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ABSTRACT 

Failure due to corrosion defects has been the major problem in maintaining pipeline's 

integrity. The loss ofmetal due to corrosion usually results in localized pits with various 

depth and irregular shapes which occur on its external and internal surfaces. An 

interacting defect is one that is located sufficiently close and able to interact with 

neighboring defects in an axial or circumferential direction. The maximum allowable 

pressure that can be sustained in a pipeline with interacting. defects is lower than it is in 

single defects due to interaction of neighboring defects. There are several methods 

available to assess the corrosion metal loss defects in order to evaluate Fitness-for­

Services (FFS) of the corroded pipeline. In this study, finite element simulations will be 

carried out to determine the maximum allowable burst strength of corroded pipeline 

with interacting defects. The finite element analysis (FEA) results show that failure 

pressure of corroded pipeline with interaeting defects are higher than empirical values 

gained from DNV-RP-F!Ol Code, 
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CHAPTERl 

INTRODUCTION 

Pipeline systems are generally a convenient means for transferring oil and gas onshore 

or offshore due to the economic and safety reasons. However, with increasing age, the 

pipeline integrity can be affected by a range of corrosion mechanism. 

Pipeline is exposed to both internal and external corrosion. The internal corrosion of 

pipeline is due to the harsh condition of hydrocarbon fluid; the presence of C02, H2S, 

organic acid and etc. While external corrosion occurs due to extreme condition of the 

surrounding environment in the event of failed preventive measures; older, degraded 

coat, or poorly coated pipeline [t, 21• This will result in metal loss at corroded location in 

the pipeline and eventually may lead to its failure. The structural integrity assessment of 

corroded pipeline has become vital and the main interest to assist engineers to take wise 

decision toward replacing or repairing a pipeline. It is essential to ensure the continued 

safe operation and non hazardous occurrences which might affect the life and the 

environment. 

1.1 Background ofstudy 

An interacting defect is defined as the one that interacts with neighboring defects in an 

axial or drcumferential direction [31• As the extent of space between corrosion defects 

decrease up to certain distance, they will begin to interact reducing the maximum 

allowable pressure that can be sustained in a pipeline. The objective of this project is to 

estimate the burst pressure of corroded pipeline due to interacting corrosion defects by 

the means of FEA. The analysis is performed by nonlinear FEA simulation using 

ANSYS Software. This project will study on the effect of different spacing between two 

defects aligned in longitudinal direction and their failure pressure. Then the results of 

the FEA will be compared to the numerical values gained from the DNV RP-FlOlcode. 
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1.2 Problem Statement 

The impact of corroded pipeline problems cause economic consequences; reduced 

operating pressure, loss of production due to downtime, repairs or replacement, and 

consequently increase of costs. Thus, there are several pipelines systems kept in 

operation even though they have shown signs of corrosion based on the data obtain from 

the corrosion management, inspection, and monitoring system (i.e.: intelligent pig). The 

continued operations of these pipelines are basically after determining the FFS 

assessment for their residual strength and recalculating the maximum allowable internal 

pressure of the product being transferred [41. The effect of pipeline burst strength of 

interacting defects will be lower than it is in single defects. A more reliable defect 

assessment method is needed due to the conservatism involved in the available 

assessment method l51• This is an approach to understand the effect of interacting defects 

toward the pipeline burst strength in a more reliable and convenient method other than 

performing the experimental testing. Therefore, the modeling of the problem using the 

FEA method can assist engineers to assess the burst strength of pipeline with interacting 

defects. 

2 



1.3 OBJECTIVE AND SCOPE OF STUDY 

The objectives of this project are: 

• To assess the burst strength of corroded pipelines due to interacting defects. 

• To compare the results from FEA with numerical values obtained from the 

available codes. 

The scope of this project will be simplified as follows: 

• The material of the pipelines is API SL X65. 

• Results from FEA will be compared with empirical solutions provided by DNV­

RP-FHH code. 

