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ABSTRACT 

Viscosity or the intemal resistance of the fluids to flow is the most important 

transport property that controls and influences the flow of oil through porous media 

and pipes. Accurate predictions of reservoir fluids are required in equation of state 

(EOS) based reservoir simulators. Due to time and money spent of experimental 

viscosity measurements, reliable viscosity models are developed for predicting crude 

oils viscosity. Throughout the years, although many of the common correlations 

were developed, laboratory measurements still cannot be replaced due to the 

complexities, varied composition and reservoir characteristics difference from 

different reservoirs. This study estimates crude oil viscosity by using a group method 

of data handling (GMDH) based on polynomial neural network (PNN). GMDH is an 

inductive algorithm for computer-based mathematical modeling using neural 

network with active neurons that optimizes model coefficients for predetermine 

mathematical equation and selects the optimal model complexity. The new model 

was built and tested using experimental measurements collected through literature 

search. The database consists of crude oils composition, viscosity, temperature and 

pressure from Middle East, North Sea and the others. Overall, the proposed model 

improved the prediction as compared to other viscosity model. 
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CHAPTER I 

INTRODUCTION 

1.1 Background of Study 

Viscosity is defined as the internal resistance of fluid to flow. It is expressed in 

deformation equation by 

T = J.lY (1) 

where t is shear stress, y is the shear rate and ll is the viscosity. Refer to Figure 1, 't 

can be defined as F/A where F is the required force to keep the upper plate to move 

at constant velocity v in the x-direction and A is the area of plate in contact with the 

fluid. Therefore, fluid viscosity is the component when the force is transmitted 

through the fluid to the lower plate in a way that x-component of the fluid velocity 

depends linearly on the distance from the lower plate. 

r--:r 
h 

' 

'r X ( .1· ) 

Figure 1: Steady-state velocity profile of fluid entrained between two flat surfaces [IJ 

In oil and gas industry, viscosity is generally expressed in terms of dynamic 

viscosity (!l) and kinematic viscosity (u). As mentioned earlier, dynamic viscosity 

(the viscosity of liquid) is the ratio between the applied shear stress and the rate of 

shear. Meanwhile, kinematic viscosity is the ratio !liP where p is fluid density. Table 

1 below is the unit and dimensions of these terms. 
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S,·mbol Cl!s unit SI unit Dimension 
Kinematic I mn.-!s =I eSt em' Is m" Is L·fi 

Yiscositv. v I n//s = 106 eSt 

Dynamic I Dyn.slcm· = I 00 cp Dy11.slcm· Newton.s!m" MILT 
viscositv. u ' J t= Pa.s) (FT!Lc) I Ne~vton.sfm· = 10 cp 

Table 1: Unit and dimensions of viscosity [IJ 

Viscosity of liquids is measured by viscosimeter or viscometer. Three type of 

viscometer will be discussed here. The first viscometer is Ostwald viscometer 

(Figure 2a). In this viscometer, the viscosity is deduced from the comparison of the 

times required for a given capillary tube under specified initial head conditions with 

constant temperature. The second viscometer, falling (rolling) ball viscometer 

(Figure 2b) is based on Stoke's law for a sphere falling in a fluid under effect of 

gravity by dropping a polished steel ball into a glass tube of a somewhat larger 

diameter containing the liquid and recording the time required for the ball to fall at 

constant velocity through a specified distance between the reference marks. If the 

fluid flow in the tube remains in laminar range, the measurement results will be 

good. For non-Newtonian fluids, rotational type viscometer (Figure 2c) that consists 

of two concentric cylinders with annulus containing the liquid that viscosity is to be 

measured is often used. Both the outer cylinder or inner cylinder is rotated at a 

constant speed and the rotational deflection of the cylinder becomes a measure of the 

liquid's viscosity. [IJ 

T 

(a) (b) (c) 

Figure 2: Schematic diagram of viscometer [lJ 
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Regardless whether the reservoir fluids are transmitting in subsurface or at 

surface, viscosity is important in designing pipelines, production equipment, well 

testing and reservoir simulation. In terms of crude oil viscosity, it ranges from 0.1 cp 

for near critical to over 1 OOcp for heavy oil and it is considered the most difficult oil 

property to calculate with a reasonable accuracy from correlations [lJ. 

Reservoir oil viscosity is measured in laboratory using subsurface and surface 

samples. Whenever possible, oil viscosity should be determined by laboratory 

measurements at reservoir temperature and pressure although it is expensive to carry 

out PVT analysis at reservoir conditions. Sometimes, the measured surface oil 

viscosity from wellhead samples can be used as conversion to subsurface value but 

the accuracy of the results is challenged. If the laboratory data are not available, the 

engineers may refer to the published correlations. 

The viscosity of crude oils can be classified into three groups in terms of their 

pressure, p: 

• Dead oil viscosity, !lod, the viscosity of crude oil at atmospheric pressure and 

system temperature. 

• Saturated oil viscosity, !lob, the viscosity of crude oil at any pressure less than 

or equal to the bubble-point pressure. 

• Undersaturated oil viscosity, !lo, the viscosity of crude oil at a pressure above 

bubble point and reservoir temperature. 

During production, the pressure of produced cmde oils will change as they travel 

along the wellbore to the surface. At atmospheric pressure and reservoir temperature, 

there is no dissolved gas so the oil has the highest viscosity value of !lod· As the 

pressure increases, gas solubility increases, resulting decrease in oil viscosity. When 

it reaches the bubble point pressure, the amount of gas in solution reaches its 

maximum Rsb while the oil viscosity reaches its minimum !lob· After the bubble point 

pressure, the increase of pressure will result the increase of viscosity of 

undersaturated cmde oil due to the compression of the oil. Figure 2 showed the 

relationship between R, and p with cmde oil viscosity. 
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Figure 3: Crude oil viscosity as a function of R, and p l2l 

Depends on the available oil mixture data, correlations generally can be divided 

into correlations based on other measured PVT data like API and R, and correlations 

based on oil composition. In general, there are two types of reservoir fluid model 

namely the black oil model and composition model. Black oil model consists of two 

components (solution gas and stock tank oil). The calculations are based on 

empirical correlations from experiment using B0 , R, and other measured fluid 

properties. For compositional model, N components based on paraffin series are 

needed and the calculations are based on equation of state (EOS) using feed forward 

calculation of fluid properties. In this case, the crude oil viscosity calculation is 

based on the availability of the fluid properties or crude oil composition. 
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1.2 Problem Statement 

