
Continuous and Concurrent Network Connection

for

Hardware Virtualization

by

Devarani Kumarasan

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Technology (Hons)

(Information & Communication Technology)

DECEMBER 2011

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

Approved by,

CERTIFICATION OF APPROVAL

Continuous and Concurrent Network Connection

for

Hardware Virtualization

by

DevaraniKumarasan

A project dissertation submitted to the

Information Communication Technology Programme

Universiti Teknologi PETRONAS

in partial fulfillment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(INFORMATION AND COMMUNICATION TECHNOLOGY)

(Ms Nazleeni Samiha Binti Haron)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

December 2011

1

CERTIFICATION OF ORIGINALITY

This is to certifY that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

11

ABSTRACT

This project addresses the network connectivity in virtualization for cloud

computing. Each Virtual Machine will be able to access the network concurrently

and obtains continuous internet connectivity without any disruption. This project

proposes a new method of resource sharing which is the Network Interface Card

(NIC) among the Virtual Machines with each of them having the full access to it with

near-native bandwidth. With this, could computing can perform resource allocation

more effectively. This will be essential to migrate the each Operating System

(Virtual Machine) that resides on one physical machine to another without disrupting

its internet or network connection.

iii

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL .. i

CERTIFICATION OF ORIGINALITY .. ii

ABSTRACT .. iii

TABLE OF CONTENTS .. v

LIST OF FIGURES .. viii

LIST OF TABLES .. ix

CHAPTER 1: INTRODUCTION .. 1

1.1 PROJECT BACKGROUND ... 1

1.2 PROBLEM STATEMENT2

1.3 PROJECT OBJECTIVE .. 2

1.4 PROJECT SCOPE .. 3

CHAPTER 2: LITERATURE REVIEW .. .4

2.1 CLOUD COMPUTING .. .4

2.2 VIRTUALIZATION4

2.3 LIVE MIGRATION ... 12

2.4 VT -D FOR PCI PASSTHROUGH .. 13

2.5 NETWORK BONDING .. 14

2.6 LIVE MIGRATION WITHNIC PASSTHROUGH (VT-D) AND
NETWORK BONDING .. 14

2.7 SINGLE ROOT JJO VIRTUALIZATION (SR-IOV)15

2.8 RELATED STUDIES ... 16

CHAPTER3:METHODOLOGY ... 18

3.1 PHASE 1: SETUP: HARDWARE REQUIREMENT 18

3.2 PHASE 2: SETUP: SOFTWARE REQUIREMENT19

3.3 PHASE 3: SETUP: CREATING THE VIRTUAL MACHINE 20

3.4 PHASE 4: LIVE MIGRATION .. 21

3.5 PHASE 5: VT FOR DIRECTED I/0 (VT-D) PCI PASSTHROUGH 22

3.6 PHASE 6: NETWORK BONDING .. 23

IV

3.7 PHASE 7: LIVE MIGRATION WITH NIC PASSTHROUGH (VT-D) AND

NETWORK BONDING .. 23

3.8 PHASE 8: SINGLE ROOT I/0 VIRTUALIZA TION (SR/IOV) 24

CHAPTER 4: RESULTS AND DISCUSSION ... 25

4.1 PROJECT DEVELOPMENT .. 25

4.1.1 PHASE 1: SETUP: HARDWARE REQUIREMENT 25

4.1.2 PHASE 2: SETUP: SOFTWARE REQUIREMENT 27

4.1.3 PHASE 3: SETUP: CREATING THE VIRTUAL MACHINE 28

4.1.4 PHASE 4: LIVE MIGRATION ... 28

4.1.5 PHASE 5: VT FOR DIRECTED I/0 (VT-D) PCI PASS THROUGH .33

4.1.6 PHASE 6: NETWORK BONDING .. .35

4.1.7 PHASE 7: LIVE MIGRATION WITH NIC PASSTHROUGH (VT-D)

AND NETWORK BONDING .. .38

4.1.8 PHASE 8: SINGLE ROOT I/0 VIRTUALIZATION (SRIIOV)39

4.2 PROTOTYPE41

4.3 LIMITATION AND CHALLENGES .. .43

4.3.1 HARWARE LIMITATION .. .43

4.3.2 OTHER LIMITATION43

CHAPTER 5: CONCLUSION AND RECOMMENDATION44

5.1 CONCLUSION44

5.2 FURTHER ENHANCEMENTS .. .45

REFERENCES .. 46

APPENDICES ... 50

v

LIST OF FIGURES

Figure 1: The layout of the server system before and after Virtualization

Figure 2: Guest Operating System Virtualization

Figure 3: Shared Kernel Virtualization

Figure 4: Kernel Level Virtualization

Figure 5: Hypervisor Virtualization

Figure 6: Complete Virtualization environment

Figure 7: Live Migration Concept

Figure 8: Virtualization Hardware Setup

Figure 9: Virtualization Network Setup

Figure 10: Virtualization Software Setup

Figure 11: Virtual Machine Setup

Figure 12: Live Migration

Figure 13: NIC Passthrough Structure

Figure 14: Network Bonding Structure

Figure 15: Complete Structure After Network Bonding

Figure 16: Migration Timeline

Figure 17: Link Capacity and Migration Performance

Figure 18: Video Streaming with Live Migration

Figure 19: The hardware setup

Figure 20: The PCie Slot for SR-IOV enabled NIC

Figure 21: The Control System That Accesses System!, System2 and VM

LIST OF TABLE

Table 1: Xen 3.2 and Xen 4.0 Live Migration Performance

Table 2: Bandwidth Results for Network Bonding through iPerfTesting

VI

CHAPTER I

INTRODUCTION

1.1 PROJECT BACKGROUND

Cloud computing has attracted major attention of the computing world recently. Many

groups of people from developers to businessman has shown a major interest in the

development of cloud computing. However, the fact that cloud computing is still at the

infant stage cannot not be denied. It still has a lot more room for improvement. One

important part of cloud computing is Virtualization where it is required in order to

enable cloud computing. There are four virtualization techniques in common use today,

namely guest operating systems, shared kernel, hypervisor and kernel level. Firstly is the

Guest Operating System Virtualization. In this approach, the physical host system runs a

standard unmodified operating system. The Shared Kernel Virtualization, also known as

system level or operating system virtualization, takes the advantage of the architectural

design of the Linux and Unix based operating systems. Under kernel level virtualization

the host operating system runs on a specially modified kernel which contains extensions

designed to manage and control multiple virtual machines each containing a guest

operating system. Finally is the Hypervisor Virtualization. Under hypervisor

virtualization, a program known as the hypervisor (also known as the Virtual Machine

Monitor or VMM) runs directly on the hardware of the host system. Discussing about

virtualization, we can never overlook the importance of network, thus, this also makes

network to become a major part of cloud computing. This proposal will propose the

project of implementation of continuous network connectivity in virtualization for cloud

computing.

I

1.2 PROBLEM STATEMENT

As computers became more ubiquitous however, it became apparent that simply time­

sharing a single computer was not always ideal. For organizations that could easily

afford it, they simply purchased multiple computer systems to mitigate these pitfalls.

Most organizations at the same time were not so fortunate to be able to purchase

multiple computer systems, it was also recognized that purchasing multiple computers

was often wasteful, as having more computers made it even harder to optimize them

fully. Putting into consideration that having multiple computers is still required, problem

of high cost and low optimization can be tackled through cloud computing.

Virtualization is a vital part in the infrastructure layer of cloud computing model. With

virtualization, one physical system can run multiple Operating Systems. However,

problem occurs when each of this Operating Systems want to access to the network with

the close to native bandwidth, continuously and concurrently. This is the main issue that

will be looked into in this project.

1.3 PROJECT OBJECTIVE

The objectives of this project are:

• To cater concurrent network access with network virtualization for cloud

computing.

• To implement continuous network connection in virtualization for cloud

computing.

