Study on wear resistance and microstructure of nanosilica-iron based composites.

by

Abu Yazid Bin Zainuddin

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Mechanical Engineering)

MAY 2011

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Study on wear resistance and microstructure of nanosilica-iron based composites.

by

Abu Yazid Bin Zainuddin

A project dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

.~

(AP Dr. Othman/Bin Mamat)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK MAY 2011

İ

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

ABU YAZID BIN ZAINUDDIN

ABSTRACT

When a machine is in operation, two moving surfaces interact to generate a large amount of wear particle. Abrasive wear of engineering machine components caused by the abrasive particle is the major industrial problem. In materials science, **wear** is the erosion of material from a solid surface by the action of another surface. It is related to surface interactions and more specifically the removal of material from a surface as a result of mechanical action. Wear caused by the presence of abrasive particles is influenced by their size, concentration, shape, hardness, and sliding velocities.

The objective of this report is to study on wear resistance of Nanosilica-iron based composites. The studies of this project are aim to research about the differential percentage of nanosilica addition to the pure iron with different sintered temperatures and focus on physical and mechanical properties of nanosilica-iron based composite, several tests will be conducted to the samples, which include density measurement, hardness test and wear resistance.

Currently, iron based silica sand nanoparticles composites 5, 10, 15 and 20 wt. % of nanoparticles silica and were developed through powder metallurgy technique and sintered at 900c, 1000c and 1100c. So to determined which composition are better regarding to the sintered temperature value will be test by using hardness test and wear resistance test.

The results show that the addition of silica sand nanoparticles to iron enhanced the hardness and wear resistance with increasing the sintered temperature and silica sandnanoparticles. An improvement in sintered densities was also observed with increasing trend of sintering temperatures. An optimum value of 20wt.% of silica sand nanoparticles in iron based composites was found to have best micro hardness values and wear resistance for all sintering temperatures.

iii

ACKNOWLEDGEMENT

First of all, the author would like to express utmost gratitude and appreciation to Allah because with His blessings and help, the Final Year Project went very smoothly. Alhamdulillah, all praises to Him that the author have been able to complete this project on time.

This project would not have been possible without the assistance and guidance of certain individuals and organization whose contributions have helped in its completion. First and foremost, the author would like to express his sincere thanks and utmost appreciation to the project supervisor, AP Dr. Othman Mamat for having faith and strong support in guiding the author throughout the whole period of completing the final year project. His kind assistance and guidance from the beginning to the end of this study really help me to undergo my project successfully.

Special express gratitude is also reserved for the Mechanical Engineering Department of Universiti Teknologi PETRONAS for providing excellent support in terms of providing cutting edge knowledge and information not just within the Final Year Project but also the five years spent undergoing every single bit of invaluable knowledge on mechanical engineering.

The author would also like to deliver his warmth appreciation to the technical staff who are involved with this project, namely Mr.Taher Ahmed, Mr. Faisal Ismail, Mrs. Adibah Amir and Mr. Munir for assisting with the technical support and guidance towards this project.

Finally many thanks to the author's family and fellow colleagues for their help and ideas throughout the completion of this study. I hope that the outcome of this report will bring beneficial output to others as well. Thank you very much everyone.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL	i
CERTIFICATION OF ORIGINALITY	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	V
LIST OF FIGURES	viii
LIST OF TABLES	ix
1.0 INTRODUCTION	1
1.1 Project Background	1
1.1.1 Powder Metallurgy	1
1.1.2 Wear Resistance	1
1.1.3 Nanosilica-Iron Based Composite	2
1.2 Problem Statement	2
1.3 Objective	2
1.4 Scope of Study	3
2.0 LITERATURE REVIEW	4

v

3.0 METHODOLOGY	9
3.1 Materials	9
3.2 Tools and Equipments	10
3.3 Specific Project Flow	11
3.3.1 Preparation samples	11
3.3.2 Compaction of Samples	11
3.3.3 Green Density Measurement	12
3.3.4 Sintering of Composites	12
3.3.5 Sintered Density Measurement	12
3.3.6 Hardness and Wear Resistance Test	12
3.4 Flow Chart	13
3.5 Project Planning	14
4.0 PROJECT ACTIVITY	16
4.1 Preparation of the Samples	16
4.2 Mixing with ball mill	16
4.3 Compacting	17
4.4 Sintering	19
4.5 Field Emission Scanning Electron Microscopic (FESEM) and	20
Energy Dispersive X-ray Spectroscopy (EDX)	
4.6 Microhardness	20
4.7 Setting up the pin on disc wear test using DUCOM Multi	21
Specimen Tester	

5.0 RESULTS AND DISCUSSIONS	24
5.1 Sintered density	24
5.2 FESEM and EDS Analysis of the Fe-SiO ₂ nanoparticles composites	25
5.3 EDS (point) analysis of silica sand nanoparticles iron based composites	28
(1100 °C sintering temperature)	
5.4 Hardness measurements of Fe-SiO ₂ nanoparticles composites.	30
5.5 Wear resistance	32
6.0 CONCLUSION	39
6.1 Conclusion	39
7.0 REFERENCES	41

LIST OF FIGURES

Figure 1: Project Flow Chart	13
Figure 2: Mettler Toledo AX205 density measurement instrument	16
Figure 3: Silica sand Nanoparticles	16
Figure 4: Ball mill machine	17
Figure 5: Autopallet press machine	17
Figure 6: Compaction result of samples	18
Figure 7: The Iron - carbon phase diagram	19
Figure 8: Field Emission Scanning Electron Microscopic (FESEM)	20
Figure 9: Vickers Microhardness tester	21
Figure 10: Holder for sample (pin)	21
Figure 11: DUCOM multi specimen tester	22
Figure 12: Schematic diagram on pin on disk apparatus	23
Figure 13: FESEM analysis (900 °C sintering temperature)	.25
Figure 14: FESEM analysis (1000 °C sintering temperature)	26
Figure 15: FESEM analysis (1100 °C sintering temperature)	28
Figure 16: EDS (point) analysis	30
Figure 17: Hardness (Hv) analysis Vs Nanosilica composition	31
Figure 18: Front view holder for pin	32
Figure 19: Side view holder for pin	33
Figure 20: Weight loss 100 N vs. Different Nanosilica percentage	35
Figure 21: Sample of being wear of Fe-SiO ₂ nanoparticles composites	36
Figure 22: Wear rates vs. Nanosilica composition	38

