
Ping Pong Simulation

by

Mohd Zulkhairi Bin Radzi

Dissertation submitted in partial fulfillment of
the requirements for the

Bachelor of Technology (Hons)
(Information and Communication Technology)

Universiti Teknologi PETRONAS
Bandar Sen Iskandar

31750 Tronoh

Perak Darul Ridzuan

JAN 2008

Approved by,

CERTIFICATION OF APPROVAL

Table Tennis Simulation

by

Mohd Zulkhairi Bin Radzi (6505)

Dissertation submitted in partial fulfilment of

the requirement for the

Bachelor of Technology (Hons)

(Information and Communication Technology)

JANUARY 2008

(Y?w Kwang Hooi)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in references and acknowledgements,

and that original work contained herein have not been undertaken or done by

unspecific sources or persons.

7

Mohd Zulkhairi Bin Radzi

11

ABSTRACT

The purpose of this project is to come out with a working prototype of the Ping Pong

game where the user can play Ping Pong game by using wireless detector of Ping

Pong bat that is already equipped with infra red LED. Since normal virtual reality

application requires a complex virtual reality system with a lot of wires and

sophisticated gadgets to handle the application, this prototype of virtual reality Ping

Pong game can be played by only using webcam and modified Ping Pong bat and the

system requirement for the application is only average running PC that equip with

Intel Pentium 4 or AMD Athlon. This project requires me to develop a game engine

by using either DirectX or OpenGL graphic libraries. Both offer inherent advantages

and disadvantages, hence warranting a study about these libraries and come out with

a better solution. This project use waterfall method where the project consist of 3

phases that consist of all development step in waterfall model. Waterfall model is

relevant because the project does not involve with customer. Hardware setup and

basic application is done where the motion capture device is ready to be used and the

application with basic functionality has completed. There is a lot of improvement

that can be made to improve the whole system, both hardware and software. But

there are limit where I can improve the hardware since the driver for motion capture

is confidential.

in

ACKNOWLEDGEMENT

I would like to express my deep and sincere gratitude to my supervisor, Mr Yew

Kwang Hooi for his wide knowledge and creative way of thinking in assisting this

project. His understanding, encouraging and personal guidance have provide a good

basis for the present report.

I wish to express our warm and sincere thanks to Dr Fun Wey for allowing me to use

his technology, 3DXense for the purpose of learning and completing this project.

And also his great ideas and support help me in developing this project. Also not to

forget Mr Phyar from China, for allowing me to use his physics engine in the project.

His great support help me in developing this project to a better way.

My warm thanks are due to those who have directly or indirectly assisted me in this

study, be from local or from worldwide community. Their kind support and guidance

have been of great value in this study.

Not to forget to all my family, my friends and whoever involve in assisting me in this

project.

IV

TABLE OF CONTENT

CERTIFICATION OF APPROVAL i

CERTIFICATION OF ORIGINALITY ii

ABSTRACT , iii

ACKNOWLEDGEMENT iv

TABLE OF CONTENT v

LIST OF FIGURES vi

LIST OF EQUATION vii

CHAPTER 1 INTRODUCTION 1

1.1 Background Study 1

1.2 Problem Statement 2

1.2.1 Problem Identification 2

1.2.2 Significant of the Project 2

1.3 Objectives and Scope 3

1.3.1 Objectives 3

1.3.2 Scope of Studies 3

CHAPTER 2:LITERATURE REVIEW 5

2.1 DirectX Graphics Library 5

2.1.1 Introduction 5

2.1.2 Direct3D 5

2.2 OpenGL Graphics Library 6

2.2.1 Introduction 6

2.2.2 Khronos Group 6

2.2.3 OpenGL Design 7

2.3 3DXense 8

2.3.1 Introduction 8

2.3.2 How Does it Works 8

2.3.3 Integration of 3DXense into the application 10

2.3.4 Limitation of 3DXense 12

2.3.5 Advantage of 3DXense 12

2.4 In Game Physics 14

2.4.1 Vector 15

v

2.4.2 Mass, Center of Mass 15

2.4.3 Kinematics 16

2.4.4 SPE Physics Engine 20

CHAPTER 3 METHODOLOGY 23

3.1 Phase 1 23

3.1.1 Requirement 23

3.1.2 Specification 24

3.1.3 Design 24

3.2 Phase 2 and 3 32

3.2.1 Implementation 32

3.2.2 Bug Fixing 32

3.2.3 Integration 32

3.3 Methodology Diagram 33

CHAPTER 4:RESULT AND DISCUSSION 34

4.1 Result 34

4.1.1 Hardware Setup 34

4.1.2 Problem Encountered and Solution 37

4.2 Discussion 38

CHAPTER 5:CONCLUSION AND RECOMMENDATION 39

5.1 Conclusion 39

5.2 Recommendation 39

REFERENCES 40

APPENDICES 41

VI

LIST OF FIGURES

Figure 1: Changes in the LED size 9

Figure 2: Interaction between the application and driver 11

Figure 3: The movement of the ball in 2D particle kinematic 16

Figure 4: Sample of 3D particle kinematics problem 19

Figure 5: Flow chart for the ball physics 25

Figure 6:-Ball angle or direction 26

Figure 7: Flow chart for the whole application 28

Figure 8: Flow chart for Init Direct 3D 29

Figure 9: Flow chart for Init Geometry 30

Figure 10: Flow chart for Render 31

Figure 11: Methodology 33

Figure 12: Modified ping pong bat 34

Figure 13: Camera used for the motion capture. 35

Figure 14: Hardware setup 36

Figure 15: Screenshot of the simulation 37

vn

LIST OF EQUATION

Equation 1: Velocity 17

Equation 2: Acceleration 17

Equation 3: 3D particle calculation 19

vm

1.0 CHAPTER 1: INTRODUCTION

1.1 Background Study

Game always being associated with the traditional ways of input device such as

keyboards and joy pads. Since games industry nowadays has evolve in many

different ways, there are lots more that developer can explore in giving gamers

different kind of ways to plays games. With the release of Nintendo Wii, gamers now

have another choice of how they can enjoy playing games. Nintendo Wii use

different kind approach by modifying their controller to be used with motion

detection. Say goodbye to the conventional ways of pressing button. Nintendo Wii's

controller called Nunchuck can detect the acceleration and 2D movement of the

players hand and thus user can have a lots of ways for example to play tennis game.

Note that Nunchuck can only detect 2D movement and acceleration, not 3D

movement detection, thus can limit the capability of the game. What if the user

swings theNunchuck in different kind of style while playing tennis game? This gives

developer opportunityto explore more into motiondetection games.

Affmeontech is a company that develop the technology to detect 3D motion using

infrared LED. The technology not onlycan detect flat 2D movement of the LED, but

also back and forth movement of the LED making it perfectly suit the virtual reality

world where the movement of the LED will be reflected real time into the

application. Although it doesn't have any accelerometer to detect the acceleration of

the movement, but with the size calculation of the LED represented by the dot in the

driver, it can calculate the acceleration and speed of the movement.

