
Real-Time Stereopsis

By

SayedAH KasaeiZadeh Mahabadi

Dissertation submitted in partial fulfillment of

the requirements for the

Bachelor ofTechnology (Hons)

(Information Communication Technology)

JANUARY 2008

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

Approved by,

ft

CERTIFICATION OF APPROVAL

Real Time Stereopsis

By

Sayed AH Kasaei Zadeh Mahabadi

A projectdissertation submitted to the

Information communication Technology Programme

Universiti Teknologi PETRONAS

In partial fiilfillment of the requirementfor the

BACHELOR OF TECHNOLOGY (Hons)

(Information Communication Technology)

(Assoc!Prof. Dr. Abas Md Said)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2008

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original

work is my own except as specified in the references and acknowledgements, and that the

original work contained herein have not been undertaken or done by unspecified sources or

persons.

SAYED ALIKASAEIZADEH MAHABADI

u

ABSTRACT

The computerized development always was on the center of attraction. More accurate

result generation in shorter time period has done by computers, make humans eager to

givescomputers more responsibility and tasks. Computer vision is one of thesetasks that

for pastcenturies take lotsof timeand effortone the rodeofperfection.

One of the areas in the computer vision is stereo vision or Stereopsis. This area start in

early I970's and still up to day is one of the mysteries part of computer vision. Peoples

try to make computer sees as human see. Up today there are manyalgorithm developed

and invented by scientist but it's long way to go.

The main purpose of this report is to shows how it's possible for computer to calculate

depth irom 2D images and then base on some algorithms, it tries to construct 3D result.

But why we need to make all these efforts and why it's so important to make computer

sees as human see.

One ofthe strongest effects of this process is for 3D animation development. Generating

3D libraries and assist game developers or generally graphic developers. Imagine for

development of one hour movie 60 computers work for one year and see how fast it will

be to have all the models available in very short time.

Another effect of this system if for virtual realities systems. Beside 3D modeling which

require real-time rendering it also require certain amount of tracking for user interaction.

This process normally handle by sensors, where its limited to few sensors and also it

makes users uncomfortable and its harder for virtual environment to be more realistic for

users.

iii

Finally in robot vision 3rd dimension is essential. Finding exact location of object,

obstacles and etc. is the main goal of robots before they can perform any tasks. So base

on understanding ofdepththe robots caneasily movewithout anycollision.

IV

ACKNOWLEDGMENT

All my gratitude is towards God Almighty for giving me the strength, wisdom and patience in

order to complete thisproject in themost efficient andtimely manner.

I would like to express my utmost gratitude towards the assistance and generosity of all the

people to whom which without this project would have not achieved its completion. In this

process I would like to thank my supervisor Assoc. Prof. Dr. Abas Md Said for being as

generous and understanding as human can be. Without his helpful guidance, advice and

motivations, I might have notbeen able tocomplete this project with the required quality.

To Dr. Mohamed Nordin Zakaria who guided me with patients and caring, to my dear family,

my supporting parents who have helped me to grow asthe independent man I am and guided me

in the darkest and most tough times. Lastly but not least my respectful friends who have truly

proven their friendship and support throughout the entire process by motivating me, raising me

upwhen I gotdown and being there for me when I needed a hand.

And to all those people who have shared their experience and ideas which I have forgotten to

mentionin this small but gratifiedacknowledgment,

Thank you.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL i

CERTIFICATION OF ORIGINALITY ii

ABSTRACT iii

ACKNOWLEDGMENT v

TABLE OF CONTENTS vi

TABLE OF ILLUSTRATION ix

Figures ix

Tables xi

Equations xi

Chapter 1 INTRODUCTION 1

1.1 BACKGROUND OF STUDY 1

1.2 PROBLEM STATEMENT 1

1.3 OBJECTIVE AND SCOPE OF STUDY 5

Chapter2 LITERATURE REVIEW 6

2.1 INTRODUCTION 6

2.2 Depth Perception 7

2.3 Correspondence 9

2.3.1 Introduction 9

2.3.2 Discontinuity 9

2.3.3 Occlusion 10

vi

2.4 General information about CCD cameras * 11

2.4.1 Introduction:.... 11

2.4.2 Charge-coupled device (CCD) 13

2.4.3 Bayer filter 15

Chapter 3 METHODOLOGY 16

3.1 RESEARCH METHOD 16

3.2 Depth 17

3.2.1 Introduction 17

3.2.2 Depth calculation 17

3.3 Correspondence 21

3.3.1 Introduction 21

3.3.2 Block matching 21

3.3.3 Finding good features to track 21

3.3.4 Detecting points in second image 22

3.4 3D reconstruction... 24

3.4.1 Introduction 24

3.4.2 Dot cloud 24

3.4.3 Wired reconstruction 24

3.4.4 Solid reconstruction 25

3.5 Experimental system design 26

3.5.1 Class Diagram 26

3.5.2 Flow chart 27

3.5.3 GUI 30

3.6 Experimental system Implementation 31

3.6.1 Main file 31

3.6.2 Image processing 32

vii

3.7 TOOLS 37

Chapter4 RESULT AND DISCUSSION 38

4.1 Depth calculation 38

4.1.1 Simpleobject 38

4.1.2 Transparent Bottle 40

4.2 Fining correspondence 41

4.3 3D reconstruction 42

4.3.1 Dot cloud 42

4.3.2 Wired result 43

4.3.3 Solid result 43

Chapter 5 CONCLUSION 44

Chapter 6 REFERENCES 45

APPENDIX I I

1) Schedule FYPI I

2) Schedule FYP II II

APPENDIX II Ill

1) Mainclassheader: Ill

2) MainClass source: IV

3) Image processing class header: VIII

4) Image processing class source: VIII

5) Graphicclassheader: XVII

6) Graphicclass source: XVIII

VJIl

TABLE OF ILLUSTRATION

Figures

Figure 1: Some sensors performance comparisonfl] 2

Figure 2: Magnetic tracker accuracy degradationE1] 3

Figure 3: Sensorsl2] 4

Figure 4: Data glove ra 4

Figure 5: Different view point[3] 6

Figure 6: Stereopsis for human eye[5] 7

Figure 7: Depth in human eyes[7] 8

Figure 8: Epipolar Geometry m 9

Figure 9: SampleofDigital camera j single-lens reflexcamera 11

Figure 10: Single-Lens Reflex camera cross section [26] 12

Figure 11:charge-coupled device (CCD) 13

Figure 12:Two-dimensional CCD-sensor 14

Figure 13: CCD color sensor | Bayer pattern on sensor p7] 14

Figure 14: Profile/cross-section ofsensor1281 15

Figure 15: Methodology 16

Figure 16: Three-plane view 17

Figure 17: Cameras view and object triangle[29J 18

Figure 18: Dot cloud 24

Figure 19: Wired structure 25

Figure 20: Solid Structure 26

ix

Figure 21: Active Stereo Vision Class Diagram 26

Figure 22: Main Class Flow chart 27

Figure 23: Image processing main flow chart 28

Figure 24: TransferFlow Chart 29

Figure 25:3D Display 29

Figure 26: Error Message 30

Figure 27: 3D Display 30

Figure 28: Main file interface , 31

Figure 29: Camera Selection Form 33

Figure30: imagedivision 33

Figure 31: optical fellowand goodFeaturesto track result 35

Figure 32: Delaunay Triangulation 35

Figure 33: Points on Image 38

Figure 34: ObjectDepth Result 39

Figure35: Transparent Bottle 40

Figure 36: Transparent Object Depth Graph •*. 41

Figure 37: Sampleofgood feature to track 42

Figure 38: Dot cloud Result 42

Figure39: WiredStructure 43

Figure40: Solid Structure 43

Tables

Table 1: Simple Object 39

Table 2: Transparent Object Result 40

Table 3: Schedule and milestone FYP I I

Table 4: Schedule and milestone FYP II II

Equations

Equation 1: Similar Triangle 19

Equation 2: Similar Triangle 19

Equation 3: SimilarTriangle , 19

Equation 4: Similar Triangle 19

Equation 5: calculation ofOih (A) length 20

Equation6: Calculation ofobject depth 20

Equation 7: Calculation ofobject depth from Camera view 21

xi

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Stereopsis (from "stereo" which means solidity and "opsis" which means vision or sight) is the

process in visual perception that leads to perception of stereoscopic depth. In turn, stereoscopic

depth is the sensation of depth that emerges from the fusion of the two slightly different

projections ofthe worldon the two retinas.

In computer vision, structure from motion refers to the process of building a 3D model from

video ofa moving rigid object. Algorithmically, this is very similar to stereo vision where a 3D

model is built from two simultaneous images of the same object. In both cases, multiple images

are taken of the same object and corresponding features are used to compute 3D locations. In

structure from motion, the images are taken at different points in time comparing to stereo vision

where images are taken at different points in space.

Colloquially, structure from motion is sometimes used for any 3D reconstruction built from 2D

images of a rigid (or static) object. Because of this colloquial usage, structure from motion has

significant overlap with stereo vision.

1.2 PROBLEM STATEMENT

3D modeling has significant impact on virtual realities, game development, simulations

environment and many other graphical fields. There are many methods to develop 3D models

and model database but current methods have many problems as follow:

Time: Even by using many advance computer tools to develop models but still each model

requires lots of time to develop. Normally these tools only provide basic shape like cube or
1

calendar and developer requires developing the models by combining and reshaping these basic

shapes. Even when special tools have capabilities like laser scanner, etc. because of design the

scanning is too slow.

ACCURACY

(mm/0)
range

{m)
LATENCY

<sccxlflr*)
UPIUTK RATI:*

(tlatawts/sfi)

Best performance

0.5.U03

MiKill

30 X 30

1S-900

0.0002

Push

2.000

HiBall

O.K'0.15

Fasirack

12.2 x 12.2

MiBall

I

HiBall

250

interTrax2

1-0.5

lascrHIRl) kisorBIRD

4

lnieiTrax2

240

laserBIRD

2.U.5

riuckBlKDS

1 52

Logitech lascrBIRD

ISO

IS-l)0U

4.D. 2

IS -90U

1.2

-HockUIRDN

7.5

(lock BIRD

160

3-D BIRD

4NA

Push

0.75

Fast rack

S.5

Fastrack

144

FiockBIRDS

NAM

.t-nn'mi)
NA

3-D BIRD

10

ivooo

120

last rack

NA-5 NA

Imcrtrax2

15

3-D BIRD

70

Push

30

Logitech
NA

Push

.10

Logitech
50

Luyitcch

Worst pi'i foi'fliauce

Fit sinale somiim element

Figure 1: Some sensors performance comparison HI

Cost: Since the production too slow companies require hiring many 3D developers and spending

lots of money on expensive tools. However, the model is not completely similar to reality. The

cost will increase as the quality ofmodels getting better.

Efficiency: Using sensors is another method used for Virtual Environment (VE) and 3D

animation. These devices are normally having lots of problem, like accuracy (the tracker

position), jitter (change position of tracker because of noises), drift (decrease accuracy base on

time) and latency (also known as delay). Another problem is environmental affect on the output.

For example, for magnet sensors the metals affect the result.

Surface of Accuracy
equal accuracy A i <A i

A2'

Accuracy
Feromagnetic

Object

Figure 2: Magnetic tracker accuracy degradation EH

Weight: Sensors are normally heavy devices. The movement in these devices is really hard and

uncomfortable. This has negative impact on immerse in VE.

Exoskeleton

structure

Figure 3: SensorsI2'

Interface

With

computer

Others: There are many other problems such as sensors coverage. Normally tracker and sensors

are designed for specific part of body like head,hand and etc. A sample of these sensors is data

glove.