LIST OF TABLES

Table 1: Summary of Literature Review	6
Table 2: Project Planning for July 2010 Semester	14
Table 3: Project Planning for May 2011 Semester	14
Table 4: Composition weight of iron and silica sand nanoparticles.	16
Table 5: DUCOM multi specimen test parameter	23
Table 6: Comparison green density and sintered density	24
Table 7: Comparison microhardness	31
Table 8: Weight loss with 100 Newton load	34
Table 9: Summaries the calculation and shows the wear rate of each samples.	37
Table 10: The wear rate of pure Iron and composite reinforced	38

INTRODUCTION

1.1 Project Background

1.1.1 Powder Metallurgy

Powder technology is the science for the manufacture of parts from metal powders by compaction and heating that creates a homogeneous mass. Heating is executed in a furnace and is called sintering. The temperature at which sintering is performed is lower than the melting point of the powdered material. This is the basic principle of powder technology.

The processes involved in powder metallurgy are the following:

Blending and Mixing: This is carried out to achieve uniformity of the product manufactured. Distribution of properly sized particles is attained by mixing elementary powder with alloy powders to obtain a homogeneous mixture.

Pressing: The cavity of the die is filled with a specified quantity of blended powder, necessary pressure is applied, and then the compacted part is ejected. Pressing is performed at room temperature, while the pressure is dependent upon the material, properties of the powder used, and the density required of the compaction

Sintering: Changes occur during sintering, including changes in size, configuration, and the nature of pores. Sintering operation ensures that powder particles are bonded strongly and that better alloying is achieved.

1.1.2 Wear Resistance

In materials science, **wear** is the erosion of material from a solid surface by the action of another surface. It is related to surface interactions and more specifically the removal of material from a surface as a result of mechanical action. The need for mechanical action, in the form of contact due to relative motion, is an important distinction between mechanical wear and other processes with similar outcomes. The definition of wear does not include loss of dimension from plastic deformation, although wear has occurred despite no material removal, because it may lack the action of another surface. This definition also fails to include impact wear, where there is no sliding motion, cavitations, where the counter body is a fluid, and corrosion, where the damage is due to chemical rather than mechanical action.

1.1.3 Nanosilica-Iron Based Composite

Metal and ceramics composites have been attracting researchers' interest in recent years, since it can provide many advantageous characteristic. Metal and ceramics composites are extremely used as materials for product which required high thermal and high wear resistance and hardness. In this experiment study the following composites were developed with 5%, 10%, 15% and 20% silica sand nanoparticles were prepare by using powder metallurgy method. Microstructure analysis, hardness and wear resistance were evaluated and discussed.

1.2 Problem Statement

Ceramics possess much higher specific strength and stiffness, improved high temperature properties, higher wear resistances and lower thermal expansion coefficients of metal. The study of wear resistance, particularly for Nanosilica-Iron Based Composite is not well established although it is necessary to understand the mechanism itself for further investigations and improvements in the synthesis of material industry.

1.3 Objective

Objective of this project is to determine the wear resistance of nanosilica-iron based composites.

1.4 Scope of Study

The studies of this project are aim to research about the differential percentage of nanosilica with different sintered temperatures and focus on physical and mechanical properties of the composite, several tests will be conducted to the samples, which include density measurement, hardness test and wear resistance test. The scope of studies of this project includes:

Material Preparation

- Grinding
- Compaction

Material studies

- Density
- Microstructure

Physical and mechanical properties test

- Hardness
- Wear resistance

2.0 LITERATURE REVIEW

The effect of the hardness of particles on abrasive wear has received considerable interest as well. The influence of hard silica or quartz particles on wear process has been investigated by many researchers. The results have showed that the small titania particles have been found to reduce wear in hybrid rolling bearing and increase the polishing wear in all-steel bearing [1].Increase in friction is not proportional to the concentration but proportional to the amount of the actual interfering particles [1].In a two body abrasive system ,the wear rates increase with increase of particles size up to a critical size (around 100 um), and above this value , the particles size effect in wear rates become almost negligible [1].

Wear results in severe economics loss and it is estimated that the cost of abrasion is about 1-4%. Composite materials with steel matrix and ceramic particle reinforcements provide a scope of producing relatively inexpensive wear resistance material. Wear can be generally described as the removal of the material from a surface in relation motion by mechanical and or chemical process. The tribological behavior of the composites depended on the micro structural properties of the material and type of loading-contact situation (tribo-system) [5]. The sintering process of the powder metallurgy is mainly controlled by solid diffusion and the compaction load. Generally the compaction increase with increasing reinforcement volume fraction [3]. The compressive resistances increase with the increasing of the Al₂0₃ weight fraction and therefore the porosity of 15 wt % Al₂0₃ composites is the highest. A uniform distribution of reinforcement could be possible only when reinforcement size is not less than a critical value, which is the function of reinforcement size and volume fraction and reduction ratio of secondary process.

Though much less research work has been carried out on Cu based alloy composite materials, the milling time of the power has a remarkable influence on the internal oxidation of Al_2O_3 . Cu composites [3]. Aluminum based composites were produced with highly refined structure, strengthened by oxide and Carbide dispersion, homogeneous distribution reinforcement, full densification and better mechanical

properties [5]. The wear behavior of Cu alloy-Sic composite transforms from mild to severe wear, and then to seizure [3].