1.2 Problem Statement

1.2.1 Problem Identification

Virtual reality is very expensive and not many people can it. Since the space required

to set up the system is huge and the complexity of the system is complex, it is not

suitable for fun usage and gaming purpose. Game associated with the virtual reality

technology is interesting to explore, but because of the limitation of current system, it

make the development of games using virtual reality technology is not practical at

all. It is interesting to see if games can evolve where we can actually punch the

enemy using our own style and play tennis games with the real racquet, not just

pressing the button and the movement is already recorded thus making the game

pretty limited to play since it only repeat what have been recorded. Virtual reality can

also be used as a training simulation. There has been several simulation machine

develop to simulate the real time situation such as flight simulation and disaster

simulation. But there are no single simulation that can be used as a sports simulation

such as tennis and ping pong. This is because the limitation of virtual reality where

the space required is huge and also if sport simulation like tennis required racquet,

there will be a lot of wires connected to the racquet. So the challenge for the industry

is that they must come out with a more simple virtual reality technology that is

cheap, and doesn't require a lot of space and wires.

1.2.2 Significant of the Project

The goal of the project is to understand more about DirectX and openGL

programming where this two API is the key to explore more about game

development. Game development involves a lot more areas not only specific to

graphic programming, but also sound programming and artificial intelligence

programming.

The goal of the project is also to learn more about motion detection system as this

technology not only can be implemented in virtual reality, but also in other sector

such as security, manufacturing and weapon system.

1.3 Objectives and scope

1.3.1 Objectives

a) To develop a functional Ping Pong game by using infra red sensor so that the

user can play Ping Pong game using real Ping Pong bat.

b) To develop a simple artificial intelligence for opponent that player or user can

play Ping Pong game with the AI opponent.

c) To set up the system for Ping Pong game that require Ping Pong bat that has

been modified to make sure that the camera can detect the movement of the

bat.

1.3.2 Scope of Studies

The project research will focus on game development, artificial intelligence and

game programming. For game development, the author will study about related

methodology that has been used by other game developer to develop the game. There

are quite a few methodologies that are needed to note since the project will have

limited amount of time and resource. Artificial intelligence will be importantbecause

the game itself require opponent for the user to play. But this feature is optional

because of the limited time available have to develop the game. The last one will be

the programming itself where the author will study about the game programming

where it involve studying about DirectX and openGL.

The author will develop the game itself including the engine of the game and 3D

model in the game itself. For the motion detection functionality, the driver and the

hardware will be provided by Affineon Technologies Pte Ltd. The company will

provide me tweaked driver especially for my game which is Ping Pong game. The

motion detection engine has been loaned to me by the company including the camera

that will be used in the project.

By the end of the project development, there will have a working prototype of the

system and the game itself where the user can play Ping Pong game using the real

Ping Pong bat.

2.0 CHAPTER 2: LITERATURE REVIEW

2.1 DirectX graphic library

2.1.1 Introduction

DirectX is graphic library develop by Microsoft Corporation to cater the growing

need of standard graphic library for Windows platform. DirectX library include

interface for handling multimedia object such as graphic, 2D and 3D, audio, network

and video. Throughout the development of DirectX, some of the library has been

taken out from DirectX such as DirectPlay and DirectShow for handling task such as

network application and video processing.

2.1.2 Direct3D

Direct3D is the key component of DirectX where Direct3D is the interface for

programmer or developer to develop 3D application. Earlier version of DirectX

includes both DirectShow and Direct3D where Direct3D is only for 3D rendering

and all the 2D rendering is being process by DirectShow. But with the latest version

of DirectX, after DirectX 9.0a, DirectShow has been taken out from DirectX

interface. Most of 2D processing library is already included in Direct3D and if

developers need to develop 2D application, then Microsoft already provide developer

with graphic library for 2D image processing which is out from DirectX, Windows

GDI and Windows GDI+.

2.2 OpenGL Graphic Library

2.2.1 Introduction

Differ from DirectX, openGL graphic library focus solely on 2D and 3D graphic

processing. OpenGL does not have any library associated with other application such

as networking and audio processing. Company developing games with openGL

usually have their own set of library for other multimedia application such as

openAL for audio processing and C++ socket library for networking application.

Some of them develop from scratch their own library to cater the need for ever

evolving game industry. During early days, OpenGL only focus on engineering

application such as Computer Aided Design and hardly there is a games develop

using OpenGL.

2.2.2 Khronos Group

Khronos Group is the group of company that combine together to manage the flow of

openGL architecture. Before this, openGL is being monitored and revised by a group

called ARB, where ARB stands for OpenGL Architecture Review Board. On 21

September 2006, openGL Architecture ReviewBoard has been passed on to Khronos

Group and since that, they are the one who manage and review architecture of

openGL. Khronos Group consists of following member:

• AMD

• Creative Labs

• Intel

• id Software

• NVIDIA

• Sony Computer Entertainment

• Sun Microsystems

• Texas Instrument

2.2.3 OpenGL Design

OpenGL serve two main purposes;

• To hide the complexity of interfacing the different 3D accelerator, by

presenting the programmer with a single, uniform API.

• To hide the differing capabilities of hardware platform, by requiring that all

implementation support the full openGL feature set(using hardware

emulation of necessary)

OpenGL's basic operation is to accept primitive such as points, lines, and polygons,

and convert them into pixels. This is done by a graphics pipeline known as the

openGL state machine. Most openGL commands either issue primitives to the

graphic pipeline, or configure how the pipeline processes these primitives. Prior to

the introduction of openGL 2.0, each stage of the pipeline performed a fixed function

and was configurable only within tight limits. OpenGL 2.0 offers several stages that

are fully programmable using openGL ShaderLanguage.

OpenGL is a low level, procedural API, requiring the programmer to dictate the

exact steps required to render the scene. This contrast with the descriptive (aka scene

graph or retained mode) APIs where a programmer only need to describe a scene and

can let the library manage the details of rendering it. OpenGL's low-level design

requires programmers to have a good knowledge of graphic pipeline, but also give a

certain amount of freedom to implement novel rendering algorithms.

2.3 3DXense

2.3.1 Introduction

3DXense is the technology develops by Affinieon Technology Pte. Ltd. based on

Singapore. Affinieon Technology is the company specialized in developing motion

detection technology that deal with virtual reality. The company has release a few

games that related in virtual reality such as golf game and sword fighting game that

required the user to move like a real golfer or sword fighter. The technology is the

first that require only single camera to detect 6 degree of freedom which is roll, yaw

and pitch.

3DXense enable us to be able to use the normal webcam as a motion detector and not

like the normal virtual reality equipment which require a lot of wires and consume a

lot of spaces. The price for the development is also cheaper than the normal virtual

reality where games develop using 3Dxense technology cost no more than a

thousand but for the normal virtual reality, equipment itself cost more than a

thousand and not including the software, thus making it not suitable for home usage

and merely for lab or testing purpose only. 3DXense on the other hand only require

webcam and infra red led only and cost sometime not more than a hundred.

2.3.2 How does it works

3DXense will takes the coordinate of the infra red LED and translate it into real

world coordinate in 3D world. Note that when the driver captures the location of the

infra red LED, it is actually reverse from the actual world. This is because the user or

the object is actually facing the webcam and not back facing the webcam. The

problem was solved by translating the coordinate and inverse the coordinate to match

the real world mapping of the bat or the infra red LED.

The driver detects the motion and acceleration of the infra red LED by calculating

the size of the LED signal that varies between the range of the LED and the camera.

For example if the infra red LED is located close to the camera, the size of the dot

that appear in the driver will be bigger that the size ofthe infra red LED that located

far away from the camera. By using this information, we can calculate the

acceleration and the speed of the infra red LED or the bat since the bat is equipped

with infra red LED itself. The calculation will involve the size of the LED signal, and

how it varied between times.

