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ABSTRACT 

 

Hydrocarbon-transporting pipelines are intensively exposed to CO2 corrosion. Due to 

high cost of corrosion-resistant alloys (CRA), carbon steel is seen to be the best option 

for pipelines material. During fabrication, the pipelines undergo specific heat treatments 

to achieve desired mechanical properties prescribed by the users. These heat treatments 

affect the microstructure of the pipelines. Previous studies done have discovered that the 

microstructure of the carbon steel offers significant influence on its corrosion behavior. 

The main objective of this project is to characterize the relationship between 

microstructures and corrosion performance of carbon steel in CO2 environment. 

Meanwhile, the microstructure of different heat treatments is observed as well. The 

project focuses on the common materials used in pipeline construction. Pipe samples are 

collected from pipeline manufacturers and Centre for Corrosion Research (CCR), 

Universiti Teknologi PETRONAS (UTP). The samples go through sample preparation 

which includes sectioning, mounting, grinding, polishing and etching before examined 

under a microscope. The microstructure is recorded according to its corresponding heat 

treatment. Each sample is then put through corrosion test using glass cell in 3% NaCl 

solution at 50°C, pH 4, 1 bar CO2, for two weeks. The result shows that sample with 

ferrite/bainite/tempered martensite microstructure, and fine ferrite/pearlite microstructure 

have the lowest corrosion rate. Banded ferrite/pearlite microstructure has the highest 

corrosion rate. Iron carbonate scale is found the most on fine ferrite/pearlite 

microstructure and covers most of the surface area. Fine grains anchor scale better than 

coarse structure does. Iron carbide or cementite influences scale adherence on the steel 

surface. In banded structure, the segregated distribution of cementite causes poor 

performance in terms of localized corrosion. In other microstructures, cementite is more 

evenly distributed. For hydrocarbons transportation, fine ferrite/pearlite microstructure, 

or ferrite/bainite/tempered martensite microstructure is recommended for better corrosion 

resistance. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background of Study 

Offshore pipelines are commonly constructed of carbon steel, recognizing its economic 

and strength advantages. Although there are corrosion resistant alloys (CRA) or stainless 

steels which are superior in terms of resistance to corrosion, their utilizations are not 

economically justified. Carbon steel line pipe used in oil and gas production and 

transmission, is manufactured in accordance with American Petroleum Institute (API) 

specification 5L, does not have a closely specified elemental composition and 

microstructure (D. Clover, B. Kinsella, B. Pejcic and R. De Marco, 2004). Line pipe 

fabricated according to this specification may be as-rolled, normalized, normalized and 

tempered, subcritically stress relieved, subcritically age-hardened or quenched and 

tempered. Consequently, line pipes of the same grade may have variations in their 

compositional and microstructural properties, dependent upon the manufacturers. These 

variations may lead to substantial differences in the corrosion resistance of steel line pipe 

(D. Clover, B. Kinsella, B. Pejcic and R. De Marco, 2004).  

Since carbon dioxide corrosion has become a major problem in oil and gas field, various 

studies have been done to understand its mechanisms, identify the factors affecting, and 

come up with suitable solutions or mitigations. In addition to temperature, pH, CO2 

partial pressure, and shear stress, studies have shown that the steel microstructure may 

also affect the corrosion rate. Several studies have been done by various authors on the 

influence of different microstructures on the corrosion performance of carbon steels. In 

order to understand better, studies are done on different grades of carbon steel. 

 

1.2 Problem Statement 

Carbon dioxide corrosion is a major problem in oil and gas industry. Carbon steel 

offshore pipelines are intensively exposed to CO2 environment hence are very susceptible 
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to CO2 corrosion. The successful utilization of carbon steel line pipes in CO2 corrosion 

environment requires not only effective corrosion mitigation but also careful selection of 

line pipe heat treatment specification. Appropriate heat treatment specification is critical 

as microstructures and alloying elements also influence the corrosion behavior of carbon 

steel. Depending upon the steel’s composition, thermal history, and mechanical history, 

its microstructure differs significantly. This project will investigate the effects of several 

heat treatments on the microstructures of selected grades of carbon steel and their 

subsequent influence on the corrosion performance in CO2 environment. 