The properties of metal matrix particulate composites depend mainly upon the microstructure and properties of matrix materials, nature of particles, the distribution, size and shape of particles and the interfacial behavior between particles and matrix. The most developments in the of iron-based powder metallurgy based on principle of obtaining wear-resistance material by the creation of a psedoalloy with a clearly defined heterogeneous structure, in which the micro hardness of the base material and hard phrase are substansially different [4]. Had fabricated and characterized composites of iron --chromium reinforced with 5-25 wt. % of alumina particles using powder metallurgy method and investigated the XRD analysis as well as mechanical properties [4]. Prepared iron base powder metallurgy composites by using SiC and C as reinforcement and investigated that the tensile strength and hardness of the sintered Fe-C composites were inferior to those of the sintered Fe materials [4]. The reason for property differences in the sintered Fe-Carbide were Carbide decomposition and reaction between Fe and Carbide constituents. The green density, sintered density and hardness of the composites were measured. The polish samples were analyses by using FESEM and EDS analysis. Below the examples of journal that became references.

Table 1: Summary of the journal

No	Author(s) + Title	Findings	Remarks, comments
1	The characterization of wear transitions in sliding wear process contaminated with silica and iron powder. (C.Q.Yuan, Z.Peng, X.C.Zhou, X.P.Yan)	Materials - N32 lubricant -Iron powder -Silica powder	-In this experiment using pin on disc machine to measure wear resistance and it's sample are ball shape
	School of Engineering, James Cook University, Townsville, Old 4811, Australia	Methods -Pin-on disc test	-It is different from project sample there is in pallet form
	Reliability Engineering Institute, Wuhan University of Technology, Wuhan 430063, PR CHINA	Results - Silica particles decreased after thus particles got involved in the wear process	
		-The strong cutting effect of the silica powder was weakened by the presence of the iron powder	
		-Iron powder effectively reduce the friction between the wear surfaces -by increase the experiment time, the silica was broken by wear effect to reproduce new sharp edges.	

	characterization of	- Zircon sand	-With this journal the author noticed that, to study about how silica sand are						
	zirconium carbide-	-Blue dust							
	reinforced iron-based	-Aluminium powder							
	composite.		distributed in iron, are using						
	(Karabi Das [*] , T.K.	Methods	XRD and SEM microscopy.						
	Bandyopadhyay)	-Charge preparation							
		-Microscopy, image	-It's sample are 12mm						
	Department of Metallurgical	analysis, and X-ray	square cross section and						
	ana Maleriai Engineering,	diffraction (XRD)	10mm thickness, it's size						
	Tashualam, Khangamur 721	Study	are almost same with pallet						
	302, India	-Adiasive wear lest	SIZE						
		Kesuits	-Abrasive test using linear						
		- All the aluminium	abraser are suitable method						
		reduction reaction	ior wear resistance test						
		some aluminium	using panet.						
	-	remains in solution							
		with iron.							
		-Keeping the amount of							
		carbon in the charge							
		material constant as the							
		amount of aluminium							
		in the charge							
		composition decreases,							
		the recovery of Zr							
		decreases.							
		-The hardness of the							
		matrix is significantly							
		higher than that of the							
	}	plain carbon steel							
		matrix, is due to solid							
		solution strengthening							
	}	and silicon							
<u> </u>	Development of copper-	Materiale	-Higher hardness of the						
	alumina metal matrix	- Copper powder	particle, better is the wear						
	composite by powder	-Alumina powder	resistance						
	metallurgy method.								
		7							

			-Measure the sample
			hardness first before wear
	R. Thirraviam*	Methods	resistance
	Department of Mechanical	-XRD analysis and	
	Engineering,	microstructure	- Measure the wear
	Sethu Institute of Technology	-Hardness and wear	resistance by using weight
		testing	loss, and will convert the
	T. Sornakumar		weight loss to volume lost
	Department of Mechanical	Results	
	Engineering	ittouito	
	Thiagaraiar College of	-The sintering process	
	Engineering	mainly controlled by	
	2	solid diffusion and the	
	A Senthil Kumar	compaction load the	
	Department of Production	norosity deccrease with	
	Faineerina	increasing	
	Sethy Institute of Technolom	reinforcement volume	
	Settin Institute of Technology	fraction	
		nachon.	
		-The high energy hall	
		milling process reduces	
		the reinforcement size	
		and tonds to aliminate	
		and tends to eniminate	
		churtaning og woll og	
		clustering as well as	
		remorcement.	
		-A higher constraint to	
		the localised matrix	
		deformation during	
		indentation as a result	
		of the presence of	
		ALO.	
		Al ₂ O ₃	
4	Characerization of iron-	Materials	-The author notice that,
	silica sand nanoparticles	- Iron powder	repare 5 sample from
	composites with different	-Silica Sand	powder metallurgy method
	Sintering Tempearature	nanoparticles powder	there are pure iron, Nano-
			silica mixed iron
	Tahir Ahmed, Othman Mamat.		5%,10%,15%,20%
	2010, "Characterization and		
	Properties of Iron-Silica Sand	Methods	-Hardness measurements
	Nanoparticles Composites",	-XRD analysis and	were made using micro
	DETRONAS Malavaia	microstructure	Vickers hardness tester.
	i Di NOIMAO, Malaysia.	-Hardness and wear	
		testing	
		-Powder metallurgy	

·		
	Results	
	-An increasing trend of hardness was observed with increasing trend of silica sand nano particles in iron as well as as increasing the sintered temperature.	
	-Improved hardness may be resulted from solid solution strengthening of by Si atoms and formation of pearlite phase.	
	- -From FESEM and EDS analysis it is observed that the silica sand nanoparticles diffuse in the porous sites of composites	
	causing an improvement in mechanical properties as well as improved the microstructure	

<u>3.0 METHODOLOGY</u>

3.1 Materials

Nanosilica-Iron Based Composite sample are required to implement the research. The Iron powder (99.5%) with size 10um commercially available was used. For nanosilica we got from silica sand originated from Tronoh, Perak, Malaysia and grounded to nanoparticles by using ball mill with zirconium ball as grinding media.