For example, figure 1 below shows how the calculation involved in the driver
calculation.

After the
Before the LED move
LED move 2 second

Figure I Changes in the LED size

Based on the example inthe picture, we can calculate the acceleration ofthe LED by

calculating the initial diameter of the LED, the time taken and the diameter of the

LED after it moved based on the time taken. In the driver, the programmer can

actually set the time interval of how many times the driver will capture the size or

diameter of the LED signal. The more the driver capture the diameter in a period of

time, the calculation will be more accurate and precise, but it will degrade the

performance of the computer since it will require a lot more processing time. So

developer has to decide which the optimum interval time for each capture is so that

the performance and the accuracy of the input will be balance out.

2.3.3 Integration of 3DXense into the application

In order for the application to get the coordinate of the Ping pong bat, it needs to

integrate with the 3DXense function. The developer of 3DXense has made it easier

by developing the function specially to get the information from the driver into the

application. The developer that wants to use the technology can just insert the

function into their application and then the function will do the underlying process to

communicate with the driver and get the coordinate of the infra red LED.

After the information and data regarding the coordinate of the infra red LED has

been acquired, the application will then translate it into the 3D world coordinate and

then match it with the coordinate of the virtual ping pong bat in the 3D world. The

theory is much the same as what they use in the motion capture technology in film

making industry. The actor will wear a cloth that have white or green dot at the

texture of the cloth. The dot usually located on the articulation point of human

anatomy. The dot than will be match with the artificial human in the 3D world or

monster in the 3D world just as what we see how 3D character in movies and games

move around.

10

Figure 2 belowshows how the driver and the application will interact with each
other.

Then the driver will calculate

the acceleration and the position
of the LED based in the size and

time interval of the LED.

The driver will first capture the
coordinate of the infra red LED, and
then inverse it to match the real world

coordinate

Then the application will
translate the coordinate and

assign the coordinate to the
ping pong bat to make it
move just like the bat in the
real world.

Figure 2 interaction behvmi itu: application and driver

11

2.3.4 Limitation of the 3DXense

3DXense can only detect the object movement and not the full body movement. This

will limit the possibility of the game or simulation where the developer cannot

develop a game or simulation that includes the motion of the character. The

simulation can be expanding to a state where the application can detect the

movement of the body including the ping pong bat movement.

Also the speed of the motion capture algorithm depends hardly on the capability of

the webcam and the shutter lenses. If the users use cheap webcam where the shutter

speed of the webcam is slow and can only process 5 frames per second where the

high performance webcam can takes more than 15 frames per second. This will make

the performance of the application degrade because the motion capture device cannot

take enough frames to make it accurate to calculate the movement of the ping pong

bat.

2.3.5 Advantage of 3DXense

The advantage of using 3DXense rather than the conventional virtual reality

technology is that the cost of the equipment to setup the environment for the motion

capture is cheap. The cost for the development in this project is less than RM 400

where else if the same project developed using conventional virtual reality

technology, it could cost more than a few thousand Ringgit.

Another advantage of using this technology is that 3DXense does not require a lot of

space to set up the environment. For ping pong simulation, the user can just put the

webcam in front of their monitor and start playing it in front their personal computer

without having to conserve a lot of space to set up the environment.

3DXense also does not require any wires connected to the ping pong bat. It is

because the camera or the tracker will only detect the signal emitted by the infra red

LED and then calculate it based on the movement and location of the LED. But for

the conventional virtual reality setup, it required a lot of wires and thus making it

12

hard for the user to do free movement. The user's movement also limited because of

the limitation on the length of the wires itself.

13

2,4 In Game Physics

Physics in ping pong game plays a major role in the movement of the ball. Newton's

Laws of Motion will be used throughout the development of the game where it

involved the ball's reaction to the ping pong bat, ping pong table, force, and gravity

force.

According to Physics for Game Developer(2002)

Law I

A body tends to remain at rest or continue to move in a straight line at

constant velocity unless it is acted upon by an external force. This is

the concept of inertia.

Law II

The acceleration of a body is proportional to the resultant force acting

on the body, and this acceleration is in the same direction as the

resultant force.

Law III

For every force acting on a body (action) there is an equal and

opposite reacting force (reaction) in which the reaction is collinear to

the acting force.

(p.g- 1)

Based on the above quote, there exist three laws that need to be considered when

designing the game physics.

Law I will be applicable when the ball is being thrown from the training machine,

then the ball will continue move, but in order to simulate real life physics, gravity,

and traction with the air need to be considered.

Law II is applicable when designing how the ball will react when ping pong bat hit

the ball. Initially the ball will move towards the player, then after player hit the ball

with ping pong bat, the ball movement will change according to the force and

direction of ping pong bat. Thus this will make it as close as real life physics.

14

Although the direction of the ping pong bat face should be considered when the ball,

for the sake of simplicity, that portion will be omitted and we will assume that ping

pong bat face will only constantly face on the same direction.

Law III will not be so important in this application as the physics engine that will be

coded will not use the opposite force that react on the ball. In fact, the force variable

itself will be fixed and no matter how strong the user hit the ball, the force that reacts

on the ball is still the same. Future improvement of the application will include

dynamic force variable.

2.4.1 Vector

Vector plays a major role in the game physics. This is because acceleration, velocity

and magnitude are vector. Vector operations will be used throughout the

development of the physics engine. The example of vector operation would be vector

addition, dot product and cross product.

2.4.2 Mass, Center of Mass

In order to determine how the ping pong ball react to the gravity, mass is needed and

with mass included in the calculation, center of mass need to be calculated as well. In

the game physics, we did not use mass to determine how heavy the object is, but it is

to determine how resistance the object to change direction or movement. By saying

this, it would mean the greater the mass, the harder the ball to change the direction.

More details about this will be discussed later in game physics.

Center of mass is important to when we want to calculate how the ping pong ball

reacts to the ping pong bat when the collision occur. Different center of mass would

give different result when collisions occur.

15

2.4.3 Kinematics

Kinematics will be the study of how ping pong ball motion in the game. At first, it

will be focused on 2D particle kinematic, then after the prototype for 2D kinematics

run successfully; we will focus on 3D particle kinematics.

Kinematics is the movement of the particle or object, ping pong ball in the context of

this game. Kinematics did not take into consideration forces that influence the object.

This will be applied when the ball is moving after user hit it with ping pong bat.

Linear motion will not be used here since ping pong ball is moving in projectile

movement. Refer diagram 1 for the reference.

,' ^
v,;

Initial location

Ping pong ball

^

End location

Figure 3 Tin; movement of the ball in 21) particle kinematic

Velocity and Acceleration

Velocity is the vector quantity that has magnitude and direction. The magnitude is

the speed of the object itself. The direction would be how the object move, going

forward or going backward. In this game, the ball itselfneed magnitude and direction

variable in order to calculate the velocity. By obtaining velocity of the ball, we can

further determine where the next location of the ball is. Game programming is all

about the location of the object in the end, because in order to determine the location

16

of the ball, we need velocity and the acceleration of the ball. The mathematical

expression for the velocity is

v = Aj/A/

Equation 1: Velocity

where s is the distance travel over time, t. But it programming, mathematical

expression will not do any good without changing it into programming language.