Figure 4: Data glove |2|

ensor

Analog
Lines

1.3 OBJECTIVE AND SCOPE OF STUDY

The objectives ofthe projects are:

Design a system to calibrate the camera and extract the epipolar geometry of the image

sequence automatically.

Calculate stereoscopic depth ofobjects

Design a system which displays the result in three dimension environment.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Nowadays simulation environments, virtual reality systems, game developing and animation

companies are highly dependent on the 3D construction. Currently these developments are done

manually and it requires large amount of time to increase the quality of the system. Also it

requires more sensors to build more realistic 3D motions which increase the cost ofproduction.

By using one or two cameras it allows us to extract 3D information simply based on the different

angle view point as shown in Figure 5. This can be done by using two cameras or by rotating

one camera in some angle(s). There is also another way to simulate the camera rotation which

calculates the rotation angle ofthe object without rotating the camera.

Ld< "«r."*;

Figure 5: Different view point Pi

2.2 Depth Perception

Human normal inter-papillary distance is 2.5 to 2.6 inches. Ifwe could increasethis distancewe

would increase our perception ofdepth. Stereo pairs greatly stretch this normal eye base (inter-

papillary distance) and give us the exaggerated 3-D photographic effect we perceive when

viewing the stereo pairs [4] Figure 6.

l.F'H t:.y^

Figure 6: Stereopsis for human eye|S|

In other words each eye captures its own view and the two separate images are sent on to the

brain for processing. When the two images arrive simultaneously at the back of the brain, they

are united into one picture. The mind combines the two images by matching up the similarities

and adding in the small differences. The small differences between the two images add up to a

big difference in the final picture! The combined image is more than the sum of its parts. It is a

three-dimensional stereo picture [6] Figure 7.

Figure 7: Depth in human eyes m

In this project we try to simulate human eyes by using two cameras and extract 3D depth from

two different viewing points of these two cameras and each time there are two shots from the

scene. The method used to compute the depth ofa point is called triangulation.

Figure 8 shows a simple illustration ofhow triangulation works based on the epipolargeometry.

The focal length of the cameras (f), the angles 01 and 62, the camera center points (cl and c2)

in the imageplanes (IP1 and IP2), the image points (ofthree-dimensional point P) pi and p2, and

8

the horizontal distance (vl and v2) between the image points andthe camera center image point

for each image are known. This leaves the perpendicular distance D from the baseline to the

point P as the only unknown.

Figure 8: Epipolar Geometry i«l

2.3 Correspondence

23.1 Introduction

stereo correspondence is considered as a classical difficult problem due to its significance in

computer vision and inherited ambiguity. It takes two or more images simultaneously captured

by cameras from different viewpoints as its input. The resultant output is a dense disparity map

that represents the correspondence between points in different images. The obtained disparity

mapcan be usedto recover the three-dimensional structure in the scene.

Twoofthe mainchallenges in stereo are discontinuity andocclusion problems.

2.3.2 Discontinuity

The discontinuity issue stems from a smoothness assumption, which is explicitly or implicitly

used in many dense stereo approaches [9]. It assumes the disparity map to be smooth almost

everywhere. However, this is violated at the boundary of the object. The convex smoothness
9

function entails a significant penalty for large discontinuity and, therefore, leads to poor object

boundary results [10], [11].To cure this, some discontinuity-preserving smoothness functions are

designed to improve the accuracy at discontinuity areas [9]. Common discontinuity preserving

smoothness functions include the Potts function [12] and the truncated function [13]. A fixed

amount of penalty is imposed for large discontinuity in these methods. Moreover, the intensity

differencesbetween neighboring pixels are also used to guide the smoothness criteria [14], [13]

so that neighboring pixels with similar colors are given harder smoothness constraints because

they are more likely to have similardisparities. Recently, several segment-based methods have

been proposed [15], [16], [17], [18], [19], [20]. Tao et al. [15] provided a global matching

framework using image segmentation information. Hong and Chen [16] used graph-cuts to

provide a global solution for segment matching, whereas a region-growing strategy was used by

Wei and Quan [17]. Bleyer and Gelautz [18] formulated the correspondence problem in

combination with the pixel and segment levels. The correspondence problem is modeled in the

segment level and the occlusion is detected in the pixel levelusingthe uniqueness constraint. In

all these algorithms, a color segmentation process initially separates the reference image into

several regions with uniform (or similar) colors and each region is assumed to correspond to a

plane inthescene. With this polyhedral approximation of thescene, matching isperformed using

a segment as a unit. The discontinuity is constrained to be at the boundaries of a segment. The

untextured area is matched as a large unit, so more information than as individual pixels can be

gathered and improved performance can be obtained when processing images from a natural

scene. Although impressive results are reported, onlythe segmentation information in the left(or

reference) image is used andthe occlusion result is stillnotaccurate. Moreover, the violation of

the discontinuity assumption still causes obviousartifactsin the result.

233 Occlusion

The second challenge in stereo correspondence is occlusion handling. Due to the structureof the

scene, some parts of an object within it may be visible in only one of the cameras. These points

are called half-occlusion points [21], and their projection onto the image is known as occluded

points or occlusions, since their corresponding points in other images are not visible. The main

difficulty for the occlusion problem is that occluded points cannot be detected directly, and we

10

can only use the correspondence of visible (opposite of occluded) points with other assumptions

to detect them. Methods using ordering and uniqueness constraints are two traditional ones for

occlusionhandling. The orderingconstraint inhibits the ordering change of corresponding points

in different images. It is often used in a dynamic programming framework [21] because it can

reduce the solution space and allow for a more efficient algorithm. But, it is often violated when

thin, front objects exist in the scene. The uniqueness constraint, however, only prevents a point

in one image from being matched with more than one point in the other image and ordering

change is allowed. Zitnic and Kanade [22] used the uniqueness as the inhibition in their

cooperative framework, while Ishikawa and Geiger [11] imposed it in a max-flow framework.

Kolmogorov and Zabih [14] used the pixel assignment formulation for the correspondence

problem and tried to find an optically unique configuration using graph-cuts. Sun et al. [23] used

a variant version of uniqueness constraint, the visibility constraint, to detect occlusions in an

iterative beliefpropagation framework. The visibility constraint can avoid some problems raised

from the sampling problem pointed out by Ogale and Aloimonos [24] when horizontally slanted

planes exist in the scene. Promising improvements on occlusion results are reported in the above

papers. For other occlusion handling techniques, readers can refer to surveys by Egnal and

Wildes [21] and by Brown et al. [25].

2.4 General information about CCD cameras

2.4.1 Introduction:

Figure 9: Sample ofDigital camera | single-lens reflex camera

11

A digital camera as shown in Figure 9 is an electronic device used to capture and store

photographs digitally, instead ofusing photographic film like conventional cameras, or recording

images in an analog format to magnetic tape like many video cameras. All digital cameras use

either a charge-coupled device (CCD) or a CMOS image sensor to sense the light intensities

across the focal plane.

Figure 10: Single-Lens Reflex camera cross section [26'

Figure 10 displays basic structure of digital camera. This camera uses a mirror to show the

image that will be captured in a viewfinder. The cross-section (side-view) of the optical

components of a SLR shows how the light passes through the lens assembly (1), is reflected by

the mirror (2) and is projected on the matte focusing screen (5). Via a condensing lens (6) and

internal reflections in the roof pentaprism (7) the image appears in the eyepiece (8). When an

image is taken, the mirror moves in the direction of the arrow, the focal-plane shutter (3) opens,

and the image is projected in the sensor (4) in exactly the same manner as on the focusing screen.

12

2.4.2 Charge-coupled device (CCD)

A charge-coupled device (CCD) as in Figure 11 is an analog shift register, enabling analog

signals (electric charges) to be transported through successive stages(capacitors) controlled by a

clock signal. CCDs which contain grids of pixels are used in digital cameras, optical scanners

and video camerasas light-sensing devices. They commonly respondto 70% ofthe incident light

(meaninga quantum efficiencyof about 70%) making them far more efficientthan photographic

film, whichcapturesonly about 2% ofthe incident light. As a result,CCDs were rapidly adopted

by astronomers.

Figure 11: charge-coupled device (CCD)

In One-dimensional CCD, an image is projected by a lens on the capacitor array, causing each

capacitor to accumulate an electric charge proportional to the light intensityat that location. An

one-dimensional array, used in line-scan cameras, captures a single slice of the image, while a

two-dimensional array, used in video and still cameras, captures the whole image or a

rectangular portion of it as shown in Figure 12.

13

'W&k

Figure 12: Two-dimensional CCD-sensor

Once the array has been exposed to the image as in Figure 13, a control circuit causes each

capacitor to transfer its contents to its neighbor. The last capacitor in the array dumps its charge

into an amplifier that converts the charge into a voltage. By repeating this process, the control

circuit converts the entire contents of the array to a varying voltage, which it samples, digitizes

and stores in memory. Stored images can be transferred to a printer, storage device or video

display. CCDs are also widely used as sensors for astronomical telescopes, and night vision

devices.

Figure 13: CCD color sensor | Bayer pattern on sensor [271

14

2.43 Bayerftlter

A Bayer filter mosaic is a color filter array (CFA) for arranging RGB color filters on a square

grid ofphoto sensors, shown in Figure 14. The term is derivedfromthe nameof its inventor, Dr.

BryceE. Bayerof Eastman Kodak, and refers to a particular arrangement of color filters used in

most single-chip digital image sensors used in digital cameras, camcorders, and scanners to

create a color image. The filter pattern is 50% green, 25% red and 25% blue, hence is also called

RGBGorGRGB.

in conventional systems,colorfilters
m applied toa single layer of
phdpdetectorsina tiled mosaic

• a • a

a a a a

Man*

ft B S •

As a result,mosaic
of toe red and blue

The1i Here letonly onecolor oflight-red,
green orblue-pass*™ugh toanygiven
pixel location, allowing ittowxsd only
one color.

a a a a

a a a a

a a a a

a a a a

captureonly25%
Ijust50%ofthe

Figure 14: Profile/cross-section of sensor(M1

15

CHAPTER 3

METHODOLOGY

3.1 RESEARCH METHOD

Base on the methodology in Figure 15, depth Calculation is the first step in this project which

calculatesdepthofspecificpoint in two camerasview.The next step is to find all points future in

first camera and find its corresponding points on the next camera view. Base on this finding it is

possible to generate dot cloud. By connecting these points (dots), we generate basic structure of

3D model and it will be completed by texturing the polygons.

MaafcSt

r

Depth cslruluiifiii

I- minis*orrespondini» point in

camera \ icw

JDii'Ciinstriictinn
«Mfen-dL. -

Implemehtatiolof *

Figure 15: Methodology

J

16

3.2 Depth

3.2.1 Introduction

Depth is the most basic part of this project. This calculation is based on similar triangles. In this

part we assume that two cameras are identical and have almost same focal length,

and two cameras view are in the same plane, and the height of object in two views are the same.

Withthose assumptions, two point views are in one line and parallelto x axis, as in Figure16.

Y

X

Figure 16: Three-plane view

3.2.2 Depth calculation

Based on these assumptions, every object creates a triangle Tx \o2,o,,q] as shown in Figure 17).

17

-Q^ #1 K \P2_ S2*p2

01 ~ " h.

Figure 17: Cameras view and object triangle,29J

In this triangle q is the object and o, is focal point of camera one, where all the light enters to

the camerawill gather on that point o2 is similar to oi and represents focal pointsofcamera two.

P^ [a,,bx] is the first camera view and P2[a2,b2] is second camera view. The object reflection in

cameraone is pi and for camera two ispz. There are 4 triangleswe work on.

Tih,q,h]

T2[o2,q,h]

T4[o2,p2,h2]

r and T3 are similar tiiangles because p}h(Z) is parallel with pxhx{Fx)since Fx is altitude of

T3 and Z is altitude of r . They have shared angle so the two triangles are similar to each other.