A direct viscosity measurement in reservoir condition the most ideal case but 

since this method is costly. In common practices, the fluid properties from the 

subsurface samples are measured in laboratory in surface condition under certain 

calibration and assumptions 

On the other hand, sometimes due to the unavailability of reservoir data and the 

cost of laboratory viscosity measurement at different time, viscosity values are 

estimated based on the publish correlations. Many researchers are improving the 

prediction of gas and liquid viscosities but most of the methods from mathematically 

rigorous to completely empirical forms have the following limitations: 

1. Applied for either gas phase or liquid phase 

2. Applied within a limited range of composition, temperature and pressure 

3. Reservoir fluids at different part of the world exhibit different behaviour 

4. Separate density correlation is required when density involved in estimation 

5. Inconsistent of prediction (different API might exhibit same viscosity value) 

Since viscosity plays an important role in providing a better understanding on 

future development planning, a better viscosity model has to be proposed to 

eliminate as many limitations mentioned above to estimate the crude oil viscosity as 

close as the measured value. 
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1.3 Objectives & Scope of Study 

The objective of this research is to propose a new compositional model for 

crude oil viscosity prediction using Polynomial Neural Networks (PNN) induced by 

Group Method of Data Handling (GMDH). This study is focused on the 

compositional crude oil viscosity model usmg a specific ranges of pressure, 

temperature, crude oil composition from methane until heptanes plus, specific 

gravity and molecular weight ofheptanes plus. 

In this project, crude oil PVT analysis composition data will be collected and 

filtered. Then, the data will be the input in GMDH software to develop the 

compositional model with a few trails using polynomial neural networks (PNN). 

Next, the results will be compared to other published correlations or models. The 

following are the scopes of study: 

(1) Investigating the accuracy of other published viscosity models for predicting 

viscosity of Middle East, North Sea and the others crude oils from literature 

review 

(2) Utilizing Polynomial Neural Networks (PNN) induced by Group Method of 

Data Handling (GMDH) in developing compositional model 

(3) Comparing proposed compositional model with other models from literature 

6 



CHAPTER2 

LITERATURE REVIEW 

In most cases, there is no simple rule or theory to predict the rate of change of 

crude oil viscosity with respect to temperature and pressure or composition. Due to 

the complexity of reservoir fluids, their composition will change during depletion of 

reservoir at different pressure and make it impossible to obtain a constant viscosity 

value that measured isothermally at the initial composition of reservoir fluids. 

Therefore, as mentioned by A del M. Elsharkawy et al. [41, the viscosity experimental 

data are used to evaluate and calibrate the proposed compositional model and the 

compositional model is used to update the value of the viscosity as a function of the 

changing pressure, temperature and composition. Basically, viscosity models can be 

classified into: (i) empirical methods; (ii) corresponding state methods; (iii) equation 

of state (EOS) based viscosity models. 

2.1 Empirical Correlations 

Empirical models cover all kinds of crude oils namely dead, saturated and 

undersaturated crudes. The commonly used empirical models in the industry are the 

models developed by Beggs and Robinson (1975) rsJ, Labedi (1992) [61, Kartoatmodjo 

and Schmidt (1994) Pl, and Elsharkawy and Alikhan (1999) [&J. In these models, 

crude oil viscosity is a strong function of temperature (7), pressure (P), separated gas 

gravity (yg), and tank oil gravity (API). The dead oil viscosity (~od) is a function of 

oil API gravity and reservoir temperature; saturated oil viscosity (~ob) was correlated 

to the dead oil viscosity and solution gas-oil ratio (R,); above bubble point (no gas 

being dissolved into the oil), the pressure becomes the primary independent variable 

for predicting the viscosity of undersaturated oil (~0). A reminder that saturated oil 

viscosity is highly dependent on the gas-oil ratio, a function of the oil API gravity, 

gas gravity, reservoir pressure, and temperature. 
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2.2 Corresponding State Models 

According to principle of corresponding states, the dimensionless properties 

of all fluids have the same numerical values at the same reduced conditions and it 

provides the basis for the development of correlations and estimation methods using 

knowledge of the properties of, at least, one reference fluid l4l. Initially, Hanley et 

al. l91 used the viscosity of methane as the reference fluid to correlate viscosity as a 

function of the temperature and density. Later, Pedersen and Fredenslund [!OJ 

proposed an improvement of the model by extending the method of Pedersen et al. to 

Tr < 0.4 using additional experimental viscosity data. All of these methods use the 

acentric factor as an interpolation parameter of the reference fluid properties. In 

1991, Petersen et a/[111 proposed a method with the molecular weight as an 

interpolation parameter instead of the acentric factor using methane and n-decane as 

reference components but this model suitable for viscosity predictions of light 

petroleum fractions only. In 1995, Moharam and Fahim [l2J used decane and eicosane 

as the reference fluids in predicting the viscosity of heavy crude oils and petroleum 

fractions of average molecular weight higher than 142 and the model relaxes the 

limitation imposed on reduced temperature Tr > 0.476 to Tr > 0.4. 

2.3 EOS Based Viscosity Models 

EOS based viscosity models applicable to both reservoir gases and liquids 

viscosity calculation at the desired temperature and pressure based on their 

composition from methane through heptane-plus, hydrogen sulfide, nitrogen, and 

carbon dioxide together with the molecular weight and specific gravity of the 

heptane-plus fractions. Lohrenz et al. [JJJ developed the first crude oil compositional 

viscosity prediction method based on the residual viscosity concept and the law of 

corresponding states. Later, Little and Kennedy [141 developed EOS based viscosity 

model using the van der Waals EOS but six coefficients involved in the model were 

not generalized. Both models above are very sensitive to the density, which is 

normally determined by a separate correlation and may be very inaccurate for high­

viscosity fluids. Lawai [lSJ also proposed a viscosity model based on the four­

parameter Lawal-Lake-Silberberg EOS but it is not a predictive model because 
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specific constants are required for each substance and poor results were obtained 

when applied to the C7+ fraction containing reservoir oils. 