2

1.4 SCOPE OF STUDY

The project covers only the virtualization part of the cloud computing. Cloud computing

implements various types of virtualization depending on its requirement. This project

will only concentrate upon hardware-based full virtualization. The network is a vital in

virtualization as to manage the resources to the optimum level through migration. Thus,

research will be done on the best method to cater concurrent network access and

continuous network connection.

Critical review and analysis will be conducted to develop an optimized system that can

enhance the network connectivity. Thorough various types of configuration will be done

in order to investigate alternative setup solutions. The outcomes of the various

configurations will be evaluated, tested, validated and compared with the current results

of the cloud computing system.

3

CHAPTER2

LITERATURE REVIEW

2.1 CLOUD COMPUTING

Cloud computing is the deployment of a new technology where the resources

such as the CPU and storage are provided as general utilities that can be leased and

released by users through the internet in an on-demand basis [1]. Cloud

computing describes computation, software, data access, and storage services that do not

require end-user knowledge of the physical location and configuration of the system that

delivers the services. Cloud computing comes into focus only when you think about

what IT always needs: a way to increase capacity or add capabilities without investing in

new infrastructure [2]. Cloud computing encompasses any subscription-based or pay­

per-use service that, in real time over the Internet, extends IT's existing capabilities.

Cloud computing is often related to virtualization which becomes a vital part of

virtualization where it is almost impossible to rectify the effectiveness of cloud

computing without its presence.

2.2 VIRTUALIZATION

IBM developed the virtual machine concept as a way of time-sharing very expensive

mainframe computers. The virtual machine concept allows the same computer to be

shared as if it were several. IBM defined the virtual machine as a fully protected and

isolated copy of the underlying physical machine's hardware [3]. IBM designed their

virtual machine systems with the goal that applications, even operating systems, run in

the virtual machine would behave exactly as they would on the original hardware [4].

Intel ® Virtualization Technology (Intel ® VT) [5] provides greater flexibility and

4

maximum system utilization by consolidating multiple environments into a single server,

workstation, or PC. With fewer systems required for the same tasks, Intel ®VT delivers:

• Simplified resources management increasing IT efficiency.

• Greater systems reliability and availability reducing corporate risk and real-time

losses from downtime.

• Lower hardware acquisition costs with increases utilization of the machines that

already available.

With support from the processor, chipset, BIOS, and enabling software, Intel VT

improves traditional software-based virtualization. Taking advantage of offioading

workloads to system hardware, these integrated features enable virtualization software to

provide more streamlined software stacks and "near native" performance characteristics.

Virtualization solutions enhanced by Intel VT allow a platform to run multiple operating

systems (OSs) and applications as independent virtual machines, allowing one computer

system to function as multiple "virtual" systems.

According to the Figure l, it shows that the typical server system (left) where each

Operating System runs on top of one physical systems. With the implementation of

virtualization, now we can run more than one, in this case five, operating systems

(virtual machines) on top of one physical server (right). The system runs a program to

manage the virtual machines which is known as Virtual Machine Manager or hypervisor

[6].

Figure I: The layout of the server system before and after Virtualization

5

The hypervisor that is purposed for this project is XEN. Xen is a virtualization

system supporting ParavirtuaJization (PV) and Hardware-assistant Full Virtualization

(HVM). Paravirtualization means that the OS knows that it is actually a virtual machine

sitting on a hypervisor and the OS, drivers and other resources are modified for the

paravirtualized environment. Whereas, fully virtualized (HVM) provides a virtual

replica of the system's hardware so that the OS and software may run on the virtual

hardware exactly as they would on the original hardware. This makes PV performs

better because the drivers have been modified for shared resources but HVMs more

flexible.

Choosing the best approach to implement virtualization for this project is important.

There are four virtualization techniques in common use today, namely guest operating

systems, shared kernel, hypervisor and kernel level [7].

Firstly is the Guest Operating System Virtualization. In this approach, the physical host

system runs a standard unmodified operating system. On this operating system, a

vitualization application or software which executes in much the same way as any other

applications such as a word processor or spreadsheet or media player would run on the

system. It is within this virtualization application that one or more virtual machines are

created to run the guest operating system or the VM. This application starts, stops, and

manages each of the VM and essentially controls the access to physical hardware

resources on behalf of each individual VM. The VM thinks that it is running directly on

the system hardware, rather than in a VM within an application. Examples of guest OS

virtualization technology include VMware Server and VirtuaiBox. Figure 2 illustrates

this technology:

6

VM VM VM

''irtualization .-\pplication

Figure 2: Guest Operating System Virtualization

The Shared Kernel Virtualization, also known as system level or operating system

virtualization, takes the advantage of the architectural design of the Linux and Unix

based operating systems. Under shared kernel virtualization the virtual guest systems

each have their own root file system but share the kernel of the host operating system.

This type of virtualization is made possible by the ability of the kernel to dynamically

change the current root file system to a different root file system without having to

reboot the entire system. The single disadvantage of this form ofvirtualization is the fact

that the guest operating systems must be compatible with the version of the kernel which

is being shared. Examples of the shared kernel virtualization are Linux VServer, Solaris

Zones and Containers, FreeVPS and OpenV. The figure below explains the structure of

this technology:

7

&Root
File

System

&Root
File

System

&Root
File

System

Figure 3: Shared Kernel Virtualization

Under kernel level virtualization the host operating system runs on a specially

modified kernel which contains extensions designed to manage and control multiple

virtual machines each containing a guest operating system. Unlike shared kernel

virtualization each guest runs its own kernel, although similar restrictions apply in that

the VMs must have been compiled for the same hardware as the kernel in which they are

running. Examples of kernel level virtualization technologies include User Mode Linux

(UML) and Kernel-based Virtual Machine (KVM) (8). The following figure provides an

overview ofthe kernel level virtualization:

8

Figure 4: Kernel Level Virtualization

Finally is the Hypervisor Virtualization. Under hypervisor virtualization, a

program known as the hypervisor (also known as the Virtual Machine Monitor or

VMM) runs directly on the hardware of the host system. The task of this hypervisor is to

handle resource and memory allocation for the virtual machines in addition to providing

interfaces for higher level administration and monitoring tools. As outlined in Figure 5,

in addition to the VMs, an administrative operating system or management console also

runs on top of the hypervisor allowing the virtual machines to be managed by a system

administrator. Hypervisor based virtualization solutions include Xen, VMware ESX

Server and Microsoft's Hyper-V technology. Different types of solution for resources

and memory aJiocation for hypervisor virtualization are paravirtualization, full

virtualization and hardware virtualization.

9

For paravirtualizaton, the kernel of the VM is modified specifically to run on the

hypervisor. This typically involves replacing any privileged operations of the CPU with

calls to the hypervisor. The hypervisor in turn performs the task on behalf of the guest

kernel. This limits the support to open source operating systems such as Linux which

may be freely alters and proprietary operating systems where the owners have agreed to

make the necessary code modifications to target a specific hypervisor. The drawback is

the VM's kernel unable to communicate directly with the hypervisor resulting in greater

performance levels than other virtualization approaches.

Full Virtualization provides support for unmodified guest operating systems which

means the VM's kernel is not altered to run on a hypervisor. Thus, it still executes

privileged operations. The hypervisor provides PCU emulation to handle and modify

privileged and protected CPU operations made by unmodified guest operating system

kernels. However, this emulation process requires both time and system resources to

operate, resulting in inferior performance levels when compared to those provided by

paravirtualization.

The Hardware Virtualization leverages virtualization features built into the latest

generations of CPUs from both Intel and AMD. These technologies, known as Intel VT

and AMD-V respectively, provide extensions necessary to run unmodified guest virtual

machines without the overheads inherent in full virtualization CPU emulation. In simple

terms, these new processors provide an additional privilege mode in which the

hypervisor can operate essentially leaving the guest operating systems unmodified.

