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ABSTRACT

Viscosity or the internal resistance of the fluids to flow is the most important
transport property that controls and influences the flow of oil through porous media
and pipes. Accurate predictions of reservoir fluids are required in equation of state
(EOS) based reservoir simulators. Due to time and money spent of experimental
viscosity measurements, reliable viscosity models are developed for predicting crude
oils viscosity. Throughout the years, although many of the common correlations
were developed, laboratory measurements still cannot be replaced due to the
complexities, varied composition and reservoir characteristics difference from
different reservoirs. This study estimates crude oil viscosity by using a group method
of data handling (GMDH) based on polynomial neural network (PNN). GMDH is an
inductive algorithm for computer-based mathematical modeling using neural
network with active neurons that optimizes model coefficients for predetermine
mathematical equation and selects the optimal model complexity. The new model
was built and tested using experimental measurements collected through literature
search. The database consists of crude oils composition, viscosity, temperature and
pressure from Middle East, North Sea and the others. Overall, the proposed model

improved the prediction as compared to other viscosity model.

il



TABLE OF CONTENTS

CERTIFICATION OF APPROVAL. ...ttt st i i
CERTIFICATION OF ORIGINALITY ...cccoiviimmiiiiiiiiiniecnnineniissiensnnan ii
ABSTRACT ... iiiiiiiciriiiitiiisitiire s e st te s st s ss s st asanssansasantasane iit
TABLE OF CONTENTS....c..ociiiiiiiiiiiiiiciiiiciiistniiinsassiisssinsnsosasessn iv
LIST OF FIGURES...comoerrtiietrnnininiiierriorrasrnsiniaisstssassnsisransseassssssnsnns v
LIST OF TABLES......ccocviiiiiininineiiiiisnsnsisrrsroreesisssemsrsnsssssssasssssans vi
CHAPTER 1 INTRODUCTION. ... ten e 1
1.1 Background of STUAY ......coooi oot nae e 1
1.2 Problem Statement .......ccoooeierieicirerircnitne e rre et raasae st eaees e seene e e sasaen 5
1.3 Objectives & Scope Of STURY ..cco.coeierieec et et re s ere s seevasaannns 6
CHAPTER2LITERATURE REVIEW.................ccoiiii, evieennennndd
2.1 Empirical Correlations ........cocoviveeivenmicomnicnec et senemssnecons 7
2.2 Corresponding State MOels ..o veveeeeiceereeceeeec e eee e seseern s eee 8
2.3 EOS Based Viscosity MOdels .......ccovivoemeonciecne e eseecoenesse s 8
2.4 Group Methed of Data Handling (GMDH)...........oooiiiiiiic 9
CHAPTER 3 PROJECT PLANNING ..ot s cnceaecsesereseananas 11

3.1 Basic Methodology..........ococioeenminiiiiees e e neeneaann L

CHAPTER 4 RESULTS and DISCUSSIONS ... 14
4.1 PVT Data COUCCLIOMS ...vevereeresiriiniionnineaniassannsssiesnsvrassssassssnssnsssssssnsensessssans .. 14
4.2 Viscosity MOdel ...ttt s s 17
4.3 Statistical Error ANalYSiS ....cccvvcereevireriesieecericesereertnsr e st esesssesssssesanseernnsens 20
4.4 Graphical Error Analysis ......c.ccoeeiiiiiiinonenecrieccnesteniassae i sesecssesees s sesenssnns 21
4.5 DHSCUSSION ..orverrrrrerreereereeiaeeeererieseraaasrerastessessasresraesssnsesasssvensssssnsssassasnssncsanne 23

CHAPTER 5 CONCLUSION & RECOMMENDATIONS .........ccoovvvieirrennne. 26

NOMENCLATURE ...t e e e ssersnst e sa e e saas e snseas 27

REFERENCES ...ttt sttt te e vaera e e s sss et st st st et asaenananns 28

APPENDICES ...ttt rae s e s e ss s s es seae e s n e s e e s s 30

iv



LIST OF FIGURES

Figure No. Figure Name

Page No

Figure 1: Steady-state velocity profile of fluid entrained between two flat surfaces 1

Figure 2: Schematic diagram of viscometer

Figure 3: Crude oil viscosity as a function of R and p

Figure 4: GMDH polynomial neural network structure

Figure 5: Project Flowchart

Figure 6: Crossplot of measured versus estimated viscosity
{Proposed compositional model)

Figure 7: Crossplot of measured versus estimated viscosity
(Adel’s compositional model 3a)

Figure 8: Crossplot of measured versus estimated viscosity
(Adel’s compositional model 3b)

Figure 9: Viscosities comparisons for 75 crude oil samples

2
4
10
11

21

21

22
23



. LIST OF TABLES

Table No.  Table Name Page No

Table 1: Unit and dimensions of viscosity 2

Table 2: Composition and Viscosity of Crude Oils from UAE 13
Table 3: Composition and Viscosity of Crude Qils from the North Sea 13
"Table 4: Composition and Viscosity of Crude Oils from Lawal paper 14
Table 5: Composition and Viscosity of Kuwaiti Crade Oils 14
Table 6: GMDH Models 17

Table 7: Comparison of the proposed model to Adel ef al. compositional models 24

vi



CHAPTER 1
INTRODUCTION

1.1 Background of Study

Viscosity is defined as the internal resistance of fluid to flow. It is expressed in

deformation equation by
T = uy (1)

where 1 is shear stress, ¥ is the shear rate and i is the viscosity. Refer to Figure 1, t
can be defined as F/A where F is the required force to keep the upper plate to move
at constant velocity v in the x-direction and A is the area of plate in contact with the
fluid. Therefore, fluid viscosity is the component when the force is transmitted
through the fluid to the lower plate in a way that x-component of the fluid velocity

depends linearly on the distance from the lower plate.
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Figure 1: Steady-state velocity profile of fluid entrained between two flat surfaces ]

In oil and gas industry, viscosity is generally expressed in terms of dynamic
viscosity () and kinematic viscosity (v). As mentioned earlier, dynamic viscosity
(the viscosity of liquid) is the ratio between the applied shear stress and the rate of
shear. Meanwhile, kinematic viscosity is the ratio u/p where p is fluid density. Table

1 below is the unit and dimensions of these terms.



