STUDY OF POSSIBLE FIRE DOOR MATERIALS MADE FROM ALTERNATIVE WASTE ITEMS

by

MOHD AMIRUL FIKRI BIN ABDUL RANI

DISSERTATION

Submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Mechanical Engineering)

SEPTEMBER 2013

UniversitiTeknologi PETRONAS Bandar Sri Iskandar 31750 Tronoh Perak DarulRidzuan

CERTIFICATION OF APPROVAL

STUDY OF POSSIBLE FIRE DOOR MATERIALS MADE FROM ALTERNATIVE WASTE ITEMS

by

MOHD AMIRUL FIKRI BIN ABDUL RANI

DISSERTATION

Submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Chemical Engineering)

Approved by,

DR. KAMAL ARIFF BIN ZAINAL ABIDIN UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK May 2013

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this particular project, whereas the project is on my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

MOHD AMIRUL FIKRI BIN ABDUL RANI

ACKNOWLEDGEMENT

This is dedicated especially to those who have participated in this project from various specialty and those who reviewing this dissertation. Highest praise is to Allah the Almighty, for the blessing of knowledge gain, endurance and perseverance in completing this Final Year Project within the timeframe given. Here I would like gratefully and sincerely thank everyone that have shown commitments and continuously support the whole process of my Final Year Project. Deep sense of gratitude to my own Project Supervisor, Dr. Kamal Ariff Bin Zainal Abidin for the guidance for their continuously support throughout the project. I also would like to thank the following individual for their professionalism and contribution towards the project completion; Dr. Masdi Bin Muhammad, coordinator Final Year Project 1 and Dr Azmi Bin Abdul Wahab, coordinator Final Year Project 2. Not to forget, I would like to thanks the Final Year Project Coordinators and UTP IRC fellows for the guidance and hard work in order to keep all the Final Year Student stay in the right track. Last, I would like to thank my parents for allowing me to realize my own potential. All the support they have provided me over the years was the greatest gift.

Thanks

TABLE OF CONTENTS

ABSTR	ACT		i
TABLE OF CONTENT		:	ii
LIST OF FIGURES		:	iii
LIST O	FTABLES	:	iii
CHAPTER 1: INTRODUCTION			1
	1.1 Background of study		1
	1.2 Problem Statement		2
	1.3 Objectives		3
	1.4 Scope of Study		4
	1.5 Feasibility of Project		4
	1.5.1 Time		4
	1.5.2 Budget		4
CHAPTER 2: LITERATURE REVIEW			5
	2.1 Fire Resistance Door		5
	2.2 Fire Resistance of Materials		7
	2.3 Standard Test Method	:	8
	2.4 Biocompsite		9
CHAPT	ER 3: METHODOLOGY / PROJECT WORK		10
	3.1 Research Methodology		10
	3.2 Materials		10
	3.2.1 Waste		10
	3.2.2 Inorganic Binder		11
	3.2.3 Additive		11
	3.3 Composite Plates Preparation		11
	3.4 Fire Resistance Test		14
	3.5 Gantt Chart and Key Milestones		17
	3.6 Project Work Flow		19
CHAPT	ER 4: RESULTS AND DISCUSSION		20
	4.1 Composites Plates Preparation		20

4.2 Fire Resistance Test	22
CHAPTER 5: CONCLUSION AND RECOMMENDATION	28
REFERENCES	29
APPENDIX A	30
APPENDIX B	32
APPENDIX C	37

LIST OF FIGURES

Figure 2.1: Fire Door Structure	6
Figure 2.3: Full-scale test furnace, National Research Council of Canada, Ottawa	8
Figure 3.2.1: Sample of sawdust used	10
Figure 3.3(a): Steps in preparing specimens	13
Figure 3.3(b): Curing process of the composite plates	14
Figure 3.4(a): Standard Temperature and Temperature Curve on Exposed Surface	15
Figure 3.4(b): Setup of the fire resistance test	16
Figure 3.4(c): Themodatalogger	16
Figure 3.6: Project Work Flow	19
Figure 4.1: Composite plates produced	21
Figure 4.2(a): Temperature changes on the non-exposed surface of each plate	24
Figure 4.2(b): Temperature changes on the non-exposed surface of Plate A	25
Figure 4.2(c): Temperature changes on the non-exposed surface of Plate B	25
Figure 4.2(d): Temperature changes on the non-exposed surface of Plate C	26
Figure 4.2(e): Temperature changes on the non-exposed surface of Plate D	26
Figure 4.2(f): Temperature changes on the non-exposed surface of Plate E	27
Figure 4.2(g): Temperature changes on the non-exposed surface of Wood Plate	27
Figure Appendix B(a): Sample of sawdust used	32
Figure Appendix B(b): Portland Cement used	32
Figure Appendix B(c): Sample of vermiculite powder used	33
Figure Appendix B(d): Sample of rubber powder used	33
Figure Appendix B(d): Work frame used	34
Figure Appendix B(e): Process of making frame	34
Figure Appendix B(f): Plate A	35

Figure Appendix B(g): Plate B	35
Figure Appendix B(h): Plate C	35
Figure Appendix B(k): Plate D	36
Figure Appendix B(1): Plate E	36
Figure Appendix B(m): Wood Plate	36
Figure Appendix C(a): Temperature changes on the non-exposed surface of Plate A	37
Figure Appendix C(b): Temperature changes on the non-exposed surface of Plate B	37
Figure Appendix C(c): Temperature changes on the non-exposed surface of Plate C	38
Figure Appendix C(d): Temperature changes on the non-exposed surface of Plate D	38
Figure Appendix C(e): Temperature changes on the non-exposed surface of Plate E	39
Figure Appendix C(f): Temperature changes on the non-exposed surface of Wood Plate	39

LIST OF TABLES

Table 3.3(a): Mass of cup carried different material	12
Table 3.3(b): Composition of each plate by number of cup with different material	12
Table 3.3(c): Mass of material composition for each plate	13
Table 3.3(d): Percentages by mass of composite plate	13
Table 3.5(a): Gantt chart and key milestione of the Final Year Project 1	17
Table 3.5(b): Gantt chart and key milestione of the Final Year Project 2	18
Table 4.1: Density of Composite Plate	21
Table Appendix A: Data of Temperature Changes on Unexposed Surface Plate	30

ABSTRACT

The objective of this project is to study any possible material from waste item to be used as one of fire door element. Under this research, five composite plates were fabricated using waste sawdust as filler and Portland cement as inorganic binder. The composite plates were fabricated without using any specialized equipment, heat or pressure, which is producing an environmentally conscious composite material. Several of the plates were added with additive to create a high fire resistance composite of material. The influence of binder content and type of additive on the thermal insulating behavior is investigated using fire resistance test where the plates are exposed to constant temperature of 950 °C for 60 minutes duration. The results from the research shows that the composite plates produced are not suitable to replace the uses of wood in fire door making due to its fire resistance lower compared to wood.

Keywords: composite, sawdust, Portland cement, fire resistance