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ABSTRACT 

Gas hvdrates are clathrates" where a gas molecule is being caged by a host molecule 

w1th no chemical bondmg. Hvdrocarbons are noted to be able to create hvdrate. There 

IS a ce1tain condition where the hydrate can be f(nmed Seen as a potent1al gas source, 

1t is also has the potential to be used as a med1um of transporting natural gas 111 

solid form. For that a feasibility studv is to be conducted to see its economic 

feasibility A process is suggested 111 transfonmng the natural gas to gas hydrate. The 

econom1cs of the proposed process IS evaluated, and cumpanson to LNG 1s bemg done 

"vtann transp011at1on analys1s is also conducted to see the feas1bil1tv of transporting 

hydrate by sea. From the economic analys1s on the pmcess, fixed capital and operating 

cost of hvdrate plant is less than LNG liquefaction plant bv From the transportatiOn 

cost analvs1s. 1t is concluded that natural gas hydrate ( NGH) sh1ppmg is a good 

alternative for small-volume transport on short d1stance. where LNG can be 

uneconomical 
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CHAPTER I 

INTRODlTCTIO~ 

1.1 BACKGROUND OF THE STUDY 

Hvdrates are an example of a chemical compound called clathrate, 111 which a host 

latt1ce traps a smaller guest molecule rns1de the ·cage· The guest molecule acts to 

stabilize the lattice structure of the compound Gas hydrate can be found 

naturally in the Artie. beneath the permafrost as well as underneath the 

ocean floor at certam watBr depth (Demirbas. 21110: Carrol, 2009) 

Format1on of gas hydrate is favored by these cond1t1on. surroundmgs with low 

temperature and high pressure. the present of a former gas hvdrate and sufficient 

amount of water (Denmbas. 20 I 0) 

lmttally a nuisance to the natural gas processmg and transporting process as tt 

forms and butlds up rnside the p1pelme thus plugging the pipeline. there is an 

1ncrease of interest in studymg the prope11ies and usage of gas hydrate. Some 

research has been done to emulate the tormat1on of gas hvdrate and mak1ng it as 

an option to transpo11 and store natural gas. "' hope that lt INill be made as a 

viable option in transp011ing natural gas to the customer 

1.2 Problem Statement 

Accordmg to American Petroleum Institute (API), the forecasted demand for 

natural gas in 20 I 0 decreases a l1ttle before the demands continues to grow from 

2012 to 2016 (Amencan Petroleum Institute, 2009) (Please refer to fll! A I for 

the graph to see the proJection demand of natural gas) Globallv. natural gas 

IS commonly used as source ilH electiiCity and as world population 

increases. the consumption of natural gas "rll also increase. Supplies is sa1d 

to be abundant INOrldwide. accord1ng to stud1es conducted by MIT (Connors. eta!. 
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20 I 0) ln the same study, on~ of the h1ghlight 1s that the total delivery cost to 

mternat1onal market IS dependent to transportation cost in which related to the 

distance of the route. 

Methods used to transport natural gas are p1pelmes. liquefied natural gas 

(LNG). liquefied petroleum gas (LPG), compressed natural gas (CNG), gas- to­

liqtnd, gas-to-commodity. gas-to-solid ami gas-to-power P1pelines are 

effective for short distance onlv, Jt 1s costly to build for a very long d1stance 

especially those of the subsea p1pel111es The 1\laJ<H 1-vav to transport natural gas 

1s LNG usmg special tankers. The transportation cost of LNG has been reduced 

greatly due to the development in thermodynamic effic1ency. The setbacks of 

LNG are the process1ng cost and it is not swtable for small- capac1ty shipping 

(Mokhatab, ct.aL 200(,_ Speight, 2007) Another method currently under research 

is gas-to-solid, m wh1ch the natural gas 1s com e11ed to solid form and transports 

them in ships Gas hydrate 1s considered a good form tor natural gas 

transportation . 

.-\ study made bv Romano\\ in 2000 estimated that almost 60" o \Vorld gas 

reserves arc stranded reserves Stranded reserws are reserves that are located far 

away from any processing plant 1n wh1ch transportmg the gas to the end point 

(customer) IS not feas1ble Plus, the current trend for energv exploring Js now 

movmg to ultra-deep reserves "'here 11 calls for better technology and 

engmeenng knowledge For these reserves. p1pelines and L"'G mav not be a 

good cho1ce as transportation option ( Hidncy & Parrish, 2006) 

lh1s study is to see the feas1bliitv of transportmg natural gas 1n forms of gas 

hvdrate by performing an economic cvaluaiHJn of a proposed gas hydrate 

process and evaluate the feasibility hv compar1ng the economics wHh the maJor 

method which is LNG The studv would sho1-v the poss1bilny of havmg a ne\\ 

method of transporting natural gas and serves a, a startlllg poull to explore othe1 

usage of hvdrates. 
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1.3 Objl'ctiw 

The purpose of the studv ;s 

To evaluate the eCOtlO/lliCS ur processing natural gas by converting 

It to gas hvdrate ""proposed process. 