10

Figure 5: Hypervisor Virtualization

HVM running on Xen hypervisor will be implemented for this project. Figure 6

shows how the actual virtualized environment looks like. The hypervisor lies on top of

the hardware and the OSes runs on top of the hypervisor. Each OS has to go through the

hypervisor to access the hardware or resources.

d m -nrrU

VG st

Processor

Memory

Figure 6: Complete Virtualization environment

11

2.3 LIVE MIGRATION

Now, with the virtual machines installed in the system, the migration of virtual

machines can be done. Migration is the ability to easily move a virtual machine across

the network from one physical host to another can be useful for a number of different

administrative tasks such as load balancing or dealing with scheduled maintenance. Xen

provides integrated relocation, or migration support. It helps manage the process of

preparing, transporting, and resuming guests from one nearby host to another.

w

0

Hardware Hardware

Figure 7: Live Migration Concept

u o.:..t

"' "' 0 0

Xcn

Hardware

There are many types of migration: cold static relocation, warm static migration,

and live migration [9]. Cold static relocation is accomplished manually without the help

of Xen 's integrated migration facility. There are two ways of accomplishing this goal.

The first occurs when both hosts share underlying storage (network attached storage).

The second method involves manually copying the configuration file and file systems

from the host to the target hardware. Warm static migration, or regular migration, of a

guest domain is the combined process of pausing the execution of that guest's processes

on its original host, transferring its memory and processes from its origin host to a

12

destination host, and resuming its execution on the destination host. As for this project,

live migration will be applied. The mere ability to migrate a guest domain from one

physical host to another is beneficial, but performing migration by temporarily

suspending and then restoring a guest's state is not suitable in all applications. Live

migration, enables a domain to be migrated while it is in operation and without the

interruption of its services or connections, as illustrated in Figure 7. Live migration of a

guest is the act of seamlessly moving its execution to the new physical host, including

redirecting established and future network connections away from its original and to its

new location.

2.4 VT-D FOR PCI PASSTHROUGH

Once the live-migration of the virtual machines can be conducted impeccably,

the isolation of NIC can be implemented. This basically means making use the Intel VT

for Directed 110 (VT -d). VT -d is a technique to give a virtual machine exclusive access

to a Peripheral Component Interconnect (PC!) function using the IOMMU provided by

Xen for VT-d [10]. Exclusive access here means the virtual machine can easily access to

th.e hardware without passing through the hypervisor (Xen). Thus, the virtual machine

has the complete access to the hardware that is being passtbrough. That particular

hardware is hidden from the Xen and other OSes. Two Network Interface Cards (NIC)

will be used where one of the NICs will be connected the VM to the system with bridge.

The other NIC will be hidden from the hypervisor (Xen) and host but assigned to the

virtual machine. The second NIC will bypass the hypervisor and thus, the virtual

machine has the full access to the NIC. The importance of this NIC passthrough can be

seen in the later stage.

13

2.5 NETWORK BONDING

When the passthrough is complete, network bonding will be implemented. The Linux

bonding driver provides a method for aggregating multiple network interface into a

single logical "bonded" interface, multiplying the bandwidth [11) [12]. Before

implementing bonding, it is important to understand Link Aggregation. Link aggregation

is used to increase the speed of a link by bundling network cables/ports in parallel. There

are a lot of other term of link aggregation including Ethernet/network bonding, NIC

teaming, link bundling, and trunking. By achieving network bonding, we can address

tow main problems: bandwidth limitations, and lack of redundancy.

There are many bonding mode and Mode I which is active-backup or Active­

backup policy is the one that is related to this project . Refer to Appendix I for the list of

other bonding modes. According to this mode, only one slave (primary slave) out of two

bonded interfaces (network interface) will be active. The other slave (secondary slave)

becomes active if, and only if, the active slave fails [13].

2.6 LIVE MIGRATION WITH NIC PASSTHROUGH (VT-D) AND

NETWORK BONDING

Now the live migration can be repeated. To implement video streaming with live

migration, the VM would stream a video that is stored in the storage system through the

network. During the video streaming, it can be seen that the bandwidth of the video will

be close to I .0 Gb. While the video was being streamed, the VM will detach its first NIC

as live migration cannot be done with the NIC still attached to the network. Once the

first NIC is detached, the second NIC will take over to make sure continuous network

connection. Though the bandwidth drops, the video streaming still continues without any

disruption. Live migration begins and the time it takes for the VM to migrate depends on

its size [14]. During the live migration, the user of the VM would not see any difference

and would not realize that live migration is being conducted in the background. Once the

14

live migration is completed, the network interface has to be attached to the system again

manually. The bandwidth will again improve back to almost the native bandwidth.

2.7 SINGLE ROOT 1/0 VIRTUALIZATION (SR-IOV)

The final stage would be the SR-IOV. SR-IOV which stands for Single Root I/0

Virtualization is a specification that allows a PCie device to appear to be multiple

separate physical PCie device. SR-IOV works by introducing the idea of physical

JUnctions (PFs) and virtual JUnctions (VFs) [15}. Physical functions (PFs) are full­

featured PCie functions; virtual functions (VFs) are "lightweight" functions that lack

configuration resources. SR-IOV requires support in the BIOS as well as in the

operating system instance or hypervisor that is running on the hardware. SR-IOV will

require the use of 1OGb Ethernet Card. These 1OGb bandwidth capability can be divided

to create ten virtual NIC. Each virtual network will be assigned to different virtual

machines on the same system. This means, the system will no more require multiple

NICs and in fact will still obtain the almost I Gb network bandwidth.

15

2.8 RELATED STUDIES

According to Lou in his paper Network I/0 Virtualization for Cloud Computing

[16], has done similar project. He performed the steps including virtualization, live

migration, PCI passthrough and network bonding. However, the difference between this

project and Lou's is that the bonding and the SR-IOV will be conducted in a different

manner. Lou still uses the 1Gb Ethernet card and uses the SR-IOV to assign each Virtual

Machines with the virtualized network card. Although each Virtual Machine appear to

own the network access, but it does not have the full control over the network card as

the Virtual Machines are still sharing the network card among themselves following a

scheduling process. This disables the concurrent network access as well as continuous

network connection. This project tackles these issues by dividing the 1OGb Ethernet card

to 1Gb and assigning each Virtual Machines to I Gb network capability with using the

SR-IOV method as well.

Another research done by Dong [17], optimization of Network 110 Virtualization

was done with efficient Interrupt Coalescing and Virtual Receive Side Scaling. In this

paper, the perfurmance challenges in network 110 virtualization is analyzed and

observed that the conventional network I/0 virtualization incurs excessive virtual

interrupts to guest VMs, and the backend driver in the driver domain is not parallelized

and cannot leverage underlying multi-core processors. Motivated by the above

observations, optimizations were proposed through: efficient interrupt coalescing for

network I/0 virtualization and virtual receive side scaling to effectively leverage multi­

core processors. Those optimizations in Xen and extensive performance evaluation was

done. The experimental results revealed that the proposed optimizations significantly

improve network 110 virtualization performance and effectively tackle the performance

challenges. However, this method only optimized the allocation of network 110 but does

not enable continuous and concurrent network.

In another paper on A Modeling of Network 110 Efficiency in Xen Virtualized

Clouds by Pu eta! [18],based on the server side and client side, two groups of equations

are proposed to mathematical modeling the exchanged memory pages in Xen 110

16

channel. According to the designed experiments, the proposed functions calculated the

number of exchanged memory pages accurately, with an average error rate around 6%,

even in multiple VMs scenario. Meanwhile, the effects of varying MTU (Maximum

Transmission Unit) size respectively based on our experimental results and proposed

equations were illustrated and analyzed. Afterwards, an effective improvement for

optimizing network I/0 performance is also proposed in this paper. This method also

only focuses on optimization instead of providing dedicated network connectivity for

each VM.