• The pipelines will be subjected to internal pressure only. 
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2.1 Pipeline Corrosion 

CHAPTER2 

LITERATURE REVIEW 

Unprotected pipelines are subjected to corrosion as well as when their corrosion 

preventions failed. Corrosion is defmed as the destruction or deterioration of a material 

because of its reaction with the environment [61. Corrosion defects in pipelines are 

assessed as metal loss defects that occur on the interior or exterior of pipeline surfaces. 

And if no appropriate maintenance actions taken, the location of corrosion become 

deteriorate. This consequently reduce the structural integrity of the pipeline hence can 

cause catastrophic failure of the system [71. For many years, various methods for 

assessing pipeline corrosion are available and commercially have been practiced by the 

industry; such as ANSIIASME B31G [SJ. For more realistic way of pipeline corrosion 

representation [91, new criteria are developed, such as RSTRENG Effective Area [lOJ, and 

DNV RP-F 101 [31• These methods include the specification dealing with the effects of 

the interacting defects. Even though these codes have been used widely for assessing the 

integrity of in-service pipelines, they are known to be conservative [llJ_ Meaning that, 

pipelines which have been assessed by these codes for the purpose of FFS analysis 

probably lead to either unnecessary maintenance or premature replacement. 

2.2 Interacting Defects 

The occurrence of corrosion is divided into several categories; individual pits, colonies 

of pits, general wall-thickness reduction, or in ~ombinations [IZJ_ For colonies of 

corrosion defects, as the distance between the defects decreases, they will begin to 

interact and resulting in reduced burst strength of the pipe. DNV-RP-FIOI method for 

interacting defects (part A) will be used in this study to estimate the burst pressure of the 

corroded pipeline. In DNV procedure, all the defects that are supposed to interact are 
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projected onto a longitudinal line. The metal loss is represented by the maximum defects 

depth and the projected defects length. 

In the case of overlapped defects, they are combined to form composite defect The 

formation of combined defects is estimated by taking the combined length and the depth 

of the deepest defect. For combination of overlapping internal and external defect, the 

depth of the composite defect is the sum of maximum depth of those two defects. 

Each defect or composite defects (i) with length (/;) and depth (d;) is treated as a single 

defect and failure pressure ( p ;) is defined based on the expression below: 

. 2tfu(l- }fl(dil t)*) 
PI= '}'m ( yd(di It)*) j = !, ... , N 

(D- t) 1- ~-----''-
Q; 

(2.1) 

where N is the is number of projected defects, D is the nominal outside diameter (mm), 

t is uncorroded measured pipe wall thickness or t110m (mm), fu is the ultimate tensile 

strength, yd is the partial safety factor for corrosion depth and Qi, is the length correction 

factor for individual defect, given by: 

( )' /, 
Q; == }+0.31 .[D; 

(2.2) 

The correction depth over thickness ratio is determined by the following expression: 

(d1 /f)*= (di /f)mea' + &StD(d;/ f) 

fu = Minimum yield strength of the material 

Ym = Partial safety factor for model prediction 

Yd = Partial safety factor for corrosion depth 

& = Factor for defining fractile value for the corrosion depth 

StD(d/t] =Standard deviation of the measured (d/t) ration 

5 
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Next, the combinations of adjacent defects are investigated. Take note that for combined 

defects; the effective length (lnm) is the total length of the projected defects and the 

spacing between the defects (Figure 2.2). For defects from n tom, the effective length is 

given by 
i=m-1 

fnm=/m+ ~)/;+s;) n, m = J, ... ,N, (2.4) 

i=n 

where S; is the projected distance between the two adjacent defects. 

Meanwhile, the effective depth (dnm) of combined defect formed from all of interacting 

defects from n tom (Figure 2.1} is calculated as below: 

(2.5) 

The failure pressure ( p nm) of the combined defects from n to m is calculated by 

replacing{/;)and (d;)with{lnm) and (dnm)in Eqs. {2.1) and (2.2) respectively. 

Where the abbreviations are represented by the following: 

= 

ln = 

Total longitudinal length of a defect combined with the adjacent defects n to 

m including spacing in between them (mm). 

