Brain Analysis While Playing 2D and 3D Video Games of Nintendo 3DS Using Electroencephalogram (EEG)

by

Ahmad Alif Bin Pauzi

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Engineering (Hons) (Electrical And Electronic Engineering) SEPTEMBER 2011

UniversitiTeknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak DarulRidzuan

CERTIFICATION OF APPROVAL

Brain Analysis While playing 2D and 3D Video Games of Nintendo 3DS Using Electroencephalogram (EEG)

by

Ahmad Alif Bin Pauzi

A project dissertation submitted to the Electrical And Electronic Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (ELECTRICAL AND ELECTRONIC ENGINEERING)

Approved by,

(Dr Aamir Saeed Bin Malik)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK September 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

AHMAD ALIF BIN PAUZI

ABSTRACT

To be able to gain knowledge of human brain and study the perception of human towards stimulated events, emotions and sense, scientists have been using few main methods. They are Electroencephalograph (EEG), Computerized Axial Tomography (CAT) scans, Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalograph (MEG). These technologies, up to this date are able to help scientists, researchers and doctors to understand how brain works and doing analysis upon them. [1]. Meanwhile this project will be focusing on the usage of EEG to do the analysis on human brain. The EEG shows electrical impulses of the brain and can be recorded in form of waves. Recently, the emerging of auto stereoscopic 3D technology of Nintendo 3DS has bring new gaming experience as players can see 3D. The objective of this project is to use EEG equipment to analyse the activity of human brain when playing console game Nintendo 3DS in 2 dimensions (2D) mode and 3 dimensions (3D) mode. The purpose of this project is also to study and compare on human brain perception of 2D and 3D gaming. Our brain perceives 2D and 3D moving images of video games differently, and we would want to study how different they are. In the end, this project will be able to explain and conclude how human brain responds to 2D and 3D gaming of Nintendo 3DS console game and what difference they make in human visual system of brain.

ACKNOWLEDGEMENTS

First and foremost the author would like to express his greatest gratitude to God Almighty for His blessings and grant me health and life to be able to complete this project.

Special thanks from author to his parents, Pauzi Bin Che Hussin and Azizah Bt Talib, and family who always giving him loving support and motivation while doing this project. The author would like to express his gratitude to Electrical And Electronic Engineering Department of Universiti Teknologi PETRONAS for giving opportunity to author to do this project and Dr Aamir Saeed Malik, his supervisor for his endless guidance, patience and idea while doing this brain analysis project.

Also special thanks given to Duaa Mohamed Amin and Samar Fawzy who worked with author for this project. Author's gratitude also goes to Neuro Signal Processing Team of UTP, EEG participants, Professor Jiang, Dr Mark Smith, Yasir Salih, Rauf Subhani and Gowri Gopalakrishnan for helping author's out to prepare the experimental setup and conducting experiments. And also special thanks to Nur Atiqah Bt Abu Bakar for her moral support

Author would also like to thank all his friends and colleagues, for their precious time to support author while writing this dissertation. Thank you all.

TABLE OF CONTENTS

	ii
	iv
MENT	v
INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	5
1.3 Objectives	5
1.4 Scope of Study	5
1.5 Relevancy of Project	5
LITERATURE REVIEW	6
2.1 Human Brain	6
2.2 Previous study of human brain while	
playing video games	10
METHODOLOGY	11
3.1 Methodology	[1
3.2 Project Gantt Chart and Kev Milestones	12
	MENT INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Study 1.5 Relevancy of Project ITTERATURE REVIEW 2.1 Human Brain 2.2 Previous study of human brain while playing video games METHODOLOGY 3.1 Methodology 3.2 Project Gantt Chart and Key Milestones

3.4 Experiment method

13

15

3.5 Data Acquisition and Recording 17

3.3 Tools

3.6 Pre-processing	20
3.7 Processing	22

CHAPTER 4:	RESULT AND DISCUSSION	26
	4.1 Z-Score	26
	4.2 Absolute Power	27
	4.3 Coherence	27
	4.4 Phase Lag	29
	4.5 Questionnaire Results	30

CHAPTER 5:	CONCLUSIONS AND RECOMMENDATIONS	32
	5.1 Conclusions And Recommendations	32
REFERENCES		33
APPENDICES		36

LIST OF FIGURES

PAGE

Figure 1.1	EEG Electrode Setting	2
Figure 1.2	Adult's Normal EEG	3
Figure 1.3	EEG Path of VEP	4
Figure 2.1	The Brain Structure	7
Figure 2.2	The Limbic System	7
Figure 2.3	The Brain Main Lobes	8
Figure 2.4	The Cerebral Cortex	9
Figure 2.5	Neural Pathways For Visual Info	9
Figure 3.1	Project Methodology	11
Figure 3.2	Nintendo 3DS	13
Figure 3.3	Super Street Figher IV	15
Figure 3.4	Blog diagram of Experiment Protocol	14
Figure 3.5	Experimental Setup And Obtained Waveform	16
Figure 3.6	Brainmaster Discovery Cap And Amplifier	16
Figure 3.7	Settings For Brainmaster Recording Software	17
Figure 3.8	Recording Window	19
Figure 3.9	EEG Artefact Rejection in NeuroGuide	21
Figure 3.10	NeuroGuide Selected EEG Signal	22
Figure 3.11	Neuroguide Report Selection	23
Figure 3.12	Z-Scores Value In TDT Format	23
Figure 3.13	Z-Scores Value In Excel Format	24
Figure 3.14	Data Processing In Matlab	25
Figure 4.1	Z-Scores Normal Distribution Graph	26
Figure 4.2	Absolute Power In Occipital Lobe	27
Figure 4.3	2D & 3D Parietal-Occipital Coherence	28

LIST OF TABLES

Table 1	FYP I Gantt Chart	12
Table 2	FYP II Gantt Chart	12
Table 3	Tools Required	13
Table 4	EEG Artefact Classification	14

29

CHAPTER 1

INTRODUCTION

1.1 Background of the study

1.1.1 Electroencephalography (EEG)

Electroencephalography (EEG) is a recording activity of electrical signals generated from the brain, made by putting up electrodes to the subject's head scalp. Hans Berger (1873-1941) discovered the existence of EEG tracing, as he began his research upon human EEG in 1920 [2]. By using EEG equipment, we may diagnose brain disorders and human behaviour from the generated brainwaves. EEG allows researchers to trace and record electrical impulses in form of waveform signals across the surface of the scalp and changes over split seconds can be observed. A state of a person can be seen from the EEG such as focused, awake, dizzy, drowsy, or defocus because the patterns of EEG signal differ from one to another state. One important use of EEG is to show the time taken by brain to process various type of stimuli be it graphical, audio or moving images [3].