Symbol cgs unit ST anit Dimension
Kinematic Lmmr/s=1 ¢St cm/s nrls LT
viscosity. v 1 m'/s =10° eSt
Dynamic 1 D}W.s/cm" =100 ¢cp Dyn.sfem™ Newton.s/m™ | M/LT ,
Viscosity. i 1 Newton.s/m” = 10° cp (= Pa.s) (FT/L™)

Table 1: Unit and dimensions of viscosity '

Viscosity of liquids is measured by viscosimeter or viscometer. Three type of
viscometer will be discussed here. The first viscometer is Ostwald viscometer
(Figure 2a). In this viscometer, the viscosity is deduced from the comparison of the
times required for a given capillary tube under specified inijtial head conditions with
constant temperature. The second viscometer, falling (rolling) ball viscometer
{Figure 2b) is based on Stoke’s law for a sphere falling in a fluid under effect of
gravity by dropping a polished steel ball into a glass tube of a somewhat larger
diameter containing the liquid and recording the time required for the ball to fall at
constant velocity through a specified distance between the reference marks. If the
fluid flow in the tube remains in laminar range, the measurement results will be
good. For non-Newtonian fluids, rotational type viscometer (Figure 2¢) that consists
of two concentric cylinders with annulus containing the liquid that viscosity is to be
measured is often used. Both the outer cylinder or inner cylinder is rotated at a
constant speed and the rotational deflection of the cylinder becomes a measure of the

liquid’s viscosity.

(@) (b)

Figure 2: Schematic diagram of viscometer
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Regardless whether the reservoir fluids are transmitting in subsurface or at
surface, viscosity is important in designing pipelines, production equipment, well
testing and reservoir simulation. In terms of crude oil viscosity, it ranges from 0.1cp
for near critical to over 100cp for heavy oil and it is considered the most difficult oil

property to calculate with a reasonable accuracy from correlations ,

Reservoir oil viscosity is measured in laboratory using subsurface and surface
samples. Whenever possible, oil viscosity should be determined by laboratory
measurements at reservoir temperature and pressure although it is expensive to carry
out PVT analysis at reservoir conditions. Sometimes, the measured surface oil
viscosity from wellhead samples can be used as conversion to subsurface value but
the accuracy of the results is challenged. If the laboratory data are not available, the

engineers may refer to the published correlations.

The viscosity of crude oils can be classified into three groups in terms of their
pressure, p:
e Dead oil viscosity, [.4, the viscosity of crude oil at atmospheric pressure and
system temperature.
¢ Saturated oil viscosity, pob, the viscosity of crude oil at any pressure less than
or equal to the bubble-point pressure.
¢ Undersaturated oil viscosity, p,, the viscosity of crude oil at a pressure above

bubble point and reservoir temperature.

During production, the pressure of produced crude oils will change as they travel
along the wellbore to the surface. At atmospheric pressure and reservoir temperature,
there is no dissolved gas so the oil has the highest viscosity value of pg. As the
pressure increases, gas solubility increases, resulting decrease in oil viscosity. When
it reaches the bubble point pressure, the amount of gas in solution reaches its
maximum Ry, while the oil viscosity reaches its minimum ply,. After the bubble point
pressure, the increase of pressure will result the increase of wviscosity of
undersaturated crude oil due to the compression of the oil. Figure 2 showed the

relationship between R, and p with crude oil viscosity.
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Figure 3: Crude oil viscosity as a function of R, and p %

Depends on the available oil mixture data, correlations generally can be divided
into correlations based on other measured PVT data like API and R; and correlations
based on oil composition. In general, there are two types of reservoir fluid model
namely the black oil model and composition model. Black oil model consists of two
components (solution gas and stock tank oil). The calculations are based on
emptirical correlations from experiment using B,, R, and other measured fluid
properties. For compositional model, N components based on paraffin series are
needed and the calculations are based on equation of state (EOS) using feed forward
calculation of fluid properties. In this case, the crude oil viscosity calculation is

based on the availability of the fluid properties or crude o1l composition.



1.2 Problem Statement

A direct viscosity measurement in reservoir condition the most ideal case but
since this method is costly. In common practices, the fluid properties from the
subsurface samples are measured in laboratory in surface condition under certain

calibration and assumptions

On the other hand, sometimes due to the unavailability of reservoir data and the
cost of laboratory viscosity measurement at different time, viscosity values are
estimated based on the publish correlations. Many researchers are improving the
prediction of gas and liquid viscosities but most of the methods from mathematically

rigorous to completely empirical forms have the following limitations:

1. Applied for either gas phase or liquid phase

2. Applied within a limited range of composition, temperature and pressure

3. Reservoir fluids at different part of the world exhibit different behaviour

4. Separate density correlation is required when density involved in estimation

5. Inconsistent of prediction (different APT might exhibit same viscosity value)

Since viscosity plays an important role in providing a better understanding on
future development planning, a better viscosity model has to be proposed to
eliminate as many limitations mentioned above to estimate the crude oil viscosity as

close as the measured value.