Thus the sample code to calculate velocity will be

/Velocity =/Distance//Time;

Acceleration is the rate of change of velocity over time. Mathematical

expression for acceleration is

a =Av/Ar

Equation 2: Acceleration

where v is the velocity of the object over time, t. The same goes for code in

programming language

/Acce = /Velocity //Time;

where fVelocity is taken from the result of calculation in velocity. Note that all of the

variable is in float because float is the most suitable type to be used in this

calculation because the number that we are going to calculated will not be very big,

but it also contain precisions points.

2D Particle kinematics

Before we look into 3D particle kinematics, it is better to study about 2D particle

kinematics first. 2D particle kinematics involve the movement of the object in x and

y axis only. Thus we are going to need three variable that will be used in the

17

calculation. This variable are; velocity, acceleration and displacement. This three

variables can will be included in a vector.

The movement of the object in 2D kinematics will be influenced by the gravity,

without taking into consideration wind and drag. Thus if the ball is being shoot by a

trainer machine, it will not go in straight line, but will travel in a curve line. Same

goes if we are designing shooting game, the bullet will not hit precisely at the target

but sway a little bit from the target. Throughout this application, the value of gravity

will be fixed to 9.8 m/s .

18

3D Particle kinematics

3D particle kinematics is the main physics application that will be used in this ping

pong simulation. 3D kinematics is basically the expansion of 2D kinematics by

including another unit in vector representation. This would be k unit. By including

this k unit, we will need another direction which is z. Consider the following

expression;

s = xi + yj + zk

v = ds/dt = dx/dt i + dy/dtj + dz/dt k

a =d2s/dt =Sx/dt i +Sy/dtj+Sz/dt k
Equation 3: 3D particle calculation

where s is the displacement of the object, v is the velocity of the object and a is the

acceleration of the object. Notice that there are extra one unit which is A, differ from

2D kinematics. This resemble closely to the movement of the ball where the ball will

move in 3D and not 2D in accordance to the ping pong bat. Thus it give more realism

in the game rather than the ball only move in 2D. Take an example of the problems

below, the firing of cannon from battleship to the target. In order to solve this kind of

problems, we are going to consider 3 components that is essential to calculate 3D

particle kinematics. These three components are; x component, y component, and z

component. Refer to diagram below to see the components.

Kigui't' 4 ("he sample of 3D piirtide kinematics problem

Picture takenfrom Physics/or Game Developer, O'Reily

19

2.4.4 SPE physics engine

Introduction

SPE physics is Simple Physics Engine develop by Mr. Phiar from China for

educational use and the commercial use. This physics engine has all the basic

function for physic calculation in game environment. This engine can be used for the

either DirectX or OpenGL. Current stable version for SPE physics engine is version

3.0.

Getting start

To be able to use SPE physics engine, we need to include the library and the header

file included in the SDK where these two will handle all the function calls and

calculation required to run the engine.

Although SPE physics engine have all the basics functions to deal with physics in the

game, knowledge in real world physics is a must in order to understand how the

engine works, since the function name in the engine uses real world physics terms

and this can be quite confusing if the programmer does not know any physics terms.

Function usage

There are two major calculations that I use SPE physics engine to handle the

calculation. The first one is the movement of the ball. This is prior to the general

movement of the ping pong ball. Different ball moves different way than another.

For example, tennis ball react differently when we hit it with a bat and ping pong ball

itself react differently when we hit it with a bat. This is because of the differences of

mass and elasticity. Two function in the SPE physics engine handle this calculation

which is:

virtual void SetElasticity(float elasticity) = 0;

and

20

virtual void SetMass (float mass) = 0;

As the name implies, SetElasticity and SetMass will set both of the parameter of the

ball and this information will be used to determine how the ball moves.

Next is the collision detection for the ball and the object surrounding either ping

pong bat or the table. The coding below shows how coding for the collision detection

is being handled in the program.

Parti:

LPSPERIGIDBODY speBody, batBody;
speBody=speWorld->CreateRigidBody(pShape);
batBody=speWorld->CreateRigidBody(pShape);

Part 2:

speBody->GetState()->SetPosition(pos);
speBody->GetNewState()->SetPosition(npos);
batBody->GetState()->SetPosition(pos);
batBody->GetNewState()->SetPosition(npos);

Part 3:

SPEArray list;

list.push(speBody);

list.push(batBody) ;

speWorld->DetectCollisions(list);

The code has been divided into three parts where each part is separated and their

location is different. Part 1 need to be initialize once and it reside in the geometry

initialization function where this function will initialize and create all the objects and

3D model in the game.

Part 2 and part 3 is ongoing process where every each time the game draw the 3D

objects in the game, these two part need to be executed. These two code reside in the

21

render function since before the game render all the 3D objects in the game, the

function will initialize the location of the object and then determine if the object

collide or not. If collisions occur, the engine will handle the reaction based on the

ball movement calculation stated before.

22

3.0 CHAPTER 3: METHODOLOGY

I am using waterfall model for the development of the project. The project will be

divided into three phases where the first phase will be documentation of the project.

The other two phases will be the actual coding and implementation of the project.

The different between phase 2 and phase 3 is, for phase 2, I will be developing the

game itself including major function that need to be in the game. Phase 3 will follow

the exact flow of phase 2 but the different is for the phase 3, I will be developing

extra or optional functionality for the game such as artificial intelligence for the

opponent.

Waterfall model is relevant to my project because of the project need to be developed

in sequence order. This project requires me to study about the motion detection and

graphic programming before I can proceed with the development. After all the

information required for the project has been collected, design and implementation of

the project will commence and thus make waterfall model suitable for this project.

Another reason why waterfall model is because this project does not involve

customer since this project purpose is to develop an application to test the technology

of motion detection. Thus my project development does not need to flexible to meet

the customer requirements since there is no customer involve in this project.

3.1 Phase 1

3.1.1 Requirement

In the requirement phase, I will rectify all the problem specification or problem

statement. In this phase also, I will identify all the constrain that involve in

developing the game.

The deliverable of this phase is problem statement and system constrains.

23

3.1.2 Specification

In this phase, I will come out with the system specification derive from problem

statement from requirement phase. In the system specification, I will clearly define

the function of the game and also optional functionality that will be added.

The deliverable of this phase is system specification.

3.1.3 Design

System specification from the specification phase will be translated into software

representation that includes:

a) Data structure

b) Software architecture

c) Algorithmic detail

d) Interface representation

In this phase also, I will come out with the system requirement of the project. This

includes minimum system requirement and also optimal system requirement.

The deliverable of this phase is system design.

24

Algorithm

Flow chart/or ballphysic

Diagram below show the flow chart of how the ball would react to the

environment after it being shoot out from the trainer launcher.

Start

Get the ball and ping pon^
bat coordinate

•ijinre 5 Flow ch.nl for the ball physic

25

Yes

Call collision

method to

calculate how the

ball reacts

I
Wait until the ball

finish its motion

Based on Figure 5, if the bail and the bat collide, the program will call the collision
method to determine how the ball will react to the collision. This method is important
to make sure that the ball will react accordingly based on the real world physics. The
algorithm to get the correspondent angle and acceleration for the ball is defined here.

Ball from the frame n-1

''~n Ball from the frame n
1 \ • / /

\ / /
\ / /

\ / /

Q /
ri>^

Ping pong
bat^-— / \

Angle A Angle B Angle C

Figure (\ Ball single or direction

In Figure 6, it shows where the variable for angle and the acceleration is taken. The

physics method will get the coordinate of the ball in the frame before the current

frame. Then with the coordinate of the ball in the current frame, we can actually

calculate the direction of the ball and thus we can also calculate the reaction of the

ball after the ball collides with the bat.