Longitudinal length of an individual defect (mm). 

s. = Longitudinal spacing between adjacent defects (mm). 

dn = Depth of corroded region (mm), 

The minimum value, calculated for all single and combined defects, is taken as the 

failure pressure for the current projection line. 
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Figure 2. I: Combined length of all combination of adjacent defects 

According to the DNV interaction rules, there is no interaction if the longitudinal (s1) 

and circumferential (sc) distances between defects satisfy the following conditions: 

St > 2.0 .Jl); 

2.3 Offset Defects 

In real life problem, the corrosion does not occur rigidly in one location on the wall of 

the pipeline, instead, the corrosion attack the surface randomly which create colony of 

defects that are scattered on the attacked location. The defects in the colony may be 

overlapped or offset to one another. According to DNV code, simplification had been 

made for cases of multiple defects which were overlapped or offset conditions. The 

overlapped defects are combined together to form composite defect. This composite 

defect is projected onto a single projection line (Figure 2.2). 
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Figure 2.2: Projection of overlapping defects onto a single projection line 

The simplification made on the DNV code does not take into consideration the offset 

condition of the interacting defect. In other word, the effect of offset between the 

interacting defects is negligible in the DNV calculation. 

2.4 Finite Element Analysis 

The FEM is a powerful technique to simulate the linear and nonlinear behavior of 

structures. In order to have this method to be able to correctly evaluate the corroded 

pipe, appropriate failure criterion should be established to decide the failure point during 

the simulation rsJ. Resear<:h was done by Lee et. a/ flZJ to predict the failure pressure for 

multiple corroded defects on gas pipeline made of API 5L X65 steel by means of burst 

testing and FEM. 3D-elastic plastic finite element simulation has been performed using 

ABAQUS. Multiple corrosion defects were conceived as pits with equal profile defects 

with size of length (50mm), width (50mm), and depth (8. 75mm). These defects were 

aligned in longitudinal and circumferential directions. From the findings, comparison 
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between the burst tests and the finite element predictions showed that burst pressure had 

decreased with increased number of pits for longitudinal aligned defects. As for 

circumferential aligned defects, no significant change in burst pressure as distance 

between defects change. 

Another study done by Silva et. al [91 on the assessment of pipe with interacting defects 

by FEM and neural networks application. The neural network is a mathematical 

algorithm which enables to relate the inputs and outputs parameters to establish the 

standard procedure for that particular process. The results from the finite element 

simulation were utilized as the databases for the neutral networks system. The material 

been used was API SL X52 steel. The defects are represented by two equally shaped 

defects of 80 mm x 32 mm with varied defect depth and separated by different defect 

spacing. These defects were aligned in longitudinal and circumferential directions. The 

results from the study showed that for case of longitudinal direction, specifically for 

closely space defect, relative pipe pressure capacity (ratio between failure pressure of 

multiple defect and single defect) reduced as depth of defect increased. On the contrary, 

for case of circumferential direction, little interaction of defects was observed which 

gave insignificant impact on the relative pipe pressure capacity. 
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CHAPTER3 

METHODOLOGY 

3.1 Research Methodology 

This project will be based on the following process flow (Figure 3.1). The 

methodology has been designed to fully optimise the time frame provided in 

order to completely carry out the planned and anticipated project works. 

I 
Literature Review 

_S.7 
Identify the dimensions, material and other parameters of the model 

Q_ 
Determine the failure pressure of pipeline based on DNV-RP-FIOI Code 

'<...7 
2j 

Create the model using ANSYS 
FYP 

~7 
Compare the FEA results with Empirical solutions 

obtained from DNV Code 

'<...7 
Discussion and Conclusion 

Figure 3.1: Process flow of the project 
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3.2 DNV-RP-FlOl 

Firstly, the empirical correlation provided in DNV-RP-FIOI code is studied. 