  

1.3 Objectives 

The objectives of this project are: 

1. To characterize microstructures of common heat treatment specifications. 

2. To study the influence of heat treatment of carbon steel line pipe on its corrosion 

performance in CO2 environment. 

3. To evaluate the relationship between microstructures and CO2 corrosion 

performance. 

 

1.4 Scope of Study 

This project essentially focuses on the corrosion performance of carbon steels with 

different microstructures in CO2 environment. The corrosion performance is evaluated 

under approximated actual conditions of operating pipelines. The materials tested are 

carbon steels which pipelines are typically made of. The corrosion performance is 

assessed in terms of corrosion rate and presence of corrosion film. The expected outcome 

to be achieved is the correlation between heat treatment, microstructure, and corrosion 

performance. This correlation may help in understanding the best material that is suitable 

to be used in oil and gas transportation. 
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CHAPTER 2: LITERATURE REVIEW AND THEORY 

 

2.1 Carbon Dioxide (CO2) Corrosion Mechanism 

In oil and gas industry, carbon dioxide (CO2) corrosion is caused by the CO2 contained 
within the hydrocarbons transported by the pipelines. The carbon dioxide dissolves in the 
seawater to form carbonic acid. 

CO2 + H2O  H2CO3 

 

The carbonic acid will ionize to form hydrogen and bicarbonate ions. 

H2CO3  H+ + HCO3
- 

 

The bicarbonate ions then further ionize to form hydrogen and carbonate ions. 

HCO3
-  H+ + HCO3

2- 

 

Bicarbonate ion can also produce further carbonic acid by a disproportional reaction: 

2HCO3
-  H2CO3 + CO3

- 

 

This produces a further source of hydrogen ions. There are 3 possible cathodic reactions: 

2H+ + 2e-  H2 

2H2CO3 + 2e-  H2 + 2HCO3
- 

2HCO3
- + 2e-  H2 + 2CO3

2- 

 

Though carbonic acid is a weak acid, sufficient quantities may be able to help accelerate 

the corrosion process. The anodic reaction is: 

Fe  Fe2+ + 2e- 
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The Fe2+ and CO3
2- combine to form iron carbonate, FeCO3, a corrosion layer on the steel 

surface. This layer can be protective to the steel surface and may influence the corrosion 

performance of the steel. 

 

2.2 Heat Treatments of Steel 

2.2.1 Austenizing 

Austenizing is a process of heating steel to a temperature within the austenite or austenite 

+ Fe3C region. Hardening of steel requires a change in crystal structure from the body-

centered cubic (BCC) form present at room temperature to face-centered cubic (FCC) 

(Kenneth G. Budinski and Michael K. Budinski, 2010, p. 401). By referring to the iron-

carbon equilibrium diagram, the temperature to which the steel should be heated based on 

the carbon content can be known, in order to obtain the FCC structure. To keep the 

carbon trapped in the crystal structure, quenching is required after austenizing. 

 

2.2.2 Quenching 

According to Kenneth G. Budinski and Michael K. Budinski (2010), quenching normally 

is accomplished by rapidly removing the part from the furnace (after it has soaked for 

sufficient time to reach the required temperature) and immersing it in agitated oil or water 

(p. 401). Hardenability is the term used to describe the ease of a steel to transform into a 

hardened structure on quenching. Some steels can be hardened by just removing it from 

the furnace and allowing it to cool by convection at room temperature. This process is 

known as normalizing and normally produces ferrite and pearlite microstructure. The rate 

of quenching is influenced by the fluid media used and the degree of agitation in the 

media. The most severe are water quench, followed by oil, molten salt, and gas 

quenching. Addition of other medium into the fluid media may also affect the cooling 

rate. The resulting microstructure is influenced by the cooling rate. For example, rapid 

quenching in water usually results in martensite microstructure. 
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2.2.3 Annealing 

Annealing is accomplished by heating steel to its austenizing temperature and then slowly 

cooling to prevent the formation of a hardened structure. At annealing temperature, the 

structure transforms to austenite or austenite plus cementite. Slow cooling will produce 

ferrite and pearlite, or pearlite and cementite microstructure. Softening can occur in 

annealing by diffusion. 