To get the angle or the direction of the ball after the collision, the coordinate of the

ball from each of the frame, n-1 and frame n is stored in temporary variable and we

calculate it to get the direction of the ball. The ball coordinate is being coded 3D

coordinate where it has 3 variable which is x, y and z location of the ball in the 3D

world. SPE physics engine has the functions to simplify the complexity of

calculating the vector since vector calculation is too complex.

From the coordinate, the easiest way to get the angle of the ball or the direction of

the ball is by subtract the entire variable from ball coordinate, which is coordinate of

the ball from frame n minus frame n-1. Then after we get the result, we can just use

velocity function in the engine to calculate the angle.

26

To determine how the ball reacts to the bat, we need angle C from Figure 6. Angle C

comes from the angle that we get from the velocity function in the physics engine but

is being negate so that the angle is reflecting and not repeating the old path. Thus, by

accomplish this, we get simple collision detection in the application. Note that this

collision detecting is not using the real physics theory in the real world theory, but by

manipulating some of the functions in the physics engine and also graphics engine,

which is DirectX, we can get a collision detection that can resemble the real physics.

27

Flow chart/or the project

Figure 10, 11, 12, and 13 show the flow chart the main program and the main method

used in the simulation.

Start

Init Direct3D

Init Geometry

-w Get bat coordinate

No

Detect key interrupt

I
Render

Perform resource

cleanup

i
End

•igure 7 Flow char! for the whole application

28

Init Direct 3D

Define DirectX

SDK version

Set present parameter
value

Create device

Set render state

Return

Figure 8 Flow chart for Init Direct 3D

29

(Init Geometry)
''

Create 3D model

''

Create actor for

animation

"

Initialize actor for each

model

1'

Create texture

1
Create font

1'

(^ Return J

Figure ') Flow chart for Inil: Geometry

30

f Render J
I

Clear back

buffer

''

Check collision

1'

Render scene for bat

i
Render scene for

table

i
Render scene for ball

i *

Flip back buffer

l
(Return)

Figure 10 Flow chart lor Render

31

3.2 Phase 2 and 3

3.2.1 Implementation

System design from design phase will be translated into codes where in this phase,

programming is involved. After the coding is complete, I will conduct unit level

testing to test every each component of the software to make sure that each function

is working fine.

The deliverable of this phase is the prototypeof the product.

3.2.2 Bug Fixing

Bug fixing phase is optional and it only occur if there are major bug that affect the

system and it only come after the prototype is done. Testing will occur after the bug

has been cleared out.

3.2.3 Integration

Integrationphase is the phase for installationand pilot run of the product. It includes

setting up the system and all the hardware setup to run the program. System testing

will occur in this phase and the test will run by other people and not the programmer

of the system.

32

3.3 Methodology Diagram

Phase 1

Requirement
Verify

ji pty~ c«/M-h**rt

Specification
Verify

5 p-€Ci rt<-wen*

Phase 2 and 3

Integration

Testing

Figure 1.1 Methodology

Design

Verify
J^/^u- £)U*I f%

Bug Fixing
Testing

33

Implementation
Testing

Phase 3

4.0 CHAPTER 4: RESULT AND DISCUSSION

4.1 Result

The application development has been going well. The engine for the 3D graphics

and motion capture semp is has been developed and tested .Physics engine using SPE

physics engine has been successfully integrated into the game.

4.1.1 Hardware Setup

The hardware setup for the simulation consist of ping pong bat, camera for motion
capture and the PC itself.

4 - i.«!

**K

- - _^ . -Tiri ,1 -*, '*#

'.'id

i »•

1 * . *to«j*T
' fcfl**"

*• *»«
i'rf*

Based on the figure 3, the piece of metal in the middle of the bat is to differentiate
the orientation of the bat, either facing to the camera or not.

34

Figtite 13 CuncrA u«d tor (he motioti tapttirt

35

I anhvure setup

36

•I PingPont1, Simulation

Testing for the ping pong application
._11 =0.7181. ._12 = -0.6959 yyyyy^y

Figure 15 Screciishot of the simulation

4.1.2 Problems Encountered and Solutions

Renderingproblems

At first, the rendering process of the application does not go well according to my
specification. Ping pong bat, ball and the table should be separated entity and thus,
the movement behavior of each of the object should be different. The problems
comes during rendering process where the whole object inside the 3D world move
together with the ping pong bat.

The solution for the problems is to separate the world matrix definition,
where the world matrix is actually the coordinate of the object in the 3D world. The
pseuducode sample show how the separate definition works.

Render

Begin scenefor thepingpong bat
Sendtransformation info to thegraphicpipeline
Endsceneforping pong bat

37

Begin scene/or the table
Send transformation info to the graphicpipeline
Endscenefor the table
Begin scene/or the ball
Sendtransformation info to the graphicpipeline
Endscenefor the ball

Return

4.2 Discussion

Hardware integration and physics engine integration completed. Since there is

already proven working physics engine available for the academic use, integrate the

available physics engine eliminate the time required for the physics engine

development.

Learn SPE physics enginetakes 2 weeks, and integrate it into the simulation takes 2

weeks, which make it a month to complete thephysics engine part. Butthebehavior

of theball still does not follow thereal ping pong ball physics. This is because of the

incompatibility of the SPEphysics engine and the simulation. The simulation needto

be tweak in order to solvethisproblem.

Integrating Artificial Intelligence for this project is still pending because the

simulation itself is still not finish yet. Thus integrating any extra functionality will

make it hard to complete the simulation.

While the integrating between hardware part and software part, there are few

problems that related to the cahbration of thecamera. This problem gives some error

and misses coordination of the ping pong bat. The location captured by the camera

does not seem to be consistent where thebat seems to fly out ofnowhere even when

the real bat is actually static.

The problem has been identified where the camera focus need to be adjusted so that

thecamera lens will focus on the ping pong bat. And the optimum range between the

camera and ping pong bat would be around 1 meter. Any more or less will make it

hard for the camera to determine the bat coordinate and this would result in miss

placed of the ping pong bat in the 3D world.

38

5.0 CHAPTER 5: CONCLUSION RECOMMENDATION

5.1 Conclusion

As a conclusion, the author hopes that this project will produce a great result where

the apphcation can play Ping Pong game with opponent. As for the extra

functionality, network play will be implemented if there is enough time to develop

the project where the user can play with other player throughout the local area

network.

The author also hopes that the technology can improve the current technology

available for virtual reality either in learning purpose or for fun purpose. With the

completion of the project, there will a lot more that can be improve and the project

canalso be improve to beused in training for theping pong team. The project should

be accurate enough to imitate the realping pong physics andmovement.

Also the project can open more opportunities for the student to learn more on how

virtual reality and motion capture works. Theproject is free and the source code for

the project is open so that the student can learn more on the motion detection and

game development.

5.2 Recommendation

The physics for the ball stillnot according to therealworld physics and thecollision

detection stillnot working so well becausethere are times whenthe ball did not react

to the ping pong bat. This can still be improved to make sure that the program run

according to the specification.

Motion detection still have the some weakness where the camera sometimes does not

recognize the position of the bat. Thisproblem lieson the driverspecification andthe

problemswill be forwarded to the developer of the morion detection since the driver

is confidential.