Iron Powder

- Size: (10µm) commercially available was used
- Purity: 99.5%

Nano-Silica Sand

- Origin/Company: Tronoh (local source)
- Size: Average of 77.82nm (Intensity produced by Zetasizer Nano Analyzer)
- Purity: 95%

3.2Tools and Equipment

The following are major tools and equipments that will be utilized in the laboratory experiment for the research:

Equipments and tools use for producing nanosilica-iron composites

- US Stoneware Ball Milling Machine (for grinding and mixing materials)
- Carver Autopellet Press Machine, USA (for compaction samples)
- Metallic mould
- Sintering furnaces
- Ceramics balls

Equipments and tools use for study the microstructures of samples

• Scanning Electron Microscopic (SEM)

Equipments and tools use for study physical and mechanical properties

- Micro Vickers hardness tester.
- Mettler Toledo AX205 density measurement instrument
- DUCOM Multi Specimen Tester

3.3 Specific project flows

3.3.1 Preparation samples with mixing of iron powder and Nano-Silica Sand

The iron powder (99.5%) with size 10um commercially available was used mixed with silica sand nanoparticles (95%) average (78.82 nm) originated from Tronoh, Perak were ball mill for one hour. Then, 30 ceramic balls will be put inside the bottle with the iron powder and with silica sand nanoparticles mixture. The iron power and silica sand nanoparticles will be milling for one hour. The preparation of the iron powder and with silica sand nanoparticles with the percentage of silica sand nanoparticles which are:

- 5% silica sand nano-particles
- 10% silica sand nano-particles
- 15% silica sand nano-particles
- 20% silica sand nano-particles

Every different percentage of silica sand nano-particles will be produce with three samples.

3.3.2 Compaction the samples

The autopalletiser 69MPa force by using a metallic mould of diameter of 13mm was use to make the compacted pellets. The following composites were developed: 5% silica nanoparticles, 10% silica nanoparticles, 15% silica nanoparticles, 20% silica nanoparticles. The compactions of samples to be produced are:

- 3 samples of pure iron with 5% silica nano-particles
- 3 samples of pure iron with 10% silica nano-particles
- 3 samples of pure iron with 15% silica nano-particles
- 3 samples of pure iron with 20% silica nano-particles

3.3.3 Green Density Measurement

All the samples will be measure their green density using Mettler Toledo AX205 Density Measurement, using Archimedes' Method. The green density are important because to compare it with sintered density.

3.3.4 Sintering the all sample Composites

The green compacts were sintered at 900 C, 1000 C, and 1100C for two hour in argon atmosphere. The heating and cooling rates of sintering process were 5C/min and 10C/min respectively.

3.3.5 Sintered Density Measurement

Both green and sintered densities of relevant samples were measured by using Mettler Toledo AX205 density measurement instrument following the Archimedes method and compare to green density to know the condition composition of composite. All samples were analyses by using FESEM and EDS to study about it microstructure.

3.3.6 Hardness and Wear Testing

The Vickers Hardness Value (HV) was determined using micro hardness tester. Wear resistance is determines by using DUCOM Multi Specimen Tester. It was performed according to ASTM Standard G99 (Eyre, 1991). This type of apparatus offers far better control of experimental conditions and become increasingly used in preference to other tribometers

t

3.4 Project Planning using flowchart

The iron powder (99.5%) with size 10um mixed with silica sand nanoparticles (95%) average (78.82 nm) were ball mill for one hour to produced 5%,10%,15%,20% of iron-nanosilica composites

The autopalletiser 69MPa force by using a metallic mould of diameter of 13mm was use to make the compacted pellets, every different percentage of silica sand nano-particles will be produce with three samples.

All the samples will be measure their green density using Mettler Toledo AX205 Density Measurement, using Archimedes' Method.

The green compacts were sintered at 900 C, 1000 C, and 1100C for two hour in argon atmosphere. The heating and cooling rates of sintering process were 5C/min and 10C/min respectively.

Microstructure analysis using FESEM, to show how silica sand nanoparticles are distributed in iron and occupied the porosity place after sintering.

Figure 1: Project Flow Chart

3.5 Gantt Chart and Mile Stone

Table 2: Project Planning for July 2010 Semester

No	Detail/Week	1	2	3	4	5	6		7	8	9	10	11	12	13	14
1	Selection of Project topic							1								
2	Preliminary research work															
	Literature Review															
	 Preliminary report preparation 															
	 Preliminary report submission 															
3	Start the project work															
	Ball mill nanosilica- iron mixture one hour					「「「		Mid-se								
	Compact the mixture							me								
4	Progress report and seminar							ste								
	• Data gathering analysis							rbr								
	 Preparation of progress report 							eak								
	 Progress report submission 															
	• Seminar															
5	Project work continuation															
	 Take the green density of composites using Mettler Toledo AX205 Density Measurement 															
	Sintering furnace booking															
	Sintering samples															
	 Take sintered density of composites using Mettler Toledo AX205 Density Measurement 															
6	Interim report															
	Data gathering analysis															
	 Submission of interim report 															
7	Final presentation							Stuc	ly w	eek						

Process

Key Milestone

No	Detail/Week	1	2	3	4	5	6		7	8	9	10	11	12	13	14
1	Continuation project work															
	Literature riview			Sec. 1	11 11											
	 Ball mill nanosilica-iron mixture one hour 							Mid-s								
	Compact the mixture							iem							-	
	 Take the green density of composites using Mettler Toledo AX205 Density Measurement 							ester break								
	 Sintering samples 			Elte												
	 Designing and manufacture holder for pin on disc wear test. 															
3	Continuation project work															
	 Study microstructure using FESEM machines 															
	 Measurement of hardness of composites using Microvicker Hardness Tester machine 															
	 Wear resistance test of the composites using pin on disc method 															
4	Progress Report															
	Data gathering and analysis														1.	
	• Submission of progress report 2															
5	Project Work Continues															
	Pre-EDX															
6	Pre-EDX															
	 Poster, dissertation report, oral presentation and hard bound DR submission 															
	Submission of draft report															
	 Submission of dissertation report (soft bound) 															
	Submission of technical report															
	Oral presentation			1					St	udy	wee	k		1.11		
	 Hard bound dissertation report submission 						i	afte	r or	al p	rese	ntatio	on			

Table 3: Project Planning for May 2011 Semester

Process

 \triangle

Key Milestone

4. PROJECT ACTIVITIES

4.1 Preparation of The Samples

Using the ratio wt%, 2 grams of the mixture of iron and silica nanoparticles has been made. The weight for the ratio is measured by using the Mettler Toledo AX205 density measurement instrument.