According to Kenneth G. Budinski and Michael K. Budinski (2010) 

If a part is being annealed to change the structure from hard martensite to a 

machinable structure such as ferrite and pearlite, the softening is accomplished by 

diffusion of carbon from the metastable martensite and re-solution of the carbon 

in austenite at the annealing temperature. Diffusion is the spontaneous movement 

of atoms in the crystal structure of a metal. Martensite is hard because there is an 

overabundance of carbon atoms trapped by quenching in a crystal structure that 

wants to be BCC. Diffusion of carbon in steels is controlled by temperature; by 

the time a martensitic steel reaches the annealing temperature, most of the carbon 

that was trapped in martensite has diffused out. At the annealing temperature, the 

structure transforms to austenite, and all the carbon goes into free cementite or 

into solution in austenite. (p. 417) 

 

2.2.4 Tempering 

Tempering is a low temperature heat treatment used to improve the toughness of quench-

hardened steels. Kenneth G. Budinski and Michael K. Budinski (2010) stated that 

tempering of martensite in plain carbon steels involves diffusion of carbon atoms from 

martensite and the formation of carbide precipitates and concurrent formation of ferrite. 

Tempering also causes some retained austenite from quenching to transfer to cementite 

and ferrite. Tempering is usually done after quenching. 
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2.3 Influence of Microstructure on the Corrosion Performance of Carbon Steel 

Microstructure plays an important role in determining the proper adherence of corrosion 

scale to the steel surface. D. A Lopez et. al. (2003) reported that the carbide phase can 

strengthen the film and anchor it to the steel substrate. Stegmann et al. proposed that the 

needle-like carbide structure provides a better anchoring surface for the FeCO3 than large 

ferrite areas interdispersed by a few pearlite grains (as cited in D. A. Lopez, 2003).  

 

It has been reported by D. Clover, B. Kinsella, B. Pejcic and R. De Marco (2004) that a 

course, banded, ferrite/pearlite microstructure lowers resistance to localised corrosion. In 

the banded ferrite/pearlite structure, the carbon bearing phase (pearlite) is distributed in 

layers whereas in the other structures the carbon-bearing phases are much more evenly 

distributed. This variation in the distribution of carbon-bearing phases within the steel 

affects the corrosion resistance. During the rolling process of pipelines, the 

heterogeneous regions are elongated in the direction of deformation, forming layers rich 

in manganese. Due to low solubility, it is segregated to the interdendritic areas during 

solidification of the steel. These manganese rich regions would be anodic to the bulk thus 

create galvanic cells that allow corrosion to occur. 

 

M.A. Lucio-Garcia et al. (2009) found that martensitic microstructure has the highest 

corrosion rate up to two orders of magnitude higher than that for steel with a ferritic + 

bainitic or ferritic microstructure. Steel with a ferritic microstructure has the lowest 

corrosion rate. This is because the grain size and number of precipitated particles for steel 

with a martensitic microstructure is bigger than those for steels with a ferritic + bainitic 

or ferritic microstructures. Bigger grain size adds to the surface area for corrosion due to 

the fact that martensite grain boundaries are more reactive than ferrite or bainite. 

Meanwhile, Ueda and Takabe (1999) found that tempered martensitic structure showed 

lower corrosion rates than ferrite/pearlite structure, but suffered localized corrosion (as 

cited in D. A. Lopez, 2003). In the martensitic steel, cementite is homogeneously 

dispersed. Due to the lack of anchoring, the corrosion products peel off partially. 
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Jia Guo, Shanwu Yang, Chengjia Shang, Ying Wang and Xinlai He (2008) stated that 

homogeneous microstructures, proper amounts of carbon content and fine carbon-rich 

phases produced by appropriate processes are beneficial to the corrosion resistance of 

steels. Uniform distribution of fine carbon-rich phases which results from appropriate 

carbon content increases weathering resistance of the steel. 
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CHAPTER 3: METHODOLOGY 

 

3.1 Project Flow Chart 

The project takes about 29 weeks to complete. In order to ensure that the project 

progresses smoothly and finished on time, its flow has to be well planned. The flow chart 

of the project is as shown in Figure 1. The Gantt chart is presented in section 3.3.  
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3.2 Experimental Methodology 

3.2.1 Sample Collection 

To obtain various microstructures, samples are collected from different grades of carbon 

steel. Some of the samples are of the same grade but different type of heat treatments. 