So the ratio of o,ft, (Nl) over o,h{A) is equal to ratio of F} overZ. So we have:

18

A Z

Equation 1: Similar Triangle

Same goes for t2 andr4, p2h2(F2) is parallel with Z and they share an angle. The ration of

o2h2{N2)over o2h(B) isequal to ratio of F2 over Z

B Z

Equation 2: Similar Triangle

Since the two camera are align to each other and the focal is same so bxa2 is parallel with

o,o2(0 and Fl and F2 are perpendicular lines tog, Ft md F2 are parallel and they are equal to

each other. In this situationthe two equationsaboveare equal to each other:

B Z Z A

Equation 3: Similar Triangle

In Figure 17, sum of A and B is equal to Q so we can replace B by

Q-A^>Q = A+B-+B-Q-A, byputting thisvalue inEquation 3 and equal the ration of N2

over (Q~ A)and JV, over A we have:

N2 _N}
Q-A A

Equation 4: Similar Triangle

By simplifying that equation we obtain:

N2A^NXQ-NXA-^

NlA + N2A = N,Q->

19

A(Ni+N2) = NlQ

Base on the above equations the A will be equal to:

A--
Nl+N2

Equation 5: calculation ofoih (A) length

Now ifwe locate A to Equation 1 and simplifythat equationwe have:

NXZ = FXA~*

FXNXQ

Z =
_FiA_N,+N2_ F&

Nx AT, Nx+N2

Equation 6: Calculation of object depth

TV, is thedistance ofobject image from thecamera center if thecamera length is 2*0and bltpt

be5,, so the relation of TV, and S, is:

Nx = 5,-0

The same result shows the relation of N2 and B2 [b2 ,p2]:

N2=0-B2

So from above equations we have:

N, +N2 =5, -0 + 0-52-»

Nl+N2=Bl-B2

This process simplifies the distance calculation (J?, andB2 are primaryvalues that we can extract

from cameras images).

Besides, Z is the object distance from the focal of camera where to simplify, we subtract the

focal length from the resultandwe get the actual objectdepth (Z')from camera images.

20

Z = Z*-F

Bt-B2

Equation 7: Calculation ofobject depth from Camera view

Fx is the focal length and Q is the distance of two cameras, 5, is the object view incamera one

and B2 isobject view incamera two. Tocalculate thefocal length ofeach camera, simply assigns

value forZ' ,Bl,B2 and Q to the above formula.

3.3 Correspondence

33.1 Introduction

As it discussed before stereo correspondence is considered as a classicaldifficult problem due to

its significance in computer vision and inherited ambiguity. Stereo correspondence may be

determined in a number of waysand by exploiting a number of constrains, one of thesemethods

is blockmatchingalgorithm that implemented and tested in this system.

33.2 Block matching

Blockmatching method seek to estimate disparity at a point in one image by comparing a small

region about that point (the template) with a series of small regions extracted from the other

image (the search region). TheEpipolar constrain reduce the search to one dimension. The first

step in this algorithm is to find point with good features and then base on optical fellow search

for correspondence in the next image.

333 Findinggoodfeatures to track

The next step is to find the points automatically. In this step we need to ensure the selected

points can be found in both images. The points normally are selected based on their neighbors.

The neighbors should be evident. This process is implemented in OpenCV library and it is called

21

cvGoodFeaturesToTrack. The fimction cvGoodFeaturesToTrack finds corners with big Eigen

values in the image. The fimction first calculates the minimal Eigen value for every source image

pixel using cvCornerMinEigenVal fimction and stores them in temporary image. Then it

performs non-maxima suppression (only localmaxima in 3x3 neighborhoods remain). The next

step is rejecting the corners with the minimal Eigen value less than quality_level#max

(eig_image(x, y)). Finally, the function ensures that all the corners found are distanced enough

one from another by considering the corners (the strongest corners are considered first) and

checking that the distance between the newly considered feature and the features considered

earlier is larger than min_distance. Then the fimction removes the features than are too close to

the stronger features [30].

3.3.4 Detectingpoints in second image

The examination of visual cues in an image-such as shading an occlusion- often yields

information about the relative distances of objects in a scene; however, it cannot provide a

quantitative measurement of the distance to objects. When the scene is imaged simultaneously

from two locations, stereo correspondence between the resulting images can be used to

determine the distance ofobjects [31], [32].

xL _ x+ d/2

7~ *

xR _ x-d/2

/ / *

After spotting points on the first picture, correspondence points are to be identified on the second

picture. This task has not been done before with satisfactory precision. In order to increase the

accuracy ofthis process, we aligned cameras so that they would be parallel to X -axis. As stated

before, image is Bi-Dimensional matrix with every point having two elements, X andr. Y is

22

height of the point and X is distance of the point fcomY *s axis. In this system 7-Axis situated

at most left part of the picture and X -Axis is at top. Thus the origin is at the most top left point

of the picture. Actual height of the object in image is equal to image width minus object's Y

value [33].

Since cameras are aligned to X Axis every point's height is equivalent in both images. So in

orderto determine depth of the object, we need to calculate precisely X amount, which is the

distance of the object from K-Axis. Furthermore, to facilitate indentifying the correspondence

point, wedivide thesecond picture into equivalent horizontal slices. This reduces search areaand

increases search accuracy.

Anotherproblemthat we face is viewingpoint; there are some objects in the first imagethat are

not visible in the second image. Same applies to the first image in which some apparent objects

in the first picture are not visible in the second image. To solve this problem we cut out an

invisible area in each image. After finishing these pre-processing on the two images, it is the

time to find the points on each slice of the image

Here we use another function from Open CV library. This fimction will search feature of first

image in second image. There are manytypesof optical flowbut optical flow for a sparse feature

in pyramids is bestchoice for this project since thefunction searches correspondence slice on the

second image.

The function cvCalcOpticalFlowPyrLK implements sparse iterative version of Lucas-Kanade

optical flow in pyramids. It calculates coordinates of the feature points on the current video

frame giventheircoordinates on the previous frame. The function finds the coordinates withsub-

pixel accuracy [34].

23

3.4 3D reconstruction

3.4.1 Introduction

After finding the points with their correspondence it's require to transfer points from a 2-

Dimention environment to a 3-Dimention environment. In this section, the steps of 3D

reconstruction will discussed.

3.4.2 Dot cloud

After finding the points and their correspondence it's required to transfer the points to a 3-

Dimentional environment and calculate depth [35]. The result of this action is called dot cloud

Figure 18.

Figure 18: Dot cloud

3.43 Wired reconstruction

In 3D reconstruction after location points and construction of dot cloud, it's required to connect

the points together. There are many methods and algorithms available such as Delaunay

triangulation, shortest distance and etc. shortest distance make a dynamic connection between

24

points in such a way that it's possible to reduce/increase the connection of one points to other

points. The result ofthis step is called wired structure Figure 19.

Figure 19: Wired structure

3.4.4 Solid reconstruction

The final steps of 3D reconstruction is to find a path between the connected points in such a way

that the result polygons be a planner. To ensure the planarity of the polygons it suggested using

triangles since the triangles are always a planner polygons. The result ofgenerating this polygons

is a shape with solid color and by adding light effect on that it's possible to see better result on

the solid construction Figure 20.

25

Figure 20: Solid Structure

33 Experimental system design

3.5.1 Class Diagram

The system is working on two important libraries. The first one is OpenCV and second one is

OpenGL. But unfortunately these two classes have some clashes with each other so we need to

separate them as much as possible. So we put each of them in separate classes. And to handle

thesetwo classes we put a baseclass.The baseclasswhich is considered as a mainprogram calls

the image processing (OpenCV) part first and then converts the variable and transfers to 3D

display environment (OpenGL), shown in Figure21.

flimpleiirerlalion class*
Active Stereo Vision

+QperCV(!
•f-OpenSLO

OpenCV

*-Setecf. Camera; voW

.StereoCaltijack: void"

•Point„Seleetor: void
Deiaunay: void
•Convert Variable; <&&

2l
OpenGL

^Convert Variable;

*Wirt: void

-SpecialKey: void
Ma&twBase: w«d

PHne: void

Figure 21: Active Stereo Vision Class Diagram

26

33.2 Flow chart

The flow of the main class is shown in Figure 22. Firstly, the image processing class will be

called by the system and then data will be converted and transferred to OpenGL class. By

displaying the result, the process will end but in each class an infinite loop will continue until

user requests for program termination.

(Sterl)

Image
Pioeassina

' •

Transfer Data

• '

3D Display

(
i 1

)Enri

Figure 22: Main Class Flow chart

Now we start analyzing each class. The first class for this process is image processing. In image

processing class, the first step is to ask user to select the camera and then send the image to the

"stereoCallBack" function, from there this function handles the processes. First is preprocessing

where the image will be divided to smaller area and then each area will be sent to the

"pointSelector" fimction. This function first gets the first image and selects the points (objects)

on it, then based on the object specification it searches on the second image. After specifying the

objects with their correspondence it sends the points to Delaunay triangulation function to locate

the points and connects them together. Next, the 2D construction will end as in Figure 23.

11

(-San)
> >

Camera
SelecSoit

If

StereoCallBa
*-

1'

PoinsSeiector

• '

Delaunay

' '

end

Figure 23: Image processing main flow chart

After processing on the image, it is time for transferring data to OpenGL. This step is very

important and it works as translator for both library basedon the original C++classvariables. So

first the system translates from OpenGL to C++ variable type and then transfers it to graphical

class and finally it transfers to OpenGL type, as in Figure 24.

28

(Start)
• •

Convert

Variable front
OpenCV to

C++

• '

Transfer

Variable

' •

Convert

Variable from
C++to

OpenGL

1 •

End

Figure 24: Transfer Flow Chart

Finally, to display the result we first need to create windows and then assign special key for

specific tasks like scale the view or move to left or right, etc. After that it calculates the point's

location and displays them in the environment as shown in Figure 25.

(Start

• >

Create
WttKhMIS

Special

Keyes

• •

Display

• >

End

Figure 25: 3D Display

29

3.53 GUI

As it explained before, this system contains three main classes. Each of these classes has their

own interface. We tried to simplify the design as much as possible so the user can simply use the

system. The main class is basically has four button and a message display area. The fimctionality

of each button will be explained more in the implementation, in Figure 28. The next interface is

for camera selection. This interface is also very simple as shown in Figure 29. The requirement

from user is clear and ifuser makes any mistake the system will inform user about that, shown in

Figure 26.

Figure 26: Error Message

Finally, we need a 3D display interface. It is very simple interface where the user can view the

3D result as in Figure 27.

Figure 27:3D Display

30

3.6 Experimental system Implementation

In this system there is one main file which handles two classes. The first class is related to image

processing using computer vision library OpenCV. The second class is for computer graphic

part. Here we explain how this system implemented. First we start the main file and then explain

about each class.

3.6.1 Main file

This file {Active Stereo VisionDlg.cpp) which is created by Microsoft MFC contains the main

interface where allows user specified the operations. There are 4 buttons on this interface. The

first 2 buttons (Ok and Cancel) Figure 28 is design to terminate the program. We explain later

how this 2 buttons terminate each class base on class terminator. Also these 2 buttons after

closing the classes will terminate the main file.

The next button is "Process" button that allows the user to select camera and do the process on

the image. Finally the result button where allow user to view the processed result in 3D.

£'i Active Stereo Vision

{.Caned, •- '•'.. <*' •- . .-Process •;. ":..- «w»iy.,-
- 1

- - •- ;"•.. - •

-1.-
'".'•;.' "t.. -;.-"

Figure 28: Main file interface

The main file is consisting of many sub fimctions where most of these function is predefine by

Microsoft visual studio. For start it's require to call the include files.

