
MAZE ROBOT: APPLYING AUTONOMOUS VEHICLE NAVIGATION
ALGORITHM WITH EVENT-DRIVEN PROGRAMMING

By

NADHIRA BINTI ABDUL MALEK

DISSERTATION

Submitted to the Electrical & Electronics Engineering Programme

in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750Tronoh

Perak Darul Ridzuan

© Copyright 2011

by

Nadhira binti Abdul Malek, 2011

ii

CERTIFICATION OF APPROVAL

MAZE ROBOT: APPLYING AUTONOMOUS VEIDCLE NAVIGATION
ALGORITHM WITH EVENT-DRIVEN PROGRAMMING

Approved:

by

Nadhira binti Abdul Malek

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Q.
Mr. Abu Bakar Sayuti Hj. Mohd Saman

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May2011

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Nadhira Abdul Malek

iv

ABSTRACT

Autonomous navigation is an eminent feature in robotics as it provides mobile robot

with the ability to traverse from one point to another point while avoiding any

obstacles that lie within its path. To navigate through a maze with unpredictable

routes would be a great challenge as it requires the assistance of an intelligent

algorithm. The main objective of this project is to build and program a mini mobile

robot that is able to autonomously navigate through a physical maze. The physical

maze will comprise of several different configurations to measure the efficiency of

the robot. Hardware and software co-design method is used to construct the mobile

robot. The basic navigation algorithm was developed using finite state machine

(FSM). Event-driven programming method was applied in producing the maze

navigation algorithm for the robot.

v

ACKNOWLEDGEMENTS

Firstly, I would like to express many thanks to my supervisor, Mr. Abu Bakar

Sayuti for the many guidance and help. And not forgetting, thank you also for being

very patience with me throughout the whole process of completing this project.

I would also want to thank my greatest motivator, my family who has always

been there with endless encouragements and positive remarks. I appreciate the

financial support and the love that comes with it.

Not forgetting my friends who have made it easier to complete this project.

My deepest gratitude goes to my fellow friends who have been patience and helpful.

Those advices and tips have been of great help and of great use.

Thank you also to the staff and technicians of UTP for the kind and friendly

help in getting some of the components and materials together. Lastly, I direct my

final thanks to those who have indirectly helped me to finish this project. Thank you.

VI

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS .. xi

CHAPTER 1 PROJECT BACKGROUND ... !

1.1 Background of Study .. 1

1.2 Problem Statement.. .. 2

1.3 Objective ... 2

1.4 Scope of Study .. 2

CHAPTER 2 LITERATURE REVIEW & THEORY .. 3

2.1 Autonomous Vehicle Navigation ... 3

2.2 Finite State Machine ... 4

2.3 Microcontroller ... 6

2.4 PIC Microcontroller .. 6

2.5 C Programming .. 7

2.6 PIC Programming ... 8

2. 7 Integrated Development Environment (IDE) 8

2.8 Motors ... 9

2.8.1 DC Motor ... 9

2.8.2 Servo Motor ... 9

2.8.3 Motor Driver .. 10

2.9 Proximity Sensors ... 10

2.9.1 Inductive Sensors ... lO

2.9.2 Capacitive Sensors ... 10

2.9.3 Ultrasonic Sensors ... 11

2.9.4 Photoelectric Sensors ... 11

CHAPTER 3 METHODOLOGY .. 12

3.1 Project Flowchart .. 12

3.2 Project Activities .. 13

vii

3.3 Tools ... 15

3.3.1 Hardware .. l5

3.3.2 Software ... 15

3.3 .3 Additional Materials .. 15

3.4 Mobile Robot Controller .. 16

3.5 Initial Programming .. 18

CHAPTER 4 RESULTS AND DISCUSSION ... 22

4.1 The Maze Robot ... 22

4.2 Behavior Analysis .. 24

4.3 State Transition Table ... 25

4.4 State Chart Diagram ... 26

4.5 Algorithm ... 27

4.5.1 Pseudocode .. 28

4.5 .2 Source Code ... 29

4.6 Maze Construction .. 32

CHAPTER 5 CONCLUSION & RECOMMENDATIONS 35

5.1 Conclusion .. 3 5

5.2 Recommendations .. 3 5

REFERENCES .. 36

APPENDICES ... 38

Appendix A Gantt Charts ... 39

Appendix B MC40A Board Schematic Circuit 40

Appendix C MC40A Board User Mannal .. 41

Appendix D PIC 16F887 Datasheet .. .42

Appendix E L293B Motor Driver Datasheet43

Appendix F Medium Range IR Sensor Datasheet 44

Appendix G Initial Programming for Testing Movement of Robot with
PIC 16F628A .. 45

Appendix H Initial Programming for Testing Movement of Robot with
PIC 16F887 ... 46

Appendix I Maze Robot Navigation Source Code48

Vlll

Table I

Table2

LIST OF TABLES

Behavior Analysis.. 24

State Transition Table.. 25

ix

Figure I

Figure 2

Figure 3

Figure4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure IO

Figure II

Figure I2

Figure 13

Figure I4

Figure IS

Figure 16

Figure 17

LIST OF FIGURES

Example ofFSM Diagram... 5

Project Flowchart... 12

MC40A Mini Mobile Robot Controller... 16

Medium Range Infrared Sensor... 17

Microcontroller Layout during Code Execution................................. 18

Output on LEOs for Moving Forward... 19

Output on LEOs for Turning Right... 19

Output on LEOs for Turning Left.. 20

Output on LEOs for Moving Backward.. 20

Output on LEOs for Stopping.. 21

Maze Robot Design... 22

Actual Maze Robot... 23

State Chart Diagram.. 26

Special Case for Turning of Robot.. 27

Maze Design.. 32

Actual Physical Maze.. 33

Maze Robot Responds to Physical Maze.. 34

X

LIST OF ABBREVIATIONS

FSM Finite State Machine

LED Light Emitting Diode

CPU Central Processing Unit

RAM Random-Access Memory

ROM Read-Only Memory

EEPROM Electrically Erasable Programmable Read-only Memory

I/0 Input Output

PIC Peripheral Interface Controller

PWM Pnlse Width Modulation

IDE Integrated Development Environment

GUI Graphic User Interface

IC Integrated Circuit

AID Analogue Digital

IR Infrared

xi

CHAPTER I

PROJECT BACKGROUND

1.1 Background of Study

Mobile robots are gaining momentum in the current research as it could be of

great use to the presently growing technology. lbey are widely used for many

different purposes in various fields. As technology expands, mobile robots are being

studied further from merely able to detect physical properties into smarter robots with

more advanced features such as navigation ability.

Autonomous navigation is normally tied to robots where it is basically the

ability of a device to perform tasks without constant guidance from humans. There

are many levels of autonomy which varies depending on the type of application it is

used for. Several examples where autonomous navigation can be found are in fields

such as space exploration, floor cleaning, lawn mowing, and waste water treatment.

One of the most important elements in autonomous navigation robotics is the ability

of the robot to interact with its enviromnent.

Basically, Maze Robot is a Microchip's PIC microcontroller-based mobile

robot which is able to navigate its way successfully through a physical maze. The

outer part of the physical maze would have two openings which would act as the

entrance and the exit for the robot. While inside the maze there would be some

dividing walls to test out the robot intelligence in finding its way out. Therefore, the

main objective is to have the robot go through the entrance and navigate through the

many paths and junctions in the maze until it finds the exit point.

Apart from that, the PIC microcontroller plays the most important role in the

project. It is loaded with appropriate coding which acts as the main essence for the

robot functionality of finding its way out of the maze. This robot is equipped with

proximity sensors. These sensors will receive signals reflected from the nature of the

surroundings. The signals act as indicators for navigation options such as turning

points or dead ends.

1

1.2 Problem Statement

A mobile robot has the ability of moving about in random manners. But provided

with a set of obstacles within proximity, a mobile robot will have a difficulty in either

avoiding them or finding its way back. In other words, once a mobile robot detects an

obstacle, it will lose its intended track in attempt to avoid the obstacle. Thus,

incorporating suitable sensors to the mobile robot and programmed with a suitable

navigation algorithm, a mobile robot could overcome the said problems.