The scope of collection is limited to grades of carbon steel which are commonly used for 

offshore pipelines. They are obtained from several sources, some of which from pipe 

manufacturers and some from Centre for Corrosion Research (CCR), Universiti 

Teknologi PETRONAS. The overall list of samples and their respective heat treatments is 

shown in Table 1. Mill certificates of the samples obtained from Kencana Petroleum are 

provided in the appendices. 

 

3.2.2 Heat Treatment 

One of the samples, which is API 5L X52 is heat treated in a furnace. It is heated to 

900°C in 1 hour, dwelled for 1 hour, water quenched to room temperature, before heated 

again to 300°C. After reaching 300°C, it is let cool to room temperature inside the 

furnace. 

Table 1: Details of Samples 

Sample 
Number Supplier Manufacturer Heat Treatment Grade 

1 Kencana V&M 
Normalized condition min 920°C 
cooling air 

API 5L X42 

2 Kencana ArcelorMittal 
Hot rolled above 860°C and cooled 
in still air 

API 5L X42 

3 Kencana V&M 
Normalized condition min 920°C 
cooling air 

API 5L X42 

4 CCR  
Heated to 900°C, water quenched 
and tempered at 300°C 

API 5L X52 

V&M: Vallourec & Mannesmann Tubes 
CCR: Centre for Corrosion Research, UTP 
Kencana: Kencana Petroleum 
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3.2.3 Sample Preparation and Microstructural Examination 

Sample preparation is done on each of the samples, involving sectioning, mounting, 

grinding, polishing and etching, according to this procedure: 

1. The pipe is cut down to approximately 10 mm square by abrasive cutter. 

2. The sectioned sample is hot-mounted with phenolics. 

3. The mounted sample is grinded using grinder machine with wet silicon carbide 

paper. The grinding process starts with 120 grit paper, followed by 240 grit, 320 

grit, 400 grit, 600 grit, 800 grit, 1200 grit and 2400 grit. 

4. Diamond paste 1 micron is used to polish the sample on the rotating polishing 

cloth. After polishing, it is rinsed with distilled water followed by ethanol, before 

dried by a dryer. 

5. The sample is then etched in 2% nital (nitric acid and ethanol mixture). After 

etching, it is rinsed with distilled water and ethanol. It is then dried by the dryer. 

6. The microstructure of the sample is examined with Leica DM LM optical 

microscope at 100x and 500x magnification. 

 

3.2.4 Corrosion Testing 

 3.2.4.1 Sample Preparation 

Before corrosion test is carried out, sample preparation is necessary and done 

according to the following procedure, for each sample: 

1. Sample is sectioned into small pieces, about 1 cm2 each, using abrasive cutter. 

2. The actual length and width of the sectioned sample are measured using 

digital vernier calliper. These measurements are used to calculate the surface 

area to be observed of the sample. 

3. Copper wire is soldered to the sample and covered with a transparent tube. 

4. A mixture of epoxy resin and hardener with epoxy resin-to-hardener ratio of 

5:1 is weighted and slowly stirred until clear mixture colour is obtained. 
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5. The mounting cup is greased with release agent to ease the removal of the 

mounted sample. 

6. The sample, along with the copper wire and the transparent tube is placed into 

the mounting cup. The epoxy resin mixture is then poured into the mounting 

cup until it covers a little bit above the tube level. 

7. The sample is left for one day to allow the epoxy resin mixture to solidify. 

8. After one day, the sample is removed from the mounting cup. It is labelled for 

easy identification. 

9. The mounted sample is grinded using grinder machine with wet silicon 

carbide paper. The grinding process starts with 180 grit paper, followed by 

240 grit, 320 grit and 600 grit. 

10. After grinding, it is rinsed with distilled water followed by ethanol, before 

dried by a dryer. 

11. Steps 9 and 10 are repeated with another sectioned piece of the same sample 

but without mount.  