IL To Jeterminl: tht: feasibilily or tlansporting natural gas lfl gas 

hydrate form 

1.4 Scopl' of study 

The scope of the studv comprises or 

Understanding the process of com eriing natural gas into gas 

hvdrate 

II. Economic evaluallon or a proposed process 

111. Economic feastbtlttv ol' transponmg natural gas m gas hvdrate form 

ustng the proposed process as the proccssmg route 
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CHAPTER 2 

LITERA TliRE REVIEW 

2.1 GENERAL REVIEW ON HYDRATES 

Hvdrocarbon of small-s1zed molecule. w1th sufficient amount of water and 

adequate condition can form hvdrates. The Inclusion of the 'guest' molecule 

ms1de the water latt1ce stabd1zes the alignment of the host molecule. thus 

preCipitate as solid (1ce-11ke structure) The structure of the hvdrates is d1v1ded 

into three namely Type L Type II and Type H. Each structure has rts own lattice 

structure and phvsrcal properties. Further research shows that there exists a 

relationship between s1zes of the guest molecule, and the types of latt1ce structure 

that rt wrll form (CarroL 2009) (Please refer hg A2 tor the chart that shows the 

rclatrons between molecule s1ze and tvpe of latt1ce structure) 

.\side tram the three condrtlons needed lor molecules to form gas hydrate. there 

are other factors that could impro\e the formation of gas hydrate. Multiple 

researches show that the factors are 

r Turbulence 

Agrtation and strrring affected the rate of hvdrate formation. In 

natural gas process1ng. the hydrate forms rn pipeline sect1on where 

the veloCity is lligh and narrowing pipelines 

11. free v..-ater 

Hydrate formatron requires sufT1c1ent amount of water. The 

presence of free water could help enhancmg the hydrate fonnatron 

smce 1t Increases the gas-lrqurd surface interface, which 1s the 

nucleation srte for the hvdrate 

111 Nuclealroil Site 

In a prpelme. an rmperfect1on s1te (damaged or corroded) could be 

a good nucleat1on site for hvdrate to form 
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Commonly, the process route tor natural gas hydrate transport is as in Fig 1 

(Mannel and Puckett, 2008): 
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Process diagram for gas hydrate production 

Many researches have been conducted to propose a feasible process route in 

converting natural gas into gas hydrate; the common process diagram as 

shown below (Danesh, et.al): 

water 

Cooling React1on 
s·u 

r---
rr1 - gas 
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Ira~ .spcr. S10rage 
h)drate 

Separal'on ~ 

Fig 2 Process route tor gas hydrate synthesis 
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2.2 Previous research on tmnspo•·ting natuml gas as hydmtes 

Stonng and transportmg natural gas as gas hydrate has been researched 

extensivelv in Japan. Norv.av. England and l S (Please refer Fig AJ in the 

Appendrx A for other process route bemg suggested by these nations) Researchers 

111 Japan and Norwav have come up wrth till'rr ow11 process route. In Japan. 

experimental plants have been set up by Mitsui Engmeermg and Shipbuilding 

Co .. Ltd (MES) and have managed to produce natural gas hvdrate m pellet 

form (Kanda. 2006) 

Varrous economrc feasibilrty studrcs have been reported. From the experrmental 

plan built by MES Japan. they have concluded that rt rs feasible to transport 

natural gas as hvdrates in some condition Thev have come up wrth two cases for 

conceptual design and economrc feasrbility studv LNG ocean transport chain of 

same scale with the year's gas market prrce rs used tor comparrson study The 

result hrghhghted the mitral cost for the hydrate transport chain rs srgnrtlcantlv 

lower (bv 23-27%) than the LNG transport cham due to these reasons 

1 Equrpment which made up the hvdrate productron plant rs mostlv 

a general merchandised product and relatrvely easy to obtain. 

11 Hvdrate utilizes much hrgher st<Hage temperature (close to room 

temperature) than LN(i which needs to be store at (-162"C) 

111 Currently. hydrate shrps are for small-volume transport Whrle the 

initial cost of hvdrate ship is low. the feasrbrlrtv of shipping 

hvdrate reduces as the amoullt that needs to be exported is 

larger and the d1stancc IS bigger. 

rv. Small LNG earner rs hrgher in unit cost than a normal-srzed L"G 

ship carrier 

Please refer to rig A-lrn Appendrx A for graph real representatron of the findings. 

They also concluded that as their tlndmg suggest. gas hydrate rs feasrble for 

smaller customer such as independent power producer and small gas provrder rn 

small cities 
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Another research done bv ivlanncl and Puckett m 2008 also hrghlights the same 

result as done by iviES Japan Thev had found that total annualized cost for LNG 

IS lower than of hydrates because of the lower shipping cost due to greater energv 

densrty of LNG as compared to hvdrate For hvdrates to make the same amount 

of energy being transported, more sh1ps are needed, hence the increase in cost 

LNG also gives better return of Imestment (ROI) than hydrates when the 

distance is greater. (Please refe1 to hg :\5 and Fig A6 rn the appendix for the 

associated graph) Hydrates are deemed possible for short distance and small 

capac1tv. 

As highlighted 111 Manne! 's report, the feasJbrlrty study for transporting 

hydrates should consider these t\\O components 

The costs associated with the synthesis and decomposition 

of natural gas hydrate 

11. The costs oftranspo11ing the gas hydrate 

Although the process d1agram 1s basically the same. there 1s no established 

1ndustnal synthesis for hvdrates Manv of them are still m pilot testing stage and 

many research journals reported different technology to svnthesis their end 

product. As noted by Hao Wenfeng m his 1ournal, the current feasibility studv 

that have been done is process spec1tk 1s conducted using small-scale reactors 

and has not yet address some problems that m1ght occur during plant scale up 

(Hao, et.al. 2008) 
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2.3 Gl'nHal revil'w on LNG 

The most common wav of transporting natural gas rs by processing the gas 

into lrquef1ed natural gas (L'JG) Typrcallv, LNG is consrsts of 8'i-9'i 

percent of methane, the marn component of natural gas. LNG is colorless, 

odorless, noncorrosl\ e and nontoxrc The process of proccssrng natural gas 

into LNG reduces the volume of the gas b\ the factor of 600 Sh1p carrier, 

tanker and prpelrne are common \\ays to transport LNG to the intended 

customer. Currently. the market for L\l(i increases as the demand for 

natural gas increases across the globe Japan has been the major LNG client 

for more than 30 years, and the market rs growrng steadily Malaysta ts the 

second largest exporter of LNG. behtnd Qatar 111 2007 Below is a summarv 

of properties of LNG 111 companson with other fuel, as see in Table I. 