2.4 Group Method of Data Handling (GMDH) 

GMDH was originated in 1968 by Prof. A.G. Ivakhnenko [16
• 

171. This 

modeling tool was successfully used in areas such as weather prediction, medical 

informatics, spectrum analysis and energy forecasting but still has not been much 

utilized in the oil industry and it has been proved successfully for predicting PVT 

properties of crude oils by E.A. Osman and R. E. Abdel-Aal. (2002) [I&J. GMDH is 

well coordinated with the state of art data mining techniques. The central role in 

optimal complexity detection is given to data split into training and testing samples. 

Basically, GMDH applies gradual model complication and self-organized 

model selection to select the optimally-complex mathematical model. Using Core 

algorithms, different model structures and a number of models are selected to predict 

testing data in best way. The training data mentioned before is used for fitting of 

model coefficients while testing data is used for measurement of model accuracy. 

The multilayered threshold algorithm of GMDH model is based on polynomial 

function generated from a given set of variables [191
. For example, a data set of two 

input (independent variables) x 1 and x2 and output (dependent variable) y can form a 

quadratic polynomial function y = ao +a, *x, + az*xz + a3*x1 *xz + ~*x,2 + a5*xl. 

The working algorithm is presented in Figure 1. At the top, it is the input for 

each predictor variable. Each neuron in the second layers draws two of the input 

variables as its input and third layer neurons draw their inputs from two of the 

previous layer. The process continues until the final layer (bottom) draws two inputs 

from the previous layer and produces a single value as the output of the network. 

Each neuron in neural network induced by GMDH is called partial description (PD). 

During the process, non linear regression determines the coefficients of each 

polynomial on training data set while external selection criteria and test data set are 

used to select optimally complex models. 
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Variables 

Selection 
Criteria 

(test data) 
y, ~ f(x,, Xo) 

,/!!!!.) partial description ···•... ·~:'; 

'--../ 
z~ f(y,, y,) 

regression 
(train data) 

1 layer 

regression 
(train data) 

2 layer 

Figure 4: GMDH polynomial neural network structure 
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a. Literature review 

In order to understand the discussed study, papers had been reviewed and studies 

were conducted along the project development stages. During the initial stage, 

empirical correlations were reviewed. EOS based viscosity model was intended to 

be developed by referring to PVT analysis and phase behavior textbooks. Later, 

GMDH method was reviewed and a compositional model was developed based 

on this method. 

b. Data collection 

Based on the literature quoted as reference 4, PVT data from Middle East, North 

Sea and the other places were collected. The needed data are pressure, 

temperature, laboratory measured viscosity, mole fraction of crude oil 

compositions (C1- C7+), mole fraction of non-hydrocarbon compositions (N2, C02, 

H2S), specific gravity of C1+ and molecular weight of C1+. 

c. Model Development 

During the model development process, Mathematica, Microsoft Excel and 

VariReg software have been attempted. Nonlinear regression analysis in 

Mathematica was the first attempted but unfortunately the version available did 

not support multiple response data. The coding will be attached in the appendix. 

After that, Microsoft Excel Analysis Too!Pax had been attempted with a few trials 

but the result was not better than the published correlations. At last, GMDH 

method was attempted using VariReg software. 

d. Results and Discussions 

After the compositional model had been developed, statistical and graphical 

analysis will be used to portrait the results and compare with other published 

correlations. 

e. Conclusions 

After the results had been discussed, it is time to conclude the project by 

surmnarizing the fmdings along the project. Last but not least, the objectives were 

reviewed in order to determine whether they have been achieved. 
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3.2 Model Development Methodology using VariReg software 

The following are the steps to develop the proposed composition model: 

1. Load training data 

2. Load test data from file 

3. Select PNN tab 

4. Key in degree of polynomials for individual neurons 

5. Select various radio buttons (A-E): 

a. Selection of full polynomials (no subset selection) or one of the subset 

selection algorithms for generating neurons. 

b. Selection of criterion for subset selection in each neuron as well as for 

deciding when to stop the building of the network. 

c. Selection of whether the inputs to the neurons are taken only from the 

immediately preceding layer or also prom the original input variables. 

6. Select maximum number of inputs for each neuron. 

7. Select maximum number of neurons in each layer. 

8. (Optional) Draw surface of the model right after building it. 

9. (Optional) Seeking optimum of the output variable using the built model 

I 0. (Optional) Saving the predictions of the built model to a file right after building it. 

11. Information on the just built model: 

a. "Total number of generated layers" - the total number of the generated layers 

of the network (the last layer is discarded) 

b. "Number of layers"- the number of layers in the final network 

c. "Used input variables"- the list of input variables used in the final network 

d. "The number of used input variables" - the number of input variables used in 

the final network 

e. "Crit value" - used criterion's value for the fmal network 

(The software user interface is available in the Appendix) 
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CHAPTER4 

RESULTS and DISCUSSIONS 

4.1 PVT Data Collections 

The new compositional model are developed from a database consists of 

crude oils composition, viscosity, temperature and pressure from Middle East, North 

Sea and the other places. 75 crude oil samples are collected through literature search 

where 49 crude oil samples from Kuwait [4), 7 crude oil samples from Abu Dhabi [121
, 

7 crude oil samples from North Sea [101 and 12 crude oil samples from Lawai [ISJ 

paper. The composition and properties of the crude oil samples used in the study are 

shown in Tables 2-5. 

Crude T 

r.c. !'F) 1:psi) lcP) N1 C02 H2S Cl iC~ c~ iCS C5 (6 

50 215 ne1 -~.897 0.0025 0.0219 0.0116 0.1633 ~.0629 0.074-S C.ClSE 0.0'53 ·~.0163 0.0273 C.C358 0.5227 C.SSC3 249 

, ,. ... ~ .. 
v.\1.:..:..· 0.!69 C..BiE! 