Aside from that, most existing robot designs do not include the feature which

allows it to memorize the paths taken in order to create a smarter and faster

navigation robot. With this feature, a mobile robot does not have to waste time on

finding the route every time it goes through a set of maze after its first round.

1.3 Objectives

The primary objective of the project is to build a robot with the ability to navigate its

way from the starting point to the exit point of a physical maze which can be

rearranged in several configurations. But to have that achieved, the robot has to first

respond to the proximity sensors accordingly.

1.4 Scope of Study

The project will focns on building the maze robot to meet its basic requirement which

is to traverse through a physical maze. The study will be on two main elements of the

project which are the robot and the maze. The former which is the main part will

touch on the integration of PIC and the mobile robot in order to produce the Maze

Robot. On the other hand, the latter which is the maze itself will cover the

construction of the maze which includes the arrangement of barriers and openings,

and the material used. An additional feature to be considered is to have the robot

memorize the routes taken on the first round and determine which would be the best

route to go through on the next round.

2

CHAPTER2

LITERATURE REVIEW & THEORY

2.1 Autonomous Vehicle Navigation

Autonomous vehicle navigation covers both indoor and outdoor aspects. The

study of autonomous mobile robots could serve many possible applications in the

military, civilian or space fields. For the civilian field, autonomous mobile robotics

concerns the logistics, airport surveillance, agriculture, cleaning industry, or

intelligent driving. And for the military market, autonomous mobile robotics 1s

beneficial as they are reducing manpower and increasing armed forces [I].

The accuracy to which a mobile robot needs to navigate acts as the scale of

measurement for device navigation requirements, which vary with each type of

application. Basically, there are three types of navigation requirement scales [2]:

~ Global Navigation

• Ability to determine one's position in map-referenced terms and also

to be able to move to a desired point.

~ Local Navigation

• Ability to determine one's position relative to objects in surrounding

and interact with them.

~ Personal Navigation
• Aware of the positioning of own various parts in relation to each other

as well as in handling o~ects.

On the whole there are two types of maze where one is model-based maze and

the other is sensor information-based maze. The former has its global models

foreseen unlike the latter where its models are completely unknown. The sensor

information-based maze uses sensors to collect information such as the size of the

maze, the condition of branches in the maze, the dead-end and junctions as well as the

current location of the robot in the maze [3].

3

2.2 Finite State Machine

Event-driven programming is a programming means which comprised of two

sections; event selection and event handling. Events refer to the possible actions that a

user might perform during an application usage. While an event handler manages a

particular event after an event type has been identified.

The behavior of an event-driven system can be divided into a number of

chunks. Event responses within each chunk depend on only the current event type but

no longer on the sequence of past events. Basically, event-driven programming is

used to produce efficient and maintainable software with well understood behavior

without creating 'spaghetti code' which refers to the conventional and complex if-else

programming structure.

Finite state machines are used for specifying and implementing event-driven

systems. States refer to the "chunks of behavior" in an event-driven system. Whilst

any changes of behavior are called state transition. This concept is handy as it reduces

the number of execution paths through the code, simplifies the conditions tested at

each branching point, as well as simplifYing the transitions between different modes

of execution [4].

Practically, to implement finite state machine, the process starts with behavior

analysis where conditions and corresponding responses are identified. A finite

number of states are determined along with the input combination which has its effect

on the state transition. From this behavior analysis, a state transition table can be

developed. The state transition table is then used to construct the state chart diagram.

A simple theoretical example adapted from [5] is as the following:

Finite state machine example:

Take for example a simple programming where a microcontrol!er keeps track of the

state of the LED. In this simple circuit there is an LED driver and a debounce button

which is connected to the microcontroller. If the LED is in 'ON' state and the button

is pressed, then the LED will be turned off. Similarly, if the LED is in 'OFF' state and

the button is again pressed, then the LED will turn on. Therefore, we have three

states, Start, LED 'On', and LED 'Off'. The FSM diagram is as shown in Figure l:

4

Button not
pressed

Button pressed

Button pressed

Figure 1: Example of FSM Diagram

Button not
pressed

This FSM diagram can then be translated into pseudocode before being programmed

into real C program. A simple pseudocode of the FSM diagram for this example is as

shown below:

Select state

Case STARTstate

Go to state 'LED On'

Case LEDONstate

If button is pressed, then

Go to state 'LED Off'

Else, remain in 'LED On' state

Case LEDOFFstate

If button is pressed, then

Go to state 'LED On'
Else, remain in 'LED Qff' state

Default case

Go to 'Start ' state

Thus, from the pseudocode above, a C program can be developed easily. This concept

tests only the state variables compared to many variables in a conventional

programming method. It eliminates a lot of conditional logic as it simplifies the

switching between different states.

5

2.3 Microcontroller

Microcontroller is a low-cost single-chip computer which has its entire

computer system within the confines of the integrated circuit. It has features and

similarities to the standard personal computers where its primary feature is to store

and run a program. It contains a central processing unit (CPU), random-access

memory (RAM), read-only memory (ROM), electrically erasable programmable read­

only memory (EEPROM), inputloutput (110) lines, serial and parallel ports, timers,

and other built-in peripherals [6].

A microcontroller differs from microprocessor where the latter contains no

RAM, no ROM, and no 1/0 ports on its chip. Even though this attribute of

microprocessor provides versatility, it is a lot bulkier and more expensive. Thus this

explains why microcontrollers are widely used as it is ideal for applications where

cost and space are critical [7].

2.4 PIC MicrocontroUer

PIC basically refers to microcontrollers from Microchip Technology

Corporation. PIC stands for Peripheral Interface Controller which has small amount

of data RAM, a few hundred bytes of on-chip ROM, a timer, and a few pins for 110

ports, all on a single chip. PIC uses 8-hit processor which means that the CPU can

control only 8 hits of data at a time. The PIC family ranges from many series from

l Oxxx up to l8xxx [7]. Concentrating on particularly PIC l6F6887 microcontroller, it

has a program memory of 14KB, RAM memory of 368 bytes and EEPROM of 256

bytes. In addition, it has three kinds of timers and a set of Capture/Compare/PWM

(CCP) module.

6

2.5 C Programming

C programming language is a widely used programming language for creating

computer programs as it allows for easy implementation. It creates lists of

iustructious for a computer to follow in order to come up with a certain program. All

C programming language is equipped with a standard library that contributes to

efficiency and portability. Furthermore, its concise manner allows for powerful

expressions to be coded as well as giving a direct access to many machine-level

features that would otherwise be accessible only through the use of assembly

language [8].

There are other languages other than C but its maximum control and

efficiency has got the approval of most programmers around the world. C is a

compiled language which means that once written, it must be run through a C

compiler to tum the desired program into an executable that the computer can run.

The C program is the human-readable form, while the executable that comes out of

the compiler is the machine-readable and executable form [9]. Here are a few

different C compilers designed for PIC programming:

1. Hi-Tech Compiler

a It can cater for different microcontroller series owned by Microchip.

n. CCS Compiler

a Able to program many series of microcontrollers.

iii. C 18 Compiler

a It is used to program the 18F series owned by Microchip.

7

2.6 PIC Programming

The microcontroller executes the program loaded in its flash memory which

consists of binary code organized in 12-, 14-, or 16-bit wide words. These words are

individually considered as executable instructions by the CPU when microcontroller

is run [1 0]. All instructions that the microcontroller can recognize and execute are

collectively known as the instruction set. The executable code is usually represented

as a sequence of hexadecimal numbers called hex code which is a file format for

conveying binary information. All programming languages supported by

microcontroller generate a .HEX file which will be loaded to the microcontroller

itself.

As for Microchip microcontrollers which are PICs, the general layout for any

program is as follows:

a. Microcontroller header file which defines all the registers and peripherals.

b. Main configuration settings of PIC such as crystal frequency, watchdog status

and others.

c. Main functions where the port initialization and input specification are set

d. Rest of program which depends on nser application.

e. Any nse of peripherals or communication modules must be configured

accordingly beforehand.