The related parameters such as depth of defects, spacing between defects, 

diameter of the pipeline, and length of the defects are determined by 

manipulating the correlation. The allowable corroded pressure of interacting 

defects is estimated using the following procedure: 

3 .I.l The length of the defect is determined from the ratio between defect 

length and diameter of pipeline, II D. 

3.1.2 The allowable pipe corroded pressure (p~, pz...[JN) of each defect, or 

combined defect is calculated by using equation (2.1 ). The length 

correction factor is calculated based on equation (2.2). The failure 

pressure of the single defect will be chosen as the reference pressure. 

3.1.3 The length between the defects is determined from the ratio between 

spacing of the defects and square root of diameter and thickness of the 

pipe,~ 
Dxt 

3.1.4 Afterward, all combinations of adjacent defects are calculated. The 

combined length is calculated using equation (2.4). 

3.1.5 Then, the effective depth of the combined defects is calculated based on 

equation (2.5). 

3.1.6 The allowable corroded pipe pressure of the combined defect (pnm) is 

determined from equation (2.1) by replacing (/;) and (d;) with (/nm) and 

(dnm) in equation (2.1) and (2.2) respectively. The term (d;) in equation 

(2.3) is replaced with (dnm). 

Several assumptions have been made in this study, firstly, the length of both 

defects that are supposed to interact are equal. Secondly, the interacting defects 

are considered between defects with similar depth only. 

II 



3.3 Modeling in ANSYS 

After conducting the analysis using DNV RP-F I 0 I code, finite element models 

are developed using ANSYS, a well known engineering simulation software. 

The loading involved in this simulation is distributed internal pressure loading. 

The purpose of this analysis is to estimate the corroded pipe pressure. 

3.3.1 Defining element types 

The ANSYS element library contains more than 1 00 different element types. 

Each element type has a unique number and a prefix that identifies the element 

category. The element type determines whether the element lies in two­

dimensional or three-dimensional space and the degree-of-freedom set (which 

in turn implies the discipline - structural, thermal, magnetic, electric, 

quadrilateral, brick, etc.). In this project, for the pipe steel X65, SOLID95 is 

used to analyse the 3D models. The element is defined by 20 nodes having 

three degrees of freedom at each node, which is translations in the nodal x, y, 

and z directions. The element is applicable for mapped meshing (controlled 

meshing). It can tolerate irregular shapes without as much loss of accuracy and 

have compatible displacement shapes and are well suited to model curved 

boundaries. 

Main Menu> Preprocessor> Element Type> Add I Edit I Delete (Figure 

3.2) 

()I( I Apply ' 

Figure 3.2: Defining the element types of model 
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CHAPTER4 

RESULTS AND DISCUSSIONS 

4.1 DNV Code Results 

The calculation is based on assessment of interacting defects (Calibrated safety 

factor, Part A). The parameters of pipe steel X65 that will be used in the calculation 

is stated as in Table 4.1. 

s 
Table 4.1: Parameters of Sample with d/t = dz/t = 0.3 and .J Dx t = 0.5 

Parameter Value 

Thickness, t (mm) 20 

Diameter, D (mm) 300 

Defects Length, /1- /2 (mm) 100 

Width of corroded region c.Jffilll) 90 

Safety Factor for Model, Ym 0.72 

Tensile Strength,.fu (MPa) 530.9 

Fractile value for corrosion depth, Ed 1 

Safety Factor for Corrosion Depth,yd 1.28 

Depth, d1 = d2(mm) 6 

Spacing, s (mm) 38.73 

20 



4.1.1 Allowable Corroded Pressure for Single Defects, PI and P2 

1. Length Correction Factor, Q1 

Qt= 

= 

( )

2 

1+ 0.31 100mm 

.,/300mm x 20mm 

= 1.231 

2. Allowable corroded pressure, PI and P2 

2tfu(1- YtJ(dt!t)*) 
pt,pz = ')1n 

(D-t)(l p(d~t)*) 

= 
0. 72x2x20x530.9x(l-1.28(0.38)) 

(300-20)(1 1.28(0 .38)) 
1.231 

= 46.37MPa 

4.1.2 Allowable Corroded Pressure for Interacting Defects, Pnm 

l. Total length, lnm 

i=m-J. 

