CERTIFICATION OF APPROVAL

Vermicomposting of Municipal Sludge Using Eisenia Foetida

by

Nor Fazliana Binti Abdul Jabar

A project dissertation submitted to the Civil Engineering Department Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CIVIL ENGINEERING)

Approved by,

(Assoc. Prof. Dr. Shamsul Rahman Mohamed Kutty)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

July 2008

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

NOR FAZLIANA ABDUL JABAR

ACKNOWLEDGEMENT

In the Name of ALLAH the Most Merciful,

First of all thanks to Allah for the blessings and opportunity given to undertake this project. Without His blessings and mercy, the project will not be successfully completed.

Highest gratitude to the supervisor, Assoc. Prof. Dr Shamsul Rahman Mohamed Kutty for the acceptance of supervising the project, his guidance, encouragement and useful knowledge in overcoming the many problems encountered during this project.

Thanks also to all Civil Engineering Department lecturers and technicians, especially Mr. Khairul Anuar for the help and assistance in completion of this project study. Not forgetting the FYP committee and coordinators who are responsible to ensure the success in conducting the final year project for these two semesters.

Last but not least, thanks to everyone who involved directly and indirectly in order to ensure the success of this final year project. Their help, support and guidance are highly appreciated.

iii

TABLE OF CONTENTS

CERTIFICATION	OF API	PROVA	L	•	•	•	•	•	i
CERTIFICATION	OF OR	IGINA	LITY	•	•	•	•	•	ii
ACKNOWLEDGE	MENT	•	•	•	•	•	•	•	iii
ABSTRACT .	•	•	•	•	•	•	•	•	iv
CHAPTER 1:	INTR	ODUC:	ΓΙΟΝ	•	•	•	•	•	1
	1.1	Backg	round of	f Study	•	•	•	•	1
	1.2	Proble	m Stater	ment	•	•	•	•	2
	1.3	Object	ives		•	•	•	•	3
	1.4	Scope	of Study	7	•		•	•	3
CHAPTER 2:	LITE	RATUR	RE REV	TEW		•	•	•	4
	2.1	Existin	ıg Sludg	e Mana	gement	Practic	es	•	4
	2.2	Vermi	compost	ing	•	•	•	•	5
	2.3	Growt	h and Co	ocoon P	roducti	on of Ea	arthwor	m	9
	2.4	Enviro	nmental	Requir	rements	•	•	•	10
	2.5	Earthw	orm Bir	1	•	•		•	12
	2.6	Charac	teristic o	of Vern	nicomp	ost	•	•	12
CHAPTER 3:	METH	IODOI	JOGY	•	•	•	в	•	15
	3.1	Prepara	ation of	Dewate	red Mu	nicipal	Sludge	•	16
	3.2	Prepara	ation of [Reactor	r	•	•	•	16
	3.3	Collect	tion of E	arthwo	rms	•	-	•	17
	3.4	Experin	mental S	Setup	•	•	•	•	18
	3.4.1	Blendi	ng of M	unicipa	l Sludge	e and Sł	nredded	Paper	18
	3.4.2	Vermic	ompost	ing Pro	cess	•	•	•	22
	3.4.3	Sampli	ng	•	•	•	•	•	22
	3.5	Labora	tory Ana	alyses		•	•	•	23
	3.5.1	pН		•	•	•	•	•	23
	3.5.2	Total C)rganic (Carbon	(TOC)	•	•	•	24
	3.5.3	Total K	jeldahl	Nitroge	n (TKN	J)	•	•	25

	3.5.4	Total Phosphorus	•	•	26
	3.5.5	Potassium		•	27
	3.6	Hazard Analysis	•	•	28
CHAPTER 4:	RESU	LTS AND DISCUSSION .	•	•	30
	4.1	Characteristics of Sludge from Seway	ge		
		Treatment Plant of UTP .	•	•	30
	4.2	Characteristics of Shredded Paper	•	•	30
	4.3	Characteristics of Mixture of STP Sh	udge		
		and Shredded Paper	•	•	30
	4.4	pH Results	•	•	31
	4.4	Effect of Initial Number of Earthwor	ms wit	h	
		Fixed Initial C/N ratio.	•	•	33
	4.4.1	Total Organic Carbon Results.		•	33
	4.4.2	Total Kjeldahl Nitrogen Results		•	33
	4.4.3	Total Phosphorus Results .	•	•	33
	4.4.4	Potassium Results .	•	•	33
	4.5	Effect of Initial C/N Ratio with Fixed	l Initia	1	
		Number of Earthworms .	•	•	45
	4.5.1	Total Organic Carbon Results.	•	•	45
	4.5.2	Total Kjeldahl Nitrogen Results	•	•	46
	4.5.3	Total Phosphorus Results .	•	•	48
	4.5.4	Potassium Results	•	•	49
	4.6	Changes in Carbon to Nitrogen Ratio	÷	•	51
	4.3	Growth of Eisenia foetida .	•	•	53
CHAPTER 5:	CONO	LUSION AND RECOMMENDAT	ION.	•	55
	5.1	Conclusion	•		55
	5.2	Recommendations	•	•	56
REFERENCES			•	•	57
APPENDICES	•		•	•	59

LIST OF FIGURES

Figure 1	Distribution of organic pollutant to water resources and environment	1
Figure 2	Decomposition of organic materials by earthworm	6
Figure 3	Anatomy of earthworm	7
Figure 4	Eisenia foetida	9
Figure 5	Cocoons of earthworms	9
Figure 6	Vermicompost produced form decomposition of animal waste	13
Figure 7	Overall Methodology	15
Figure 8	(a) Municipal sludge from top layer of the plastic bin (b) Municipal	
	sludge after filtered with fabric	16
Figure 9	Plastic reactor covered with polymer sack	17
Figure 10	Categories of Eisenia foetida	17
Figure 11	(a) Tray for C/N ratio 20 before mixing process (b) Tray for C/N ratio	
	20 after mixing process	19
Figure 12	(a) Tray for C/N ratio 25 before mixing process (b) Tray for C/N ratio	
	25 after mixing process	20
Figure 13	(a) Tray for C/N ratio 35 before mixing process (b) Tray for C/N ratio	
	35 after mixing process	21
Figure 14	Tray for C/N ratio 30 after mixing process	22
Figure 15	pH meter	24
Figure 16	TOC Analyzer	24
Figure 17	Preparation for digestion	25
Figure 18	Distillation machine	26
Figure 19	Titrator	26
Figure 20	Spectrophotometer	27
Figure 21	Atomic Absorption Spectrophotometer (AAS) machine	28
Figure 22	(a), (b), (c) and (d) Total Organic Carbon (% TOC) vs	
	Vermicomposting period (week) of C/N ratio 20, 25, 30 and 35.	33
Figure 23	(a), (b), (c) and (d) Total Kjeldahl Nitrogen (% TKN) vs	
	Vermicomposting period (week) of C/N ratio 20, 25, 30 and 35.	36
Figure 24	(a), (b), (c) and (d) Total Phosphorus (% TP) vs Vermicomposting	

	period (week) of C/N ratio 20, 25, 30 and 35.	39
Figure 25	(a), (b), (c) and (d) Potassium (%) vs. Vermicomposting period (week)	
	of C/N ratio 20, 25, 30 and 35.	42
Figure 26	(a) Total Organic Carbon (TOC %) vs Vermicomposting period (week)	
	of R2 (N=30 earthworms) (b) Total Organic Carbon (TOC %) vs	
	Vermicomposting period (week) of R3 (N=40 earthworms).	45
Figure 27	(a) Total Kjeldahl Nitrogen (TKN %) vs Vermicomposting period	
	(week) of R2 (N=30 earthworms) (b) Total Kjeldahl Nitrogen (TKN %)	
	vs Vermicomposting period (week) of R3 (N=40 earthworms).	46
Figure 28	(a) Total Phosphorus (TP %) vs Vermicomposting period (week) of R2	
	(N=30 earthworms) (b) Total Phosphorus (TP %) vs Vermicomposting	
	period (week) of R3 (N=40 earthworms).	48
Figure 29	(a) Potassium (%) vs Vermicomposting period (week) of R2 (N=30	
	earthworms) (b) Potassium (%) vs Vermicomposting period (week) of	
	R3 (N=40 earthworms).	49
Figure 30	(a) Eisenia foetida before vermicomposting (b) Eisenia foetida after 8	
	weeks of vermicomposting period.	53
Figure 31	(a) The longest Eisenia foetida in R2 (N=30 earthworms) for C/N ratio	
	20 (b) Cocoons of Eisenia foetida produced after 4 weeks of	
	vermicomposting period.	54
Figure 32	Babies of Eisenia foetida	54

LIST OF TABLES

Table 1	Chemical characteristics comparison between garden compost and				
	vermicompost, 1994	14			
Table 2	Experiment Setup	18			
Table 3	The composition of municipal sludge and shredded paper in each				
	reactor	18			
Table 4	Methods for laboratory analyses	23			
Table 5	Hazard Analysis	29			
Table 6	Characteristics of initial mixture of different C/N ratio after blending	31			
Table 7	pH recorded for 9 weeks of vermicomposting periods	32			
Table 8	Change in C/N ratio after nine (9) weeks of vermicomposting period.	52			
Table 9	Change in number of earthworms after eight (8) weeks of				
	vermicomposting period.	53			

.

CHAPTER 1 INTRODUCTION

1.1 Background of Project

Municipal sludge is a by-product of municipal wastewater treatment. It is one of the major contributors to waste generation [Molla, 2006]. Sludge, mostly rich in organic compounds as well as pathogenic organisms and toxic chemicals can easily affect air, land and water [Metcalf & Eddy 2004]. In Malaysia municipal sludge is the largest contributor of organic pollution to water resources and environment. It is evident from Figure 1 that the contribution is top listed with an estimate of 64.4% followed by animal husbandry wastes (32.2%), agro-based (1.7%) and industrial effluent (1.3%) [DOE, 2004]. Therefore, its disposal and management requires proper attention for human and animal health and protection of groundwater.

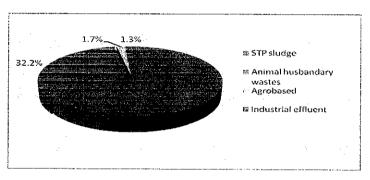


Figure 1: Distribution of organic pollutant to water resources and environment. (Source: DOE, 2004)

Malaysia produces an estimated volume of 3 million cubic meters of municipal sludge yearly. By the year of 2020, the volume of sludge produced annually will be increased through rapid growth in urbanization [Indah Water, 2008]. As a result, many new sludge treatment and disposal facilities will be needed to manage the large volume. Environmentally-sound sludge management is the cornerstone of Malaysia's new approach to sewerage services. Effective and efficient sludge management will significantly contribute to provide a cleaner and safer Malaysia for future generations. Therefore, this paper provides an efficient and ecologically safe alternative method for the sludge management which is vermicomposting.

Used of the earthworm in different types of waste [Payal, 2006] and primary sewage sludge [Renuka et al., 2007] had been reported with varied degree of success. Vermicomposting is a natural decomposition process involves the use of earthworms to process and stabilizes waste [Rola, 2000]. Most of research studies of this technology focused on physiochemical factors for the survival and growth of the earthworms. The research studies [Aaron, 1996] reported that this composting technology is economically viable because it produce beneficial end-product through recycling of sludge. Therefore, this research study tries to establish the applicability of this technology to decompose municipal sludge in valuable end product.

1.2 Problem Statement

Until about five decades ago, sludge management system in Malaysia was not different from what is still found in many developing countries. Increased urbanization and the growth in wastewater treatment plants in Malaysia have led to a very large increase in the production of municipal sludge [Indah Water, 2008]. The municipal sludge which contain high amount of organic matter and pathogenic microorganisms has to be treated and disposed off to maintain healthy environment. There are a lot of traditional techniques are widely applied for the treatment and disposal of the sludge such as landfill and land application. However, many environmental problems are still raised from all those techniques and pose a threat to human health. For example, land application has caused odor and disease-causing problem and landfill has caused surface or groundwater pollution causing public health hazards. Incineration once considered an alternative and most effective method as it can disperse bulk of sludge in one time. However, incinerating is a complex, costly and highly polluting method of disposal. Rather than making the sludge disappear, incinerators create more toxic waste.

1.3 Objectives

The purposes of this research are as follows:

- i. To evaluate the ability of earthworms, Eisenia Foetida to stabilize and decompose the municipal sludge. Thus, the sludge is recycled naturally.
- ii. To compare decomposition of municipal sludge with the presence and absence of earthworms for difference carbon to nitrogen ratio (C/N ratio) by laboratory analyses. The C/N ratio was adjusted by adding bulking agent which is shredded paper.

1.4 Scope of Study

The objectives were achieved by conducting experiment using municipal sludge obtained from sewage treatment plant of UTP. The following laboratory analyses were carried out to determine the change in characteristic of sample tested:

- i. Total Organic Carbon (TOC)
- ii. Total Kjeldahl Nitrogen (TKN)
- iii. Total Phosphorus
- iv. Potassium
- v. pH

CHAPTER 2 LITERATURE REVIEW

2.1 Existing Sludge Management Practices

Sludge management is the collection, transport, processing, recycling or disposal of sludge. The term usually relates to materials produced by human [George, 1993]. Commonly methods used for disposal of sludge are landfill, land application, ocean dumping and incineration.

Disposing of sludge in a landfill involves burying sludge to dispose of it. A landfill is a carefully designed structure built into or on top of the ground in which trash is isolated from the surrounding environment. The purpose is to avoid any water related connection between the sludge and the surrounding environment, particularly groundwater [George, 1993]. Landfills were often established in disused quarries, mining voids or borrow pits. A properly-designed and well-managed landfill can be a hygienic and relatively inexpensive method of disposing of waste materials. Older, poorly-designed or poorly-managed landfills can create a number of adverse environmental impacts such as wind-blown litter, attraction of vermin, and generation of liquid leachate. Another common byproduct of landfills is gas (mostly composed of methane and carbon dioxide), which is produced as organic waste breaks down anaerobically. This gas can create odor problems, kill surface vegetation, and is a greenhouse gas [Aaron, 1996].

Land application is defined ad the spreading of sludge on or just below the surface of the land. Usually sludge is applied on agricultural lands, forest lands, drastically disturbed land [George, 1993]. The beneficial use of sludge not only serves to provide an effective soil amendment, but also helps divert thousands of tons of sludge from landfills and incinerators, saving cost of disposal, while preserving valuable landfill space and eliminating the potential for harmful emissions to the air we breathe. However, along will with the nutrients, the soil receives whatever pathogens and pollutant that might be in the sludge through loss by leaching or runoff. If not properly monitored and managed, these could adversely affect human and animal health, soil quality, plant growth and water quality [Aaron, 1996].

Incineration is a disposal method that involves combustion of sludge material. Incinerators convert sludge materials into heat, gas, steam, and ash. Incinerators reduce the volume of the original sludge by 95-96 %, depending upon composition. This means that while incineration does not completely replace landfilling, it reduces the necessary volume for disposal significantly. Combustion in an incinerator is not always perfect and there have been concerns about micro-pollutants in gaseous emissions from incinerator stacks. Particular concern has focused on some very persistent organics such as dioxins which may be created within the incinerator and which may have serious environmental consequences in the area immediately around the incinerator [Metcalf & Eddy 2004].

2.2 Vermicomposting

Vermes in Latin for worm and vermicomposting is an aerobic decomposition organic material by using earthworms into elements or smaller compounds that readily available to plants [Renuka and Garg, 2007]. Basically, vermicomposting is technology of using earthworms for waste management and vermiculture is a practice of raising earthworms [Aaron, 1996]. Earthworms feed on organic material contain in sludge for energy and nutrients, break it down and then excrete it as earthworm castings or a richer end-product [Nancy, 1998]. The castings are in the form of tiny pellets which are coated with a gel or mucus. It is also known as vermicompost.

There is also a symbiotic relationship between the earthworms and microorganisms [Manuel, 2004]. Earthworms help in accelerating rate of decomposition of organic matter by microorganisms as they use mucus in earthworm's gut as substrate to decompose complex organic compounds into simpler substances that are digestible by

c) Thus, it control pollution caused by disposal of sludge [Renuka and Garg, 2007].

The biology of earthworm is quite simple. The earthworm ingests waste at the front, through a soft mouth with a lip that can grasp. With help of pharynx (throat) the food can be pushed in. Since they have no teeth, they used saliva to help in softening and digesting of food. The food then passed through esophagus to the crop and then to gizzard for [George, 2003]. Lastly, the end product, casting passed out from earthworm's body through anus.

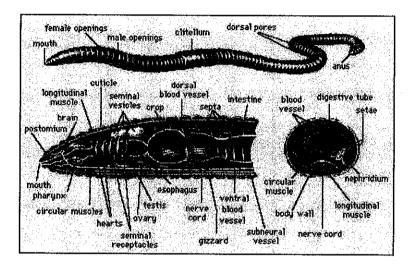


Figure 3: Anatomy of Earthworm. (Sources: George W.Dickerson, 2003)

There are an estimated 1800 species of earthworm worldwide [Fuad, 2007]. They can be divided into three (3) broad groups to make identification easier as follows:

- i. *Epigeic* species live in the surface litter above mineral soil and make no permanent burrows. They feed on surface litter, digesting it and the microorganisms found there. There are reddish brown in color and small in size, usually less than 7.5 cm long when mature.
- ii. *Endogeic* species make extensive branching burrow systems in the top of 50 cm of the soil. They feed by ingesting large amounts of soil and digest the soil organic matter and microorganisms found there. They are easily separated

from epigeic and anecic species by their color: no red-brown skin pigmentation. Size ranges are from 3cm to 12.5 cm.

iii. Anecic species make vertical burrows up to 2 meters deep in the soil, but they feed on fresh surface litter. They are reddish brown in color and larger than either of the other two groups. Adults are usually 12.5-20cm long.

Several earthworm species e.g. *Eisenia foetida, Eisenie andrei, Eudrilus eugeniae* and *Perionyx excavatus* has been identified as potential candidates for managing organic waste resources. However, *Eisenia foetida* is commercially used for composting as they are found to be concentrated in the forest duff layer or organic debris rather than in soil [Gajalakshimi, 2005]. This characteristic makes it suitable for vermin degradation as the earthworm preferred environment can duplicate in the bin or reactor. As their environment is available, they will not migrate to other places or burrows into soil as they are *Epigeic* species. Thus, it is easy to control these species.

Worldwide spread *Eisenia foetida* was and still remains a favoured earthworm species for vermicomposting operation. The growth patterns of *Eisenia foetida* in number of different waste resources have been investigated by various authors through laboratory analyses [Payal, 2006, Aaron, 1996, Hou 2005].

Eisenia foetida its closely related species *Eisenia andrei* [Rola, 2000], known under various common names, including tiger worms is a species of earthworm adapted to environment of decaying organic matter. It is found that this type of earthworms is the most commonly used for vermicomposting [George, 2003] because they are tough, easily handled and can tolerate a wide range of temperatures conditions [Rola, 2000]. They have ability to degrade different types of organic substances and produce good source of end product which contain nutrient such as nitrogen and phosphorus [Payal, 2006]. This species usually dominate in many organic wastes environment [Rola, 2000].

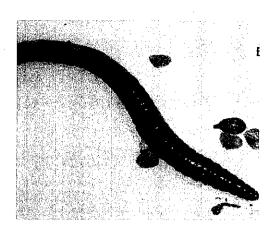


Figure 4: *Eisenia foetida* (Sources: George W.Dickerson, 2003)

2.3 Growth and Cocoon Production of Earthworms

A cocoon is a pupal casing made by an earthworm. Under ideal conditions earthworm can double in volume every 90 days. The average incubation period for earthworm is between 30 and 80 days, depending on environmental conditions. It is found that the development time of cocoons for *Epigeic* earthworm was very short (13-14 days) compared to other type of earthworms. The longest development time of cocoons was observed in *Anecic* earthworms (110 days) [Gautum, 2002].

Figure 5: Cocoons of earthworms (Source: Gautum, 2002]

Once the new worms hatch, it will take about 8 to 10 weeks to become sexually mature and begin producing cocoons [George, 2003]. *Eisenia Foetida* produces 3.8 cocoons per adult per week and it is 83.2% of hatching rate success.

2.4 Environmental Requirements

The growth of both earthworms and mesophilic bacteria is essential to a successful vermicomposting operation. Mesophilic bacteria feed on the organic matter within the waste and earthworms feed on the bacteria [Mansfield, 2003]. For optimal growth, several operating conditions must be maintained such as moisture content, pH and temperature.

Vermicomposting proceeds best at moisture content of 50-80% as it is very important for the survival and growth of the earthworm [Aaron, 1996]. Since earthworm breathes through its skin, respiration of earthworm replies on the moist surface as moisture helps the earthworm's ability to absorb oxygen. Most of study conducted for vermicomposting stated the same condition [Payal, 2006]. If the moisture content falls below 40 percent, the system may become too dry for the microbial activity. In most of the research studies, the moisture content was maintained by periodic sprinkling water to the vermin system [Renuka and Garg, 2007]. If there is excess moisture in the bin, the bin is open for evaporation [Mansfield, 2003].

Temperature is another important parameter in vermicomposting. Best temperature range for vermicomposting is between 15-25°C [Aaron, 1996]. As mention previously, the decomposition of organic matter is done through the help of microbial such as fungi, bacteria and protozoa. Thus, is it important to maintain the temperature at optimum conditions for the growth of microbial population. Furthermore, *Eisensia foetida* reproduces and process waste at optimum temperature of 25 °C [Hou, 2005].

The optimum pH value for vermicomposting is in the range of 6-8 [Hou, 2005]. Earthworm cannot survive at pH below 5 and above 8 [Aaron, 1996]. As degradation

proceeds, the pH drops to acidic. The drop is pH is because of the present of organic acid as a by-product of organic matter during vermicomposting [Nancy, 1998].

The most critical factor for vermicomposting is carbon to nitrogen (C/N ratio). Organic carbon which makes up about 50 percent of the mass of microbial cells provides both an energy source and a basic cellular building block. The maturity of decomposed organic wastes can be determined from the C/N ratio [Renuka and Garg, 2007]. Nitrogen is a crucial component of the proteins, nucleic acids, amino acids and enzymes necessary for cell growth and function [Mansfield, 2003]. At lower ratios, nitrogen will be supplied in excess and will be lost as ammonia gas, causing undesirable odors. Higher ratios mean that there is not sufficient nitrogen for optimal growth of the microbial populations, so the compost will remain relatively cool and degradation will proceed at a slow rate [George, 1993]. The optimum range of C/N ratio by mass for efficient cell growth are 25 to 40 parts carbon to 1 part nitrogen [25-40:1] [Mansfield, 2003]. Some researcher reported that 25 is the suitable C/N ratio on the growth and survival of earthworms [Hou, 2005]. The range of most organic waste is from 20-25 to 1. Sludge have low C/N ratio whereas yard waste such as newspaper, paper, leaves have relatively high C/N ratios. In order to provide a near optimum C/N ratio, the sludge from wastewater treatment plant and yard wastes can be blended. The blending of wastes to optimize the C/N ratio is illustrated in the following equation [George, 1993]:

$$\frac{C}{N} = (25 \sim 30) = \frac{C \text{ in 1kg YardWaste} + x(C \text{ in 1kg of Sludge})}{N \text{ in 1kg YardWaste} + x(N \text{ in 1kg of Sludge})}$$

where

x = weight of sludge used, kgNote: Assume the weight of yard waste used is 1 kg.

(Source: George, 1993)

As composting proceeds, the C/N ratio gradually decreases for the end product and it is found that the value of C/N ratio decrease rapidly with the presence of earthworm [Renuka and Garg, 2007]. This occurs because each time the organic compounds are consumed by microorganisms, two-thirds of the carbon is given off as carbon dioxide. The remaining third is incorporated along with nitrogen into microbial cells which lower the C/N ratio [Renuka, 2007].

2.5 Earthworm Bin

Earthworm bins can be made from plastic tubs by drilling air holes in the tub or by following the directions in this fact sheet to build a large plywood bin. Plastic tub bins tend to get wetter than wooden bins [George, 2003]. If the bin is too wet, odor problems occur and worms die or leave the bin. Holes can be drilled in the bottom of the tub. Set the bin on wooden blocks or attach legs to the tub to increase air circulation. Manufactured worm bins are available from a variety of vendors.