2. 7 Integrated Development Environment (IDE)

IDE is a programming enviroument integrated into a software application that

provides a graphic user interface (GUI) builder, a text or code editor, a compiler

and/or interpreter and a debugger. It is the set of processes and programming tools

used to create the program or software product which provides developers an orderly

interface to and convenient view of the development process (or at least the processes

of writing code, testing it, and packaging it for use).

8

2.8 Motors

There are many types of motor, but there are only two that will be put in

discussion which is the basic DC motor and servo motor. Also included in this section

is motor driver which acts as an intermediate between a motor and a chip that controls

the motor.

2.8.1 DC Motor

DC motor is uses electricity and magnetic field to produce torque which turns the

motor. Basically it requires two magnets of opposite polarity and an electric coil,

which acts as an electromagnet. It uses the properties of magnets polarity to convert

electricity into motion. The repellent and attractive electromagnetic forces of the

magnets provide the torque that causes the DC motor to tum. The electromagnet

switches the current flow as the motor turns, changing its polarity to keep the motor

running. Its speed is controlled by pulse width modulation (PWM). It is a concept

where the power level of the motor is controlled by strobing the power supply on and

off [11].

2.8.2 Servo Motor

Servo motor is basically an assembly of a normal DC motor, a gear reduction unit, a

position-sensing device such as potentiometer, and a control circuit. Servo acts as a

receiver to a control signal that represents a desired output position of the servo shaft.

It will then provide power to its DC motor until its shaft turns to that position. The

potentiometer determines the rotational position of the shaft. Unlike DC motor which

rotates freely round and round, a servo motor can only turn approximately 200

degrees back and forth [11]. Servo has its own internal drive electronics for running

its built-in motors. A lightly loaded servo, therefore, does not consume much energy.

It is extremely useful in robotics as the motors are small, with built-in control

circuitry, and are extremely powerful for their size.

9

2.8.3 Motor Driver

Motor driver or also known as motor controller is used as an intennediate between a

motor and a chip that controls the movement of the motor. Its function is to take a

low-current control signal and tum it into a proportionally higher-current signal that is

able to drive a motor [12]. It also provides the ability to control the motor movement

from the direction of rotation to regulation of speed. Besides that, it also protects

other ICs from electrical problems such as overloads and faults.

2.9 Proximity Sensors

Generally, sensor is a device that measures or detects a real-world condition,

such as temperature, pressure, level, humidity, speed, motion, distance, light or the

presence/absence of an object, and converts the condition into an analog or digital

representation. The relevant type of sensor for this project is only the proximity

sensor as it is able to detect the presence of nearby objects without any physical

contact There are many types of proximity sensors which serves various applications

as discussed below [13].

2.9.1 Inductive Sensors

Inductive sensors utilize induced magnetic fields to respond to metallic objects. It

consists of an oscillator circuit which acts as the sensing unit, and an output circuit

which includes a switching device. An essential part of the oscillator circuit is the

inductance coil in front of the sensing face which produces magnetic field.

2.9.2 Capacitive Sensors

Capacitive sensors respond to changes in the surrounding dielectric medium. It is

often used in applications which cannot be solved with other sensing techniques due

to its versatility of sensing almost any substance. The higher the dielectric constant,

the more sensitive a capacitive sensor is to that target. However this sensor is less

suitable for low density substances. Operation is based on an internal oscillator with

two capacitive plate-electrodes, tuned to respond when a substance approaches the

sensing face.

10

2.9.3 Ultrasonic Sensors

Ultrasonic sensors generate high frequency sound waves and make use of the wave

reflection to detect parts or distances to the parts. It calculates the time interval

between sending the signal and receiving the echo to determine the distance to an

object. It is suitable for transparent targets.

2.9.4 Photoelectric Sensors

Photoelectric sensors emit invisible infrared or visible red light and anticipate the

light reflection to detect the presence of an object. The photoelectric sensor consists

of a light emitting segment, a light receiving segment, an amplification circuit, an

AID converter, and a processing section. In the presence of an object, light reflected

to the detection area will be converted into an electric signal. This electric signal is

amplified and shaped in waveform to be converted into a digital value by the AID

converter. It compares the reflected light with a threshold value to determine the

object presence.

11

3.1 Project Flowchart

CHAPTER3

MEmODOLOGY

This whole project was divided into two stages which was FYP 1 and FYP 2. The

flow chart shown below is the summary of all activities done in FYP 1 and FYP 2.

Data Gathering and Research

Tools Identification

Hardware Assembly and Configuration

Simple Programming Work on Maze Robot

Testing on Mobile Robot Movements
c•. c~••=cc.ccc•~~'""''''

Mobile Robot
moves

accordingly?

Figure 2: Project Flowchart

12

Attach proximity sensors

Programming Work based on State Chart Diagram

Maze Construction

Figure 2: Project Flowchart

3.2 Project Activities

The project started with planning and research which comprised of the

analysis stage where some researches were made to further understand and also to

identify possible improvements that could be made on the project. Study was done on

every aspect of the Maze Robot which ranges from the hardware design, software

needs, and also the structure of the maze itself.

The initial part of prototype development was constructing the mobile robot

controller. This stage is essential as it is more or less the foundation stage for

completing this project. The main components of the mobile robot controller are the

rnicrocontroller, motor driver, and relevant sensors. In addition, components and tools

identification took place to better understand the usage of each component. This stage

started with an attempt to bnild a self-made circnit for the mobile robot controller.

The datasheets and features of related components were studied to make sure they are

compatible and are able to perform the functions required for this project.

13

However, due to time constraint, a ready-made mobile robot controller was

used instead. This still involved a bit of studying and testing especially on the

different microcontroller used, which was PIC 16F887 instead of previously used PIC

16F628A. The validity of the circuit was verified through a set of sample code

prepared by the supplier. The mobile robot was ensured to be able to move forward,

backward, turn left, turn right, and stop. Proximity sensors were also tested out and

later on attached to the mobile robot controller.

This project adopts the Hardware and Software Co-design method where it

emphasizes on simultaneous design along with simultaneous verification of both

hardware and software so that it meets the requirement of a desired function. As a

starter to the software development, a simple progranuning was constructed to

incorporate the signals received by the sensors with the robot movement. The

progranuning aimed for wall detection and robot change of direction.

After the initial progranuning went accordingly, the next step was to consider

the speed of robot movement. This requires further study on pulse width modulation

theory (PWM). The final stage of progranuning would be to come out with the

optimal navigation algorithm for less time used to escape the maze.

The construction of the physical maze commenced after the navigation

features are added to the robot. The material used for the physical maze wall was

polystyrene. This was followed by robot refinement where all the components were

affixed firmly and accordingly for troubleshooting ease.

The final stage was the implementation of the project which include

troubleshooting and demonstration of project. These stages can be seen clearer in the

Gantt charts planned for FYP 2 as per attached in Appendix A which also includes

FYP 1 Gantt chart.

14

3.3 Tools

The followings are the required tools used to complete this project which comprises

of three categories, hardware, software and additional materials.

3.3.1 Hardware

• PIC Microcontroller - 16F887 series

• MC40A Mini Mobile Robot Controller

• PIC Programmer

• IR Medium Range Seusors

• Motor driver- L293B

• DC Motors

3.3.2 Software

• Hi-Tech PICC Compiler- C Compiler

• MPLAB IDE -Assembly and C Compiler

• PIC Simulator IDE- PIC Microcontroller Simulator

• CCS PICC Compiler- C Compiler

• PICkit 2- PIC Programmer Software

3.3.3 Additional Materials

• Polystyrene

• Construction tools

15

3.4 Mobile Robot ControUer

A ready-made circuit for mobile robot controller was purchased in

replacement of the circuit built in FYP 1. lbis change of plan was due to time

constraint and insufficient energy supplied to the former circuit. The mobile robot

controller used was MC40A mini mobile robot controller by Cytron Technologies

Sdn. Bhd. The PIC microcontroller and motor driver used are PIC 16F887 and L293B

respectively. For reference, the schematic circuit and manual for MC40A board are as

per attached in Appendix B and Appendix C.