#include "stdafx.h"

#include "Active Stereo Vision.h"

#include "Active Stereo VisionDlg.h"

#include "oc.h"

#include "og.h"

31

The 3 first headers are belonging to Microsoft. The "stdafx.h" is calling MFC class for

implementation of interface. The "Active Stereo Vision.h" is for calling resources specified in

the "Active Stereo VisionDlg.h".

Finally the 2 remaining classes are the "oc.h" and "og.h" that we will explain later in detail about

them. Here before any process is started is requiring making an instance ofeach class and calling

their constructor. As follow:

oc *oci = new oc{);

og *ogi = new og();

the next step is to assign each button a class, first we start with the image processing class and

assign it to the process button.

oci->camselect{);

This fimction will allow user to select the cameras and then allow the class to process its required

steps. After process finished the usercan press the next button to followthe following steps.

oci->data_transfer();

ogi->dc(oci->artoc,oci->cart,oci->vecoc,oci->veccoc);

ogi->win();

The "datajransfer" fimction will convert all OpenCV variables to be understandable for

OpenGL. The "dc" also allocates this data to OpenGL class. And finally by calling "win"

function new 3D windows will created and displayed to user. These processed even though looks

like simple but play very important role in this application since it translate the OpenCV

variables to be understandable for OpenGL.

3.6.2 Imageprocessing

Oc class handling the image processing part of this project. First it requires acquiring two

cameras. This part handles by "highguLh" header. The first step is to ensure the user have 2

cameras and in other case warn the user to apply two cameras for this system. This process done

by "cvcamGetCamerasCount" the next step is asking user to select cameras from the list

provided to user Figure 29. After selecting the cameras and assign them to their own specific

32

variables now is time to enable the camera property and start rendering. These 2 processes

handle by "CVCAM_PROP_ENABLE" and "CVCAM_PROPJRENDER". The next property

need to set is which function needs to call and passes images received by each camera. This

property set by "CVCAM_STEREO_CALLBACK" this property calls "void

stereocallbackdpllmage* Image,Ipllmage* Image2)" function and this is the main

function in the image processing part. Finally by calling "cvcamlnitO" the properties will assign

to cameras and by "cvcamStartO" cameras will start capturing images. To ensure this process run

continuously we apply and infinite loop as "while (l)" and this process will break and go to end

by pressing ok or cancel button in main interface.

Select carnerafs)

]Logitech QtickCam Pro 5000

5/ Second camera

|Logitech QiickCam Pro 9D0F

OK

The maincamera

Cancel

Figure 29: Camera Selection Form

In the "stereocallback" function first we divide the height of image to smaller division and the

process the result on each divisions Figure 30. The next step is to initial points (objects) in the

first image and then finds the objects in second image (find correspondence). This 2 process

handle by "void pointseiectordplimage* frame)" as you can see this fimction get the

image and then process on it. In this function set of points with their correspondence will set and

displayed. The process ofpoint selection will continue until all image sections processed and the

points stores in specific array belong to them.

Figure 30: image division

33

"Pointselector" function is to process and extract objects and their corespondance. The first step

is to initial the memory space and point arrays. Here to allocate point array we use dynamic array

alocation to optimum the process.A sampleofcode will be as follow

CvPoint2D32f* points[3][8];

points[0][0] = {CvPoint2D32f*)cvAlloc(MAX_C0UNT*sizeof£points[0][0][0]));

this process will perform only one time since its consider as initialization. The function will

check if the image is initials or not if its not initial it call the initial function and followed by the

object selection. The object selectionuse a function from OpenCV liberarythe samplecode will

be as follow:

cvGoodFeaturesToTrack(grey, eig, temp, points[1][icnt], scount,quality,
min_distance, 0, 3, 0, 0.04);

cvFindCornerSubPix(grey, points[1][icnt], count,cvSize(win_si2e,win_size),
cvSize(-l,-l),

cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,10,0.03));

These fimctions first allocate the point on the first image and then base on the point's neighbors

it specifiedthe best object to track in second image. After selectingthe objects in first imagethe

function will return and second image will send to the function to track the points. Here we use

optical fellow (anotherOpenCVfunctions) to track the points in second image. A samplecode is

as follow:

cvCalcOpticalFlowPyrLK{ prev__grey, grey, prev_pyramid,

pyramid,points[0][icnt], points[1][icnt], count,

cvSize(win_size,win_size), 3, status, 0,

cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03), flags);

After selecting point in both image it's require to remove extra points which help us to eliminate

invisible views on either of images and then display result on the images Figure 31. After

allocation objects in both images the function will return to original function and continue the

process.

34

Figure 31: optical fellow and good Features to track result

The next step is connecting the point using Delaunay Triangulation Algorithm. This algorithm

also implemented in OpenCV. For start there are few initialization such as memory allocation

and also temporary images used in this algorithm. Then it starts reading the point one by one and

base on Delaunay algorithm the points will connect to each other. For start we need to allocate

the points on their own subdivision using following sample function:

cvSubdiv2DLocate(subdiv, fp, &e0, &p);

then the points will sent to Delaunay algorithm to connect to its neighbors using another function

ofOpenCV as following sample:

cvSubdivDelaunay2DInsert{ subdiv, cvPoint2D32f(art[j][i][0],art[j][i][1]));

the function will return the connection and the system will display the result to user Figure 32.

This is the end of processing part. The next step is to transfer the calculation data and combine

them all to gether and transfer to OpenGL.

Figure 32: Delaunay Triangulation

After finishing the calculation and make the connection between objects now it's time for pass

the process to the graphic library but before that there is one fimction need to implement to

ensure when the user ask for program termination the process class release all the memory space

it requires. It does require terminating all the windows created for displaying images and all

memory resource it created. Sample oftermination code is as follow:

cvReleaselmage(&imagep2);//cloasing image resources

35

cvDestroyAHWindows () ; //cloasing all display image windows

cvcamStop(); //stop the cameras

cvcamExit(); //terminate camera resources

After ensuring all the resources will distroy on termination now its time to transfer data to a data

type that OpenGL underestand. For example in OpenCV "CvPoint2D32f" is defining points

where it store the x and y position of the point so we need to store these type of variable in an

array where for example"array[0j" holds "x" and "array[l]" hold the "y" value. There are many

other similar data type is required that system need to convert before it use.

After conversion and transferring data to OpenGL environment now is time to construct 3D

view. For time being this process only consist of points and connection between them in 3D

mode. But before start it's require to specify certain criteria for displaying windows Like the

name, size, accepting key for 3D manipulation and ETC. You can see the samplesas follow:

glutInitWindowSize(320,240) ; //size of windows

glutSpecialFunc(SpecialKeys); //call function special key

glutDisplayFuncfmyDisplay); //call function myDisplay

And also special keys for manipulation:

if(key== GLUT_KEY_F6)

xRot 4= .5f;

if(key « GLUT_KEY_F8)

scale -= .05f;

if(key — GLUTKEYJLEFT)

xp — .05f;

To ensure this variable is affecting the view we need to refresh the windows after each

modification

glutPostRedisplayO;

36

And finally by specifying the location of points we can connect them together in a 3D

environment as you can see in the following sample:

dlme(vecogB][0][0],vecogGM

]*10);

void dline(double x,doubley,doublez,doublexl,double yl,double zl)

and finally we can achive to a result in 3D envoirnment [36].

3.7 TOOLS

The project is developed using:

C++

Camera (webcam)

OpenCV

OpenGL

Visual Studio

37

CHAPTER 4

RESULT AND DISCUSSION

4.1 Depth calculation

As it discussed before to calculate depth of an object we can use the location of object in each
image. Here we manually select the point to show how this formula can extract 3rd dimension
from 2D images.

4.1.1 Simpleobject

First sample is one cup. The main point here is how to chose the points in first image and track
them in the second image. For start we track the shape points on the cup Figure 33.

Figure 33: Points on Image

38

In (Table1: Simple Object) the selected point's value and the result is stated in this part we use.

Table 1: Simple Object

Point No 1 2 3 4 5 6

Bl 22.30 20.92 19.62 18.10 16.51 14.92

B2 8.57 7.02 5.47 4.16 2.72 1.80

a=Bl-B2 13.73 13.90 14.15 13.94 13.79 13.12

Z 13.34 13.03 12.58 12.96 13.23 14.54

In this part the Q (distance of2 camera is 28.5 centimeters and the camera value is 12.4.

Base on the result Figure 34 you can see the point's depth shows some curve which is the cup

curve. Even though the heights of the points are different but since the camera are in horizontal

line this difference doesn't affect the calculation.

Object Depth Result

Depth

Figure 34: Object Depth Result

39

4.1.2 Transparent Bottle

In the second image it tries to show even if the selection is in transparency mod but still the

result is correct. As you can seeFigure 35 the selection is a transparent bottle. Heretries to show

the calculation is independent from object material.

Figure 35: Transparent Bottle

Here also the value in Table 2: Transparent Object Result are the point position in first image,

the second image, the difference of 2 and the final row shows the depthresult.

Table 2: Transparent Object Result

Point No. 1 2 3 4 5 6 7 8

N 21.38 19.02 18.77 18.28 17.89 17.32 13.51 18.45

n' 12.07 9.49 9.17 8.64 8.22 7.73 4.55 8.96

a=n-n' 9.31 9.53 9.60 9.64 9.67 9.59 8.96 9.49

z 25.57 24.69 24.42 24.27 24.15 24.46 27.05 24.85

40

Here Q as distance of 2 cameras is 28.5 centimeters and the camera value (F) is 12.4 the result is

in centimeters. Base on the result Figure 36 you can see that the depth calculated respectfully to

the object regardless ofthe object material.

u
e

5

Object Depth Result

Point

Figure 36: Transparent Object Depth Graph

4.2 Fining correspondence

For start an automated system it's require to select the base points on one image and then track

them in second image. Figure 37 is sample of this function result. Green dot on the image

indicate the points found by the fimction. And the red dots on the second image are the points

that corresponded to the first image points. As it's clear the points selection and their

correspondence is on the image part that is contain texture.

41

I^^^^WI

Figure 37: Sample ofgood feature to track

43 3D reconstruction

4.3.1 Dot cloud

The first outcome ofthis project from the correspondence result is dot cloud. But before that it's

required to transfer result in 3D modeling environment and calculate depth. Then display result

for farther process. As you can see the shape of the dot cloud is exactly similar to the curve on

the can displayed in the image Figure 38.

Figure 38: Dot cloud Result

42

43.2 Wired result

By connecting the points in dot cloud the wired structure is created. In 2 dimensions there are

many algorithms where it's requiring to modify them to fit the3Denvironment. Here the shortest

distance is implemented Figure39.

Figure 39: Wired Structure

433 Solid result

After generating the wired structure we can find triangles within the points and by connecting

them together and form triangles and with help of lighting the solid result will be generated

Figure 40.

Figure 40: Solid Structure

43

CHAPTERS

CONCLUSION

In this report it tries to shows how computer can understand depth. There were sequences of

tasks required to achieve fully automated system. In this project we use block matching

algorithm to find correspondence of object where the result only limited to textured object. For

fiiture it suggested to use other algorithm or a mixture of algorithms to achieve better

performance and results.

Also for wired structure the shortest path implemented. This algorithm is good because of the

dynamic connection of the points but it's better to advance 2D algorithm to be implemented in

3D environment such as Delaunay triangulation or other methods.

The current result is base on only 2 images which is best case can return one side of the object.

For future job it suggested a system with ability of generating fully 3D object sample. Also it's

suggested to improve the solid structure by adding texture and generate a fully realistic 3D object

in the computer.

