly code lines) to be executed. The data
g the execution of the progmm (i.e. variables' data)
in SRAM memory which is 2KB in size for the

;so microcontroller.
the peripherals of the microcontroller are not

d as the proposed system does not require them,
it is likely that normal I/0 operation are to be used
• allow access to other direct digital transmission
ices such as LCD.

Ccompiler
o progmm the microcontroller, a compiler is to be
n this project, the PIC C compiler from CCS is to

C compiler is easy to use, and almost immediate to
i due to the project wizard feature and the different
des which it offers.
1e featores of CCS C compiler:
.. utomatic fuses configumtion
oxtensive built-in functions providing direct access
o PIC hardware
oxtensive source code driver library
o.rithmetic libmry
Integrated development enviromnent

rlevelopment kit and programmer
up the development phase, a startup kit [12] is used
tform of the microcontroller circuit. The use of this

tool provides easier and more robust circuit to be built. The
board provides several functionalities and circuitry support.
The kit is a robust development platform which offers:

• Voltage regulation circuitry (9 V input voltage to 5
V output voltage)

• Reset button
• USB port
• Connector to programmer
• Optional connection to LCD and UART
• 2 switches and 2 LEDs connected to Port B

In order to transfer the C codes to the program memory of
the microcontroller, USB ICSB programmer (UICOOB) [13)
is considered. This programmer is a cheap programming
solution and is highly compatible with the SK40C startup
kit.
The programming software (PIC kit 2) takes the hex file
which is produced by CCS compiler and loads it to the
microcontroller memory via the UICOOB programmer.

2. Sign Language Translation Procedure
The translation procedure involves several issues, tasks and
algorithms. The following part discusses these challenges
and explains the methodologies adopted in this work. The
flow chart of the translation system is shown in Figure 2.

Surt

Initialize rmi""' (LCD, ADC, ete.)

Display the Eq_uiHlmt W..mi<.>n LCD

Figure 2: Translation Flow Chart

The translation is basically a closed loop in which the
sensors are read, compared and if recognized, the results are
displayed on the LCD unit. The reading of the sensors is
compared to a dictionary which is created according to the
ASL dictionary. The dictionary consists of a set of numerical
representation to the gestures of the five fingers (thumb,
index, middle, ring and little). The modeling and the
numerical representation of the gesture are described in the
following part.

~ensor reading and display
;tep on the hardware development of the system is
the interface between the PIC and the sensing unit.
the sensing unit is assumed to be simple
eters and therefore, the PIC is required to establish
mication with the potentiometers. The ADC
in the PIC is used to implement this function. Five

levoted for this purposes which are: AO, AI, A2,
\5. The first step in implementation is to set the
nfiguration using the prqject wizard in CCS C
IS fullows:
.electing PIC18F4550 (as it is the target PIC)
lscillator frequency: 20,000,000 Hz (as used in the
evelopment board)
'or the oscillator fuses, choose the configuration:
Iigh speed Osc (> 4mhz, for PCMIPCH) (>I Omhz
orPCD)
Jnselect the option : "PORTB pins are configured
s analog input charmels"
'or the analog configuration, the following is used:

o AO, AI, A2, A3, A5
o Range 0-Vdd
o Units: 0-255
o Intemal2-6u for the clock

code is generated upon making the above settings.
s used to display the data

~igns Gesture Representation
1111 that each letter or word in sigu language is
of gestures made by the five fingers of the hand.
to obtain a numerical representation for each
6 gestures per finger are identified to be the basic
·lock for each sigu as shown in Table I.

Table 1: Basic"· -~
:ode

InHexed fm•er
t Hexed

Middle·
·Upper joint Hexed

.!&.~r
r joint

r ioint
Lower.

rioin~bent
Lowenoint rbent

r ioint hair bent
.ower bent
Jpper+ Lower rhent
liiddle+. rbent

rbent

;igu entry in the dictionary, the gesture represented
nger is identified according to the table above and
values are assigned according to Table 2.

Each gesture is assigned to an arbitrary number from (0-255)
with a 16 digits step. The gaps between the gestures are later
exploited to identify fuzzy limits between the gestures.

