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ABSTRACT

This research project is an insight of the computer simulation of sintering process used

in developing parts through Powder Metallurgy. Sintering process depends on the

particle size, shape, and distribution of particle size. Different types of powders will

result in different packing on compaction and porosity on sintering. The objective of this

research is to identify the mathematical equations that can be used for monitoring

sintering process. These equations were used to generate the computer simulation to

identify suitable time and temperature for sintering process.

This study was divided into two parts. First part deals with monosized particles where

porosity on compaction was evaluated. Sintering parameters such as temperature and

time were considered affecting on the grain growth or particle diffusion as a result of

these parameters. At various temperatures, porosity was recorded and the simulation

data showed that the porosity was reduced with increased in time and temperature.

In the second part, metal powders of two different sized or bimodal packing were

considered. The effects of parameters such as the particle size ratio and the presence of

the composition of the large particle size powder on the fractional density of the

powders were investigated. The porosity of the powders was also evaluated and the data

showed that the fractional porosity was reduced in less time compared to monosized

particle.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Sintering process is widely use in industrial applications nowadays especially in

industries related with powder metallurgy and the ceramics manufactured. It is a main

process in producing the construction materials, bricks, porcelain, abrasives and white

wares. This process isnota new technology to us because it had already been discovered

during the primitive age. The manufacturing process ofpottery which was done by firing

method made the sintering process as one of the oldest human technologies. Besides, it

was found that during 3000 B.C, the Incas sintered the gold-platinum jewelry while the

Egyptian already used themetal andceramic materials [1].

Even though the sintering process had been used a long time ago, the knowledge and

fundamental about this process is poorly organized. The complexities such as too many

concepts, theories, characteristics of metal powders and mathematical models involved

are the major factors that made the sintering studies slowly progressed. In other words,

the theory has been far behind although the sintering process is widely used nowadays.

The fundamental and scientifically study on this field only began after 1940s [14]. Study

by Kuczynski and Frenkel at the end of 1940s was led to the first emerged of sintering

quantitative models [1].

The reasons of introducing the sintering process are to give more strength and reshape

the materials. Through sintering, the high strength and different shapes products can be

produced from the metal powders. This process also aims to design the new

microstructure of final product by controlling the grain size, allocation of particle,



sintered density and pores size. Asthisprocess is commonly being used, a technique that

can predict the grain growth and porosity of particle packing is needed. This technique

will help the manufacturer to control the behavior and mechanism of this process and

predict the final result after undergoing the sintering process. Further, it will be helpful

to produce high quality of products and reduce the cost of production. Throughout the

computer simulation, the important guidelines for material design also can be obtained

instead of general knowledge of microstructural growth.

Many studies on sintering and grain growth have been carried out by theoretical and

experimental in order to create the simulation that really can help in assessing and

optimizing sintering processes. The simulation of sintering process was first introduced

in the middle of 1955 and 1965 to control and monitor the behavior and sintering

mechanism [1]. It is first emerged in 1965 in which not very effective and the

simulations were slow. This simulation just depicts the eventualpossibilities of sintering

and the results obtainedare inaccurate [5]. Lot of limitations arose due to the complexity

of sintering process that gives some disadvantages in creating the computer simulation.

The development of the sintering simulation always expanded whereby it then can

predict the effects of time on density, temperature, pressure and size of particle for

constant temperature sintering [5]. However, sintering is not an isothermal process thus

the limitation of this simulation is notably not effective since sintering tend to occurs

along the way to peak temperature in which for isothermal case is oppose the actual

behaviour.



1.2 PROBLEM STATEMENT

The monitoring of sintering process in industry nowadays has been conventionally based
on the experiences. Sometimes the trial and error method is also implemented. These
methods are technically ineffective and uneconomical^ [6]. Thus the usage ofcomputer
simulation is more efficient and also decreases the cost of design and process
description. In addition, the final product of sintering processes also can be improved.

Sintering is different from the injection molding, casting or stamping where the
simulation are best to apply. The lack of volume conservation, non isothermal process
and undergo the transformation of phase led the ineffective computer simulation. The
forward time step also contributes to the ineffective simulation since it can result to
systematic errors. Most of the computer simulations fail to estimate the error and do not
reduce the error.

The sintered materials industries nowadays need the effective computer simulation of
sintering to predict the sintering of product from powders. The current computer
simulation on sintering faced the lack of accuracy due to some problems that related to
sintering process such as changes in shape and size of particle that undergo
transformation of phase.

This research project is approach to develop asimulation model for sintering process of
powder compact that focused on the effects oftemperature, particle size and distribution
ofparticle.



1.3 OBJECTIVE AND SCOPE OF WORK

The main objective of this project is to simulate the mathematical equations of the

sintering mechanism of metal powder particle packing.