C· no~~ 0.0793 O.VS O.C193 O.Co!Ei 0.0252 0.0335 C.CSCS 0.4593 C.S60£ 230 

56 23! 119-J 0.6/5 C·.O~il 0.0199 C.C14 O.lHS O.C~2 O.Gi'El ~.0125 ·J.-~.:37 0.C219 G.C234 O.C514 0.4913 0.8912 2fi' 

Table 2: Composition and Viscosity of Crude Oils from UAE 

Crude T P ~!.<jl crudecompo;itico imclefmticni 
--------------~----~-----------

C02 HZS Cl "' ,, iCO: 
,, ,. iCS cs CE 

57 238 2753 0.38 O:J...'"'67 ·O.C2l1 0 0.3~S3 C.~7 C.C!SZ :.J122 0.042€ C.CJ~S 0.0235 C.C304 0.3515 O.SSZS l26 

58 2J-J 3981 0.40>! C.0034 C.G't&-' 0 0.-!923 0.0631 C.C.t4€ :.OOSE O::JZ12 C·.C·:S3 0.:133 C.C2:J6 0.31~5 C.8E5 23C 

59 199 3926 0.32 C.~.! 0.003& •O O.!SCE 0.07€ 0.0613 O.OOSi 0.02Si C.01C2 0.015 0.01 O.lSDl C.BS!' 1ll 

60 lEE 339~ G.425 J.OC9 0:~16 

61 1St l!!l 1.12 C.OOlE C.C1C6 C C.SCS O.C!S! 0.0:~ C.OCIS C.006 C.OC£: 0.0017 C.0!6 C.lS C.S9i2 291 

62 16C n=s 2.1 ·:J.o:m o.cc1s C C.l5'1 O.Cllt C.C'J9 O.w6S C:OC2E C C•)26 O.Xl' 0.0012 C.Slll 0.9165 255 

63 208 2952 0.299 'JOJ.!l 0.004~ 0 0.4C2t O.C.7ES 0.G815 C.Ol~~ C.C~~ 0.01'2 O.C22 C.02S1 0.3123 0.84!8 210 

Table 3: Composition and Viscosity of Crude Oils from the North Sea 
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~r11dc T Fb tJ.axp ::r!.ldetempo:sition l_ll"ole fraction] 

C02 H1S Cl Cl iCS cs C6 

6! 1!5 1297 0.66 

61 146 1162 0.55 \i 0.0013 

274 

67 86 1271 1.61 C.OJ!J 0.0019 230 

SS 156 1£SC C.E6 O.CroA O.OW3 188 

;o m lll tll o.oos o.o1s C.C2 0.063 C.OZ1 0.026 C.V83 C.541 0.8789 2DS 

il 110 3-'~ 153 ~.056 0.~ 0 CJ35 Q.C67 C.Ct3 0.015 0.034 C.C13 0.023 ·~_067 0.513 C.SB71 

n 15! 945 o.75 o.oo6 c-.:.Je 

0.57 ~.8&~2 

C:D16 0.016 C.351 0.011 0.014 C.DB C.CSE 0.492 C.B2~6 l19 

71 l2l lEES OAI 0 0.001 V 0.507 C.055 C.032 ·~.01 o.tJlS c.rm o.ooi O.D2 0.347 0.8493 25Z 

Table 4: Composition and Viscosity of Crude Oils from Lawai paper 

CrudE T Pb !.1 e:q: crude tompo:ition. !IT'.ola fr:rtion) 

110. CC2 H2S (1 
,., 
" Cl iC! {4 iC5 C5 C?· 

1 m ll55 0.51 0.0036 C.OCli 271 

0 0.2S3E C.J829 0.0138 O.QH! C:j3J2 C.0156 C.C186 0.0441 0.4231 O.Ba 252 

3 133 1595 1.25 C.OC33 0.0021 0 0.2556 0.0687 0.~639 C<C158 0.04~3 0.01€i C.03C1 0.0433 0,4601 o.as 
.; 135 15X US G.C035 0.004i v 02552 C.Di71 -.i.Of05 C.ClC2 0.0301 0.015i 0.0251 0.0422 OAESi o.a> 

I 134 1615 1.24 0.0011 C.OCSl 0 0.2SS1 ~.0791 0.06~ C.O~l 0.·~226 (l.OOBL C.0123 0.0325 O . .ti'7 C.88 250 

C 0.246£ C.Oi51 0.0691 O.Oll9 O.C347 0.01:-2 C.0163 0.03!3 0.4961 

I 13.! 1590 1.63 C.OOZl 0.0015 0.85 1~S 

8 135 1540 1.16 0.0011 0.002& ·0 0.2753 O.CES C.OS&i D.CUZ ·0.0135 C.;}352 c.<as C.BS 

9 ll' 1399 l.6 C.0075 C.D~-1 0 0.2!7S 0.06~ :.065 ~.015 C.C3B7 C.Cl/9 0.023 0.0367 OA7B5 o.ss 
10 135 169"j 2.81 O.C~ 0.0017 ·~.ss 

11 ll' 1548 115 0 O.ZSS& 0.0863 O.Oi43 C.CU 0.0261 C.CoC9€ 0.0165 ~.O!ll 0.4468 ·0.8& 245 

12 13: 1705 o o.Z935 o.ons c.cna c.o17 c.0433 o.-otn -O-C3C9 c.0453 0.39&2 

!l m 1653 1.5 0.0056 0.0007 c.ss 
G.BS 254 

15 1ll Jill 1.61 C.COOE O.XSl 0.89 

lE 131 1025 US 0 C.OO!S 0 }.195 ~.CS17 O.CS43 C.0154 C.044E C.-~121 'C.0171 0.0361 0.5122 0.85 

0.88 

1a m 1650 o.66 o.W15 c.W19 0 0.3115 C.089:1 C:~73S O.CllS O:C292 ·O.D12S O.C2Z 0.0.:3~ OAC32 0.85 121 

H B~ l€34 1.2S C.OOS C.CC87 0.88 

lO 134 !Ill 2.3 0.0068 {).0102 O.OOC-4 0.25.!9 C.0£37 C.J~53 D.Ol!i 0.036& ~.C-162 0.0326 ~J3S1 0.4603 0.9 

Table 5: Composition and Viscosity of Kuwaiti Crude Oils 
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21 135 1s.:s 1.74 0.0::22 O.C13i 0 0.2191 0.0651 0.0516 C.OJS6 0.0166 C.OJN 0.008-' 0.0259 C.5213 0.89 

ll ll' 1815 3.52 O.G019 0 . .:251 0 0.31&9 0.0751 0:0659 C.0124 0.0353 O.CBS 0.0:16 0.0329 0.3574 

a m 1s15 3.39 0.ons o.oz-46 0 0.3026 0.0214 0.0322 J.420S c·.s1 
l' Ill 1565 1.56 C.OC\44 C.OOSl 0 0.2775 C.C75! C.CE9 0.0142 0.0319 0.0148 0.0162 0.0311 0.4572 C.S 