T able 2: Numerical ofGestu res
lP<horP, Code
10000 0
HOOO 16

(120 32
20

JIJ23
G1231 112

'00032
12

G0233 224
G1233 240

C. Letter Matching Algorithm
The signals resembling letters and numbers do not have a
strict set of Boolean values. This would suggest the use of
Fuzzy logic based algorithm. The signs by nature are not
exact and identical to all users. When detecting such signs,
the detected signal for the same sign but from different users
will vary but should still be close. This consequently leads us
to select a fuzzy algorithm to store and match the sign
language dictionary.

In fuzzy algorithm, the values of its variable are not in
simple TRUE (I) and FALSE (0) patterns, however discrete
values representing wide range of trueness and falseness
ranging from extremely true to extremely false are typically
considered.
In the case of sign language translator, the variables are the
reading of sensors and the exact number of sensors depends
on the type of sensor system. Each sensor is described by 8
bits value ranging from totally flexed to totally inflexed;
however for more general case, the size of the variable
(number of bits) depends on the accuracy of the sensor.

The reading of the sensor is to be later compared to find the
similar letter which the gesture resembles. The letters, on the
other hand, are to be represented by a set of values for each
sensor. The fuzzy part comes here, whereby; the values
representing each letter describe the upper limit and lower
limit for each sensor value. This means, a typical letter or
word, is represented by several variables describing the
upper limit for the sensors and another set of variables
describing the lower limit for the sensors. In addition to that
another variable is required to store the equivalent word
itself.

;tructure comprising of the lower limit for the sign
1 sensor, the upper limit for the sign from each
:i the equivalent word represents a single entry in
sed sign dictionary. A look-up table is then to be
>isting of all data structures holding the entries for
and the corresponding meaning. The entries in the
ble are to be derived empirically.

ified version of the translation system is
ted using three words based on the reading of five
he code is developed and the results are shown and
in next sections.

)/ctionary Construction

11ed previously, in order to enable the translation, a
holding the gesture and the equivalent word has to

1cted. The construction of the dictionary is shown
3.

shows the steps adopted in realizing the dictionary.
:ramming a struct data type is used to represent
onary entry. The dictionary is simply an array of
data types. The maximum number of entries
>n the size of the data memory (RAM}. In the
separate memory chip is required to store larger
f entries.

Stan }

t ~-

r
l 3: Dictionary Construction Flow Chart, Bias

value is 7

odology shown in Figure 3 is used to obtain and
the sign dictionary. The sign versions of the letters
, Z and numbers from I to I 0 and the "I love you"
e considered from [2] and consequently the sign
1 is constructed.
es of the table actually show the range of the five
lues and the equivalent word. As example the sign
1es a value in the range of (GJ031L to G1031) for

the thumb sensor, (G0233L to G0233) for the index sensor,
(GI031L to GJ031) for the middle sensor, (G1233L to
Gl233) for the ring sensor and (Gl233L to G1233) for the
little sensor represents the letter A.

RESULTS
The translation system based on a set of potentiometers is
constructed. The system is implemented by developing C
codes based on the methodology explained previously. The
system with the five potentiometers, LCD and mother board
is shown in Figure 4. Figure 5 shows the system starting
message.

Figure 4: Translation System Components: 5
Potentiomenters, Main &ani (SK40C board), and LCD

Figure 5: Translation System Startup, LCD is displaying
the "Strarting" message

The gestures for the letters, numbers and some words were
obtained and implemented on the code listing. The reading
of the sensors and the recognized gestures are configured to
be displayed on the first and second lines of the LCD,
respectively. Two modes of sensors reading display were
shown on the LCD successfully. The two modes of display
are the digitized (0-255) and in Volts (0-5 V) and are shown
in Figure 6 and Figure 7, respectively.

: Sensor readings in first line (thumb: 123,
~. middle:238, ring:242, and little:237), Second
llying the translated sign

cperiments had been conducted to test the ability of
n to recognize gestures. The experimental results
n show that it is able to recognize the whole 26
:all etters.

tters are used in coding as welJ as in display. This
hat the LCD displays "B" instead of"b" to indicate
i alphabet All the 26 letters did not involve motion
;•. Since it is assumed that only hand shapes are
~ therefore the hand shape component of the letter
nsidered in modeling.

Figure 7 and Figure 8 show some of the recognized

re 7: Sensor readings in Volts (thumb: 2.4V,
:2.4V, middle:4.6V, ring:4.7V and litde:4.6V)

Figure 8: Translation system recognizing the sign forB
equivalent to (thumb: 64+/-7, index: 0, middle: 0, ring: 0

and little: 0)

Additionally numbers (0-1 0) are added and recognized
successfully. Moreover, the system is able to recognize some
phrases e.g. "I love you". Figure 9 and Figure 10 show some
of the obtained results.