Composition (total 2grams)	Iron powder (g)	Silica and nanoparticles (g)
Iron + 5%wt silica sand nanoparticles	1.9000g	0.1000g
Iron + 10%wt silica sand nanoparticles	1.8000g	0.2000g
Iron + 15%wt silica sand nanoparticles	1.7.000g	0.3000g
Iron + 20%wt silica sand nanoparticles	1.6000g	0.4000g

Table 4: Composition weight of iron and silica sand nanoparticles.

Figure 2 : Mettler Toledo AX205 density measurement instrument

Figure 3 : Silica sand nanoparticles

4.2 Mixing with ball mill

The pure iron was added with 5% wt silica sand nanoparticles, 10% wt silica sand nanoparticles, 15% wt silica sand nanoparticles, and 20% wt silica sand nanoparticles to produce mixture by using ball mill machine for 1 hour. Using 30 ceramics ball as a

grinding media to grind the mixture. From the ball mill, 3 samples from 5%, 10%, 15%, 20% iron-nanosilica is being produced. Weights of every sample are 2 grams.

Figure 4: Ball mill machine

4.3 Compacting

After the mixture was mixing using ball mill, the mixture will be weight 2 gram before compacting. This is because to make syncronize weight for every sample. The compaction is done by using the auto pallet press machine .The 69MPA are need as pressure to make 13mm diameter pallet.

Figure 5 : Autopallet press machine

Below are samples result produced after being compaction by using Autopallet press machine

Figure 6 : a) Iron powder added 5%wt silica sand nanoparticles b) Iron added 10%wt silica sand nanoparticles c) Iron added 15%wt silica sand nanoparticles d) Iron added 20%wt silica sand nanoparticles

4.4 Sintering

Now after compaction, we need to get green density using Archimedes method, the density before sintered and after sintered will be comparing. Three batches samples were created, and each batch contains the pure iron, 5wt% silica sand nanoparticles, 10wt% silica sand nanoparticles, 15wt% silica sand nanoparticles and 20wt% silica sand nanoparticle developed and characterized at different sintering temperatures through powder metallurgy technique and sintered at 900 °C, 1000 °C and 1100 °C for two hour under argon atmosphere by using the sintering furnace. These temperatures were decided to be as the parameter based on Iron – carbon phase diagram. The heating and cooling rates of sintering process were 5C/min and 10C/min respectively.

Figure 7 : The Iron - carbon phase diagram [15]

4.5 Field Emission Scanning Electron Microscopic (FESEM) and Energy Dispersive X-ray Spectroscopy (EDX)

FESEM and EDX are needed to show that how silica sand nanoparticles are distributed in iron and occupied the porosity places after sintering. Increasing trend of silica sand nanoparticles indicates that more pores are filled with 20% silica sand nanoparticles as compared to 5% silica sand nanoparticle. The samples are observed at magnifications of 1000x with the resolution of 1nm.

Figure 8 : Field Emission Scanning Electron Microscopic (FESEM)

4.6 Microhardness

The Vickers Hardness Value (HV) was determined using micro hardness tester at constant load of 300gf and dwelling time of 15 seconds.

Figure 9 : Vickers Microhardness Tester

4.7 Setting up the pin on disc wear test using DUCOM Multi Specimen Tester

The main problem to do the wear test using DUCOM multi specimen tester is the holder for the shape using Carver Autopellet Press Machine because the holder are not available for the tablet for shape 13mm x 5mm. So the shape of the holder must be design and manufacture it to make sure the pin on disc wear test using DUCOM multi specimen tester can be implement. Drawing figure 6 show that the holder of the pin.

Figure 10: Holder for samples (pin)

The specimen and hardened steel disc were cleaned and dried using cotton dipping with acetone, the mass of each specimen was measured using 4 decimal point electronic digital balances. The specimen was placed and fitted in the bit slot and tightened by rotating chuck key into chuck cap. The chuck key rotated the clamp gear and by rotating the collar. Once the rotation reached exact frequency that matched with speed required, the stop watch was started to record the total time for rotation. When the time was up, the stop button was pushed on the frequency inverter to stop the rotating disc, specimen holder was jerked up. The final mass of specimen was recorded

Figure 11: DUCOM Multi Specimen Tester

The details regarding the pin-on-disk type wear testing apparatus can be referred to Figure 12. When using this machine, user can set the parameters by key in the values. The parameters for the DUCOM Multi Specimen Tester as per Table 5:

Figure 12: Schematic diagram of the pin-on-disk apparatus

Variables	Unit	Values	
Load	Kg	10	
Rotating speed	RPM	360	
Time	Minute	6,	
Temperature	°C	Room temperature (24)	
Geometry	-	Circular	
Material used		1) Test specimens	
		(Counterface-1)	
		2) Disk Material Hardened	
		steel (Counterface-2)	
Surface finish		Machined surface finish	
Type of lubricant	-	Dry	

Table 5: DUCOM Multi Specimen Tester Parameters

5.0 RESULTS AND DISCUSSION

5.1 Sintered density

Now after compaction, we need to get green density using Archimedes method, the density before sintered and after sintered will be comparing.