15 13.: 158C l51 C.OOl.! 0.0.050! 0 0.29:44 0.0796 0.0619 C.0107 O.C2S9 o'J.C1~5 0.02 C.C38~ 0.4468 O.S 

ZE 132 1380 2.01 0.0015 0.0039 0 0.2755 ·~.Ci86 C.0€3 0.0102 C.0257 O.c-:99 0.0159 C.03ES 0.479 

21 ll' 1680 1.9 C.OJ26 J.0126 0 0.2827 

zg 132 173& 2.02 C.OOZ C.OOS 

z; 132 1920 1.77 0 C.OB 0 0.3453 O.Ci24 0.G531 C.O.~Si ·~.0192 0.0:73 C.Cl18 C.034S OA3-14 0.89 

30 133 1655 1.86 0.0~54 0.005 ~" ·nns o.cEss a.c-634 o.Jt25 o.o3~ c.013.! c.o1s5 o.o35 ~.467 C.SS 

O.C-041 O.OC€5 0 n.3021 O.~sg C.066 0.0163 0.0425 G.017i C.C285 C.0427 0.~~~ OBi 

32 133 1788 1.54 0.001 O.Cll~ G. BE 

33 133 lSCS 1.52 C::m O.Cll6 O.SB 

0 0_29~6 0.0851 ~.0663 C.ClC/ 0.029 0:0123 C:~214 0.0379 0.£359 C.9 

35 135 lSOG 151 C.O~lS 0.004& C· 0.2851 C.::J817 C.C636 O.Cl07 0.03CS \i.01·B C-.023 0.0387 OA~SS c.; 

36 133 1715 C C.l155 0.0866 

C.Bi 

38 135 1735 1.48 O.OC\45 0.0051 C- 0.3C5f ·J.0725 G.C72S C.01~4 0·338 0.:155 O.C221 C.C3S5 :i.'ll 0.&9 

39 13.: 1530 -~.91 

.:o 135 liES l.SS 0.0015 0.0012 C C.2SE2 C_OStE ·J.0652 0.011.: tC364 0.0114 O.C157 0.1B62 0.4!78 0.93 

C.9 

42 1£8 zs:s 1.3 G::O~S C.C13i 0.00£9: 0.3597 0.0867 j.0594 -~.OOSS 0.0212 O:XSS C.C--:9~ 0.031 0.3971 

.:.3 2CB 1S77 0.79 ·J.SS 

'. 23G 211C JAS 0 0.01:5 0 0.3335 G.0924 O:~Oi C.OOB J.Olii O.X53 C.01C9 O,C2i8 C.432S O.SS 

!5 233 3730 0.25 C (}.XES ·~.SS 

-'6 241 3335 :i.44 O.OX5 C:XSS 0 0.41C5 C.llc-7 0:0707 0.0036 0.0386 0.010' C.C·lSS C.031S 0.2901 O.SS 

47 ::o 3630 0.43 ·G.OX6 O.X94 0 CA'* :.1C7€ ~.061S -0.0~8 0.0324 C:~Z91 C.\117~ Z.C257 0.2838 0.85 

o c . .:.cst c.1on o.D66! o.oos7 c.c3S7 O:X9S !h11E7 o.c:s1 1B134 C.S5 

0 C.4C7 C.l05~ ·:.:eSS C.0087 0.035.! C::-:9~ C.0172 G.C2B1 0.3136 ·0.85 

Table 5 (continue): Composition and Viscosity of Kuwaiti Crude Oils 
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4.2 Viscosity Model 

In order to obtain a practical model with reasonable accuracy of result, 

several attempts have been made. VariReg, a software tool for general purpose 

multidimensional regression modelling was used for the models development. This 

freeware provides means for creating "full" polynomial regression models, sparse 

polynomial models and employing subset selection algorithms rzo. 211. In the software, 

some input GMDH parameters were varied in terms of: 

• degree of polynomials for individual neurons, 

• algorithm for individual neurons, 

• maximum number of inputs for each neuron, 

• maximum number of neurons for each layer, 

• inputs from preceding layer or preceding layer and from original input 

variables 

For the criterion for model selection, the model evaluation and 

hyperparameter selection is done using small sample corrected Akaike' s Information 

Criterion (AICC) using the following equation: 

AICC = n !n(MSE) + 2k + (2k(k +1)) l(n- k -1) (2) 

From 75 world crude oils database from Kuwait, UAE, North Sea and Lawai 

paper, the proposed empirical models were developed. The viscosity of crude oil can 

be expressed as a function of temperature, pressure and several oil composition 

groups. In the model, the following variables were used: 

• XQ, T =temperature (degrees Falrrenheit) 

• x~, P =pressure (pound per square inch absolute, psi) 

• xz, GL =mole fractions of the light components (C1 and Cz), 

• X3, Gm =mole fractions of the intermediate components (C3 through C6), 

• 14, Gh = mole fractions of components heavier than heptanes, C7+ fraction, 

• xs, Gnon =mole fractions of non-hydrocarbon components (Nz, COz and HzS) 
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After GMDH was applied, the best statistical model varying different GMDH 

internal parameters was selected from varied data distribution between train and test 

data sets and model complexity. Table 6 presented the compassion results from the 

GMDH models. 

Model Test Polynomial Function MSE RRMSE AARE 

Number data degree 

set,% 

1 20 2 y=f 0.2655 0.704275739 0.415010488 

(xo,xloxs) 

2 20 3 y=f 0.2908 0.737067 0.359043 

(xo,X4,Xs) 

3 20 4 y=f 40.8589 8.737445 2.06185 

(xz,X3,X4) 

4 10 2 y=f 0.2614 0.698926666 0.40000463 

(xo,xz,xs) 

5 10 3 y=f 0.1568 0.541276 0.260662 

(Xo,X4,Xs) 

6 10 4 y=f 1.6029 1. 730591899 0.45225865 

(xo,xz,xs) 

Table 6: GMDH Models 

In V ariReg the main results are displayed in RRMSE form where 0 is perfect 

fit; value approaching 1 means the model is no better than a mean value of y; value 

largely exceeding 1 the model probably means overfits the training data. From Table 

6, model number 2 and model number 5 showed the best fitted models with the least 

AARE. These models used T (xo), Gh (X4), Gnon (xs) as their variables to calculate the 

viscosity values. Since the test data set was selected by hold up the training data set, 

the number of training data set will be less with increasing percentage of test data set. 