39

REFERENCES

1. Fun Wey Ph.D. Embedded Graphics Driver Architect, Infrastructure

Processor Division, CIG Asia, Intel Microelectronics (M) Sdn. Bhd.

www.3dxense.com

2. Direct3D 10,DavidBlythe, Microsoft Corporation, Presentation Paper

SIGGRAPH 2006

3. Luna, Frank. Introduction to 3D GAMEProgrammhig withDirectX

9.0.Wordware Publishing, Inc, 2003.

http://www.moon-labs.com/

4. David M. Bourg, Physics for Game Developers 1st Edition, O'Reily &

Associates, Inc. 2002

5. Kovach, Peter. Gamasutra: Inside Direct3D: StencilBuffers [08.07.00].

http://www.gamasutra.com/features/20000807/kovach Ol.htm

6. Microsoft. DirectX 9.0 SDK documentation.

http://msdn.nnCTOSoftxom/library/defaiilt.asp?tirl^/librarv/en-

us/directx9_c/directx/directx9cpp.asp

7. David Conger, Ron Little. CreatingGamesin C++: A Step-by-Step Guide.

New Riders. February 21,2006

8. Kris Gray. MicrosoftDirectX9 Programmable Graphics Pipeline. Microsoft

Press. 2003

9. Derek Pierson (3LeafDevelopment). Coding4fun: BeginningGame

Development Series. Microsoft Corporation

http:^logs.msan.com/codmg4fun/archive/2006/ll/02/938703.aspx

10. Britt L. Hannah. Object-Oriented Game Design, Amodular and logical

method of designing games. August 8 2004.

http://www.devmaster.net/articles/oo-game-design/

11. Tom Miller. Managed DirectX 9 Kick Start: Graphics and Game

Programming. Microsoft Press. 2003

40

APPENDICES

SOURCE CODE

//-

// File: Meshes.cpp
//

#include <Windows.h>

#include <mmsystem.h>
#include <d3dx9.h>

#include <dinput.h>
#include "SPE.h"

#pragma warning{ disable : 4996) // disable deprecated warning
#include <strsafe.h>

#pragma warning(default : 4996)
#pragma comment (lib, "dinput. lib")
#pragma comment (lib, "dinputS .lib")
#pragma comment (lib, "dxguid.lib")

#include "magic.h" //magic_specific
frame^data g_frame; //magic_specific
D3DXMATRIXA16 matWorld; //magic specific
D3DXMATRIX matWorldBall;

//

// Dinput declaration
//

LPDIRECTINPUT8 din; //pointer to direct input interface
LPDIRECTINPUTDEVICE9 dinkeyboard; //pointer to keyboard device

//

// Global variables
//

LPDIRECT3D9 g_pD3D = NULL; // Used to create the D3DDevice
LPDIRECT3DDEVICE9 g_pd3dDevice = NULL; // Our rendering device

LPD3DXMESH g_pTable; //mesh for table
LPD3DXMESH gj?Ball; //mesh for the ball
LPDIRECT3DTEXTURE9 g_pTexl;
LPDIRECT3DTEXTURE9 g_pTex2;
LPD3DXMESH g_J>Mesh = NULL; // Our mesh object in sysraem
LPD3DXMESH g_pBox, g_pBox2;
LPSPEWORLD speWorld; //interface for the spe physics
LPSPERIGIDBODY speBody, batBody; //lang pointer to
the spe rigid body

LPD3DXF0NT g_pFont;
D3DMATERIAL9* g_pMeshMaterial3 - NULL; // Materials for our mesh
LPDIRECT3DTEXTURE9* g_pMeshTextures = NULL; // Textures for our mesh
DW0RD g_dwNumMaterial3 = OL; // Number of mesh materials
DW0RD g_dwNumMaterials2 - OL; // Number of mesh materials
float time;
Float cam_angle = 0;
//

// Function prototype for the direct input
// F

//void initDInput(HINSTANCE hinstance, HWND hWnd);
//void detect_keys(void);
//void cleanDInput(void);

//

// Name: InitD3D()
// Desc: Initializes Direct3D
//

HRESULT InitD3D(HWND hWnd)
{

// Create the D3D object.
iff NULL = (g_pD3D = Direct3DCreate9(D3D_SDK_VERSION)))

return E FAIL;

41

// Set up the structure used to create the DSDDevice. Since we are now
// using more complex geometry, we will create a device with a zbuffer.
D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory{ &d3dpp, sizeof(d3dpp));
d3dpp. Windowed = TRUE;

d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.BackBu£ferFormat - D3DFMT_UNKNOWN;
d3dpp.EnableAutoDepthStencil = TRUE;
d3dpp.AutoDepthStencilFormat = D3DFMTJ316;

// Create the D3DDevice

if(FAILED(g_pD3D->CreateDevice(D3DADAPTERJ3EFAULT, D3DDEVTYPE_HAL, hWnd,
D3DCREATE_SOFTWARE_VERTEXPROCESSING,
Sd3dpp, sg_pd3dDevice)))

(

return E__FAIL;
}

// Turn on the zbuffer

g_pd3dDevice->SetRenderState (D3DRS__ZENABLE, TRUE);

// Turn on ambient lighting
g_pd3dDevice->SetRenderState(D3DRS_AMBIENT, Oxffffffff);

return S OK;

void initDInput(HINSTANCE hinstance, HWND hWhd)
{

DirectlnputSCreate(hinstance,

DIRECTINPUT_VERSION,
IID_IDirectInput8,
(void**)&din,
NULL);

din->CreateDevice(GUID_SysKeyboard,
&dinkeyboard,
NULL);

dinkeyboard->5etDataFormat(&c_dfDIKeyboard);

dinkeyboard->SetCooperativeLevel(hWnd,

DISCL_NONEXCLUSIVE | DISCX_BACKGROUND) ,-

return;

)

void detect_keys(void)
{

static BYTE keystate[256];

dinkeyboard->Acquire();

dinkeyboard->GetDeviceState(256, (LPVOID)keystate);

if(keystate[DIK_A] & 0x80)
{

//MessageBox(NULL, L"testing for key A", L"Message", MB_OK);
speBody->SetPosition(SPEVector(3.0f, O.Of, -3Q0.0f));
speBody->SetVelocity(SPEVector(0.Of, 0.Of, 170.Of));
speBody->SetAngularVelocity(SPEVector(O.Of, O.Of, -1360.0f));
time = 0;

1

if(keystate[DIK_LEFT] S 0x80)
cam_angle = cam_angle + 1;

if(keystate[DIK_RIGHT] & 0x80)
cam_angle = cam_angle -1;

return;

}

void InitShape(ISPEShape* pShape, ID3DXMesh* pMesh)
{

BYTE* pVB;
void* pIB;
pMesh->LockVertexBuffer(D3DL0CKJX)NOTWAIT, (void**)SpVB);

42

pMesh->Lock!ndexBuffer (D3DL0CK_D0N0TWAIT, (void**)ipIB);
if(pMesh->GetOptions() & D3DXMESH 32BIT) // 32BIT index
{

pShape->Initialize (pVB, pMesh->GetNumBytesPerVertex (},
(int*)pIB, pMesh->GetNumFaces ()),-

}
else // 16BIT index

{

pShape->Initialize (pVB, pMesh->GetNumBytesPerVertex (),
(W0RD*)pIB, pMesh->GetNumFaces ());