2.6 Characteristic of Vermicompost

During vermicomposting, organic matter is subjected to a series of physical, chemical and biological transformation resulting in the formation of worm cast. Vermicompost consists mostly of worm casts plus some decayed organic matter. It is usually dark, homogeneous and with a mull-like soil odor. The color and physical vermicompost depends on the nature of parent materials and the degree of composting by earthworms Vermicompost is a finely divided material that has the appearance and many characteristics of peat [Rola, 2000] with high porosity, aeration drainage and water-holding capacity [George, 2003].

During the passage of organic waste through the earthworm gut, nutrients such as nitrogen, phosphorus are transformed to more readily available to plants such as nitrate, ammonium biologically [Rola, 2000]. In some studies, it has been shown that there are increases in total nitrogen, phosphorus and potassium of the original material [Renuka and Garg, 2007]. Payal in 2006 found that an increase of 83% in total

nitrogen, 550% in phosphorus and 130% in potassium of textile industry sludge after 100 days of vermicomposting period. Renuka and Varg in 2007 also found the same result in vermicomposting of primary sludge where there was an increase of 113% in potassium and 94% in total phosphorus after 105 days.

During vermicomposting, the pH organic waste decrease to acidic (6 to 6.5) due to production of organic acids by microbial metabolism. Renuka and Garg in 2007 reported that there were pH changes from alkaline (8.0-8.2) to acidic (6.87 ± 0.05 to 7.70 ± 0.05) due to conversion of organic material into intermediate organic acids during the decomposition process. It also been reported that the pH shift might have been due to the production of CO₂ and organic acids by microbial activity [Payal, 2006]. This pH condition enhances the growth of plant because most plant prefers a growth medium that is slightly acidic [Nancy, 1998].

Figure 6: Vermicompost produced form decomposition of animal waste. (Source: Greenfield Agrotech Sdn. Bhd)

Vermicompost is usually much more stable than its parent materials [Rola, 2000]. Because of the changes in organic matter chemistry, physical characteristics and biology brought about by earthworms, vermicompost can be used as soil conditioner of organic fertilizer that enhances plant growth. Payal in 2006 found a decrease in total organic carbon by 36% in textile industry sludge, 55% in kitchen waste and 67% in agro-residues waste. It is found that vermicompost contain 5-11 times more nitrogen, phosphorus and potassium as the surrounding soil. Below are comparison between

garden compost and vermicompost and chemical compostition for the other vermicompost:

Table 1: Chemical characteristics comparison between garden compost and				
vermicompost, 1994.				

Parameter	Garden compost ¹	Vermicompost ²
pH	7.80	6.80
EC (mmhos/cm)*	3.60	11.70
Total Kjeldahl Nitrogen (%)	0.80	1.94
Nitrate Nitrogen (ppm)**	156.50	902.20
Phosphorus (%)	0.35	0.47
Potassium (%)	0.48	0.70
Calcium (%)	2.27	4.40
Sodium (%)	<0.01	0.02
Iron (ppm)	11690.00	7563.00
Zinc (ppm)	128.00	278.00
Manganese (ppm)	414.00	475.00

¹Albuquerque sample ²Tijeras sample

ppm = parts per million

mmhos/cm = millimhos per centimeter

*EC= electrical conductivity is a measure of the relative salinity of soil. **Nitrate Nitrogen = that nitrogen in the sample that is immediately available for plant uptake by the roots.

(Source: George W.Dickerson, 2003)

Unit

CHAPTER 3 METHODOLOGY

The main analysis is to evaluate the degree of decomposition of municipal sludge at different carbon to nitrogen ratio (C/N) with the presence and absence of earthworms. In the analysis, the municipal sludge is amended with yard waste which is shredded paper in order to provide optimum C/N ratio for the sludge. Instead of that, shredded paper also acted as a bulking agent. The overall methodology of this research project is summarized as follows:

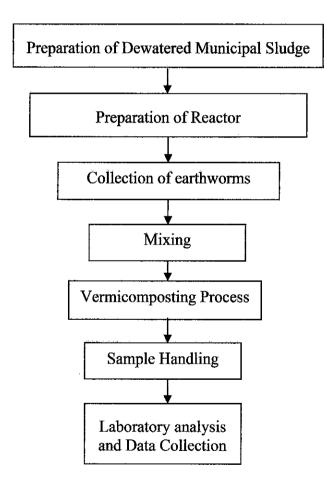
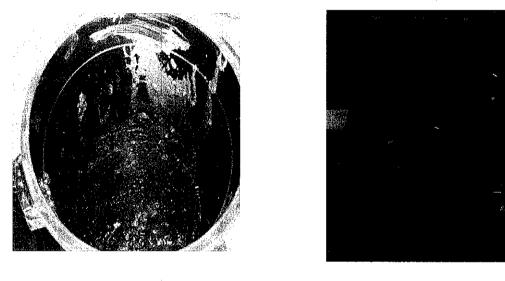



Figure 7: Overall Methodology

3.1 Preparation of Dewatered Municipal Sludge

Sludge was obtained from sewage treatment plant of Universiti Tecknologi PETRONAS. Separation into dewatered sludge and liquid fraction was done by allowing the sludge to settle down to the bottom of bin as shown in Figure 8 (a). The liquid fraction was collected at the top layer of the plastic bin and while the settled sludge was filtered using fabric. The dewatered sludge in Figure 8(b) was aerated and stabilized for 21 days by manually turning [Renuka, 2007] in order to eliminate volatile gases, ammonia which is toxic to the earthworms [Aaron, 1996].

(a)

(b)

Figure 8: (a) Municipal sludge from top layer of the plastic bin (b) Municipal sludge after filtered with fabric

3.2 Preparation of Reactor

Plastic reactor in Figure 9 is used to accommodate the worm and the sludge sample for experimental purpose of this project. This is the cheapest and easier earthworm bin system. Ultraviolet light is toxic to earthworms, so the container should be made from an opaque material. Basically, the internal dimensions of plastic container are 33 cm

(length) x 25 cm (width) x 13 cm (height). Polymer sack was used to cover the holes in the container.

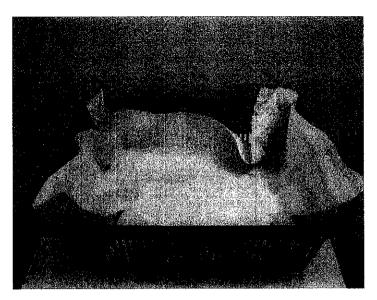


Figure 9: Plastic reactor covered with polymer sack

3.3 Collection of Earthworm

Eisenia foetida is species used in this study. These earthworms are supplied by ESI Agrotech Farm, Kajang, and Selangor. Basically, based on visual observation there are three (3) categories which are small, medium and large.

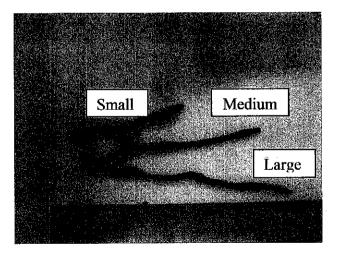
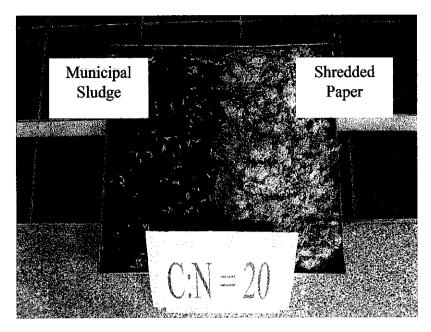


Figure 10: Categories of Eisenia foetida

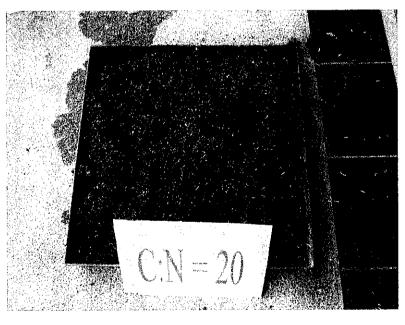
3.4 Experimental Setup

Twelve (12) plastic reactors were prepared. Four different C/N ratios were analyzed for this project. There were three (3) replicates for each C/N ratio with 0 (control), 30, and 40 earthworms. The experiment setup is shown as in the table below:

	No	No of Earthworms			
C/N	Control	20	40		
20	Rla	R2a	R3a		
25	R1b	R2b	R3b		
30	R1c	R2c	R3c		
35	R1d	R2d	R3d		

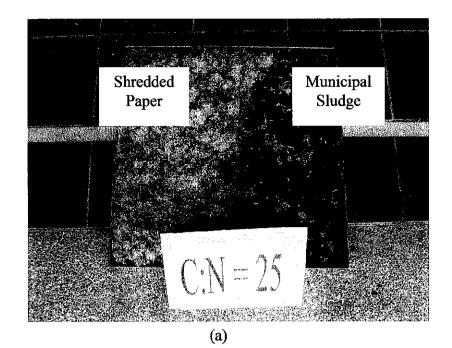

Table 2: Experiment Setup

3.4.1 Blending of Municipal Sludge and Shredded Paper


For each C/N ratios there will be blended of STP sludge and yard waste as shown in Figure 11=14. One kg of mixture (on dry weight basis) was put in each plastic reactor. The composition of STP sludge blended with shredded paper in different reactors was done as follows:

		Dry weight (kg)			
C/N	Sludge	Paper	Total		
20	0.42	0.58	1.00		
25	0.34	0.66	1.00		
30	0.29	0.71	1.00		
35	0.25	0.75	1.00		

Table 3: The composition of STP sludge and shredded paper in each reactor.



(a)

(b)

Figure 11: (a) Tray for C/N ratio 20 before mixing process (b) Tray for C/N ratio 20 after blending process

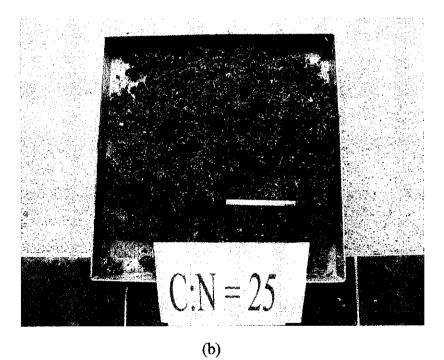
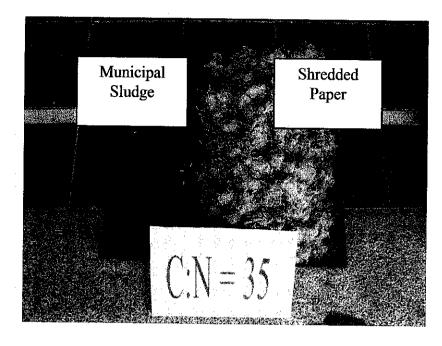
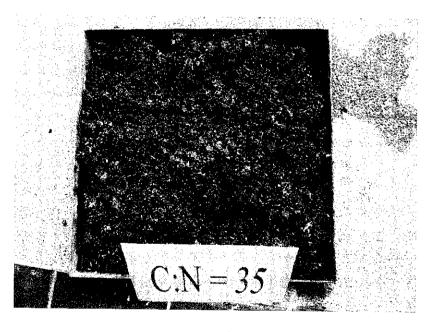




Figure 12: (a) Tray for C/N ratio 25 before mixing process (b) Tray for C/N ratio 25 after blending process

(a)

(b)

Figure 13: (a) Tray for C/N ratio 35 before mixing process (b) Tray for C/N ratio 35 after blending process

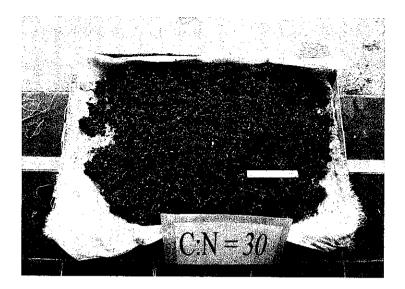


Figure 14: Tray for C/N ratio 30 after blending process

3.4.2 Vermicomposting Process

Homogenized samples are drawn at 0, 14, 21, 28, 35, 42, 49, 56 and 63 days. All reactors were kept in dark under room temperature $25\pm3^{\circ}C$ (R.Gupta et al., 2007). To maintain moisture content, periodic sprinkling of an adequate quantity of distilled water was done. Since there is no direct equipment to measure moisture content of sludge during the experiment, the change of moisture content was based on visual examination only.

3.4.3 Sampling

Samples are collected and stored for detail laboratory analysis. The samples are air dried at room temperature, ground in blender and stored in the plastic vials.

3.5 Measurement of Parameters

Analysis	Method	Reference
рН	Electrometric measurement	ASTM for Soil and Peat (D 2974 – 87)
TOC	TOC Analyzer	-
TKN	Sulfuric acid digestion with alkali distillation.	ASTM for Soil and Peat (D 4972–95a)
Total Phosphorus	Spectrophotometer with Sulfuric Acid-Nitric Acid Digestion	Modified Standard Methods for the Examination of Water and Wastewater (4500-P B)
Potassium	Atomic Absorption Spectrophotometer (AAS) with Sulfuric Acid-Nitric Acid Digestion	Modified Standard Methods for the Examination of Water and Wastewater (4500-P B)

Table 4: Methods for laboratory analyses

3.5.1 pH

The pH was determined using a double distilled water suspension in the ratio of 1:100. A volume of sample representing 10 g was placed in a 250 ml beaker, 100 ml distilled water were added and the sample mixed (R.Gupta and V.K Garg, 2007). The sample was allowed to sit for 30 minutes to permit the soil and water equilibrates. The pH meter as shown in Figure 15 was standardized with pH buffer solution at approximately pH 4.0. Then, the pH meter was placed in the beaker containing mixture of sludge and distilled water. The pH obtained was recorded.

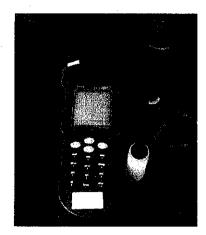


Figure 15 : pH meter

3.5.2 Total Organic Carbon (TOC)

Approximately 60 mg of dried sample was prepared. Then the sample was analyzed using total carbon analyzer as shown in Figure 16. This method was based on the combustion of organic compounds and further detection of CO_2 with non-dispersive infrared analysis.

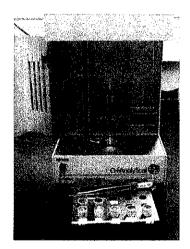


Figure 16: TOC Analyzer

3.5.3 Total Kjeldahl Nitrogen (TKN)

Total Kjeldahl Nitrogen was determined based on chemical test method obtained from ASTM D2973 for Peat Material. Approximately 0.6g dried sample were prepared and placed in a 600 ml Kjeldahl flask. About 0.25g selenium and 20ml of concentrated acid were added. The acid was added down the side of the flask to wash down all material adhering to the sides of the flask. The sample was digested on the digestion rack until it turned green and this was continued for 30 minutes to ensure complete ensure complete digestion. The solution was cooled for 10-15 minutes and then 125 ml of distilled water was added.

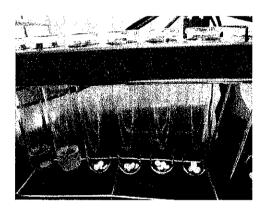


Figure 17: Preparation for digestion.

Fifty (50) ml of 4% boric acid were placed in a 500 ml Erlenmeyer flask. The flask was placed on the distillation rack so that the end of the tube of the distillation apparatus is under the surface of the boric acid in the flask. Cooling water was turned on the distillation apparatus. Kjeldahl flask was held at a 45° angle and 100 ml of sodium hydroxide was added. The flask was then connected without mixing to a trap which is connected to the distillation column. The solution was heated until 150 ml of distillate had been collected in the collection flask. The collected solution was titrated using titrator with 0.02 N of sulfuric acid as shown in Figure 19. The volume titrated for sample was recorded.

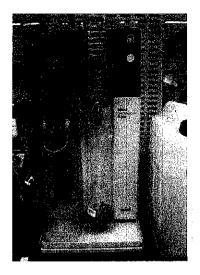


Figure 18: Distillation machine

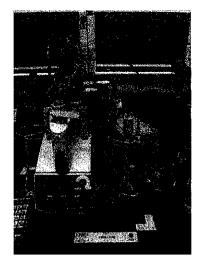


Figure 19: Titrator

3.5.4 Total Phosphorus

Approximately 0.6g of 1 ml of concentrated sulfuric acid and 5ml of concentrated nitric acid were added in a 600 ml Kjeldahl flask. The sample was digested for about 30 minutes and continued until solution becomes colorless to remove nitric acid. Then, it was cooled and approximately 20 ml of distilled water, 0.05ml phenolphthalein indicator and as much as 1N NaOH solution as required to produce a faint pink tinge. 10 ml of digested sample was filtered and transferred to 100-ml volumetric flask. The volume of sample was adjusted to 100 ml with distilled water.

5 ml of diluted sample from 100-ml volumetric flask was pipette out into a Total Phosphorus Test N tube vial. One potassium persulfate powder pillow was added to the vial. The vial was digested in DRB 200 reactor for about 30 minutes. After that, the vial was carefully removed from the reactor and allowed to cool to room temperature (18-25°C). 2 ml of 1.54N sodium hydroxide was added to the vial and shaked. The vial was wiped with a damp towel to remove fingerprints or other marks. The vial was read for blank. Then, one PhosVer 3 powder pillow was added to the vial and shaked for about 20-30 seconds. After that, the sample was read after two-minute timer (reaction time) was expired.

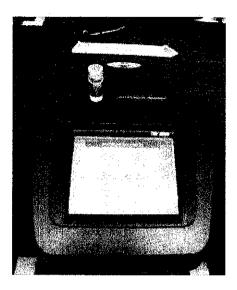


Figure 20: Spectrophotometer

3.5.5 Potassium

Approximately 0.6g of 1 ml of concentrated sulfuric acid and 5ml of concentrated nitric acid were added in a 600 ml Kjeldahl flask. The sample was digested for about 30 minutes and continued until solution becomes colorless to remove nitric acid. Then, it was cooled and approximately 20 ml of distilled water, 0.05ml phenolphthalein indicator and as much as 1N NaOH solution as required to produce a faint pink tinge. 10 ml of digested sample was filtered and transferred to 100-ml volumetric flask. The volume of sample was adjusted to 100 ml with distilled water.

The potassium contain in the sample was determined by atomic absorption spectrophotometer (AAS). Atomic absorption units have four basic parts: interchangeable lamps that emit light with element-specific wavelengths, a sample aspirator, a flame or furnace apparatus for volatilizing the sample, and a photon detector. In order to analyze for any given element, a lamp was chosen that produces a wavelength of light that was absorbed by that element. Sample solutions were aspirated into the flame. If any ions of the given element were present in the flame, they had absorbed light produced by the lamp before it reaches the detector. The amount of light absorbed depends on the amount of the element present in the sample. Absorbance values for unknown samples were compared to calibration curves prepared by running known samples or standard samples.

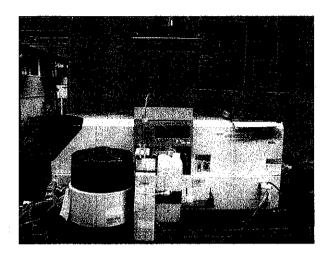


Figure 21: Atomic Absorption Spectrophotometer (AAS) machine.

3.6 Hazard Analysis

A hazard is defined as an event, or circumstance that could lead to or contribute to an unplanned or undesirable event. Seldom does a single hazard cause an accident. More often, an accident occurs as the result of a sequence of causes. A hazard analysis is a process used to assess risk. The results of a hazard analysis are the identification of unacceptable risks and the selection of means of controlling or eliminating them. Below are the hazard analysis made for this research project:

Table	5:	Hazard	Analysis
-------	----	--------	----------

Area	Activities	Potential Hazard	Recommended PPE
Concrete Lab	Drilling holes for vermireactor using drilling equipment.	Noise, dust, accident.	Safety earplugs; be aware while using drilling equipment.
Wastewater Treatment Plant	Collecting of sludge sample	Offensive odor, bacteria, accident.	Gloves mask and covered shoes.
	Working with small volumes of corrosive liquid (boric acid)	Eye or skin damage	Safety glasses, Light chemical- resistant gloves, lab coat.
Environmental Lab	Working with toxic or hazardous chemicals (solid or liquid)	Eye or skin damage, potential poisoning through skin contact	Safety glasses (for large quantity) Light chemical-resistant gloves, lab coat.
	Working with an apparatus with contents under pressure (such as distillation).	Eye or skin damage	Safety glasses (for large quantity) Light chemical- resistant gloves, lab coat.

CHAPTER 4 RESULTS & DISCUSSION

4.1 Characteristics of Sludge from Sewage Treatment Plant of UTP

Municipal Sludge obtained from Sewage Treatment Plant of UTP was tested for several laboratory analyses such as Total Organic Carbon (TOC), Total Kjeldahl Nitrogen (TKN), Total Phosphorus (TP), Potassium, pH and moisture content test to determine the characteristics of the sludge. The results from those tests had proved that our STP sludge contained 22.55% TOC, 3.36% TKN, 2.34% TP, 0.53% Potassium and 84.14% moisture content. The average pH of the sludge is 7.83±0.04.

4.2 Characteristics of Shredded Paper

Shredded paper was obtained form Exam Unit of UTP. The shredded paper also was tested to determine its characteristics. The results from those tests had proved that the shredded paper contained 32.67% TOC, 0.03% TKN, 0.03% TP, 0.01% Potassium and 5.47% moisture content with the average pH of 6.95 ± 0.03 .

4.3 Characteristics of Mixture of STP Sludge and Shredded Paper

Based on both characteristics of STP sludge and shredded paper, it is observed that STP sludge can be blended with shredded paper in order to provide optimum carbon to nitrogen ratio. The composition of the sludge and shredded paper for each C/N ratio was calculated using mass balance equation. After the blending process, the mixture for each C/N ratio was tested to ensure that it meet the required C/N ratio. Table 6 showed the results for those tests conducted:

Analysis	Carb	on to Nitroge	n ratio (C/N 1	atio)
Allalysis		25	30	35
Total Organic Carbon, TOC (%)	26.44	27.31	28.44	28.58
Total Kjeldahl Nitrogen (TKN)	1.33	1.19	0.97	0.79
Total Phosphorus, TP (%)	1.25	1.12	0.87	0.75
Potassium (%)	0.26	0.24	0.22	0.16
pH	8.12	7.86	7.79	7.76
Observed C/N ratio	19.88	22.95	29.32	36.18

Table 6: Characteristics of initial mixture of different C/N ratio after blending

Results form Table 6 showed that there was slightly difference between the required and observed C/N ratio due to non-homogeneous blending process.

4.4 pH Results

pH is the important environment requirement in vermicomposting. Therefore, during vermicomposting period, the pH of STP sludge blended with shredded paper was observed to ensure that it is within optimum condition. pH was determined using a double distilled water suspension in the ratio of 1:100. There were changes in pH of vermicompost as compared to initial value. The pH shifted from alkaline to acidic. The production of CO_2 and intermediate organic acid by microbial metabolism during the decomposition might be the reason of pH reduction [Payal, 2006][Renuka, 2007].

Based on Table 7, there are reductions of pH in all reactors including control for each C/N ratio. However, the faster reduction was observed in reactors with the presence of earthworms for all C/N ratios. The average percentage of pH reduction for all C/N ratio in R3 (N=40 earthworms) is 14.6%, R2 (N=30 earthworms) is 12.1% and R1 (no earthworms) is 9.9%. From those results, it is proved that earthworms promote faster decomposition of STP sludge because reactor with the presence of earthworms recorded higher reduction in pH. The higher reduction was observed in reactor with greater number of earthworms.