Therefore, model number 5 showed better fitting than model number 2 because more 

data from model number 2 is used as test data set. 

After learning that test data set will affect the model fitting, various trials 

have been attempted. In order to minimise the training data set input lost due to 
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usage in test data, the similar training data set and test data set were used in 

developing the compositional model. This method results in a compositional model 

that is capable of predicting the crude oil viscosity with MSE of 0.041781893, 

RRMSE of 0.279405788 and AARE of 0.086901677. The proposed compositional 

model has the following form: 

llo =a,+ az*T + a3*T2
- a4*T3 + as*T4- a6*T5 + a7* GL- as*T* GL 

+ ag*T2*GL- a10*T3*GL +au *'f'*GL- a12*GL2+ a13*T*GL2
- a14*T2*Gt2 

+ a,s*T3*GL2 + a,6*GL3- a17*T* GL3- a,s*T2*Q3- a,g*GL4+ azo*T*GL4 

*G 5+ *G *T*G + *T2*G *T3*G + *'f'*G - a21 L a22 non - a23 non U24 non - U25 non a26 non 

- az?* GL *Goon- azs*T*Q *Goon+ az9*T2 *GL *Goon- a3o*T3*GL * Goon 

+ a31 *0t2*Gnon + a32*T*GL2*Gnon + a3/T2*GL2*Gnon- a34*GL3*Gnon 

- a3s*T*GL3*Gnon + a36*GL 4*Gnon- a37*Gnon2 + a3s*T*Gnon 2 - a39*T2*Gum.Z 

+ ~*T3*Gnon2- ~,*GL* Gnon2
- ~z*T*GL *Gnon2 + ~3*T2*GL *Gnon2 

+ ~*GL2*Gnon2 - ~s*T*GL2*Gnon2 + ~*GL3*Gnon2 - ~7*Gnon3 + ~s*T*Gnon3 

+ ~9*T2*Gnon3 + aso*GL *Gnon3- as1 *T*GL *Gnon3 - asz*GL2*Gnon3 + asJ*Gnon 4 

*T*G 4 *G *G 4 + *G 5 
- ft54 non - ass L non as6 non 

where 

a1 = -8478.58349606828 

a2 = 55.7362649737557 

a3 = 0.0317567844848732 

~ = 0.00244544177916937 

a5 = l.31281534907682E-5 

~ = 2.43041542877451E-08 

a7 = 77823.8744820531 

a8 = 574.825569957195 

ag = 3.32289855754005 

a10 = 0.0123543066137851 

au= 1.97741181759314E-5 

a12 = 251925.279192096 

a13 = 849.0509876425 

a14 = 1.85805197448581 

a15 = 0.00479457122014624 
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a,6 = 428350.408327296 

a17 = 659.387877657145 

a,g = 2.85065013356515 

a19 = 359455.090075369 

azo = 1584.23213582731 

a21 = 80637.6949098182 

a22 = 484740.067189686 

a23 = 3926.90745511693 

a24 = 17.7320700483948 

azs = 0.0334115078920825 

a26 = 0.000204674937622932 

a21 = 2078397.26136335 

azs = 9700.52977447604 

a29 = 71.8440983550474 

a3o = 0.454556152809839 

(3) 



a31 = 10375786.2236233 ll44 = 27332488.2517499 

a32 = 624.041916585568 ll45 = 418685.338687488 

a33 = 210.867090335141 ll46 = 33613498.2901565 

a34 = 18541552.8677577 ll47 = 342924264.74869 

a3s = 71130.5137912637 ll48 = 1804340.33355108 

a36 = 20628488.0562239 ll49 = 3921.88539760773 

a37 = 15539999.8022648 aso = 861970372.030063 

a3s = 332380.871618826 as1 = 5149971.11606209 

a39 = 1859.52284112302 as2 = 209011409.93615 

ll4o = 1.70447348965117 as3 = 2309360358.65222 

ll41 = 12312465.5509495 as4 = 18715455.5408219 

ll42 = 81582.9393949258 ass= 415750768.871321 

ll43 = 1671.76488670865 as6 = 8355290234.78248 

4.3 Statistical Error Analysis 

Error analysis is utilized to check the accuracy of the models. The error 

measures used in the preset work are mean squared error (MSE), standard deviation 

(STD) relative root mean squared error (RRMSE), and average absolute relative 

error (AARE). Equations for those parameters are given below. Summary of 

statistical comparisons between models and correlations are presented in Table 6 and 

Table 7. 

1. Mean squared error (MSE): 

It is the sum of square error divide by n, the number of data, defined by: 

(4) 

2. Standard deviation (STD): 

It captures how irregular the problem is, defined by: 

II H . \2 
sm = ,1-"L (y,i)- .r/ 

v 11 i=l 
(5) 
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3. Relative root mean squared error (RRMSE): 

It is the root mean squared error divide by standard deviation, defined by: 

11 n · . ·)' 

11-L (Yeo- F(x(;)) -
RRMSE = RJ\1SE = _,1_n~,p;·=J"====~-

STD il"· , 
1-"'"(v -;'¥! \1 :.... di) J 
i 11 1=1 

4. Average absolute relative error (AARE): 

(6) 

It measures the relative absolute deviation from the experimental values, defmed by: 

l n , . . . 

AARE = -l:G·(f} -F(xc;J)) 
n •=J (7) 

4.4 Graphical Error Analysis 

Graphical tools assist in visualizing the performance and accuracy of a 

correlation or a model. Crossplots were employed as the graphical analysis technique. 

In this technique, all the estimated values are plotted against the measured values. 

Then a 45° straight line that represents a perfect correlation line between the 

estimated versus actual data paoints is drawn on the crossplot The tighter the cluster 

about the unity slope line, the better the agreement between the experimental and the 

predicted results. 