1.3 Objectives & Scope of Study

The objective of this research is to propose a new compositional model for
crude oil viscosity prediction using Polynomial Neural Networks (PNN) induced by
Group Method of Data Handling (GMDI). This study is focused on the
compositional crude oil viscosity model using a specific ranges of pressure,
temperature, crude oil composition from methane until heptanes plus, specific

gravity and molecular weight of heptanes plus.

In this project, crude oil PVT analysis composition data will be collected and
filtered. Then, the data will be the input in GMDH software to develop the
compositional model with a few trails using polynomial neural networks (PNN).
Next, the results will be compared to other published correlations or models. The

following are the scopes of study:

(1) Investigating the accuracy of other published viscosity models for predicting
viscosity of Middle East, North Sea and the others crude oils from literature
review

(2) Utilizing Polynomial Neural Networks (PNN) induced by Group Method of
Data Handling (GMDH) in developing compositional model

(3) Comparing proposed compositional model with other models from literature



CHAPTER 2
LITERATURE REVIEW

In most cases, there is no simple rule or theory to predict the rate of change of
crude o1l viscosity with respect to temperature and pressure or composition. Due to
the complexity of reservoir fluids, their composition will change during depletion of
reservoir at different pressure and make it impossible to obtain a constant viscosity
value that measured isothermally at the initial composition of reservoir fluids.
Therefore, as mentioned by Adel M. Elsharkawy ef al. [4], the viscosity experimental
data are used to evaluate and calibrate the proposed compositional mode! and the
compositional model is used to update the value of the viscosity as a function of the
changing pressure, temperature and composition. Basically, viscosity models can be
classified into: (i) empirical methods; (ii) corresponding state methods; (iii) equation

of state (EOS) based viscosity models.
2.1 Empirical Correlations

Empirical models cover all kinds of crude oils namely dead, saturated and
undersaturated crudes. The commonly used empirical models in the industry are the
models developed by Beggs and Robinson (1975) 51 Labedi (1992) ¥, Kartoatmodjo
and Schmidt (1994) U, and Elsharkawy and Alikhan (1999) ¥\ In these models,
crude oil viscosity is a strong function of temperature (7), pressure (P), separated gas
gravity (y.), and tank oil gravity (API). The dead oil viscosity (eq) 1S a function of
oil API gravity and reservoir temperature; saturated oil viscosity (jo) was correlated
to the dead oil viscosity and solution gas-oil ratio (R;); above bubble point (no gas
being dissolved into the oil), the pressure becomes the primary independent variable
for predicting the viscosity of undersaturated oil (yo). A reminder that saturated oil
viscosity is highly dependent on the gas-oil ratio, a function of the o1l API gravity,

gas gravity, reservoir pressure, and temperature.



2.2 Corresponding State Models

According to principle of corresponding states, the dimensionless properties
of all fluids have the same numerical values at the same reduced conditions and it
provides the basis for the development of correlations and estimation methods using
knowledge of the properties of, at least, one reference fluid 4, Initially, Hanley ef
al® used the viscosity of methane as the reference fluid to correlate viscosity as a
function of the temperature and density. Later, Pedersen and Fredenslund [
proposed an improvement of the model by extending the method of Pedersen et al. to
Tt < 0.4 using additional experimental viscosity data. All of these methods use the
acentric factor as an interpolation parameter of the reference fluid properties. In
1991, Petersen et al'! proposed a method with the molecular weight as an
interpolation parameter instead of the acentric factor using methane and n-decane as
reference components but this model suitable for viscosity predictions of light
petroleum fractions only. In 1995, Moharam and Fahim ' used decane and cicosane
as the reference fluids in predicting the viscosity of heavy crude oils and petroleum
fractions of average molecular weight higher than 142 and the model relaxes the

limitation imposed on reduced temperature 7t > 0.476 to Tr > 0.4,
2.3 EOS Based Viscosity Models

EOS based viscosity models applicable to both reservoir gases and liquids
viscosity calculation at the desired temperature and pressure based on their
composition from methane through heptane-plus, hydrogen sulfide, nitrogen, and
carbon dioxide together with the molecular weight and specific gravity of the
heptane-plus fractions. Lohrenz et al.'"! developed the first crude oil compositional
viscosity prediction method based on the residual viscosity concept and the law of
corresponding states. Later, Little and Kennedy ' developed EOS based viscosity
model using the van der Waals EOS but six coefficients involved in the model were
not generalized. Both models above are very sensitive to the density, which is
normally determined by a separate correlation and may be very inaccurate for high-
viscosity fluids. Lawal ') also proposed a viscosity model based on the four-

parameter Lawal-Lake-Silberberg EOS but it is not a predictive model because



specific constants are required for each substance and poor results were obtained

when applied to the C;, fraction containing reservoir oils.
2.4 Group Method of Data Handling (GMDH)

GMDH was originated in 1968 by Prof. A.G. Ivakhnenko U® 'l This
modeling tool was successfully used in areas such as weather prediction, medical
informatics, spectrum analysis and energy forecasting but still has not been much
utilized in the oil industry and it has been proved successfully for predicting PVT
properties of crude oils by E.A. Osman and R. E. Abdel-Aal. (2002) '¥, GMDH is
well coordinated with the state of art data mining techniques. The central role in

optimal complexity detection is given to data split into training and testing samples.