Figure 3: MC40A Mini Mobile Robot Controller
(Image courtesy ofCytroo Technologies Sdn Bbd)

16

The initial step was testing out the MC40A board to implement only the

necessary functions in order to ensure the mobile robot was able to move in different

directions. This was done by using the MC40A board sample code provided by its

supplier. Power supply used was 6V of four AA-size l.SV batteries.

PIC 16F887 contained internal clock, therefore no crystal oscillator was

needed to control the execution of instructions. This internal clock was triggered

through the configuration settings in the PIC programming. The ports available for

PIC 16F887 are port A, B, C, D, and E, unlike the previous microcontroller PIC

16F628A which had only two ports of port A and B. For this project, the main inputs

which are the sensors were assigned to port C, while the outputs which are the motor

driver inputs were assigned to port B. More details on PIC 16F887 could be retrieved

from its datasheet as per attached in Appendix D.

The motor driver used in MC40A board was L293B. The motor enable pins

are connected to the PIC which allows the rotation of both left and right wheels. The

datasheet for L293B is as per attached in Appendix E.

Figure 4: Medium Range Infrared Sensor

Three medium range infrared sensors were attached to the MC40A board with

connection to the PIC 16F887 microcontroller. The datasheet for the sensors are as

per attached in Appendix F. The three sensors were intended for three different

positions of different directions on the mobile robot. All the sensors were assigned to

detect obstacles that lie either in front, right or left of the mobile robot. The distance

between sensor and obstacles that was able to be detected was only 2.5cm.

17

3.5 Initial Programming

The initial circuit was tested out using a simple source code to test out the

effectiveness of the circuit connection. The programming aims to supply the motor

with power via microcontroller. The motor was made sure to be able to move

forward, backward, turn left, tum right, and stop.

Before the code was uploaded to the PIC, it was tested out using the PIC

Simulator IDE. In the simulator, instead of having the motor driver as the output,

LEDs were used to represent the movement of the motor. The LEDs were labeled

from BO to B7 where BO, Bl, B2, and B3 in real-mode, are the pins connected to

L293B which drive the left and right wheels. On the other hand, B4 and 85 are the

L293B enable pins which were constantly logic 1 unless not used, and B6 and B7 are

always left to logic 0 since they were not in use.

The source code for this test is as per attached in Appendix G. The followings

are the results obtained from the PIC simulator after the implementation of the code.

6) Microcontroller View - PIC16F628

~lo.oov RA2/AN2Nref

~lo.oov RA3/AN3/CMP1

2.1 RA4/TOCKIICMP2

2.1 RA51\MCLR/THV

V$$

RBOIINT

RB1/RXIDT

RB2!TXI()(

RB3/CCP1

r Always On Top

lo.oov ~
lo.oov ~

~=~,...,..,.,...,- 2.1

2.1

1~1

Figure 5: Microcontroller Layout during Code Execution

18

(9 Sx LE...

I PORTB. O •
I PORTB. 1 •
I PORTB. 2 •
I PORTB. 3 •

0 I PORTB. 4 r

0 I PORTB. 5 n
I PORTB. 6

I PORTB. 7 •
r Always On Top I L.90~_!1

Figure 6: Output on LEDs for
Moving Forward

I PORTB. O •
I PORTB. 1 •
I PORTB. 2 •
I PORTB. 3 •

0 I PORTB. 4 [j

0 I PORTB. 5 r
I PORTB. 6 •
I PORTB. 7

r Always On Top I [l:IOSe .JI

Figure 7: Output on LEDs for
Turning Right

As shown in Figure 4, this is the result from a

portion of the program, when the mobile robot is

meant to move forward. B4 and 85 are high to

enable both left and right motors. This remains

the same for all movements of mobile robot. 80

and 82 received logic 1 while 81 and 83 were

grounded to indicate that in actual, both right

and left wheels are moving forward in a straight

direction.

While in Figure 5, onJy LED for pin 80 lights

up. This indicates that onJy the right motor is

moving while the left motor which is controlled

by pin 82 is left unmoved. Since in actual, onJy

the right wheel moves, the mobile robot will

make a right turn .

19

e 8 X LE-.

I PORTB. O •
I PORTB. , •
I PORTB. 2 •
I PORTB.3 •

0 I PORTB. 4 G

0 I PORTB. 5 [j

I PORTB. 6

I PORTB. 7 •
I n:JOSe--11 r Always On Top ,L----··· .. i .

Figure 8: Output on LEDs for
Turning Left

{9 8xLE...

I PORTB. O •
I PORTB. , •
I PORTB. 2 •
I PORTB. 3 •

0 I PORTB. 4 c

0 I PORTB. 5 0

I PORTB. 6 •
I PORTB. 7 •

r Always On Top I C!;l()Se_.JI

Figure 9: Output on LEDs for
Moving Backward

On the contrary, in Figure 6, only LED for pin

B2 lights up. This indicates that only the left

motor is moving while the right motor which is

controlled by pin BO lights off. Therefore, in

actual the mobile robot will make a left tum as

only the left wheel moves while the right wheel

remains static.

Figure 7 is a reversal of Figure 4 where instead

of pin BO and B2 light up, only pin B 1 and B3

light up. BO and B2 are put to ground. This

indicates that the mobile robot will move

backward for this stage .

20

I PORTB, O •
I PORTB, 1 •
J PORTB. 2 •
I PORTB, 3 •
I PORTB, 4 0

I PORTB. 5 fJ

I PORTB, 6 •
I PORTB. 7

jrcJOSe .. ,1 r Always On Top ·-·--··-····.J

Figure 10: Output on LEDs
for Stopping

Finally, Figure 8 shows no light is on since the

enable pins are put to ground. This indicates that

the motors are not running, thus the mobile robot

will stop and remain static at this stage .

However, since the microcontroller used was replaced by PIC 16F887, the

source code used for this experiment was still applicable but with a few minor

alterations. The modified source code is as per attached in Appendix H.

21

4.1 The Maze Robot

Front
Sensor

CHAPTER4

RESULTS AND DISCUSSION

Right Sensor

MC40ABoard

Left Sensor

Figure 11: Maze Robot Design

Batteries

The maze robot comprised of a plastic base which is attached to two DC

motors to facilitate the left and right movement. The mobile robot controller, MC40A

board is affixed on top of the robot base with the batteries fitted in between those two.

Three IR medium range sensors are attached to the front, left and right of the robot

base. These locations were chosen because the maze robot is designed to detect the

presence of obstacles at the front, left, or right of the robot.

22

Figure 12: Actual Maze Robot

The MC40A board uses separate power supply from the DC motors where the

board is powered up by 6V of batteries and the motors are powered up by 9V of

batteries. On the contrary, the sensors are supplied with SV from the PIC

microcontroller. The signals from all three sensors are fed to three different input pins

of the microcontroller. Both left and right DC motors are controlled by the motor

driver, L293B.

The paths to be taken through the maze are not known by the maze robot.

Therefore, the maze robot finds its way out based on the information from the IR

sensors. It solves the maze by following the right-hand wall from the entrance to the

exit point. This solution was derived deliberately through event-driven programming

method where the FSM diagram was constructed before the pseudocode can be

developed

23

4.2 Behavior Analysis

Following after the hardware assembly was to incorporate the signals from the

IR sensors with motor movements. In order to do so, a state chart diagram was

constructed since the event-driven programming method was used for this project.

There are many conditions of the surrounding to be analyzed in order to determine the

robot movements. Such conditions are the obstacles, or to be specific, the walls that

would hinder the robot advancement. In order to obtain a smooth sailing navigation, a

few cases on wall presence and robot response were made. Below is the breakdown

of all the cases identified for this project. F, L, and R denote the front, left and right

sensors which detect the front, left, and right wall respectively. 1 means obstacle is

detected and 0 means no obstacle detected.