Material	Green	Sintered@	Sintered@	Sintered@
	Density	900 degree C	1000 degree C	1100 degree C
Fe (pure)	5.643	6.119	6.154	6.425
Fe + 5%Nanoparticles	5.125	4.739	5.144	5.401
Fe +10%Nanoparticles	4.576	4.625	4.745	4.869
Fe +15%Nanoparticles	4.087	3.521	4.249	4.286
Fe +20%Nanoparticles	3.929	3.954	4.053	4.132

Table 6: Comparison of green and sintered densities

Refer to the result; increasing trend of silica sand indicated that more pores are filled with 20% silica sand nanoparticles as compared to 5% silica sand nanoparticles. The green densities of the sample are reducing from the 5% iron-nanosilica to 20% iron - nanosilica. Same happen after the samples being sintered at 1000degree C and 1100degree C but for 900 degree C the sintered are not being consistent because density for 20% iron-nanosilica high than 15% iron-nanosilica. Some of sample those being sintered are high from green densities. However after sintering an improvement in sintered density was observed. More improvement in sintered density was observed in case of 1100 °C sintering temperature due to appearance of liquid phase sintering. The formation of liquid phase is due to the melting of intermetallic compounds between iron

and silica sand nanoparticles which have lower melting point than the sintering temperature

5.2 FESEM and EDS Analysis of the Fe-SiO₂ nanoparticles composites

5.2.1 FESEM Analysis of 5, 10, 15 and 20 wt. % silica sand nanoparticles iron based composite. (900 °C sintering temperature)

Figures 13 (a, b, c and d) shows that how silica sand nanoparticles are distributed in iron and occupied the porosity places after sintering. Increasing trend of silica sand nanoparticles indicates that more pores are filled with 20% silica sand nanoparticles as compared to 5% silica sand nanoparticles. Diffusion welding between the iron and silica sand nanoparticles is started here in sintering temperature of 900 $^{\circ}C$ and it will increase as the sintering temperature increased.

Figure 13 : FESEM analysis of Fe-SiO₂ nanoparticles composites with (a) 5wt.% SiO₂, (b) 10wt.% SiO₂, (c) 15wt.% SiO₂, (d) 20wt.% SiO₂. (900 °C sintering temperature)

5.2.2 FESEM Analysis of 5, 10, 15 and 20wt.% silica sand nanoparticles iron based composite. (1000 °C sintering temperature)

As the sintering temperature increased more diffusion take place and also most of the silica sand nanoparticles are connected with iron particles and eaten by them due to diffusion process. More clear and big void were observed in figure 14 (a, b, c and d) also ferritic iron phase and pealite iron phase are more clear and visible as compared to figure 13. These black voids are mixture of silica sand diffused in iron particles. More diffusion welding between the iron particle and silica sand nanoparticles is seen here due to homogeneous structure of the phases.

Figure 14 : FESEM analysis of Fe-SiO₂ nanoparticles composites with (a) 5wt.% SiO₂, (b) 10wt.% SiO₂, (c) 15wt.% SiO₂, (d) 20wt.% SiO₂. (*1000°C sintering temperature*)

5.2.3 FESEM Analysis of 5, 10, 15 and 20wt.% silica sand nanoparticles iron based composite. (1100 °C sintering temperature)

More clear and big void were observed in figure 15 (a, b, c and d) also ferritic iron phase and pealite iron phase are more clear and visible as compared to figure 14. The light zones represent ferritic iron. The light grey zones represent lamellar structure of pearlite phase. The dark zones represent voids surrounding the decomposed SiO_2 particles. During the sintering of Fe- SiO_2 compacts, some of SiO_2 particles decomposed into Si and O_2 atoms could diffuse into the Fe particles [9]. These black voids are mixture of silica sand diffused in iron particles. Also decomposition of SiO_2 particles resulted in growth of voids as observed by sintering the composites at 1100 °C, the voids are more big and clear.

The distribution of crystalline domain size for sintered sample: as predicated thermal analysis, the powder sintered at 800 °C is still nanostructure, where at 825 °C the material undergoes a strong grain growth and becomes ulta-fine with some grains even larger than 1 μ m [11]. Also from classified metallurgy of steel it is well known that the grain growth can be limited by pinning the grain boundary with precipitate, such as carbides, nitrides, oxides and the intermetallics. Due to better diffusion welding between iron particles and silica sand nanoparticles a more clear and homogenous structure is seen in case of sintering temperature of 1100 °C

Figure 15 : FESEM analysis of Fe-SiO₂ nanoparticles composites with (a) 5wt.% SiO₂,(b)10wt.% SiO₂, (c) 15wt.% SiO₂, (d) 20wt.% SiO₂. (1100 °C sintering temperature)

5.3 EDS (point) analysis of silica sand nanoparticles iron based composites (1100 °C sintering temperature)

Figure 16 shows the point and EDS analysis where the different points have been taken to verify the description of figure 13 and figure 15: the light zones (figure 16a) represent ferritic iron. The light grey zones (figure 16b) represent lamellar structure of pearlite phase containing a little bit silicon content and make the surface harder. The dark zones (figure 16c, d) represent voids surrounding the decomposed SiO₂ particles. The decomposed Si from SiO₂ diffuses inside iron during sintering and forming a new compound FeSi. This phase or compound is a main causing of hardening of Iron based composites. These results have been here verified by EDS analysis of the silica sand nanoparticles iron based composites in figure 16(a1) only Fe peaks are present similarly in figure 16(b1) the Fe peaks are present but in figure 16(c1) and figure 16 (d1) where the dark zones has been taken, the peaks of Fe, Si and O_2 are present.