Figure 6, 7 & 8 present crossplots of predicted viscosity versus the actual 

laboratory measured viscosity for proposed model, Adel's compositional model 3a 

and Adel's compositional model 3b. From the crossplots, it is clear that the proposed 

compositional model outperforms the other two compositional models by having the 

tighter cluster about the unity slope line while others indicate higher scattering range. 
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Figure 6: Crossplot of measured versus estimated viscosity 

(Proposed compositional model) 
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Figure 7: Crossplot of measured versus estimated viscosity 

(Adel's compositional model 3a) 
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Figure 8: Crossplot of measured versus estimated viscosity 

(Adel's compositional model3b) 

4.5 Discussions 

Based on Adel M. Elsharkawy et al. 141, the 49 Kuwaiti crudes were first 

evaluated using Beggs and Robinson ( 197 5) 151, Labedi ( 1992) 161, Kartoatmodjo and 

Schmidt (1994) [7], and Elsharkawy and Alikhan (1999) 181 correlations. In that 

literature review, Elsharkawy and Alikhan 181 model has the smallest AAD value, 

20.86%, followed by Beggs and Robinson (1975) 151 model (ADD = 26.4%), 

Kartoatmodjo and Schmidt [?J model (ADD= 32.11%) and Labedi 161 model (ADD= 

33.45%). Elsharkawy and Alikhan 181 model showed the best result among the other 

three correlations because it was developed using Middle East crudes that have some 

physical and chemical similarities to the Kuwaiti crudes. These empirical models 

mentioned above are not suitable for accurate viscosity prediction as the viscosity 

prediction might give the same API gravity although the compositions had changed. 

Due to the limitation of empirical models mentioned above, the proposed 

model considered the compositional of reservoir fluids. Figure 9 shows the 

comparison between the measured and predicted viscosities by Adel M. Elsharkawy 

et al. 141 compositional models (3a and 3b) and proposed compositional model using 
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75 crude oil samples. This figure indicates that the proposed model closely matches 

the experimentally measured viscosity. 

Based on the calculated viscosity data presented in Lawai paper, EOS-based 

models such as were compared with the proposed model using 12 crude oil samples 

from Lawai paper. The Average Absolute Relative Error (AARE) is the lowest in the 

proposed model with only 0.8%, followed by LawaJ 1151 model (26%), Little and 

Kennedy 1141 model (41.69%) and Lohrenz eta/. fiJI model (89.28%). It is believed 

that the viscosity calculation by Lawal methods is questionable because of highly 

inaccuracy of AARE. 
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Figure 9: Viscosities comparisons for 75 crude oil samples 

Table 7 shows summarize the viscosity calculation results of 75 crude oils 

from different places of the world along with the data ranges that have been applied 

in the development of compositional models. These results indicates that the 

proposed model is more accurate than the other compositional models proposed by 

Adel M. Elsharkawy et al. 1201 by displaying only 8.7% of Average Absolute Relative 

Error(%). 
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Data Ranges Maximum Value Minimum Value 
Trange, op 274 86 
Prange, psi 4040 335 

GL 0.5936 0.146 
Gm 0.305 0.0297 
Gh 0.6979 0.248 

Goon 0.0758 0.0007 
Compositional Model 3-a (Adel et al.) 3-b (Adel et al.) Proposed Model 

MSE 0.2212 0.2009 0.041781893 
RRMSE 0.642902262 0.612661 0.279405788 
AARE 0.271669236 0.263783 0.086901677 

Table 7: Comparison of the proposed model to Adel et al. compositional models 
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CHAPTERS 

CONCLUSION & RECOMMENDATIONS 

The viscosity compositional model developed from Polynomial Neural 

Networks (PNN) induced by Group Method of Data Handling (GMDH) is applicable 

for crude oil only. The new model successfully predicts 75 crude oil samples from 

different parts of the world with an AARE (%)of 8.7%. The proposed model uses 

only three input variables, temperature, T, mole fractions of the light components 

(methane and ethane), GLand mole fractions of non-hydrocarbon components (Nz, 

C02 and H2S), Gnon for the viscosity estimation. 

It eliminates the tedious procedure for characterization of heptanes plus, 

splitting of the heavy fraction, complex mixing rule, which are needed for the EOS­

based viscosity model. At the same time, it improves the accuracy of results as 

compared with the widely used empirical correlations that use oil API gravity as 

input parameter. 

Overall, GMDH is a very useful technique and should be applied more as 

valuable alternative modeling tool. The proposed compositional model is only 

applicable for certain range of data at bubble point pressure and it showed a better 

crude oil viscosity prediction 

For further improvement, more data are recommended to be collected for a 

more accurate and generalized composition model more with a wider range of 

application. 
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NOMENCLATURE 

=Polynomial Neural Networks 

=Group Method of Data Handling 

=Equation of State 

=Partial description 

=Akaike's Information Criterion 

=Shear stress 

=Shear rate 

=Force 

=Velocity 

=Area 

=Dynamic viscosity 

=Kinematic viscosity 

=Fluid density 

=Dead oil viscosity 

=Saturated oil viscosity 

=Undersaturated oil viscosity 

=Solution gas oil ratio at bubble point 

=Solution gas oil ratio 

=API Gravity 

=Temperature 

=Pressure 

=Mole fractions of the light components (C1 and C2) 

=Mole fractions of the intermediate components (C3 through C6) 

= Mole fractions of components heavier than heptanes, C7+ fraction 

=Mole fractions of non-hydrocarbon components (Nz, COz and HzS) 

= Average absolute deviation 

=Mean squared error 

=Standard deviation 

=Relative root mean squared error 

=Average absolute relative error 
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APPENDICES 
Mathematica Coding: 

SetDirectory[$U serDocumentsDirectory] 

"C:I\Usersllyong\\Documents" 

FileNames["labdata.dat"] 

{"labdata.dat"} 

Needs["NonlinearRegression' "] 

data~ Jmport["labdata.dat", "Table"] 

{{"{\\rtf! llansil\ansicpgl2S2\\deffillldeflang17417 {\\fonttbl {111ll\\1 
fswiss\\fcharsetO", "Aria!;}}"}, {"{II *\\generator", "Msftedit", 