Basically, GMDH applies gradual model complication and self-organized
model selection to select the optimally-complex mathematical model. Using Core
algorithms, different model structures and a number of models are selected to predict
testing data in best way. The training data mentioned before is used for fitting of
model coefficients while testing data is used for measurement of model accuracy.
The muitilayered threshold algorithm of GMDH model is based on polynomial
function generated from a given set of variables "\, For example, a data set of two
input (independent variables) x; and x; and output (dependent variable) y can form a

quadratic polynomial function y = ag + a1*x; + ap¥x2 + 83%%¥xp + as¥x% + as*x,%

The working algorithm is presented in Figure 1. At the top, it is the input for
each predictor variable. Each neuron in the second layers draws two of the input
variables as its input and third layer neurons draw their inputs from two of the
previous layer. The process continues untit the final layer (bottom) draws two inputs
from the previous layer and produces a single value as the output of the network.
Each neuron in neural network induced by GMDH is called partial description (PD).
During the process, non linear regression determines the coefficients of each
polynomial on training data set while external selection criteria and test data set are

used to select optimally complex models.



Variables X3 X7 X1

regression
(train data)

Selection
Criteria
(test data)

1 layer

2=f X, X3) vi=f .

regression
Cj {train data)

partial description 2 layer

z=f(y1,v:)

Figure 4: GMDH polynomial neural network structure
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a. Literature review
In order to understand the discussed study, papers had been reviewed and studies
were conducted along the project development stages. During the initial stage,
empirical correlations were reviewed. EOS based viscosity model was intended to
be developed by referring to PVT analysis and phase behavior textbooks. Later,
GMDH method was reviewed and a compositional model was developed based

on this method.

b. Data collection
Based on the literature quoted as reference 4, PVT data from Middle East, North
Sea and the other places were collected. The needed data are pressure,
temperature, laboratory measured viscosity, mole fraction of crude oil
compositions (C; - Cr4), mole fraction of non-hydrocarbon compositions (N3, COa,

H;S), specific gravity of C;: and molecular weight of Cy;.

¢. Model Development
During the model development process, Mathematica, Microsoft Excel and
VariReg software have been attempted. Nonlinear regression analysis in
Mathematica was the first attempted but unfortunately the version available did
not support multiple response data. The coding will be attached in the appendix.
After that, Microsoft Excel Analysis ToolPax had been attempted with a few trials
but the result was not better than the published correlations. At last, GMDH

method was attempted using VariReg software.

d. Results and Discussions
After the compositional model had been developed, statistical and graphical
analysis will be used to portrait the results and compare with other published

correlations.

e. Conclusions
After the results had been discussed, it is time to conclude the project by
summarizing the findings along the project. Last but not least, the objectives were

reviewed in order to determine whether they have been achieved.

12



3.2 Model Development Methodology using VariReg software

The following are the steps to develop the proposed composition model:
1. Load training data

Load test data from file

Select PNN tab

Key in degree of polynomials for individual neurons

AR

Select various radio buttons (A-E):

a. Selection of full polynomials (no subset selection) or one of the subset
selection algorithms for generating neurons,

b. Selection of criterion for subset selection in each neuron as well as for
deciding when to stop the building of the network.

¢. Selection of whether the inputs to the neurons are taken only from the
immediately preceding layer or also prom the original input variables.

6. Select maximum number of inputs for each neuron.

7. Select maximum number of neurons in each layer.

8. (Optional) Draw surface of the model right after building it.

9. (Optional) Seeking optimum of the output variable using the built model

10. (Optional) Saving the predictions of the built model to a file right after building it.

11. Information on the just built model:

a. “Total number of generated layers” — the total number of the generated layers
of the network (the last layer is discarded)

b. “Number of layers” — the number of layers in the final network

c. “Used input variables” — the list of input variables used in the final network

d. “The number of used input variables” — the number of input variables used in
the final network

e. “Crit value” — used criterion’s value for the final network

(The software user interface is available in the Appendix)

13



CHAPTER 4
RESULTS and DISCUSSIONS

4.1 PVT Data Collections

The new compositional model are developed from a database consists of
crude oils composition, viscosity, temperature and pressure from Middle East, North
Sea and the other places. 75 crude oil samples are collected through literature search
where 49 crude oil samples from Kuwait 41, 7 crude oil samples from Abu Dhabi 1121

U and 12 crude oil samples from Lawal )

7 crude oil samples from North Sea
paper. The composition and properties of the crude oil samples used in the study are

shown in Tables 2-5.
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4.2 Viscosity Model

In order to obtain a practical model with reasonable accuracy of result,
several attempts have been made. VariReg, a software tool for general purpose
multidimensional regression modelling was used for the models development. This
freeware provides means for creating “full” polynomial regression models, sparse
polynomial models and employing subset selection algorithms ** 2 Tn the software,
some input GMDH parameters were varied in terms of:

» degree of polynomials for individual neurons,

o algorithm for individual neurons,

e maximum number of inputs for each neuron,

o maximum number of neurons for each layer,

e inputs from preceding layer or preceding layer and from original input

variables

For the criterion for model selection, the model evaluation and
hyperparameter selection is done using small sample corrected Akaike’s Information

Criterion (AICC) using the following equation:

AICC = nIn(MSE) + 2k + 2k(k +1)) (n - k =1) )

From 75 world crude oils database from Kuwait, UAE, North Sea and Lawal
paper, the proposed empirical models were developed. The viscosity of crude oil can
be expressed as a function of temperature, pressure and several oil composition
groups. In the model, the following variables were used:

s X5, T = temperature (degrees Fahrenheit)

e X%, P =pressure (pound per square inch absolute, psi)

e x5, G, = mole fractions of the light components (C; and Cy),

¢ X3, Gy, = mole fractions of the intermediate components (C; through Ce),

s x4, G = mole fractions of components heavier than heptanes, Cy4 fraction,

¢ X5, Gyon = mole fractions of non-hydrocarbon components (Nj, CO, and H,S)
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After GMDH was applied, the best statistical model varying different GMDH
internal parameters was selected from varied data distribution between train and test

data sets and model complexity. Table 6 presented the compassion results from the
GMDH models.