Dong Y. et al (19], based on the first implementation of network device driver,

several optimizations were applied to reduce virtualization overhead. Then,

comprehensive experiments to evaluate SR-IOV performance were carried out and

compared with paravirtualized network driver. The results show SR-IOV can achieve

line rate (9.48Gbps) and scale network up to 60 VMs at the cost of only 1.76%

additional CPU overhead per VM, without sacrificing throughput. It has better

throughout, scalability, and lower CPU utilization than paravirtualization. This research

which is on SR-TOV shows that it can be implemented to achieve the objective of this

project which is to enable concurrent network connection.

17

CHAPTER3

METHODOLOGY

3.1 PHASE 1: SETUP: HARDWARE REQUIREMENT

This project requires two server systems (System1 and System2). Both System1

and System2 have to be of similar server system. Another server system that is

Network File System (NFS) which acts as shared server. The forth system is the

Control System can be of any platform which will be used to access all the other

three system from one point. PuTTy will be used to connect to System1 ,

System2 and NFS system from the Control System.

Server Sen-er
System 'ftith System with
VT~eu.bled VT~enabled
(Ia.~.

~
~-,.,.,

• • • • ~----

Figure 8: Virtualization Hardware Setup

The system is set as shown in the Figure 8 above. All the systems are

connected to the network switch. System1 andSystem2 have two separate

Network Interface Cards (NIC). Both NICs are connected to the network switch.

The Figure 9 below shows how each system is connected to the network switch.

18

I Systeml I System2 NFS

Figure 9: Virtualization Network Setup

Control
Syst m

Networtc cabl

3.2 PHASE 2: SETUP: SOFTWARE REQUIREMENT

OS:OpenluH
11.2(~

2.1.31)+UN4.0

Figure 10: Virtualization Software Setup

19

Figure I 0 shows the software setup of this project. System I and System2 are installed

with OpenSuse 11.2 operating system with Xen 4.0 hypervisor. System2 must be

installed and setup similar to System I. The NFS system can be installed with any

operating system. For this project, we have installed RHEL 5.3. As for the Control

System, it can be installed with any operating system. I have used Windows?. The image

files of the Virtual Machine, for this project Fedore Core 10, is uploaded to the NFS.

3.3 PHASE 3: SETUP: CREATING THE VIRTUAL MACHINE

01: OpeftluM
11.2(I<Miel

2.1.31) + lCIN 4.0

Figure I l : Virtual Machine Setup

The Figure II above shows that the Virtual Machine (VM) is installed on the System2.

Xen hypervisor is enabled. The VM's image file is loaded from the NFS system and

installed on top ofthe Xen hypervisor. The VM is then named as VMI.

20

3.4 PHASE 4: LIVE MIGRATION

Live migration ofthe Virtual Machine from System I to System2 will be performed. The

Figure 12 shows how live migration is conducted for this project. When live migration is

done, the VM will disconnect its network connection form System2 and is migrated to

System I and then establishes the network connection again through System 1.

,. ,,' --.--~"ft-------.
~, I

0 1 : Open luse
111.2 (KMMI

2.1.31) + XEN 4.0

-....... --------------

~--

\

-- ---

Figure 12: Live Migration

21

3.5 PHASE 5: VT FOR DIRECTED 1/0 (VT -D) PCI

PASSTHROUGH

For this project the PIC that will be passthrough is the Network Interface Card (NT C).

Normal Network Bridge · Passthroug_h Network
Setup for VM · Setup for VM

Figure 13: NJC Passthrough Structure

The Figure 13 shows how VT-d was implemented. In order to implement NIC

passthrough, two NIC card is required. One NIC card (ethO) will be connected the VM

to the system with bridge (shown in the left side of the yellow line in the Figure X). The

other NIC (eth I) will be created and then hidden from the hypervisor and host but

assigned to the VM (shown in the right side of the yellow line in the Figure X). From the

figure it can be seen that the second NIC bypassed the hypervisor. Thus, the VM has the

full access to the NIC.

22

3.6 PHASE 6: NETWORK BONDING

Figure 14: Network Bonding Structure

According to the Figure 14, eth I that was created during NIC passsthrough, will be

combined or aggregated to ethO and renamed it bondO. bondO will appear to be one

logical network port and the bandwidth will be close to the native bandwidth (almost

1Gb).

3.7 PHASE 7: LIVE MIGRATION WITH NIC PASSTHROUGH

(VT-D) AND NETWORK BONDING

Figure 15 shows the structure ofthe complete system. Now, all the steps from phase 4 to

phase 6 can be repeated. The output will be monitored. Further research and analysis

will be done based on the output and the outcome will be noted for further improvisation

of the system.

23

Figure IS: Complete Structure After Network Bonding

3.8 PHASE 8: SINGLE ROOT 1/0 VIRTUALIZATION (SRIIOV)

SR-IOV should be implemented with the I OGb Ethernet cards replacing the existing

I Gb Ethernet cards. However, since the high cost of I OGb Ethernet cards defers from

obtaining it, the same stimulation will be done to the 1Gb card as a prove of concept.

This part of the project will divide the 1OGb capacity to I Gb each and assigned directly

to the Virtual Machines. Thus, each of the Virtual Machines will have continuous

network connectivity and each of the Virtual Machines can be accessed concurrently.

Each Virtual Machine also will be able to have near-native bandwidth of I Gb.

24

CHAPTER4

RESULTS AND DISCUSSION

4.1 PROJECT DEVELOPMENT

4.1.1. Phase 1: Setup: Hardware Requirement

The hardware setup of this project is to simulate the real-world environment. A

simple network system is created with two server systems, System 1 and

System2, a Network File System (NFS) and also a Control System. All these

systems are connected to a network switch and given static IP address to create a

single network. The real-world environment will be more complex with many

server systems and clients requesting for the service from the server within a

very large network.

4.1.1.1 Server Systems

Both the server system, System I and System2 must be VT -d enabled. VT -d is

Intel Virtualization Technology for Directed I/0. A general requirement for I/0

virtualization model is the ability to isolate and restrict device accesses to the

resources owned by the Virtual Machine. Thus, to implement this, the server

systems must be of Intel's processor and both of the systems must be identical.

However, not all Intel processors are VT -d enabled. Thus, before beginning with

this project, it is vital to ensure that the system is VT -d enabled. The list of Intel

processors that supports VT-d is included in Appendix C. AMD processor also

has I/0 virtualization which is the AMD-Vi which provides the same function.

25

4.1.1.2 Network File System (NFS)

As for the NFS, it allows a system to share directories and files with others over

a network. By using NFS, the server systems can access files on remote systems

almost as if they were local files. One of the notable benefits that NFS can

provide is the server systems can use less disk space because commonly used

data can be stored on a single machine and still remain accessible to others over

the network. This attributes becomes very important for live migration that will

be implemented in this project to verify the continuous and concurrent network

connectivity. NFS servers will be used as a storage repository for all the Virtual

Machine (VM) images and other video files that will be used throughout live

migration and video streaming. When VMs are stored on non-shared storage,

they cannot be live migrated between systems. With non-shared storage, the

VMs are stored in that storage can only be seen by one virtualization server.

Shared remote storage such as NFS allows a VM to be migrated to multiple

virtualization servers.

4.1.1.3 Control System

The control system is only an additional system that functions as central system

that manages all the other systems in the network. This is useful to ease the

project implementation.

4.1.1.4 Additional Network Interface Card

For this system, the Network Interface Card (NIC) must be Single Root I/0

Virtualization (SR-IOV) enabled. The list of SR-IOV enabled NIC is listed in

Appendix D. The SR-IOV is fairly a new technology to the market. Thus, the

26

integrated NIC that comes with the machines or server systems are not SR-IOV

enable. Thus, this additional NIC has to be inserted to use the SR-IOV function.

4.1.2. Phase 2: Setup: Software Requirement

The machines are installed with Linux Operating Systems. The main reason why

Linux is used is that it can be downloaded for free as they are open source.