Pr'Opl'rties LNG LPG Gasolinl' Fuel oil 
Flash Point -306 - I 'i 6 -'i 0 140 

(II F) 

Boiling Point -2'i(l --1-1 90 -100 
(II F) 

Flammability 'i- I " 2 1-') " I 3-6 N!i\ 
Range in Air 

(%.) 

Toxic No 1\o Yes Yes 

Ca.-cinogenir No No Yes Yes 

Flammabll' Yes Yes Yes Yes 
Vapor 

Fo•·ms Vapor Yes Yes Yes No 
Cloud 
StOI'I'd Atmospheric l'ressunzed ;\ tmospheric Atmospheric 

Pressul"l' (atmospheric 
rf 

refn gerated) 
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The value cham for the natural gas process;ng into LNG invohes these steps 

(llidnev & Parnsh. 2006) 

I. !\;at ural gas treatmg (feed pretreatment) 

0 Liquefaction cvcle 

3 "at ural gas l;qurd condensate removal 

.J Storage and loadrng 

Process flowchart for common processes to transport natural gas can be found 

rn Fig A 7 rn Appendix A Natural gas that rs berng processed rnto LNG needs 

to be treated frrst before gorng rnto the liquefactron cvcle. Thrs is to avoid solid 

drsposrtion insrde the heat exchanger later 

Lrquefactron plant is the heart of the LNG cham. it is the marn sectron of the chain 

where the natural gas rs berng transformed into LNG In the lrquefactron plant. 

treated natural gas is bemg cooled down to cryogcnrc temperature, usually -132 OC. 

usrng a large cvcle of refrrgeratron chain Common methods for liquefaction cycle 

are Joule-Thompson expansron and expansron ;n an cngrne doing external work 

The flow charts for both methods can be found 111 Appendix A. Frg AS. 

The end product is erthcr on ground storage or loaded for transport. Ground 

storage of LNG is a speer a I storage tank "hich has two laver of wall for 

rnsulation. The tank employs auto-refrigeration process m which the boil-off 

LNG vapor is being released rnto the atmosphere, to keep the pressure msrde 

the tank constant, pres en mg the crvogenrc temperature insrde the tank 

Tankers are used to transport LNG to fuel statrons or remote land area Special 

shrps are used to transport the natural gas mternationally while prpelrnes arc for 

short drstance transport. LNG ship carrrers are highly sophrstrcated shrp and smce 

rts first burld in 1970s has undergone large advancement in order to satrsfy the 

mcreasrng demand of LNG Onlv a few numbers of shipyard capable in 

constructrng a LNG shrp carrier Although process111g natural gas rnto LNG 

requrres many rotatrng equipment under high pressure and low temperature, LNG 
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has been wrdelv used for natural gas transportation as th~ grO\vth of the technology 

for the process rn thermodvnamrcs makes the process more economrcal lor larg~­

vol umc transport 

There h;l\e been vel"\ f'c" accrdents related ro LNC1 rn operatron as well as 

durrng transport Thrs can be attnbutcd to stnngent safetv and hazard 

precaution at place as well as the propcrtres of LNG 1tsclf 

10 



CHAPTER3 

METHODOLOGY 

3.1 RF.SEARCII METHODOLOGY AN() \CTIVJTIF:S 

The studv can be d1v1ded 1nto t\\o 'ect1ons. ,·ach 1\lth Its 01"1 act;v;t;es The 

section:-, are 

r Cost 111 assocwt1on w1th synthesis of the hvdrates 

11 Cost in assoCiation w1th trans1'ortmg the hvdrates 

l!nder the first sect1on. the actl\·;t;es are as l1sted 

Commg up mth a ne11 process to synthesiS gas hvdratc. This ;s done bv 

understandmg the kmet;cs of the process and companson w1th proposed 

process llow 111 literature 

11 Fmdmg the capital 111\estment o!' the proposed process This 

includes fmdmg pnce oft he raw materials. energv consumption of each 

cqwpment and equ1pment cost 

''' Evaluate the econonncs of the procc·ss and companson with LNG 

Under the second scct;on. the act11 1t1cs are as !"ted 

Fmdmg the in1tial cost of sh1ppmg l'hese mclude the cost of the ship. 

other cost related to transl\:rrmg the end products 

11. Findmg the transportation cost ofhvdrates 

111 Companson bet\\ccn the transportation cost of hvdrates w1th 

transportation cost of LNG For thl'. the c!lstance and 1olume to be 

transponed 1s kept constant to case the companson 

11 



CHAPTER4 

RESULT AND DISCUSSION 

4.1 PROCESS SUGGESTION AND FLOWSHEET 

NG 

Water 

A flow sheet tor the hydrate tonnation process has been developed. There are three 

component that makes up the process; reactor, separator and freezer These three 

makes up the mam process I me tor the process of transtorrrung the natural gas to 

gas hydrate. Shown below is the current flow sheet for the process. 

REACTOR SEPARATOR FREEZER 

edte 

Fig 3 Suggested process flow sheet 

The reactor IS the heart of the process, this IS where the reaction took place. The 

natural gas and water are being fed into the reactor. The natural gas molecule will 

then bemg absorbed mstde the water hydrate cage and tonn natural gas hydrate. The 

end product is slurry of gas hydrate With excess water. The separator separates the 

excess water from the product, where the water IS recycled back mto the reactor. 