Case 1: Case 5:

& & L= 1 L=O

F=O F=1
R=1 l I R=O

Direction: Move Forward Direction: Turn Right

Case 2:

~
Case 6: L L=1 L=1

F=l & F=O
R=O R=O

I
Direction: Tum Right Direction: Turn Right

Case 3:

~
Case 7: J L=O

& L=O
F=l F=O
R= 1

I R=l

Direction: Turn Left Direction: Move Forward

Case4:

~
Case 8:

L=l & L=O
F=l F=O
R=l I I R=O

Direction: Make aU-turn Direction: Idle/Stop

Table 1: Behavior Analysis

24

4.3 State Transition Table

A state transition table was built based on the case analysis mentioned in

section 4.2. This table is the preparatory step in order to construct the state chart

diagram. The next state depends on both the current state and its input combination

which is the sensors.

Sensors
Current State Next State

Left Front Right

0 0 1 Forward

X 1 X Idle
Idle

0 0 X Idle

1 0 0 Idle

0 0 0 Idle

0 1 1 Left

1 X 0 Right
Forward

0 1 0 Right

X 0 1 Forward

1 1 1 U-turn

Right X X X Forward

Left X X X Forward

U-turn X X X Forward

Table 2: State Transition Table

25

4.4 State Chart Diagram

The state chart diagram below was constructed based on the state transition

table mentioned in section 4.3. This diagram is basically a more visual version of the

state transition table. The initial step for this project is the 'Idle' state which will

proceed to next state 'Move Forward', depending on the input combination that goes

into the system at that time. The 3 bits of input were derived from three proximity

sensor signals which are the left, front and right sensors respectively.

Turn
left

X, X, X

0,1,1

X, l,X
0,0, X
1,0, 0

X,O,l

0,0,0 1,0,1

X, X, X

l,X,O
0,1, 0

Figure 13: State Chart Diagram

The event-driven programming method was easily implemented with the aid

of this state chart diagram. Aside from that, pulse width modulation was utilized in

order to control the motor speed. The complete source code for the maze robot is as

per Appendix I.

26

4.5 Algorithm

The navigation algorithm for this project aims to have the robot to follow the

right -hand wall until it finds the exit of the maze. Therefore, the maze robot prioritize

on turning to the right, given no obstacles are present on the right side. This can be

seen in case 2, 5, and 6 of Table 1. Its least priority of direction is the left turn where

the robot would only turn to the left if it was a left comer when obstacles are present

on both the front and right side. This can be seen in case 3 of Table 1. In cases where

the front and either sides of the robot have no obstacles as shown in case 6 and 7 of

Table l, the robot will choose to turn right for the former and move forward for the

latter. This is because the robot was made to follow the right wall until it finds the

exit.

The turning of the maze robot is a special case since the robot actual

movement while turning would have it turn 90°, resulting in the robot to advance

forward only a little but not enough to have its whole body completely entering the

headed junction. This could affect the reading of the sensors if the robot does not

enter the new junction completely. It will give a false sensor reading. Therefore,

every turning movement was followed by moving forward one length. One length

refers to the robot body length. This fix can be seen clearer on the images of the robot

turning to the right as shown below.