Another reason is that the operating system is flexible and can be easily rendered

as the Linux source codes are freely distributed.

4.1.2.1 Server System with OpenS USE 11.2

Both the server systems, System! and System2 are installed with OpenSUSE

11.2 operating system. The main reason for choosing OpenSUSE 11.2 is that it

has Xen 3.4 hypervisor that comes with it. Enabling this Xen hypervisor is

simple and straightforward using OpenS USE I I .2 with a click of a button. The

Xen hypervisor is then upgraded to 4.0 as the performance of the VM is

smoother and better. The I/0 such as the mouse pointer movement and keyboard

input lags in the VM with Xen 3.2. The video streaming also shows that the

video is not smooth but shuddering instead. All these problems can be overcome

with upgrading the hypervisor to Xen 4.0. Another option is that OpenSUSE 12.1

is recently announced and it supports Xen 4.1 hypervisor.

4. I .2.2 Other Systems

The requirements of the other systems are more flexible. Any operating systems

can be installed. As for the NFS system, RedHat Enterprise Linux 5 (RHEL5) is

used as it supports NFS. Other operating systems that support NFS can also be

27

used. The Central System can be installed with any operating system and not

necessarily ofLinux. The VM images are stored in the NFS. The VM can be of

any Linux operating system.

4.1.3. Phase 3: Setup: Creating the Virtual Machine

At this point, only one VM is created to verify the first objective which is

enabling continuous network connectivity. The VM is created in either System!

or System2 by editing the .hvm file which is the guest configuration file that is

stored in the NFS. This .hvm points to the image of the operating system that is

used as the VM. Sample .hvm file can be referred to Appendix B.

4.1.3.1 Xen hypervisor.

For this project, the Xen hypervisor is chosen. Xen is the most suitable

virtualization approach for this system. As explained earlier, there are many

types of virtualization approach. The hypervisor virtualization was chosen that

implements hardware virtualization. The hardware virtualization is enabled by

the Intel VT and also AMD-V which is required to perform PC! or Network Card

passthrough.

4.1.4. Phase 4: Live Migration

The capability of virtual machine live migration brings benefits such as improved

performance, manageability and fault tolerance, while allowing workload

movement with a short service downtime. Moving the contents of a VM's

memory from one physical host to another can be approached in any number of

ways. However, when a VM is running a live service such as video streaming, it

is important that this transfer occurs in a manner that balances the requirements

28

-

of minimizing both downtime and total migration time [20]. The former is the

period during which the service is unavailable due to there being no currently

executing instance of the VM; this period will be directly visible to clients of the

VM as service interruption. The latter is the duration between when migration is

initiated and when the original VM may be finally discarded and hence, the

source host may potentially be taken down for maintenance, upgrade or repair.

VM running normally on
Host A

Stage 0: Pre-Migration
Active VM on Host A
Alternate physical host may be preselected for migration
Block devices mirrored and free resources maintained

"' Stage 1: Reservation
Initialize a container on the target host

---- -------------+-------------------
Stage 2: Iterative Pre-copy

Enable shadow paging
Copy dirty pages in successive rounds.~

- - - ' :... - - - - - - - - - - - y - - - - - - - - - - - - - - '.;- -
Downtime
(VM Out of Service)

Stage 3: Stop and copy
Suspend VM on host A
Generate ARP to redirect traffic to Host B
Synchronize all remaining VM state to Host B ..

Stage 4: Commitment
VM state on Host A is released

--------------- - -· VM running normally on
HostB Stage 5: Activation •

VM starts on Host B
Connects to local devices
Resumes normal operation

Figure 16: Migration Timeline [21]

29

Total Migration Time

= Initialisation + Reservation + L Pre - copyi + Stop - and
i

-copy+ Commitment+ Activation

Where, Initialization + Reservation is the Pre-migration Overhead, and

Commitment + Activation is the Post-migration Overhead.

Total Downtime = Stop- and- copy+ Commitment+ Activation

Where, Commitment + Activation is the Post-migration Overhead.

4.1.4.1 Upgrading Xen 3.2 to Xen 4.0

The Xen performance with Xen 3.2 is lower compared to Xen 4.0. The

difference can be seen in the lagging of 110 input such as mouse keystroke input

and keyboard input. The video performance also varies between Xen 3.2 and

Xen 4.0. The total live migration time and total downtime for live migration of

VM is showed in the table below:

Measurement

Xen 3.2

Xen 4.0

Total Migration Time

60see

32 sec

Total Downtime

<1 sec

Table I: Xen 3.2 and Xen 4.0 Live Migration Performance

The table above shows the improvement in Total Migration Time and Total

Downtime improvement for Xen 4.0. The total Migration Time is, 32 seconds,

almost half of the time required for Xen 3.2. The Total Downtime is less than I

30

second which is almost not visible to the client. The Total Downtime is measured

with video streaming and counting the time that the video pauses before

resuming and continues to play. The Total Downtime or service unavailability

for Xen 4.0 is less than l second which is almost not visible.

4.1.4.2 Parameters Affecting Migration

There are two major factors that need to be studied for a good migration

modeling. The factors that impact the total migration time and downtime are

migration link bandwidth and page dirty rate. Migration link bandwidth is the

most influential parameter as link capacity us inversely proportional to total

migration time and downtime. Whereas, the page dirty rate is the rate at which

memory pages in the VM are modifies which, in turn, directly affects the number

of pages that are transferred in each of the pre-copy iteration. Higher page dirty

rates results in more data being sent per iteration which leads to longer total

migration time. On top of that, higher page dirty rates results in longer VM

downtime as more pages need to be sent in the final transfer round in which the

VM is suspended. The Figure 17 shows the effect of varying the page dirty rate

on total migration time and downtime for each link speed with static VM size =
1024MB.

31

- 100000
~ ·.woo

---~, 70000

1 60000
! '>110011
i ::: ,
8 .I<IUOO

.... -· ·········-·······

~ ·~] ________________________________ __
0 '>00011 100000 1'>00011 100000 1'>00011 100000

Page Oorty Rat. (pop/5eCOndl

Total Down tome Lower Bound ·····Upper Bound

(a) HXI ~!bps Totul ~ol1m<

- 10000
"0 '1000

--~ 8000

······· ···

7000

l r.ooo
I ~
i '<JOO
0 .1000
0 1000

I
I

•
I! 1000
~ 0 --'-

0

Paae Dirty Rate (pap/ SKond)

TotaiDowntJme lower Bound •• Upper Bound

(c) I Gbp' Tollll Do\\Otlme

_ IGOOOO
'1:)

g 140000

j llUO.OO

I IOUOOO

1 11111100

c
~

bOUII<I

8 40000

-;; 10000
;§

000

.....

,•

0 '>00011 100000 1'>00011 100000 1..0000 100000

Pap Dirty Roote (peae/ -=ond)

• Totlll Downllme lower Bound • ... Upper Bound

le i 10 Gbp~ TOlal Do"nume

--] . \0 -
0

~ -~)';() r

~ : ~
g100 j
~ 1\0 •

i 100 L------------------------------------Oi 0,0

~ 0

0 o;oooo 100000 •o;oooo znoooo 1o;oooo

Page Dorty Rate (paaefSKondl

• Total Mogl'lllon Tome Lower Bound Upper Bound

0

- 1100
"0
c:

i bl 100 ~1bP> Total ~llgrution Time

...

11000 1 '10000 100000 70,0000 .100000

Paae Dirty Rate (.,.,../ S«<nd)

Lower Bound .. ·Upper Bound

i 10 00 ~··::··~:::·::·:·::::·::·:·::::·:.

~ ~00 -·

~ bCIU ~ -· •••

2
~ l OO

~ JOO

;§ 000

o o;oooo 100000 1 o;oooo 100000 zo;oooo 100000

Pap Dorty Root~~ (paee/sec:ond)

Total M~CTat10n Time lower8ound UpperBound

(I) 10 Gbp> Total ~t•graltoo Time

Figure 17: Link Capacity and Migration Perfonnance [21]

The Figures 17 explains the choice of Network Interface Card of I Gbps for the

host System l and System2 which is also the integrated Network Interface card.