The recycled water acts to improve the effictency of the process by reducing the 

overall water feed used as well as tmprovmg the nucleatiOn rate of the process, 

since some hydrate seed may be inside the water The hydrate is then sent to the 

freezer, to cool down the hydrate to storage temperature, before bemg stored and 

shipped. 

When the reaction takes place, there will be some heat released due to the tonnatton 

of the hydrate. The heat released Will be captured by the refrigeration cycle outside 

of the reactor. Rethgerant R-134a IS used as the cooling t1wd m the cycle. R-134a 

absorbs the heat released mstde the reactor, keeping the temperature inside the 

12 



reactor constant 

The refngerat10n cycles doublv acts as heat absorber for the reactor as well as the 

refngerator for the freezer The flu1d enters the compressor and enters the 

condenser TillS l1qrud refngerant then enters the throttle valve, undergo1ng 

c;;pans1on The cooled llu1d then enters the storage section, where it acts as coolmg 

medium for the freezer. The sl1ghtlv cool fluid then enters the reactor. to absorb the 

heat from the hydrate formatron reactron and once aga1n enters the compressor to 

complete the cycle. 

4.2 Assumptions for the suggested process 

The basis of the calculation IS 2 mi\11on ton per year of natural gas processed. In 

order to complete the material balance as well as s1mplifv the calculation, some 

assumptions are berng made. 

The natural gas fed 11110 the reactor rs ent1 relv made of methane 

Although in nature, natural gas contains some other tvpe of alkane, especrally 

ethane and propane, 1t is much eas1er to observe the reaction if there rs only one 

reaction occurs (onlv one specrcs rs be1ng reacted) Plus, many data and 

correlations published lor the reaction of natural gas and water to form hydrate 

uses pure methane as the1r ma1n feed 

2. T vpe of crystal structure of the hvdrate formed is structure sll 

According to Sloan (2008), although a pure methane gas forms sl-type hvdrak 

a small impurity of the gas (1nclus1on of small amount of propane and ethane rn 

the gas) could change the hvdrate structure 1nto a sll-tvpe hvdratc. In nature, the 

natural gas contains small amount of ethane and propane, thus it is better to 

predrct that the formed crvsta\ IS a sll-type hYdrate structure. 

3. The hvdratron number of the hvdrate formed follows Villard's Rule 

VIi lard's Rule states that the drssocrable hydrate compounds that forms from the 

reaction of water and natural gas can be expressed by the formula M · 6 I 120, 

where M is the molecule of the respective gas (Sloan, 2008) Although is not 
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ideally accurate, this approximation is good for initial calculation. 

4. Many physical properties of the hydrate follow the properties of a water ice. 

A hydrate crystal with all cavities filled for a sl and sii structure consists of 85 

mol% of water. Due to nonstOJchiometric nature of hydrate, the amount of water 

can be variably higher than 0.85 (Sloan, 2008). With this amount of water, it is 

safe to assume that some properties of the hydrate (such as density of the 

hydrate) can be same as the properties of ice. 

4.3 Operating parameter of the proposed process 

The choice of the parameter IS based on the kinetics of the reaction as well as 

comparison with proposed processes by other research. The relationship between 

pressure and temperature for pure methane is shown by Fig 4, suggested by Sloan 

et.al in 200 I. 

10!~1 :rr=========::;--------------~ 
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Fig 4 P-T relationship for pure methane 
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From Fig 4, relationship between pressure and temperature are linear. The higher 

the operating temperature, the pressure required to nucleate a methane hydrate 

increases as well. It also shows that for pure methane gas, there could be only one 

hydrate structure form, wh1ch IS sl. However, the relationship between pressure and 

temperature as well as phase structure of the hydrate gets complicated when 

mixtures of gas are in the system. In reality, natural gas is consists of mixtures of 

methane, ethane, propane and some inert gas. Small addit1on of impurities of the 

gas could change the crystal structure, as well as the phase structure of the system 

D1fferent pressure can also affect the phase diagram of hydrate_ The effect of 

pressure and gas mixture to the phase diagram can be illustrated below, as shown in 

Fig 5. 

,...,... 

" . 

·' .. 

. . 

Fig 5 Phase diagram of methane + ethane+ propane at 277 6K with di!Tercnt pressure; llatm (left) anti 

15atm (right) 
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For that, in order to obtain a feas1ble operatmg pressure and temperature for the 

hydrate process. a good understandmg of hvdrate formation is needed. Comparison 

with d1tTerent proposed process also helps in choosmg the opcratmg temperature 

The table below shows reported operating pressure and temperature proposed bv 

different literature. 

Proposed Pmcess Operatin2 Temperatm·e Operatin2 Pressm·e I 
Japan (MES 2002) 275 K SO atm 

BG 283-28R K 60-90 bar 

Norwegian 283 K 50 bar 
Javanmardi eta! 300 K 60 bar 

4.4 Reactor selection and design 

Reactor 1s the heart of the process. as th1s 1s where all reactiOn to transform the feed 

mto the intended product A good ch01ce of reactor helps 111 making sure that the 

rcact1on takes place smoothlv 

Two common tvpe of reactor are CSTR and PFR The advantage and appltcat1on of 

each reactor 1s shown 111 the Table below. 