EEG recording can be done by placing electrodes on human head scalp. Electrodes are used to establish connection between the conducting fluid of the brain tissue and the amplifier [4]. Local current flows are formed once the neurons were activated as response to some form of stimuli. Differences of electrical potentials are caused by summed postsynaptic graded potentials from pyramidal cells that create electrical dipoles between the soma (body of neuron) and apical dendrites (neural branches) [5].

The greatest benefit of EEG is speed. It can record complex pattern of signal generated within split second of time during occurring of stimulus. With comparison to MRI and PET, lesser spatial resolution is provided by EEG. Analysers can find out the relative strengths and magnitude of electrical activity at different part of brains by EEG [6]. Biochemical, metabolic, circulatory, hormonal, ferroelectric, and

behavioural factors are reasons why state of EEG signal from a person can change[7].

Figure below shows the example of EEG electrodes placement on human head scalp and the recording of human brain activity using EEG.

Figure 1.1 (a) 10-20 system electrode placement and (b) represent the three-dimensional measures, and (c) indicates a top view of the 128 channels electrodes.

EEG waveforms are usually have amplitude	of and rang	ge from	.EEG	waveforms	can
be categorized to 4 main bands [8]:					

Wave Type	Frequency Band	Brain Condition
Delta	0.5-4 Hz	Deep sleep, deep
		relataxion
Theta	4-8 Hz	Relaxed, drowsiness
Alpha	8-12 Hz	Relaxed
Beta	>12 Hz	Focused, excitation

Figure 1.2: Adult's normal EEG tracing

1.1.2 Visual Evoked Potential

The evoked potentials (EPs) elicited by the physiologic activation of receptors or by the electrical stimulation of nerves combine some features of the compound nerve action potentials. EPs can be viewed as any neuronal response triggered by stimulation sensory receptors of peripheral nerves, and also any neuronal activity time-related to cognitive process or motor programming [9].

Figure 1.3: The EEG path of VEP

Visual evoked potentials (VEPs) happens when the visual field of subject respond to graphical stimuli and are observed using EEG. Waveforms can be observed at the C1 and P1 and also the visual N1 of the EEG electrodes [10].

The VEP are important in the research of abnormality and testing the functionality of visual system. Usually VEP refers to responses observed at the occipital region. In this project, 2D and 3D games of Nintendo 3DS game console will be the visual stimulus and participant will be responded by playing the games accordingly.

1.2 Problem Statement

Human brain is the most complex part of our body. It monitors and regulates the body's actions and reactions, including the visual system. Auto stereoscopic 3D of Nintendo 3DS brings new experience to users by letting them to view 3D content of game without using glass. Previous research of EEG by scientists and engineers only involved 2D games. How does human brain perceives 3D games of Nintendo 3DS compared to 2D games of Nintendo 3DS?

1.3 Objectives

The objective of this project is mainly to study and compare the human brain perception of 2D and 3D gaming of Nintendo 3DS using through designated experiments, acquiring the signals generated by brain throughout playing game using Nintendo 3DS in the experiments by using EEG equipments, and further process and analyse the signals to explain the brain activity during playing 2D and 3D game

1.4 Scope of Study

The scope of this project is doing research on human brain anatomy, psychology and nervous system, designing Event Related Potential experiments, conducting experiments using EEG equipments and further analysis of the data acquired using signal processing tools. The research is important for better understanding of how human brain perceives 2D and 3D games and what difference does them make to our brain when playing them. The outcome of this project will benefit scientist and psychiatrist in order to gain more knowledge of the differences of 2D and 3D games in human brain. Recording, processing and analyzing the EEG data and making out conclusion can be done with the project time frame of 28 weeks.

CHAPTER 2

LITERATURE REVIEW

2.1 Human Brain

Brain is the main part of our nervous system. The brain of human being has 3 interrelated layers. Stems are structure that concerned with the processes such as heart beat, breathing and controls digestive system. Enveloping this central core is the limbic system, which is involved with emotion, motivation and memory processes. These two regions limbic system and stems are wrapped around by cerebrum. The cerebrum and cerebral cortex, integrates sensory information, direct our body movements and control nonfigurative thinking and logic.

Incoming sensory information are delivered from eyes to the appropriate area of cerebral cortex, where that information is processed through long sort of fibbers that connected to thalamus. Neuroscientists have long known that the cerebellum, attached to the brain stem at the base of the skull, controls bodily movements, postures, and maintains the balance. Damage to cerebellum will interrupt the flow of otherwise smooth movements, causing human to appear uncoordinated and jerky.

Figure 2.1. The Brain Structures

The limbic system is in charge of behaviours, memory process and stress level controls. Besides that, limbic system also regulates body temperature, blood pressure, and blood sugar level and performs various maintenance activities. The limbic system comprises three structures, they are hippocampus, amygdale and hypothalamus.

Figure 2.2: The Limbic System

The cerebrum occupies the other parts of the brain, consisting two thirds of its total mass. The function of cerebrum is to adjust the higher cognitive and behaviour function. Cerebrum's hemisphere is separated into four lobes [11]. The frontal lobe involved in motor control and cognitive activities like planning and decision making. Meanwhile, the parietal lobe is in charge for touch sense, temperature and pain. The occipital lobe is the ultimate destination for visual information from eyes, situated at the rear part of the head. Hearing and memory process are the functions regulated by temporal lobe.

Figure 2.3: The Brain Main Lobes.

In this project, we are interested to study the visual region of human brain, to study the differences of 2D and 3D video games. Processing of visual input takes place at the rear of the brain in the occipital lobes. It is the greatest area devoted to input from eye. [12].