Figure 9: Recognition and translation of the sign for S
(thumb: 0, Index: 64+/-7, middle: 0, ring: 64+/-7, little:

64+/-7)

Figure 10: Recognition of phrases e.g. "I Love You"
(thumb: 0, index: 0, middle: 224+/-7, ring: 224+/-7, little:

0)

signs

signs, the system displays by default
message as shown in Figure ll . This is later
in the coding by the message ' 'Not recognized!".

incorporating five potentiometers - to simulate a
sensor reading, PIC microcontroller and LCD
is proposed to aid sign language users to convey

, .. .,~ . .,...,.,., in a more explicit way. The proposed
is based on ASL language and can support up to

and the equivalent words as a proof-of-concept. The
is envisaged to be an entry work for educational yet

solutions which can potentially be extended for
functionality and portability.

the system supports the translation of up to 75
The size of the dictionary can be potentially

considering the addition of memory chip to the
. To enable the portability of the design, a 9v battery
is to be added. Even though the system is tested
a realistic data glove, it is believed that the

methodology adopted in the project wiJI ease
............ J .. of the addition. A potential future work is to

the five potentiometers by a data glove.

Johnston and Adam Schembri, "Australian Sign
(Auslan): An Introduction to Sign Language

Cambridge university press, 2007
Sign Language (ASL) dictionary, URL:

.lifeprint.cornldictionary.htrn, retrieved: Nov

len J.M., Foulds R.A., "An approach to animating sign
A spoken english to sign english translator

system", Proceedings of the Northeast Conference, 30, pp.
43-44, 2004
(4] Akmeliawati, R.; Ooi, M.P.-L.; Ye Chow Kuang;, "Real
Time Malaysian Sign Language Translation using Colour
Segmentation and Neural Network," Instrumentation and
Measurement Technology Conference Proceedings, 2007.
IMTC 2007.IEEE, vol., no., pp.l-6, 1-3 May 2007
[5] Mekala, P.; Gao, Y.; Fan, J. ; Davari, A.; , "Real-time
sign language recognition based on neural network
architecture,'' System Theory (SSST), 2011 IEEE 43rd
Southeastern Symposium on , vol., no., pp.l95-199, 14-16
March 2011
(6] Nijusekar, C.; Brindhu Kumari, A.; , "Translating the
sign of dumb person using ARM processor,''
Communication Control and Computing Technologies
(ICCCCT), 2010 IEEE International Conference on , vol.,
no., pp.508-5l3, 7-9 Oct. 2010
(7] McGuire, R.M.; Hemandez-Rebollar, J.; Stamer, T.;
Henderson, V.; Brashear, H.; Ross, D.S.; , "Towards a one
way American sign language translator,'' Automatic Face
and Gesture Recognition, 2004. Proceedings. Sixth IEEE
International Conference on, vol., no., pp. 620- 625, 17-19
May2004
(8] El-Bendary, N.; Zawbaa, H.M.; Daoud, M.S.; Hassanien,
A.E.; Nakamatsu, K.; , "ArSLAT: Arabic Sign Language
Alphabets Translator," Computer Information Systems and
Industrial Management Applications (CTSIM), 2010
International Conference on , vol., no., pp.590-595, 8-10
Oct.2010
[9] Fuzzy Logic, Wikipedia, URL:
http://en.wikipedia.org/wiki/Fuzzy _logic, retrieved: Nov
2011
[10] USB HID PC and PIC interface implementation code
using C# and CCS compiler, Muhammad Rafique, URL:
http://www.pudn.com/downloads 1 95/doc/project/detail9165
58.html, retrieved: Nov 2011
(ll] Microchip Technology Inc.,
"PIC18F2455/2550/4455/4550 Data Sheet 28/40-Pin High
Performance: Enhanced Flash, USB Microcontrollers with
nanoWatt Technology", U.S.A, 2006
[12] Cytron Technologies, "SK40C PIC microcontroller
start-up kit: User's Manual", Malaysia, November 20 II.
[13] Cytron Technologies, "UJCOOB USB ICSP PIC
Proif8R1mer: User's Manual", Malaysia, November 2011.