In order to achieve the above objective, the following scope of works should be done

first:

a) Tostudy andunderstand the theory of sintering process.

b) To study the mathematical equations used for monosized and bimodal particle

packing model.

c) To analyze the effects of sintering temperature and time for grain growth and

powder compact.

1.4 SIGNIFICANT OF STUDY

This study is significant to investigate the effects of temperature and times on the

sintering. This is due to different powder tends to give different result of final particles

size and density. This study will simulate the sintering process for the compacts

monosized particles and bimodal size particles based on mathematical equations that has

been developed to predict the mechanism andbehavior of sintering process.

There are a lotof changes ofparticle's properties upon sintering. Many characteristics of

one material for instance the strength, conductivity, ductility, corrosion resistance and

many more are changes significantly. These changes are the main reasons of studying

the sintering process by looking at the microstructure changes in order to develop a

computer simulation.



CHAPTER 2

LITERATURE REVIEW

2.1 SINTERING THEORY AND PRACTICE

The sintering process has been applied for thousands of years. One of the very first

products that was produced through this process was the bricks [1]. Sintering is one of

the processes in powder metallurgy that used to increase the strength of material

whereby the powder materials are heated at the temperature below the melting point of

the materials [4]. This process is the final step in the densification process to enhance

the materials properties.

During the sintering process, the net-shaping is permitted due to the attractiveness of the

particle. However, in prior to achieve the desirable finishing physical properties, the

bondsbetween the particles mustbe created. When the compact powders being exposed

to relatively high temperatures will result in bonding formation between the particles of

the material thus the strength of this material is increased.

The formation of particle bonds is increased as the temperature is increased, longer

times or the particle is small. When the temperature is increased, the greater shrinkage

will occurs and the grains will growth rapidly. As the sintering time is longer, the greater

expense of particles, coarsening and grain growth. Decrease in particle size led to the

faster sintering process with higher impurity level. The bonds created will result in

lowering the surface energy since it removed the surface area. The interparticle bonds

will form along with the removal of grain boundary area [lj.



The noticeable feature of sintering is the formation of necking between the contacting

particles. When the particles are closed to each other, the initial stage of sintering will

occurs due to weak cohesive bond at the contacts and will lead to the formation of

interparticle neck vigorously. An interconnected formed during the intermediate stage

whereby the smooth pore structure is recognized. This necking process will create a new

grain boundary and continued until it becomes a single large particle [1].

There are two categorised of sintering process namely are solid state sintering and liquid

phase sintering. When the powder compact is dense completely in a solid state at the

sintering temperatures, this process is known as solid state sintering. Meanwhile, for the

case of generating a liquid during the sintering process, this process is known as liquid

phase sintering [14].

Since this process permits the parts to be formed, all ceramic materials and many high

temperature metals are sintered to produce the desired shapes. For both of these

materials, many of them are bonded by solid-state diffusion. However, the liquid phase

sintering will improved the mass transport rates, densification, and microstructure

coarsening due to the presence of liquid [1]. The viscosity of fluid will led to the full

densification ofthepowder compact when thevolume fraction isadequately high.



2.2 DIFFUSION PROCESS IN SINTERING

Diffusion is the most important mechanism in sintering process that leads to the changes

in particle's properties. It is a mechanism of mass transport of the particle as being

forced by correspondingly driving force. Two common types of mass transport

mechanisms in sintering are the surface and bulk transport [10]. Surface transport

includes the surface diffusion in which it givesno dimensional changes, just lead to the

neck growth formation and also the evaporation-condensation process. Bulk transport

comprises of volume diffusion, grain boundary diffusion, plastic flow and viscous flow

whereby the densification effects can be observed.

2.2.1 SURFACE DIFFUSION

Surface diffusion involves the movement of adjacent atoms, molecules and particles at

the surface of the materials. For almost of the materials, it acts as the contributor to the

sintering process [1]. This kind of diffusion has three stages that lead toward the

formation of neck growth. Initially, the atoms will be split from its' originally bonds.

Then, these atoms will move across the surface randomly in motion before the atom

reattach at an available new surface site.

The flow of mass is from surface sources to surface sinks thus the densification is not

produced via the surface diffusion. Besides producing the neck growth, it also leads to

the loss of surface area of the particles. The significance of the surface diffusion also

decreases as the sintering process continually progress. However, this diffusion

mechanism does not lead to the shrinkage of the materials [14].



2.2.2 VOLUME DIFFUSION

The movement of vacancies via a crystalline structure occurred during the volume

diffusion process whereby temperature, composition and curvature are the factors that

affect the rate of diffusivity [1]. This diffusion type has three ways of vacancy flow

which are>

a) Volume diffusion adhesion atwhich flow from the neck surface via the interior of

the particle. No densification is occurred due to the transportation to the surface

sites only.

b) Volume diffusion densification at which flow from the neck surface to the

interparticle grain boundary. Shrinkage or densification is produced during this

process.

c) Dislocation climb at which the vacancies being discharged by dislocations.