The Figure shows the effect of varying the page dirty rate on total migration time

32

and downtime for each link speed. If the page dirty rate is below link capacity,

the migration sub-system is able to transfer all modified pages in a timely

fashion, resulting in a low total migration time and downtime. On the other hand,

if the page dirty rate starts approaching link capacity, migration performance

degrades significantly.

4.1.5. Phase 5: VT for Directed 110 (VT -d) PCI passthrough

Virtualization allows the creation of multiple virtual machines on a single server.

This consolidation maximizes server hardware utilization, but server applications

require a significant amount of I/0 performance. Software based I/0

virtualization methods use emulation of the I/0 devices. With this emulation

layer the VMM provides a consistent view of a hardware device to the VMs and

the device can be shared amongst many VMs. However, it could also slow down

the I/0 performance devices. Thus, VT -d can provide solution for the loss of

native performance or of native capability of a virtualized I/0 device by directly

assigning the device to a VM. By doing this, VM is able to have full control over

a I/0 without going through the VMM, in other word, direct access.

4.1.5 .I Requirements for X en PCI passthru to HVM guest [22]

Hardware IOMMU (Intel VT -d or AMD IOMMU) is required from the

CPU/motherboard/chipset/BIOS. To verifY you have IOMMU support enabled:

• Check ifiOMMU (Intel VT-d or AMD JOMMU) is enabled in the system

BIOS. Some BIOSes call this feature "10 virtualization" or "Directed IO".

• If running Xen 3.4.x (or older version) it is required to add iommu=l flag

(or vtd=l in even older versions) for Xen hypervisor (xen.gz) to grub.conf

and reboot.

33

• Xen 4.0.0 and newer versions enable IOMMU support as a default if

supported by the hardware and BIOS, no additional boot flags required

for the hypervisor.

• "xm dmesg" or the Xen hypervisor boot messages can be used to check if

"10 virtualization" gets enabled.

4.1.5.2 VT-d for Continuous Network Connection

For this project, VT-d is implemented to the I/0 which is also a PCI device, the

Network Interface Card (NIC). By directly assigning this NIC to the VM, the

VM will have full control over the NIC without disruption as the particular NIC

is hidden from Xen hypervisor, the host system and also other VMs. Two

network cards are used; the integrated NIC is assigned to the Host Operating

System, the additional NIC is assigned to the VM. This enables the VM to have a

dedicated NIC and does not require sharing the NIC with other VM. If the NIC is

being shared by multiple VMs, the NIC allocation will be based on certain

scheduling system. Thus, the each VM will not have a continuous network

connection as it has to wait for its turn to be allocated with the resources based

on the scheduling system.

34

The list of the NIC (with two ports each) in the Host Operating System of

System 1 before PCI passthrough will be as the following:

OJ:OO.O Ethernet controller: Intel Corporation 82575EB Gigabit Network Connection (rev 02)
OJ:OO.J Ethernet controller: Intel Corporation 82575EB Gigabit Network Connection (rev 02)
03:00.0 Ethernet controller: Intel Corporation 8257J EB Gigabit Ethernet Controller (rev 06)
03:00.J Ethernet controller: Intel Corporation 82571 EB Gigabit Ethernet Controller (rev 06)

After PCI passthrough, the NIC with the PCI ID of 03:00.0 and 03:00.1 will be

hidden from the Host Operating System of System!:

OJ :00.0 Ethernet controller: Intel Corporation 82575EB Gigabit Network Connection (rev 02)
OJ :OO.J Ethernet controller: Intel Corporation 82575EB Gigabit Network Connection (rev 02)

This PCI or NIC is then assigned directly to the VM for full access.

4.1.6. Phase 6: Network Bonding

By achieving network bonding, two main problems can be addressed: bandwidth

limitations, and lack of redundancy. Since there is two NIC in both System I and

System2, both of these NIC can be bonded together to form a single connection

that improves the bandwidth.

The iPerftesting shows the following performance with network bonding and the

additional NIC is attached to the VM and also without.

35

4.1.6.1 Improved Bandwidth with Network Bonding

iPerf is a tool to measure the bandwidth and the quality of a network link. By

default, the iPerf client connects to the iPerf server on the TCP port 500 I and the

bandwidth displayed by iPerf is the bandwidth from the client to the server. As

for the project, System I performed as the Server while VM performed as the

Client. The results are showed in the table below:

Server

36.7 30.8 36.7 30.8 /09 936 1.09 936
MBytes Mbitssec MBytes Mbits sec GBytes Mbiwsec GBytes Mbits sec

30.3 27 6 30.3 27.6 1/0 940 1.10 940
MBytes Mbitssec MBytes Mbits sec GBytes Mbitssec GBytes Mbitslsec

Table 2: Bandwidth Results for Network Bonding through iPerfTesting

36

Below are the sample output obtained through iPerf:

The iPerf result without network bonding:

On VM (client):

Client connecting to 192.168.1.11, TCP port 5001
TCP windaw size: 16.0 K.Byte (default)

[3] local 192.168.1.61 port 37201 connectedwith 192.168.1.11 port 5001
[JD] Interval Transfer Bandwidth
[3] 0.0-10.0sec 36.7 MByte 30.8 Mbits/sec

On System l (server):

Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)

[4} local 192.168.1.11 port 5001 connected with 192.168.1.61 port 37201
{JD] Interval Transftr Bandwidth
[.f) 0.0-/0.0sec 36.7 Mbytes 30.8 Mbitslsec

The iPerf result with network bonding:

On VM (client):

Client connecting to 1 92.168.1. 1/, TCP port 5001
TC P window size: 16.0 K.Byte (default)

[3] loca1192./68.1.61 port 37201 connected with 192.168.1.11 port 5001
[ID] Interval Transfer Bandwidth
[3} 0.0-10.0sec / .09 GBytes 936 Mbitslsec

On System I (server):

Server listening on TCP port 5001
TCP windaw size: 85.3 K.Byte (default)

[4} local/92.168.1.1 1 port 5001 connected with 192.168.1.61 port 37201
[JD] Interval Transfer Bandwidth
[4} 0.0-/0.0sec 1.09 Gbytes 936 Mbits/sec

37

4.1.7. Phase 7: Live Migration with NIC Passthrough (VT-d) and Network

Bonding

This step is a proof of concept to show that live migration for VM is possible

without continuous network connectivity. For live migration to happen, the NIC

that is attached to the VM has to be disconnected before beginning the live

migration. Thus, the Network bonding becomes important. When the Master NIC

is detached (also the additional NIC that is attached to the VM), the Slave NIC

will take over and begin the live migration. This shows that there is a network

connection throughout the live migration.

4.1.7.1 Video Streaming to Show Continuous Network Connectivity

In order to visually see the continuous network connection for the VM, a video

streaming is performed. A high-definition video that is stored in the NFS is

streamed to the VM. The dedicated NIC is detached, live migration is performed,

and the N1C is attached again in the destination system. While all these are being

performed, the video streaming continues to play without disruption. The Figure

below shows that video streaming is being performed while live migration

without being interrupted.

38

Figure 18: Video Streaming with Live Migration

4.1.8. Phase 8: Single Root 1/0 Virtualization (SR-IOV)

The NlC passthrough shows that a NIC can be assigned directly to a VM.

However, in a situation where multiple VMs available, it is not practical to add

multiple physical NIC. For example, if the server system has the capability to

rum 10 VMs and all the VM requires continuous network connection at the same

time, it is not practical to add I 0 additional NIC and assign each to the VM.

Therefore, SR-IOV is used.