Table 7: pH recorded for 9 weeks of vermicomposting periods

						Hd				
C/N Ratio	Reactor				 	i 			· •.	·
						Week				
		0	2	3	4	5	9	7	8	6
	R1(Control)	8.12	8.35	8.46	7.89	7.75	7.65	7.26	7.19	7.16
20	R2 (N=30 earthworms)	8.12	8.25	7.78	7.52	7.25	7.02	6.88	6.84	6.83
	R3(N=40 earthworms)	8.12	7.98	7.63	7.43	6.75	6.65	6.59	6.52	6.46
	R1(Control)	7.86	7.68	7.71	7.69	7.56	7.44	7.45	7.38	7.22
25	R2 (N=30 earthworms)	7.86	7.98	7.56	7.48	7.42	7.28	7.06	66.9	6.89
	R3(N=40 earthworms)	7.86	7.81	7.49	7.34	7.30	7.14	6.94	6.92	6.76
	R1(Control)	7.79	7.72	7.69	7.66	7.55	7.45	7.32	7.21	7.11
30	R2 (N=30 earthworms)	7.79	7.70	7.65	7.59	7.52	7.37	7.28	7.18	6.92
	R3(N=40 carthworms)	7.79	7.69	7.53	7.50	7.44	7.33	7.18	7.11	6.78
	R1(Control)	7.76	7.73	7.70	7.66	7.62	7.58	7.56	7.41	7.32
35	R2 (N=30 earthworms)	7.76	7.64	7.60	7.58	7.55	7.48	7.33	7.31	7.08
	R3(N=40 earthworms)	7.76	7.62	7.60	7.51	7.42	7.38	7.20	7.07	6.85

32

4.4 Effect of Initial Number of Earthworms with Fixed Initial C/N Ratio

For each initial C/N ratio, there were three (3) replicate reactors with the presence and absence of *Eisenia foetida*. The reactor are R1 (no earthworm), R2 (N=30 earthworms) and R3 (N=40 earthworms). The experiment was conducted for nine (9) weeks. Every week, samples were taken from each reactor for detail laboratory analyses such as Total Organic Carbon, Total Kjeldahl Nitrogen, Total Phosphorus, Potassium and pH. The changes in characteristics of sample were observed to evaluate the ability of *Eisenia foetida* to decompose STP sludge.

4.41 Total Organic Carbon (TOC) Results

Total Organic Carbon (TOC) was determined using TOC analyzer. From the results, it showed that there was reduction in TOC every week.

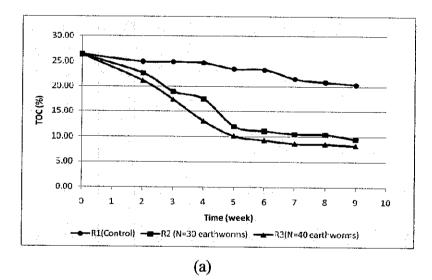
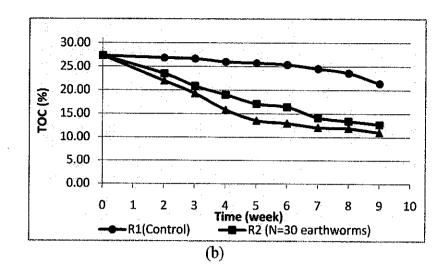
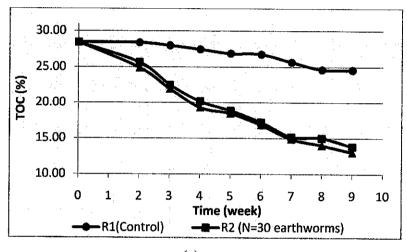




Figure 22 (a): Total Organic Carbon (% TOC) vs. Vermicomposting period (week) of C/N ratio 20.

•	-	γ.
۴.	r	•
τ.	ີ	
×		

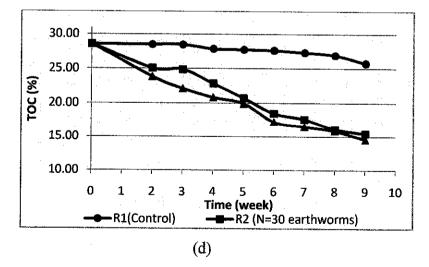


Figure 22 (b), (c) and (d): Total Organic Carbon (% TOC) vs Vermicomposting period (week) of C/N ratio 25, 30 and 35.

Based on statistical analysis, Figure 22 (a) showed that there is significant difference of TOC at 5% level of significance between R1 (no earthworms) and R2 (N=30 earthworms) for C/N ratio 20. However, there is no big difference in reduction of TOC between R2 (N=30 earthworms) and R3 (N=40 earthworms). The highest reduction of TOC is in R3 (N=40 earthworms) with 68.87% followed by R2 (N=30 earthworms) with 64.03% and R1 (no earthworms) with 22.69%.

From Figure 22 (b), there is significant difference of TOC reduction between R1 (no earthworms) and R2 (N=30 earthworms) but there is no significant difference of TOC between R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 25. The highest reduction of TOC is in R3 (N=40 earthworms) with 59.69% followed by R2 (N=30 earthworms) with 53.35% and R1 (no earthworms) with 21.60%.

Based on statistical analysis, Figure 22 (c) showed that there is significant difference of TOC at 5% level of significance between R1 (no earthworms) and R2 (N=30 earthworms) for C/N ratio 30. However, there is no big difference in reduction of TOC between R2 (N=30 earthworms) and R3 (N=40 earthworms). The highest reduction of TOC is in R3 (N=40 earthworms) with 54.22% followed by R2 (N=30 earthworms) with 51.30% and R1 (no earthworms) with 13.64%.

From Figure 22 (d), there is significant difference of TOC between R1 (no earthworms) and R2 (N=30 earthworms) but there is no significant difference of TOC between R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 35. The highest reduction of TOC is in R3 (N=40 earthworms) with 49.05% followed by R2 (N=30 earthworms) with 45.91% and R1 (no earthworms) with 9.87%.

The results presented above showed that organic carbon decreased more significantly with time in all reactors with presence of earthworms as compared to control. The reduction of TOC is because of conversion of organic material to carbon dioxide, water and energy during decomposition [Renuka, 2007].

4.4.2 Total Kjeldahl Nitrogen (TKN) Results

Total Kjeldahl Nitrogen was determined based on ASTM for Soil and Peat (D 2973-71) method. Based on results, it proved that there is an increment in TKN for all reactors every week. The increased TKN in reactors with the presence of earthworms are higher compared to control.

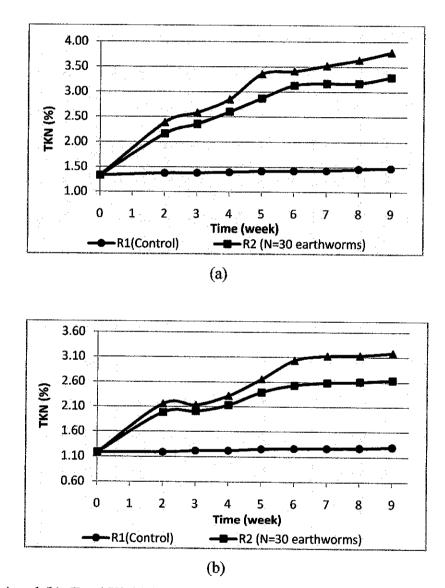
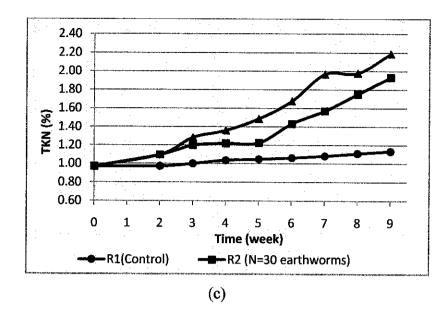



Figure 23 (a) and (b): Total Kjeldahl Nitrogen (% TKN) vs Vermicomposting period (week) of C/N ratio 20 and 25.

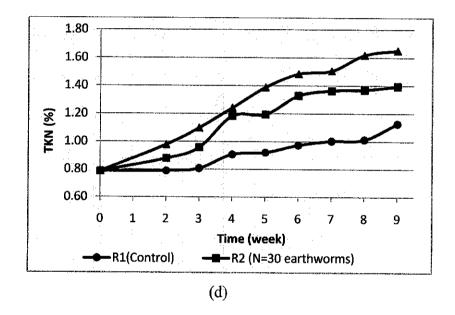
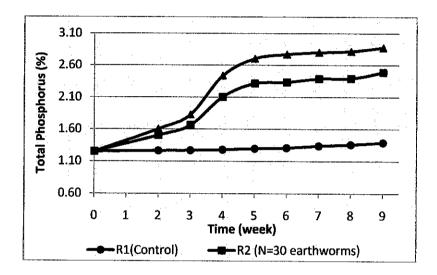


Figure 23 (c) and (d): Total Kjeldahl Nitrogen (% TKN) vs Vermicomposting period (week) of C/N ratio 30 and 35.

From Figure 23 (a) it showed that there is no significant difference at 5% level of significance of TKN between R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 20. However, there is a significant difference of TKN between R1 (no earthworms) and R2 (N=30 earthworms). Higher increment of 184.8% of TKN is observed in R3 (N=40 earthworms) followed by R2 (N=30 earthworms) with 147.2% and R1 (no earthworms) with 11.3%.

For C/N ratio 25, Figure 23 (b) also proved there is a significant difference of TKN between R1 (no earthworms) and R2 (N=30 earthworms) but there is no significant difference of TKN between R2 (N=30 earthworms) and R3 (N=40 earthworms) at 5% level of significance. The highest reduction of TKN is in R3 (N=40 earthworms) with 168.7% followed by R2 (N=30 earthworms) with 123.0% and R1 (no earthworms) with 9.5%.

Figure 23 (c) showed that there is significant difference of TKN at 5% level of significance between R1 (no earthworms) and R2 (N=30 earthworms) for C/N ratio 30. However, there is no big difference in reduction of TKN between R2 (N=30 earthworms) and R3 (N=40 earthworms). The highest increment of TKN is in R3 (N=40 earthworms) with 126.0% followed by R2 (N=30 earthworms) with 99.5% and R1 (no earthworms) with 17.2%.


From Figure 23 (d), there is significant difference of TKN between R1 (no earthworms) and R2 (N=30 earthworms) but there is no significant difference of TKN between R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 35. The highest increment of TKN is in R3 (N=40 earthworms) with 110.0% followed by R2 (N=30 earthworms) with 77.5% and R1 (no earthworms) with 43.6%.

The results from Figure 23 proved that decomposition of STP sludge cause increment of TKN. The presence of earthworms promotes the faster increment because TKN of STP sludge increased significantly in R2 (N=30 earthworms) and R3 (N=40 earthworms) compared to control. It is probably because of mineralization of organic

matter by earthworms [Renuka and Garg, 2007]. Casting excreted by earthworms as product decomposition content nitrogenous compounds, carbon dioxide and water [Aaron, 1996].

4.4.3 Total Phosphorus (TP) Results

Total Phosphorus was determined based on Modified Standard Methods for the Examination of Water and Wastewater (4500-P B).

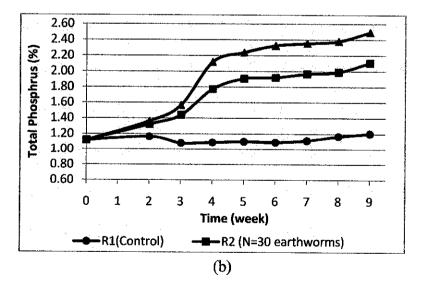


Figure 24 (a) and (b): Total Phosphorus (% TP) vs Vermicomposting period (week) of C/N ratio 20 and 25.

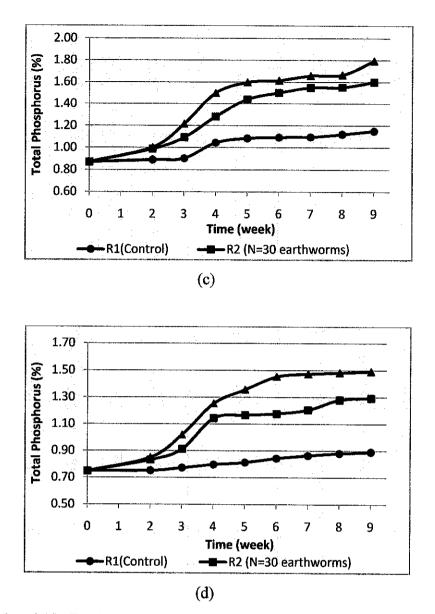


Figure 24 (c) and (d): Total Phosphorus (% TP) vs Vermicomposting period (week) of C/N ratio 30 and 35.

Based on statistical analysis, Figure 24 (a) showed that there is significant difference of TP at 5% level of significance between R1 (no earthworms) and R2 (N=30 earthworms) for C/N ratio 20. However, there is no big difference in of TP between R2 (N=30 earthworms) and R3 (N=40 earthworms). The highest increment of TP is in R3 (N=40 earthworms) with 130.1% followed by R2 (N=30 earthworms) with 99.1% and R1 (no earthworms) with 11.1%.

From Figure 24 (b), there is significant difference of TP between R1 (no earthworms) and R2 (N=30 earthworms) but there is no significant difference of TP between R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 25. The highest increment of TP is in R3 (N=40 earthworms) with 122.5% followed by R2 (N=30 earthworms) with 88.0% and R1 (no earthworms) with 7.5%.

Figure 24 (c) showed that for C/N ratio 30 there is no significant difference of TP between R2 (N=30 earthworms) and R3 (N=40 earthworms) and there is significant difference in TP between R1 (no earthworms) and R2 (N=30 earthworms) at 5% level of significance. The highest increment of TP is in R3 (N=40 earthworms) with 106.0% followed by R2 (N=30 earthworms) with 83.9% and R1 (no earthworms) with 32.3%.

Figure 24 (d) also showed that for C/N ratio 35 there is no significant difference of TP between R2 (N=30 earthworms) and R3 (N=40 earthworms) and there is significant difference in TP between R1 (no earthworms) and R2 (N=30 earthworms) at 5% level of significance. The highest increment of TP is in R3 (N=40 earthworms) with 99.3% followed by R2 (N=30 earthworms) with 72.6% and R1 (no earthworms) with 19.0%.

Results reveals that available phosphorus increased significantly in all reactors with the presence of earthworms compared to control for all C/N ratio. The highest available phosphorus increased between in R3 (N=40 earthworms) for all C/N ratio between 130%-99%. However, based on statistical analysis, there is no significant difference in available phosphorus in R3 (N=30 earthworms) and R3 (N=40 earthworms). Payal in 2006 found that the increased in available phosphorus is due to physical breakdown of the organic material by earthworms. As organic waste passed through the earthworm gut, nutrients such as phosphorus transformed to more readily available to plants such as nitrate, ammonium biologically. For example, as organic matter passes through earthworm gut, nitrogen and sulfur containing compounds further decompose, yielding simple inorganic ions such as ammonium (NH₄⁺) and nitrate (NO3-) that become available for uptake by plant and microorganisms.

4.4.4 Potassium Results

Potassium was determined based on Modified Standard Methods for the Examination of Water and Wastewater (4500-P B). Based on results, it proved that available potassium increased every week for 9 weeks of vermicomposting periods.

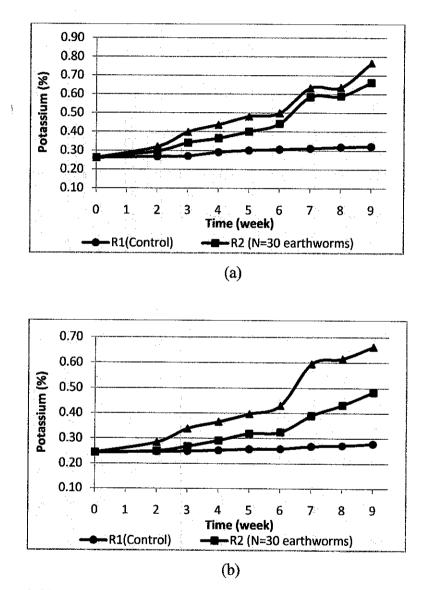


Figure 25 (a) and (b): Potassium (%) vs. Vermicomposting period (week) of C/N ratio 20 and 25.

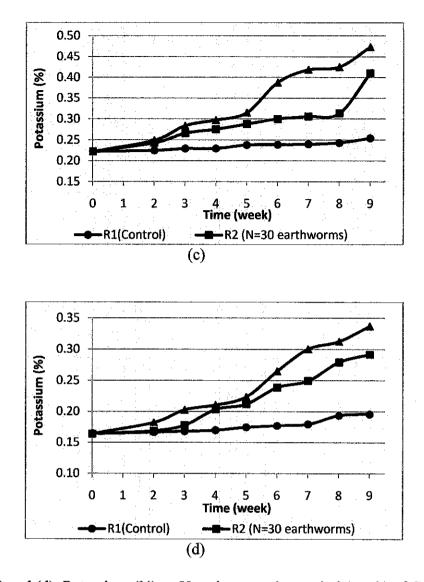


Figure 25 (c) and (d): Potassium (%) vs Vermicomposting period (week) of C/N ratio 30 and 35.

Based on statistical analysis, Figure 25 (a) showed for C/N ratio 20 that there is significant difference between R1 (no earthworms) and R2 (N=30 earthworms) and there is no significant difference between R2 (N=30 earthworms) and R3 (N=40 earthworms) at 5% level of significant. The highest increment of Potassium is in R3 (N=40 earthworms) with 192.7% followed by R2 (N=30 earthworms) with 152.6% and R1 (no earthworms) with 23.5%.

Figure 25 (b) showed that for C/N ratio 25 there is no significant difference of Potassium between R2 (N=30 earthworms) and R3 (N=40 earthworms) and there is

significant difference in Potassium between R1 (no earthworms) and R2 (N=30 earthworms) at 5% level of significance. The highest increment of Potassium is in R3 (N=40 earthworms) with 172.7% followed by R2 (N=30 earthworms) with 99.2% and R1 (no earthworms) with 14.8%.

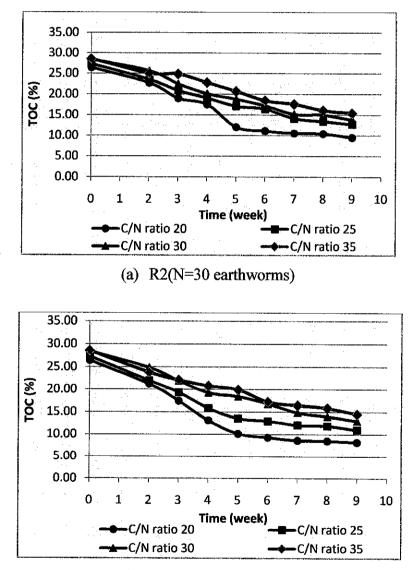

Figure 25 (c) showed that for C/N ratio 30 there is no significant difference of Potassium between R2 (N=30 earthworms) and R3 (N=40 earthworms) and there is significant difference in Potassium between R1 (no earthworms) and R2 (N=30 earthworms) at 5% level of significance. The highest increment of Potassium is in R3 (N=40 earthworms) with 113.0% followed by R2 (N=30 earthworms) with 85.0% and R1 (no earthworms) with 14.5%.

Figure 25 (d) also showed that for C/N ratio 35 there is no significant difference of Potassium between R2 (N=30 earthworms) and R3 (N=40 earthworms) and there is significant difference in Potassium between R1 (no earthworms) and R2 (N=30 earthworms) at 5% level of significance. The highest increment of TP is in R3 (N=40 earthworms) with 105.6% followed by R2 (N=30 earthworms) with 78.1% and R1 (no earthworms) with 19.7%.

Based on the results for potassium, it showed that available potassium also increased in final product for all C/N ratios. It proved that as the organic matter decomposed nutrients such as potassium are released and recycled in various chemical forms through microorganisms and earthworms that make up the compost food web [Nancy, 1998]. The significant increased of potassium is observed in reactors with the presence of earthworms compared to control. This showed that the earthworms help in accelerating rate of decomposition of organic matter by microorganisms. Microorganisms use mucus in earthworm's gut as substrate to decompose complex organic compounds into simpler substances that are digestible by the earthworms [Payal 2006].

4.5 Effect of Initial C/N Ratio with Fixed Initial Number of Earthworms

Two initial number of earthworms which is N=30 earthworms and N=40 earthworms were tested for difference C/N ratio. The initial C/N ratio tested were C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35. Then the decomposition at differences C/N ratios were evaluated with fixed number of earthworms.

4.5.1 Total Organic Carbon Results

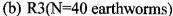
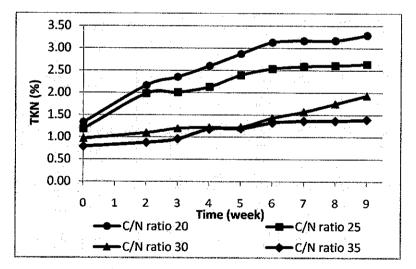
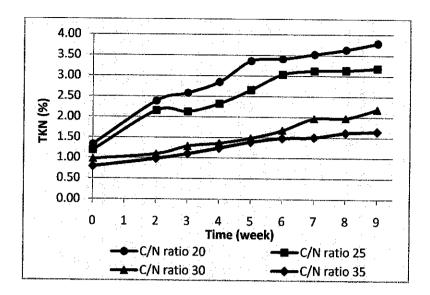



Figure 26 (a) and (b): Total Organic Carbon (TOC %) vs Vermicomposting period (week) of R2 (N=30 earthworms) and R3 (N=40 earthworms).

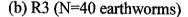
Based on statistical analysis, Figure 26 (a) showed for TOC of R2 (N=30 earthworms) there is significant difference between C/N ratio 20 and C/N ratio 35. However, there is no significant difference of TOC between C/N ratio 20, C/N ratio 25 and C/N ratio 35 at 5% level of difference.


Figure 26 (b) showed that there is no significant difference of TOC for R3 (N=40 earthworms) between C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 at 5 % level of difference.

Results showed that there is no significant variance in reduction of TOC between C/N ratio 20 and C/N ratio 35. The TOC reduction is almost same for all C/N ratios in the optimum range. This showed that the variance between C/N ratios to investigate the change in TOC in too small. However, for both R2 (N=30 earthworms) and R3 (N=40 earthworms), C/N ratio 20 showed there highest reduction followed by C/N ratio 25, 30 and 35.

4.5.2 Total Kjeldahl Nitrogen Results

(a) R2 (N=30 earthworms)



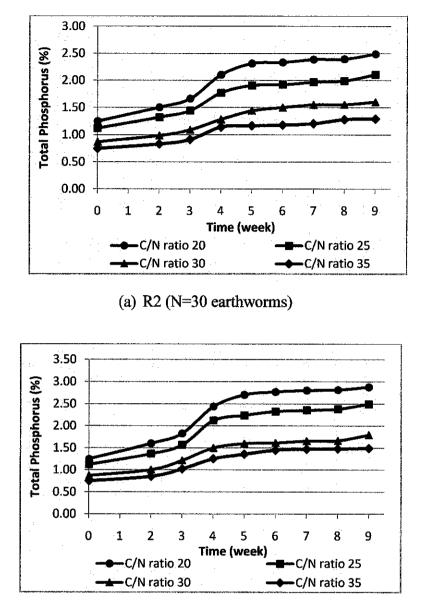

Figure 27 (a) and (b): Total Kjeldahl Nitrogen (TKN %) vs Vermicomposting period (week) of R2 (N=30 earthworms) and R3 (N=40 earthworms).

Figure 27 (a) showed that for R2 (N=30 earthworms) there is a significant difference of TKN for between C/N ratio 20 and C/N ratio 30, C/N ratio 20 and 35 C/N ratio 25 and C/N ratio 30 as well as C/N ratio 25 and C/N ratio 35. However, there is no significant difference of TKN between C/N ratio 20 and C/N ratio 25 as well as C/N ratio 30 and C/N ratio 35.

From Figure 27 (b), for R3 (N=40 earthworms), there is no significant difference of TKN between C/ N ratio 20 and C/ ratio 30, C/N ratio 20 and C/N ratio 35, C/N ratio 25 and C/N ratio 30 as well as C/N ratio 25 and C/N ratio 35. But there is no significant difference of TKN between C/N ratio 20 and C/N ratio 25 as well as C/N ratio 30 and C/N ratio 35.

Based on those results of TKN, it proved that the increment of TKN is fastest. The variance between C/N ratios tested is significant to evaluate the change in TKN. For both R2 (N=30 earthworms) and R3 (N=40 earthworms), C/N ratio 20 showed there highest increment followed by C/N ratio 25, 30 and 35.