Figures 16: EDS (point) analysis of Fe-SiO₂ nanoparticles composites (1100 °C sintering temperature)

5.4 Hardness measurements of Fe-SiO₂ nanoparticles composites.

An increasing trend of hardness was observed with increasing trend of silica sand nanoparticles in iron as well as increasing the sintered temperature as shown in figure 9. The maximum hardness 153.5HV was achieved in the composites with optimum value of 20 wt.% of silica sand nanoparticles and 1100 °C sintering temperature. Improved hardness may be resulted from solid solution strengthening of by Si atoms and the formation of pearlite phase. Such observation of solid solution strengthen by silicon diffusion was also observed [12]. The micro hardness tests also reveal that increasing trend of hardness is due to dispersion hardening of silica into iron matrix. Also good mechanical properties can be obtained due to good binding interface between the components. Composites that transient liquid phase sintering is only possible with proper sintering temperature which enhanced the diffusivity of alloying elements. The good binding interface provided the good mechanical properties of the composites.

During the micro hardness test, it was found that silicon rich phase have more hardness as compared to iron rich phase. It is due to diffusion of Si in Fe to make FeSi phase during sintering. This FeSi compound phase is main cause of increasing hardness of the composites. The results of micro hardness are verified by FESEM analysis by measuring the diagonal length of the indenter produced for both phases. Because the Si-rich phase does not allow indenter for deep indentation and resist more to indentation. But for Fe-rich phase from microstructure, it is easily observed some of surface is fracture due to indentation load. At 1100 °C there is some level of dissociation of SiO₂ into Si and O₂.

This temperature also approaches the melting temperature of Iron (1535 °C). There is therefore the possibility of a eutectic reaction between the dissociated Si and Fe to form the compound FeSi. This hard phase formed in the Si-rich region of the composite resist to the deep penetration of indenter.

Composition of nanosilica	900 °C/HV	1000°C/HV	1100 °C/HV
5% of nanosilica	105.3	53.8	87.1
10% of nanosilica	72.5	77.2	96.9
15% of nanosilica	53.9	86.6	138.3
20% of nanosilica	60.3	115.5	153.5

 Table 7: Comparison of Microhardness

Figure 17: Hardness (Hv) analysis Vs Nanosilica composition

5.5 Wear resistance

Pin on disc type of testing apparatus has been widely to study wear properties and to classify the rank of the material. The test was known as a general test that can determine the sliding wear behavior of materials pairs and its correlation. It was performed according to ASTM Standard G99 (Eyre, 1991).

The wear mechanisms operative plastic ploughing and grooving of the ironbase matrix phase. At higher loads, removal of the iron from the surface is very high. The material loss is considered to result from removal of material chips from the specimen, due to the microcutting of the abrasive particles. Residual porosity plays an important role when the wear is performed under a high wear load so, the porosity effect must be counted. Porosity in the wear surface of the composite effectively reduces the contacting surface area and thus increases the net wear load. Other factors that increase the wear loss due to porosity are the notch effect and the shape of the porosity

5.5.1 Patterning holder for sample

The main problem to do the wear test using DUCOM multi specimen tester is the holder for the shape using Carver Autopellet Press Machine because the holder are not available for the tablet for shape 13mm x 5mm. So the shape of the holder must be design and manufacture it to make sure the pin on disc wear test using DUCOM multi specimen tester can be implement. Drawing figure 6 show that the holder of the pin.

Figure 18: Front view holder for samples (pin)

Figure 19: Side view with dimension holder for samples (pin)

5.5.3 Wear test at 100Newton load

Before start the experiments, a surface treatment, e.g. grinding and polishing are done to prevent the surface roughness effect to the materials. Hence, the material's wear decreases as its surface hardness increases, which is consistent with the outcomes of [13]. However, these authors [13] recommend care while interpreting their results, given that some materials may not behave in the same way. This is the new area of research because still no researchers had studied the behavior of the iron based silica sand nanoparticles composites. The test was known as a general test that can determine the sliding wear behavior of materials pairs and its correlation. It was performed according to ASTM Standard G99 (Eyre, 1991) but following parameters should be counted for this research:

1. Different in surface roughness of materials.

Refer to the sample clearly see that, adding more reinforcement to the iron which is ceramics more surface roughness is produced. An increase in the antagonistic surface roughness significantly increased the wear of composite[8]. The friction was found to depend on surface roughness where the rougher surfaces gave higher friction coefficients [14]. The wear rate was found to be independent of the roughness, whereas the roughness had a strong influence on the wear rate. surface roughness itself can have a major impact on experimental results, where a

smoother surface usually is the better [14]. The influence of roughness on the friction and the wear rate was stronger than the influence of coating material.

Table 10 shows the weight loss composite reinforced with 5, 10, 15 and 20wt% of silica sand nanoparticles. The iron 5wt% exhibits the maximum weight loss due to its relatively low hardness. The weight losses of the composite decreases with increasing the silica sand nanoparticles volume fractions, from 5wt% to 20wt%.

Composition of SiO ₂	Before(g)	After (g)	Weight loss (g)
5wt%	2.52103	2.48573	0.0353
10wt%	2.19914	2.18604	0.0131
15wt%	2.41111	2.40031	0.0108
20wt%	2.96427	2.96177	0.0025

Table 8: Weight loss with 100 Newton load

Figure 20: Weigh loss (g) 100 Newton Vs Nanosilica composition

Figure 21 : Sample of being wear of Fe-SiO₂ nanoparticles composites with (a) 5wt.% SiO₂,(b)10wt.% SiO₂, (c) 15wt.% SiO₂, (d) 20wt.% SiO₂. (*100 Newton load*)

5.5.4 SAMPLE CALCULATION FOR WEAR RATE

By using densitimeter mass in air of the sample, m_a and in water, m_w were measured and recorded. To find the density of the sample, the following formula was used;

$$\rho = \frac{m_a}{m_a - m_w} X \rho_w$$

Where ρ_w is the density of water.

Volume loss, W was calculated using the following formula;

$$W = \frac{\Delta m}{\rho}$$

Where w is the density of water.