44

CHAPTER 6

REFERENCES

1- Input Devices and Sensors for Virtual Environments (January 31st 2007)

<http://wings.buffalo.edu/courses/sp07/mae/574-410/Course Notes/C5 and C6-Sensors

and Input Devices.pdf>

2- Govindarajan Srimathveeravalli 1998,"VR Lab"

3- Vision Group at SIRS Lab - University of Siena. 8 August 2007

<http://sirslab.dii.unisi.it/vision/indexl.htm>

4- RSCC Volume 1 Module 7 - Stereoscopy and Height Measurement. 8 August 2007

<http://www.r-s-c-c.org/rscc/vlm7.html>

5- RSCC Volume 1 Module 7 - Stereoscopy and Height Measurement. 8 August 2007

<http://www.r-s-c-c.org/rscc/v1m7images/stereo_viewing_eyes_building.jpg >

6- What is StereoVision?21 August 2007 <http://www.vision3d.com/stereo.html>

7- What is Stereo Vision? 21 August 2007 < http://www.vision3d.com/images/bb.jpeg >

8- Fundamentals of Stereo Computer 21 August 2007

<http://egweb.mmes.edu/faculty/tvmcentW

m>

9- D. Scharstein and R. Szeliski, May 2002 "A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms," Int'l J. Computer Vision, vol. 47, no. 1, pp.

7-42.

10-S, Roy, 1999 "Stereo without Epipolar Lines: A Maximum-Flow Formulation," Int'l J.

ComputerVision, vol. 34, nos. 2/3, pp. 147- 161.

45

11-H. Ishikawa and D. Geiger, 1998 "Occlusions, Discontinuities, and Epipolar Lines in

Stereo," Proc. European Conf. Computer Vision, pp. 232-249.

12-Y. Boykov, O. Veksler, and R. Zabih, 2001, "Fast Approximate Energy Minimization

Via Graph Cuts," Proc. IEEE Int'l Conf. ComputerVision, vol. 1, pp. 532-539.

13-J. Sun, N.-N. Zheng, and H.-Y. Shum, July 2003, "Stereo Matching Using Belief

Propagation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 7, pp.

787-800.

14-V. Kolmogorov and R. Zabih, 2001, "Computing Visual Correspondence with

Occlusions Using Graph Cuts," Proc. IEEE Int'l Conf. Computer Vision.

15-H. Tao, H.S. Sawhney, and R. Kumar, 2001, "A Global MatchingFramework for Stereo

Computation," Proc. IEEE Int'l Conf. ComputerVision,vol. 1, pp. 532-539.

16-L. Hongand G. Chen, 2004, "Segment-Based Stereo Matching UsingGraph Cuts," Proc.

IEEE Int'l Conf. Computer Vision and Pattern Recognition, vol. 1.

17-Y. Wei and L. Quan, 2004, "Region-Based Progressive Stereo Matching," Proc. IEEE

Int'l Conf. ComputerVision and Pattern Recognition, vol. l,pp. 106-113.

18-M. Bleyer and M. Gelautz, Jan. 2005, "Graph-BasedSurfaceReconstruction from Stereo

Pairs Using Image Segmentation " Proc. SPIE, vol. 5656.

19-Y. Zhang and C. Kambhamettu, 2002, "Stereo Matching with Segmentation-Based

Cooperation," Proc. European Conf. Computer Vision, pp. 556-571.

20-C. Baillard and H. Mafstre, Dec. 1999, "3-D Reconstruction of Urban Scenes from

Aerial Stereo Imagery: A Focusing Strategy," Computer Vision and Image

Understanding, vol. 76, no. 3, pp. 244-258.

21-G. Egnal and R.P. Wildes, Aug. 2002, "Detecting Binocular Half-Occlusions: Empirical

Comparisons of Five Approaches," IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 24, no. 8, pp. 1127-1133.

46

22-C.L. Zitaic and T. Kanade, July 2000, "A Cooperative Algorithm for Stereo Matching

and Occlusion Detection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.

22, no. 7, pp. 675-684.

23-J. Sun, Y. Li, S.-B. Kang, and H.-Y. Shum, June 2005, "Symmetric Stereo Matching for

Occlusion Handling," Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition,

vol. 2, pp. 399-406.

24-A.S. Ogale and Y. Aloimonos, 2004, "Stereo Correspondence with Slanted Surface:

Critical Implication of Horizontal Slant," Proc. IEEE Int'l Conf. Computer Vision and

Pattern Recognition, vol. 1, pp. 568-573.

25-M.Z. Brown, D. Burschka, and G.D. Hager, Aug. 2003, "Advances in Computational

Stereo," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993-

1008.

26-DigitalCamera2, 3rd April 2008,

< http://earthenterprises1.com/Digital%20Cameras2.htm>

27- Embedded Technology - Camera, 3rd April 2008,

<http://www.bluewatersys.com/design/technology/camera.php>

28- Digital Photography Essentials #003 ©Digital Outback Photo 3rd April 2008,

<http://www.outbackphoto.com/dp_essentials/dp_essentials_03/essay.html>

29- Fundamentals ofStereo Computer, 3rd April 2008, <

http://egweb.mines.edu/faculty/tvincent/Weldmg/fundamentals_of_stereo_computer.htm>

30-Open CV reference opencvrefcv.htm cvGoodFeaturesToTrack

31-Computational Stereo Vision Using Color, IEEE, 1988

32- Gang Xu and Zhengyou Zhang., 1996, "Epipolar Geometry in Stereo, Motion and Object

Recognition", 1st edition, Kluwer Academic Publishers.

33- Emanuele Trucco and Alessandro Verri, 1998, "Introductory Techniques for 3-D

computer Vision", 1st edition, Prentice-Hall, Inc.

47

34- Rafael C. Gonzalez and Richard E. Wood, 2002, "Digital Image Processing", 2nd Edition,

Prentice-Hall, Inc.

35- Richard S. Wright, Jrand Benjamin Lipchak, 2005, "OpenGL Supper Bible", 3rd edition,

Sams Publishing.

36- GlauCAD: Workplan, 3rd April 2008, <http://www.msr.uni-

bremen.de/glaucad/workplan.html>

48

APPENDIX I

1) Schedule FYP I

Table 3: Schedule and milestone FYP I

No. Detail/week

10

Selection ofproject Topic

Preliminary Research Work

Submission of Preliminary

Report

Seminar 1 (optional)

Project Work

Submission ofProgress Report

Seminar 2 (compulsory)

Project work continues

Submission of Interim Report

Final Draft

Oral Presentation

2) Schedule FYP II

Table 4: Schedule and mUestone FYP U

No. Detail/week i 2 3 4 5 6 7

2

8 9 10 11 12 13 14

1 Project work continue

2 Submission ofprogress report 1 i%

3 Project work continue

4 Submission ofprogress report 2

5 Seminar 3 iO 1
VI '

it-6 Project work continue

7 PreEDX

8 Dissertation

9 Oral Presentation •i!':

10 Hard Bound Project submission

11

APPENDIX n

1) Main class header:

1. // Active Stereo VisionDlg.h : header file

2. //

3.

4. #pragma once
5.

6.

7. // CActiveStereoVisionDlg dialog
8. class CActiveStereoVisionDlg : public CDialog

9. {
10. // Construction

11. public:
12. CActiveStereoVisionDlg(CWnd* pParent = NULL); // standard

constructor

13.

14. // Dialog Data
15. enum { IDD = IDD_ACTIVESTEREOVISION_DIALOG };
16.

17. protected:
18. virtual void DoDataExchange(CDataExchange* pDX); //

DDX/DDV support

19.

20.

21. // Implementation
22. protected:
23. HICON m_hIcon;
24.

25. // Generated message map functions
26. virtual BOOL OnlnitDialogO;
27. afx_msg void OnSysCoitimand(UINT nID, LPARAM IParam);
28. afx__msg void OnPaint {) ;
29. afx_msg HCURSOR OnQueryDraglconO;
30. DECLARE_MESSAGE_MAP{)
31. public:
32. afx_msg void OnEnChangeEditl();
33. public:
34. afx_msg void OnBnClickedButtonl(};
35. public:
36. afx_msg void OnBnClickedOk();
37. public:
38. afx_msg void OnBnClickedCanceK) ;
39. public:
40. afx_msg void OnBnClickedButton2();

41.};

m

2) Main Class source:

1. // Active Stereo VisionDlg.cpp : implementation file
2. //

3.

4. #include "stdafx.h"

5. #include "Active Stereo Vision.h"

6. #include "Active Stereo VisionDlg.h"
7. #include "oc.h"

8. #include "og.h"
9.

10. #ifdef J)EBUG
11. #define new DEBUG_NEW
12. #endif

13.

14.

15. // CAboutDlg dialog used for App About
16.

17. class CAboutDlg : public CDialog
18. {

19. public:
20. CAboutDlgO;
21.

22. // Dialog Data
23. enum { IDD = IDDJ&BOUTBOX };
24.

25. protected:
26. virtual void DoDataExchange(CDataExchange* pDX); //

DDX/DDV support
27.

28. // Implementation
29. protected:
30. DECLARE_MESSAGE_MAP()
31. };

32.

33. CAboutDlg::CAboutDlgO : CDialog(CAboutDlg::IDD)

34. {

35. }

36.

37. void CAboutDlg::DoDataExchange(CDataExchange* pDX}
38. {

39. CDialog::DoDataExchange(pDX);
40. }

41.

42. BEGIN_MESSAGE__MAP(CAboutDlg, CDialog)
43. END__MESSAGE_MAP ()
44.

45.

46. // CActiveStereoVisionDlg dialog
47.

48.

49.

50.

51. CActiveStereoVisionDlg::CActiveStereoVisionDlg(CWnd* pParent
/*=NUXL*/)

52. : CDialog(CActiveStereoVisionDlg::IDD, pParent)

IV

53. {
54. mjilcon = AfxGetAppO->LoadIcon(IDR_MAINFRAME) ;
55. }

56.

57. void CActiveStereoVisionDlg::DoDataExchange(CDataExchange* pDX)

58. {

59. CDialog::DoDataExchange(pDX);

60. }

61.

62. BEGINJYIESSAGE_MAP (CActiveStereoVisionDlg, CDialog)
63. ON_WM_SYSCOMMAND()
64 . ON_WM_PAINT()
65. ON_WM_QUERYDRAGICON()
66. / /}} AFX_MSGJYIAP
67 . ON_EN__CHANGE (IDC_EDIT1,

SCActiveStereoVisionDlg::OnEnChangeEditl)
68. ON_BN_CLICKED{IDC_BUTT0N1,

SCActiveStereoVisionDlg::OnBnClickedButtonl)
69. ON_BN_CLICKED(IDOK, SCActiveStereoVisionDlg::OnBnClickedOk)
70. ON_BN_CLICKED(IDCANCEL,

SCActiveStereoVisionDlg::OnBnClickedCancel)
71. ON_BN_CLICKED(IDC_BUTTON2,

SCActiveStereoVisionDlg::OnBnClickedButton2)
72. END_MESSAGE_MAP()
73.

74.

75. // CActiveStereoVisionDlg message handlers

76.

77. BOOL CActiveStereoVisionDlg::OnInitDialog()

78. {

79. CDialog::OnInitDialog();

80.

81. // Add "About..." menu item to system menu.

82.

83. // IDM_ABOUTBOX must be in the system command range.
84. ASSERT((IDM_ABOUTBOX S OxFFFO) == IDM_ABOUTBOX);
85. ASSERT(IDM_AB0UTB0X < OxFOOO);
86.

87. CMenu* pSysMenu = GetSystemMenu(FALSE);
88. if (pSysMenu != NULL)

89. {

90. CString strAboutMenu;
91. strAboutMenu.LoadString(IDS__ABOUTBOX);
92. if (!strAboutMenu.IsEmptyO)

93. {

94. pSysMenu->AppendMenu(MF_SEPARATOR);
95. pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,

strAboutMenu);

96. }

97. }

98.