4.5.3 Total Phosphorus Results

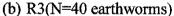
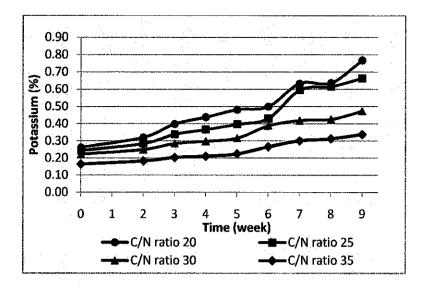


Figure 28 (a) and (b): Total Phosphorus (TP %) vs Vermicomposting period (week) of R2 (N=30 earthworms) and R3 (N=40 earthworms).

Figure 28 (a) showed that for R2 (N=30 earthworms) there is a significant difference of TP for between C/N ratio 20 and C/N ratio 30, C/N ratio 20 and 35 C/N ratio 25 and C/N ratio 30 as well as C/N ratio 25 and C/N ratio 35. However, there is no significant

difference of TP between C/N ratio 20 and C/N ratio 25 as well as C/N ratio 30 and C/N ratio 35.


From Figure 28 (b), for R3 (N=40 earthworms), there is no significant difference of TP between C/N ratio 20 and C/N ratio 30, C/N ratio 20 and C/N ratio 35, C/N ratio 25 and C/N ratio 30 as well as C/N ratio 25 and C/N ratio 35. But there is no significant difference of TP between C/N ratio 20 and C/N ratio 25 as well as C/N ratio 30 and C/N ratio 35.

Based on those results of TP, it proved that the increment of TP is fastest. The variance between C/N ratios tested is significant to evaluate the change in TP. For both R2 (N=30 earthworms) and R3 (N=40 earthworms), C/N ratio 20 showed there highest increment followed by C/N ratio 25, 30 and 35.

0.90 0.80 0.70 Potassium (%) 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0 1 2 3 4 5 6 7 8 9 Time (week) -C/N ratio 20 C/N ratio 25 -C/N ratio 30 -C/N ratio 35

4.5.4 Potassium Results

(a) R2(N=30 earthworms)

(b) R3(N=40 earthworms)

Figure 29 (a) and (b): Potassium (%) vs Vermicomposting period (week) of R2 (N=30 earthworms) and R3 (N=40 earthworms).

Figure 29 (a) showed that for R2 (N=30 earthworms) there is a significant difference of Potassium for between C/N ratio 20 and C/N ratio 30, C/N ratio 20 and 35 C/N ratio 25 and C/N ratio 35 as well as C/N ratio 30 and C/N ratio 35. However, there is no significant difference of Potassium between C/N ratio 20 and C/N ratio 25 as well as C/N ratio 25 and C/N ratio 30.

From Figure 29 (b), for R3 (N=40 earthworms), there is no significant difference of Potassium for between C/N ratio 20 and C/N ratio 30, C/N ratio 20 and 35 C/N ratio 25 and C/N ratio 35 as well as C/N ratio 30 and C/N ratio 35. However, there is no significant difference of Potassium between C/N ratio 20 and C/N ratio 25 as well as C/N ratio 25 and C/N ratio 30.

Based on those results of Potassium, it proved that the increment of Potassium is fastest. The variance between C/N ratios tested is significant to evaluate the change in Potassium. For both R2 (N=30 earthworms) and R3 (N=40 earthworms), C/N ratio 20 showed there highest increment followed by C/N ratio 25, 30 and 35.

4.6 Changes in Carbon to Nitrogen Ratio

Carbon to nitrogen ratio plays an important role in determining degree of decomposition and quality of vermicompost. Since there are changes in Total Organic Carbon and Total Kjeldahl Nitrogen, the initial C/N ratio also changes. As vermicomposting proceed, the C/N ratio decreased. Table 8 showed the changes of C/N ratio for all reactors at different C/N ratio. Based on those results, the highest reduction of C/N ratio is at initial C/N ratio 20 for both R2 (N=30 earthworms) and R3 (N=40 earthworms). It is showed that the decomposition proceeded best at C/N ratio 20 in vermicomposting of STP sludge and shredded paper. Hou in 2005 also found the same results for vermicomposting of municipal solid waste. However, the difference of reduction of C/N ratio between C/N ratios 20 is not much differing from other C/N ratio.

Table 8: Change in C/N ratio after nine (9) weeks of vermicomposting period.

Ę		Observe	I C/N ratio	Observed C/N ratio (week=0)	Final C	Final C/N ratio (week=9)	reek=9)	Percentage
ratio	Reactor	TOC (%)	TKN (%)	C/N ratio	TOC (%)	TKN (%)	C/N ratio	difference (%)
ć	R1(Control)	26.44	1.33	19.87	20.44	1.48	13.81	30.51
07	R2 (N=30 earthworms)	26.44	1.33	19.87	9.51	3.29	2.89	85.46
	R3(N=40 earthworms)	26.44	1.33	19.87	8.23	3.79	2.17	89.07
40	R1(Control)	27.31	1.18	23.05	21.41	1.30	16.50	28.43
C 7	R2 (N=30 earthworms)	27.31	1.18	23.05	12.74	2.64	4.82	79.08
	R3(N=40 earthworms)	27.31	1.18	23.05	11.01	3.18	3.46	85.00
00	R1(Control)	28.44	0.97	29.39	24.56	1.13	21.65	26.34
0 5	R2 (N=30 earthworms)	28.44	0.97	29.39	13.85	1.93	7.17	75.60
	R3(N=40 carthworms)	28.44	0.97	29.39	13.02	2.19	5.95	79.75
36	R1(Control)	28.58	0.79	36.35	25.76	1.13	22.82	37.22
CC	R2 (N=30 earthworms)	28.58	0.79	36.35	15.46	1.40	11.08	69.52
	R3(N=40 earthworms)	28.58	0.79	36.35	14.56	1.65	8.82	75.74

52

4.7 Growth of Eisenia foetida

Based on Table 9, it is observed that there are changes in the number of earthworms after eight (8) weeks of vermicomposting period. The cocoons in Figure 34 (b) were found in all reactors with the presence of earthworms in week four (4) of vermicomposting period. The number of earthworms at C/N ratio 20 for both R2 (N=30 earthworms) and R3 (N=40 earthworms) is higher compared to other C/N ratio. It showed that earthworms grow better at C/N ratio 20. The increment in number of earthworms proved the ability of *Eisenia foetida* to decompose STP sludge blended with shredded paper.

Table 9: Change in number of earthworms after eight (8) weeks of vermicomposting

period.

	1	Number of	earthworms	
C/N	R2 (N	J=30	R3 (N	J=40
ratio	earthw	orms)	earthw	orms)
	Week =0	Week=8	Week =0	Week=8
20	30	56	40	58
25	30	48	40	51
30	30	50	40	53
35	30	42	40	48

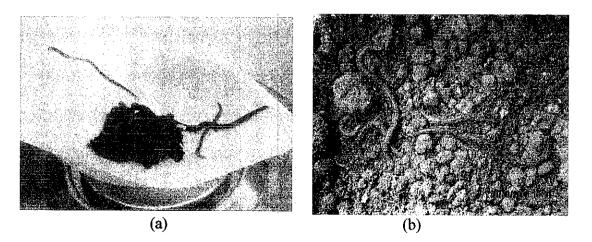


Figure 30: (a) *Eisenia foetida* before vermicomposting (b) *Eisenia foetida* after 8 weeks of vermicomposting period.

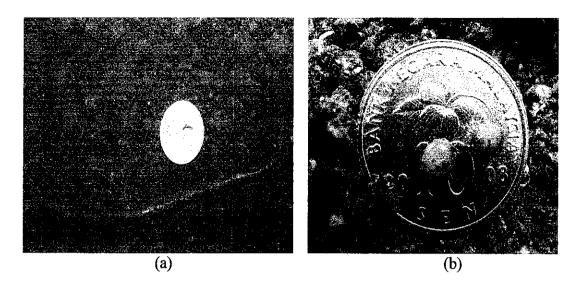


Figure 31: (a) The longest *Eisenia foetida* in R2 (N=30 earthworms) for C/N ratio 20 (b) Cocoons of *Eisenia foetida* produced after 4 weeks of vermicomposting period.

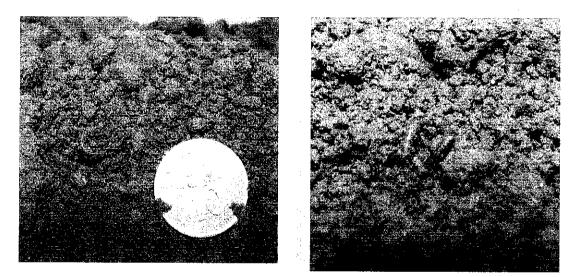


Figure 32: Babies of Eisenia foetida

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this project, research was done for nine (9) weeks to evaluate the ability of *Eisenia foetida* to decompose sludge from Sewage Treatment Plant of UTP. From the results obtained, it proved the ability of the earthworms to decompose the sludge due to changes in physical and chemical characteristics of the sludge.

Results proved that Total Organic Carbon (TOC) reduced in all reactors after 9 weeks of vermicomposting period. The highest reduction of TOC was found at C/N ratio 20 for R3 (N=40 earthworms) which is 68.87%. The reductions of TOC in reactors with the presence of earthworms were significantly high compared to control.

For Total Kjeldahl Nitrogen (TKN), the results showed that there were increments in TKN in all reactors. However the increment of TKN in reactors with the presence of earthworms is significantly high compared to control. The highest increment of TKN was found at C/N ratio 20 for R3 (N=40 earthworms) which is 147.2%.

Total Phosphorus results also showed that there were increments in all reactors. The highest increment was found at C/N ratio 20 which is 130.1% after 9 weeks of vermicomposting periods. The increments of TP in reactors with the presence of earthworms are significantly high compared to control.

The same results were found for Potassium. The increment of Potassium in reactors with the presence of earthworms were significantly high compared to control and the highest increment was found in reactor at C/N ratio 20 for R3 (N=40 earthworms) which is 192.7%.

There were also changes in pH after 9 weeks of vermicomposting periods. The pHs were reduced from alkaline to acidic. The faster reductions of pH were found in reactors with the presence of earthworms for all C/N ratios. However, the final pHs were still within the optimum range.

From the results, it is observed that vermicomposting of STP sludge proceed faster with the presence of earthworms compared to control. Therefore, it can be concluded that vermicomposting can be an applicable technology for decomposition of municipal sludge.

5.2 Recommendations

From the results, it is recommended that vermicomposting can be applied to decompose sludge from Sewage Treatment Plant of UTP to replace landfill method since it is economically viable because it can produce beneficial end product.

For further study, it is recommended to prolong the vermicomposting period because a minimum of 100 days is required for the production of stable vermicompost [Aaron, 1996]. Instead of that, it is also recommended that detail study need to be done to evaluate chemical characteristics of vermicompost produced from decomposition of the sludge to compare the quality of vermicompost with the conventional compost used in Malaysia.

REFERENCES

- [1] Aaron Mahimainathan 1996. "A study on the vermicomposting of dewatered dairy waste". Environmental Science and Forestry.
- [2] A.H.Molla, A.Fakhru'l-Razi and M.Z. Alam 2006."Solid State Bioconversion: An Effective Process for Safe Disposal and Recycling of Domestice Wastewater Sludge as Compost". Journal of the Agricultural Engineering Society 9:57-71.
- [3] A Parvaresh, H Movahedian and L Hamidian 2004. "Vermistabilazation of Municipal Sludge with Eisenia fetida". Iranian J Environment Health Science Engineering 1:43-50.
- [4] DOE, 2004. Environmental Quality Report, Department of Environment, Ministry of Science, Technology and Environment, Kuala Lumpur, Malaysia.
- [5] Fuad Hadinata Yaakoob 2007. "Cacing Rakan Karib Mustafa", Harian Metro pp 15-16.
- [6] Gautam Bhattacharjee and PS Chaudhuri 2002. "Cocoon production, morphology, hatching pattern and fecundity in seven tropical earthworm species". *Bioresource Technology* 27: 283-294.
- [7] George Tchobanoglous 1993, Integrated Solid Waste Management, 1th edition, McGraw-Hill
- [8] George W.Dickerson 2003. "Vermicomposting", College of Agriculture and Home Economics.
- [9] Hou Jicong et al. 2005. "The Influence of Temperature, pH and C/N ratio on the Growth and Survival of Earthwormsin Municipal Solid Waste". Agricultural Engineering International 7: 1-6.
- [10] Indah Water Konsortium Sdn. Bhd., (2008) < http://www.iwk.com.my/flinks.htm>.
- [11] Mansfield 2003, "Pilot Study Initial Results for Vermicomposting Yard Waste with Biosolids", 1st Edition, Gannett Fleming.

- [12] Manuel Aira, Fernando Monroy, Jorge Domínguez and Salustiano Mato 2004, "How earthworm density affects microbial biomas and activity in pig manure", *Bioresource Technology* 38: 7-10.
- [13] Metcalf & Eddy 2004, Wastewater Engineering-Treatment & Reuse, 4th edition, McGraw-Hill.
- [14] Nancy M. Trautmann and Marianne E. Krasny (1998), "Composting in the classroom"; pp 116.
- [15] Payal Garga, Asha Guptaa and Santosh Satyab 2006. "Vermicomposting of different types of waste using Eisenia foetida". Bioresource Technology 97:391-395.
- [16] Renuka Gupta and V.K. Garg 2008. "Stabilization of primary sewage sludge during vermicomposting" Journal of Hazardous Materials 153: 1023-1030.
- [17] Renuka Gupta et al. 2007. "Development of a water hyacinth based vermireactor using an epigeic earthworm Eisenia foetida". Journal of Hazardous Materials 98: 2605-2610.
- [18] Rola M.Atiyeh 2000. "Mechanism by which Earthworm-Processed Organic Waste Influence Plant Growth". The Ohio State University for Environmental Science. Report No. 9971509. Report 147 pp.
- [19] S.Gajalakshimi, P.Sankar Ganesh, S.A.Abbasi 2005."A highly costeffective simplification in the design of fast-paced vermireactors based on epigeic earthworms". Bioresource Technology 22: 111-116.

APPENDICES

APPENDIX A

TP at C/N ratio 25 and TP at C/N ratio 35 for R3(N=40 earthworms)

teriji	(()())		Variable 1	Variable 2
	C/AN martor = 360	Mean	1.9963904	1.2371631
1.121	0.749	Variance	0.2572257	0.0848539
1.364	0.851	Observations	. 9	9
1.567	1.020	Pooled Variance	0.1710398	
2.119	1.254	Hypothesized Mean Difference	0	
2.240	1.357	df	. 16	
2.326	1.454	t Stat	3.8943007	
2.354	1.474	P(T<=t) one-tail	0.0006446	
2.381	1.483	t Critical one-tail	1.7458837	
2.494	1.493	P(T<=t) two-tail	0.0012892	
-		t Critical two-tail	2.1199053	·

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TP at C/N ratio 30 and TP at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

<u>[</u> []?	(?o)		Variable I	Variable 2
C//NURING = 30	(C//NE)rati (c) = 3/5/	Mean	1.4357082	1.2371631
0.871	0.749	Variance	0.1058857	0.0848539
1.003	0.851	Observations	9	9
1.217	1.020	Pooled Variance	0.0953698	
1.499	1.254	Hypothesized Mean Difference	0	
1.598	1.357	df	16	
1.615	1.454	t Stat	1.3638293	
1.658	1.474	P(T<=t) one-tail	0.095751	
1.666	1.483	t Critical one-tail	1.7458837	
1.794	1.493	P(T<=t) two-tail	0.191502	
3		t Critical two-tail	2.1199053	

No significant difference at 5% level of difference

APPENDIX –A11: Potassium at C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 for R2 (N=30 earthworms)

Potassium at C/N ratio 20 and Potassium at C/N ratio 25 for R2 (N=30 earthworms) t-Test: Two-Sample Assuming Equal Variances

Protessi	u <u>ni) ((%))</u>		Variable 1	Variable 2
$M_{\rm N_{\star}}$ (real tio) = χ_0 ,	. (C/MNI attitio) = 251 (Mean	0.4385845	0.3336049
0.262	0.243	Variance	0.0201896	0.0071351
0.298	0.250	Observations	9	9
0.342	0.268	Pooled Variance	0.0136624	
0.365	0.291	Hypothesized Mean Difference	0	
0.401	0.319	df	16	
0.443	0.325	t Stat	1.9052324	
0.585	0.390	P(T<=t) one-tail	0.0374416	
0.590	0.432	t Critical one-tail	1.7458837	
0.662	0.484	P(T<=t) two-tail	0.0748831	
		t Critical two-tail	2.1199053	

No significant difference at 5% level of difference

Potassium at C/N ratio 20 and Potassium at C/N ratio 30 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

1015 - 10 - 10 - 10 - 10 - 10 - 10 - 10			Variable 1	Variable 2
CAN table = 20	CAN natio = 304	Mean	0.4385845	0.2916628
0.262	0.222	Variance	0.0201896	0.0028824
0.298	0.243	Observations	9	9
0.342	0.266	Pooled Variance	0.011536	
0.365	0.275	Hypothesized Mean Difference	0	
0.401	0.288	df	16	
0.443	0.300	t Stat	2.9017826	
0.585	0.306	P(T<=t) one-tail	0.0052012	
0.590	0.313	t Critical one-tail	1.7458837	
0.662	0.411	P(T<=t) two-tail	0.0104024	
		t Critical two-tail	2.1199053	

Significant difference at 5% level of difference

no an	(%))		Variable I	Variable 2
C/N isolato = 20	(CAN 19100 = 35)	Mean	0.4385845	0.220659
0.262	0.164	Variance	0.0201896	0.0022265
0.298	0.169	Observations	9	9
0.342	0.178	Pooled Variance	0.011208	
0.365	0.203	Hypothesized Mean Difference	0	
0.401	0.212	df	16	
0.443	0.239	t Stat	4.3666597	
0.585	0.249	P(T<=t) one-tail	0.0002397	
0.590	0.279	t Critical one-tail	1.7458837	
0.662	0.292	P(T<=t) two-tail	0.0004793	
		t Critical two-tail	2.1199053	

Potassium at C/N ratio 20 and Potassium at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

Potassium at C/N ratio 25 and Potassium at C/N ratio 30 for R2(N=30 earthworms) t-Test: Two-Sample Assuming Equal Variances

Ponssi	nin ((%))		Variable 1	Variable 2
CANDIALIO = 25		Mean	0.3336049	0.2916628
0.243	0.222	Variance	0.0071351	0.0028824
0.250	0.243	Observations	9	9
0.268	0.266	Pooled Variance	0.0050088	
0.291	0.275	Hypothesized Mean Difference	0	
0.319	0.288	df	16	
0.325	0.300	t Stat	1.2571646	
0.390	0.306	P(T<=t) one-tail	0.1133681	
0.432	0.313	t Critical one-tail	1.7458837	
0.484	0.411	P(T<=t) two-tail	0.2267363	
		t Critical two-tail	2.1199053	

No significant difference at 5% level of difference

Potessi	um ((%))		Variable 1	Variable 2
C//IN FRING = 2.5	(QAN) in t hio == 35)	Mean	0.3336049	0.220659
0.243	0.164	Variance	0.0071351	0.0022265
0.250	0.169	Observations	9	9
0.268	0.178	Pooled Variance	0.0046808	
0.291	0.203	Hypothesized Mean Difference	0	
0.319	0.212	df	16	
0.325	0.239	t Stat	3.5020017	
0.390	0.249	P(T<=t) one-tail	0.0014755	
0.432	0.279	t Critical one-tail	1.7458837	
0.484	0.292	P(T<=t) two-tail	0.002951	
		t Critical two-tail	2.1199053	· ·

Potassium at C/N ratio 25 and Potassium at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

Potassium at C/N ratio 30 and Potassium at C/N ratio 35 for R2(N=30 earthworms) t-Test: Two-Sample Assuming Equal Variances

Polassi	1101 (%)		Variable 1	Variable 2
CAN SHIE - M		Mean	0.2916628	0.220659
0.222	0.164	Variance	0.0028824	0.0022265
0.243	0.169	Observations	9	9
0.266	0.178	Pooled Variance	0.0025544	
0.275	0.203	Hypothesized Mean Difference	0	
0.288	0.212	df	16	
0.300	0.239	t Stat	2.9801731	
0.306	0.249	P(T<=t) one-tail	0.0044187	
0.313	0.279	t Critical one-tail	1.7458837	
0.411	0.292	P(T<=t) two-tail	0.0088374	
		t Critical two-tail	2.1199053	

Significant difference at 5% level of difference

APPENDIX -A12: Potassium at C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 for R3 (N=40 earthworms)

and the Rocasshum (%)		· · · · · ·	Variable 1	Variable 2
$\dot{\mathbf{C}}$ $\dot{\mathbf{C}}$ $\dot{\mathbf{N}}$ TREE = 20.	C/N 103160 = 255	Mean	0.4928042	0.4367413
0.262	0.243	Variance	0.0263102	0.0231632
0.321	0.284	Observations	9	9
0.398	0.338	Pooled Variance	0.0247367	
0.438	0.366	Hypothesized Mean Difference	0	
0.481	0.397	df	16	
0.499	0.430	t Stat	0.7561551	
0.634	0.595	P(T<=t) one-tail	0.2302726	
0.636	0.615	t Critical one-tail	1.7458837	
0.767	0.663	P(T<=t) two-tail	0.4605453	
		t Critical two-tail	2.1199053	

Potassium at C/N ratio 20 and Potassium at C/N ratio 25 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

No significant difference at 5% level of difference

Potassium at C/N ratio 20 and Potassium at C/N ratio 30 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

Perso	un (%)		Variable 1	Variable 2
C/Nuaito = 20	(C/M) $(E_{10}) \rightarrow (26)$	Mean	0.4928042	0.3413135
0.262	0.222	Variance	0.0263102	0.0076401
0.321	0.249	Observations	9	9
0.398	0.284	Pooled Variance	0.0169751	
0.438	0.297	Hypothesized Mean Difference	0	
0.481	0.315	df	16	
0.499	0.388	t Stat	2.4665253	
0.634	0.418	P(T<=t) one-tail	0.0126603	
0.636	0.425	t Critical one-tail	1.7458837	
0.767	0.473	P(T<=t) two-tail	0.0253206	
		t Critical two-tail	2.1199053	

Significant difference at 5% level of difference

เหตุเของ	Luin ((1/6)) (3 (3 (3 (3 (3		Variable I	Variable 2
	<u>(C/Minerato)</u> =2157	Mean	0.4928042	0.2443545
0.262	0.164	Variance	0.0263102	0.0038085
0.321	0.182	Observations	9	9
0.398	0.203	Pooled Variance	0.0150593	
0.438	0.210	Hypothesized Mean Difference	0	
0.481	0.224	df	16	
0.499	0.265	t Stat	4.2947895	
0.634	0.301	P(T<=t) one-tail	0.0002783	
0.636	0.313	t Critical one-tail	1.7458837	
0.767	0.337	P(T<=t) two-tail	0.0005567	
		t Critical two-tail	2.1199053	

Potassium at C/N ratio 20 and Potassium at C/N ratio 35 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

Potassium at C/N ratio 25 and Potassium at C/N ratio 30 for R3(N=40 earthworms)

المادية والمنادة سيستاس سيرك ستالية استثنائه والتاهر الماد بالمعتشقية	tint(%)		Variable 1	Variable 2
C/INLITATION = 2.51	(C/NLIPHIO = 310)	Mean	0.4367413	0.3413135
0.243	0.222	Variance	0.0231632	0.0076401
0.284	0.249	Observations	9	9
0.338	0.284	Pooled Variance	0.0154016	
0.366	0.297	Hypothesized Mean Difference	0	
0.397	0.315	df	16	
0.430	0.388	t Stat	1.6311646	
0.595	0.418	P(T<=t) one-tail	0.0611898	
0.615	0.425	t Critical one-tail	1.7458837	
0.663	0.473	P(T<=t) two-tail	0.1223795	
		t Critical two-tail	2.1199053	

t-Test: Two-Sample Assuming Equal Variances

Hotelse	(1965) (f%)		Variable 1	Variable 2
C/N datas = 2.5	(C/AN) partic = 357.	Mean	0.4367413	0.2443545
0.243	0.164	Variance	0.0231632	0.0038085
0.284	0.182	Observations	9	9
0.338	0.203	Pooled Variance	0.0134858	
0.366	0.210	Hypothesized Mean Difference	0	
0.397	0.224	df	16	
0.430	0.265	t Stat	3.5143314	
0.595	0.301	P(T<=t) one-tail	0.0014376	
0.615	0.313	t Critical one-tail	1.7458837	
0.663	0.337	P(T<=t) two-tail	0.0028752	
		t Critical two-tail	2.1199053	

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

Potassium at C/N ratio 30 and Potassium at C/N ratio 35 for R2(N=30 earthworms) t-Test: Two-Sample Assuming Equal Variances

Polassi	$\operatorname{orm}\left(\left(\mathscr{C}_{0} ight) ight)$		Variable 1	Variable 2
(C/IN) (FRIERO) == 150).	0/Nnatio = 351	Mean	0.3413135	0.2443545
0.222	0.164	Variance	0.0076401	0.0038085
0.249	0.182	Observations	9	9
0.284	0.203	Pooled Variance	0.0057243	
0.297	0.210	Hypothesized Mean Difference	0	
0.315	0.224	df	16	
0.388	0.265	t Stat	2.7185264	
0.418	0.301	P(T<=t) one-tail	0.0075922	
0.425	0.313	t Critical one-tail	1.7458837	
0.473	0.337	P(T<=t) two-tail	0.0151844	
		t Critical two-tail	2.1199053	

APPENDIX B

.