Model | Test | Polynomial Function MSE RRMSE AARE
Number | data degree
set, %

1 20 2 y=f 0.2655 | 0.704275739 | 0.415010488
(X0,%2,Xs)

2 20 3 y=1 0.2908 0.737067 0.359043
(%0.X4,X5)

3 20 4 y=1 40.8589 8.737445 2.06185
(X2,%3.X4)

4 10 2 y=f 0.2614 | 0.698926666 | 0.40000463
(x0,X2.X5)

5 10 3 y=1 0.1568 0.541276 0.260662
(%0,%4,Xs)

6 10 4 y=1 1.6029 | 1.730591899 { 0.45225865
(X0,X2,X5)

Table 6: GMDH Models

In VariReg the main results are displayed in RRMSE form where 0 is perfect
fit; value approaching 1 means the model is no better than a mean value of y; value
largely exceeding 1 the model probably means overfits the training data. From Table
6, model number 2 and model number 5 showed the best fitted models with the least
AARE. These models used T (x¢), Gn (X4), Gnon (X5) as their variables to calculate the
viscosity values. Since the test data set was selected by hold up the training data set,
the number of training data set will be less with increasing percentage of test data set.
Therefore, model number 5 showed better fitting than model number 2 because more

data from model number 2 is used as test data set.

After learning that test data set will affect the model fitting, various trials

have been attempted. In order to minimise the training data set input lost due to
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usage in test data, the similar training data set and test data set were used in
developing the compositional model. This method results in a compositional model
that is capable of predicting the crude oil viscosity with MSE of 0.041781893,
RRMSE of 0.279405788 and AARE of 0.086901677. The proposed compositional

model has the following form:

o =apt+ ay* T+ 33*]“2 - a4*T3 + as*T4 - ac,"‘T5 +a* Gy - ag*T* G,
+ ag* T*Gy - a* T *Gy, + ay * TG — ap*G2+ ap*T*GL - a1 TGy
+ars* TG+ arg* G- a*T* G - ag*T*GL? - ag* G+ ape* TG
- aZI*GL5+ a23%Gpon - a3 *T*Gion + a24*'1-‘2*Gncm - aZS*Ta*Gnon + a?.625”1“'%?Gn(m
—a27* Gu* Guon — 228* T*Gu*Guon + 226* T #Gr. *Ginon — 830* T*G* Gron
+ az *GLZ*Gnon + 3—32*T*GL2*Gnon + 333*T2*GL2*G|10H - a34*(}1,3*611%
- 335*T*GL3*G110“ + 336*GL4*Gnon - a3’.?*(}110112 + a3g* T*Gon = 339*'1‘2*6110112
+ a4{)*Ts*(}nmz' an*Gr* Gncm2 - a42*T*GL*Gnon2 + 343*T2*GL*Gnon2
+ aM*GLZ*Gnonz_ 345*T*GL2*G;,0“2 + a4{5*GL?J*Gncmz - 347:{=(—1'non3 + 348*T*Gnon3

2 3 3 3 2 3 4
+ a29¥T*Gpon T+ a50*GL *Gnon — 851" T*GL*Gnon™ — 852 GL *Gron™ + 353% Gpon

— a5*T*Gron' — 855*GL*Guon” + 856* Gnon- 3)
where
a; = -8478.58349606828 a1 = 428350.408327296
a, = 55.7362649737557 a7 = 659.387877657145
a3 = 0.0317567844848732 ais = 2.85065013356515
aq = 0.00244544177916937 a10 = 359455.090075369
as = 1.31281534907682E-5 azo = 1584.23213582731
ag = 2.43041542877451E-08 as = 80637.6949098182
a;=77823.8744820531 azp = 484740.067189686
ag = 574.825569957195 a3 = 3926.90745511693
ag = 3.32289855754005 age = 17.7320700483948
ajp = 0.0123543066137851 azs = 0.0334115078920825
ap = 1.97741181759314E-5 a6 = 0.000204674937622932
a2 = 251925.279192096 - ay7 = 2078397.26136335
a3 = 849.0509876425 azg = 9700.52977447604
a4 = 1.85805197448581 aze = 71.8440983550474
a5 = 0.00479457122014624 asp = 0.454556152809839
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az; = 10375786.2236233
az = 624.041916585568
a3 = 210.867090335141
a3 = 18541552.8677577
azs = 71130.5137912637
age = 20628488.0562239
az7 = 15539999.8022648
azs = 332380.871618826
a0 = 1859.52284112302
ago = 1.70447348965117
aq = 12312465.5509495
as; = 81582.9393949258
ag3 = 1671.76488670865

ass = 27332488.2517499
ass = 418685.338687488
ass = 33613498.2901565
ag7 = 342924264.74869

ass = 1804340.33355108
a4 = 3921.88539760773
aso = 861970372.030063
as; = 5149971.11606209
asy = 209011409.93615

as3 = 2309360358.65222
ass = 18715455.5408219
ass = 415750768.871321
ase = 8355290234.78248

4.3 Statistical Error Analysis

Error analysis is utilized to check the accuracy of the models. The error
measures used in the preset work are mean squared error (MSE), standard deviation
(STD) relative root mean squared error (RRMSE), and average absolute relative
error (AARE). Equations for those parameters are given below. Summary of
statistical comparisons between models and correlations are presented in Table 6 and
Table 7.