 

Figure 2: Equipments used for sample preparation. (a) Abrasive cutter (b) Grinder machine 

 

a 

b 
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3.2.4.2 Linear Polarization Resistance (LPR) Test 

Glass cell is used to simulate the actual operational conditions of offshore 

pipelines and the CO2 environment. The test is conducted in a static condition. 

Before the test is commenced, some of the necessary parameters are determined, 

as in Table 2. 

Table 2: Test Parameters 

Parameter Details 
Solution 3% NaCl 

Temperature 50°C 
De-oxygenation gas 1 bar CO2 

pH 4 
Measurement Technique LPR & EIS 

Duration 2 weeks 
 

The test follows the following procedure: 

1. 30.7 grams of NaCl is weighted, mixed with 1 litre of deionised water, and 

stirred to achieve 3% NaCl solution. 

2. The solution is purged by CO2 gas for 1 hour to remove oxygen. The 

temperature is set to 130°C using hot plate to achieve solution temperature of 

50°C at the end of purging process. 

3. After purging process, sample is placed in the glass cell, along with other 

electrodes, and connected to the channels of the ACM Potentiostat instrument. 

The sample is left for 2 weeks. 

4. Steps 1 to 3 are repeated for other samples. 

5. After 2 weeks, the samples are examined under Field Emission Scanning 

Electron Microscope (FESEM) to view the sample surface and film formation. 

Elemental analysis is done with SEM – EDX. 
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Figure 3: Equipments used. Top: Field Emission Scanning Electron Microscopy (FESEM), Bottom: 
Corrosion Test Setup 
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Hot Plate 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

4.1 Characterization of Microstructures of Various Heat Treatments 

For characterization of microstructure, the samples can be divided into two groups, 

according to their grades, which are API 5L X42 and API 5L X52, for comparison 

purpose. 

 

4.1.1 API 5L X42 Samples 

Three samples (samples 1, 2 and 3) of this grade are examined. All of them are seamless 

pipes with normalising treatment, which is a heat treatment process where steel is 

austenitised before being allowed to cool in air. This process generates a microstructure 

of equiaxed ferrite and pearlite (D. Clover et al., 2004). Consistently, all of the samples of 

this grade have ferrite/pearlite microstructures. The microstructures of these samples are 

shown in Figure 4. 

 

Sample 1 and sample 3 are austenitised to the same temperature (920°C) but differ in 

their diameter. Sample 1 is a 1 inch pipe whereas sample 3 is a 4 inches pipe. The 

microstructure of sample 1 is banded fine ferrite/pearlite whereas sample 3 has coarse 

ferrite/pearlite microstructure. The difference may be caused during the fabrication 

process of the line pipes. Although they undergo exactly the same heat treatment, the 

section of steel from which line pipe 3 was cut may have longer time allowance for the 

grains to grow. It was reported by D. Clover et. al. (1999) that banded microstructure is 

produced by preferential formation of pearlite along bands rich in manganese. More 

carbon-bearing phases (pearlite) are present in sample 3 as compared to sample 1. This 

may be due to higher manganese content in sample 3. Manganese increases the volume 

fraction of carbon-bearing phases present for a given carbon content (D. Clover, 1999).  
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Figure 4: Microstructures of API 5L X42 samples etched in 2% Nital at 100x magnification. Top: Sample 1 (banded, 
fine ferrite/pearlite), Middle: Sample 2 (fine ferrite/pearlite), Bottom: Sample 3 (coarse ferrite/pearlite)  

 

On the other hand, sample 2 is austenized to 860°C, which is lower than the other two 

samples, before being allowed to cool in air. This results in fine ferrite/pearlite 

microstructure. There are two factors that control the size of the new grains which are 

rate of transformation and size of the prior grains (John D. Verhoeven, 2007). Therefore, 
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it can be understood that smaller austenite grains produce smaller ferrite/pearlite grains. 

To obtain smaller austenite grains, the austenizing temperature should be held as low as 

possible. Thus, the lower austenizing temperature, the smaller ferrite/pearlite grains that 

will be produced. 