Figure 2.4. The Cerebral Cortex

Figure 2.5. The Neural Pathways for Visual Information

2.2 Previous Study of Brain Activity during Video Game Play

In the previous study, the researchers examined the dynamic brain activity during nonstop video game play by using the high resolution EEG. Two subjects played a competitive video game, Mario Power Tennis in 2D resolution on a Nintendo Gamecube and at the same time their EEG signals were recorded same allocated time segments.

The study shows that increasing power are observed of midline theta-wave at frontal lobe as a result of video game play. Parietal alpha-wave power was observed increasing as a result of video game play, suggesting the rise of mental load. From this study, researchers can conclude from EEG analysis that long period of gaming will increase the mental load of players.

CHAPTER 3 METHODOLOGY

3.1 Methodology

This project was conducted according to this methodology to meet the objective. First thing first was to understand the objective of this project and do research on human brain, nervous system, human visual system, 2D and 3D video games of Nintendo 3DS, experiment design, EEG and signal processing. After that, series of EEG training were conducted to be able to fully understand how EEG equipments work and know how to calibrate them together to do signal recording. After that, participants were recruited for the experiments after specifying type of participant that will undergo the experiment. Then, experiments were conducted upon these participants and acquire and record the data, which is the brain signal from them using EEG equipments and Brain Master Discovery software while they are playing Nintendo 3DS in 2D and 3D. The next step was to do processing of the raw data obtained, to be able to get analyzable signals and valuable information. This step involved pre-processing and processing. After the final form of brain signal is obtained, data is tabulate and analysis was done and made conclusion from the findings about the difference on human brain perception of 2D and 3D gaming using Nintendo 3DS. The figure below simplifies the flow of methodology explained.

Figure 3.1: Project methodology

3.2 Project Gantt Chart & Key Milestone

Table 1: FYP I Gantt Chart

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
							*							
										*	*			
	-	-	+									*		
													*	
														*
	1	1 2	1 2 3					1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 10	1 2 3 4 5 6 7 8 9 10 11	1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12 13	1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 2: FYP II Gantt Chart

* = Key Milestone

3.3 Tools

The list of the hardware and software used are according to table below:

Hardware	Software
- Nintendo 3DS & Game Tape	- Windows 7 Operating System
-BrainMaster Discovery 24e Cap and	-BrainMaster Discovery Recording
Amplifier	Software
- Toshiba QOSMIO PC	-NeuroGuide Deluxe 2.6.7
	- Microsoft Office
	- MATLABMathworks v 7.10.0

Table 3: Tools required

3.4.1 Nintedo 3DS

The Nintendo 3DS is a Nintendo portable game console. It has capability to be played in auto stereoscopic 3D mode which require no glass to see the 3D effect, as well as the standard 2D mode. It is the successor to Nintendo DS game console.

Figure 3.2: Nintendo 3DS (red colour)

This new system introduced several innovation compared to the design of the original DS, notably a slider on the side of the device which adjusts the 3D depth intensity, and also an analogue input entitled the "Circle Pad

Nintendo publically announced that the 3D mode of the 3DS is not intended to be played by children ages six and below, claiming potential impairment to their vision. It is suggested by Nintendo that young players should only play in 2D mode for safety [15].

3.4 Experiment Method

Participants in the experiment are UTP Undergraduate students, age range from 18 to 25 years old. Subjects are being filtered to make sure they are healthy and eligible to undergo the experiment. A fighting game – Super Street Fighter IV was selected. The game requires real-time active response from player where player will face character controlled by computer one on one and try to win the match by knocking out the opponent to be able to proceed to the next round. Participants able to change the mode of the game from 2D to 3D by adjusting the "3D" lever of the Nintendo 3DS beside the top screen. They are given the instructions to play the game before any recording of EEG is being done. 20 participants were involved in this experiment. The reasons of choosing this game are because it is easy to be played and produce nice 3D effect by creating depth between fighting characters and surrounding background of the game.

Figure 3.3 : Super Street Fighther IV, Nintendo 3DS

The EEG signals were recorded using 19 channels BrainMaster equipment and BrainMaster Discovery software. The EEG signals were digitized with a sampling rate of 255kHZ and notch-filter of 50kHz.

The experiment recording is started with 5 mintues eyes closed, followed by 5 minutes eyes open to get the baseline of the participant's brain. For each recording segment, the participant was asked to sit straight, minimize the eye blinks and muscle movements, as well as keeping their eyes closed and opened as much as they can, respectively to the recording segments. Then, the participant will be playing the Super Street Fighter IV of Nintendo 3DS continuously in 2D mode for 20 minutes.

After the participant finish playing in 2D, he or she will be given time to rest for a while before 5 minutes of eyes open session is being conducted. Then, the participant will be playing the same game in 3D mode for 20 minutes. The figure below shows the block diagram of the experiment segments. A questionnaire will be given to the participant at the end of playing games to be filled in (see APPENDIX).

5 minutes EC	5 minutes EO	20 minutes 2D	5 minutes EO	20 minutes 3D
--------------	--------------	---------------	--------------	---------------

The next figure shows the experimental setup as well as sample of real-tme EEG signals obtained from a participant during playing Nintendo 3DS.

Figure 3.4. Block diagram of experiment protocol.

Figure 3.5. Experimental setup and obtained EEG signal

3.5 Data Acquisition And Recording

Sample size of 20 participants is being used for data recording, consist of their EEG signals. The hardware and software use for recording EEG signals are BrainMaster 24e cap, amplifier and Toshiba Qosmio PC with BrainMaster recording software installed. Before start of each experiment/recording session, the participant will need to fill in their particular information such as name, age, gender and will be asked to sign a consent form and state that he or she is participating in experiment voluntarily.

After that, experimenter will setup the participant with BrainMaster 24e cap which consists of 19-channel electrodes and linked-ear montage. A conductivity gel is injected inside each of electrode to make sure good connection between the electrodes and participant's scalp. The impedance of each electrodes are being

measured to make sure they get below 5 k Ohm value. The cap is connected to amplifier and the amplifier is connected to recording PC to record EEG Signal. Experimenter will check all the settings of software before proceeding to make sure all the parameters are correct.

Figure 3.6: Brainmaster Discovery cap and amplifier

After explaining the flow of experiment to the participant, experimenter will start the experiment and record the EEG signals using BrainMaster Software throughout the experiment time frame as mentioned earlier in experiment method part. The raw EEG signals recorded are being saved in EDF format.