1. Mean squared error (MSE):
It is the sum of square error divide by n, the number of data, defined by:

MSE = %i()ﬁ; ~F (-"::i)))z

)
2. Standard deviation (STD):
It captures how irregular the problem is, defined by:
o (v, -5}
STD = =3 (v - FF )

Vn =
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3. Relative root mean squared error (RRMSE):

It is the root mean squared error divide by standard deviation, defined by:

1

(} 0 -F ngf}:’)z

\,‘E ( Y .})‘ ©

r“l

RMSE ’q
STD

RRMSE =

4. Average absolute reiative error (AARE):

It measures the relative absolute deviation from the experimental values, defined by:

ARRE = 3" (3, — Flxy))

"=

()

4.4 Graphical Error Analysis

Graphical tools assist in visualizing the performance and accuracy of a
correlation or a model. Crossplots were employed as the graphical analysis technique.
In this technique, all the estimated values are plotted against the measured values.
Then a 45° straight line that represents a perfect correlation line between the
estimated versus actual data paoints is drawn on the crossplot. The tighter the cluster
about the unity slope line, the better the agreement between the experimental and the
predicted results.

Figure 6, 7 & 8 present crossplots of predicted viscosity versus the actual
laboratory measured viscosity for proposed model, Adel’s compositional model 3a
and Adel’s compositional model 3b. From the crossplots, it is clear that the proposed
compositional model outperforms the other two compositional models by having the

tighter cluster about the unity slope line while others indicate higher scattering range.
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Figure 6: Crossplot of measured versus estimated viscosity

(Proposed compositional model)

Estimated viscosity, ¢p
~

Measured viscosity, cp

Figure 7: Crossplot of measured versus estimated viscosity

(Adel’s compositional model 3a)
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Estimated viscosity, ¢p
[ )

: Measured viscosity, cp

Figure 8: Crossplot of measured versus estimated viscosity

(Adel’s compositional model 3b)
4.5 Discussions

Based on Adel M. Elsharkawy ef al [4], the 49 Kuwaiti crudes were first
evaluated using Beggs and Robinson (1975) Pl Labedi (1992) ], Kartoatmodjo and
Schmidt (1994) 7, and Elsharkawy and Alikhan (1999) ! correlations. In that
literature review, Elsharkawy and Alikhan ® model has the smallest AAD value,
20.86%, followed by Beggs and Robinson (1975) P! model (ADD = 26.4%),
Kartoatmodjo and Schmidt "' model (ADD = 32.11%) and Labedi'® model (ADD =
33.45%). Elsharkawy and Alikhan ™ model showed the best result among the other
three correlations because it was developed using Middle East crudes that have some
physical and chemical similarities to the Kuwaiti crudes. These empirical models
mentioned above are not suitable for accurate viscosity prediction as the viscosity

prediction might give the same API gravity although the compositions had changed.

Due to the limitation of empirical models mentioned above, the proposed
model considered the compositional of reservoir fluids. Figure 9 shows the
comparison between the measured and predicted viscosities by Adel M. Elsharkawy

et al. ™ compositional models (3a and 3b) and proposed compositional model using
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75 crude oil samples. This figure indicates that the proposed model closely matches

the experimentally measured viscosity.

Based on the calculated viscosity data presented in Lawal paper, EOS-based
models such as were compared with the proposed model using 12 crude oil samples
from Lawal paper. The Average Absolute Relative Error (AARE) is the lowest in the
proposed model with only 0.8%, followed by Lawal "' model (26%), Little and
Kennedy "*! model (41.69%) and Lohrenz er al. "' model (89.28%). It is believed
that the viscosity calculation by Lawal methods is questionable because of highly
inaccuracy of AARE.

—— Experimental
—- Adel et al Model 32
—+— Adel et al Model 3b

—+— Proposed Compositional Model

Oil Viscosity, (¢cp)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 W IS5
Crude Oil Samples ‘

Figure 9: Viscosities comparisons for 75 crude oil samples

Table 7 shows summarize the viscosity calculation results of 75 crude oils
from different places of the world along with the data ranges that have been applied
in the development of compositional models. These results indicates that the
proposed model is more accurate than the other compositional models proposed by
Adel M. Elsharkawy et al. " by displaying only 8.7% of Average Absolute Relative
Error (%).
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Data Ranges Maximum Value Minimum Value
T range, °F 274 86
P range, psi 4040 335
G 0.5936 0.146
Gm 0.305 0.0297
Gy 0.6979 (.248
Ginon 0.0758 0.0007
Compositional Model | 3-a (Adel et al.) 3-b (Adel et al.) Proposed Model
MSE 0.2212 0.2009 0.041781893
RRMSE 0.642902262 0.612661 0.279405788
AARE 0.271669236 0.263783 0.086901677

Table 7: Comparison of the proposed model to Adel ef al. compositional models
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CHAPTERS5
CONCLUSION & RECOMMENDATIONS

The viscosity compositional model developed from Polynomial Neural
Networks (PNN} induced by Group Method of Data Handling (GMDH) is applicable
for crude oil only. The new model successfully predicts 75 crude oil samples from
different parts of the world with an AARE (%) of 8.7%. The proposed model uses
only three input variables, temperature, T, mole fractions of the light components
(methane and ethane), Gy, and mole fractions of non-hydrocarbon components (N3,

CO; and H,8), Gyp for the viscosity estimation.