}

pMesh->UnlockVertexBuffer ();
pMesh->UnlockIndexBuffer ();

}
//

// Name: InitGeometry()
// Desc: Load the mesh and build the material and texture arrays
//

HRESULT InitGeometry{)
{

//create the table using default rectangle function
D3DXCreateBox(g_pd3dDevice, 100.Of, 50.Of, 3.Of, Sg_pTable, NULL);
//create the ball using default sphere function
D3DXCreateSphere(g__pd3dDevice, 2.5f, 20, 20, Sg_pBall, NULL);
//create texture for the table

D3DXCreateTextureFromFile{ g_pd3dDevice, L"texture.bngV', &g_pTexl);
//Create texture for the ball

D3DXCreateTextureFromFile(gj?d3dDevice, L"ball.fanp", Sg_pTex2);

LPD3DXBUFFER pD3DXMtrlBuffer2;
D3DXLoadMeshFromX(L"box.x", D3DXMESH_SYSTEMMEM,

g_pd3dDevice, NULL,
spD3DXMtrlBuffer2, NULL,
sg__dwNumMaterials2, Sg_pBox) ;

//try using this mesh for initshape, the problem might be because default
shape does not have vertex buffer to initialise the vertices

speWorld = CreateSPEWorld();

speWorld->SetGravity(SP£Vector(0, 9.8f, 0));

LPSPESHAPE pShape = speWorld->CreateShape{);
Initshape (pShape, g_pBall) ;
speBody = speWorld->AddRigidBody(pShape);
speBody->SetPosition(SPEVector(3.0f, O.Of, -300.Of)),-
speBody->SetVelocity(SPEVector{0.0f, O.Of, 370.Of));
speBody->SetAngularVelocity(SPEVector(O.Of, O.Of, -1360.0f));

speBody->GetState()->SetPosition(SPEVector(3.Of, O.Of, -300.Of));

//create font object that will be used throughout the application
D3DXCreateFont(g_pd3dDevice, 20, 0,

FW_NORMAL,
1, false,
DEFAULT_CHARSET,
OUT_DEFAULT_PRECIS,
DEFAULT_QUALITY,
DEFAULT_PITCH | FF_DONTCARE,
L"Arial",

Sg__pFont) ;

LPD3DXBUFFER pD3DXMtrlBuffer;

// Load the mesh from the specified file
if(FAILED! D3DXLoadMeshFromX(L"bat.x", D3DXMESH_SYSTEMMEM,

g_pd3dDevice, NULL,
SpD3DXMtrlBuffer, NULL, £g_dwNumMaterials,
Sg_pMesh)))

// If model is not in current folder, try parent folder
if{ FAILED(D3DXLoadMeshFromX(L"..\\bat.x", D3DXMESH_SYSTEMMEM,

g_pd3dDevice, NULL,
&pD3DXMtrlBuffer, NULL, Sg_dwNumMaterials,
&g_pMesh)))

{

43

MessageBox(NULL, L"Could not find tiger.x", L"Meshes.exe", MB_OK);
return E FAIL;

J

LPD3DXBUFFER pD3DXMtrlBuffer3;
D3DXLoadMeshFroitiX (L"box. x", D3DXMESH_SYSTEMMEM,

g_pd3dDevice, NULL,
5pD3DXMtrlBuffer3, NULL, sg_dwNumMaterials2

&g_pBox2);

LPSPESHAPE pShapeBat = speWorld->CreateShape{);
Initshape(pShapeBat, g_pMesh);
batBody = speWorld->AddRigidBody(pShapeBat);
batBody->SetPosition(SPEVector(matWorld._11, matWorld._12, matWorld._13)) ;
batBody-X5etState()->SetPosition(batBody->GetPosition());

// We need to extract the material properties and texture names from the
// pD3DXMtrlBuffer

D3DXMATERIAL* d3dxMaterials = {D3DXMATERIAL*)pD3DXMtrlBuffer->GetBufferPointer()
g_pMeshMaterial3 = new D3DMATERIAL9fg_dwNumMaterials];
if(g_pMeshMaterials == NULL)

return E_OUT0FMEMORY;

g_pMeshTextures = new LPDIRECT3DTEXTURE9[g_dwNumMaterials];
if{ g__pMeahTextures — NULL }

return E_OUTOFMEMORY;

for(DWQRD i=0; i<g_dwNurnMaterials; i++)
{

// Copy the material

g.j)MeshMaterialsEi] = d3dxMaterials[i].MatD3D;

// Set the ambient color for the material (D3DX does not do this)
g__pMeshMaterials[i] .Ambient = g_pMeshMaterials[i].Diffuse;

g_pMeshTextures[i] = NULL;
if{ d3dxMaterials£i].pTextureFilename != NULL &&

lstrlenA(d3dxMaterials[i].pTextureFilename) >0)
{

// Create the texture

if(FAILED(D3DXCreateTextureFromFileA{ gj?d3dDevice,
d3dxMaterials[iJ-pTextureFilename,
&g_pMeshTextures[i])))

// If texture is not in current folder, try parent folder
const CHAR* strPrefix = "..\\";
CHAR strTexture[MAX__PATH];
StringCchCopyA(strTexture, MAX_PATH, strPrefix);
StringCchCatA(strTexture, MAX_PATH,

d3dxMaterials[i].pTextureFilename);
// If texture is not in current folder, try parent folder
if{ FAILED(D3DXCreateTextureFromFileA(g__pd3dDevice,

strTexture,

Sg_pMe3hTextures[i])))
{

MB_OK) ;

}

MessageBox(NULL, L"Could not find texture map", L"Meshes.exe",

// Done with the material buffer

pD3DXMtrlBuffer->Release();
speWorld->ReleaaeShape(pShape);
speWorld->ReleaseShape(pShapeBat)

return S OK;

//

// Name: Cleanup!)
// Desc: Releases all previously initialized objects

44

//

VOID Cleanup()

{

if(g_pMeshMaterials != NULL)
delete[] g_pMeshMaterials;

g_pTable->Release();
dinkeyboard->Unacguire();
din->Release();

if(g_pMeshTextures)
f

for(DWORD i = 0; i < g_dwNumMaterials; i++)
{

if(g_pMeshTextures[i])
g___pMeshTextures[i3->Relea3e() ;

)

delete[J g_pMeshTextures;
}
iff g_pMesh != NULL)

g_pMesh->Release();

if(g_j>d3dDevice != NULL)
g_j>d3dDevice->Release () ;

if{ g_pD3D != NULL)
gj?D3D->Release() ;

//

// Name: SetupMatrices()
// Desc: Sets up the world, view, and projection transform matrices.
//

VOID SetupMatrices{)

{
// Set up world matrix
g_pd3dDevice->SetTransform{ D3DTS_WORLD, smatWorld);

// Set up our view matrix. A view matrix can be defined given an eye point,
// a point to lookat, and a direction for which way is up. Here, we set the
// eye five units back along the z-axis and up three units, look at the
// origin, and define "up" to be in the y-direction.
D3DXVECTOR3 vEyePt(O.Of + cam_angle, 3.Of + cam_angle,200.0f);

//magic_specific the default is 200.Of, i make it as 300 to make a little
bit far from the viewport

D3DXVECTOR3 vLookatPt(O.Of, O.Of , O.Of);
D3DXVECTOR3 vUpVec(O.Of, -l.Of, O.Of);
D3DXMATRIXA16 matView;