	Data Channels	×	
Setup Options	Training Channels:	Software Digital Filter Order:	×
Read/Write Settings	Two piR HEG or Four TEMP	6 7 8 9 10 lower order is faster higher order is more selective	
Data Channels	Sum-Channel Mode:	Discovery Acquisition Control	F-P-P:ON
Frequency Band	4-channel Sum Method: C Split © Combine	Amplitude Scale: © Penkto-Penk © BMS	
Training Protoco	Lexicor File Output	Artifact Threshold: 255 microvolts	
Display Option	Low Frequency Cutoff		trends,
Feedback Contr	Software Notch Filters: 60 Hz Notch Filte NOTE: Using both 50 H bandwidth of 1.5 Hz to	r ♀ 50 Hz Notch Filter Hz and 60 Hz filters produces a 40 Hz filters produces a	IO DALISE
Session Contro	EEG Data Sampling Rat	le:	TOTAUGE
CLOSE	COM Part Select:	© 256 sps	SETTINGS
	Search this PC	for Available COM Ports	
	Cancel Electrod	es & Trainee Info OK	
		1	2

3.6 Pre-Processing

After raw EEG signal is obtained, the next step is to do pre-processing. Before we process and compare the difference between 2D and 3D games of Nintendo 3DS, it is essential to do pre-processing which include several steps: artefacts rejection (consists of drowsiness, eye-blink and eye movement rejection) plus automatic selection. This pre-processing is done by NeuroGuide Deluxe 2.6.7 software.

Signal distortions are called artefacts. It is a sequence with higher amplitude and different shape in comparison to normal EEG signal sequences. The artefact in the recorded EEG can be classified as patient-related or technical. Patient-related artefacts are those unwanted physiological signals that may significantly disturb the EEG signal pattern. Technical artefacts can be reduced by decreasing the electrode impedance[16]. Table below shows the classification of EEG artefact.

Patient-Related Artefact	Technical Artefact
-Eye blinks and eye movement	-50/60 Hz AC power line noise
- Major body parts movement	- Impendence fluctuation
-Sweating	- Cable movements
-Irregular heartbeat	- Too much electrode gel / dried gel

Table 4: EEG artefact classification

The first step of pre-processing is to import raw EEG data recorded previously, session by session into NeuroGuide. Subject information is being filled and correct montage (link-ear) is selected from left panel of the software. The next step is to select 10 seconds artefact-free EEG signal to be used as template / reference for the software. After the 10 seconds template has been carefully chosen and selected, artefact rejection can be done by clicking Edit->Artefact Rejection->Drowsiness Rejection. Eye blinks and eye movements artefact can be eliminated by

Edit->Artefact Rejection->Eye Movement Rejection. Black line below the signals indicates that the signal has been removed and will not be taken into account when doing processing later on.

Figure 3.9: NeuroGuide artefact rejection

After artefact rejection has been done, the next step is to select the remaining good portion of EEG signal to be analysed. The NeuroGuide can automatically select the good EEG signal by Edit->Automatic Selection. It detects the similar pattern from the 10 seconds template which chosen before to determine good parts of EEG signal. Red line below the signals indicates that the portion of signals are being selected for processing.

Pre-processing is done to all EEG raw data recorded. A participant will have a total of 11 sets of raw data comprise of eyes closed 2D, eyes open 2D, four 5-minutes segments of 2D game-playing(5,10,15,20 minutes), eyes open 3D, four 5-minutes segments of 3D game-playing(5,10,15,20 minutes)

Figure 3.10: Neuroguide selected EEG signal

After the pre-processing completed, the edited EEG data is saved in NeuroGuide(*ng) format.

3.7 Processing

Processing of the cleaned signal is started by generating a report from NeuroGuide software containing desired information of the EEG signal such as Z-Scored absolute power, coherence and phase lag values. EEG signal recorded by participant will be compared with a normative database inside NeuroGuide. This can be done by Report->Generate Report. Before that, information that wanted to be generated can be selected through Report->Report Selection.

	Connection Mapa	Decriminant Functions	Connectivity Suite			
Subject information	@ Amplitude Asymmetry	C Learning Disability	C Amplitude Asymmetry			
Technical Information	@ Coherence	C Traumatic Brain Injury	Coherence			
Summary	@ Phase Lag	R State State	C Phase Lag			
Color Mana	Started Miles	Participa E-output	Citoes Spectral Power			
Abach to Press	C Abachita Presar	C Basin Parlamanca Index	C Instantaneous Connectivity			
Balative Power	C Relative Prover	· SPORT CONCERNENCE ENCO	Conelation (Comodulation)			
C Parete Date	C Power Ratio	- Bust Metrica				
I OWNER I SAND	G Pask Esquarcy	C Number of Bursts				
Standard Bands	··· Peak mouldersy	C Burst Amplitude	Phase Reset			
6 1 Hz Bands	C Amplitude Asymmetry	C Burst Duration	C Phase Resets per Second			
	C Coherence	C Bust interval	C Phase Shift Amplitude			
	C Phase Lag		C Phase Shift Duration			
		6 D. D	C Rate of Phase Shift			
roso -	Save Fieldry	6 Z Scores	1013 3 3 3			

Figure 3.11: NeuroGuide Report Selection.

The report generated will contain the value for each frequency bands and 19 electrodes. This values, are saved in Tab Delimited Text (*TDT) and can be opened using Notepad in Windows Operating System.