It eliminates the tedious procedure for characterization of heptanes plus,
splitting of the heavy fraction, complex mixing rule, which are needed for the EOS-
based viscosity model. At the same time, it improves the accuracy of results as
compared with the widely used empirical correlations that use oil API gravity as

input parameter.

Overall, GMDH is a very useful technique and should be applied more as
valuable alternative modeling tool. The proposed compositional model is only
applicable for certain range of data at bubble point pressure and it showed a better

crude oil viscosity prediction

For further improvement, more data are recommended to be collected for a
more accurate and generalized composition model more with a wider range of

application.
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PNN
GMDH
EOS
PD
AICC

c = Pp < M =

-l

Hod
Mok
Ho

Ryp

APT

NOMENCLATURE

=Polynomial Neural Networks

= Group Method of Data Handling
=Equation of State

=Partial description

=Akaike’s Information Criterion
=Shear stress

=Shear rate

=Force

=Velocity

=Area

=Dynamic viscosity

=Kinematic viscosity

=Fluid density

=Dead o1l viscosity

=Saturated oil viscosity
=Undersaturated oil viscosity
=Solution gas oil ratio at bubble point
=Solution gas oil ratio

=API Gravity

= Temperature

= Pressure

= Mole fractions of the light components (C; and C;)
= Mole fractions of the intermediate components (C; through Cg)
= Mole fractions of components heavier than heptanes, C,. fraction

= Mole fractions of non-hydrocarbon components (N,, CO, and H»S)

= Average absolute deviation
=Mean squared error

=Standard deviation

=Relative root mean squared error

=Average absolute relative error
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APPENDICES
Mathematica Coding:

SetDirectory]$UserDocumentsDirectory]
"C:\WUsers\yong\\Documents"
FileNames["labdata.dat"]

{"labdata.dat"}
Needs{"NonlinearRegression™

data = Import["labdata.dat", "Table"]

{{"{\rtfiNansivansicpg1252\\deff0\deflang] 7417 {\\fonttb1 { WO\

fswiss\\fcharset0”, "Arial;} 3"}, {" [\W\generator", "Msfiedit”,
"5.41.21.2507; \wiewkindd\\ue1\\pard\\FNS20", 133, 1595, 0.88,
0.3243,0.2101, 0.4601, "1.25\\par"}, {135, 1500, 0.89, 0.3423,
0.1838, 0.4657, "1.35\\par"}, {134, 1615, 0.88, 0.3672, 0.1495,
0.477, "1.24\\par"}, {134, 1400, 0.88, 0.3217, 0.1776, 0.4961,
"1.95Vpar"}, {134, 1590, 0.86, 0.3545, 0.1425, 0.4994,
"1.63\\par"}, {133, 1540, 0.88, 0.3443, 0.1628, 0.489,
"1.160par"}, {134, 1399, 0.88, 0.3163, 0.1963, 0.4785,
"1.6\par"}, {135, 1690, (1.89, 0.3772, 0.1163, 0.5045,
"2.81\\par"}, {134, 1548, 0.86, 0.3719, 0.1796, 0.4468,

"1.15\par"}, {"1"), {3}

NonlinearRegress{data,

al*T"a2*P"a3 *Subscript[\{Gamma}, c7plus]”a4*Subscript[G, 1]"a5*
Subscript] G, m}"a6*SubscriptlG, c¢7plus]"a7, {al, a2, a3, a4, a3, ab,
a7}, {T, P, Subscript[\[Gammal, ¢7plus], Subscript[G, 1],
SubscriptlG, m], Subscript{G, c¢7plus]}]

NonlinearRegress::bddata: The data argument of NonlinearRegress must \
be a matrix. Weighted regression is specified using the Weights \

option. The data format {{x11, x12, ..., {¥1l, ..., ylm}}, {x21, x22,\

v 1V21, L ¥2mi}, L {40, x02, ., {ynd, ., ynm}}) s

reserved for multiple response data, which will be supported in the \
future_ >>

NonlinearRegress[{ {" {\wtf1\\ansi\\ansicpg1252\\deffi\\deflang 17417 {i\\\
fontthl N\ fswiss\fcharset(", "Arial;} 1"}, {"{\*\\generator",
"Msftedit”, "5.41.21.2507; P\viewkind4Yuc I \pard O s20", 133,
1595, 0.88, 0.3243, 0.2101, 0.4601, "1.25\par"}, {135, 1500, 0.89,
0.3423, 0.1838, 0.4657, "1.35\\par"}, {134, 1615, 0.88, 0.3672,
0.1495, 0.477, "1.24\\par"}, {134, 1400, 0.88, 0.3217, 0.1776,
0.4961, "1.95\\par"}, {134, 1590, 0.86, 0.3545, 0.1425, 0.4994,
"1.63%Vpar"}, {135, 1540, 0.88, 0.3443, 0.1628, 0.489,
"1.16Wpar"}, {134, 1399, 0.88, (.3163, 0.1963, 0.4785,
"1.6\par"}, {135, 1690, 0.89, 0.3772, 0.1163, 0.5045,
"2.81Npar"}, {134, 1548, 0.86, 0.3719, 0.1796, 0.4468,
"115%par"}, {"}"}, {1}, al Pra3 Tra2 \!
\¥*SubsuperscriptBox[\(GY), \(cTplusy), \(@a7y] \!
\*SubsuperscriptBox[\GY), (1Y), W(@Sh] !
\*SubsuperscriptBox[\{GY), \(m\), \(a6y)i \!
\¥SubsuperseriptBox[\(\{Gammal\), \(c7plus\), (adV)], {al, a2, a3,
ad, a5, a6, a7}, {T, P, Subscript]\{Gamma], c7plus], Subscript{G,
11, Subscript[G, m}], Subscript[G, ¢7pius}}]
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APPENDICES