4.1.8.1 SR-IOV for Concurrent Network Connectivity

SR-IOV is a specification that allows a PCie device to appear to be multiple

separate physical PCJe devices. Thus, by only adding only one NTC, aJI the 1 0

VMs in the example above can be assigned directly to a virtual NIC. However,

not all NIC supports SR-IOV. This is because SR-JOV is a fairly new technology

39

to the market. Most of the NTC that supports SR-IOV are of I OGbps bandwidth

[23]. There is only one I Gbps bandwidth NIC in the market currently. This

portion of the project is unable to be developed due to the difficulties to find the

SR-IOV enabled NIC in the market. The I OGbps NIC is required so that it can be

divided into I Gbps Virtual Functions (VF) and ensures good network

performance. Further testing will be conducted after the implementation of SR­

IOV [24].

4. I .8.2 Testing with SR-IOV implemented

First of all, I 0 VMs will be created into a single system, System I and the live

migration with video streaming will be conducted for each of the VM

concurrently. The iPerf testing will be conducted to verify the bandwidth for

each VM's network connection throughout the live migration and also before and

after the completion of live migration.

The next test is the LMBench test. LMBench was developed specifically to

measure the performance of core kernel system calls and facilities, such as file

access, context switching, and memory access. LMBench has been particularly

effective at establishing and maintaining excellent performance in these core

facilities in the Linux kernel. LMBench test will be useful to verify the overall

performance of the host operating systems as well as all the VMs.

Another test that will be conducted is using the traffic generator the generate

network traffic and test the network performance. An example of this software is

the Network Traffic Generator and Monitor. This software was designed to

generate and monitor IP/ICMPffCP/UDP traffic from clients to servers to stress

test routers, servers and firewalls under extreme network loads. It is a very simple

and fast program which can emulate true client/server activity. This software also

40

has the ability to create network traffic so that a true measurement can be taken

by our network monitoring tool or external tools.

4.2 PROTOTYPE

4.2.1 Complete System Prototype

Figure 19: The hardware setup

41

Figure 20: The PCie Slot for SR-IOV enabled NIC

Figure 21: The Control System That Accesses System 1, System2 and VM

42

4.3 LIMITATION AND CHALLENGES

4.3.1. Hardware Limitation

One of the significant limitations for this project is the hardware limitation. The

virtualization technology, VT-d and SR-IOV are new technology in the market.

The first challenge was finding a system or machine that has processor with VT­

d enabled for System I and System2. However, not all the new processors

support the VT -d. It has to be Intel processor as well. Another hardware

limitation is the SR-IOV enabled NIC. This NIC could not be purchased as it is

not easily available in the market. This NIC has to be book and purchased from a

particular vendor. This can be time consuming and also costly. This limitation is

beyond control, thus alternative action will be taken or will be implemented in

the future.

4.3.2. Other Limitation

Other limitation also includes related to the internet connection which has proxy

enabled with username and password. Resolving this matter was time

consuming, however was resolved with the help of the Jab technician. Another

limitation is the VT -d enabled machines are limited in the laboratory and

accesses to these machines are constrained to a short period of time. This causes

limited time for the project to be developed and gaining the output.

43

CHAPTERS

CONCLUSION AND RECOMMENDATION

5.1 CONCLUSION

In conclusion, virtualization m cloud computing has a lot of room for

improvement. If the proposed project is implemented to the cloud computing

environment, the functions can be optimized and resource allocation can be done

without any network disruption. Live migration is crucial in virtualization as well as

network connectivity. The tests conducted such as the live migration with video

streaming shows that the continuous network connectivity for virtual machines can be

achieved while live migration. The main contribution of this project will be the near­

native internet connectivity which is yet to be achieved with the current virtualization

and cloud computing. This was proved with the iPerf testing that was done after PCI

passthrough and network bonding. However, the concurrent network connectivity is yet

to be implemented due to hardware support and other hardware limitations which are

required for this part of the project to be implemented.

44

5.2 FURTHER ENHANCEMENTS

Virtualization, cloud computing and SR-IOV is a booming technology that has received

the attention of the Information Technology industry. The hardware limitation related to

these technologies will be eliminated in near future. Thus, this provides an easier

implementation of these technologies and also to gain the advantage from it. The SR­

IOV is not able to be implemented in the project currently due to hardware and cost

limitation. Once SR-IOV is implemented, the continuous and concurrent network

connectivity can be achieved.

On top of that, the completion of this project faced some difficulties due to issues related

to hardware compatibility. Therefore, in-depth research on hardware support for SR­

IOV, VT-d and also other Virtualization and Cloud Computing requirements will be

done. Through this thorough research, the compiled list of hardware requirements,

restrictions and most suitable hardware will be listed.

The future planning for this project is to implement it into a various Cloud Computing

environment such as the Infrastructure as a Service architecture, Platform as a Service

architecture or Software as a Service architecture.

45

REFERENCES

[1] Buyya R., Chee S. Y., Venugopal S., Broberg J., Brandic I.. "Cloud Computing and

Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the
5th Utility". Future Generation Computer Systems, 2008, p599-616.

[2] Zhang Q., Cheng L., "Boutaba R .. Cloud computing: state-of-the-art and research

challenges". J Internet Serv Appl, 2010, 1, p7-18.

[3] R.J. Creasy, "The Origin of the VM/370 Time Sharing System," IBM Journal of

Research and Development, vol. 25, no. 5, p. 483, 1981.

[4] Rose R.. "Survey of System Virtualization Techniques". Available:

http://robertwrose.com/vita/rose-virtualization.pdf. Last accessed 20th February
2011, March, 2004.

[5] Uhlig, R.; Neiger, G.; Rodgers, D.; Santoni, A.L.; Martins, F.C.M.; Anderson, A.V.;

Bennett, S.M.; Kagi, A.; Leung, F .H.; Smith, L. (2005). "Intel Virtualization
Technology", 38(5), 48-56

[6] P. Barham et al., "Xen and the Art of Virtualizatio". Proc. 19th ACM Symp.

Operating Systems Principles, ACM Press, 2003, pp. 164-17

[7] Juan C. Duefias, Jose L. Ruiz, Felix Cuadrado, Boni Garcia, Hugo A. Parada G.,
"System Virtualization Tools for Software Development," IEEE Internet

Computing, vol. 13, no. 5, pp. 52-59, Sep./Oct. 2009, doi:l0.1109/MIC.2009.115

46

[8] Li S., Hao Q., Xiao L., Xu Q .. "Optimizing Network Virtualization in Kernel-based
Virtual Machine". The 1st International COnference on Information Science and
Engineering (ICISE2009) , 2009, p282-285.

[9] Stage A., Setzer T.. "Network-aware migration control and scheduling of
differentiated virtual machine workloads". ISE'09 Workshop. May 2009, p9-l4,.

[10]0. Cherkaoui, and E. Halima, "Network Virtualization Under User Control".
International Journal of Network Management, March/April 2008, Vol. 18, No.2,
pp.l47-158.

[!!]Zhang J., Li X., Guan H .. "The Optimization ofXen Network Virtualization". 2008
International Conference on Computer Science and Software Engineering, 2009,
p431-437.

[12]Aust S., Kim J., Davis P., Yamaguchi A., Obana S .. "Evaluation ofLinux Bonding
Features".lnstitute of Electrical and Electronic Engineers (IEEE), 2008.

[13]T. Anderson, L. Peterson, S. Shenker, and J. Turner. "Overcoming the Internet
Impasse through Virtualization", COMPUTER, 2005,. pp. 34--41.

[14] Jebala M., Letaifa A. B., Tab bane S .. "A Survey of Live Migration in Virtual
Network Environment (VNE)". Institute of Electrical and Electronic Engineers
(IEEE), 2010, p351-354

[15]Lui J.. "Evaluating standard-based self-virtualizing devices: A performance study
on 10 GbE NICs with SR-IOV support". Parallel & Distributed Processing

(IP DPS), 2010 IEEE International Symposium, 201 0, p l-12.