Breaklan	M - Internat	April Martin	CONTRACT.	NAME OF BRIDE	anna anns	NAME OF TAXABLE PARTY		(1)历 、 法法公司	Sold and Balling Ball	and the second	15 R
File Lat	Format Vew 194p	to prove the second second			Concernance of the local division of the loc			Concerned and the second	Statement of the local	and the second second	-
The Land BH B B B Club 4 BB S 21,95466 444 0,554,214 0,554,214 0,554,214 0,554,214 0,554,214 0,554,214 0,554,214 0,223 B 00 023 3,00 0,214	Termin Geo Felg 6. D71997 5. 223857 6. 325867 6. 325867 0. 426726 0. 40	2.780'465 -0.68523 -0.88523 -0.88524 0.28460'990'-45 2.80520 0.20405 0.50458 0.004278 0.50458 0.004278 0.50458 0.004278 -0.48458 0.607458 -0.50458 0.607458 -0.50458 0.507458 -0.50458 0.507458 -0.50458 0.507458 -0.50458 0.507458 -0.50458 -0.	3. 126627 -3. 0512827 -3. 0512827 -3. 1312866 4. 131074 6. 23577 1. 25577 1. 255777 1. 2557777 1. 2557777 1. 2557777 1. 25577777 1. 25577777 1. 25577777777777777777777777777777777777	3. 888864 -0. 347205 -0. 347205 -0. 347205 -0. 342380 0. 422805 0. 422805 0. 422805 0. 328425 0. 328425 0. 328425 0. 328426 0. 328426 0. 328426 0. 32926 0. 32025 0. 3205 0.	2.405547 -0.507068 -0.538450 3.262485 0.54800 0.57800 0.57800 0.504850 0.504850 0.554625 0.055465 0.055455 0.055455 0.0554555 0.0554555 0.0554555 0.0554555 0.0554555 0.0554555	1. 778038 0. 15347594-64 0. 15347594-64 0. 1546247594-64 0. 275529 0. 275529 0. 275421 0. 275529 0. 275421 0. 275529 0. 255447 0. 255447 0. 255447 0. 255447 0. 255447 0. 255447 0. 255447 0. 255448 0. 255447 0. 255448 0. 25	1,742718 -0,222820 0,023371 2,055694 0,548545 0,548545 0,528275 0,528275 0,528275 0,528275 0,528450 1,52829 1,5489 1	2.482774 -8.188348 0.752852 3.752852 3.752852 3.752852 0.363547 0.363547 0.365557 0.50557 4.92546 2.658457 1.65847	3.107504 -1.2594254 -2.2594254 3.257544 3.257544 3.257544 0.2594544 0.2594544 0.2594544 0.2594544 0.2594544 0.2594544 0.2594544 0.2594544 0.259454 0.259256 0.255256 0.255256 0.255256 0.255256 0.255256 0.255256 0.255256 0.255256 0.255255 0.255555 0.255555	3. 442327 -5. 258452 -5. 353274 2. 602754 6. 327348 6. 327348 6. 327348 6. 327348 6. 327348 6. 327348 6. 327348 1. 602756 1. 60256 1. 60256 1	1.845480 4.92177 0.30233 0.75280 8.33480 0.25280 0.25280 0.25280 0.25280 0.25280 0.25280 0.25280 0.25280 0.7525 0.5482 0.5482 0.0 0.45180 2.457888 2.457888 2.457888 2.457888 2.45788 2.45788 2.45788 2.458
-0.17923 15.0 H2 6.201474 -0.00538 42H 9 124647 -0.21077 -0.21077	0.1028-0-12 1.007800 25.0 - 38.0 mg 0.0.836388 -0.478747 0.355850 H -0.62529 H -0.62529 H -0.62529	-0,34100 18.0 - 25.0 H076 380.00256 50.542602 -3.772424 -0.573458 802.20785 102.2078	0 -0,6362 9 FP2 0 -0,26800 0,304753 0,358069 -3,354373 8 -1,05855 8 -1,05855 8 -2,05855 8 -2,05855 8 -2,05855 9 -100855 9 -100855	-0.011270 -0.017512 0 -0.35431 -0.05432 -0.05432 0.604826 0.129459 6 -0.53421 7 -0.82651	4 -0.05044 0.2545958 08792 E8 17 -0.35059 0.252090 0.05433 34 -0.75785 15 -0.58043	-0.76566 0.055669 -0.794778 06FP2 C3 -0.447263 -0.427468 -0.427468 -0.732350 8 -3.29655 8 -3.29656	6 0.451 -0.230762 0.340562 -3.40565 -3.405556FP2 -0.865478F3 -0.386335 2 -3.40 -3.46	233 0.474540 -0.474540 -0.720055 0.222554 73 -0.224 -0.73656073 6402 -2.405 5725 -2.005 5725 -2.005 5725 -2.764	216 -0.10764 0.005850 -0.581536 0.526020 576 0.302724 92 -0.42274 92 -0.25765 75294 74 43852 0.2	0 0,236463 -0,223658 -0,272458 -0,275324 -0,276324 -0,274458 0,244568 0,244568 0,244568 0,244568 0,244522 -0,434573	-0.0957 -0.3728 -0.7258 4 9 -0.0908 -0.8548
54680 96896 73 282949 508600 762767 15884 68727 430 89 99 08007 ,853808 93	-3.85328024 -0.22788495 0.264570 0.264570 0.726534 F7 -0.56544 0.758544 -0.409425 -0.2459447 0.7685447 0.26570492 0.544605 0.54450 0.545000 0.545000 0.545000 0.545000 0.545000 0.545000 0.545000 0.5450000 0.5450000000000000000000000000000000000	78 0.646030 74 0.780731 -0.253338 0.305480 0.38754702 M 0.685307 0.200847 0.200847 0.60530723 F3 0.288357 0.025606 0.075226 7.764304	6. 154401 2. 230438 0. 6443402 0. 533407 0. 533407 0. 533407 0. 533407 0. 533407 0. 533407 0. 535407 0. 535407 0. 200488 0. 200488	0.442188 -0.3365 -3.047445 0.255345 0.255345 0.7224875 0.6450375 -0.42548 -0.454865 0.388623 0.888623 0.64544	6 -0.47343 6 0.21780 0.2075849 0.207004 0.002233 75 0.668555 Thera Alpha 0.5268278 0.526855 0.526855 0.526855 0.526855 0.526855 0.526855 0.526855 0.526855 0.52685 0.5	6 -3.23438 0 0.267153 -0.854857 8.337547 8.337547 8.337547 0.5500077 0.328408 8472 0.500077 0.328408 8472 0.500077 0.328408 94 0.423858 94 0.6258	7 0.435 -3.368528 -0.258342 0.348 0.545 2.186052 1 2.283 8 Alpho 7 -0.655 -0.02467 0.25867 0.35867	445 0.3872 6072 0.288 766 0.494209603 766 0.494209603 766 0.2274 813 0.2274 813 0.2274 8127 0.40458 210 1.2574 8127 0.41458 8127 0.4	H 0,100-31 300 0,144513 -1,350642 74 0,440302 42 0,02772 43 0,05548 0,055548	-0. 62835 0.30715 -0.54076314 0.468022 0.6.602584 1.0.612584 1.0.612584 1.0.75 3.247568 1.0.4,613584 1.0.4,613584 1.0.762542 1.0.635844 1.0.762542 1.0.845120 0.8545420	a 74 0 102 0
46 6,896376 822580 6,463856 793 1 66722	0,532844 0,72804564 0,72804564 0,72804564 12 0,450475 0,725588 0,5655463 12 0,6655463	0, 304244 P4 0, 522734 0, 640335 -0, 05443 0, 664400 0, 654856	-0.427590 0.428880 0.005880 0.735479 0.735479 0.735679 0.740589 2.330584	0.163438F4 3.08558 0.45323 0.353255 0.862884 2.442856	74 0.80052 0.72803 0.655275 0.625127 0.625127 2.31244094 0.274224	0,854230 0,852554 -0,08438 K4 H2 0,547547 0,864453	0,727 1.243 7 0,347 0,84383 0,885 0,203 0,845879	850 0.4348 72863 47 380 0.4548 0.700843 554 0.6403 554 0.6403 0.8800 0.880078	0. 022847 3. 022847 0. 202847 0. 20285270 0. 705874 0. 328538 0. 622040 3. 2062 0003	6.424862 6.824845 6.428865 6.428865 6.428866 6.428864 6.428864 6.428864 6.428864	0.23048 0.75467 93