State: Tum Right State: Tum Right State: Move Forward

~~~ 
[;f-, Move forward [;» Completely 

, /'* onelength 
entered new 

jun1..1ion 
' 
: L_ I ... ····· ·····•·· ... ,. .... 

False sensor reading 
···- ···············•····•••··························· 

Figure 14: Special Case for Turning of Robot 

The method used in applying this algorithm was the event-driven 

progranuning where finite state machine was utilized to show the flow of the maze 

robot movement from one state to another. The switch-case method was used to 

denote each state and its statement. 

27 



4.5.1 Pseudocode 

The next step into programming the algorithm was to develop the pseudocode. Shown 

below is the pseudocode to the main program of the navigation algorithm which uses 

the switch-case method: 

Select state 
Case IDLE 

Case 

Case 

Case 

Case 

Robot stops 
If L=l, F=O, R=l, then 

State = FORWARD 
Else, state = IDLE 

FORWARD 
Robot moves forward 
If L=O, F=O, R=O, then 

Move forward a bit for 
If L=O, F=O, R=O, then 

State = IDLE 
Else if L=O, F=O, R=l, then 

State = FORWARD 
Else if L=O, F=l, R=O, then 

State = RIGHT 
Else if L=O, F=l, R=l, then 

State = LEFT 
Else if L=l, F=O, R=O, then 

State = RIGHT 
Else if L=l, F=O, R=l, then 

State = FORWARD 
Else if L=l, F=l, R=O, then 

State = RIGHT 
Else if L=l, F=l, R=l, then 

State = UTURN 

RIGHT 
Robot turns right 90 degrees 
State = FORWARD 

LEFT 
Robot turns left 90 degrees 
State = FORWARD 

UTURN 
Robot makes a u-turn 
State = FORWARD 

28 

2 seconds 



4.5.2 Source Code 

With the aid of the pseudocode from section 4.5.1 earlier, the source code can be 

constructed. The robot movements of moving forward, turning right, turning left, 

making a u-turn as well as staying idle were grouped into respective sub-functions. 

The source code was compiled using the CCS PICC Compiler. Shown below is an 

extract of the navigation portion from the main program. Since the sensors are output 

low, therefore l does not denote an obstacle presence as explained in theories 

explained earlier. Rather, for this source code, 0 denotes an obstacle presence, while 1 

denotes that a path is cleared. 

II Maze navigation program based on FSM 
switch (state) 
{ 

case IDLE: 
{ 

stop{); 
if (L == 0 && F == 1 && R -- 0) 

{ 

state =FORWARD; 
break; 

} 

else 
{ break;} 

} 

case FORWARD: 
{ 

gofwd{); 

II No walls: Forward/Stop 
if (L == 1 && F == 1 && R == 1) 
{ 

while (1) 

{ 

delay_ ms (200); 

if(L == 1 && F == 1 && R == 1) 
{ 

k++; 

} 

29 



} 

else 
{ 

} 

state= FORWARD; 
break; 

if (k>5) 

{ 

} 

} 

Buzz; 
state = FIN; 
break; 

II Wall on Right only: Forward 
else if (L == 1 && F == 1 && R == 0) 
{ 

state=FORWARD; 
} 

II Wall at Front only: Right 
else if (L == 1 && F == 0 && R == 1) 
{ 

state=RIGHT; 
} 

II Walls on Right and Front: Left 
else if (L == 1 && F == 0 && R == 0) 
{ 

state=LEFT; 
} 

II Wall on Left only: Right 
else if (L == 0 && F == 1 && R == 1) 
{ 

sta te=RIGHT; 
} 

II Walls on Left and Right: Forward 
else if (L == 0 && F == 1 && R == 0) 
{ 

state=FORWARD; 
} 

II Walls on Left and Front: Right 
else if (L == 0 && F == 0 && R == 1) 
{ 

state=RIGHT; 
} 

30 



II Walls on everyside: U-turn 
else if (L == 0 && F == 0 && R == 0) 
{ 

Buzz; II Buzz while u-turning 
state=UTURN; 

} 

else {} 
break; 

} II break from FORWARD 
case LEFT: 
{ 

} 

reverse(); 
turnleft () ; 
state =FORWARD; 
break; 

case RIGHT: 
{ 

} 

reverse(); 
turnright (); 
state =FORWARD; 
break; 

case UTURN: 
{ 

} 

reverse(); 
makeuturn () ; 
BuzzO; 
state =FORWARD; 
break; 

case FIN: 
{ 

} 

delay_ms(500); 
BuzzO; 
stop(); 
state=END; 
break; 

} II end of select-case 

31 



4.6 Maze Construction 

The final step was the testing of the maze robot effectiveness by the use of a 

physical maze. Shown below is the maze design used to test out the effectiveness of 

the maze robot. The red dotted lines indicate the route that the maze robot should take 

based on the case analysis. 

FINISH 

I 
- - I 

I I I I I I I I I - -
I I I 
I -I I 
l • - - - -

START 

Figure 15: Maze Design 

The design of the maze was based on the behavior analysis discussed in 

section 4.2 where all cases were taken into consideration. The maze shown in Fignre 

15 tests all possible cases to ensure the robot would react accordingly when certain 

situation occurs. This was essential in order to verify that all cases are valid. 

32 



The physical maze was built using polystyrene. Care was taken to make sure 

the widths of the alleys were not more than I 9cm. This is because the width of the 

robot is approximately 15cm and a single sensor can detect an obstacle from a 

distance of approximately 2.5cm. Since there are left and right sensors to detect 

obstacles from both directions, therefore the width of the alley should not exceed 

19cm. It is crucial to have the robot within the detection proximity to allow it to 

detect obstacles presence more efficiently based on the behavior analysis discussed in 

section 4.2. 

Figure 16: Actual Physical Maze 

Figure 16 shows the actual physical maze which was constructed from 

polystyrene. Figure 17 shows the actual maze robot going through the physical maze 

with the LEDs of the IR sensors visibly switched on whenever walls were detected. 

The pictures of Figure 17 represent all the eight cases from Table 1. 

33 



Case 1 CaseS 

Case2 Case6 

Case3 Case7 

Case4 CaseS 

Figure 17: Maze Robot Responds to Physical Maze 

34 



CHAPTERS 

CONCLUSION & RECOMMENDATIONS 

5.1 Conclusion 

Maze Robot aims to contribute to the study of artificial intelligence especially 

in autonomous navigation. This project demonstrates the robotic function where the 

robot is able to find its way out through a set of physical maze with the help of 

relevant sensors. The programming method used in this project which was event­

driven programming technique proved to be a better manageable meaus of coding 

which reduces the 'spaghetti code' occurrence. However, some features and 

improvements as mentioned in the following recommendation section would add 

more value to this study of robotics. 

5.2 Recommendations 

The maze robot built is only able to perform the basic requirements needed to 

find its way out a physical maze. However some improvement and enhanced features 

would increase the efficiency and functionality of the maze robot. The sensors used 

for this project are able to detect only a fair amount of distance which slows down the 

navigation process as care must be taken to avoid the robot from crashing into the 

walls. Therefore, it is advisable to use sensors which can detect obstacles from a 

larger distance. Other than that, memory should be added to the maze robot for it to 

be able to calculate the best route it can take for its next travel through the maze. 

Furthermore, the maze design can also be improved to make it more complicated to 

test out more complex routes such as wide path or island finishing point. 

35 



REFERENCES 

[1] F. Carre, L. Gallo, B. Mazar, F. Megel, and B. Serra {1998), "Monai: An 

Autonomous Navigation System for Mobile Robots". 

[2] J. Dixon & 0. Henlich {1997), Mobile Robot Navigation, Retrieved August 

2011, from http://www.doc.ic.ac.uk!-ndlsurprise 97/joumal/vol4/jmd/ 

[3] Jiang Hualong, Wang Honggi, and Tian Yonghong, "Design and Realization 

of a Maze Robot". 

[4] Miro Samek {2009). Practical UML Statecharts in C/C++, Second Edition. 

USA: Newnes. 

[5] Finite State Machine based LCD Controller, Retrieved Jnly 2011, from 

http://www.engscope.com/pic-example-codes/fmite-state-machine-based-lcd­

controller/ 

[ 6] John Iovine {2004). PIC Microcontroller Project Book {pp. 1-11 ). USA: 

McGraw-Hill. 

[7] Muhammad Ali Mazidi, Rolin D. Mckinlay, & Danny Causey (2008). PIC 

Microcontroller and Embedded Systems {pp. 23-35). New Jersey: Pearson 

Prentice Hall. 

[8] Stas Bekman {2010), C-C++ Frequently Asked Questions, Retrieved February 

2011, from http://stason.org/TULARC/webmaster/lang/c-cpp-faq/28-Why­

are-C-and-C-so-popular-and-widely-used.html 

[9] Marshall Brain (2000), How C Programming Works, Retrieved January 2011, 

from http://computer.howstuffworks.com/c1.htm 

[10] Milan Verle (2010), Programming Microcontrollers, Retrieved 

February 2011, from http://www.mikroe.com/eng/chapters/view/75/pic-basic­

book-chapter-2-programming-microcontrollers/ 

36 



[11] The Handy Board, What is the difference between a DC motor and 

servo motor?, Retrieved January 2011, from 

http:/ !handyboard.cornlhb/faqlhardware-fags/ de-vs-servo/ 

[12] Eric Seale (2003), Motor Drivers, Retrieved March 2011, from 

http://www.solarbotics.net/librarv/pieces/assy driver.html 

[13] Engineer's Handbook (2006), Mechanical Components -Proximity 

Sensors, Retrieved January 2011, from 

http:/ /www.engineershandbook.com/Components/proximitysensors.htm 

37 



APPENDICES 

38 



APPENDIX A 

GANTT CHARTS 

Timeline for Final Year Project 1 

Timeline for Final Year Project 2 

39 



APPENDIXB 

MC40A BOARD SCHEMATIC CIRCillT 

40 



A 

B 

Power S1,1pply 

Vm[:. 1 
1 

Vin~ 

--
PIC Microcontroller 

5V 

R?'IOK 

lK 

R31 

• 
1N5822 I~ .~ Ul LM2940 5V 

~ Rl 
-¥ 
lK 

+ct _j_c2 I s J _j_CJ ..l:tc4 ~ PWR 
16V47uFTo.tuF I To.1uF16.3v tOuF ~nst 

I 

------------- ----------------

~lC~~-:;.s 
VPP GND 

RB. PGC GND 
~~n V~c~­
-~ux~-===-

JP2-

MCLR 

ecy.ru 
Yl 

~01 :fC2 c1...L · cs 
30p1" 20MHf30pF 

+ 

U2 
MCLR 1 MCLR!Vpp 
RAO 2 
RAl 3 

RA.O/ANO 

RA2 4 RAil ANI 

5 
RA2/AN21Vtef..ICVref 
RA3/AN3Nref+ I RMITOC"9(.ClOUT 
RA5~41SSIC20UT 
REO~ANS 
REli]!!UAN6 
RE2/CSIAN7 

12 Vdd 
..J: ()SCI 13 I Vss 
_ osc~ 14 I OSCtiCLKIN 

~ OSC2/CLKOUT 

RCfJ ~gi i~ RCOrrlOSOITlCKI 
RCI RCZ l? RCirflOSUCCP2 
RC2 ~ RC21CCP1 

RDO 19 - ~;~SCL 
~RDIIPSPl 

P!C16F887 

RB7/POD '" RB7 
39 RB5 

RB<JP<JC 38 RBS 
RBS 37 RB4 
RB4 36 RB3 

RBJJPGM 35 ~~ RB2 RB2 
34 

-:: I" RBO 5V 

Rbo ,Ic, Vdd 32 

Vss \ ~~ 
~~~. 29 RD6 TotuF 

RDSIPSPS i8 Ros
RD4

R~=~ 26 RC7 r--r&
RC6/TXJCK ~ RC6 tX

RC4~~~~~~ , 23
~g~ RCS

RD31PSP3 I 22 RD3

liD21PSP2
21 RD2

----,-----------------T
I Switches 1

UART

I sv I
I ., R4 I
I

!OK WK I
I I
I I
I I
I I

UA7 -,n ~

~3 C20
2 TX 0 luF
l . RX_ .

JP7 -:::::-

I I
2

I
I
I
I
I
I
I

' _,

r
I
I
I
I
I
I

-I
I
I
I
I
I
I
I
I
I

2xl6 LCD

A

B

-------------------1
Extension

c

JPll D

4

A lA

sv

IC22 sv LSSOS

~ ~ ~l~ ~I I~ I 1~1 TOM
'

4

-RlS !R16 ~Rl7 ~U8 ruo 5 [
lK lK lK lK lK ~ I

Loft iDSll M_L,Sl2 Middl,S13 M_Ri,14 l<ig,SlS I· I~ ,,_.., I

~ ~ . ~ ~ ~ [ReS'
lK_R23

Bl
L-

- I + IB

Motor Driver

c lc

OUT! 0 .!.V~VJ.