"S.41.21.2S07;} llviewkind4\\uc lllpard\\1llllfs20", 133, IS9S, 0.88, 
0.3243, 0.2101, 0.4601, "1.2SIIpar"}, {13S, ISOO, 0.89, 0.3423, 
0.1838, 0.46S7, "1.3S\Ipar"}, {134, 161S, 0.88, 0.3672, 0.149S, 
0.477, "1.241\par"), {134, 1400, 0.88, 0.3217, 0.1776, 0.4961, 
"1.9SIIpar"}, {134, IS90, 0.86, 0.3S4S, 0.142S, 0.4994, 
"1.63\lpar"}, {13S, IS40, 0.88, 0.3443, 0.1628, 0.489, 
"1.161\par"), {134, 1399, 0.88, 0.3163, 0.1963, 0.478S, 
"1.61\par"}, {135, 1690, 0.89, 0.3772, 0.1163, 0.5045, 
"2.811\par"}, {134, 1548, 0.86, 0.3719, 0.1796, 0.4468, 
"1.151\par"}, {"}"}, {)} 

NonlinearRegress[data, 
al*Pa2*P"a3 *Subscript[\[ Gamma], c7plus]"a4*Subscript[G, !]"aS* 
Subscript[G, m]"a6*Subscript[G, c7plus)Aa7, {a1, a2, a3, a4, aS, a6, 
a7}, {T, P, Subscript[\[ Gamma], c7plus], Subscript[G, 1], 
Subscript[G, m], Subscript[G, c7plus]}] 

NonlinearRegress::bddata: The data argrunent ofNonlinearRegress must I 
be a matrix. Weighted regression is specified using the Weigbts \ 
option. The data format { {xll, x12, ... , {yll, ... , yl m} }, {x21, x22, I 
... , {y21, ... , y2m} }, ... , { {xnl, xn2, ... , {ynl, ... , ynm}}} is I 
reserved for multiple response data, which will be supported in the I 
future.>> 

Nonlinear Regress[ {{"{I \rtf! llansi\\ansicpgl2S2\\deffillldeflangl7417 {\II 
fonttbl {\\1ll\\fswiss\\fcharset0", "Aria!;)}"}, {"{\\*\\generator", 

"Msftedit", "5.41.21.2507;} llviewkind4\\uc I llpard\\1ll\\fs20", 133, 
IS9S, 0.88, 0.3243, 0.2101, 0.4601, "1.2S\\par"}, {13S, ISOO, 0.89, 
0.3423, 0.1838, 0.46S7, "1.35\\par"), {134, 161S, 0.88, 0.3672, 

0.149S, 0.477, "1.24\\par"}, {134, 1400, 0.88, 0.3217, 0.1776, 
0.4961, "1.9SI\par"), {134, IS90, 0.86, 0.354S, 0.142S, 0.4994, 
"1.63\\par"}, {13S, IS40, 0.88, 0.3443, 0.1628, 0.489, 
"1.16\lpar"}, {134, 1399, 0.88, 0.3163, 0.1963, 0.478S, 
"1.6\\par"), {13S, 1690, 0.89, 0.3772, 0.1163, O.S04S, 
"2.81\\par"}, {134, IS48, 0.86, 0.3719, 0.1796, 0.4468, 
"l.IS\Ipar"}, {"}"}, {)},a! PAa3 TAa2 \! 

\*SubsuperscriptBox[\(G\), \(c7plus\), \(a7\)] \! 
\*SubsnperscriptBox[\(G\), \(\\),\(aS\)]\! 
\*SubsuperscriptBox[\(G\), \(ml), \(a6\)] \! 
\*SubsuperscriptBox[\(\[Garnma]\), \(c7plus\), \(a4\)], {a\, a2, a3, 

a4, a5, a6, a7}, {T, P, Subscript[\[ Gamma], c7plus], Subscript[ G. 
1], Subscript[G, m], Subscript[G, c7plus])] 
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V ariReg software user interface: 

'."a::\Y! : -J • .535L•JH3 
S!:!iY; = 1.7315746"':" 

Loaded te3t data: 
C: \ UJers~_yeng\D::wnle:.ads\ ',"a::i.;l.eg\:le= 
dat.a.\:"e=!"~-pt.el!td.a.t.a txt. 
Nlll!'ibe:: <::!' c.;;se!!i = .,;, 
MsaniY) "' l.2':"•)30E"' 
\•a.:" ;Y• "' 0 .5S520H? 
ST:l\~0 = Cl.7:il5"'iH"? 

Tab "PNN" user interface: 

APPENDICES 

-j- Shuffle 
-lOWS aft 

l,.,.._,..;n..'li 
of cross-vafidation 
Including that of EF·ABFC) 

Random~eed: 0 

~p~--TP~-:-·AFri :-~~-) k·NN l RBF \:~_T~~~ PNN . A~~.l__g_~: lnlounation 

~ -,· ' 

Pnh-mffl Neural Netwqrb induced bp Grouo Method of Qata Handfino 

N\ltll>e::: c! neu:ccn~ in t.b.is layer ., ;: 
!c1:al :1.~er ::::' neu::cns t.ried "' :t·J 
l:e-air.Y.S~ c! r;he be't. neu:e-cn"' 0.0417Cl1393 
C::it. v•lue c! ~;he be:SJt. neu::c::. .. ~:.;.8.:;19"-i 

B'clild.inq la:re~ ;-.; _ 
N~ :1eu::cn:: e::ea.l;e-j i:-. l;hi.!l J.a~•e::. 

:Oi!"1.i.!lh~d 

0:~ 5~~-~~------, ---.. 

Steepest Hill Cimbing 

atd Seleclio 

Criterion lor !On 
QAJCC 

~;ri~ 

I::1;al ::n.l.~.k·er ::!= gen{tra"t;ed la}'e::s = Z (l;he h.~::: is :::c be di.::c:a::ded) 
N".U:2::er c= 1a~·e::s = 1 
Useli input ···ii::ciaCles = xO,x2,x~ \atar"t<inq :':rem )1;01 
The n\mll:er t:! uaed input' vari;;bles "' 3 

TesU'.S:: = 0. 041!21233 
IQS":tt;!..V.S~ = 0.~7940:i'79 

~§;;;~;:_;:;~;::: ____________ , Built model 
L~yer ;1 L.------------------------' 

lnpUis from 
Preceding layel 

iit Ptec. ~'l!f + originlll input variables 

Max. l"'l..m. of inputs !Of each neuron 

2 
• 3 

Max. num. r.J neurons 101 each layer 

o Eqwlto the rrumber of irlpul variables 

Predefined: 
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