D3DXMatrixLookAtLH(SmatView, SvEyePt, SvLookatPt, SvUpVec);
g_pd3dDevice->SetTransform(D3DTS_VIEW, smatView);

// For the projection matrix, we set up a perspective transform (which
// transforms geometry from 3D view space to 2D viewport space, with
// a perspective divide making objects smaller in the distance). To build
// a perpsective transform, we need the field of view (1/4 pi is common),
// the aspect ratio, and the near and far clipping planes (which define at
// what distances geometry should be no longer be rendered).
D3DXMATRIXA16 matProj;
D3DXMatrixPerspectiveFovLH(SmatProj, D3DX_PI/4, l.Of, l.Of, 10000.Of);

//magic_specific
g_pd3dDevice->SetTransform(D3DTS PROJECTION, SmatProj);

1

//setup the world transformation for all the 3tatic object in the application
VOID SetupMatrices2()
{

// Set up world matrix for the table

D3DXMATRIX matRotateY;

static float indexY = 1.55f;
D3DXMatrixRotationY(&matRotateY, indexY);

D3DXMATRIX matRotateX;

static float indexX = 1.578f;
D3DXMatrixRotationX(&matRotateX, indexX);

45

D3DXMATRIX matTranslation;
D3DXMatrixTranslation(smatTranslation, 0.Of, 50.Of, -160.Of);

D3DXMATRIX matScale;

D3DXMatrixScaling(SmatScale, 3.Of, 3.Of, l.Of);

g_pd3dDevice->SetTranaform(D3DTS_WORLD, S(matScale * matRotateX * matRotateY
matTranslation));

//setup the world transformation for the ball
VOID SetupMatrices3 ()
{

//setup the location of the ball, after the calculation is done,
//the ball will be rendered using all the information that gathered
//such as the speed and direction of the ball

//D3DXMATRIX matLocation;
//D3DXMatrixTranslation(SmatLocation, 3.Of, O.Of, O.Of);
speBody->GetTransformMesh(&matWorldBall);

g_pd3dDevice->SetTransform(D3DTS WORLD, SmatWorldBall);

//

// Name: Render()
// Desc: Draws the scene
//

VOID Render()

batBody->SetPo3ition(SPEVector (matWorld._41, matWorld._42, matWorld.__43]
//batBody->SetOrientation(SPEMatrix(matWorld));
speBody->GetNewState()->SetPosition{speBody->GetPosition());
//batBody->GetNewState()->SetPosition(batBody->GetPositionO)7
Z/batBody->GetNewState()->SetOrientation(batEody->GetOrientation());
batBody->GetNewState()->SetPosition(batBody->GetPosition());

SPEArray<LPSPERIGIDBODY> list;

list.push(batBody);
list.pushfspeBody);
speWorld->DetectCollisions(list);

int numContact = speBody->GetNumContacts{);
if(numContact > 0)

speBody->SetVelocity(SPEVector(10.0f, O.Of, -370.0f));

// Clear the backbuffer and the zbuffer
g_jpd3dDevice->Clear(0, NULL, D3DCLEAR_TARGET|D3DCLEAR_2BUFFER,

D3DCOLOR_XRGB(255,255,255), l.Of, 0);

////////////////Scene block for ball/////////////////////
g_pd3dDevice->BeginScene();

SetupMatrices3{);

g_pd3dDevice->SetTexture(0, g_pTex2);
g__pBall->DrawSubset (0);

g_pd3dDevice->EndScene() ;

//////////////Scene block for table////////////////////
g_pd3dDevice->BeginScene();

static RECT textBox;

SetRect(6textBox, 0, 0, 800, 20);

g_pFont->DrawTextA(NULL, "Testing for the ping pong application",
37, StextBox, DTJZENTER,

D3DCOLOR_ARGB(255, 0, 0,0));
char datal[100];

_snprintf_s(datal, 50,100, "._11 = %.4f, ._12 - %.4f, matWorldBall. 11,
matWorldBall._12);

LPSTR test = datal;

SetRect(&textBox, 0, 20, 800, 120);

46

g_pFont->DrawTextA(NULL, test, 37, StextBox, DT_CENTER, D3DC0LOR ARGB(255, 0,
0,0 >);

SetupMatrices2[);

g_pd3dDevice->SetTexture(0, g_pTexl);
g^pTable->DrawSubset(0);
g_pd3dDevice->EndScene {} ,*
/////////////////End of scene block////////////////////

///////////////////Scene block for bat///////////////////
if(SUCCEEDED(g_pd3dDevice->BeginScene()))
{

// Setup the world, view, and projection matrices
SetupMatrices();

// Meshes are divided into subsets, one for each material. Render them in
// a loop
for(DWORD i=0; i<g_dwNumMaterials; i++)
{

// Set the material and texture for this subset
g_pd3dDevice->SetMaterial(Sg_pMeshMaterials[i]) ;
g_pd3dDevice->SetTexture(0, g_pMeshTextures[i]);

// Draw the mesh subset

g_j>Mesh->DrawSubset { i);

// End the scene

g_pd3dDevice->EndScene(};

1

///////////////////////End of scene block///////////////////////////

// Present the backbuffer contents to the display
g_pd3dDevice->Present(NULL, NULL, NULL, NULL };

}

//

// Name: MsgProc()

// Desc: The window's message handler
//

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM IParam)
t

switch{ msg)
(

case WM_DESTROY:
Cleanup();
PostQuitMessage(0);
return 0;

J

return DefWindowProc{ hWnd, msg, wParam, IParam);

//

// Name: WinMainO
// Desc: The application's entry point
//

INT WINAPI WWinMain(HINSTANCE hlnst, HINSTANCE, LPWSTR, INT)
{

// Register the window class
WNDCLASSEX wc = { sizeof(WNDCLASSEX), CS_CLASSDC, MsgProc, OL, 0L,

GetModuleHandle(NULL), NULL, NULL, NULL, HULL,
L"Ping Pong Simulation", NULL };

RegisterClassEx(swc);

// Create the application's window
HWND hWnd = CreateWindow(L"Ping Pong Simulation", L"Ping Pong Simulation"

47

WS_OVERLAPPEDWIND0W, 100, 100, 800, 800,
NULL, NULL, wc.hlnstance, NULL);

HINSTANCE hlnst2 = LoadLibrary{L"MagicJ:-dll"); //magic-specific
if (hlnst2 = NULL) exit(l); //magic-specific

if (!l3D_initjdevice()) exit(1); //magic-specific

// Initialize Direct3D

iff SUCCEEDED(InitD3D(hWnd)))
{

// Create the scene geometry
if(SUCCEEDED! InitGeometry()))
(

// Show the window

initDInput(hlnst, hWnd);
ShowWindow(hWnd, SW__SHOWDEFAULT);
UpdateWindow(hWnd);

// Enter the message loop
MSG msg;

ZeroMemory(smsg, sizeof(msg));
whilef msg.message!=WM_QUIT)
{

if(PeekMessage(smsg, NULL, 0U, 0U, PM_REMOVE))
t

TranslateMessage(smsg);
DispatchMessage(smsg),-

specific

}

else {

I3D_input_6DOF(&g_frame, SmatWorld); //magic-

speWorld->Update(time);
detect_keysO;
time++;

Render();

1

//RenderTable();

l3D_close_device(); //magic-specific
UnregisterClass(L"Ping Pong Simulation", wc.hinstance);
return 0;

48