TYPE OF I APPLICA TIOi\o ADVANTAGES DISADVANTAGES 
REACTOR 

i· Operated at • Good • Large volume 
steady state temperature • Residence time 

• Perfectlv mixed control cannot be control 

• Uniform • Low operatmg due to reactant 
Contmuous temperature cost and commg and 
Stirred Tank throughout the maintenance leaving 

Reactor (CSTR) reactor cost continuo us I y 

• High sel~ct1v1ty 

• llighlv uniform 
product 

• Large scale • H1gh • Temperature is 
operation \olumetnc un1t hard to control 

Plug Flow • Fast reaction convers1on • Mamtenancc cost 
Reactor ( PFR) • H1gh • Run for long IS higher than 

temperature period of tune CSTR 
' reaction without I 
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Good for gas 
polymer 

maintenance 

Hydrate formation reqwres high pressure and low temperature. A large volume of 

water needs to be used m order to fully transform all gas feed mto hydrate. A 

reactor With an easy temperature control would help mamtainmg the temperature 

inside the reactor, as the mcrease of temperature mside the reactor would decreases 

the efficiency of the process. For these reasons, the best choice for reactor would be 

CSTR 

As mdicated by Hao et.al , stirnng velocity and time has significant Impact on the 

reaction rate of hydrate growth. The findmgs are shown in Fig 6 and Fig 7 below. 

1~r---------------------------------~ 
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:l 200 400 600 soo •coo 1200 1-4'Xl 

Reaction time I min 

Ftg 6 1\0'ect of dtlferent sttrnng. time on reaction rate (stt rnng 'cloci t~ =:no rpm. P = 5.0 MPa) 
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Fig 7 FITccl of thfTcrcnt stunng Yeloctt_\ on reaction rate (Sttrring time = ~0 min, P =5.0 MPa) 

From both figures, it can be concluded that agitated or stirred reactor is a good 

choice for large capacity process as it quickens the reaction rate of the process. The 

conclusion derived from Fig 7 is that increasing the stirnng time decreases the 

reaction time and increases the capacity, but too long stirring time is also not good, 

as it again increases the reactiOn rate for the process. No stirnng or too short stirring 

time do not help the process to attain good diffusion effect, but too long stirring 

time will decompose the formed hydrate, hence increasing operation cost. 

From Fig 8, stirring velocity is also important to hydrate formation process. Static 

and too high stirring velocity does no good for the process. Stirring generally helps 

the process to enter growth period rapidly No stirring lowers down the diffusion 

rate of the hydrate, which lengthens the reaction rate. Too high stirring velocity 

does not help much in increasing the diffusion rate either 

A research on potential energy savings in hydrate plant by Daimichi et.al of 

University of Tokyo reveal s that energy consumption m the reactor and by the 

stirrer decreases With the increasmg rate of reaction rate. 

Large liquid-gas surface contact area increases hydrate nucleation rate. This is 

because it is on the two-phase bow1dary film where the nucleation starts. In order to 

increase the surface contact area, the feed gas should be dispersed in fine bubbles. A 

18 



bubble diffuseL as well as membr<me should be able to d1sperse the gas Bubble 

dt!Tuser has higher operatmg cost due to energv consumption, wlule membrane has 

large upfront mvestment. For the purpose of this process, membrane is used. 

After dec1ding the type of reactor for the process, the next step 1s to design the 

reactor The volume of the reactor can be obtained bv determm1ng the rate of the 

react1on To estimate the rate of fL~actJon_ the equatwn proposed by: Englezos 

(l'nglozes et.aL 1987) IS used 

I· qlwtion I 

Where R is rate of hydrate lormatton. K 1s the empmcal kinettc parameteL ~~} 1s the 

second moment of the particle size d1stnbution of hvdrate crvstal 111 the reactor. f 1s 

fugacity of the gas m the reactor and f," ts fugacttv of the eqwltbnum pressure for 

hvdrate m the reactor temperature 

fugacity reqwred for the calculatton ts obtatned bv using vi rial equation estimatton. 

The second moment of the parttcle size distnbutton 1s obtamed usmg these two 

equattons (Englezos ctaL 19X7) 

flo 
3M(N-Neq) 

4rrV pr 3 

2 
fl2 = 4r flo 

Where !J,. IS nth moment of parttcle stze dtstributlllll, 1\1 "the molecular mass of the 

hydrate, N 1s the number of moles of gas 111 the solution at reactor conditiOn."'"' 1s 

number of moles of gas at equiltbrium pressure 111 reactor temperature, V 1s the 

volume of water for the number of moles calculated a bow. p is densnv of' hydrate 

and r ts the mean parttcle radtus for the hvdrate crvstals 111 the reactor. 

The number of moles of gas 111 the solutton call be solved ustng Henrv·s Law. The 

crnptncal kmettc parameter K 1s the reaction rate constant for hvdrate formatton A 

research one bv Bergeron et.al whtch determtnes the reaction rate constant of 

methane lwdrate formatton reveals that reaction rate constant mcreases with 

temperature followmg Arrhentus relationship. with acttvatton energv of 323 kJ 

mol. lismg Arrhemus equation. the reactton rak constant for the proposed proce" 

can be determined 
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After obtammg the reaction rate. the volume of the reactor can be obtamed by th~> 

rei at1onshi p 

v Q 

R 

Where R is reaction rate for the proposed process calculated in equation I. and Q 1s 

the flow rate of the gas 1nto the react1nn 

Membrane area s1ze needs to be estimated At tirsL permeate flow rates per umt 

area were calculated us1ng Fick s Ia\\ 

N, 

Where N; IS the flux of methane through membrane. s IS the permeability of the 

membrane to methane: P, 1s the part1al pressure difference across the membrane 

One assumption made IS that the hvdrate formation occurs fast enough that the 

partial pressure on the water s1de of the membrane was neghg1ble compared to the 

h1gh pressure of gas side of the membrane. Permeated gas flow rate is calculated bv 

the number of moles per second gas tlow of the Intended capac1tv TillS permeated 

gas tlO\v nmes the permeate tlovv per area will g" e the area of membrane needed 

Ag1tator power requ1rement IS calculated bv the followmg equation Agitator power 

depends on the geometry of the ag1tator 1 tsel f and tvpe of reactor 

I' = N nN; v·· 
P~" g, 

Where P IS power reqwrement for the agitator. 1\" IS the d1mens1onless power 

number. pIS densitv of the tlwd 1nside the reactor. DIS the agitator diameter. and g, 

is gravitational constant 
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4.5 Separator choice and sizing 