APPENDIX-B

APPENDIX-B1: Summary Results of Total Organic Carbon (TOC) for 9 Weeks of vermicomposting periods.

						TOC (%)				
C/N Ratio	Reactor					Week				
		0	2	3	4	5	9	7	8	6
	R1(Control)	26.44	25.02	24.99	24.78	23.55	23.42	21.54	20.89	20.44
ć	R2 (N=30 earthworms)	26.44	22.72	19.03	17.54	12.05	11.12	10.54	10.44	9.51
07	R3(N=40 earthworms)	26.44	21.21	17.44	13.11	10.15	9.32	8.65	8.55	8.23
	R1(Control)	27.31	26.87	26.68	26.02	25.78	25.41	24.55	23.64	21.41
u C	R2 (N=30 earthworms)	27.31	23.54	20.88	19.08	17.12	16.43	14.17	13.45	12.74
C7	R3(N=40 earthworms)	27.31	21.98	19.33	15.84	13.56	12.97	12.08	11.88	11.01
	R1(Control)	28.44	28.40	27.99	27.46	26.87	26.76	25.67	24.65	24.56
46	R2 (N=30 earthworms)	28.44	25.64	22.51	20.16	18.84	17.24	15.22	15.02	13.85
٥c	R3(N=40 earthworms)	28.44	24.89	21.94	19.28	18.45	16.85	14.88	14.02	13.02
	R1(Control)	28.58	28.53	28.50	27.89	27.77	27.65	27.33	26.91	25.76
20	R2 (N=30 earthworms)	28.58	25.07	24.89	22.84	20.75	18.51	17.65	16.15	15.46
C C	R3(N=40 earthworms)	28.58	23.84	22.12	20.83	19.94	17.26	16.51	15.88	14.56

APPENDIX-B2: Summary Results of Total Kjeldahl Nitrogen (TKN) for 9 Weeks of vermicomposting periods.

•

						TKN (%)				
C/N Ratio	Reactor					Week				
8 1911 1915		0	2	3	4	5	9	7	×	6
	R1(Control)	1.331	1.376	1.382	1.401	1.419	1.426	1.434	1.462	1.480
20	R2 (N=30 earthworms)	1.331	2.165	2.356	2.600	2.874	3.130	3.168	3.172	3.291
	R3(N=40 earthworms)	1.331	2.387	2.583	2.850	3.359	3.413	3.525	3.637	3.790
	R1(Control)	1.185	1.193	1.222	1.226	1.258	1.269	1.271	1.277	1.298
25	R2 (N=30 earthworms)	1.185	1.983	2.007	2.132	2.395	2.537	2.588	2.609	2.642
	R3(N=40 carthworms)	1.185	2.155	2.131	2.322	2.660	3.034	3.122	3.134	3.184
	R1(Control)	0.968	0.972	1.000	1.037	1.049	1.064	1.086	1.112	1.135
30	R2 (N=30 earthworms)	0.968	1.098	1.199	1.221	1.226	1.434	1.572	1.752	1.932
	R3(N=40 earthworms)	0.968	1.097	1.284	1.361	1.487	1.677	1.968	1.978	2.188
	R1(Control)	0.786	0.790	0.807	0.908	0.923	0.975	1.005	1.014	1.129
35	R2 (N=30 earthworms)	0.786	0.878	0.958	1.183	1.194	1.329	1.364	1.370	1.395
	R3(N=40 earthworms)	0.786	0.978	1.098	1.242	1.388	1.484	1.507	1.619	1.651

TP at C/N ratio 20 and TP at C/N ratio 35 for R3(N=40 earthworms)

in the	(% <u>)</u>		Variable I	Variable 2
C/48 introduct $= 200$.	-10//141 million == 335	Mean	2.3438925	1.2371631
1.251	0.749	Variance	0.3818478	0.0848539
1.602	0.851	Observations	9	9
1.828	1.020	Pooled Variance	0.2333508	
2.437	1.254	Hypothesized Mean Difference	0	
2.704	1.357	df	16	
2.773	1.454	t Stat	4.8600758	
2.802	1.474	P(T<=t) one-tail	8.686E-05	
2.819	1.483	t Critical one-tail	1.7458837	
2.878	1.493	P(T<=t) two-tail	0.0001737	
		t Critical two-tail	2.1199053	

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TP at C/N ratio 25 and TP at C/N ratio 30 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

	(%)		Variable 1	Variable 2
		Mean	1.9963904	1.4357082
1.121	0.871	Variance	0.2572257	0.1058857
1.364	1.003	Observations	9	9
1.567	1.217	Pooled Variance	0.1815557	
2.119	1.499	Hypothesized Mean Difference	0	
2.240	1.598	df	16	
2.326	1.615	t Stat	2.7913741	
2.354	1.658	P(T<=t) one-tail	0.0065359	
2.381	1.666	t Critical one-tail	1.7458837	
2.494	1.794	P(T<=t) two-tail	0.0130718	
		t Critical two-tail	2.1199053	

APPENDIX -- A10: TP at C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 for R3 (N=40 earthworms)

1.03×10^{10}	(¹ 261))	* *	Variable 1	Variable 2
Minimute 20	C/Nicietator=2/Site	Mean	2.3438925	1.9963904
1.251	1.121	Variance	0.3818478	0.2572257
1.602	1.364	Observations	9	9
1.828	1.567	Pooled Variance	0.3195368	
2.437	2.119	Hypothesized Mean Difference	0	
2.704	2.240	df	16	
2.773	2.326	t Stat	1.3040772	
2.802	2.354	P(T<=t) one-tail	0.1053286	
2.819	2.381	t Critical one-tail	1.7458837	
2.878	2.494	P(T<=t) two-tail	0.2106572	
	,	t Critical two-tail	2.1199053	

TP at C/N ratio 20 and TP at C/N ratio 25 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

No significant difference at 5% level of difference

TP at C/N ratio 20 and TP at C/N ratio 30 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

energia esta a mp	(%))		Variable 1	Variable 2
CANTENIO = 20	C/ini (191110) = 500.	Mean	2.3438925	1.4357082
1.251	0.871	Variance	0.3818478	0.1058857
1.602	1.003	Observations	9	9
1.828	1.217	Pooled Variance	0.2438668	
2.437	1.499	Hypothesized Mean Difference	0	
2.704	1.598	df	16	
2.773	1.615	t Stat	3.9012516	
2.802	1.658	P(T<=t) one-tail	0.0006352	
2.819	1.666	t Critical one-tail	1.7458837	
2.878	1.794	P(T<=t) two-tail	0.0012704	
		t Critical two-tail	2.1199053	

Significant difference at 5% level of difference

APPENDIX – A: Statistical Analysis

APPENDIX -A1: TOC in R1 (No earthworms), R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35.

TOC in R1 (No earthworms) compare with TOC in R2 (N=30 earthworms)) for C/N ratio 20
--	--------------------

	(C (26))		Variable 1	Variable 2
RitaConicali	R2=30- Geidhwonine	Mean	23.4522	15.4878
26.44	26.44	Variance	4.3523	38.2007
25.02	22.72	Observations	9.0000	9.0000
24.99	19.03	Pooled Variance	21.2765	
24.78	17.54	Hypothesized Mean Difference	0.0000	
23.55	12.05	df	16.0000	
23.42	11.12	t Stat	3.6628	
21.54	10.54	P(T<=t) one-tail	0.0011	
20.89	10.44	t Critical one-tail	1.7459	
20.44	9.51	P(T<=t) two-tail	0.0021	÷.,
		t Critical two-tail	2.1199	

Since t Stat >2.1199, therefore reject Ho=0, and conclude that there is significant difference between TOC in R1 (No earthworms) and TOC in R2 (N=30 earthworms) of C/N ratio 20 at 5% level of significance.

TOC in R2 (N=30 earthworms	s) compare wit	h TOC in R3 (N=40) earthworms) for C/N ratio	20
----------------------------	----------------	-------------------	-----------------------------	----

NOTICE CONTRACTOR	(\mathcal{M}_{0}) , the second sec		Variable 1	Variable 2
B2=30	R3=40 eradbiwonisis	Mean	15.4878	13.6778
26.44	26.44	Variance	38.2007	43.3465
22.72	21.21	Observations	9.0000	9.0000
19.03	17.44	Pooled Variance	40.7736	
17.54	13.11	Hypothesized Mean Difference	0.0000	
12.05	10.15	df	16.0000	
11.12	9.32	t Stat	0.6013	
10.54	8.65	P(T<=t) one-tail	0.2780	
10.44	8.55	t Critical one-tail	1.7459	
9.51	8.23	P(T<=t) two-tail	0.5561	
		t Critical two-tail	2.1199	

Ś

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TOC in R2 (N=30 earthworms) and TOC in R3 (N=40 earthworms) of C/N ratio 20 at 5% level of significance

	YC MAN		Variable	Variable
	<u>1. (***)</u> <u>1. (***)</u>		1	2
kii=Conitali	Genülhavairansi 🔬	Mean	25.2967	18.3022
27.31	27.31	Variance	3.4526	24.0356
26.87	23.54	Observations	9.0000	9.0000
26.68	20.88	Pooled Variance	13.7441	
26.02	19.08	Hypothesized Mean Difference	0.0000	
25.78	17.12	df	16.0000	
25.41	16.43	t Stat	4.0022	
24.55	14.17	P(T<=t) one-tail	0.0005	
23.64	13.45	t Critical one-tail	1.7459	
21.41	12.74	P(T<=t) two-tail	0.0010	
		t Critical two-tail	2.1199	

TOC in R1 (No earthworms) compare with TOC in R2 (N=30 earthworms) for C/N ratio 25

Since t Stat >2.1199, therefore reject Ho=0, and conclude that there is significant difference between TOC in R1 (No earthworms) and TOC in R2 (N=30 earthworms) of C/N ratio 25 at 5% level of significance.

TOC in R2 (N=30 earthworms) compare with TOC in R3 (N=40 earthworms) for C/N ratio 25

		t-Test: Two-Sample Assuming Equal Variances		
FOC/260 100			Variable 1	Variable 2
R2+3(0). T ⊂ Ottello y (0 mill Sy s	CP=23	Mean	18.3022	16.2178
27.31	27.31	Variance	24.0356	30.8424
23.54	21.98	Observations	9.0000	9.0000
20.88	19.33	Pooled Variance	27.4390	
19.08	15.84	Hypothesized Mean Difference	0.0000	
17.12	13.56	df	16.0000	
16.43	12.97	t Stat	0.8441	
14.17	12.08	P(T<=t) one-tail	0.2055	
13.45	11.88	t Critical one-tail	1.7459	
12.74	11.01	P(T<=t) two-tail	0.4110	
		t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TOC in R2 (N=30 earthworms) and TOC in R3 (N=40 earthworms) of C/N ratio 25 at 5% level of significance.

TOC(%) SOLUTION			Variable 1	Variable 2
iR.il-Conincol.	k2=30 endingerings	Mean	26.7556	19.6578
28.44	28.44	Variance	2.2509	25.3437
28.40	25.64	Observations	9.0000	9.0000
27.99	22.51	Pooled Variance	13.7973	
27.46	20.16	Hypothesized Mean Difference	0.0000	
26.87	1 8.84	df	16.0000	
26.76	17.24	t Stat	4.0535	
25.67	15.22	P(T<=t) one-tail	0.0005	
24.65	15.02	t Critical one-tail	1.7459	
24.56	13.85	P(T<=t) two-tail	0.0009	
		t Critical two-tail	2.1199	

TOC in R1 (No earthworms) compare with TOC in R2 (N=30 earthworms) for C/N ratio 30

Since t Stat >2.1199, therefore reject H $_{0}$ =0, and conclude that there is significant difference between TOC in R1 (No earthworms) and TOC in R2 (N=30 earthworms) of C/N ratio 30 at 5% level of significance.

TOC in R2 (N=30 earthworms) compare with TOC in R3 (N=40 earthworms) for C/N ratio 30

		t-Test: Two-Sample Assuming Equal Variances		
TIO	C (%))		Variable 1	Variable 2
<u>kar-5</u> 0 endiwoiins	B)=40 90nthwomns	Mean	19.6578	19.0856
28.44	28.44	Variance	25.3437	26.8653
25.64	24.89	Observations		9.0000
22.51	21.94	Pooled Variance	26.1045	
20.16	19.28	Hypothesized Mean Difference	0.0000	
18.84	18.45	df	16.0000	
17.24	16.85	t Stat	0.2376	
15.22	14.88	P(T<=t) one-tail	0.4076	
15.02	14.02	t Critical one-tail	1.7459	
13.85	13.02	P(T<=t) two-tail	0.8152	
	-	t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TOC in R2 (N=30 earthworms) and TOC in R3 (N=40 earthworms) of C/N ratio 30 at 5% level of significance.

alaria di Anglia Ny INSEE di Anglia	C (%)		Variable 1	Variable 2
RIEControl	R2=30 emilinw@miles	Mean	27.6578	21.1000
28.58	28.58	Variance	0.8319	20.5185
28.53	25.07	Observations	9.0000	9.0000
28.50	24.89	Pooled Variance	10.6752	
27.89	22.84	Hypothesized Mean Difference	0.0000	
27.77	20.75	df	16.0000	
27.65	18.51	t Stat	4.2577	
27.33	17.65	P(T<=t) one-tail	0.0003	
26.91	16.15	t Critical one-tail	1.7459	
25.76	15.46	P(T<=t) two-tail	0.0006	
		t Critical two-tail	2.1199	

TOC in R1 (No earthworms) compare with TOC in R2 (N=30 earthworms) for C/N ratio 35

Since t Stat >2.1199, therefore reject Ho=0, and conclude that there is significant difference between TOC in R1 (No earthworms) and TOC in R2 (N=30 earthworms) of C/N ratio 35 at 5% level of significance.

TOC in R2 (N=30 earthworms) compare with TOC in R3 (N=40 earthworms) for C/N ratio 35

		t-Test: Two-Sample Assuming Equal Variances		
1100	60000000000000000000000000000000000000		Variable I	Variable 2
R2=30 Gatabayaaans	RB-40 Gentliwoning	Mean	21.1000	19.9467
28.58	28.58	Variance	20.5185	19.9724
25.07	23.84	Observations	9.0000	9.0000
24.89	22.12	Pooled Variance	20.2455	
22.84	20.83	Hypothesized Mean Difference	0.0000	
20.75	19.94	df	16.0000	
18.51	17.26	t Stat	0.5437	
17.65	16.51	P(T<=t) one-tail	0.2971	
16.15	15.88	t Critical one-tail	1.7459	
15.46	14.56	P(T<=t) two-tail	0.5941	
		t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TOC in R2 (N=30 earthworms) and TOC in R3 (N=40 earthworms) of C/N ratio 35 at 5% level of significance.

APPENDIX –A2: TKN in R1 (No earthworms), R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35.

energia de Constan Granda de Constan			Variable	Variable
5 (26) (26) (26) (26)			1	2
RI=Controll	R2=30 Senithworthis	Mean	1.4125	2.6762
1.331	1.331	Variance	0.0021	0.4113
1.376	2.165	Observations	9.0000	9.000
1.382	2.356	Pooled Variance	0.2067	
1.401	2.600	Hypothesized Mean Difference	0.0000	
1.419	2.874	df	16.0000	
1.426	3.130	t Stat	-5.8968	
1.434	3.168	P(T<=t) one-tail	0.0000	
1.462	3.172	t Critical one-tail	1.7459	
1.480	3.291	P(T<=t) two-tail	0.0000	
		t Critical two-tail	2,1199	

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between TKN in R1 (No earthworms) and TKN in R2 (N=30 earthworms) of C/N ratio 20 at 5% level of significance.

TKN in R2 (N=30 earthworms) co	mpare with	h TKN in R3 (N=40 earthworms) for C/N ratio 20
		:

		t-Test: Two-Sample Assuming Equ	ual Variances	
	Ni(8%)		Variable 1	Variable 2
R2=30 Callbyeons		Mean	2.6762	2.9861
1.331	1.331	Variance	0.4113	0.6202
2.165	2.387	Observations	9.0000	9.0000
2.356	2.583	Pooled Variance	0.5157	
2.600	2.850	Hypothesized Mean Difference	0.0000	
2.874	3.359	df	16.0000	
3.130	3.413	t Stat	-0.9154	
3.168	3.525	P(T<=t) one-tail	0.1868	
3.172	3.637	t Critical one-tail	1.7459	
3.291	3.790	P(T<=t) two-tail	0.3736	
		t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TKN in R2 (N=30 earthworms) and TKN in R3 (N=40 earthworms) of C/N ratio 20 at 5% level of significance.

	t-Test: Two-Sample Assuming Equal Variances					
Trix	N (%)		Variable 1	Variable 2		
	R2=30 earthworns 1.185	Mean	1.2444	2.2309		
1.183	1.983	Variance Observations	0.0016 9.0000	0.2219 9.0000		
1.222	2.007	Pooled Variance Hypothesized Mean Difference	0.1117 0.0000			
1.258	2.395	df	16.0000			
1.269	2.537	t Stat P(T<=t) one-tail	-6.2601 0.0000			
1.277	2.609	t Critical one-tail	1.7459			
1.298	2.642	P(T<=t) two-tail t Critical two-tail	0.0000 2.1199			

TKN in R1 (No earthworms) compare with TKN in R2 (N=30 earthworms) for C/N ratio 25

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between TKN in R1 (No earthworms) and TKN in R2 (N=30 earthworms) of C/N ratio 25 at 5% level of significance.

TKN in R2 (N=30 earthworms) compare with TKN in R3 (N=40 earthworms) for C/N ratio 25

t-Test: Two-Sample Assuming Equal Variances					
	((%)). ((%))		Variable 1	Variable 2	
CUR <u>C</u> =30 Rearinworms	R3=401 (eantheconns) ar	Mean	2.2309	2.5474	
1.185	1.185	Variance	0.2219	0.4455	
1 .98 3	2.155	Observations	9.0000	9.0000	
2.007	2.131	Pooled Variance	0.3337		
2.132	2.322	Hypothesized Mean Difference	0.0000		
2.395	2.660	df	16.0000		
2.537	3.034	t Stat	-1.1624		
2.588	3.122	P(T<=t) one-tail	0.1311		
2.609	3.134	t Critical one-tail	1.7459		
2.642	3.184	P(T<=t) two-tail	0.2621		
		t Critical two-tail	2.1199		

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TKN in R2 (N=30 earthworms) and TKN in R3 (N=40 earthworms) of C/N ratio 25 at 5% level of significance.

TKN in R1 (No earthworms) compare with TKN in R2 (N=30 earthworms) for C/N ratio 30

n Second States (10	SNI((%))		Variable 1	Variable 2
dan-Canardi -	R24=300 certifitayyotaans	Mean	1.0467	1.000
		MCan	1.0467	1.3779
0.968	0.968	Variance	0.0035	0.1016
0.972	1.098	Observations	9.0000	9.000(
1.000	1.199	Pooled Variance	0.0526	
1.037	1.221	Hypothesized Mean Difference	0.0000	
1.049	1.226	df	16.0000	
1.064	1.434	t Stat	-3.0643	
1.086	1.572	P(T<=t) one-tail	0.0037	
1.112	1.752	t Critical one-tail	1.7459	
1.135	1.932	P(T<=t) two-tail	0.0074	
		t Critical two-tail	2.1199	

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between TKN in R1 (No earthworms) and TKN in R2 (N=30 earthworms) of C/N ratio 30 at 5% level of significance.

TKN in R2 (N=30 earthworms) compare with TKN in R3 (N=40 earthworms) for C/N ratio 30

t-Test: Two-Sample Assuming Equal Variances					
10.5	(%))		Variable 1	Variable 2	
<u>P2</u> =30 Condhwaiins	iR3≕40) ≪endhavrenenss	Mean	1.3779	1.5563	
0.968	0.968	Variance	0.1016	0.1794	
1.098	1.097	Observations	9.0000	9.0000	
1.199	1.284	Pooled Variance	0.1405		
1.221	1.361	Hypothesized Mean Difference	0.0000		
1.226	1.487	df	16.0000		
1.434	1.677	t Stat	-1.0100		
1.572	1.968	P(T<=t) one-tail	0.1638		
1.752	1.978	t Critical one-tail	1.7459		
1.932	2.188	P(T<=t) two-tail	0.3275		
		t Critical two-tail	2.1199		

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TKN in R2 (N=30 earthworms) and TKN in R3 (N=40 earthworms) of C/N ratio 30 at 5% level of significance.

	ON! (26)		Variable	Variable
	(R. 2=3(0))	· · · · · · · · · · · · · · · · · · ·	1	2
. IR l≡Cionino).	struptivo surger	Mean	0.9263	1.1621
0.786	0.786	Variance	0.0138	0.0539
0.790	0.878	Observations	9.0000	9.0000
0.807	0.958	Pooled Variance	0.0338	
0.908	1.183	Hypothesized Mean Difference	0.0000	
0.923	1.194	df	16.0000	
0.975	1.329	t Stat	-2.7186	
1.005	1.364	P(T<=t) one-tail	0.0076	
1.014	1.370	t Critical one-tail	1.7459	
1.129	1.395	P(T<=t) two-tail	0.0152	
		t Critical two-tail	2.1199	

TKN in R1 (No earthworms) compare with TKN in R2 (N=30 earthworms) for C/N ratio 35

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between TKN in R1 (No earthworms) and TKN in R2 (N=30 earthworms) of C/N ratio 35 at 5% level of significance.

TKN in R2 (N=30 earthworms) compare with TKN in R3 (N	=40 earthworms) for C/N ratio 35
---	----------------------------------

t-Test: Two-Sample Assuming Equal Variances					
			Variable	Variable	
	((%)) 172→(1) ^{20→} (1)		1	2	
et interview in the second sec	enithwoins -	Mean	1.1621	1.3060	
0.786	0.786	Variance	0.0539	0.0901	
0.878	0.978	Observations	9.0000	9.0000	
0.958	1.098	Pooled Variance	0.0720		
1.183	1.242	Hypothesized Mean Difference	0.0000		
1.194	1.388	df	16.0000		
1.329	1.484	t Stat	-1.1375		
1.364	1.507	P(T<=t) one-tail	0.1360		
1.370	1.619	t Critical one-tail	1.7459		
1.395	1.651	P(T<=t) two-tail	0.2721		
		t Critical two-tail	2.1199		

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TKN in R2 (N=30 earthworms) and TKN in R3 (N=40 earthworms) of C/N ratio 35 at 5% level of significance.