/nrn = fm + ~)/; + Si) 
i=n 

= (100+ 100 + 38.73) mm 

=238.73mm 
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2. Effective Depth, dnm 

i=m 

l:.d;/; 
dnm = _,__i=.:.:..n -

[nm 

= (6mmx 100mm}+(6mmx 100mm} 

238.73mm 

=5.027mm 

3. Length Correction Factor, Qnm 

1+0.31( 
1
nm )

2 

--rn; 
~--~----------~2 

I+0.3l( 238.73mm ) = 
.J300mmx 20mm 

= 1.986 

4. Adjusted depth ratio, (d,../t)* 

(dnm /t)*=(dnm lt)meas 

= (5.027) 
20.00 

= 0.251 
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5. Allowable corroded pressure,Pnm 

= 
0. 72x2x20.00x530.9x(l-1.28(0.251)) 

(300-20{1 1.28(0.251)) 
1.986 

= 44.199MPa 

4.1.3 Maximum Allowable Corroded Pressure,pc"" 

P = min (p J, Pnm) 

=44.199MPa 
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4.2 Overall Result Summary 

The overall results summary of empirical solution and FEA non-linear analysis for 

X65 steel are tabulated in Table 4.2. The stopping criterion used in FEA is when the 

Von-Mises stress reaches the ultimate tensile stress across the entire ligament of the 

plpe. 

Table 4.2 : Overall Result Summary 

dlt 
s DNV 

.JDxt code 
FEA dlt 

s DNV 
.JDxt code FEA 

0.5 51.53 77.70 0.5 34.69 45.58 

1.0 51.71 77.90 1.0 37.08 49.30 

0.1 2.0 52.04 78.00 0.5 2.0 40.21 53.10 

4.0 52.56 78.40 4.0 43.79 56.10 

8.0 53.18 79.20 8.0 47.32 60.60 

0.5 48.09 71.52 0.5 28.80 36.73 
1.0 48.55 71.94 1.0 32.42 40.66 

0.2 2.0 49.36 72.15 0.6 2.0 36.78 46.90 

4.0 50.46 73.02 4.0 41.44 52.58 

8.0 51.74 74.05 8.0 45.81 57.92 

0.5 44.20 61.30 0.5 21.89 27.51 

1.0 45.09 62.50 1.0 27.22 34.13 

0.3 2.0 46.46 64.00 0.7 2.0 33.14 41.24 

4.0 48.30 66.70 4.0 39.02 49.66 

8.0 50.28 67.10 8.0 44.29 56.05 

0.5 39.77 53.86 0.5 13.66 17.03 

1.0 41.28 55.81 1.0 21.37 26.84 

0.4 2.0 43.42 58.27 0.8 2.0 29.26 36.19 

4.0 46.08 61.32 4.0 36.54 45.52 

8.0 48.81 63.95 8.0 42.75 53.41 

Generally, the overall results as stated in Table 4.2, show that the results obtained 

from FEA is higher compared to the values obtained using DNV Code. The non 

linear analysis yield results which are in similar trend with the empirical solution 

obtained from the DNV Code. 
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Figure 4.1: Graph of Normalized corroded pressure, Poorr (MPa) I Pintact (MPa) vs 

spacing per square root of unit depth with thickness, ~ , for dlt = 0.1 
-vDxt 

Figure 4.1 shows the comparison between the results from DNV Code and FEA for 

case d/t = 0.1. The graph shows that the effect of spacing between the defects does 

not differ much toward the failure pressure for both techniques .. In other word, the 

effect of interaction for defects with depth of l 00/o of pipe wall thickness will not 

have significant impact toward the pipe failure pressure. The Ratio of FEA over 

DNV Code is 1.499. 
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Figure 4.2 shows the comparison between the results from DNV Code and FEA for 

case d/t = 0.2. As the distance between the defects increase the failure pressure 

increase slightJy. The interaction start to occur when the distance between the defects 