Densification is occurred because not involves at the surface.

This diffusion process is also known as lattice orviscous diffusion.

2.2.3 GRAIN BOUNDARY DIFFUSION

Grain boundary diffusion permits the flow of mass with intermediate activation energy

and form the sintered bonds by eliminate the mass at the grain boundary and relocate at

the sinter bond [1]. This diffusion mechanism is important to the sintering densification

of metals and compounds. Even though the presence of this mechanism is narrow, it is

still and active mass transport in sintering.



2.3 EFFECT OF TEMPERATURE ON PARTICLE SIZES

There are a lot of parameters being used in order to assess or predict the result of

sintering process since the entire initial properties of materials are changing. According

to German (1996), the sintering time or sintering temperature is used in the

measurements that will "allow examination of the sintering kinetics" [1].

Diffusion process is dependent upon the temperature. Thus, the rate of diffusion is

obviously being controlled by the temperature whereby the higher temperature gives

more rapid sintering. This happened because at high temperature, there will be more

available sites and high number of actives atoms.

As the temperature of sintering increased, it will affect the size of particle. The higher

value of temperature will result in increase of particle size with the constant sintering

time. This is because as the temperature become higher, the grain growth of the particle

will increase thus the size of the particle.

2.4 PARTICLE PACKING

It is very important to understand the features of particle packing since it can lead to

leastproblems during the process. There are many types of particle packingmodels but

the most commonly is monosized spheres. However, the bimodal packing also being

considered in this project since it can give higher packing density compared to

monosized model. The fractional density of the particle is the main property being

concerned in the particle packing [13].



2.4.1 MONOSIZED SPHERES MODEL

The monosized spheres model is used when both ofparticles are in same sized. For this

type of model, three types of packing that associated with monosized spheres are
ordered, random loose and random dense [13]. Figures below depict the arrangement of

particle for this type of model:

W- 'i*""V. '•'•"?->! . ,'-"1<*' ^^ '^-.=.: •'•

;'#S^'S#^S#',

Figure 1: The Arrangement ofSphere packing ofordered (left) and random (right)

German had studied that for the solid state sintering, the final sized of grain growth will

be determined by using the following mathematical equations [1]:

G3 = Gl + Kt

and K = K0 exp Q_
RT

where; G is the final grain size and G0 is the initial grain size,

K is the thermally activated parameter,

Ko is the grain boundary diffusion frequency,

t is the sintering time,

Q is the activation energy,

R is the gas constant,

T is the temperature.

10
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Meanwhile, a model that known as LSW model had been developed by Lifshitz and

Slyozov and Wagner to determine the grain growth ofparticles in liquid phase sintering

and expressed as follows [9]:

G3 = Gl + KLSW t (3)

and *„-*%&• W

where; D is the diffusivity,

C is the grain atoms solubility,

H is the atomic volume,

y is the surface energy,

KLSw is the parameter thatdeveloped by Lifshitz andSlyozov andWagner.

Another equation that can be used to predict the grain growth for liquid phase sintering

is

Qo3 s-i3G=G£ + K0texp
RT ,

where; Qg is the grain growth activation energy,

Ko is the grain boundary diffusion frequency.

This equation hadbeen expressed by German [11].

(5)
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2.4.2 BIMODAL PACKING SPHERES MODEL

The bimodal sizepacking model is used for a mixture of two particle sizes in which has

two distinct modes in the particle size distribution. This type of packing give the higher

densities that can be achieved compared to monosized particle packing type. In this

packing, the large difference in particle sizes will improve the packing density since the

small particles will fit in the interstitial space between the larger particles [16]. The large

particle size ratio will lead to higher packing density [13]. The packing density also

depends on the composition of large particle and small particle [16].

In the bimodal packing model, the weight fraction of particles and the fractional

densities are considered in order to relate them with the effect of temperature towards

the sizeof particles. Study by German [13] expressed the weight fraction as follow:

WXL= Wl (6)
WL+WS

where; Xl is the weight fraction of large particles,

Wl is weight of large particle,

Ws is weight of small particle.

German [16] also stated that the maximum packing densities of bimodal mixtures can be

calculated by using the following equations:

f* = f,, + Q-f,.)fs (7)

where; f* is the maximum packing density,

fL is the packing density of large particle,

fs is the packing density of small particle.

12



This maximum packing density is take place at the weight fraction of large particle, X*,

as expressed by follow:

X* =^- (8)

In order to calculate the respective fractional density, f, with respect to the

corresponding value of weight fraction of the large particle, XL, the following equations

being used [16]:

/ =A forXL>X* , (9)

and / = & forXL<X* - (10)
{ftXL+\-XL)

In orderto relatethe fractional density with the fractional porosity, the equation 11 that

developed by German [1] will be used:

vp=\-f • (ID

where: Vp isthe fractional porosity of theparticle,

f is the fractional density of the particle.