99. // Set the icon for this dialog. The framework does this

automatically
100. // when the application's main window is not a dialog
101. SetIcon(m_hIcon, TRUE); // Set big icon
102. SetIcon(mJiIcon, FALSE); // Set small icon
103.

104. // TODO: Add extra initialization here

105.

106. return TRUE; // return TRUE unless you set the focus to a
control

107. }

108.

109. void CActiveStereoVisionDlg::OnSysCommand(UINT nID, LPARAM

IParam)

110. {

if ((nID & OxFFFO) == IDM_ABOUTBOX)

CAboutDlg dlgAbout;

dlgAbout.DoModal(};

111. if (

112. {
113.

114.

115. }
116. else

117. {
118.

119. }
120. >
121.

122. // If you •

CDialog::OnSysCommand(nID, IParam) ;

// If you add a minimize button to your dialog, you will need the
code below

123. // to draw the icon. For MFC applications using the
document/view model,

124. // this is automatically done for you by the framework.
125.

126. void CActiveStereoVisionDlg::OnPaint()

127. {

128. if (IsIconicO)

129. {

130. CPaintDC dc(this); // device context for painting
131.

132. SendMessage(WM_ICONERASEBKGND,
reinterpret_cast<WPARAM>(dc.GetSafeHdc{)), 0);

133.

134. // Center icon in client rectangle
135. int cxlcon = GetSystemMetries(SM_CXICON);
136. int cylcon = GetSystemMetrics(SM_CYICON);
137. CRect rect;

138. GetClientRect(Srect);

139. int x = (rect.Width 0 - cxlcon + 1) / 2;
140. int y = (rect.Height() - cylcon + 1) / 2;
141.

142. // Draw the icon

143. dc.DrawIcon(x, y, m_hIcon);
144. }

145. else

146. {

147. CDialog::OnPaint();

148. }

149. }

150.

151. // The system calls this function to obtain the cursor to display
while the user drags

152. // the minimized window.

153. HCURSOR CActiveStereoVisionDlg::OnQueryDragIcon()

154. {

VI

155. return static_cast<HCURSOR>(m_hIcon);
156. }

157.

158.

159. void CActiveStereoVisionDlg::OnEnChangeEditl{)

160. {

161. // TODO: If this is a RICHEDIT control, the control will

not

162. // send this notification unless you override the

CDialog::OnInitDialog()
163. // function and call CRichEditCtrl().SetEventMaskO
164. // with the ENM_CHANGE flag ORed into the mask.
165.

166. // TODO: Add your control notification handler code here

167. }

168. oc *oci = new oc();

169. og *ogi = new ogO;
170. void CActiveStereoVisionDlg::OnBnClickedButtonl()
171. {

172.

173. oci->camselect();

174.

175. // TODO: Add your control notification handler code here

176. }

177.

178. void CActiveStereoVisionDlg::OnBnClickedOk()

179. {

180. // TODO: Add your control notification handler code here
181. oci->stopit = 1;

182. oci->final{);

183. ogi->~og();
184. OnOK();

185. }

186.

187. void CActiveStereoVisionDlg::OnBnClickedCancel()

188. {

189. // TODO: Add your control notification handler code here
190. oci->stopit = 1;
191. oci->final();

192. ogi->~og();
193. delete ogi;
194. OnCancelO ;

195. }

196.

197. void CActiveStereoVisionDlg::OnBnClickedButton2()

198. {

199. oci->pntt();

200. //ogi->dc();
201. ogi->win{oci->pos,oci->posc);

202.

203.

204.

205. // TODO: Add your control notification handler code here

206. \

vn

3) Image processing class header:

42. #include <stdio.h>

43. #include <math.h>

AA. #include <time.h>

45. #include "cv.h" // include core library interface
46. #include "highgui.h" // include GUI library interface
47. finclude "cvcam.h"

48. finclude "cxcore.h"

49.

50. Ipragma once
51.

52. class oc

53. {

54. private:
55. int ncams,caml,cam2,nselected;

56. int* out;

57. char tstc[300];

58.

59. Ipllmage* img2;
60. char c;

61. public:
62. int pos[2][500][3];
63. int pose;
64. oc(void);

65. int stopit;

66. void pntt{);

67. void final();

68. //void houghlines(Ipllmage* src2);
69. void camselectO;

70. public:
71. virtual -oc(void);

72. };

4) Image processing class source:

1. #include "StdAfx.h"

2. #include "oc.h"

3. Ipllmage* Im, * Iml,*imagep,*imagep2;
4. Ipllmage *image = 0, *grey = 0, *prev_grey = 0, *pyramid = 0,

*prev_pyramid = 0, *swap_temp;
5. CvPoint2D32f* points[3][8] = {0,0}, *swap_points;
6. const int MAX_COUNT = 500;
7. int ilo2 =1,flags = 0,count ~ 0,win_size ~ 10,need_to_init = 2,i, k,

c,add_remove_pt = 0,pcount =0;
8. char* status = 0;

9. int sy,icnt,inj;
10. CvPoint pt;
11. char ctv[100];

12. int setv=0,omk=0,omk2=0;

13. int omx[500][3],omx2[500][3];

14. FILE *ri,*li;

vra

15. errno_t err;
16. void save_point(char rin[],char lin[]){
17. int i;

18. iff (err = fopen_s(Sri, rin, "w" }) !=0)
19. MessageBox(NULL,"Warning!\nCannot open the right

image file","File Manager",MB_ICONERROR);
20. if((err = fopen_s(Sli, lin, "w")) !=0)
21. MessageBox(NULL,"Warning!\nCannot open the left image

file","File Manager",MB_ICONERROR);
22. if(rin){

23. for(i=0;i<omk;i++)

24.

fprintf(ri,"%d\t%d\t%d\n",omx[i][0],omx[i][l],omx[i][2]);
//(pns,1024,pn);

25. }

26. if(lin){
27. for(i=0;i<omk2;i++)

28.

fprintf(li,"%d\t%d\t£d\n",omx2[i][0],omx2[i][1],omx2[i][2J);
//(pns,1024,pn);

29. }

30. if(ri)

31. {

32. if (fcloset ri))

33. {

34. MessageBox(NULL,"Warning!\nCannot close the right image
file","File Manager",MBJCCONERROR);

35. }

36. }

37. if(li)

38. {

39. if (fclose{ li))

40. {
41. MessageBox(NULL,"Warning!\nCannot close the left image

file","File Manager",MB_ICONERROR);
42. }

43. }

44. }

45. void Text_On_Image(Ipllmage* img,char text[],CvPoint
Start_Pnt,CvScalar color)

46. {

47. CvFont fontl;

48. cvInitFont(Sfontl,CV_FONT_HERSHEY_SCRIPT_COMPLEX,0.4,0.4,0,
1,CV_AA);

49. cvPutText(img,text,Start_Pnt,Sfontl,color);
50. }

51. void copy2img(char rin[],char lin[]){
52. int i=l;

53. if{ (err = fopen_s{ Sri, rin, "r")) !=0)
54. MessageBox(NULL,"Warning!\nCannot open the right

image file","File Manager",MB_ICONERROR);
55. if((err = fopen_s(Sli, lin, "r")) !=0)
56. MessageBox(NULL,"Warning!\nCannot open the left image

file","File Manager",MB_ICONERROR);
57. if(rin){

58. i=0;

59. while(! feof(ri)){

IX

60.

fscanf(ri,"%d\t%d\t%d\n",&omx[i][0],Somx[i][1],somx[i][2]);
61.

cvCircle(imagep,cvPoint{omx[i][0],omx[i][1]),3,CV_RGB(0,255,0),-
1,CV AA,0);

62. i++; //(pns,1024,pn) ,-

63. }
64. omk = i-1;

65. }
66. if(lin){

67. //for(i=0;i<10;i++)

68. i=0;

69. while(! feof(li)){

70.

fscanf(li,"%d\t%d\t%d\n",Somx2[i][0],Somx2[i][1],Somx2[i][2]};
71.

cvCircle(imagep2,cvPoint(omx2[i][0],omx2[i][1]),3,CV_RGB{255,0,0)
,-l,CV_AA,0);

72. i++; //(pns,1024,pn);

73. }

74. omk2 = i-1;

75. }

76. cvShowImage("camviewl",imagep);
77. cvShowImage("camview2",imagep2);
78. if(ri)

79. {

80. if (fclose(ri))

81. {

82. MessageBox(NULL,"Warning!\nCannot close the right image
file","File Manager",MBJECONERROR);

83. }

84. }

85. if(li)

86. {

87. if (fclose(li))

88. {

89. MessageBox(NULL,"Warning!\nCannot close the left image
file","File Manager",MB_ICONERROR);

90. }

91. }

92. }

93. void oc::pntt(){
94. int i,j;
95. if(omk>omk2)

96. j = omk2;
97. else

98. j = omk;
99. for (i=0;i<j;i++){
100. pos[0][i][0] = omx[i+l][0];
101. pos[0][i][l] = imagep->height - omx[i+l][l];
102. pos[0][i][2] = omx[i+l][2]*4;
103. pos[l][i][0] = omx2[i+l][0];
104. pos[l][i][1] = imagep->height - omx2[i+1][1];
105. pos[l][i][2] = omx2[i+l][2]*4;
106. }
107. pose = j;
108. }

109.

110. void on_mouse(int event, int x, int y, int flags, void* param)
111. {
112. //MessageBox(NULL,"onmouse","Camera",MB_0K);
113. if (flags == 2){
114. if(setv == 0){

115. omk++;

116. omx[omk] [0]=x;

117. omxEomk] [l]=y;
118. if (omk<=omk2) {

119. omx[omk] [2]=omx[omk] [0]-omx2 [omk] [0] ;

120. omx2[omk] [2]=omx[omk] [0]-omx2 [omk] [0];
121.

sprintf(ctv,"%4.2f",3023.622047244/(float)omx[omk][2]);
122.

Text_On_Image(imagep,ctv,cvPoint(x+1,y+1),CV_RGB(0,255,0));
123.

TextjDn_Image{imagep2,ctv,cvPoint(omx2[omk] [0]+l,omx2 [omk] [1]+D ,
CV_RGB{255,0,0));

124. cvShowImage("camview2",imagep2);
125. }

126.

cvCircle(imagep,cvPoint(x,y),3,CV_RGB(0,255,0),-1,CV_AA,0);
127. cvShowImage("camviewl",imagep);
128. setv = 1;

129. }

130. }else

131. setv = 0;

132. }

133. void undoO {

134. int i;

135. if(omk2>omk){

136. omk2—;

137. omk—;

138. for(i=omk;i>=0;i—) {

139.

cvCircle(imagep,cvPoint(omx[i][0],omx[i][1]),3,CV_RGB(0,255,0),-
1,CV_AA,0);

140.

cvCircle(imagep2,cvPoint(omx2[i][0],omx2[i][1]),3,CV_RGB(255,0,0)
,-l,CV_AA,0);

141.

sprintf(ctv,"%4.2f",3023.622047244/(float) omx2[i][2]);
142.

Text_0n_lmage {imagep2, ctv, cvPoint (omx2[i] [0]+l,omx2 [i] [1]+1),CV_R
GB(255,0,0));

143.

Text_0n_lmage{imagep,ctv,cvPoint(omx[i][0]+l,omx[i][1]+1),CV_RGB(
0,255,0));

144. cvShowImage("camviewl",imagep);
145. cvShowImage("camview2",imagep2);
146. }
147. for(i=omk+l;i<omk2+l;i++){

148. omx2[i][0] = omx2[i+1][0];
149. omx2[i][l] = omx2[i+l][1];

XI

150.

cvCircle(imagep2,cvPoint(omx2[i][0],omx2[i][1]),3,CV_RGB(255, 0, 0)
,-l,CV_AA,0);

151. cvShowImage ("camviewl", imagep);
152. cvShowImage("cantview2",imagep2);
153. }

154.