Volume loss, W was calculated using the following formula; Where Δm is the mass loss of specimen due to wear. The wear rate was calculated using the following formula:

$$W(t) = \frac{W}{t}$$

Where t is time in seconds (in this experiment, the time is 360 seconds).

To calculate the wear rate, the mass in air of the sample, m_a and in water, m_w were measured and recorded.

Composition of	m _a	m.,	Density	W
3102	Ø	(8)	(g/mm ³)	- (mm ³)
5wt%	2.51023	2.09320	0.006019	5.8648
10wt%	2.19664	1.75563	0.004981	2.6299
15wt%	2.41068	1.90107	0.004730	2.2833
20wt%	2.92896	2.29860	0.004646	0.5381

Table 9: summaries the calculation and shows the wear rate of each samples.

Table 10: The wear rate of pure Iron and composite reinforced with 5, 10, 15 and20wt% of silica sand nanoparticles

Composition of SiO ₂	Wear rate: W(t) (10 ² mm ³ /s)
5wt%	1.6291
10wt%	0.73052
15wt%	0.63425
20wt%	0.14947

Figure 22: Wear rate mm3/s 100 Newton Vs Nanosilica composition

The composite with 20wt% of silica sand nanoparticles has higher wear resistance compared to pure iron and composite with 5wt% of silica sand nanoparticles. The wear rates of composite decreases as the silica sand nanoparticles contents increases. As the conclusion, the hardness of the composite influences the wear rate of the composite .Increased the hardness of iron silica sand nanoparticles slow down the wear rates of this composites.

6.0 CONCLUSION

The results show that the addition of silica sand nanoparticles to iron enhanced the hardness and wear resistance with increasing the sintered temperature and silica sandnanoparticles. An improvement in sintered densities was also observed with increasing trend of sintering temperatures. An optimum value of 20wt.% of silica sand nanoparticles in iron based composites was found to have best micro hardness values and wear resistance for all sintering temperatures. From FESEM and EDS analysis it is observed that the silica sand nanoparticles diffuse in the porous sites of composites causing an improvement in mechanical properties as well as improved the microstructure. The temperature for sintering must be well selected in order to get the optimum results. This study was done with 3 various temperatures; 900°C, 1000°C, and 1100°C. 1100°C was found to be the suitable temperature because the sintered densities at this temperature were higher than the green densities and this temperature also approaches the melting temperature of Iron (1535 °C). The hardness and the surface roughness of the composites affect the weight losses and the wear rate of the composites. The hardness of iron matrix increases as the silica sand nanoparticles contents increases. The wear results showed that the wear resistance of composites increased with increase of the reinforcement weight fraction due to the strong particulate matrix bonding and high hardness of the silica sand nanoparticles. So from this investigated the iron mixed with 20wt% nanosilica sand particles show the best result on hardness and wear resistance.

7.0 REFERENCES

1.C.Q.Yuan, Z.Peng, X.C.Zhou, X.P.Yan, "The characterization of wear transitions in sliding wear process contaminated with silica and iron powder" James Cook University, Townsvill, Australia, Wuhan University of Technology, PR China, (2003).

2.Karabi Das*, T.K. Bandyopadhyay "Synthesis and characterization of zirconium carbide-reinforced iron-based composite" Materials, (2003) Science and Engineering A 379 (2004)
83-91.

3.R.Thiraviam, T. Sornakumar, A. Senthil Kumar "Development of copper: alumina metal matrix composite by powder metallurgy method" Int. J.Materials and Product Technology, Vol. 31, Nos. 2/3/4, 2008.

4. Tahir Ahmed, Othman Mamat. 2010, "Characterization and Properties of Iron-Silica Sand Nanoparticles Composites", Universiti Teknologi PETRONAS, Malaysia.

5.R.L Deuis, C Subramaniam, J.M Yellup "Abrasive wear of aluminum composites" Ian Wark Research Institute, Adelaide Australia, Division of Manufacturing Technology, Adelaide Australia, Wear 201 (1996) 132-144.

6. Wiliam D. Callister, Jr. Materials Science and Engineering: An Introduction, John Wiley & Sons. Inc., Sixth Edition, 2006.

7. Y.B. Liu, S. C. Lim, L. Lu, M.O. Lai, "Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques," Journal of Materials Science 29 (1994) 1999-2007

8. Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Arnold-Heller Strasse 16, Kiel 24105, Germany. 9. Sainatee Chakthin, Monnapas Morakotjinda, Nuchthana Poolthong, "Influence of Carbides on Properties of Sintered Fe-Base Composites", Journal of Metals, MaterialsAnd Minerals, Vol. 18 No. 2 pp.67-70, 2008

10.E. Pangounis, M. Talvitie and V.K. Lindroos, "Influence of the Metal/Ceramic interface on the microstructure and mechanical properties of HIPed Iron-based Composites", composites science and Technology 56 (1996) 1329-1337.

11. S. Libardi, M. Leoni, L. Facchini, M. D' Incau, P. Scardi, A. Molinari, "*Effect of the dispersion of nanometric silica particles on the thermal stability of a nanostructured iro based powder*", Materials Science and Engineering A 445-446(2007) 244-250.

12. Animesh Anal, T. K. Bandyopadhyay, Karabi Das, *Synthesis and Characterization of TiB*₂- reinforced iron-based composites, Journal of Materials Processing Technology 172 (2006) 70-76.

13.Mandikos MN, McGivney GP, Davis E, Bush PJ, Carter JM. A comparison of the wear resistance and hardness of indirect composite resins. J Prosthet Dent 2001;85:386-395

14.M. Bromark, M. Larsson, P. Hedenqvist, M. Olsson and S. Hogmark, Influence of substrate surface topography on the critical normal force in scratch adhesion testing of TiN-coated steels. *Surf. Coat. Technol.* **52** (1992), pp. 195–203

<u>http://thdick.co.uk/images/uploads/Iron-Carbon_Phase_Diagram.png</u>, 22/8/2011,
 8.41 AM.