APPENDIX -A3: TP in R1 (No earthworms), R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35.

	t-Test: Two-Sample Assuming Equal Variances					
			Variable	Variable		
	H(%)		1	2		
Rif=Constol of	R2=350 GHAddanyOmensed a	Mean	1.3060	2.0494		
1.251	1.251	Variance	0.0022	0.2087		
1.263	1.504	Observations	9.0000	9.0000		
1.268	1.661	Pooled Variance	0.1055			
1.280	2.105	Hypothesized Mean Difference	0.0000			
1.297	2.313	df	16.0000			
1.307	2.334	t Stat	-4.8554			
1.339	2.390	P(T<=t) one-tail	0.0001			
1.359	2.395	t Critical one-tail	1.7459			
1.390	2.491	P(T<=t) two-tail	0.0002			
		t Critical two-tail	2.1199			

t-Test:	Two-Sample	Assuming	Equal V	ariances

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between TP in R1 (No earthworms) and TP in R2 (N=30 earthworms) of C/N ratio 20 at 5% level of significance.

			Variable	Variable
<u></u>	<u>1120)</u>		1	2
	comulitivatinis	Mean	2.0494	2.3439
1.251	1.251	Variance	0.2087	0.3818
1.504	1.602	Observations	9.0000	9.000
1.661	1.828	Pooled Variance	0.2953	
2.105	2.437	Hypothesized Mean Difference	0.0000	
2.313	2.704	df	16.0000	
2.334	2.773	t Stat	-1.1496	
2.390	2.802	P(T<=t) one-tail	0.1336	
2.395	2.819	t Critical one-tail	1.7459	
2.491	2.878	P(T<=t) two-tail	0.2672	
		t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TP in R2 (N=30 earthworms) and TP in R3 (N=40 earthworms) of C/N ratio 20 at 5% level of significance.

t-Test: Two-Sample Assuming Equal Variances				
	(%))- (%))-		Variable 1	Variable 2
Rel=Connol	R2=310 ··· Gamiloworans (Mean	1.1275	1.7285
1.121	1.121	Variance	0.0018	0.1195
1.165	1.324	Observations	9.0000	9.0000
1.084	1.441	Pooled Variance	0.0607	
1.092	1.773	Hypothesized Mean Difference	0.0000	
1.102	1.907	df	16.0000	
1.094	1.923	t Stat	-5.1759	
1.114	1.968	P(T<=t) one-tail	0.0000	
1.170	1.992	t Critical one-tail	1.7459	
1.205	2.108	P(T<=t) two-tail	0.0001	
		t Critical two-tail	2.1199	

TP in R1 (No earthworms) compare with TP in R2 (N=30 earthworms) for C/N ratio 25

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between TP in R1 (No earthworms) and TP in R2 (N=30 earthworms) of C/N ratio 25 at 5% level of significance.

		t-Test: Two-Sample Assuming Equ	al Variances	
	$\left(2^{\circ} \right)^{\circ}$		Variable 1	Variable 2
1R2=30 Sziedbywinisk	R3⊶40 Galitinwojimsi ≪	Mean	1.7285	1.9964
1.121	1.121	Variance	0.1195	0.2572
1.324	1.364	Observations	9.0000	9.0000
1.441	1.567	Pooled Variance	0.1884	
1.773	2.119	Hypothesized Mean Difference	0.0000	
1.907	2.240	df	16.0000	
1.923	2.326	t Stat	-1.3094	
1.968	2.354	P(T<=t) one-tail	0.1044	
1.992	2.381	t Critical one-tail	1.7459	
2.108	2.494	P(T<=t) two-tail	0.2089	
		t Critical two-tail	2.1199	

TP in R2 (N=30 earthworms) compare with TP in R3 (N=40 earthworms) for C/N ratio 25

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TP in R2 (N=30 earthworms) and TP in R3 (N=40 earthworms) of C/N ratio 25 at 5% level of significance.

Presidente (orden) Notae	100 M 100		Variable	Variable
	r (70) R2=\$0		1	2
Rel=Coonol	eruidimxaaaris	Mean	1.0287	1.3200
0.871	0.871	Variance	0.0120	0.0748
0.889	0.988	Observations	9.0000	9.000
0.904	1.092	Pooled Variance	0.0434	
1.044	1.284	Hypothesized Mean Difference	0.0000	
1.085	1.440	df	16.0000	
1.095	1.501	t Stat	-2.9654	
1.098	1.549	P(T<=t) one-tail	0.0046	
1.121	1.553	t Critical one-tail	1.7459	
1.152	1.602	P(T<=t) two-tail	0.0091	
	· · · · · · · · · · · · · · · · · · ·	t Critical two-tail	2.1199	

TP in R1 (No earthworms) compare with TP in R2 (N=30 earthworms) for C/N ratio 30

 t Critical two-tail
 2.1199

 Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between TP</td>

in R1 (No earthworms) and TP in R2 (N=30 earthworms) of C/N ratio 30 at 5% level of significance.

			Variable	Variable
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$	and the second		1	2
eaning and a second s	R3=40 cendrwormso	Mean	1.3200	1.4357
0.871	0.871	Variance	0.0748	0.1059
0.988	1.003	Observations	9.0000	9.0000
1.092	1.217	Pooled Variance	0.0904	
1.284	1.499	Hypothesized Mean Difference	0.0000	
1.440	1.598	df	16.0000	
1.501	1.615	t Stat	-0.8167	
1.549	1.658	P(T<=t) one-tail	0.2130	
1.553	1.666	t Critical one-tail	1.7459	
1.602	1.794	P(T<≔t) two-tail	0.4261	
		t Critical two-tail	2.1199	

TP in R2 (N=30 earthworms) compare with TP in R3 (N=40 earthworms) for C/N ratio 30

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TP in R2 (N=30 earthworms) and TP in R3 (N=40 earthworms) of C/N ratio 30 at 5% level of significance.

enterio de la composito Secondo de la composito de la composito de la composito de la composito de la composito Secondo de la composito de la c	P (%))		Variable 1	Variable 2
rkil:=Chmirrol	R2=30) GRI(INWOTTON)	Mean	.0.8190	1.0847
0.749	0.749	Variance	0.0030	0.0401
0.752	0.833	Observations	9.0000	9.0000
0.773	0.913	Pooled Variance	0.0215	
0.798	1.143	Hypothesized Mean Difference	0.0000	
0.814	1.166	df	16.0000	
0.845	1.178	t Stat	-3.8394	
0.866	1.206	P(T<=t) one-tail	0.0007	
0.882	1.280	t Critical one-tail	1.7459	
0.891	1.293	P(T<=t) two-tail	0.0014	
		t Critical two-tail	2.1199	

TP in R1 (No earthworms) compare with TP in R2 (N=30 earthworms) for C/N ratio 35

Since t Stat < -2.1199, therefore reject	Ho=0, and conclude that there	is significant difference between TP
in R1 (No earthworms) and TP in R2 ((N=30 earthworms) of C/N ratio	35 at 5% level of significance.

TP in R2 (N=30 earthworms) compare with TP in R3 (N=40 earthworms) for C/N ratio 35

		t-Test: Two-Sample Assuming Equ	al Variances	
	P.(%)		Variable 1	Variable 2
<u> </u> <u></u>	R37-40. A. Cardiawomus	Mean	1.0847	1.2372
0.749	0.749	Variance	0.0401	0.0849
0.833	0.851	Observations	9.0000	9.0000
0.913	1.020	Pooled Variance	0.0625	
1.143	1.254	Hypothesized Mean Difference	0.0000	
1.166	1.357	df	16.0000	
1.178	1.454	t Stat	-1.2944	
1.206	1.474	P(T<=t) one-tail	0.1070	
1.280	1.483	t Critical one-tail	1.7459	
1.293	1.493	P(T<=t) two-tail	0.2139	
		t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between TP in R2 (N=30 earthworms) and TP in R3 (N=40 earthworms) of C/N ratio 35 at 5% level of significance.

APPENDIX –A4: Potassium in R1 (No earthworms), R2 (N=30 earthworms) and R3 (N=40 earthworms) for C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35.

Potassium in R1 (No earthworms) compare with Potassium in R2 (N=30 earthworms) for C/N ratio 20

t-Test: Two-Sample Assuming Equal Variances				
ener en l'Polessi	норана (1999) Пап ((%))		Variable 1	Variable 2
RUI - RUI	<u>R</u> 2	Mean	0.2952	0.4386
0.262	0.262	Variance	0.0005	0.0202
0.268	0.298	Observations	9.0000	9.0000
0.272	0.342	Pooled Variance	0.0104	
0.292	0.365	Hypothesized Mean Difference	0.0000	
0.301	0.401	df	16.0000	
0.307	0.443	t Stat	-2.9894	
0.312	0.585	P(T<=t) one-tail	0.0043	
0.319	0.590	t Critical one-tail	1.7459	
0.323	0.662	P(T<=t) two-tail	0.0087	
		t Critical two-tail	2.1199	

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between Potassium in R1 (No earthworms) and Potassium in R2 (N=30 earthworms) of C/N ratio 20 at 5% level of significance.

THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF T		t-Test: Two-Sample Assuming Eq	ual Variances	
DECTRON	tum ((%))		Variable 1	Variable 2
<u>16 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - </u>	RB	Mean	0.4386	0.4928
0.262	0.262	Variance	0.0202	0.0263
0.298	0.321	Observations	9.0000	9.0000
0.342	0.398	Pooled Variance	0.0232	
0.365	0.438	Hypothesized Mean Difference	0.0000	
0.401	0.481	df	16.0000	
0.443	0.499	t Stat	-0.7543	
0.585	0.634	P(T<=t) one-tail	0.2308	
0.590	0.636	t Critical one-tail	1.7459	
0.662	0.767	P(T<=t) two-tail	0.4616	
		t Critical two-tail	2.1199	

Since -2.1199 < t Stat < 2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between Potassium in R2 (N=30 earthworms) and Potassium in R3 (N=40 earthworms) of C/N ratio 20 at 5% level of significance.

Potassium in R1 (No earthworms) compare with Potassium in R2 (N=30 earthworms) for C/N ratio 25

		t-Test: Two-Sample Assuming Equ	al Variances	
The second s	sture (%)		Variable 1	Variable 2
Rit=Control	earthworns.	Mean	0.2585	0.3336
0.243	0.243	Variance	0.0002	0.0071
0.247	0.250	Observations	9.0000	9.0000
0.249	0.268	Pooled Variance	0.0036	
0.253	0.291	Hypothesized Mean Difference	0.0000	
0.257	0.319	df	16.0000	
0.259	0.325	t Stat	-2.6399	
0.268	0.390	P(T<=t) one-tail	0.0089	
0.272	0.432	t Critical one-tail	1.7459	
0.279	0.484	P(T<=t) two-tail	0.0178	
L		t Critical two-tail	2.1199	

Since t Stat < -2.1199, therefore reject $H_0=0$, and conclude that there is significant difference between Potassium in R1 (No earthworms) and Potassium in R2 (N=30 earthworms) of C/N ratio 25 at 5% level of significance.

		t-Test: Two-Sample Assuming Equ	al Variances	
Rotass	nie ober en strander ander him (94)) ander en strander		Variable 1	Variable 2
earthwornes	eanthwomis	Mean	0.3336	0.4367
0.243	0.243	Variance	0.0071	0.0232
0.250	0.284	Observations	9.0000	9.0000
0.268	0.338	Pooled Variance	0.0151	
0.291	0.366	Hypothesized Mean Difference	0.0000	
0.319	0.397	df	16.0000	
0.325	0.430	t Stat	-1.7776	
0.390	0.595	P(T<=t) one-tail	0.0472	
0.432	0.615	t Critical one-tail	1.7459	
0.484	0.663	P(T<=t) two-tail	0.0945	
<u> </u>		t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between Potassium in R2 (N=30 earthworms) and Potassium in R3 (N=40 earthworms) of C/N ratio 25 at 5% level of significance.

Potassium in R1 (No earthworms) compare with Potassium in R2 (N=30 earthworms) for C/N ratio 30

		t-Test: Two-Sample Assuming Equ	ual Variances	
	solutor ((%))		Variable 1	Variable 2
Ri=Controls	RO=30 Gaulowonnst see	Mean	0.2357	0.2917
0.222	0.222	Variance	0.0001	0.0029
0.225	0.243	Observations	9.0000	9.0000
0.229	0.266	Pooled Variance	0.0015	
0.230	0.275	Hypothesized Mean Difference	0.0000	
0.238	0.288	df	16.0000	
0.239	0.300	t Stat	-3.0750	
0.240	0.306	P(T<=t) one-tail	0.0036	
0.243	0.313	t Critical one-tail	1.7459	
0.254	0.411	P(T<=t) two-tail	0.0072	
		t Critical two-tail	2.1199	

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between Potassium in R1 (No earthworms) and Potassium in R2 (N=30 earthworms) of C/N ratio 30 at 5% level of significance.

		t-Test: Two-Sample Assuming Equ	al Variances	
TROTOSS	Сородина и сородно и сородина и с Прити (1960)		Variable 1	Variable 2
RO=30 Ganibycourtis	IR3++410 CATEINWORDIS	Mean	0.2917	0.3413
0.222	0.222	Variance	0.0029	0.0076
0.243	0.249	Observations	9.0000	9.0000
0.266	0.284	Pooled Variance	0.0053	
0.275	0.297	Hypothesized Mean Difference	0.0000	
0.288	0.315	df	16.0000	
0.300	0.388	t Stat	-1.4521	
0.306	0.418	P(T<=t) one-tail	0.0829	
0.313	0.425	t Critical one-tail	1.7459	
0.411	0.473	P(T<=t) two-tail	0.1658	
		t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between Potassium in R2 (N=30 earthworms) and Potassium in R3 (N=40 earthworms) of C/N ratio 30 at 5% level of significance.

Potassium in R1 (No earthworms) compare with Potassium in R2 (N=30 earthworms) for C/N ratio 35

		t-Test: Two-Sample Assuming Equ	al Variances	
and a second	sinm(%)		Variable 1	Variable 2
Rit=Control	1(:2=3)() (eardbywonnis)	Mean	0.1766	0.2207
0.164	0.164	Variance	0.0001	0.0022
0.166	0.169	Observations	9.0000	9.0000
0.168	0.178	Pooled Variance	0.0012	
0.170	0.203	Hypothesized Mean Difference	0.0000	
0.174	0.212	df	16.0000	
0.177	0.239	t Stat	-2.7175	
0.180	0.249	P(T<=t) one-tail	0.0076	
0.194	0.279	t Critical one-tail	1.7459	
0.196	0.292	P(T<=t) two-tail	0.0152	
		t Critical two-tail	2.1199	

Since t Stat < -2.1199, therefore reject Ho=0, and conclude that there is significant difference between Potassium in R1 (No earthworms) and Potassium in R2 (N=30 earthworms) of C/N ratio 35 at 5% level of significance.

to a local distance of the second		t-Test: Two-Sample Assuming Equ	al Variances	
and data of State of State Provises	ijura ((%))		Variable 1	Variable 2
1:2=20	KO-40 / J			2
<u>Calenthworms</u>	Canthwoning and	Mean	0.2207	0.2444
0.164	0.164	Variance	0.0022	0.0038
0.169	0.182	Observations	9.0000	9.0000
0.178	0.203	Pooled Variance	0.0030	
0.203	0.210	Hypothesized Mean Difference	0.0000	
0.212	0.224	df	16.0000	
0.239	0.265	t Stat	-0.9151	
0.249	0.301	P(T<=t) one-tail	0.1869	
0.279	0.313	t Critical one-tail	1.7459	
0.292	0.337	P(T<=t) two-tail	0.3737	
		t Critical two-tail	2.1199	

Since -2.1199<t Stat <2.1199, therefore accept Ho=0, and conclude that there is NO significant difference between Potassium in R2 (N=30 earthworms) and Potassium in R3 (N=40 earthworms) of C/N ratio 35 at 5% level of significance.

APPENDIX -- A5: TOC at C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 for R2 (N=30 earthworms)

000000000000000000000000000000000000000	e ((%)). A set e e e		Variable 1	Variable 2
C/IN (1810)0 = _2(0)	CANGRADA = 25	Mean	15.487778	18.302222
26.44	27.31	Variance	38.200669	24.035594
22.72	23.54	Observations	9	9
19.03	20.88	Pooled Variance	31.118132	
17.54	19.08	Hypothesized Mean Difference	0	
12.05	17.12	df	16	
11.12	16.43	t Stat	-1.070267	
10.54	14.17	P(T<=t) one-tail	0.1501898	
10.44	13.45	t Critical one-tail	1.7458837	
9.51	12.74	P(T<=t) two-tail	0.3003795	
		t Critical two-tail	2.1199053	

TOC at C/N ratio 20 and TOC at C/N ratio 25 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

No significant difference at 5% level of difference

TOC at C/N ratio 20 and TOC at C/N ratio 30 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

	(%)) (%))		Variable 1	Variable 2
C/M native = ⊇0	CATANO = . 30	Mean	15.487778	19.657778
26.44	28.44	Variance	38.200669	25.343669
22.72	25.64	Observations	9	9
19.03	22.51	Pooled Variance	31.772169	
17.54	20.16	Hypothesized Mean Difference	0	
12.05	18.84	df	16	
11.12	17.24	t Stat	-1.569347	
10.54	15.22	P(T<=t) one-tail	0.0680651	
10.44	15.02	t Critical one-tail	1.7458837	
9.51	13.85	P(T<=t) two-tail	0.1361301	
		t Critical two-tail	2.1199053	

<u>na s</u> trioc	. ((% <u>i)</u>		Variable 1	Variable 2
.C/N 12650	C/N anti⊚ → 361	Mean	25.296667	21.1
27.31	28.58	Variance	3.45255	20.518525
26.87	25.07	Observations	9	9
26.68	24.89	Pooled Variance	11.985538	
26.02	22.84	Hypothesized Mean Difference	0	
25.78	20.75	df	16	
25.41	18.51	t Stat	2.571473	
24.55	17.65	P(T<=t) one-tail	0.0102465	
23.64	16.15	t Critical one-tail	1.7458837	
21.41	15.46	P(T<=t) two-tail	0.020493	
		t Critical two-tail	2.1199053	·

TOC at C/N ratio 20 and TOC at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TOC at C/N ratio 25 and TOC at C/N ratio 30 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

077	C (%)		Variable 1	Variable 2
CAN INNER OF	C/Nomio=			
	30	Mean	18.302222	19.657778
27.31	28.44	Variance	24.035594	25.343669
23.54	25.64	Observations	9	9
20.88	22.51	Pooled Variance	24.689632	
19.08	20.16	Hypothesized Mean Difference	0	
17.12	18.84	df	16	
16.43	17.24	t Stat	-0.578717	
14.17	15.22	P(T<=t) one-tail	0.2854189	
13.45	15.02	t Critical one-tail	1.7458837	
12.74	13.85	P(T<=t) two-tail	0.5708377	
		t Critical two-tail	2.1199053	

110) 110)	(%)) (%))		Variable 1	Variable 2
C//N RELIGE	C/N natio =			
<u> (20.2222)</u>	1999 - 19 9 2 - 1992	Mean	18.302222	21.1
27.31	28.58	Variance	24.035594	20.518525
23.54	25.07	Observations	9	9
20.88	24.89	Pooled Variance	22.27706	
19.08	22.84	Hypothesized Mean Difference	0	
17.12	20.75	df	16	
16.43	18.51	t Stat	-1.257449	
14.17	17.65	P(T<=t) one-tail	0.1133179	
13.45	16.15	t Critical one-tail	1.7458837	
12.74	15.46	P(T<=t) two-tail	0.2266358	
		t Critical two-tail	2.1199053	

TOC at C/N ratio 25 and TOC at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

No significant difference at 5% level of difference

TOC at C/N ratio 30 and TOC at C/N ratio 35 for R2(N=30 earthworms)

17(0)(. (%)		Variable 1	Variable 2
	CAN hand =	Maar	10 (57770	
		Mean	19.657778	21.1
28.44	28.58	Variance	25.343669	20.518525
25.64	25.07	Observations	9	9
22.51	24.89	Pooled Variance	22.931097	
20.16	22.84	Hypothesized Mean Difference	0	
18.84	20.75	df	16	
17.24	18.51	t Stat	-0.63889	
15.22	17.65	P(T<=t) one-tail	0.2659674	
15.02	16.15	t Critical one-tail	1.7458837	
13.85	15.46	P(T<=t) two-tail	0.5319348	
		t Critical two-tail	2.1199053	

APPENDIX --A6: TOC at C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 for R3 (N=40 earthworms)

TOC at C/N ratio 20 and TOC at C/N ratio 25 for R3(N=40 earthworms)

l ince	1.(%) (h. 1894)		Variable 1	Variable 2
. C/N ikitio → .2(9)	. (C/N) initio ≕: 25	Mean	13.677778	16.217778
26.44	27.31	Variance	43.346469	30.842444
21.21	21.98	Observations	9	9
17.44	19.33	Pooled Variance	37.094457	
13.11	15.84	Hypothesized Mean Difference	0	
10.15	13.56	df	16	
9.32	12.97	t Stat	-0.884678	
8.65	12.08	P(T<=t) one-tail	0.1947157	
8.55	11.88	t Critical one-tail	1.7458837	
8.23	11.01	P(T<=t) two-tail	0.3894315	
		t Critical two-tail	2.1199053	

t-Test: Two-Sample Assuming Equal Variances

No significant difference at 5% level of difference

TOC at C/N ratio 20 and TOC at C/N ratio 30 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

1 <u></u>	·(%))		Variable 1	Variable 2
. (C/(№ 19050) = - 20	C/Nualie = 30	Mean	16.217778	19.085556
27.31	28.44	Variance	30.842444	26.865253
21.98	2 4.89	Observations	9	9
19.33	21.94	Pooled Variance	28.853849	
15.84	19.28	Hypothesized Mean Difference	0	
13.56	18.45	df	16	
12.97	16.85	t Stat	-1.13253	
12.08	14.88	P(T<=t) one-tail	0.1370494	
11.88	14.02	t Critical one-tail	1.7458837	
11.01	13.02	P(T<=t) two-tail	0.2740989	
		t Critical two-tail	2.1199053	

TOC at C/N ratio 20 and TOC at C/N ratio 35 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

in the second second	(°¥⊙) // (°See and an (°¥⊙) // (See and an		Variable 1	Variable 2
- C/N FAño = 20	(1)/N 6060 + 1 3/5	Mean	16.217778	19.946667
27.31	28.58	Variance	30.842444	19.972375
21.98	23.84	Observations	9	9
19.33	22.12	Pooled Variance	25.40741	
15.84	20.83	Hypothesized Mean Difference	0	
13.56	19.94	df	16	
12.97	17.26	t Stat	-1.569298	
12.08	16.51	P(T<=t) one-tail	0.0680707	
11.88	15.88	t Critical one-tail	1.7458837	
11.01	14.56	P(T<=t) two-tail	0.1361414	
		t Critical two-tail	2.1199053	

No significant difference at 5% level of difference

TOC at C/N ratio 25 and TOC at C/N ratio 30 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

1.(Q)((%)		Variable 1	Variable 2
C/N 191100 == 25		Mean	16.217778	19.085556
27.31	28.44	Variance	30.842444	26.865253
21.98	24.89	Observations	9	9
19.33	21.94	Pooled Variance	28.853849	
15.84	19.28	Hypothesized Mean Difference	0	
13.56	18.45	df	16	
12.97	16.85	t Stat	-1.13253	
12.08	14.88	P(T<=t) one-tail	0.1370494	
11.88	14.02	t Critical one-tail	1.7458837	
11.01	13.02	P(T<=t) two-tail	0.2740989	
		t Critical two-tail	2.1199053	

No. Poc	(90)		Variable 1	Variable 2
	C/N iauro = 1 35	Mean	16.217778	19.946667
27.31	28.58	Variance	30.842444	19.972375
21.98	23.84	Observations	9	9
19.33	22.12	Pooled Variance	25.40741	
15.84	20.83	Hypothesized Mean Difference	0	
13.56	19.94	df	16	
12.97	17.26	t Stat	-1.569298	
12.08	16.51	P(T<=t) one-tail	0.0680707	
11.88	15 .88	t Critical one-tail	1.7458837	
11.01	14.56	P(T<=t) two-tail	0.1361414	
		t Critical two-tail	2.1199053	

TOC at C/N ratio 25 and TOC at C/N ratio 35 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

No significant difference at 5% level of difference

TOC at C/N ratio 30 and TOC at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