13



CHAPTER 3

METHODOLOGY

Prior to complete this project successfully, the methodology of the project is very

important so that all the studies and works follow the project timeline smoothly.

3.1 PROCEDURE IDENTIFICATION

Below are the steps that involve throughout the completion of this study:

Research on the sintering theory and
application

i
Decide the parameters to be

investigated

Collecting the data of stainlesssteel
304L

I
Study the mathematical equations

that related to the parameters selected

I
Generate the simulation of data for

monozised packing model

Generate the simulation of data for

bimodal packing model

Perform the data analysis and

evaluation of results

Process conditions:

Temperature and time

Powder properties: Grain
size, density, and porosity

Solid phase sintering

Liquid phase
sintering

Figure 2: Process FlowChart on the Procedure Identification

14



3.2 RESEARCH AND DATA COLLECTING

Research is done through some reading of the books, internet articles and journal.

Throughout the research, all the information and data about sintering and computer

simulation of sintering is are collected. These references also help the author to get the

understanding and knowledge priorto complete this research project.

3.3 STUDY OF SINTERING PARAMATERS AND MATHEMATICAL MODEL

The study of sintering measurement techniques is important since there are too many

parameters can be used. After studying all the parameters, the author will determine

which technique will be used and focused in this project. After the technique of

measurement is decided, the mathematical model that involved in that particular

technique will be studied before the computer simulation canbe generated.

The parameters that used in this research study are the diffusion involved and also the

effect of temperature to the particle size. These two parameters are related to each other

by the Arrhenius' Law as depicted below:

r n\

D = DQ exp
RTV

where; D is the diffusivity,

Do is the pre-exponential factor or diffusivity frequency,

Q is the activation energy,

R is the gas constant,

T is the temperature.

15
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3.3.1 MATHEMATICAL MODEL FOR MONOSIZED PACKING

As discussed in the literature review part on page 10, the equation 1 and 2 will be used

to determine the particle size afterthe solidstatesintering process.

G3 = G3 + Kt

and K = K0exp Q_
RT

By substituting equation 2 into equation 1, the following equation isobtained

G3 = G3 + KQ exp Q
RT

0)

(2)

(13)

By using the following assumptions in Table 1 and the stainless steel's data in Table 2

on page 22, the author will use equation 12 to simulate the relationship of sintering

temperature towardsthe final grain size.

Table 1: Assumptions Used for Simulation of Data

Properties Value

Initial particle size (um) 4

Range of sintering temperature, T (°C) 1000-1350

Sintering time (minutes) 30

Pore diameter (um) 2

Grain boundary diffusion frequency, K0 (m3/s) 2 x 10"13

Grainboundary activation energy,Q (kJ/mol) 167

The Gas Constant (J/K.mol) 8.32

16



For the case of liquid phase sintering, in order to relate theeffect of temperature towards

the particle size, the study from Lifshitz and Slyozov [9] which are the equation 3 and 4

on page 11 being studied:

G'^Gl+K^t (3)

and Kia, =*™&- (4)

So, both of the equations can beconnected andthe relationship between temperature and

particle size can be simulated. However, in the real situation, some of these parameters

cannot be applied since the usage of this equation differs compared to the real process.

For example, the solubility of matrix concentration does not apply since the fraction of

the solid volume is very high and grains are in contact [9].

As, the alternative way to determine the final particle size, the equation 13 being used

and the relationship between the particle size or grain growth with the temperature can

be obtained.

^ . dG K /iAX
From equation — = —- (.14)

H dt G2

where Kis given by WiK~|^/(^)

The parameter K is also exhibit like diffusivity, D, which is depends on exponential.

Thus, K is given by

K-'M--V (15)

where Ko is the grain boundarydiffusion frequency.

17



By substituting equation 13 into the equation 12, it will give

(16)dG K0 Q
— = —-exp --El-
dt G2 Fl RT

In order to relate the effect of temperature towards the size of particle, the equation 16

will be integrate to form thefollowing equation:

G3^G3+3^0exp^-^ (I?)

With the same data and assumptions that been stated in Table 1, the Equation 17 will be

used in this study to generate the computer simulation ofsintering looking the effect of
temperature towards the particle size for liquid phase sintering.

The fractional porosity ofthe final size particle will be calculated using the following

equation.

Vp = n
f . n2

dp 1 (18)
G

where; VP is the fractional porosity

dp is the diameter of pore,

G is the grain size ofparticle.

From the results obtained through the simulation, the graphs showing the relationship

between the sintering temperature and sintering time toward the particle sizes will be

plotted where the required temperature for the sintering process being highlighted.

18



3.3.2 MATHEMATICAL MODEL FOR BIMODAL PACKING

For bimodal packing model, the equation 6 on page 12 was used and being converted to

the ratioof the particles in determining the final particle size:

jr,=-?±— (6)
wL+ws

where; XL is the weight fraction of large particles,

WL is weight of large particle,

Ws is weight of small particle.