 

4.1.2 API 5L X52 Quenched & Tempered Sample 

This sample has a combination of ferrite, bainite and tempered martensite microstructure, 

as shown in Figure 5. Rapid quenching in water prevents phase transformation, by 

providing a narrow window of time for the reaction to occur hence producing martensite 

structure. The sample is then tempered from 120°C to 300°C, allowing some of the 

martensite to transform into lower bainite. 

 

 

Figure 5: Microstructure of Quenched & Tempered API 5L X52 sample etched in 2% Nital at 100x 
magnification. 

 

4.1.3 Summary of Microstructure of Samples 

Generally, the samples are assessed in terms of the phases present, phase distribution, and 

grain size. The summary of microstructures of all the samples is as in Table 3. 

Tempered 
Martensite 

Bainite 

Ferrite 
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Table 3: Summary of Microstructure of Samples 

Sample Number Microstructure 
1 Banded, fine ferrite/pearlite 
2 Fine ferrite/pearlite 
3 Coarse ferrite/pearlite 
4 Ferrite/bainite/tempered martensite 

 

4.2 Influence of Microstructure on Corrosion Performance  

4.2.1 Corrosion Rate from Linear Polarization Resistance (LPR) 

Corrosion rates of each sample were recorded every hour throughout the duration of the 

experiment. The graph of corrosion rate against time is shown in Figure 6. It can be seen 

from the graph that for all samples, the corrosion rate slowly decreases as the experiment 

commenced and started to increase again after one week. This may be because after one 

week, adherent corrosion scales formed on the surface of the samples were slightly 

removed. As a result, the surface became less protected as compared to the initial 

condition. Average corrosion rates of the samples are summarized in Table 4. 

 

Sample with banded, fine ferrite/pearlite structure has the highest average corrosion rate 

among all samples. D. Clover (1999) reported that samples with a banded ferrite/pearlite 

structure performed poorly in terms of localised corrosion. This was due to the segregated 

distribution of the iron carbide or cementite phase within this steel. Cementite is cathodic 

to ferrite, thus ferrite will be preferentially corroded in pearlite grains. This leaves the 

cementite as porous mass, providing firm foundation for the iron carbonate scale thus 

protecting the steel surface. Too much of localized corrosion may cause the corrosion rate 

to increase as well. In other microstructures, the cementite is much more evenly 

distributed. The cementite distribution is controlled by heat treatment. Quenched steel has 

a more even distribution than normalized steel. 
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Figure 6: Corrosion rate trend of all samples in CO2 environment with pH 4 and temperature, T = 50°C 

 

Table 4: Summary of Corrosion Rates of Samples 

Sample 
Number Grade Microstructure Average Corrosion Rate 

(mm/year) 
1 API 5L X42 Banded, fine ferrite/pearlite 3.8 
2 API 5L X42 Fine ferrite/pearlite 2.4 
3 API 5L X42 Coarse ferrite/pearlite 3.3 
4 API 5L X52 Ferrite/bainite/tempered martensite 2.2 

 

Corrosion rate of fine structure is significantly lower than that of coarse structure. When 

scanned by Field Emission Scanning Electron Microscope (FESEM), it was found that 

more iron carbonate film was present on the surface of sample 2 than it was on sample 3. 

Furthermore, the iron carbonate films on sample 2 surface are more evenly distributed 

and cover most of the surface area, whereas on sample 3 surface, some areas are not 

covered by the scales. This film or adherent scale provides protection against corrosion 

for the steel surface. FESEM images of these samples’ surface are shown in Figure 7. 
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Ferrite/bainite/tempered martensite microstructure was observed to have the lowest 

average corrosion rate hence the best corrosion resistance.  

 

 

 

Figure 7: FESEM images of samples at 500x magnification. Top: Sample 2 (Fine ferrite/pearlite), Bottom: 
Sample 3 (Coarse ferrite/pearlite) 

 

4.2.2 Corrosion Rate from Electrochemical Impedance Spectroscopy (EIS) 

EIS measurement is performed three times throughout the experiment; at the beginning (0 

hour), after one week and at the end (after two weeks). Based on the results, all samples 

indicate the same trend such that the corrosion rate declines after one week. The Nyquist 
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plots for all samples are shown in Figure 8. The x-axis of the plot represents polarization 

resistance, Rp. The polarization resistance is inversely proportional to the corrosion rate. 