100	(%) <u>-</u>		Variable 1	Variable 2
C/N #1010 = 3(0)	C//N traine = -	Mean	19.085556	19.946667
28.44	28.58	Variance	26.865253	19.972375
24.89	23.84	Observations	9	9
21.94	22.12	Pooled Variance	23.418814	
19.28	20.83	Hypothesized Mean Difference	0	
18.45	19.94	df	16	
16.85	17.26	t Stat	-0.37747	
14.88	16.51	P(T<=t) one-tail	0.3553921	
14.02	15.88	t Critical one-tail	1.7458837	
13.02	14.56	P(T<=t) two-tail	0.7107842	
		t Critical two-tail	2.1199053	

APPENDIX –A7: TKN at C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 for R2 (N=30 earthworms)

TKN at C/N ratio 20 and TKN at C/N ratio 25 for R2 (N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

	1 ((%)		Variable 1	Variable 2
医颈骨骨的 计正确定义 计输出分析 化乙烯酸盐	CAN DRIDO = 4			
2(0)	1 2 ⁻ 2	Mean	2.6762144	2.230889
1.331	1.185	Variance	0.4112526	0.2219183
2.165	1.983	Observations	9	9
2.356	2.007	Pooled Variance	0.3165855	
2.600	2.132	Hypothesized Mean Difference	0	
2.874	2.395	df	16	
3.130	2.537	t Stat	1.6789516	
3.168	2.588	P(T<=t) one-tail	0.0562904	
3.172	2.609	t Critical one-tail	1.7458837	
3.291	2.642	P(T<=t) two-tail	0.1125809	
		t Critical two-tail	2.1199053	

No significant difference at 5% level of difference

TKN at C/N ratio 20 and TKN at C/N ratio 30 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

	N ((<i>%</i>)		Variable 1	Variable 2
C/INI majirei =	C/INCRIMING TO			
	50	Mean	2.6762144	1.3778805
1.331	0.968	Variance	0.4112526	0.1016492
2.165	1.098	Observations	9	9
2.356	1.199	Pooled Variance	0.2564509	
2.600	1.221	Hypothesized Mean Difference	0	
2.874	1.226	df	16	
3.130	1.434	t Stat	5.4386427	
3.168	1.572	P(T<=t) one-tail	2.732E-05	
3.172	1.752	t Critical one-tail	1,7458837	
3.291	1.932	P(T<=t) two-tail	5.465E-05	
		t Critical two-tail	2.1199053	

	U (96)		Variable 1	Variable 2
5 (C//N (Rithro) = (1/2) ((C/N:id: <u>110</u>) ⊛	Mean	2.6762144	1.1/00007
1.331	0.786	Variance	0.4112526	1.1620887 0.0539174
2.165	0.878	Observations	9	0.0559174
2.356	0.958	Pooled Variance	0.232585	,
2.600	1.183	Hypothesized Mean Difference	0	
2.874	1.194	df	16	
3.130	1.329	t Stat	6.660047	
3.168	1.364	P(T<=t) one-tail	2.74E-06	
3.172	1.370	t Critical one-tail	1.7458837	
3.291	1.395	P(T<=t) two-tail	5.48E-06	
		t Critical two-tail	2.1199053	

TKN at C/N ratio 20 and TKN at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TKN at C/N ratio 25 and TKN at C/N ratio 30 for R2(N=30 earthworms)

t-Test: Two-Sample	Assuming	Equal	Variances
--------------------	----------	-------	-----------

	50%6		Variable 1	Variable 2
	r vC/ASt identificit≡ 3¥0) — —	Mean	2 000000	1.0770000
1.185	0.968		2.230889	1.3778805
1.105	0.900	Variance	0.2219183	0.1016492
1.983	1.098	Observations	9	9
2.007	1.199	Pooled Variance	0.1617838	
2.132	1.221	Hypothesized Mean Difference	0	
2.395	1.226	df	16	
2.537	1.434	t Stat	4.4987531	
2.588	1.572	P(T<=t) one-tail	0.0001822	
2.609	1.752	t Critical one-tail	1.7458837	
2.642	1.932	P(T<=t) two-tail	0.0003645	
		t Critical two-tail	2.1199053	

Significant difference at 5% level of difference

.

and so of the	$\left(\left(\mathcal{Q}_{(i)} \right) \right) \rightarrow \left(\left(-1 \right) \right) $		Variable 1	Variable 2
C/N 1741400= 225	.C/N/istrio ≑ 355	Mean	2.230889	1.1620887
1.185	0.786	Variance	0.2219183	0.0539174
1.983	0.878	Observations	9	9
2.007	0.958	Pooled Variance	0.1379179	
2.132	1.183	Hypothesized Mean Difference	0	
2.395	1.194	df	16	
2.537	1.329	t Stat	6.1050964	
2.588	1.364	P(T<=t) one-tail	7.598E-06	
2.609	1.370	t Critical one-tail	1.7458837	
2.642	1.395	P(T<=t) two-tail	1.52E-05	
		t Critical two-tail	2.1199053	

TKN at C/N ratio 25 and TKN at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TKN at C/N ratio 30 and TKN at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

sserver ankin	ff ((%))		Variable 1	Variable 2
C//NP (1910) == 50)	2.07NLarata@==	Mean	1.3778805	1.132915
0.968	0.786	Variance	0.1016492	0.0528657
1.098	0.878	Observations	9	8
1.199	0.958	Pooled Variance	0.0788835	
1.221	1.183	Hypothesized Mean Difference	0	
1.226	1.194	df	15	
1.434	1.329	t Stat	1.7949552	
1.572	1.364	P(T<=t) one-tail	0.0464168	
1.752	1.370	t Critical one-tail	1.7530503	
1.932	1.395	P(T<≔t) two-tail	0.0928335	
		t Critical two-tail	2.1314495	

APPENDIX –A8: TKN at C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 for R3 (N=40 earthworms)

TRA	(196)		Variable 1	Variable 2
$\dot{\mathbb{C}}/N$ $\dot{\mathbb{C}}$	Chiusun = 25	Mean	2.9861039	2.5474434
1.331	1.185	Variance	0.6201825	0.4455069
2.387	2.155	Observations	9	9
2.583	2.131	Pooled Variance	0.5328447	
2.850	2.322	Hypothesized Mean Difference	0	
3.359	2.660	df	16	
3.413	3.034	t Stat	1.2747776	
3.525	3.122	P(T<=t) one-tail	0.1102951	
3.637	3.134	t Critical one-tail	1.7458837	
3.790	3.184	P(T<=t) two-tail	0.2205902	
		t Critical two-tail	2.1199053	

TKN at C/N ratio 20 and TKN at C/N ratio 25 for R3(N=40 earthworms) t-Test: Two-Sample Assuming Equal Variances

No significant difference at 5% level of difference

TKN at C/N ratio 20 and TKN at C/N ratio 30 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

THE CONTRACTION (%) AND A CONTRACT			Variable 1	Variable 2
C/N 12116 - 20	C/Ninengio = 301	Mean	2.9861039	1.556348
1.331	0.968	Variance	0.6201825	0.1793545
2.387	1.097	Observations	9	9
2.583	1.284	Pooled Variance	0.3997685	
2.850	1.361	Hypothesized Mean Difference	0	
3.359	1.487	df	16	
3.413	1.677	t Stat	4.7969351	
3.525	1.968	P(T<=t) one-tail	9.878E-05	·
3.637	1.978	t Critical one-tail	1.7458837	
3.790	2.188	P(T<=t) two-tail	0.0001976	
		t Critical two-tail	2.1199053	

TKN at C/N ratio 20 and TKN at C/N ratio 35 for R3(N=40 earthworms)

	1(%)		Variable 1	Variable 2
C/Nimatino = 200	(C/N) (9110) = 361	Mean	2.9861039	1.3059694
1.331	0.786	Variance	0.6201825	0.0900696
2.387	0.978	Observations	9	9
2.583	1.098	Pooled Variance	0.3551261	
2.850	1.242	Hypothesized Mean Difference	0	
3.359	1.388	df	16	
3.413	1.484	t Stat	5.9807965	
3.525	1.507	P(T<=t) one-tail	9.604E-06	
3.637	1.619	t Critical one-tail	1.7458837	
3.790	1.651	P(T<=t) two-tail	1.921E-05	
		t Critical two-tail	2.1199053	

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TKN at C/N ratio 25 and TKN at C/N ratio 30 for R3(N=40 earthworms)

t-Test: Two-Sample Assuming Equal Variances

restance a Sonko	1(%))))))))))))))))))))))))))))))))))))		Variable 1	Variable 2
C/NURVIE - 25.	CANARATIO = 500	Mean	2.5474434	1.556348
1.185	0.968	Variance	0.4455069	0.1793545
2.155	1.097	Observations	9	9
2.131	1.284	Pooled Variance	0.3124307	
2.322	1.361	Hypothesized Mean Difference	0	
2.660	1.487	df	16	
3.034	1.677	t Stat	3.7613594	
3.122	1.968	P(T<=t) one-tail	0.0008532	
3.134	1.978	t Critical one-tail	1.7458837	
3.184	2.188	P(T<=t) two-tail	0.0017064	
		t Critical two-tail	2.1199053	

Significant difference at 5% level of difference

TKN at C/N ratio 25 and TKN at C/N ratio 35 for R3(N=40 earthworms)

TIKA	· (%)		Variable 1	Variable 2
C/INI INTRICO = 25	100 minute = 350	Mean	2.5474434	1.3059694
1.185	0.786	Variance	0.4455069	0.0900696
2.155	0.978	Observations	9	9
2.131	1.098	Pooled Variance	0.2677883	
2.322	1.242	Hypothesized Mean Difference	0	
2.660	1.388	df	16	
3.034	1.484	t Stat	5.0891836	
3.122	1.507	P(T<=t) one-tail	5.469E-05	
3.134	1.619	t Critical one-tail	1.7458837	
3.184	1.651	P(T<=t) two-tail	0.0001094	
		t Critical two-tail	2.1199053	

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TKN at C/N ratio 30 and TKN at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

TIKK	$(\mathcal{Y}_0) = \{1, \dots, n\}$		Variable 1	Variable 2
	C/Monito=85	Mean	1.556348	1.3059694
0.968	0.786	Variance	0.1793545	0.0900696
1.097	0.978	Observations	9	9
1.284	1.098	Pooled Variance	0.1347121	
1.361	1.242	Hypothesized Mean Difference	0	
1.487	1.388	df	16	
1.677	1.484	t Stat	1.447106	
1.968	1.507	P(T<=t) one-tail	0.0835879	
1.978	1.619	t Critical one-tail	1.7458837	
2.188	1.651	P(T<=t) two-tail	0.1671757	
		t Critical two-tail	2.1199053	

No significant difference at 5% level of difference

APPENDIX –A9: TP at C/N ratio 20, C/N ratio 25, C/N ratio 30 and C/N ratio 35 for R2 (N=30 earthworms)

<u>(117)</u>	(%)		Variable 1	Variable 2
(CANLINITIO = 20)	. (CAN 18010) - 25-	Mean	2.0493998	1.7284683
1.251	1.121	Variance	0.208734	0.1195494
1.504	1.324	Observations	9	9
1.661	1.441	Pooled Variance	0.1641417	
2.105	1.773	Hypothesized Mean Difference	0	
2.313	1.907	df	16	
2.334	1.923	t Stat	1.6803867	
2.390	1.968	P(T<=t) one-tail	0.0561487	
2.395	1.992	t Critical one-tail	1.7458837	
2.491	2.108	P(T<=t) two-tail	0.1122974	
		t Critical two-tail	2.1199053	

TP at C/N ratio 20 and TP at C/N ratio 25 for R2 (N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

No significant difference at 5% level of difference

TP at C/N ratio 20 and TP at C/N ratio 30 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

TP.			Variable 1	Variable 2
0/81616 = 202	CAN 194(110)=-30	Mean	2.0493998	1.3199852
1.251	0.871	Variance	0.208734	0.0748144
1.504	0.988	Observations	9	9
1.661	1.092	Pooled Variance	0.1417742	
2.105	1.284	Hypothesized Mean Difference	0	
2.313	1.440	df	16	
2.334	1.501	t Stat	4.1094351	
2.390	1.549	P(T<=t) one-tail	0.0004101	
2.395	1.553	t Critical one-tail	1.7458837	
2.491	1.602	P(T<=t) two-tail	0.0008202	
		t Critical two-tail	2.1199053	

Significant difference at 5% level of difference

TP at C/N ratio 20 and TP at C/N ratio 35 for R2(N=30 earthworms)

<u>i in San J</u> ip	(\mathcal{H}) , \mathcal{H} , \mathcal{H}		Variable 1	Variable 2
. <u>C/N: (26)</u> = 26)	C/N16an60=,35%	Mean	2.0493998	1.0846603
1.251	0.749	Variance	0.208734	0.0400766
1.504	0.833	Observations	9	9
1.661	0.913	Pooled Variance	0.1244053	
2.105	1.143	Hypothesized Mean Difference	0	
2.313	1.166	df	16	
2.334	1.178	t Stat	5.8022569	
2.390	1.206	P(T<=t) one-tail	1.349E-05	
2.395	1.280	t Critical one-tail	1.7458837	
2.491	1.293	P(T<=t) two-tail	2.699E-05	
		t Critical two-tail	2.1199053	

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TP at C/N ratio 25 and TP at C/N ratio 30 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

and the second second	24(%))		Variable 1	Variable 2
C/Ni 14076 = 25	C/Namino=30	Mean	1.7284683	1.3199852
1.121	0.871	Variance	0.1195494	0.0748144
1.324	0.988	Observations	9	9
1.441	1.092	Pooled Variance	0.0971819	
1.773	1.284	Hypothesized Mean Difference	0	
1.907	1.440	df	16	
1.923	1.501	t Stat	2.7796339	
1.968	1.549	P(T<=t) one-tail	0.006696	
1.992	1.553	t Critical one-tail	1.7458837	
2.108	1.602	P(T<=t) two-tail	0.013392	
		t Critical two-tail	2.1199053	

Significant difference at 5% level of difference

	(%)		Variable 1	Variable 2
	C/AN: FATIO = 350	Mean	1.7284683	1.0846603
1.121	0.749	Variance	0.1195494	0.0400766
1.324	0.833	Observations	9	9
1.441	0.913	Pooled Variance	0.079813	
1.773	1.143	Hypothesized Mean Difference	0	
1.907	1.166	df	16	÷ .
1.923	1.178	t Stat	4.8342138	н.
1.968	1.206	P(T<=t) one-tail	9.156E-05	
1.992	1.280	t Critical one-tail	1.7458837	
2.108	1.293	P(T<=t) two-tail	0.0001831	
		t Critical two-tail	2.1199053	n still a f

TP at C/N ratio 25 and TP at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample Assuming Equal Variances

Significant difference at 5% level of difference

TP at C/N ratio 30 and TP at C/N ratio 35 for R2(N=30 earthworms)

t-Test: Two-Sample	Assuming	Equal Variances
--------------------	----------	-----------------

			Variable 1	Variable 2
	P.(C/NHANIO = 35%	Mean	1.3199852	1.0846603
0.871	0.749	Variance	0.0748144	0.0400766
0.988	0.833	Observations	9	9
1.092	0.913	Pooled Variance	0.0574455	
1.284	1.143	Hypothesized Mean Difference	0	
1.440	1.166	df	16	
1.501	1.178	t Stat	2.0827931	· · · ·
1.549	1.206	P(T<=t) one-tail	0.0268367	
1.553	1.280	t Critical one-tail	1.7458837	
1.602	1.293	P(T<=t) two-tail	0.0536734	
		t Critical two-tail	2.1199053	

No significant difference at 5% level of difference

APPENDIX-B3: Volume titrated for every week

- Qfsl			l sectore esperation (m.)		
	R1(Control)				
20	R2 (N=30 worms)	0.3003	15.030	0.759	1.331
	R3(N=40worms)				
	R1(Control)				
25	R2 (N=30 worms)	0.3007	13.485	0.759	1.185
	R3(N=40worms)				
	R1(Control)				
30	R2 (N=30 worms)	0.3026	11.217	0.759	0.968
	R3(N=40worms)				
	R1(Control)				
35	R2 (N=30 worms)	0.3001	9.186	0.759	0.786
	R3(N=40worms)				

week 2

		vrogjelici Striges (gj	wikyan térpét (gal)	Stephen (
	R1(Control)	0.5919	29.850	0.759	1.376
20	R2 (N=30 worms)	0.5287	41.641	0.759	2.165
	R3(N=40worms)	0.4998	43.375	0.759	2.387
	R1(Control)	0.5588	24.564	0.759	1.193
25	R2 (N=30 worms)	0.5053	36.543	0.759	1.983
	R3(N=40worms)	0.5921	46.334	0.759	2.155
	R1(Control)	0.5446	19.657	0.759	0.972
30	R2 (N=30 worms)	0.5584	22.654	0.759	1.098
	R3(N=40worms)	0.5790	23.451	0.759	1.097
	R1(Control)	0.5475	16.201	0.759	0.790
35	R2 (N=30 worms)	0.5463	17.887	0.759	0.878
	R3(N=40worms)	0.5695	20.654	0.759	0.978

	R1(Control)	0.5651	28.652	0.759	1.382
20	R2 (N=30 worms)	0.5335	45.651	0.759	2.356
	R3(N=40worms)	0.5346	50.078	0.759	2.583
25	R1(Control)	0.5347	24.103	0.759	1.222
	R2 (N=30 worms)	0.5342	39.054	0.759	2.007
	R3(N=40worms)	0.5423	42.029	0.759	2.131
	R1(Control)	0.5637	20.894	0.759	1.000
30	R2 (N=30 worms)	0.5768	25.465	0.759	1.199
	R3(N=40worms)	0.5581	26.345	0.759	1.284
	R1(Control)	0.5524	16.678	0.759	0.807
35	R2 (N=30 worms)	0.5519	19.651	0.759	0.958
	R3(N=40worms)	0.5121	20.845	0.759	1.098

week 3

week 4

•

					(1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
	R1(Control)	0.5844	29.998	0.759	1.401
20	R2 (N=30 worms)	0.5599	52.741	0.759	2.600
	R3(N=40worms)	0.5481	56.547	0.759	2.850
25	R1(Control)	0.5687	25.659	0.759	1.226
	R2 (N=30 worms)	0.5491	42.569	0.759	2.132
	R3(N=40worms)	0.5534	46.648	0.759	2.322
	R1(Control)	0.5889	22.564	0.759	1.037
30	R2 (N=30 worms)	0.5359	24.128	0.759	1.221
	R3(N=40worms)	0.5738	28.654	0.759	1.361
	R1(Control)	0.5821	19.645	0.759	0.908
35	R2 (N=30 worms)	0.5652	24.642	0.759	1.183
	R3(N=40worms)	0.5768	26.345	0.759	1.242

	andar Antonia (1997) Antonia (1997)	wee	*k 5		
	Convin	. weithigt 	volem Arciveljelj		1 64 PA
	R1(Control)	0.5268	27.461	0.759	1.419
20	R2 (N=30 worms)	0.5568	57.915	0.759	2.874
	R3(N=40worms)	0.5684	68.942	0.759	3.359
25	R1(Control)	0.5324	24.687	0.759	1.258
	R2 (N=30 worms)	0.5764	50.064	0.759	2.395
	R3(N=40worms)	0.5612	54.064	0.759	2.660
	R1(Control)	0.5432	21.102	0.759	1.049
30	R2 (N=30 worms)	0.5462	24.678	0.759	1.226
	R3(N=40worms)	0.5589	30.443	0.759	1.487
	R1(Control)	0.5384	18.502	0.759	0.923
35	R2 (N=30 worms)	0.5581	24.567	0.759	1.194
	R3(N=40worms)	0.5694	28.987	0.759	1.388

Cytel	ii an tha an				
	R1(Control)	0.5346	27.994	0.759	1.426
20	R2 (N=30 worms)	0.5231	59.230	0.759	3.130
	R3(N=40worms)	0.5563	68.564	0.759	3.413
25	R1(Control)	0.5347	24.987	0.759	1.269
	R2 (N=30 worms)	0.5461	50.236	0.759	2.537
	R3(N=40worms)	0.5489	60.230	0.759	3.034
	R1(Control)	0.5564	21.894	0.759	1.064
30	R2 (N=30 worms)	0.5234	27.564	0.759	1.434
	R3(N=40worms)	0.5132	31.487	0.759	1.677
	R1(Control)	0.5234	18.984	0.759	0.975
35	R2 (N=30 worms)	0.5346	26.127	0.759	1.329
	R3(N=40worms)	0.5412	29.451	0.759	1.484

LC's					12 6 2 6
	R1(Control)	0.5624	29.564	0.759	1.434
20	R2 (N=30 worms)	0.5512	63.120	0.759	3.168
	R3(N=40worms)	0.5416	68.940	0.759	3.525
25	R1(Control)	0.5264	24.658	0.759	1.271
	R2 (N=30 worms)	0.5614	52.650	0.759	2.588
	R3(N=40worms)	0.5423	61.230	0.759	3.122
	R1(Control)	0.5215	20.981	0.759	1.086
30	R2 (N=30 worms)	0.5647	32.457	0.759	1.572
	R3(N=40worms)	0.5234	37.541	0.759	1.968
	R1(Control)	0.5641	21.003	0.759	1.005
35	R2 (N=30 worms)	0.5247	26.324	0.759	1.364
	R3(N=40worms)	0.5469	30.187	0.759	1.507

week 7

week 8

		and a state			
	R1(Control)	0.5791	31.000	0.759	1.462
20	R2 (N=30 worms)	0.5641	64.661	0.759	3.172
	R3(N=40worms)	0.5612	73.651	0.759	3.637
25	R1(Control)	0.5123	24.132	0.759	1.277
	R2 (N=30 worms)	0.5314	50.265	0.759	2.609
	R3(N=40worms)	0.5432	61.564	0.759	3.134
	R1(Control)	0.5321	21.885	0.759	1.112
30	R2 (N=30 worms)	0.5364	34.314	0.759	1.752
	R3(N=40worms)	0.5589	40.237	0.759	1.978
	R1(Control)	0.5617	21.102	0.759	1.014
35	R2 (N=30 worms)	0.5631	28.314	0.759	1.370
	R3(N=40worms)	0.5418	32.084	0.759	1.619

	R1(Control)	0.5641	30.584	0.759	1.480
20	R2 (N=30 worms)	0.5423	64.494	0.759	3.291
	R3(N=40worms)	0.5842	79.845	0.759	3.790
	R1(Control)	0.5136	24.567	0.759	1.298
25	R2 (N=30 worms)	0.5746	54.985	0.759	2.642
	R3(N=40worms)	0.5416	62.354	0.759	3.184
	R1(Control)	0.5541	23.210	0.759	1.135
30	R2 (N=30 worms)	0.5638	39.654	0.759	1.932
	R3(N=40worms)	0.5861	46.561	0.759	2.188
	R1(Control)	0.5356	22.354	0.759	1.129
35	R2 (N=30 worms)	0.5264	26.994	0.759	1.395
	R3(N=40worms)	0.5496	33.165	0.759	1.651

.

week 9

APPENDIX-B4: Summary Results of Total Phosphorus (TP) for 9 Weeks of vermicomposting periods

						TP (%)				
	Reactor					Week				
		0	2	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	4	5	9	7	8	6
	R1(Control)	1.251	1.263	1.268	1.280	1.297	1.307	1.339	1.359	1.390
	R2 (N=30 earthworms)	1.251	1.504	1.661	2.105	2.313	2.334	2.390	2.395	2.491
	R3(N=40 earthworms)	1.251	1.602	1.828	2.437	2.704	2.773	2.802	2.819	2.878
	R1(Control)	1.121	1.165	1.084	1.092	1.102	1.094	1.114	1.170	1.205
· · F	R2 (N=30 earthworms)	1.121	1.324	1.441	1.773	1.907	1.923	1.968	1.992	2.108
	R3(N=40 earthworms)	1.121	1.364	1.567	2.119	2.240	2.326	2.354	2.381	2.494
	R1(Control)	0.871	0.889	0.904	1.044	1.085	1.095	1.098	1.121	1.152
· · I	R2 (N=30 earthworms)	0.871	0.988	1.092	1.284	1.440	1.501	1.549	1.553	1.602
	R3(N=40 earthworms)	0.871	1.003	1.217	1.499	1.598	1.615	1.658	1.666	1.794
···- 1	R1(Control)	0.749	0.752	0.773	0.798	0.814	0.845	0.866	0.882	0.891
- I	R2 (N=30 earthworms)	0.749	0.833	0.913	1.143	1.166	1.178	1.206	1.280	1.293
	R3(N=40 earthworms)	0.749	0.851	1.020	1.254	1.357	1.454	1.474	1.483	1.493
					The second secon	Value of the second sec			-	-