To separate excess water from the hydrate. a separator is used. The tvpe used m the 

process is a mechanical-phvstcal separator. whtch ts a decanter Decanter uses the 

pnnciple of settling and sedtmentallon tn separatmg the par!Jcle from the flutd. The 

dd'ference of densitv between water and hvdratc IS betng used in order to separate 

hydrate from water. One assumptton made IS that the hvdrate crystal is btg enough 

and in large amount in whtch dunng settling. these parttcles would Interfere with 

the molt on of indmdual partrcles For that equattons used for hmdered settlmg can 

be used 

Settling veloCity can be determtned as equation shown below 

1 ·:quat inn 7 

Where v, ts settling velocrtv. g ts gravllattonal force. Dp ts the dtameter of the 

particle. p" is density of partrcle. p1 is densttv of the fl111d. ~~ ts vtscosrtv of the fluid. 

c: " volume fracllon of the ltqllld. qJ 1, is emptncal correctron factor Both E and qJ1, 

can be calculated using these equattons 

(Wf) Wp - +(-J 
f! f Pp 

I[Jp = l ()I WL' 1 E 
hjll<Jliun ') 

Where w1 is werght percent of the flutd tn the slurry. p1 ts densttv of the thud.'"" ts 

wetght percent of the particle 1n the slurry. p,, IS dcnsitv of the particle After 

calculatmg the settling v elocllv. the area of the decanter can be estimated 
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4.6 Fr·eezer sizing 

Freezer is used to cool down the hydrate to storage temperature. Th1s 1s to ease the 

transport of hydrate. Here, the volume of freezer is calculated. The intended 

temperature for storage is 258.1 S K. The refrigeration cycle provide the cooling 

medium for the freezer. 

The time needed to freeze down the hydrate is approximated by Plank 's model. 

t= Equation 10 

Where t is freezing time, L IS latent heat of freezing of the product (latent heat of 

freezing for ice is 6013.4 kJ I kmol), Ttf is initial freezing point for the product, Td 

is the temperature of the cooling medium, Y is characteristic length for the freezer, 

h is surface heat transfer coefficient, k 1s thermal conductivity of the product, m and 

n are geometric coefficient. After the freezing time is calculated, the volume of the 

freezer can be obtained. 

4. 7 Final oper·ati_ng detail 

Natural Gas 

Water 

The complete process flowchart for the proposed process is shown as F1g 8 below . 

Fl1 

Ej5 ~ 11 1 
' \ 

0 
~· 

Reactor I 

1 
l 

L Decanter- J .-------...,·~.r.cr 
.-'l'.----H-. ~-,d-ra-lc_+_c-:xc_c_s_s-, ~, ~ ._I_H_y_dr_a_tc___,j 

E·J 

\\ atcr 

r~~~--------------~1 I.__E_x_c_c_ss_,_,_at_cr___, 

Fig 8 Complelc process llowcharl li.>r lhc proposed process 
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Operatmg parameter for the proposed process rs summanzed as below 

,---------------- -------- ----- - - --

OPERATION PARAMETER 

Pr·essure of reactor (,0 bar 

Tempt>rature of gas feed .lOOK 
Temperature of water feed lOOK 
Temperatm·e of stored h)'dnrtt• 2:\81\. 

Plant life 20 years 

Operation da)'s 330 davs 

The lists of ma111 equipment as well as rts srzmg details are as sh0\\11 below: 

-1 able 5 Lht nf cqUJpmcnt aml1ts ~1/lllt,'- ddml 

EQUIPMENT SIZE UNIT 

Propeller 1767.67 k\\ 
Compressor _))'>)) 0) kW 

Heat exchanger 9431.27 Ill 
. 

Reactor 98)09 73 m 

Freezer 4334 111 

Decanter 58.67 111 -

Membrane 28862.78 Ill -
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.t.S Economic I'\ aluation of the process 

.t.S.I Fixed capital cost 

hom the s1zmg of the eqLnpments as well as other cost to run the plane the 

econom1cs of the plant can be evaluated I Ius analvs1s could determ111e the 

feasLbil1ty of the proposed process 111 transport Ill!' natural gas as hvdrate 

1·1\ed cap1tal1s the cost ofsett1ng up the plant ThiS mcludes 

The fixed batten• l11111ts Ill vestment the cost of the plant itself 

The modLfLcatLon and 1111pn'vements that must be made to the site 

Infrastructure. l·dl0\\11 as otTs1k 1111 estmc111 

3. Engmeenng and construction cost 

-+. Contingcnc:· charge 

l'or fiwd capital of tillS plant the detailed bctorial estimate technique 1s used 

lvp1cal factors used 111 est1mat111g fL'<cd capital wst are shovvn 111 the Fig 9 belmv 

II< ITl 

, 'I r :~>·:II !' I 'I 1 .,r I·, 

"' 
! IT; I ,, 

·;:• . 1 il · 

"' 
. '' 

l'ruu;B 1~'1'"­

fluid~ 'H>Iith \olirh 

Prelimmarv estimated total cost for 111stalling eqLIIpment 1s available 111 books. Th1s 

factor 1s made for eqUipment made from carbon steel To make the est11nat1on to be 

more accurate. the matenal I~Jclor IS used. shmv n as f1g I II belovv. The data used CE 