 

 

 
Figure 8: Nyquist plots for all samples 

 

If the corrosion rates of all samples after two weeks are compared, the result slightly 

contradicts the findings in LPR. The corrosion rates from EIS after two weeks are 

summarized in Table 5. Corrosion rate of sample 2 (fine ferrite/pearlite) is lower than that 

for sample 4 (ferrite/bainite/tempered martensite). In LPR measurement, the average 

corrosion rate of sample 2 is slightly higher than sample 4. This suggests that fine 

ferrite/pearlite microstructure also has good corrosion resistance. 
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Table 5: Corrosion Rate after 2 Weeks 

Sample 
Number Grade Microstructure Corrosion Rate after 

2 weeks (mm/year) 
1 API 5L X42 Banded, fine ferrite/pearlite 7.6 
2 API 5L X42 Fine ferrite/pearlite 4.7 
3 API 5L X42 Coarse ferrite/pearlite 6.9 
4 API 5L X52 Ferrite/bainite/tempered martensite 5.4 
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CHAPTER 5: CONCLUSION 

 

5.1 Conclusion 

The relationship between heat treatment, microstructure, and corrosion performance was 

investigated. The microstructure of carbon steels which are commonly used in 

hydrocarbon transportation mostly consists of ferrite and pearlite phases. However, it is 

more than just the phases that matters. The size of the grains, volume fraction of the 

phases and its shape may also have influence on the corrosion performance of the carbon 

steel. Therefore, these little variations are also taken into consideration for this project. 

The manganese content affects the fraction of pearlite present in a carbon steel. The 

higher the manganese within a steel, the larger the fraction of pearlite will result. In 

normalizing heat treatment, to obtain a finer ferrite/pearlite microstructure, finer austenite 

grains are required. For this reason, the austenizing temperature should be held as low as 

possible.  

 

For this project, four samples are obtained, all with different microstructures: 

 Sample 1: Banded, fine ferrite/pearlite 

 Sample 2: Fine ferrite/pearlite 

 Sample 3: Coarse ferrite/pearlite 

 Sample 4: Ferrite/bainite/tempered martensite 

 

From the experiment conducted, fine ferrite/pearlite and ferrite/bainite/tempered 

martensite microstructures show the best corrosion resistance. EIS results shows that fine 

ferrite/pearlite performs slightly better than ferrite/bainite/tempered martensite. It can 

also be concluded that fine structure resists corrosion much better than the coarse one. 

Morphology results from FESEM indicate that more iron carbonate scale are found on 

the steel surface of fine structure than the coarse one. The scales are evenly distributed 
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and cover large portion of the surface whereas for coarse structure,  some areas are not 

covered. Fine structure anchors scale better than the coarse one. 

 

Carbon steel with banded ferrite/pearlite has the highest corrosion rate thus the poorest 

corrosion resistance. This is due to the segregated distribution of cementite within this 

steel. As cementite is cathodic to ferrite, preferential corrosion of ferrite within pearlite 

(lamellar structure of ferrite and cementite) grains leaves pores which anchor iron 

carbonate scale. Since the cementite is not evenly distributed, some areas are not 

protected against corrosion by the film. This tends to cause localized corrosion. 

 

Studies on the influence of microstructure on the corrosion performance of carbon steel is 

going to be beneficial for the oil and gas industry. The understanding upon this subject 

will help in the decision of the best-suited material for offshore pipelines, particularly. 

Proper selection of corrosion-resistant material reduces the required corrosion allowance 

thus save costs and prolong the service life of the pipelines.  

 

5.2 Recommendation 

Several improvements can be made to this project for future work and investigation. To 

achieve more convincing result, more samples from each microstructure should be tested. 

The result would be firm and convincing conclusion can be made if all the samples of the 

same microstructure shows the same result. It would also be better if more variation of 

microstructures can be obtained. This would enlarge the scope of investigation and there 

may be other microstructure which has better corrosion performance. 

 

The method of evaluation can also be improved by measuring the penetration depth to 

assess in terms of localized corrosion. Measurement of film thickness may also help in 

understanding the corrosion performance in terms of corrosion film mechanism. 
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