This weight fraction then will berelated to the mass fraction and finally relate it with the

particlesize using the following equations.

W= mxg (19)

and m= pxv (20)

where; W is the weight of particle,

m is the mass ofparticle,

g is the gravitational force,

p is the density ofparticle,

v is the volume ofparticle.

Theequation 6 then beingfurther modified since W-mxg and m- px v. So in the

end this equation becomes:

X,=-^- (21)
VL+VS

where; XL is the weight fraction of large particles,

vl is volume of large particle,

vs is volume of small particle.

19



But volume, v = —D3, thus the weight fraction of the largeparticle is expressed by:
6

Xf= (fj3 3 (22)
L (DLy+(Ds)3

And forXg, weight fraction for small particles, is given by:

(Ds)
*,= :7s' ., (23)

(dsyhdl)

where; DL is the diameter of the large particle

Ds is the diameter of the small particle

By dividing the equation 22 with 23, the new equation becomes:

Ds ixs

where; —- is the particle size ratio

(24)

As being discussed in the literature review parts on page 12 and 13, the equation 7, 8, 9

and 10 are used to study the relationship between the fractional density, the composition

in terms of large particles and also the particle size ratio.

20



In addition, the following equation will be used to determine the relationship between

particle size ratio and the fractional density that can beobtained.

f = r
0.64

yDLJ

f r, \

1- 0.362-0.3615 XL +0.995
D

K^lj

Where; f is the fractional density,

XL is the weight fraction of the large particle,

— is the inverse particle ratio.
Dr

X
2 \

(25)

\-xL )

The graph that depicts the fractional density versus the particle size ratio will be plotted

to show the relationship between these two parameters.

3.4 SIMULATION OF DATA

The data referred in Table 1 and 2 was use for simulation of data. This part is done after

all the studies being conducted. By using the Microsoft Office Excel 2003, the

simulation ofall the equations and the data is generated. The graphical data then will be

plotted to show the relationship between all parameters that involved in this study such

as grain size, temperature, time, porosity and density.

21



3.5 TOOL OR DATA REQUIRED

1) Computer

- Using the Microsoft Office Excel 2003 software to simulate the mathematical

models involved.

2) Data

- The properties ofStainless Steels 304L being used in this project as shown in

the Table 2 below:

Table 2: The Propertiesof Stainless Steel 304L

Properties
Composition
Melting Temperature (°C)
Heat Capacity (J/[kg.QC])
Surface Energy (J/m )
Elastic Modulus (GPa)
Yield Strength (Mpa)
Thermal Conductivity (W/fm.°C])
Volume Diffusion Frequency (m /s)
Volume Diffusion Activation Energy (kJ/mol)
Grain Boundary Diffusion Frequency (m /s)
Grain Boundary Diffusion Activation Energy (kJ/mol)
Surface Diffusion Frequency (m /s)
Surface Diffusion Activation Energy (kJ/mol)
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Fe-18Cr-8Ni

1400

500

2.2

193

220

16
^3"

4x10

280
7TT

2x10

167

0.5

220



CHAPTER 4

RESULT AND DISCUSSION

Thesimulation wasdonebasedon the mathematical equations stated in the methodology

part corresponding to their powder compacts packing types. The metal powder that had
been used for this study is Stainless Steel 304L since this study only focus on ferrous

material. After simulating the mathematical equations, all the results were tabulated and

presented graphically to show the relationship ofsintering temperature, time, final grain

size, density, particle size ratio, and porosity.

The simulation was done separately for two parts of studies which are the monosized

packing and bimodal packing model. For the monosized packing model, the
relationships between the sintering temperature and time toward the final grain size been

investigated. While for the bimodal packing model, the relationships between the

fractional density, particle size ratio and weight fraction of the large particle were

considered. The porosity ofthe powder compact was also investigated. The data that had

been used are for the Stainless Steel 304L and involved the assumptions in order to

generate this simulation.

4.1 MONOSIZED PACKING MODEL

The simulation of monosized packing model was done for two types of sintering

process. The first one is for the solid state sintering. For this type of sintering, two

conditions of sintering process being simulated areassumed to be as follow:

a) Sintered to specific sintering temperatures with constant sintering time

b) Sintered to specific sintering time with constant sintering temperature
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The first condition used the initial particle size of 4um stainless steel powder and was

sintered up to 1350°C with 30 minutes constant time. The simulation used the Equation

13 and the results that showed the corresponding final grain size and sintered

temperature was tabulated as in Table 3.

Table 3: Final Grain Size of Stainless Steel Powder Sintered for 30 Minutes.