47

[16]Lou Y.. (July 2010). Network I/0 Virtualization for Cloud Computing.
computer.org/ITPro. 12 (5), p36-41.

[17]Dong Y., Xu D., Zhang Y., Lioa G .. "Optimizing Network UO Virtualization with
Efficient Interrupt Coalescing and Virtual Receive Side Scaling". 2011 IEEE
International Conference on Cluster Computing, 2011,. p26-34.

[18]Pu X., Liu M., Jin J., Cao Y .. "A Modeling of Network I/0 Efficiency in Xen
Virtualized Cloud". Electronics, Communications and Control (ICECC), 2011
International Conference., 2011, p1831-1834.

[19]Dong Y., Yang X., Li X., Li J., Tian K., Guan H.. "High Performance Network
Virtualization with SR-IOV". Institute of Electrical and Electronic Engineers

(IEEE), 2009.

[20]Jin H., Gao W., Wu S., Shi X., Wu X., Zhou F .. "Optimizing the live migration of
virtual machine by CPU scheduling". Journal of Network and Computer Appication,
2010. pl-9.

[21]Liu Z., Qu W., Liu W., Li K .. "Xen Live Migration with Slowdown Scheduling
Algorithm". The lith International Conference on Parallel and Distributed
Computing, Applications and Technologies, 20 I 0, p215-221.

[22] Akoush S., Sohan R., Rice A., Moore A.W., Hopper A .. "Predicting the
Performance of Virtual Machine Migration". 2010 18th Annual IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2010, (13), p37-46.

48

[23]Sang F. L., Lacombe E., Nicomette V., Deswarte Y .. "Exploiting an I/OMMU
vulnerability". 2010 5th International Conference on Malicious and Unwanted
Software, 2010, p7-14 ..

[24]Suzuki J., Hidaka Y., Higuchi J., Baba T., KamiN., Yoshikawar T .. (2010). "Multi­
Root Share of Single-Root 1/0 Virtualization (SR-IOV) Compliant PCI Express
Device". 2010 18th IEEE Symposium on High Performance Interconnect, 2010,

p25-31.

49

APPENDICES

APPENDIX A: NETWORK BONDING MODE

APPENDIX B: SAMPLE .hvm CONFIGURATION FILE

APPENDIX C: VT -d ENABLED INTEL PROCESSOR

APPENDIX D: SAMPLE Gigabit PCie NETWORK ADAPTER/CARD

APPENDIX E: SR-IOV ENABLED PCie DEVICES

APPENDIX F: PROJECT KEY MILESTONE

50

APPENDIX A: NETWORK BONDING MODE

mode=O (balance-rr)
Round-robin policy: Transmit packets in sequential order from the first
available slave through the last. This mode provides load balancing and fault
tolerance.

mode=l (active-backup)
Active-backup policy: Only one slave in the bond is active. A different slave
becomes active if, and only if, the active slave fails. The bond's MAC address
is externally visible on only one port (network adapter) to avoid confusing
the switch. This mode provides fault tolerance. The primary option affects the
behavior of this mode.

mode=2 (balance-xor)
XOR policy: Transmit based on [(source MAC address XOR'd with destination MAC
address) modulo slave count] . This selects the same slave for each destination
MAC address. This mode provides load balancing and fault tolerance.

mode=3 (broadcast)
Broadcast policy: transmits everything on all slave interfaces. This mode
provides fault tolerance.

mode=4 (802.3ad)
IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that share
the same speed and duplex settings. Utilizes all slaves in the active
aggregator according to the 802.3ad specification.

Pre-requisites:
1. Ethtool support in the base drivers for retrieving
the speed and duplex of each slave.
2. A switch that supports IEEE 802.3ad Dynamic link
aggregation.
Most switches will require some type of configuration
to enable 802.3ad mode.

mode=S (balance-tlb)
Adaptive transmit load balancing: channel bonding that does not require any
special switch support. The outgoing traffic is distributed according to the
current load (computed relative to the speed) on each slave. Incoming traffic
is received by the current slave. If the receiving slave fails, another slave
takes over the MAC address of the failed receiving slave.

Prerequisite:
Ethtool support in the base drivers for retrieving the
speed of each slave.

mode=6 (balance-alb)
Adaptive load balancing: includes balance-tlb plus receive load balancing
(rlb) for IPV4 traffic, and does not require any special switch support. The
receive load balancing is achieved by ARP negotiation. The bonding driver
intercepts the ARP Replies sent by the local system on their way out and
overwrites the source hardware address with the unique hardware address of one
of the slaves in the bond such that different peers use different hardware
addresses for the server.

51

APPENDIX B: SAMPLE .hvm CONFIGURATION FILE

vi vm _ conjig.file.hvm
import os, re
arch= os.uname0[4}
if re.search('64~ arch):

arch libdir = 'lib64'
else:

arch libdir = 'lib'
kernel = "lusr/lib/xenlbootlhvmloader"
builder='hvm'
memory= 512
shadow_ memory=S
name= "myGuestOS_name"
vcpus=2
vif = { 'type=ioemu, mac=00:16:3e:00:34:11, bridge=brO' 1
disk = ['file:lmnt!NFS /ia32e Jcl 0. img,hda, w', ',hdc:cdrom, r' 1
device_model = 'lusr/' + arch_libdir + 'lxen/bin/qemu-dm'
openg/=1
vnc=1
vncpasswd="
stdvga=O
serial='pty'
usbdevice= 'mouse'

52

APPENDIX C: VT-d ENABLED INTEL PROCESSOR

2nd Generation Intel® Core'" i3 Processors

2nd Generation Intel® Coren·• i5 Processors

2nd Generation Intel® Coren' i7 Extreme Processor

2nd Generation Intel® Core'"' i7 Processors

lntei®Atomn·• Processor

Intel® Celeron® D Processor

Intel® Celeron® Desktop Processor

Intel® Celeron@ M Processor

Intel® Celeron@ Mobile Processor

Intel® Corem Duo Processor

Intel@ Coren' Solo Processor

Intel® Core n.'2 Duo Desktop Processor

Intel® Core m2 Duo Motile Processor

Intel® Core n•2 Extreme Desktop Processor

Intel® Core T"2 Extreme Mo!Jile Processor

Intel® Core "'2 Quad Desktop Processor

Intel® Coren'2 Quad Mobile Processor

Intel® Core"·'2 Solo Processor

Intel® ttanium® Processor

53

Intel® Pentium® 4 Processor

Intel® Pentium:!) D Processor

Intel® Pentium® Des~1op Processor

Intel® Pentium® Mobile Processor

Intel® Xeon® Processor 3000 Sequence

Intel® X eon® Processor 5000 Sequence

Intel@ X eon@ Processor 6000 Sequence

Intel@ Xeon@ Processor 7000 Sequence

Intel® X eon® Processor E3 Family

Intel® X eon® Processor E7 Family

Previous Generation Intel® Corem i3 Processor

Previous Generation Intel® Core'" i5 Processor

Previous Generation Intel® Cor em i7 Extreme
Processor

Previous Generation Intel® Corem i7 Processor

APPENDIX D: SAMPLE Gigabit PCie NETWORK ADAPTER/CARD

TP-LINK Gigabit PCle Network Adapter (Model No. TG-3468)

54

APPENDIX D: SR-IOV ENABLED PCie DEVICES

Intel ® Ethernet Server Adapter X520-DA2
Intel ® Ethernet Server Adapter X520-SR l
Intel ® Ethernet Server Adapter X520-SR2
Intel® Ethernet Server Adapter X520-LRI
Intel ® Ethernet Server Adapter X520-T2

Intel ® Gigabit ET Dual Port Server Adapter
Intel ®Gigabit ET2 Quad Port Server Adapter

List of Intel SR-IOV enabled PCie Devices

SR-IOV enabled PCie Network Card (Intel ®Gigabit ET Dual Port Server Adapter)

55

APPENDIX F: PROJECT KEY MILESTONE

56