_b_Cll

cw 1-
R32 6 M02 DS16lrrr. I

OUT2
EN! OUT3

11 M03 16V 47uF
EN2 OUT4 14 M04

GND

I
lj

GND 4 6 D8 10
GND 1N5817 1N5817 lN5817 1N5817 'D~\, .. ~ GND R33

u! -'- '---

~0 - U3

- -~, - ID -,--- '

""
2 3 4

APPENDIXC

MC40A BOARD USER MANUAL

41

ROBOT. HEAD to TOE
Product User's Manual- MC40A

1. INTRODUCTION AND OVERVIEW

MC40A is designed as mini mobile robot controller. With the rich features, it helps beginner

to get start in building mobile robot, yet reserving the feature to expand the capabilities of the
controller. Come with sample source code for PIC16F, user may start in no time with

powering up the controller.

• Suitable for 40-pin 8-bit PIC Microcontroller

• Come ready with PIC16F887

• Sample source code to test the board

• Sample source code for Line following, reading ADC, displaying message on LCD,
controlling DC brush motor, communication through U ART

• Input power: 7V to 12V

• Support 2 DC brush motor as actuator for mobile robot tires

• Support 10-bit PWM of speed control, both channel of motor

• Motor power: 5V- 12V, selectable from Vmotor, or share from input power

• Support 2x8 parallel LCD (optional), operate in 4-bit interface.

• Support Cytron SK series including SKPS, SKXBee, SKKCA

• A Buzzer and LED as programmable output

• 2 programmable push button as digital input

• Ready with 2 connectors for limit switch

• Ready with ADC input for Infrared distance sensor, Ultrasonic distance sensor or

other type of analog sensor.

• Ready with LSS05 (Auto-Calibrating Line Sensor) connector

• Ready with ICSP connector for UICOOA/B for loading program to PIC.

• Ready with connector for UCOOA, USB to UART converter

• Free IO pins are extended out for further development.

• Dimension: 12cm x 8 em

MC40A is suitable for u developing autonomous robot as it help to:

• Save the time in designing and developing interface between electronics component.

• Save the time purchasing and choosing the suitable components.

• Eliminate the frustration on soldering, testing and downloading program.

• Reduce unstable condition of self develop controller board.

This document explains the method to use MC40A.

Created by Cytron Technologies Sdn. Bhd.- All Rights Reserved 1

3. PRODUCT SPECIFICATION AND LIMITATIONS

ROBOT. HEAD to TOE
Product User's Manual,.. MC40A

MC40A is designed to offer controller for mobile robot. The specification of the product
should be referred.

Absolute Maximum Rating

Symbol Parameter Min Max Unit

VIN Operating voltage 6 12 v
V motor Motor supply voltage 5 12 v
liN Input Current for 5V (circuit board) 500 mA

I motor Output current for Motor, per channel 800 mA

Note: DO NOT supply more than 12V to Vin or Vmotor as it will burn the capacitor
further cause explosion. DONOT use un-regulated power adapter as the output
voltage is not same as stated.

Created by Cytron Technologies Sdn. Bhd. - All Rights Reserved 4

4. BOARD LAYOUT

A B c

T s
R

p

Created by Cytron Technologies Sdn. Bhd.- All Rights Reserved

ROBOT . HEAD to TOE
Product User's Manual - MC40A

--+ N

5

Label Function
A Status indicator LED

B Port reserved for 2x8 character LCD

c Expansion/prototyping area

D LSS05 calibration button

E LSS05 connector

F Limit switch connector

G UARTVCC

H
Header and turn pin of I/0 and

power

I UART connector

J Buzzer activation jumper

K Buzzer

L L293

M Motor direction indicator LED

N Main power switch

Label
0
p

Q
R
s
T

u

v
w
X
y

z
AA
BB

ROBOT. HEAD to TOE
Product User's Manual- MC40A

Function
DC adaptor socket

Vin terminal block

Motor power selection

Motor terminal block, 2 channels

Vmotor terminal block

Reset button

Optional connector for reset
buttons

Cytron' s SK header socket

Programmable push buttons

Optional connector for buttons

40 pin PIC MCU (16F887)

ICSP Programming socket

Contrast for LCD

ADC connector

A - Status indicator LED for line following. The LED will turn on when detect bright line in

the bright mode and detect dark line in the dark mode.

B- Reserved for 2x8 LCD. This is optional, 2x8 LCD is not included in packing list.

C -Reserved for expansion/prototyping area. User may use this area to do prototyping with

other devices.

D - Calibration button used to enter mode for LSS05. Press once to enter the calibration

mode. Press twice to set the line sensor bar into dark line following mode and press 3 times to
set the line sensor bar into bright line mode. This button only applies if LSS05 is used.

E- LSS05 connector to connect MC40A with LSS05.

F- Connectors for adding limit switches. Optional usage.

G- Optional jumper to connect 5V of MC40A to external UART device.

H - Header and turn pin which expanded free I/0 of PIC MCU and also power. Users are

free to connect the used pin for further development.

I- Reserved for UART communication. Pin to pin compatible with UCOOA.

J - Pin selection to activate buzzer. Connect this header pin with mini jumper to activate

buzzer.

Created by Cytron Technologies Sdn. Bhd.- All Rights Reserved 6

K-Buzzer.

L- L293 motor driver.

M- Status indicator LED for motor direction, CW or CCW.

N- Power switch to switch ON or OFF the MC40A.

ROBOT. HEAD to TOE
Product User's Manual - MC40A

0 - DC power adaptor socket for user to plug in DC adaptor. The input voltage should be

ranged from 7 to 12V. Typical is 12V.

P - Terminal block for Vin power supply. Besides use DC adaptor, user may use this

terminal block to supply power to MC40A. Only 1 connector should be connected to power.

Note: DONOT supply more than 12V to Vin or Vmotor as it will burn the capacitor
further cause explosion. DONOT use un-regulated power adapter as the output
voltage is not same as stated.

Q- Power selection for motor. Use mini jumper to choose either Vm or Vmo uses to supply

power to L293 motor driver and further to drive motor. If V;0 is select, V;0 will supply power

to DC motor. If V mo is select, DC motor will have its own power from the V mo terminal.

R -Terminal block to connect left and right DC motor.

S- Terminal block to supply alternative power to DC motor. If user chooses V moat JP5, user

needs to connect power to this terminal block.

Note: DONOT supply more than 12V to Vin or Vmotor as it will burn the capacitor
further cause explosion. DONOT use un-regulated power adapter as the output
voltage is not same as stated.

T- Reset button for MC40A.

U - Reset connector for user to extend reset button to other place.

V- Pin header for Cytron Starter Kit. User may use SKPS, SKXBEE to control MC40A.

W- 2 Programmable push buttons.

X - The header pin is providing for user to expand SW 1 and SW2 to other place. To avoid

confusion, the header pin of programmable push button is different with the connector of

reset button.

Y- 40 pin PIC Microcontroller.

Created by Cytron Technologies Sdn. Bhd.- All Rights Reserved 7

ROBOT . HEAD to TOE
Product User's Manual - MC40A

Z - 2x5 box header for UICOOAJB, USB ICSP PIC Programmer.

AA - 5K of trimmer to set LCD contrast.

BB - This connector is provided for ADC. User may add analog sensor to MC40A using via
this connector.

4.1 Dimension Drawing

8cm

Created by Cytron Technologies Sdn. Bhd. - All Rights Reserved 8

5. INSTALLATION (HARDWARE)

ROBOT . HEAD to TOE
Product User's Manual - MC40A

Though MC40A come with several features to help user get started, it will be good if we can

show a few basic steps for beginner to get it "running". For full schematic of MC40A, please
download it from MC40A product page.

5.1 Powering Up MC40A

There are 2 terminals for user to supply power to MC40A, this source will supply power to

on board microcontroller, LCD (if installed) LSS05 (if installed), analog sensor, and other

components. Power for motor can be connected to this source if user chosen to do so.

The I" terminal for power input is DC adapter input. User may use the standard AC to DC

adapter to supply the power into MC40A through this terminal. The voltage should be

between DC 7V - 12V (maximum), typical value is DC12V.