155. }else{

156. omk—;

157. omk2—;

158 . for (i=omk2; i>=0; i—) {

159.
cvCircle(imagep,cvPoint(omx[i][0],omx[i][1]),3,CV_RGB(0,255,0),-

1,CV_AA,0);
160.

cvCircle(imagep2,cvPoint(omx2[i][0],omx2[i][1]),3,CV_RGB{255,0,0)
,-l,CV_AA,0);

161.

sprintf(ctv,"%4.2f",3023.622047244/(float)omx2[i][2]);
162.

Text_On_Image(imagep2,ctv,cvPoint(omx2[i][0]+l,omx2[i][1]+1),CV_R
GB(255,0,0));

163.

Text_On_Image(imagep,ctv,cvPoint (omx[i] [0]+l,omx[i] [13+1) ,CV_RGB(
0,255,0));

164. cvShowImage("camviewl", imagep);
165. cvShowImage("camview2",imagep2);

166. }

167. for(i=omk2+l;i<omk+l;i++) {
168. omx[i][0] = omx[i+l][0];

169. omx[i][l] = omx[i+l][1];
170.

cvCircle(imagep,cvPoint(omx[i][0],omx[i][1]),3,CV_RGB(0,255,0),-
1,CV_AA,0};

171. cvShowImage("camviewl",imagep};
172. cvShowImage("camview2", imagep2);
173. }
174. }

175. }
176. void on_mouse2(int event, int x, int y, int flags, void* param)
177. {

178. if (flags == 2){

179. if(setv == 0){

180. omk2++;

181. omx2[omk2][0]=x;

182. omx2[omk2][l]=y;
183. if(omk2<=omk){

184. omx[omk2][2]=omx[omk2][0]-omx2[omk2][0];
185. omx2[omk2][23=omx[omk2][0]-omx2[omk2][0] ;

186.

sprintf(ctv,"%4.2f",3023.622047244/(float)omx2[omk2][2]);
187.

Text_On_Image(imagep2,ctv,cvPoint(x+1,y+1),CV_RGB(255,0,0));
188.

Text_On_Image(imagep,ctv,cvPoint (omx[omk2] [0]+l,omx[omk2] [1]+1) ,C
V_RGB(0,255,0));

189. cvShowImage("camviewl",imagep);

xn

190. }

191.

cvCircle{imagep2,cvPoint(x,y),3,CV_RGB(255,0,0),-1,CV__AA, 0);
192. cvShowImage("camview2",imagep2);
193. setv = 1;

194. }

195. }else

196. setv = 0;

197. }

198. void presetup(Ipllmage* frame){
199. /* allocate all the buffers */

200. image = cvCreatelmage(cvGetSize(frame), 8, 3);
201. image->origin = frame->origin;
202. grey = cvCreatelmage(cvGetSize(frame), 8, 1);
203. prev__grey = cvCreatelmage(cvGetSize(frame), 8, 1);
204. pyramid = cvCreatelmage{ cvGetSize(frame), 8, 1);
205. prevjpyramid = cvCreatelmage{ cvGetSize(frame), 8, 1);
206. int jk=0;
207. for(jk=0;jk<8;jk++){
208. points[0][jk] =

{CvPoint2D32f*)cvAlloc(MAX__COUNT*sizeof(points[0][0][jk]));
209. points[1][jk] =

(CvPoint2D32f*)cvAlloc{MAX_COUNT*sizeof{points[0][0][jk]));
210. points[2][jk] =

(CvPoint2D32f*)cvAlloc(MAX_COUNT*sizeof(points[0][0][jk]));
211. }

212. status = (char*)cvAlloc(MAX_COUNT);
213. flags = 0;
214. }

215. void initpoints{){
216. /* automatic initialization */

217. Ipllmage* eig = cvCreatelmage(cvGetSize(grey), 32, 1);
218. Ipllmage* temp = cvCreatelmage{ cvGetSize(grey), 32, 1);
219. double quality = 0.0001;
220. double min_distance = 1;
221. count = MAX_COUNT;
222. cvGoodFeaturesToTrack(grey, eig, temp, points[1][icnt],

scount,quality, min_distance, 0, 3, 0, 0.04);
223. cvFindCornerSubPix(grey, points[1][icnt],

count,cvSize(win_size,win_size), cvSize(-l,-l),
224.

cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,10,0.03));
225. cvReleaselmagef Seig);
226. cvReleaselmagef Stemp);
227. }

228. void pointselector(Ipllmage* frame){
229. if(!image)
230. {

231. presetup(frame);
232. }

233. cvCopy(frame, image, 0);
234. cvCvtColor(image, grey, CV_BGR2GRAY);
235. pcount = 0;
236. if(need_to_init)
237. {

238. initpoints();
239. }else if{ count > 0){

XIII

240. cvCalcOpticalFlowPyrLK(prev_grey, grey,
prev_pyramid, pyramid,points[0][icnt], points[1][icnt], count,

241. cvSize(win_size,win_size), 3, status, 0,
242.

. cvTermCriteria{CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03), flags
);

243. flags |= CV_LKFLOW_PYR_A_READY;
244. for{ i = k = 0; i < count; i++)

245. {
246. i f (add_remove_j?t }
247. {
248. double dx = pt.x - points[1][icnt][i].x;
249. double dy = pt.y - points[1][icnt][i].y;
250. if(dx*dx + dy*dy <= 25)

251. {

252. add_remove_pt = 0;
253. continue;

254. }

255. }

256. if{ !status[i])

257. continue;

258. points[1][icnt][k] = points[1][icnt][i];
259. points[2][icnt][k++] - points[2][icnt][i] ;
260. }

261. count = k;

262. }

263. for(i= 0; i < count; i++)

264. {

265. if(inj==l){

266. points[2][icnt][i] = points[1][icnt][i];
267. }else{

268.

cvCircle{imagep,cvPoint((int)points[2][icnt][i].x,(int)points[2][
icnt][i].y+sy),2,CV_RGB(255,0,0),~1,CV_AA,0);

269.

cvCircle(image,cvPoint((int)points[1][icnt][i].x,(int)points[1][i
cnt][i].y),3,CV_RGB(255,0,0),-1,CV_AA,0);

270. cvShowImage("Sum4", imagep);
271.

cvCircle(imagep2,cvPoint((int)points[1][icnt][i].x,(int)points[l]
[icnt][i].y+sy),2,CV_RGB(255,0,0),-l,CV_AA,0);

272. cvShowImage("Sum", imagep2);

273. }

274. }
275. if(add_remove_pt S& count < MAX_COUNT }
276. {

277. points[1][icnt][count++] = cvPointTo32f(pt);
278. cvFindCornerSubPix(grey, points[1][icnt] + count -

1, l,cvSize(win_size,win_size), cvSize(-1,-1),
279.

cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03));
280. add_remove_pt =0;
281.]

282. CV_SWAP{ prevjjrey, grey, swap_temp);
283. CV__SWAP{ prev_pyramid, pyramid, swap_temp);
284. CV_SWAP(points[0][icnt], points[1][icnt], swap_points);
285. need_to_init = 0;

XIV

286. }

287.

288. //
289. //

290. //////

291. ////// Stereocallback

292. //////

293. //

294. //
295. void stereocallback(Ipllmage* Image,Ipllmage* Image2){
296.

297. Im = cvCreatelmage{ cvGetSize{Image), 8, 3);
298. cvShowImage("camviewl", Image);
299. cvShowImage("camview2", Image2);
300. if{!imagep){
301.

302. imagep = cvCreatelmage(cvSize(Image->width,Image-

>height),Image~>depth,Image->nChannels);
303. cvZero(imagep);

304. }

305. if(!imagep2){
306. imagep2 = cvCreatelmage(cvSize(Image->width,Image-

height) ,Image->depth,Image->nChannels);
307. cvZero(imagep2);
308. }

309. if(need_to__init == 2) {
310. cvCopy(Image,imagep);
311. cvCopy(Image2,imagep2);
312. int jk=0;

313. for(jk=0;jk<8;jk++){

314. need to init = 1;

315. inj=l;
316. sy = jk*Image2->height/8;
317. cvSetlmageROI{Image,cvRect(0,sy, imagep->width,Image2-

>height/8));
318. icnt = jk;

319. pointselector(Image);

320. need to init = 0;

321. inj=0;

322. cvSetlmageROI(Image2,cvRect(0,s>', imagep-
>width. Image2->height/8));

323. pointselector(Image2);
324. }
325. cvFlip(imagep,imagep,-1);
326. cvFlip(imagep2,imagep2,-1};
327.

328. }
329. cvSetlmageROI(Image2,cvRect(0,0,Image-•>width,Image2-

>height));
330. cvShowImage("Sum2", imagep);
331. cvShowImage("Sum3", imagep2);
332. }

333. void. oc::final(){

334. cvDestroyAHWindows () ;

335. cvcamStop();
336. cvcamExit{);

337. }

XV

338. //

339. //
340. //////

341. ////// CamSelect

342. //////

343. //

344. //

345. void oc::camselect(){

346. Ipllmage* img, * img2;
347. char strFilter[] = { "jpg Files (*.jpg)[*.jpgiAll Files

(*.*)[*.*lI" };

348. char rif[100],lif[100];

349. CFileDialog FileDlg(FALSE, ".jpg", NULL, 0, strFilter);
350.

351. if(FileDlg.DoModalO == IDOK)
352. {

353. sprintf{rif,"%s.svi",FileDlg.GetFileName());
354. img = cvLoadlmage(FileDlg.GetFileName());
355. cvNamedWindow("camviewl", 1);

356. cvSetMouseCallback("camviewl", on_mouse, 0);
357 . cvShowImage ("camviewl", img) ;
358. }

359. else

360. return;

361. if{ FileDlg.DoModalO == IDOK)
362. {

363. sprintf (lif, "%s. svi", FileDlg. GetFileName ()),-
364. img2 = cvLoadlmage(FileDlg.GetFileName{));
365. cvNamedWindow{ "camview2", 1);

366. cvSetMouseCallback("camview2", on_mouse2, 0);
367. cvShowImage("camview2",img2);
368. }

369. else

370. return;

371. if{!imagep){
372. imagep = cvCreatelmage{ cvSize(img->width,img-

>height),img->depthr img->nChannels);
373. cvZero(imagep);
374. cvCopy(img,imagep);
375.]

376. if(!imagep2){
377. imagep2 = cvCreatelmage(cvSize(img->width,img-

>height),img->depth,img->nChannels);
378. cvZero(imagep2);
379. cvCopy(img2,imagep2);
380. }

381. cvShowImage ("Sum",imagep) ;
382. cvShowImage("Sum2",imagep2);
383. while(l){

384. c = cvWaitKey(lO);
385. if(c=='i'){

386. need_to_init =2;
387. stereocallback(img,img2);
388. }

389. if{c=='s'){
390. save_point(rif,lif);
391. }

XVI

392. if(C=='Z'){

393. if(omk>0 &S omk2>0) {

394. cvZero(imagep2);

395. cvCopy(img2, imagep2}
396. cvZero(imagep);
397. cvCopy(img,imagep);
398. undo();

399. >
400. }

401. if{c==*c*){

402. copy2img(rif,lif);

403. }
404. if(stopit == 1)
405. break;

406. }

407. }
408. oc: :oc(-void)

409. {
410. }
411.

412. oc: :~oc (void)

413. {
414. }

5) Graphic class header:

73. ^include <stdio.h>

74. #include <math.h>

75. #include <time.h>

76. #include "gl/gl.h" // include core library interface
77. #include "gl/glu.h" // include GUI library interface
78. #include "gl/glut.h"
79.

80. #pragma once
81.