Temperature (°C) Final Grain Size, G (urn) Temperature (°C) Final Grain Size, G (urn)

1000 4.9 1180 7.7

1010 5.0 1190 8.0

1020 5.1 1200 8.2

1030 5.3 1210 8.4

1040 5.4 1220 8.6

1050 5.5 1230 8.9

1060 5.6 1240 9.1

1070 5.8 1250 9.4

1080 5.9 1260 9.6

1090 6.1 1270 9.9

1100 6.2 1280 10.1

1110 6.4 1290 10.4

1120 6.6 1300 10.7

1130 6.8 1310 10.9

1140 6.9 1320 11.2

1150 7.1 1330 11.5

1160 7.3 1340 11.8

1170 7.5 1350 12.1

Based on the above results, the graph that depicts the relationship between the sintering

temperature and final grain size is plotted as shown in Figure 3. The graph in Figure 3

shows that as the temperature increased, the final grain size is also increase. This is

because the formation of bonding between the grains is increased rapidly as the

movement of atom is greater. The growth of these grains size eliminates the surface area

and pores between the powder particles. Thus the density of the final product is

increased. Fromthe graph we can see that if the required sintering temperature which is

1300°C, the final grain size is 10.7um. This show that the grain growth is increased

rapidly and final product is denser compared to the original powder.
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Figure 3: Grain Size versus Sintering Temperature for Solid State Sintering

For the second condition which is 4um metal powder was sintered at two different

temperatures which are at 1000°C and 1200°C for 30 minutes. The results were

tabulated in Table 4 and 5.

Table 4: Final Grain Size of Stainless Steel Powder Sintered at 1000°C.

Time (min) Final Grain Size, G (um) Time (min) Final Grain Size, G (jun)

1 4.04 16 4.50

2 4.07 : 17 4.53

3 4.10 18 4.56

4 4.14 ( 19 4.58

5 4.17 20 4.61

6 4.20 21 4.64

7 4,2'3 22 4.66

8 Z4.27 23 4.69

9 4.30 24 4.72

10 4.33 25 4.74

11 4.36 26 4.77

12 4.39 27 4.79

13 4.42 28 4.82

14 \ 4.45 29 4.84

15 4.47 30 4.86
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Table 5: Final Grain Size of Stainless Steel Powder Sintered at 1200°C.

Time (min) Final Grain Size, G (\xm) Time (min) Final Grain Size, G (um)
1 4.28 16 6.66

2 4.53 17 6.77

3 4.75 18 6.87

4 4.96 19 6.98

5 5.15 20 7.07

6 5.32 21 7.17

7 5.49 22 7.26

8 5.65 23 7.35

9 5.79 24 7.44

10 5.93 25 7.53

11 6.07 26 7.61

12 6.20 27 7.69

13 6.32 28 7.77

14 6.44 29 7.85

15 6.55 30 7.93

Based on Table 4 and 5, the graphs of grain size versus the sintering time were plotted to

depict the relationship between these two parameters.

6.00

4.00

Grain Size vs Time

15

Time (min)

Figure 4: Grain Size versus Sintering Time at 1000°C.
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Figure 5: Grain Size versus Sintering Time at 1200°C.

In Figure 4 and 5, as the sintering time increased, the final grain size also increased. This

is because as the time is increased, the grain is allowed to grow more thus the greater

expense of the particle occurred.

If the comparison of both of these figures is made, the final grain size is rapidly

increased for the higher sintering temperature than the lower sintering temperatures even

though the sintering time is same. This phenomenon happened due to the formation of

bonds is faster for the high sintering temperature.

For the liquid phase sintering the simulation is done by using the Equation 17. The

initial grain size of 4um stainless steel powder was sintered up to 1350°C with 30

minutes constant sintering time. The following are the results of simulation as tabulated

in Table 6.

Grain Size vs Time
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Table 6: Final Grain Size of Stainless Steel Powder for Liquid Phase Sintering

Temperature (°C) Final Grain Size, G (nm) Temperature (°C) Final Grain Size, G (urn)

1000 6.166 1180 10.817

1010 6.355 1190 11.145

1020 6.553 1200 11.481

1030 6.760 1210 11.824

1040 6.976 1220 12.173

1050 7.200 1230 12.528

1060 7.432 1240 12.891

1070 7.672 1250 13.259

1080 7.920 1260 13.634

1090 8.176 1270 14.016

1100 8.440 1280 14.404

1110 8.712 1290 14.798

1120 8.991 1300 15.198

1130 9.227 1310 15.605

1140 9.571 1320 16.018

1150 9.871 1330 16.436

1160 10.179 1340 16.861

1170 10.495 1350 17.292

The grain sizeversus the sintering temperature graph is plotted usingthe above results to

show the relationship between those two parameters.

Grain Size vs Temperature
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1000 1050 1100 1150 1200

Temperature (°C)

1250 1300 1350

Figure 6: Grain Size versus Sintering Temperature for Liquid Phase Sintering
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From the Figure 6, the final grain size of stainless steel powders increased as the
sintering temperature increase. At the sintering temperature is 1300°C, the
corresponding final grain size of particles is 15.198um. It can be seen that the final grain
size produced by liquid phase sintering is larger compared to the solid state sintering.
This is because the presence of liquid in this process increased the flow of mass transfer
to form the sintered bonds and the grain growth ofthe metal powders.