is small. However, for defect with depth of 20% of pipe wall thickness, it only 

experienced small interaction effect. Thus the failure pressure only has minor 

increment as the distance of the defects is increased. The ratio of FEA over DNV 

Code is 1.462. 
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Figure 4.3: Graph of Normalized corroded pressure, Pcorr (MPa) f Pintact (MPa) vs 

spacing per square root of unit depth with thickness, ~ , for d/t = 0.3 
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Figure 4.3 shows failure pressure comparison for case d/t = 0.3. The graph shows 

that the failure pressure is lower when the distance between defects is small and as 
s 

the distance between the defects increase up to ..[jj;t 4 the failure pressure increase 

significantJy. For .J~x t > 4, the failure pressure increase with small amount. The 

effect of interaction is significant when the distance is small and later the effect of 

interaction is small as spacing between defects is far from each other. Defects with 

depth of 30% of pipe wall thickness will show significant interaction effect when the 

distance between defects is small, ~ < 4. The ratio of FEA over DNV Code is 
-vDx t 

1.373. 
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Figure 4.4 shows failure pressure comparison for case dlt = 0.4. The graph shows 

that the initial failure pressure is lower and as the distance between the defects 

increases the failure pressure increase. For defects with depth of 40% of pipe wall 

thickness, the interaction effect is high when the distance between defects is small 

and the effect gradually decreases as the distance is increased, resulting increased 

failure pressure. The ratio ofFEA over DNV Code is 1.338. 
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Figure 4.5 shows failure pressure comparison for case d/t == 0.5. The graph shows 

that the initial failure pressure is lower and as the distance between the defects 

increases, the failure pressure increase. For defects with depth of 50% of pipe wall 

thickness, the interaction effect show similar pattern as for case d/t = 0.4 but the 

effect of interaction is increased. The difference in term of failure pressure is high 

between the small defects spacing and large defects spacing. The ratio of FEA over 

DNV Code is 1.305. 
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Figure 4.6: Graph of Normalized corroded pressure. Pcorr (MPa) I Pmtact (MPa) vs 

spacing per square root of unit depth with thickness, ~.for d/t = 0.6 
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Figure 4.6 shows failure pressure comparison for case dlt = 0.6. The graph shows 

that failure pressure increase significantly as the distance between defects increased. 

For defects with depth of 60% of pipe wall thickness, the interaction effect is greater 

at small defects spacing resulting low failure pressure. Similar trend as from the 

previous case, the failure pressure increase as the distance between defects increased. 

The ratio ofFEA over DNV Code is 1.267. 
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Figure 4. 7 shows failure pressure comparison for case d/t = 0. 7. The graph shows 

that failure pressure increase significantly as the distance between defects increased. 

For small defects spacing, the FEA result has small difference compared to the value 

DNV Code. But as the distance between defects increase, the difference between 

DNV Code and FEA is higher. For defects with depth of 70% of pipe wall thickness, 

the interaction effect is greater at small defects spacing resulting low failure 

pressure. The failure pressure increase drastically as the distance between defects 

increased. The ratio ofFEA over DNV Code is 1.259. 
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Figure 4.8 shows failure pressure comparison for case d/t = 0.8. The graph shows 

that failure pressure increase significantly as the distance between defects increased. 

For small defects spacing, the FEA result is approaching the DNV Code. The 

difference of failure pressure between DNV Code and FEA is small when the defect 

spacing is small. And as the distance increase, the failure pressure increase. For 

defects with depth of 80% of pipe wall thickness, the interaction effect is greater at 

small defects spacing resulting low failure pressure. For small defects spacing, even 

though the results yield from both method show nearly similar results but only with 

small difference, the value from FEA method is higher compared to DNV Code. The 

failure pressure increase drastically as the distance between defects increased. The 

ratio ofFEA over DNV Code is 1.247. 
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Figure 4.9: Graph of Normalized corroded pressure, Pcorr (MPa) I Pmtact (MPa) vs 

spacing per square root of unit depth with thickness, ~, for the FEA 
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result. 