Figure 3.12: Z-Score values in TDT format opened using Notepad

To be able to see the values correctly, the TDT is furthermore exported to Microsoft Excel sheets.

				and the second second	HELINAN			HORIN	Contract of		No.	-	-	Q.o.r	ter to Salar	100		and the second		a Million		-	Dure	No. of Concession, Name	71		-
140		Cherry.	1.0	· · K			-	to Ted	. come					end	Ball		ford .	-	-			-	3.7	East	- 37	A .	9. 79
14	10. Y	3.01	1000	Sec. 4				out in families				stand in	5 17	-	Contract of		Trans.			hone		-	Dardin Farm	1 F US	2010		belles
371	THE PARTY		1.1			-	- 10				10.50	any at	Sec. Sec.	Concession in which the Real Property lies in which the Real Property lies in the Real Property	-									1.4.94	A MARK	Defend to	
1000			100	_						property.		_	_	-					-		_	-	1990		a servery		of contrast
. 086			N																								
		. E.		1	1	114		1	×	1.0		10		.8			2.	1.0	1.20		- *				2. 3	bird Ma	mid .
Course of	1751 AD-106.	the subset																								Service Very	2540
	Same -	Theme .	and a	Refer	state lines.	1000	1000	Terra 1	and it	maria A																	1000
	10.449	42.8.7	15.5 124	1110-231	152 80	#.# 10.00×	18.0.12.0	144-254	15-0-16.0	18.0-23.1	-															The Mean	
HPL-IS	4.6725	3.064250	417151	0.25425	4.7785	41.0025	-0.25815	4.2000	0.12963	4.00953															-	and the loss	100
11216	0.50401	1071040	4.80	4.4397	8.83943	0.27705	-0.25175	4.47972	-0.4055	0.94751																Summed in	5 I I
13.41	-4.7(\$2	1,12000	0.004855	4.000	3,87274	-0.05157	6.575788	o metric	4.13231	0.76552																	
18.12	-0.86371	0.87052	0.007512	0.26760	4.33762	8.63079	8,205367	0.162667	6.1178	0.94762																San Personal Pe	Annual states
43-18	-0.6281	10.05834	42117	-0.4000	-0.49962	-147675	1.14255	2.21176	-8.25471	1.553																and a	
C#-18	-0.88675	1.1115340	-0.1728	0.4548	-6.36217	9.41133	-9.48487	-0.54687	-6.43409	-1.76534																	
73-12	-7.138	0.025397	0.6203	0.02636	-8.28297	-0.51186	-0.25171	4000	4.23763	-0.34803																	
21.42	-0.4368	41781	-063322	-0.401.28	-279438		-0.52263	-8.23578	0.54964	-0.48307																	
00-12	#32m2	milet(4)	0.49412	0.218581	0.454176	-6.5182	-0.9556	0.00.003	0.116941	0.437455																	
02-0	6.872585	0.000254	0.36141	10000	S-ADRESS	0.56767	0.4500	0.15178	-0.04225	0.82753																	
000					-1.0071	-0.5000	-C. PUTTIN	1.1.1.1.1	4.1844																		
11.14	4174					4.1754	-0.11025	1.145	0.27953	1.00.774																	
78.16	.0.2176	in same	11.5750		******	1.40000	A 1781	10.5845	1.0000	1.0000																	
15-14	-0.0000	+	-	A 12164	0.129045	-0.57644	4.42040	4.2364	-0.31554	-																	
76-18	0.51750	-0.11258	1.16767	-0.85241	-4.1500	-1.8626	0.00400	-0.74612	-6.16283	0.76571																	
Ya-ck	-0.34343	6.182897	e allerta	-0.06(1)	4.19538	Ecotted.	0.2004121	6.1275282	8.147925	0.63154																	
10-01	-0.2994	0.040727	-0.68997	-0.32903	-8.33742	4.23701	12.534208	0.311774	0.31182	-7:65405																	
72-12	0.680	(0.12943	4.0875	-8-312910	-0.56629	-0.94013	0.033418	-6.370#	6,2764																	
ALL REPORT	July Piner	OVY Fee																									
	-			-	1.00	100	-	100	-	12211	-	12.60	-	-	-		-	100	-	-	interes.	-	1000	-			
100.00	A sheets	- Contraction	A Distant		1.001003	1.41940		1.72	1.11000	- Change	A TRANS	A STATION	ALC: NO.	0.070	1175	1975	A Distance	-	A	in large	a beams	a second	A DECK	A DESIGNATION OF	ines 1		
192.16	2 31 300	1.001414	1528947	2 PRATES	2,2962	1.445144	1.000004	1.506272	1.161625	A DESIGNATION	6.7/81/2	C. SHALLES	it baares	E SCHOOL	0.363625	C-ADEVAL	1.254.767	a malas	0.21735	0.2255847	8,200214	5.155427	11 170179	0.1072882 8	Distant.		
fair.	3 798011	8.996423	2.002098	1.036442	2 170875	1.756159	1.000795	1.000776	1.641267	1.10201233	1.144913.2	0.768903	D-SNELLY	D. SCHOM	0.467197	GAMPLE	D. PORTAL	0.005179	0.354749	in chargers.	0.253481	0.309405	0.2020.77	0.244430 0	L ENDADA		
48-12	3.31714	442,000	1.552596	1.007081	2.963283	2 09525	2.189425	2.585125	1.534072	1.552547	1.254134	1.953455	0.564251	1.180712	0.042340	2.473871	3.415872	6.296136	0.279977	0.290548	2.217903	0.33890	1.1798.15	8.336782	S.DERC		
Det	2.96782	5.420775	2.304085	131398	Latera	2.892303	1.472112	1.57(825	1.525721	3.158023	1477676	11.81.578	C-NIDAKT	8.367171	0.401028	0.367854	0.06254	0.0000	0.258095	0.255945	0.342319	1.219.70	0.236254	0.282328 0	1296825	Adaptana (1000
13-43	1.001002	4.328921	3.33422	2 995227	2.3398082	1.84332	1.752308	2.081783	1.008527	1129417	1.298757	5.5267	-	6.5.94215	0.46752	1.104071	0.542631	6.357994	9.254100	4.397335	4.254758	5.225454	8.336394	5,0030 0	Amilte .	Marrows	10.00
rigt	4.201555	4.262219	1.0000	2.19685	194010	1.461532	1.336585	1.575(85	1.411922	3.157634	14670	0.7/702	0.840000	Latens	2.494062	0.424405	0.425405	4.36807	0.82673	0.105827	8233941	8.280767	9.25404	8,223447 8	121/278		100
46.I.C.	8.627953	4,155.561	1. 1.013039	A REPORT	1.0672	14008	3.522588	1.170940	1.197508	2496005	1,224991	1.795281	0.715225	6.578909	0.404075	1.0014	0.090912	8.XM121	0.12084	0.001405	4-293303	6-294125	0.295238	6.223899 8	1209762		S 100 1
03.18	4.206752	4,538.004	1.196279	1,2,212,713	1.72054	1.438335	1,623245	1.515861	1.562955	2.025454	1.703261	1.155746	Linking	0.505867	5451878	0.940645	0.000812	8.408379	2.475718	DEBIAD	8.569423	0.314/102	0.56855	0.478558	040405	1	States Mar
02-14	6.080238	5.02340	1.9679	2.578457	2.132864	1.848327	1.747281	1.56703	1,40703	1174946	1.524723	1,21157	1.0195	0.764427	0.00042	8.685126	5-401342	EADIES	0.577862	0.545125	2-490765	5.451534	0.4900111	6.429957 8	AD725A	and the second division of the second divisio	
42-12	1.9400	194857	1,788755	1.5940.29	LEXING	1.002765	8.971313	0.97028	2.765658	TECHN	2489219	0.42759	0.326787	1.20625	0.258598	4.225000	0.208442	a persar	1.156962	515845	0.199634	5.254471	0.197034	COMPANY S	ALTER TO-	0	fice
12.5	1.20.002	145475	2,457211	3.912026	1.419093	1,208547	1.5011	1.102688	C 125634	1.101.009	0.087365	0.3-4953			8.348263	1.86852	1.701364	212,245	1.58.15	0.429475	211/20	0.XNUSL	2.198233	0.038776 0	and a		111-1
-			1														These								1	CLUB MEN	
No. of Lot	0		1.5		1 .	1000					-	-	No. Oak	Conception in which the	Concession in which the	-	10 13	Variation of the	THE R.	-	COLUMN I	MENE		215 NE 2.1	10000	CONTRACT NO.	COLUMN TO A
	10	6																		100							