The Equation 18 will be used to show the relationship between the grain size and the
fractional porosity. For this simulation, the first condition for solid state sintering which
is the 4um of stainless steel powder is used. This powder is sintered up to 1350°C for 30
minutes. The size of pore diameter is assumed to be 2pm. Following are the tabulated
result of this simulation.

Table 7: The Fractional Porosity of Stainless Steel Powder Sintered at the

Corresponding Grain Size.

Grain Size, G (urn) Fractional Porosity, Vp Grain Size, G (jam) Fractional Porosity, Vp

4 0.7855 8.5 0.1740

4.5 0.6206 9 0.1552

5 0.5027 9.5 0.1393

5.5 0.4155 10 0.1257

6 0.3491 10.5 0.1140

6;5 0.2975 11 0T039

7 0.2565 11.5 0.0950

7.5 0.2234 12 0.0873

8 0.1964

The graph that depicts the relationship between the grain size and the fractional porosity

of the powder is plotted as shown in Figure 7.
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Figure 7: Fractional Porosity versus Grain Size for Solid State Sintering

In the Figure 7 above, the fractional porosity of the metal powder is decreased as the

grain size is increased. From this figure, the author can conclude that the fractional

density is inversely proportional with the grain size. At the grain size equal to 10.7pm,

the corresponding fractional porosity is 0.1098. So, the reduced in the percentage of

porosity which is about 67% showed that the final density of the powder is increased.
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4.2 BIMODAL PACKING MODEL

The simulation of bimodal packing model is looking to the effects and relationship

between the particle size ratio, fractional packing density and the weight fraction ofthe
large particle. By using stainless steels as metal powder, the Equation 25 is used to
generate the simulation for the relationship between the particle size ratio and the
fractional density. The size of smaller particles is 5pm while for the large particle the
size is in range 10pm till 500pm. The weight fraction or composition of the large

particle that been used is 70%. Table 8below tabulated the results of the simulation.

Table 8: The Optimum Fractional Density with the Corresponding Particle Size Ratio

Small Particle Size
(p,m)

Large Particle Size
(pm)

Particle Ratio, DL/Ds Fractional Density, f

5 5 1 0.6400

5 10 2 0.6532

5 25 5 0.7799

5 50 10 0.8094

5 100 20 0.8272

5 150 30 0.8344

5 200 40 0.8385

5 250 50 0.8412

5 300 60 0.8430

5 350 70 0.8445

5 400 80 0.8456

5 450 90 0.8465

5 500 100 0.8473

The graph of fractional density versus particle size ratio is plotted as depicted in Figure

8. As the particle size ratio is increased, the fractional density of the particle also

increased. However, when the ratio is larger than 60, it is obviously that the fractional

density is achieved its saturated point and no longer increased. The larger changes of

fractional density can be seen in the range of 5 up to 10.

31



1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

Fractional Density vs Particle Size Ratio

10 20 30 40 50 60 70

Particle Size Ratio (DL/DS)

80 90 100

Figure 8: Fractional Density versus Particle SizeRatio for Bimodal Packing

By using the Equation 7, 8, 9 and 10, the simulation that analyzes the relationship

between the composition or weight fractionof the large particle, XL, towards the packing

density' is generated. The simulation assumed that the maximum packing density is

achieved at the 70% of weight fraction of large particle, X*. In order to determine the

fractional density ofthe particle at the XL more than X*, the Equation 9 is used while for

XL less than X*, the Equation 10 is used. The values of packing density at the

corresponding weight fraction of large particle are tabulated as in the Table 9.

Table 9: The Fractional Density of Powders at the Corresponding Weight Fraction of the

Large Particle.

Weight Fraction of large particle, XL Fractional Density, f
0 0.5602

0.1 0.5860

0.2 0.6143

0.3 0.6454

0.4 0.6798

0.5 0.7181

0.6 0.7610

0.7 0.8094

0.8 0.7082

0.9 0.6295

1 0.5666
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The graphical data of the above results is plotted as illustrated by Figure 9 below. The

maximum packing density is achieved when the majority of the large particles are used

than the small particles. This is because, the terminal region between the larger particles

will be occupied by the smaller particles, thus improved the density of the particles.

0.9000

0.5000

Fractional Density vs Weight Fraction of Large Particle Xl

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Weight Fraction of Large Particle Xl

0.8 0.9

Figure 9: Fractional Density versus the Composition of Large Particles for Bimodal
Packing

The final part of this simulation is to relate the packing density with the porosity. The

Equation 11 is used to show the relationships of both parameters. The results of the

simulation are tabulated in the Table 10 as follow.
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Table 10: The Fractional Porosity ofPowders atthe Corresponding Weight Fraction of

the Large Particle.