4n (l The CF 1ndex at \1av :'Oil IS C1l8 3 The cost v\lll be 

corrected l(lf mllat1on The exchange rate of LS Dollar to R\1 1s 3 I 7 
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)..'! i cl' j ·, j •' I :'!~!II l _ ._1] t ' 111 ;, l I i 

Mclll.:f"i,ll 1,., 

' •r' r -t 

·.,I 

The estimated eqmpment cost for the proposed process is shown in Table below 

EQUIPMENT SIZE !'NIT ESTIMATED COST 
(RM MILLION) 

Propeller 176 767 kW 049 

Compressor 3''>'" O'i kW 1.66 

Heat exchanger 9411 27 m 12.66 

Reactor 98509 73 m 4047 

Freezer 43.34 m 0 81 

Decanter 'i8 67 111 
' 0.10 
' 

\1embrane 28862 78 Ill 
' 7'i.07 

Usmg the factors in Table. the fixed caprtal for tillS plant rs estimated. The factor 

used is for tluid-solrd process l\pe The total cost rs calculated usmg this equation. 

The frxed capital calculated for the process as well as frxed caprtal for LI\Ci 

lrquebctron plant rs grven as Table 7 below: 

C= L~1 Ce,c5 [(l+J;,)fr,+(fPI + fe,+fi+ [,.+ /,+ [,)] I quati()n I I 
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luhk 7 

Fixed capital cost (RM million) 210 

Fixed capital cost fo,. LNG (RM million) 400 

1% savings 47" 

The estnnated total fixed capital investment for the proposed process 1s RM 210 

million. For the same has1s of operation, the ma1n process plant for LNG wh1ch is 

liquefaction plant costs RM 400 million (Econom1des. 200'i) The difference of 

f1xed capital cost for both plants IS 47) percent. fhe difference can be attnbuted to 

several reasons. LNG liquefaction plant uses many rotating equipment and uses 

specraltzed equrpment wh1ch IS costlv m terms of building and mstallation. Cooling 

down gas to cryogenic tcmp~rature would rcqu1re man:.r compressors in the 

rcfngerat1on cvcle. Although the technology fen LNG IS qwte advance. tillS high­

technology process generallv costs a lot since it uses special equipment. In 

companson. the equipment used 111 hvdrate plant IS readilv available m market, and 

uses less rotating equipment. The technology heh1nd hvdrate is sill I qu1te low, as the 

hydrate process 1s still under extenSI\e research This could he the contributing 

factor of small fixed caprtal for hvdrate process 111 companson to LNG 

4.8.2 Opel'ation and Maintenance cost 

Operation and management cost for the proposed plant can be estimated from the 

equation g1ven (Douglas, 1988) 

O&M = 

1031 (raw materials+ utility)+ 0.186 (onsite) + 2.13(operating lahar)+ 

0.0256 (revenue) I lJll:tl itm l I 
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The pnce of natural gas in l\1alavs1a (industnal tanff) is RM I 'i/mmBtu. The 

dectnc1tv taritTfor industrial tanH' (mediUm) 1s taken as Rl\1 030/kWh. Water tanff 

IS taken as Rl\1 I 34 ' m' For ons1te cost the f"ed cap1tal IS being dl\ided by the 

plant useful lik which IS 20 vears The labor cost per day for one person is set at 

RM I 00. The reqwred manhour-dav-processing step can be est1mated by this 

equation (Douglas, I 'l88) 

Operating labor= exp (2.791 + 0.234ln(capacity)) 

Where capac1ty is stated as ton of natural gas fed mto the reactor per day 1t IS 

assumed that for th1s wok, s1x processrng steps are requrred. D1v1drng the equat1on 

w1th SIX w11l g1ve the number of labor needed The table that shows the summary of 

calculallon for hydrate and LNG IS shown in Tahle belo" 

TOTAL I'RICE/I>A Y (RM 

l!NIT I'RICE/I!NIT THOUSANDS) 
- .. 

NGH LNG 

Cost of natural gas IS -f'i4S4 '' 45454 55 

Cost of electric1ty 0_3 II "2 '!2 20 
-------- - 1-- -----

Operating labor 100 13 'i() 13 50 

Revenue 5 (,j 62454.5 s ll24'i4.5'i 

On site - 19.94 60.61 

O&M cost (RM million) 48S I 48.68 

Operat1ng cost for hydrate 1s sl1ghtl', smaller compared to LNG LNG due to the 

usage of many rotating equ1pments. util1zes more electncitv than hydrate plant 

Based on operating cost, 1t can be concluded that hydrate and LNG has comparable 

value 
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-t8.3 Tnmspo•·tation of natural gas 

This section is to e1aluate the feasibilrty of transporting natural gas rn 

hydrate form. The transportatron type under studv is marine transportatiOn 

The data ofshippmg cost rs shown belo" as Table 9 

DETAILS !I.IGH LNG 

Capital cost of one 80 mill ron US[) 400 millron lJSD 

ship 

Srze of the capacrty 2'0000 Ill 266000 Ill 

Speed I " -1 knots 19 knots 

The capital cost for a L;\iG shrp rs verv c'xpansrve compared to NGH ship. 