Figure 3.13: Z-Score values in Excel sheets.

In order to make comparison between the EEG signal of 2D and 3D, the data from each segment of 2D and 3D game-playing of every participant are being imported to MATLAB for further processing. In MATLAB, codes are written to get Z-Scored values of absolute power, coherence and phase lag from 2D and 3D and mathematical as well as logic operations are done to find the difference between 2D and 3D values.

The difference of absolute power, coherence and phase lag maps and bar charts for each frequency bands Delta, Theta, Alpha 1, Alpha 2, Beta 1, Beta 2, Beta 3 and High-Beta for every electrode are being plotted and the matrix values are saved for results analysis.

Figure 3.14: Data processing in MATLAB 7.10.0.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Z-Score

Z-Score is a metric based on any measurement and the associated population statistics. It tells "how many standard deviations away from the mean" [17].

 $Z \ score = \frac{(Measurement - Mean)}{Standard \ Deviation}$

Z-Score range can be from +/- 1 Sigma to +/- 4 Sigma. When analysing the resulting waveform obtained from experiment, we are interested in 3 criteria which are absolute power of spectrum bands (Delta, Theta, Alpha, and Beta), coherence and phase lag.

Figure 4.1 : Z-Scores Normal Distribution Graph

4.2 Absolute Power

Absolute power is defined as the summation of all powers within the specific frequency band, expressed in μV^2 [18]. The figures below shows the result for absolute power difference between 2D and 3D at Occipital Lobe, the area where human perceives visual information.

Figure 4.2 : Absolute Power at Occipital Lobe

From this graph, Theta absolute power is higher in 2D suggests that most of the participants are learning because most of them never played Nintendo 3DS before. Higher Theta and Alpha in occipital lobe in 2D also suggest that the participants are more relaxed while playing games of Nintendo 3DS in 2D mode compared to 3D.

Meanwhile absolute power of Beta is higher in most of participants in while playing 3D compared to 2D suggests that more concentration are needed when play games in 3D compared to 2D. This also indicates that 3D mode of Nintendo 3DS give more arousal to human visual system, thus increase attention level.