82. class og

83. {

84. private:
85. int winid;

86. int lop;
87. public:

88. //void dctint ogp[2][500][3],int cnt) ;
89. og(void);
90. void win{int ogp[2][500][3],int cnt);
91. public:
92. virtual ~og{void);

93.};

xvn

6) Graphic class source:

1. #include "StdAfx.h"

2. #include "og.h"
3. int cnog,mod=0,initial=0;
4. double yRot=0,zRot=0,xRot=0,scale=1.0,xp=-1.0,yp=-1.0;
5. og ogt;

6. #define PI 3.1415

7. float xxRot = 0.0;

8. float x=0,y=3,z=0;
9. int artt[2][500][3];

10. bool conb[500][500];

11. const int mxmt = 40;

12. int mxm = mxmt/4;

13. int minloc[mxmt];

14. double mint [mxmt] ;

15. bool cand = false;

16. void dc{int ogp[2][500][3],int cnt){
17. int i,j,k;
18. for{i=0;i<2;i++){
19. for(j=0;j<cnt;j++)
20. for(k=0;k<3;k++)
21. artt[i][j][k] = ogp[i][j][k];
22. }
23. cnog = cnt;
24. }

25. void fc(int cnt){

26. int i,j,k,l;
27. double conn[1][500];
28. for {i=l; Kent;i++) {
29. k=0;

30. if(i!= 1}

31. mint[0] = sqrt(pow((float) (artt [0][i] [0]-
artt[0][1][0]),2)+pow((float) <artt[0][i][1]-
artt[0][1][l]),2)+pow{{float) (artt[0][i][2]-artt[0] [1] [2]},2));

32. else

33. mint[0] = sqrt(pow{(float)(artt[0][i][0]-
artt[0][2][0]),2)+pow((float)(artt[03[i][1]-
artt[0][2][1]),2)+pow((float){artt[0][i][2]-artt[0] [2] [2]),2)J;

34. for(j=2;j<cnt;j++){
35. conn[0][j] = sqrt(pow((float)(artt[0][i][0]-

artt[0][j][0])/2)+pow((float)(artt[0][i][1]-
artttO][j][l]),2)+pow((float)(artt[0][i] [2]-artt[0][j] [2]),2));

36. if(conn[0][j] <= mint[k SS i != j]){
37.

38. l=k;

39. while(conn[0][j] <=mint[l]){
40. mint[l+l] = mint[13;
41. l—;
42. }
43. mint[l+l] =conn[0][j];
44. if(k<(mxm-2))
45. k++;

46. }else if{k<(mxm-l) SS i !« j){
47. mint[k+l]=conn[0][j];
48. if(k<(mxm-2))

xvra

49. k++;

50. }

51. }

52. for{j=2;j<cnt;j++){
53. conb[i][j] = false;
54. for(l=0;K=k;l++) {

55. if(conn[0][j] ==mint[l]}
56. conb[i][j] = true;
57. }

58. }

59. }
60. }

61.

62. void pointd{double x,double y,double z)

63. {

64. glBegin(GL_LINES);
65. glVertex3f(1+x, 1+y, 1+z) ;

66. glVertex3f{-1+x, -1+y, -1+z);
67. glEnd();

68. glBegin(GL_LINES);
69. glVertex3f(-1+x, 1+y, 1+z);
70. glVertex3f(1+x, ~l+y, -1+z);
71. glEndO;
72. glBegin(GLJLINES);
73. glVertex3f(1+x, y, z+1);
74. glVertex3f(-1+x, y, -1+z);
75. glEndO;
76. }

77. void dline{double x,double y,double z,double xl,double yl,double

zl) t
78. glBegin(GL_LINES);
79. glVertex3f(x, y, z);
80. glVertex3f(xl, yl, zl) ;
81. glEndO;
82. }

83. float red(float af[], float bf[], float cf[])
84. {

85. float vl[3],v2[3],1[3],n[3],normn,norml,ia,id,ndotl=0.0;
86. int i;

87. for(i= 0;i<3;i++)
88. {

89. vl[i] = cf[i]-bf[i];
90. v2[i] = af[i]-bf[i];
91. }
92. n[0] = (vl[l]*v2[2])-(vl[2]*v2[l])
93. n[l] = (vl[2]*v2[0])-(vl[0]*v2[2])
94. n[2] = (vl[0]*v2[l])-{vl[l]*v2[0])
95. normn =

pow((pow(n[0],2)+pow{n[l],2)+pow(n[2],2)),(float)0.5);
96. 1[0] = x-bf[03;
97. 1[1] = y-bf[1];
98. 1[2] = z-bf[23;
99. norml =

pow{(pow{l[0],2}+pow(l[l],2}+pow(l[2],2)}, (float)0.5);
100. for(i=0;i<3;i++)
101. {

102. l[i] = l[i] / norml;

XIX

103. n[i] = n[i] / normn;
104. ndotl += l[i]*n[i];
105. }
106. ia = 0.5;

107. id = 0.5*ndotl;

108. return (ia+id);

109.

110. }

111.

112. void dtriffloat af[],float bf[],float cf[]){
113. glColor3f(red(af,bf,cf),0,0);
114. glBegin(GL_TRIANGLES);
115. glVertex3f{af[0], af[l], af[2]}
116. glVertex3f(bf[0], bf[l], bf[2])
117. glVertex3f(cf[0], cf[l]f cf[2])
118. glEndt);
119. }

120. void dotcloud(void){
121. int i;

122. for (i=0; Kcnog; i++)
123. pointd(artt[0][i][0],artt[0][i][l],artt[0][i][23);
124. }

125. void wiremod(void){

126. int i,j;
127. for {i=l; Kcnog; i++)
128. for(j=l;j<cnog;j++){
129. if{conb[i][j])
130.

dline(artt[0][i][0],artt[0][i][l],artt[0][i][2],artt[0][j][0],art
t[0][j][l],artt[0][j][2]);

131. }
132. }

133. void solid{void){
134. int i,j,k,l,m,n,o,p;
135. float af[3],bf[3],cf[3];

136. for(i=l;i<cnog;i++){
137. k = 0;

138. for{j=l;j<cnog;j++){
139. if(conb[i][j] && i!=j}{
140. minloc[k++] = j;
141. }

142. }

143. for(m=0;m<k;m++) {

144. for(l=0;Kk;l++) {

145. if(conb[minloc[m]][minloc[l]] &&
minloc[1]!=minloc[m] &S minloc[1]!=i){

146. af[0] = artt[0][i][0]
147. af[13 = arttEO][i][1]
148. af[2] = artt[03[i][2]
149. bf[0] =

artt[0][minloc[1]][0]

150. bf[l]
artt[03 [minloc[l]][1]

151.

artt[0][minloc[l]][2]
152.

artt[0][minloc[m]][0]

XX

bf[2]

cf[0]

153.

artt[0][minloc [m]] [1];

154.

artt[0][minloc[m]3[2];

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192. }

193. }
194. }
195. }

196. void MB(void){

197. if{initial == 0){

198. fc(cnog);
199. initial = 1;

200. }

201. switch(mod){

202. case 0:

203. dotcloud();

204. break;

205. case 1:

206. wiremod();

207. break;

cf[l] =

cf[2] =

n = af[0];

o=0;

if(bf[0]>n}{

n=bf[0];
o=l;

}
if(cf[0]>n){

n = cf[0];
o=2;

}
n = af[l];

p = 0;
if(bf[13>n){

n=bf[l];

p-1;

}
if(cf[l]>n}{

n = cf[l];

p=2;

}
if(o=0){

if(p=D
dtri(af,cf,bf);

else

dtri(af,bf,cf) ;
}else if{o=l){

if(p=0)
dtri(bf,cf,af);

else

dtri(bf,af,cf);

}else{

if(p=l)

dtri(cf,af,bf) ;

else

dtri(cf,bf,af);

}

XXI

208. default:

209. solid();

210. break;

211. }

212.

213.

214. }
215. void lights()
216. {
217. glPushMatrix();

218. x=390;

219. y=300*cos(xxRot)+320;
220. z =150*sin(xxRot)+900;

221. glTranslatef{x, y, z);

222. glColor3f(1,1,1);
223. glutSolidSphere{10,10,10) ;
224. glPopMatrix();

225. }
226. void myDisplay(void)
227. {

228. glEnable(GL DEPTH TEST);

229. glEnable(GL CULL FACE);
230. glCullFace(GL_BACK);
231. // Save matrix state and do the rotation

232. glClear(GL_COLOR_BUFFER_BIT I GL__DEPTH_BUFFER_BIT);
233. glPushMatrix();
234. glTranslatef{xp,yp, O.Of};
235. glScalef{scale,scale,scale);

236. glScalef(2.0/500.0,2.0/400.0,2.0/5000.0);
237. glRotatef(xRot, 1.0, 0.0, 0.0);
238. glRotatef(yRot, 0.0, 1.0, 0.0);
239. glRotatef(zRot, 0.0, 0.0, 1.0);

240. glBegin(GL LINES);
241. glVertex3f(0, 120, 0);
242. glVertex3f{320, 120, 0);
243. glEnd{);
244. glBegin(GL LINES);
245. glVertex3f(160, 240, 0) ;

246. glVertex3f(160, 0, 0);
247. glEnd(};
248. lights();

249. MB{);

250. glPopMatrix{);

251. glutSwapBuffers();
252. }

253.

254.

255. void processNormalKeys(unsigned char key, int x, int y) {
256. if (key==,l,)
257. mod =0;

258. if (key==*2*)
259. mod ~ 1;

260. if (key=='3')

261. mod = 2;

262. if (key=='u')
263. xxRot-= 0.05f;

264. if (key=='y')

xxn

265. xxRot+= 0.05f;

266. if (key=='i*)
267. if(mxm > 3){

268. mxm —;

269. fc(cnog);
270. }

271. if (key=='oM
272. if (mxm < mxmt) {

273. mxm ++;

274. fc(cnog);
275. }

276.

277. glutPostRedisplay{);
278. }

279.

280. void SpecialKeys{int key, int x, int y)
281. {

282. if(key == GLUT_KEY_F1)
283. yRot -= 0.5f;
284. if(key == GLUTJKEY_F2)
285. yRot += 0.5f;
286. if(key == GLUT_KEY_F3)
287. zRot -= 0.5f;

288. if(key == GLUT_KEY_F4)
289. zRot += 0.5f;

290. if (key = GLUTJCEY_F5)
291. xRot -= .5f;

292. if(key == GLUT_KEY_F6)
293. xRot += ,5f;

294. if(key == GLUT_KEY_F7)
295. scale += .05f;

296. if(key == GLUT_KEY_F8)
297. scale -= .05f;

298. if(key == GLUT_KEY_LEFT)
299. xp -= ,05f;
300. if(key == GLUT__KEY_RIGHT)
301. xp += .05f;
302. if(key = GLUT_KEY_UP)
303. yp += .05f;
304. if(key == GLUT_KEY__DOWN)
305. yp -= .05f;
306. glutPostRedisplayO;
307.

308. }

309. void og::win(int ogp[2][500][3],int cnt){
310. glutInitDisplayMode(GLUT_DOUBLE I GLUT_RGB);
311. glutInitWindowSize(320,240);
312. winid = glutCreateWindow("Saved Ali Kasaei zadeh (6148)");
313. glutKeyboardFunc(processNormalKeys);
314. glutSpecia1Func(SpecialKeys);
315. dc(ogp,cnt);
316. cnog = cnt;
317. glutDisplayFunc(myDisplay);
318. glClearColor{0.3,0.3,0.7,0.0);
319. if{lop==0)
320. glutMainLoop();
321. }

xxra

322. og:::og(void)
323. {
324. lop=0;
325. }
326.

327. og:;;~og{void)
328. {

329. lop==1;}

XXIV