From the graph above, it is observed that as the distance between defects increase, 

the maximum allowable corroded pressure will increase. For defect with smaller 

depth, the failure pressure has no significant changes as the distance between defects 

increased. Meanwhile, defect with greater depth will result on large failure pressure 

increment as the distance between defects is increased. 
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Furthermore, as the depth of the defects increase, the failure pressure will decrease. 

The failure pressure at the small defects spacing reduced significantly and the effect 

of interaction is critical within this region. This shows that, when the spacing 

between the defects is small, they start to interact with each other and reduced the 

maximum allowable corroded pipe pressure. 
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Figure 4.10: Graph of Ratio ofFEA over DNV Code vs depth per unit thickness. 

The result from FEA is always higher than DNV Code. This is due to safety factor 

applied in the empirical calculation which yields on lower corroded pipe failure 

pressure as to avoid reaching the exact failure pressure during standard operating 

condition. Figure 4.10 shows the factor of the ratio between FEA and DNV Code. 

The factor is not a fixed value since the multiplication factor is not the same for 

every cases of defects depth. This is due to stress concentration at the edges of the 

defects during the simulation process. The deeper the defect depth, the higher stress 

concentration occur at the edge of the defect. Since the remaining pipe wall thickness 

reduced, the stress distribution on the entire ligament of the edge easily reaches the 

failure criterion. From the graph above, it shows a decreasing trend as the depth of 

the defects is increasing. The best plot on the graph is based on the average value of 

the ratio of FEA over DNV Code. The factor can be expressed as a function of: 

Factor = 0.48l(dlt/- 0.805(dllj + 1.583. 
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Figure 4.11: Element solution of Von Misses stress distribution for d/t = 0.2, 
s 

.JDxt = 0.5 (Internal view) 

Figure 4.12: Element solution of Von Misses stress distribution for d/t = 0.2, 
s 

.JDxt = 0.5 (External view) 
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edge 

Figure 4.11 and 4.12 show the element solution of the model for d/t = 0.2 and 
s 

..rn;:1 0.5. The stopping criterion of the simulation is when the Von Misses stress 

distribution reaches the ultimate tensile strength (crUTs = 530.9MPa) across the entire 

thickness of the ligament. 

Point of 

Figure 4.13: Closed view on the defect area for d/t = 0.2 and ~ = 0.5. 
-vD x t 

As the pressure applied on the internal surface of the pipe increased, the critical 

stress start to propagate along the edge of the defect and spread around the defect 

area. The assessment of the entire ligament is determined by consider the stress 

distribution across the thickness on several points at the critically defect area. Figure 

4.13 shows the maximum stress point (MX) which occur at the edge of the defect. 

The stress distribution is analysed based on three points along the line of critical 

edge; the maximum stress point, middle point, and end point of the edge. 
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CHAPTERS 

CONCLUSION AND RECOMMNEDATION 

5.1 CONCLUSION 

Consideration for maintenance or replacement of corroded pipeline is crucial 

beeause it affects directly to the cost of the firm. The available codes that are widely 

being used in the industry is too conservative. This may lead to unnecessary 

maintenance or premature replacement of corroded pipeline. Therefore, the FEA is 

one of the accurate methods to assess the burst strength of the corroded pipeline. 

Burst strength of pipeline with interacting corrosion defects can be accurately 

predicted by FEA using ANSYS software. The application of FEA can reduce the 

conservatism involved in the conventional methods. From this study, the ratio of 

FEA over DNV Code is a function of (d/t) given by: Factor = 0.48l(d/lj2 
-

0.805(dll) + 1.583. 

5.2 RECOMMENDATION, 

Distance between defects is one of major factor toward the interaction to be occurred 

between defects. As the distance of the defect is increasing, the effect of interaction 

decrease and lead to increase in maximum allowable pipe failure pressure. In this 

study, it only sees the effect of interacting defects with similar defect depth. Further 

study can focus on the effect of interaction between defects with different depth. 
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