Weisht Fraction of large particle, XL Fractional Density, f Fractional Porosity, Vp

0 0.5602 0.4398

0.1 0.5860 0.4140

0.2 0.6143 0.3857

0.3 0.6454 0.3546

0.4 0.6798 0.3202

0.5 0.7181 0.2819

0.6 0.7610 0.2390

0.7 0.8094 0.1906

0.8 0.7082 0.2918

0.9 0.6295 0.3705

1.0 0.5666 0.4334

The graph that depicts the relationship between the fractional density with the fractional
porosity at the corresponding weight fraction ofthe large particle is illustrated by Figure

10 below.

Density and Porosity vs Weight Fraction

0 0.2 0.4 0.6 0.8

Weight Fraction of Large Particle Xl

Figure 10: Fractional Density and Porosity versus theComposition ofLarge Particles for
Bimodal Packing
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The results show that the porosity is higher when the fractional density is lower. Thus,

the greater density will result less terminal region between the particles. Thus, the denser

particle can beproduced at thehigher packing density of the metal powders.

Besides, the graph also shows that the percentage of porosity is reduced for the bimodal

packing model while for the monosized model the percentage ofporosity ishigh which

is occurred when weight fraction is 0 and 1. The bimodal packing model has the low

porosity because the spaces between the large particles were fitted bythe small particles.

This will make the density of the powders increased thus reduce the porosity of the

powders.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

Many of the current computer simulations on the sintering process nowadays are lack of

accuracies due to the presence of the complexities. Even though much effort had been

exerted in this field, the available information on sinteringprocess and the application of

computer simulation is still inadequate. The manufacturers still used past companies'

experienced and tend to implement the try and error method to control the

microstructural growth and sintering mechanism.

The study has been completed parallel with the objective and the timeline that had been

constructed. This study is done to generate the simulation of data on the sintering

process by using the mathematical equations that related to the parameters that being

investigated. From the studied done, the proposed project can help in improving the

sintering computer simulation sincethe simulation onlydealswith parameters needed.

The study is focused on determining the final grain size and final packing density of the

metal powders with respect to the sintering temperature, sintering time, the particle size

ratio and the weight fraction of the large particle. The study was looking into two types

of packing model which are the monosized and bimodal packing model. The effects of

emperature and time toward the final particle size and porosity of powders were

considered for the monosized model. For bimodal, the effects of particle size ratio and

weight fraction of large particle on the density and porosity of powders were

investigated.
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For the monosized packing model, the final grain size increased rapidly as the metal

powder has been sintered to the higher temperature and longer sintering time for both

solid state and liquid phase sintering. It is also shown that the greater grain size can be

obtained in liquid phase sintering compared to solid state sintering due to presence of

liquid. For the solid state sintering, it is found that the percentage of porosity was

reduced about 67% when sintered to 1300°C whereby the grain size of the particles

increased from 4um to 10.7um.

The lower porosity can be obtained at the highest fractional density for the case of

bimodal packing. This led to the denser final product. The study also shown that as the

particle size ratio become larger, thepacking density will increase until it saturated point

approximately when the particle size ratio larger than60.

5.2 RECOMMENDATIONS

For the future work of this simulation ofdata, the experimental work on sintering should

be done since this study used lot of assumptions. By performing the experiment, the

accuracy of the data simulation is better than theory itself. Besides, many conditions of

the process can be set up and investigate prior to generate the bestdata simulation. The

comparison of result between the theory and the experimental workcan be done and the

errors can be estimated.

Since this study only covers the stainless steel powders, further study on the different

metal powders also can be done so that the comparison of the results can be made and

analyzed. It is also useful in determining whetherthe simulation is suitable for any metal

powders for powder metallurgy applications.
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The differential equation techniques such as Runge Kutta and Laplace Transform also

can be applied in generating more accurate equations thus lead to more accurate

simulation. The simulation can be generated by using the MATLAB software since it

can deals with the iteration problems.
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APPENDIX

APPENDIX 1

Gant Chart

- First Semester

No. Detail/ Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Selection of Project Topic

2 Perform Research and

Study of the Project

3 Work on preliminary report

4 Submission of Preliminary
Report

5 Project Work

6 Work on Progress Report

7 Submission of Progress
Report

8 Project work continues

9 Working on Interim Report

9 Submission of Interim

Report Final Draft

10 Oral Presentation
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- Second Semester

No. Detail/ Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 S

w

E

W

1 Project Work Continue

-Study on Monosized
Model

2 Submission of Progress
Report 1

3 Project Work Continue

-Working on Progress
Report 2

4 Submission of Progress

Report 2

5 Project work continue

-Study on Bimodal
Model

6 Submission of

Dissertation Final Draft

7 Oral Presentation

8 Submission of Project
Dissertation (Hardbound)
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