APPENDIX-B5: Total Phosphorus recorded in mg/L from Spectrophotometer

	in the second			land Brook Carlo 19
	Control			
20	R1 (N=30 worms)	0.3003	2.684	1.251
	R2(N=40worms)			
25	Control			
	R1 (N=30 worms)	0.3007	2.408	1.121
	R2(N=40worms)			
	Control			
30	R1 (N=30 worms)	0.3026	1.882	0.871
	R2(N=40worms)			
	Control		1.606	0.749
35	R1 (N=30 worms)	0.3001		
	R2(N=40worms)			

week 2

<u>67</u> 50,				T 201 M GAT ANDA 1943
ł	Control	0.5919	5.341	1.263
20	R1 (N=30 worms)	0.5287	5.680	1.504
	R2(N=40worms)	0.4998	5.720	1.602
25	Control	0.5588	4.650	1.165
	R1 (N=30 worms)	0.5053	4.780	1.324
	R2(N=40worms)	0.5921	5.770	1.364
	Control	0.5446	3.460	0.889
30	R1 (N=30 worms)	0.5584	3.940	0.988
	R2(N=40worms)	0.5790	4.150	1.003
	Control	0.5475	2.941	0.752
35	R1 (N=30 worms)	0.5463	3.250	0.833
	R2(N=40worms)	0.5695	3.460	0.851

- 2/ M	e e e e e e e e e e e e e e e e e e e	zeliszu) adalogy		The Case Management of the Case of the Cas
	Control	0.5651	5.120	1.268
20	R1 (N=30 worms)	0.5335	6.330	1.661
L	R2(N=40worms)	0.5346	6.980	1.828
25	Control	0.5347	4.140	1.084
	R1 (N=30 worms)	0.5342	5.500	1.441
	R2(N=40worms)	0.5423	6.070	1.567
	Control	0.5637	3.640	0.904
30	R1 (N=30 worms)	0.5768	4.500	1.092
	R2(N=40worms)	0.5581	4.850	1.217
	Control	0.5524	3.050	0.773
35	R1 (N=30 worms)	0.5519	3.600	0.913
	R2(N=40worms)	0.5121	3.730	1.020

week 3

week 4

				Net Salagaa Pet
	Control	0.5919	5.410	1.280
20	R1 (N=30 worms)	0.5287	7.950	2.105
	R2(N=40worms)	0.4998	8.700	2.437
	Control	0.5588	4.360	1.092
25	R1 (N=30 worms)	0.5053	6.400	1.773
	R2(N=40worms)	0.5921	8.960	2.119
	Control	0.5446	4.060	1.044
30	R1 (N=30 worms)	0.5584	5.120	1.284
	R2(N=40worms)	0.5790	6.200	1.499
	Control	0.5475	3.120	0.798
35	R1 (N=30 worms)	0.5463	4.460	1.143
	R2(N=40worms)	0.5695	5.100	1.254

•

week	5

QZA I		i - Grazjana A Starija - Zari	an a	
	Control	0.5268	4.880	1.297
20	R1 (N=30 worms)	0.5568	9.200	2.313
	R2(N=40worms)	0.5684	10.980	2.704
	Control	0.5324	4.190	1.102
25	R1 (N=30 worms)	0.5764	7.850	1.907
	R2(N=40worms)	0.5612	8.980	2.240
	Control	0.5432	4.210	1.085
30	R1 (N=30 worms)	0.5462	5.620	1.440
	R2(N=40worms)	0.5589	6.380	1.598
	Control	0.5384	3.130	0.814
35	R1 (N=30 worms)	0.5581	4.650	1.166
	R2(N=40worms)	0.5694	5.520	1.357

week 6

ičty.	Sec. 2.1	a alay <mark>sina ga</mark> ana kara alay s		alizza el tradicio de la composición de Composición de la composición de la comp
	Control	0.5346	4.990	1.307
20	R1 (N=30 worms)	0.5231	8.720	2.334
	R2(N=40worms)	0.5563	11.020	2.773
	Control	0.5347	4.180	1.094
25	R1 (N=30 worms)	0.5461	7.500	1.923
	R2(N=40worms)	0.5489	9.120	2.326
	Control	0.5564	4.350	1.095
30	R1 (N=30 worms)	0.5234	5.610	1.501
	R2(N=40worms)	0.5132	5.920	1.615
	Control	0.5234	3.160	0.845
35	R1 (N=30 worms)	0.5346	4.500	1.178
	R2(N=40worms)	0.5412	5.620	1.454

week	7	

	Control	0.5624	5.380	1.339
20	R1 (N=30 worms)	0.5512	9.410	2.390
	R2(N=40worms)	0.5416	10.840	2.802
	Control	0.5264	4.190	1.114
25	R1 (N=30 worms)	0.5614	7.890	1.968
	R2(N=40worms)	0.5423	9.120	2.354
	Control	0.5215	4.090	1.098
30	R1 (N=30 worms)	0.5647	6.250	1.549
	R2(N=40worms)	0.5234	6.200	1.658
	Control	0.5641	3.490	0.866
35	R1 (N=30 worms)	0.5247	4.520	1.206
	R2(N=40worms)	0.5469	5.760	1.474

week 8

		and good to be a second as	i tra <u>s</u> Roci (1896) Succession	n ang kangaban sa t Tang kang kang sa tang kang sa tang sa
	Control	0.5791	5.620	1.359
20	R1 (N=30 worms)	0.5641	9.650	2.395
	R2(N=40worms)	0.5612	11.300	2.819
	Control	0.5123	4.280	1.170
25	R1 (N=30 worms)	0.5314	7.560	1.992
	R2(N=40worms)	0.5432	9.240	2.381
	Control	0.5321	4.260	1.121
30	R1 (N=30 worms)	0.5364	5.950	1.553
	R2(N=40worms)	0.5589	6.650	1.666
	Control	0.5617	3.540	0.882
35	R1 (N=30 worms)	0.5631	5.150	1.280
	R2(N=40worms)	0.5418	5.740	1.483

	i de ministra	jana (H. C.) Serena Sigh		la bilko ja sel Sta
	Control	0.5641	5.600	1.390
20	R1 (N=30 worms)	0.5423	9.650	2.491
	R2(N=40worms)	0.5842	12.010	2.878
	Control	0.5136	4.420	1.205
25	R1 (N=30 worms)	0.5746	8.650	2.108
	R2(N=40worms)	0.5416	9.650	2.494
	Control	0.5541	4.560	1.152
30	R1 (N=30 worms)	0.5638	6.450	1.602
	R2(N=40worms)	0.5861	7.510	1.794
	Control	0.5356	3.410	0.891
35	R1 (N=30 worms)	0.5264	4.860	1.293
	R2(N=40worms)	0.5496	5.860	1.493

APPENDIX-B6: Summary Results of Potassium for 9 Weeks of vermicomposting periods

						Potassium (%))			
C/N Ratio	Reactor					Week				
		0	2	3	4	series Singles	9	${\cal L}$	8	6
20	R1(Control)	0.262	0.268	0.272	0.292	0.301	0.307	0.312	0.319	0.323
1	R2 (N=30 earthworms)	0.262	0.298	0.342	0.365	0,401	0.443	0.585	0.590	0.662
	R3(N=40 earthworms)	0.262	0.321	0.398	0.438	0.481	0.499	0.634	0.636	0.767
25	R1(Control)	0.243	0.247	0.249	0.253	0.257	0.259	0.268	0.272	0.279
	R2 (N=30 earthworms)	0.243	0.250	0.268	0.291	0.319	0.325	0.390	0.432	0.484
	R3(N=40 earthworms)	0.243	0.284	0.338	0.366	0.397	0.430	0.595	0.615	0.663
30	R1(Control)	0.222	0.225	0.229	0.230	0.238	0.239	0.240	0.243	0.254
1	R2 (N=30 earthworms)	0.222	0.243	0.266	0.275	0.288	0.300	0.306	0.313	0.411
	R3(N=40 earthworms)	0.222	0.249	0.284	0.297	0.315	0.388	0.418	0.425	0.473
35	R1(Control)	0.164	0.166	0.168	0.170	0.174	0.177	0.180	0.194	0.196
	R2 (N=30 earthworms)	0.164	0.169	0.178	0.203	0.212	0.239	0.249	0.279	0.292
	R3(N=40 earthworms)	0.164	0.182	0.203	0.210	0.224	0.265	0.301	0.313	0.337

Collo. Cuve Lelest K.Flarie I Display 0.0001 Analdisistement on team Visit Visit	ent. Helb ent. Helb ent. Helb ent. The collicity of the second se	X			Conc. Us			····				···					
Olio Calib. Cuve Lelest [S:Flame [0] Type 0.002 Aben 345165core-0.00160011 0 0 0 0 0.001 b 0 0 0 0 0.000 0 0 0 0 0 0.000 0 0 0 0 0 0.000 0.250 0.000 0.250 1.250 1.1500 0.000 0.000 0.250 0.000 0.1405 1.250 0.000 0.000 0.1405 R1 VF VF 0.04000 0.1405 R1 VF VF CF 0.04000 0.1405 R1 VF VF CF 0.04000 0.0400 0.1405 R1 VF VF 0.04000 0.0400 0.0405 0.0405 0.0405 VF 0.04000 0.0405<	Olio Calib. Cuve Lelest [S:Flame [0] Type 0.002 Aben 345165core-0.00160011 0 0 0 0 0.001 b 0 0 0 0 0.000 0 0 0 0 0 0.000 0 0 0 0 0 0.000 0.250 0.000 0.250 1.250 1.1500 0.000 0.000 0.250 0.000 0.1405 1.250 0.000 0.000 0.1405 R1 VF VF 0.04000 0.1405 R1 VF VF CF 0.04000 0.1405 R1 VF VF CF 0.04000 0.0400 0.1405 R1 VF VF 0.04000 0.0400 0.0405 0.0405 0.0405 VF 0.04000 0.0405<														<u>-0.0516 lar</u>	このかったかいで、その人のないで、	
Callb. Curve Letests [KF]Errife [D1] Type Coll Curve Letests [KF]Errife [D1] Type Ama-0.367iBConne-0.001808081	Callb. Curve Letests [KF]Errife [D1] Type Coll Curve Letests [KF]Errife [D1] Type Ama-0.367iBConne-0.001808081				5										1 000000		
Cellb. Curve Letests K Flame 1 1 Ype 200 Abs=0.3451660-not-0.00169081 Abs=0.3451660-not-0.00169081 1	Cellb. Curve Letests K Flame 1 1 Ype 200 Abs=0.3451660-not-0.00169081 Abs=0.3451660-not-0.00169081 1				i i										1001		
Callb, Curve Latest K.Flarrie 101 1002 Ab=0.345166Cnrc+-0.00169061 10 10 1000 1 0.000 0.1500 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 10000 0.000 0.250 0.750 1 10.0000 0.250 0.350 1 1 10.0000 0.250 0.350 1 1 10.0000 0.250 0.350 1 1 10.0000 0.350 1 1 1 10.0000 0.350 1 1 1 10.0000 0.330 1 1 1 10.0000 0.333 1 1 10.0000 0.0336 0.0336 1 1 10.0000 0.0336 0.0336 0.0337	Callb, Curve Latest K.Flarrie 101 1002 Ab=0.345166Cnrc+-0.00169061 10 10 1000 1 0.000 0.1500 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 1000 1 1 1 1 10000 0.000 0.250 0.750 1 10.0000 0.250 0.350 1 1 10.0000 0.250 0.350 1 1 10.0000 0.250 0.350 1 1 10.0000 0.350 1 1 1 10.0000 0.350 1 1 1 10.0000 0.330 1 1 1 10.0000 0.333 1 1 10.0000 0.0336 0.0336 1 1 10.0000 0.0336 0.0336 0.0337	ype		H + + + + + + + + + + + + + + + + + + +													
Calib. Curve Latest K. Flame 250 Ab=0.345168Conce-0.00169081 250 Ab=0.345168Conce-0.00169081 250 0.250 250 0.250 2000 0.260 2000 0.260 1.000 0.260 0.1400 0.260 0.1400 0.260 0.1400 0.260 1.1400 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.11000 0.13340 1.11000 0.13340 1.11000 0.13340 1.11000 0.13340 1.111000 0.13340 1.11111111111111111111111111111111111	Calib. Curve Latest K. Flame 250 Ab=0.345168Conce-0.00169081 250 Ab=0.345168Conce-0.00169081 250 0.250 250 0.250 2000 0.260 2000 0.260 1.000 0.260 0.1400 0.260 0.1400 0.260 0.1400 0.260 1.1400 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.1000 0.1400 1.11000 0.13340 1.11000 0.13340 1.11000 0.13340 1.11000 0.13340 1.111000 0.13340 1.11111111111111111111111111111111111			Wr Conc											1.00000		
O.002 Abs=0.345168Conce-0.00188081 0.002 Abs=0.345168Conce-0.00188081 0.730 Abs=0.345168Conce-0.00188081 0.730 0.900 0.900 0.150 0.000 0.250 0.000 0.250 0.000 0.250 0.000 0.250 0.000 0.250 0.000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	O.002 Abs=0.345168Conce-0.00188081 0.002 Abs=0.345168Conce-0.00188081 0.730 Abs=0.345168Conce-0.00188081 0.730 0.900 0.900 0.150 0.000 0.250 0.000 0.250 0.000 0.250 0.000 0.250 0.000 0.250 0.000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000				408 R1	425 R1	416 R1	5391 KZ	346 R2	827 R3	007 R3	1324 R8	1355 R&	340 R8	197.1		
O.002 Calib. Curve Letest 0.002 Abs-0.3451 EBC-once-0.00189081 0.750 Abs-0.3451 EBC-once-0.00189081 0.750 0.000 0.200 0.000 0.200 0.000 0.200 0.000 0.000 0.4000 0.000 0.4000 0.000 0.4000 0.000 0.0000 0.0000 0.256 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.1.0000 0.0000 0.1.0000 0.0000 0.1.0000 0.0000 0.1.0000 0.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.0.000 0.1.0000 0.0.000 0.1.0000 0.1.0000 0.1.0000 0.1.0000	O.002 Calib. Curve Letest 0.002 Abs-0.3451 EBC-once-0.00189081 0.750 Abs-0.3451 EBC-once-0.00189081 0.750 0.000 0.200 0.000 0.200 0.000 0.200 0.000 0.000 0.4000 0.000 0.4000 0.000 0.4000 0.000 0.0000 0.0000 0.256 0.0000 0.2000 0.0000 0.2000 0.0000 0.2000 0.1.0000 0.0000 0.1.0000 0.0000 0.1.0000 0.0000 0.1.0000 0.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.1.0000 0.0.000 0.1.0000 0.0.000 0.1.0000 0.1.0000 0.1.0000 0.1.0000	ane		1.500	0.1	0.1	TO C		03	0.6	0.0	00	0.0	00	J O		
			18000000000000000000000000000000000000	0.2550 1 1 0.2550 conc.	(mana)										_		
			1451 88Conce-0	00000	(upm) 0.4000	0.4000	0.4000	1.0000	1.0000	2.0000	2.0000					HINSE	
		Oali	Abs=0.3 6 6 0.5 0.2 2 0.2 2 0.2 2 0.2 2 0.2 2 2 0.2 2 2 0.2 2 2 2	0 												TEST DE	
	esc Instrument Help		0.002														
		nent Help te			8	-		7 (7	7	ო	m m				l = 1		
0.200 + + + + + + + + + + + + + + + + + +		90	0.250	· · · · · · · · · · · · · · · · · · ·	~	m	4 4		8	6		121	13	4	•		-

APPENDIX - B7: Potassium recorded in mg/L from Atomic Absorption Spectrophotometer

0464	Nevista	- wedget of second of GS		
	R1(Control)			0.262
20	R2 (N=30 earthworms)	0.3003	0.561	0.262
	R3(N=40 earthworms)			0.262
	R1(Control)			0.243
25	R2 (N=30 earthworms)	0.3007	0.522	0.243
	R3(N=40 earthworms)			0.243
	R1(Control)			0.222
30	R2 (N=30 earthworms)	0.3026	0.481	0.222
	R3(N=40 earthworms)	:		0.222
	R1(Control)			0.164
35	R2 (N=30 earthworms)	0.3001	0.351	0.164
	R3(N=40 earthworms)			0.164

week 0

CAS-	Numeron and a second	wrigin of storyke. (d)	i Bassela Marit	Fourier (M)
	R1(Control)	0.5919	1.134	0.268
20	R2 (N=30 earthworms)	0.5287	1.124	0.298
	R3(N=40 earthworms)	0.4998	1.145	0.321
	R1(Control)	0.5588	0.984	0.247
25	R2 (N=30 earthworms)	0.5053	0.902	0.250
	R3(N=40 earthworms)	0.5921	1.201	0.284
	R1(Control)	0.5446	0.875	0.225
30	R2 (N=30 earthworms)	0.5584	0.970	0.243
	R3(N=40 earthworms)	0.5790	1.030	0.249
	R1(Control)	0.5475	0.651	0.166
35	R2 (N=30 earthworms)	0.5463	0.658	0.169
	R3(N=40 earthworms)	0.5695	0.742	0.182

week	3
W OUL	-

C.Ael		kan lagtet. At sena talar Adala		the state of the s
	R1(Control)	0.5651	1.098	0.272
20	R2 (N=30 earthworms)	0.5335	1.302	0.342
	R3(N=40 earthworms)	0.5346	1.520	0.398
	R1(Control)	0.5347	0.951	0.249
25	R2 (N=30 earthworms)	0.5342	1.024	0.268
	R3(N=40 earthworms)	0.5423	1.310	0.338
	R1(Control)	0.5637	0.923	0.229
30	R2 (N=30 earthworms)	0.5768	1.097	0.266
	R3(N=40 earthworms)	0.5581	1.132	0.284
	R1(Control)	0.5524	0.664	0.168
35	R2 (N=30 earthworms)	0.5519	0.702	0.178
	R3(N=40 earthworms)	0.5121	0.742	0.203
		week 4		

		week 4		·
- 1 ⁷⁻² (m.	16 rays day	and for all we argin. The		Cast of the second
	R1(Control)	0.5919	1.234	0.292
20	R2 (N=30 earthworms)	0.5287	1.380	0.365
	R3(N=40 earthworms)	0.4998	1.562	0.438
	R1(Control)	0.5588	1.009	0.253
25	R2 (N=30 earthworms)	0.5053	1.052	0.291
	R3(N=40 earthworms)	0.5921	1.547	0.366
	R1(Control)	0.5446	0.894	0.230
30	R2 (N=30 earthworms)	0.5584	1.098	0.275
	R3(N=40 earthworms)	0.5790	1.230	0.297
	R1(Control)	0.5475	0.664	0.170
35	R2 (N=30 earthworms)	0.5463	0.794	0.203
	R3(N=40 earthworms)	0.5695	0.856	0.210

1754 st	Election -	usta serve U	Svínské sál 1975 – Ali	147293-803(%) 147293-803(%)
	R1(Control)	0.5268	1.134	0.301
20	R2 (N=30 earthworms)	0.5568	1.594	0.401
	R3(N=40 earthworms)	0.5684	1.954	0.481
	R1(Control)	0.5324	0.978	0.257
25	R2 (N=30 earthworms)	0.5764	1.312	0.319
	R3(N=40 earthworms)	0.5612	1.589	0.397
	R1(Control)	0.5432	0.924	0.238
30	R2 (N=30 earthworms)	0.5462	1.123	0.288
	R3(N=40 earthworms)	0.5589	1.258	0.315
	R1(Control)	0.5384	0.671	0.174
35	R2 (N=30 earthworms)	0.5581	0.845	0.212
	R3(N=40 earthworms)	0.5694	0.910	0.224

	and a state of the second s Second second s Second second	week 6		
	5.05**0	a distant analysic (1)		Thompson (66)
	R1(Control)	0.5346	1.172	0.307
20	R2 (N=30 earthworms)	0.5231	1.654	0.443
	R3(N=40 earthworms)	0.5563	1.984	0.499
	R1(Control)	0.5347	0.988	0.259
25	R2 (N=30 earthworms)	0.5461	1.267	0.325
	R3(N=40 earthworms)	0.5489	1.687	0.430
	R1(Control)	0.5564	0.949	0.239
30	R2 (N=30 earthworms)	0.5234	1.123	0.300
	R3(N=40 earthworms)	0.5132	1.421	0.388
	R1(Control)	0.5234	0.663	0.177
35	R2 (N=30 earthworms)	0.5346	0.912	0.239
	R3(N=40 earthworms)	0.5412	1.025	0.265

	1		n an an the state of the state	· · · · · · · · · · · · · · · · · · ·
	R1(Control)	0.5624	1.254	0.312
20	R2 (N=30 earthworms)	0.5512	2.304	0.585
	R3(N=40 earthworms)	0.5416	2.451	0.634
	R1(Control)	0.5264	1.008	0.268
25	R2 (N=30 earthworms)	0.5614	1.564	0.390
	R3(N=40 earthworms)	0.5423	2.305	0.595
	R1(Control)	0.5215	0.894	0.240
30	R2 (N=30 earthworms)	0.5647	1.235	0.306
	R3(N=40 earthworms)	0.5234	1.564	0.418
	R1(Control)	0.5641	0.724	0.180
35	R2 (N=30 earthworms)	0.5247	0.935	0.249
	R3(N=40 earthworms)	0.5469	1.174	0.301

		and floor and a second s	(Costantia) (Costantia)	Árghaire (20
	R1(Control)	0.5791	1.320	0.319
20	R2 (N=30 earthworms)	0.5641	2.377	0.590
	R3(N=40 earthworms)	0.5612	2.549	0.636
	R1(Control)	0.5123	0.995	0.272
25	R2 (N=30 earthworms)	0.5314	1.640	0.432
	R3(N=40 earthworms)	0.5432	2.387	0.615
	R1(Control)	0.5321	0.925	0.243
30	R2 (N=30 earthworms)	0.5364	1.200	0.313
	R3(N=40 earthworms)	0.5589	1.698	0.425
	R1(Control)	0.5617	0.778	0.194
35	R2 (N=30 earthworms)	0.5631	1.124	0.279
	R3(N=40 earthworms)	0.5418	1.210	0.313

week

		week 9			
				Nasalatin (%)	
	R1(Control)	0.5641	1.302	0.323	
20	R2 (N=30 earthworms)	0.5423	2.564	0.662	
	R3(N=40 earthworms)	0.5842	3.200	0.767	
	R1(Control)	0.5136	1.024	0.279	
25	R2 (N=30 earthworms)	0.5746	1.987	0.484	
	R3(N=40 earthworms)	0.5416	2.564	0.663	
	R1(Control)	0.5541	1.007	0.254	
30	R2 (N=30 earthworms)	0.5638	1.654	0.411	
	R3(N=40 earthworms)	0.5861	1.980	0.473	
	R1(Control)	0.5356	0.750	0.196	
35	R2 (N=30 earthworms)	0.5264	1.098	0.292	
	R3(N=40 earthworms)	0.5496	1.324	0.337	

APPENDIX C

APPENDIX-C: Calculation

APPENDIX-C1: Calculation for Total Kjeldahl Nitrogen (TKN)

TKN (%) =
$$\underline{A - B}_{C} \times 280 \times 0.0001$$

where

A = volume of sample titrated (ml) B = volume titrated for blank (ml) C = weight of sample (g)

(Source: ASTM for Soil and Peat (D 4972 - 95a)

APPENDIX-C2: Calculation for Total Phosphorus (TP)

TP (%) = $\frac{1.4 \text{ x A x 0.1}}{B}$

A = phosphorus (mg/L) B = weight of sample (g)

APPENDIX-C3: Calculation for Potassium

Potassium (%) = $\frac{1.4 \times A \times 0.1}{B}$

A = potassium (mg/L) B = weight of sample (g)