LNG shrp earner rs a specralrzed ship wrtlr verv arhance technology rn place 

and in need of skilled labor. whrch can be 1 cry costly 

One of the effects that can be seen for thrs study rs the number of ship 

requrred to carrv specrfic demand to the customer The amount of methane 

msrde LNG and hydrate drt1\?rs greatly I m' of LNG con tarns 600 m' of 

methane. while I m' of NGII contains 170 m" of methane. If there is a 

specific energv demand. the amount of methane that both ships can carrv 

will influence the number of shrps requrred to canv the capacrtv Frg II 

shows the relationshrp between demand and number of shrps required to 

carry the capacitv speer fred 
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l:-1g II Relat10nslup beffieen energ) demand and number of slups requrred 

From Ftg 11, the number of shtps reqwred to carry specific amount of energy 

demand by customer increases greatly for NGH ships, as opposed to LNG ships 

The amount of energy m NGH and LNG IS directly related m the amount of 

methane mside, which has significance difference between the two. This causes the 

different no of shtps reqwrement to carry the specified demand. For example, at 6 

million mmBtu, LNG ship required is 1, while NGH ship required is 4. The 

mcreasmg number of shtps reqwred to dehver the reqwred energy demand may 

increases the capital cost as well as operating cost, whtch may look unpromising. 

But there IS large capttal cost difference between the two ships. 

Another analysis done is the number of days requtred for one NGH ship and LNG 

ship to reach the destination. Using the speed of the ships, the days required to 

reach destination ts obtained. Due to the difference of power between the ships, the 

number of days needed for one ship to complete certain distance differs. The result 

can be seen in Fig 12 below. 
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Fig 12 Relationslup between dtstance of slup travel (gomg round) and days 

From Ftg 12, NGH shtps requtre more days to reach the destmatlon and corning 

back to the starting point compared to LNG ships. At distance less than 1 0 000 km, 

the days reqmred to both shtps to travel are comparable. After 10 000 km, with the 

increment of distance is greater, the gap between days required for NGH ship to 

travel With days requued tor LNG slup to travel ts greater. Longer travel time Will 

affect the shipping cost, especially the labor cost while on travel. This concludes 

that NGH ts not SUitable tor long d1stance travel. 

Another analysis done is the profit obtruned by delivering the specified energy 

demand to customer. The number of ships needed will the ones calculated in Fig. 

The profit of natural gas is set at q USD per mmBtu. Here, the cost calculated takes 

into account the annual cost of operating the ship as well as annualized capital cost 

of the ship The effect of travel distance is also added mto the analysis. Fig l3 

shows the relationship between profit and energy demand. 
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F1s 13 Relationslup between profit and enerro demand spec1fied, on dill'erent distance. 

As shown m Flg 12, profit tor NGH and LNG depends strongly on the amount of 

energy demand by customer and the dtstance of the market from the port. This is 

because 1t mtluences the number of shtp needed to supply the capacity, as well as 

the days required to ship these demands to the intended market. Large energy 

density tor LNG as well as powerful ship makes LNG competitive m profit, 

especially for large demand and longer distance. NGH produces profit larger than 

LNG when the demand IS less than 4 mllhon mmBtu, wh1ch mdicates the NGH can 

be a better alternative for small market transportation. 

ConclusiOn that can be drawn from these three analyses ts that transporting natural 

gas as gas hydrate does seems promising at this pomt. LNG remains the best choice 

to transport natural gas as the shippmg technology advances makes LNG more 

economical for large-volume transport. NGH may be competitive for small to mid­

Size transportation, where the large capt tal cost tor LNG does not seem competitive. 
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5.1 CONCLl'SION 

CHAPTER 5 

CONCLl!SJO!\ 

Conclus1ons that can be drawn from the literature studv arc 

I. Natural gas IS fast becommg a choice for ll1d due to 1t bemg envJronment­

fnendlv The resource for natural gas 1s abundant and 11 can sustain the demand 

needed 

2 Manv world reserves are stranded reserves. If these resen es can be tapped. the 

supplv of the natural gas wdlmcrcasc grcaiiv 

3 Current method of transportmg natural gas such as pipelines and LNG might not 

be a feas1ble cho1ce espec1allv t(Jr small volume transportation 

4. Transportmg natural gas 111 hvdratc form seems like a v1ablc choice. Previous 

research results sho\\ the possibility of gas hvdratc being a method of 

transporting natural gas 

At the end of this project. the conclusions drawn are as follows 

,\ process flow chart has been proposed for transtonn1ng natural gas as gas hydrate 

The operating parameter. chOice of reactor. separator and freezer has been chosen. 

1 The economics of the proposed process has been evaluakd Companson with LNG 

1s made to see anv s1gniflcant d1fference between the t\\O processes '\GH has the 

advantage of low fixed cap1tal cost and operating cost as oppose to LNG Prev1ous 

research has also amved to the same conclus1on 

3 The preliminary feasJbiiJtv of transportmg natur:1l gas as ~GH has been conducted. 

Comparison with LNG IS made to see anv signtf1cant difference between the two 
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processes. NGH has the advantage of low cap1tal cost for shipping_ but the small 

value of energv in hvdrate increases the number of sh1p reqwred to deliver specified 

amount of natural gas to customer LNG has the ad' anlage of h1ghly developed 

technology. large capac1tv and h1gh amount of methane_ wh1ch makes it swtable for 

large-\olume transportatiOn 1\<GH 1s then suitable for small to m1d-s1zed volume 

transportatiOn, where the large cap1tal cost of L'\Ci mav seem uneconomical 

5.2 Recommendation 

Some recommendation suggested to further1mprove the project 

A better cost estJ mation to Increase the accuracv of the est1 matJon 

The estimation done for th1s proJect 1s prel1mrnarv, s1nce there 1s lan1ted data 

avarlable. More data for cost1ng could mcrease the accuracy of the estimat1on 

2 Use establ1shed process tlow for transforming the natural gas into gas hvdrate. 

Proposrng a new process flow requ1res a lot more effort to understand the kmetics 

and thermodynamiCS beh1nd the process. wh1ch could take longer t1me. An 

established process flow such as the Japanese can be used as the process flow for 

the process, thus elimrnatrng the need to come UJ' wrth a new one 
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