4.3 Coherence

Coherence is the stability of the phase relationship over time between two sites (electrodes), it's a measurement of information sharing. Figure below shows the

result of coherency between electrodes of different brain regions which are related to video gaming.

Figure 4.3: Difference of 2D and 3D Parietal-Occipital Coherence

Parietal – occipital relates in coordination between motor and visual system. Graphs above shows the coherence in Beta region is higher while playing in 3D mode in more number of participants compared to 2D, indicates that the amount of information shared by visual & motor parts while playing 3D is higher. In 3D mode, the visual part of brain struggles to perceives the unnatural depth projected by auto stereoscopic 3D of Nintendo 3DS at the same time participants also need to response to the game accordingly. These leads to huge information sharing between parietal-occipital lobes thus increase the load of brain while playing in 3D.

4.4 Phase Lag

Figure 4.4: Difference of 2D and 3D Parietal-Occipital Phase Lag

From these two graphs, it is observed that speed of information sharing is higher in 2D in theta band and the information sharing is higher in 3D in Beta band. This suggests that 3D caused the parietal-occipital connection to be higher in order to see the depth of 3D game while at the same time trying to press the buttons of Nintendo 3DS (motor control).

4.5 Questionnaire Results

Below is the questionnaire results obtained from the 20 participants. The questions are about how they feel after playing 2D and 3D game of Nintendo 3DS.

Question/Respond	None	Slight	Moderate	Severe
1. Did you feel	5	6	7	2
energized because				
of 3D?				
2. Do you have	2	5	8	5
general feeling of	•			
discomfort/				
exhaustion because				
of 3D?				
3. Did you feel	7	4	5	4
better after playing				
the 3D video				
games?				
	No	Maybe	Yes	Definitely
4a.Do you like 3D	6	5	6	3
better than 2D				
video game?				
4b. Will you want	7	5	4	4
to play 3D games				
again?				
4c. Would you	3	4	7	6
encourage a				
learning technique			!	
that involves 3D?				

Table 5: Questionnaire Results

From the questionnaire results, the participants prefer 2D mode compared to 3D mode of Nintendo 3DS. They also reported more moderate feeling of discomfort such as eye strain and dizziness after 20 minutes of playing 3D. This correlates with the EEG results that shows 3D caused more arousal and increase concentration level of participants.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions and Recommendations

Attention and concentration level increased when playing in 3D mode compared to 2D. In 3D, the brain requires more information sharing between visual and motor control region in order to response to the depth created. Presence of Beta waves in most of brain region is higher in 3D will lead to visual stress such as eyestrain and dizziness as the load of the brain is higher when playing in 3D. 2D mode of Nintendo 3DS is more relaxing and enjoyable compared to 3D mode.

It is recommended that Nintendo 3DS is better to be played in 2D mode compared to 3D. With small screen and unnatural auto stereoscopic 3D, 3D mode of Nintendo 3DS gives more mental load rather than pleasure of playing and will affect the visual system if being played for long period of time.

For future work, the data quality and can be optimized by conducting experiments upon controlled group in controlled environment. By controlling the daily supplements, food intake, sleeping hours and stress level of the participants, more accurate & less variation of data can be obtained as all the mentioned criteria affected the EEG signal of the participants.

REFERENCES

- [1] The Secret Life of Brain http://www.pbs.org/wnet/brain/index.html, 23/09/2011
- [2] S Sanei, J.A. Chambers, "EEG Signal Processing", Chapter 1 Introduction To EEG,(p 2, 2007)

[3] Ch M. Michel, M M. Murray, "EEG Source Imaging", July 2004

[4] R Cooper, C B R Billings, "Techniques In Clinical Neurophysiology", Chapter 6 EEG Technology. (p 89 2005)

[5] H. L. Atwood, W. A. MacKay. 1989. "Essentials of neurophysiology", B.C. Decker, Hamilton, Canada.

[6] M. Teplan, "FUNDAMENTALS OF EEG MEASUREMENT" MEASUREMENT SCIENCE REVIEW, Volume 2, Section 2, 2002 .Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia.

[7] J. D. Bronzino. 1995. "Principles of Electroencephalography". In: J.D. Bronzino The Biomedical Engeneering Handbook, pp. 201-212, CRC Press, Florida.

- [8] M. Teplan, "FUNDAMENTALS OF EEG MEASUREMENT" MEASUREMENT SCIENCE REVIEW, Volume 2, Section 2, 2002 .Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia.
- [9] R Cooper, C B R Billings, "Techniques In Clinical Neurophysiology", Chapter 2 Fundamentals of Neurophysiology, (p 32, 2005)
- [10] G Henning and P Husar "Detection of Visually Evoked
 Potentials", Department of Biomedical Engineering and medical informatics, Technical University of Ilmenou.
- [11] D Novák, L Lhotská, V Eck, M Sorf, "EEG and VEP Signal Processing". Department of Cybernetics, Czech Technical University in Prague, Czech Republic
- [12] R J. Gerrig, P G.Zimbardo, "Psychology And Life" 18th Edition, 2008
- [13] C.Sheikhlosami, H.Yuan, E.J He, X.Bai, L.Yang, B.He "A High Resolution EEG Study of Dynamic Brain Activity during Video Game Play", Proceedings of the 29th Annual International Conference of the IEEE EMBS, Lyon, France. August 23-26,2007

[14] Nintendo 3DS Specification, http://www.nintendo.com/3ds/hardware/specs.

[15] http://www.reuters.com/article/2011/01/03/us-nintendo-

idUSTRE7020UL20110103. "Nintendo Warns Children Not To Play New Player in 3D" Reuters. January 3, 2011. Retrieved 2011-01-06.

- [16] D Novák, L Lhotská, V Eck, Milan Sorf, "EEG and VEP Signal Processing". Department of Cybernetics, Czech Technical University in Prague, Czech Republic
- [17] QEEG, Connectivity and Z Score Training by Mark Llewyellyn Smit, LCSW, BCIA EEG, Universiti Teknologi PETRONAS 2011.
- [18] H J Niemarkt, W Jennekens "Maturational Changes in Automated EEG Spectral Power Analysis in Preterm Infants", Neonatal Intensive Care Unit, Máxima Medical Center, 5500 MB Veldhoven, The Netherlands, Received 17 February 2011; Accepted 9 May 2011