VariReg software user interface:

0 VariReg: “Demofyp” (= & e

!

o!ynmwa!s ABFC | L\aﬁ'

danaiDensSye. TRt # e Technigue for testing the modeling methods
2ata zevs ghufiled, i -, .
Mema: Demofy | loadtemingdata. | @ Holdouttest data set o notesting}
Hupkar of cases = 73 o i

Humber of input variabley = & : [me“mah@“ﬂe"'l
¥ean:Y} = 1.2

Tari¥r = 2,53 L .

SI3iY: = A.T3L5T4ET o oy Shuille

|
h
t
i

Take fom traming sel..

wlold Cross:Validation

=1
=
-4
@

Sefies of lraindtest fles

Loaded test daza: [gm types

C:h¥sers: yengiDovnlzads\VaziReg\Deme . of eress-vaidation

data\Depcfyprestdats txt " including that of EF-4BFC} .

HNumber of gsses = 73 : - :

Mean (¥ = 1. 77030€7 - Random seed. 0 fx

Inpuits from
_ Preceding layer
@ Piec. layes + onginal input vaiishles

A >

Max rum of inputs for each newon
C2
@3
Hax, num. of nedions fol each lapet
-@ Equal to the number of inpu? variables
© Predefined: 1 %

| Seek optimum aftes buid
Saveprecﬁclmsailefhﬁd

DN

Starving GMIH
Suilding layer #i...
Burkes cof aeqreny in thie layer = £

Iotal nueker of peurens tried = 20
TrainM8Z =2 che best neursn = 3.041721393 B
Crit value oI the begt neurcn = F22.3138%%

Building layer ¥2...
Ho neurens ecrested in thia layer.

Finished
Teral nweker o gensrated layers = I (the last is ¢c be discazded)
Humber cf layers = 1

Used input vsriatles = #0,xe,ud (3tarving fzem xd

The number of uzed input varisbles = 3

Cxiz value = 223.51574

Tegt¥ST = 2, Dﬂl"lB?S

TegsARMEE = §.27340579

Teasnz = Q.S 123241

Time {2} = .53 .

- Built model -
Zgquasicens:

Lazyer #1

Tig) = -3475 35345608228 + 55. Z4ITIZ exBrRT ~ 2. 002445441 7TTSLEIITHROCRIVHD +

1_312:1s DTERRE-S4xI+r0*u)txd - RI=xT4x 0 + TUIES.ITHLEI0SII4HE —

374.8253 ETLE xOxI + 3.3IE3FERET & p FUEELETISL4xI*rD*xDAx2 4+ 1.9T7T41121755314I

ERF s i ®Ivx2 - ZILBES.EVILEZOSE~x2ex F5ealeuzénz - 1 BRED5I3TI4353 L xl ez inz +

J_904724 ZeDid8E4 x0T I D 2 nT + €35 3873TTESTIASROIRI X 4RI ~

Z.850&59 SESLE*RD~aI*RE*XT 4T ~ F3F TILAEIUI AT ORICNE -

a0 €3 ErRICRICRIRZOXE + £8L% 33ex0=x3 + IT.T3ZDT0042354Fml 0 x5 ~

9.0 il 3 sedexdoxnldensd + 3.03% exd - ZOYA337 ZELBE3ISTRIvwd -

370 3 a4+ xﬂ*x“'xa + TL.244092 TacxIARDERTIRD - D 43455RLISZTAFRIT I RDARICHIRE

i 33*x"x¢'xa + E¢4. 05191¢€ BegdrwIinleoxwt + IO BET09033514) nd nPemTenIvNE ~

123 Ti13d. THLZESTHRICREREYRIYRT + ZOEIBERS_DSEINIS-RICRIFREFRIUF - .
123539339.3022643 %3455 + 332350.37LELIZE w09k 03 — 1353.52234112302*uD RO4xE*R3 + 3
1.7844734838511 7 w0 xd*x M ub s ~ L2312463.3305425%x2 x5*xd ~ 213522 .553334082 52 vud i x5 45 + )
1§71, TE4ABTETOEES Y x0A kD R R AU + 4ES.ZELTASIRIARIYAGARD - J1868F . FIFEETATIAICACRIY NI KD +

33ELIATZ . ZHDLSES VAT VRICRIYRIARD - €5.T4ZE3*RI AT RS + LFD4340.32335520Fxi4uIvxIns +

3921.32330TERTTI 40+ RD NI T R + TE.0300E3% R 5 n54xE ~ 51458“ CALEDEZORA D2 xS v RDERE -~

FI4011403. S3FLS I nZ kI A3+x3F + Z303JED358. ESZEI4AF4RT~XI*KRI ~ 1E715455.54022 8 x0*xE*x34xb-x3 —

415TEDTER _STIGF I v egStnbiys + S3R5C508534. 73243 A5 w5 USRI 4HE -
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