Alternatively, user may use wire terminal from battery to supply MC40A. Figure below

shows the sample connection from battery to Blue color terminal. Do ensure the polarity of

supply is correctly installed. The (+) sign terminal should be connected to positive (+)

terminal of battery and vice versa for the(-) terminal. There should be ONLY ONE power

source connected to MC40A, is either through DC adapter input socket or Blue terminal

block. DO NOT connects both.

Turn on the main switch and PWR LED should light ON. User may start loading program

and connect other devices such as sensor, limit switches. SKPS or brush motor for further

development.

Created by Cytron Technologies Sdn. Bhd. - All Rights Reserved 9

5.5 Brush Motor

ROBOT . HEAD to TOE
Product User's Manual- MC40A

MC40A offers 2 channels to drive 2 brush motor bi-directionally with speed control. The

power for motor can either be sharing the main input power source or separately from V mo·

The on board motor driver accept motor power source from 5V to 12V. User may supply this

voltage into MC40A through the V 100 terminal. Though MC40A come with reverse polarity

protection, it's always a good practice to connect the power accordingly to the marker on the

terminal.

Example connection of motor supply and motors.

Note: I)ONOT supply more than l2V to Vin or Vmotor as it wiU burn the capacitor
further cause explosion. DONOT use un-regulated power adapter as the output
voltage is not same as stated.

On JP5, choose V mousing mini jumper if user want to use power from the V mo terminal for

DC motor.

Created by Cytron Technologies Sdn. Bhd.- All Rights Reserved 15

APPENDIXD

PIC 16F887 DATASHEET

42

~
MICROCHIP PIC16F882/883/884/886/887

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with
nanoWatt Technology

High-Performance RISC CPU:
• Only 35 Instructions to Learn:

- All single-cycle instructions except branches
Operating Speed:
- DC- 20 MHz oscillator/clock input
- DC- 200 ns instruction cycle
Interrupt Capability
8-Level Deep Hardware Stack
Direct, Indirect and Relative Addressing modes

Special Microcontroller Features:
• Precision Internal Oscillator:

Factory calibrated to ±1%
Software selectable frequency range of
8 MHz to 31 kHz
Software tunable
Two-Speed Start-up mode
Crystal fail detect for critical applications
Clock mode switching during operation for
power savings

Power-Saving Sleep mode
\Mde Operating Voltage Range (2.0V-5.5V)
lndustiial and Extended Temperature Range
Power-on Reset (POR)
Power-up Timer (P\MRT) and Oscillator Start-up
Timer(OST)
Brown-out Reset (BOR) with Software Control
Option
Enhanced Low-Current Watchdog Timer (\MDT)
with On-Chip Oscillator (software selectable
nominal 268 seconds with full prescaler) with
software enable
Multiplexed Master Clear with Pull-up/Input Pin
Programmable Code Protection
High Endurance Flash/EEPROM Cell:

1 00,000 write Flash endurance
- 1 ,000,000 wr~e EEPROM endurance
- Flash/Data EEPROM retention: > 40 years
Program Memory Read/VVrite during run time
In-Circuit Debugger (on board)

Low-Power Features:
Standby Current
- 50 nA@ 2.0V, typical
Operating Current
- 11 ~A@ 32kHz, 2.0V, typical
- 220 ftA@ 4 MHz, 2.0V, typical
Watchdog Timer Current
- 1 f1A@ 2.0V, typical

© 2009 Microchip Technology Inc.

Peripheral Features:

24/35 1/0 Pins with Individual Direction Control:
High current source/sink for direct LEO drive
Interrupt-on-Change pin
Individually programmable weak pull-ups
Ultra Low-Power Wake-up (ULPWU)

Analog Comparator Module with:
Two analog comparators
Programmable on-chip voltage reference
(CVREF) module (% of Voo)
Fixed voltage reference (0.6V)
Comparator inputs and outputs externally
accessible
SR Latch mode
External Timer1 Gate (count enable)

AID Converter.
- 10-brt resolution and 11114 channels
TimerO: 8-bit Timer/Counter with 8-bit
Programmable Prescaler
Enhanced Timer1:

16-bit timer/counter with prescaler
- External Gate Input mode
- Dedicated low-power 32 kHz oscillator
Timer2: 8-bit Timer/Counter with 8-bit Period
Register, Prescaler and Postscaler
Enhanced Capture, Compare, PWM+ Module:

16-brt Capture, max. resolution 12.5 ns
Compare, max. resolution 200 ns
1 0-brt PWM with 1 , 2 or 4 output channels,
programmable "dead time», max. frequency
20kHz
PWM output steering control

Capture, Compere, PWM Module:
16-brt Capture, max. resolution 12.5 ns

- 16-bit Compare, max. resolution 200 ns
- 1 D-b~ PWM, max. frequency 20 kHz
Enhanced USART Module:
- Supports RS-485, RS-232, and LIN 2.0
- Auto-Baud Detect
- Auto-Wake-Up on Start bit
In-Circuit Serial Programming™ (ICSP™) via Two
Pins
Master Synchronous Serial Port (MSSP) Module
supporting 3-wire SPI (all 4 modes) and 12C"'
Master and Slave Modes with 12C Address Mask

DS41291 F-page 1

,IC16F882/883/884/886/887

in Diagrams- PIC16F8841887, 40-Pin PDIP

40-pin PDIP

RE3/MCLRNPP -
RAO/ANO/ULPWU/C121NO-~

RA1/AN11C121N1- -
RA2/AN2NREF-/CVREF/C21N+ -

RA3/AN3NREF+/C11N+ -
RA4fTOCKI/C10UT-

RA5/AN4/SS/C20UT -
REO/ANS ~
RE11AN6-
RE2/AN7-

Voo­
Vss­

RA7/0SC1/CLKIN
RA6/0SC2/CLKOUT -
RCOfT10SOfT1CKI ~

RC1fT10SI/CCP2 -

0541291 F-page 6

RC2/P1AICCP1 -
RC3/SCKISCL -

ROO~

RD1-

... ..
~ ..
u.. ...
~

u a:

- R87/ICSPDAT
- RB6/ICSPCLK
~ RB5/AN13fT1G
- RB4/AN11
- RB3/AN9/PGM/C121N2-
-RB2/AN8
- RB1/AN10/C121N3-
- RBO/AN12/INT
-voo
-vss
-RD7/P1D
-RD6/P1C
-RD5/P1B
-RD4
-RC7/RX/DT
-RC6fTX/CK
-RC5/SDO
- RC4/SDI/SDA
-RD3
-RD2

© 2009 Microchip Technology Inc.

APPENDIXE

L293B MOTOR DRIVER DATASHEET

43

L2938
L293E

PUSH-PULL FOUR CHANNEL DRIVERS

• OUTPUT CURRENT 1A PER CHANNEL
• PEAK OUTPUT CURRENT 2A PER CHANNEL

(non repetiflve)
• INHIBITFACILITY
• HIGH NOISE IMMUNITY
• SEPARATELOGICSUPPLY
• OVERTEMPERATURE PROTECTION

DESCRIPTION

The l293B and L293E are quad push-pull drivers
capable of delivering output currents to 1A per chan­
nel. Each channel is controlled by a TIL-compatible
logic input and each pair of drivers (a full bridge) is
equipped with an in hiM input which turns off all four
transistors. A separate supply input is provided for
the logic so that it may be run off a lower voltage to
reduce dissipation.
Additionally, the l293E has external connection of
sensing resistors, for sw~chmode control.
The L293Band L293Eare package in 16 and20-pin
plastic DIPs respectively; both use the four center
pins to conduct heat to the printed circuit board.

PIN CONNECTIONS

DIP16 - L293B

OIP[NAOt.f I l 16 •••
INPUT, 2 IS INPUT 4

OUTPUT 1 3 ,. OUTPUT4

GNO 4 13 GND

GND 5 •2 GND

OUTP-UT 2 6 l1 OUTPUT J

tNPUT 2 7 10 INPUT 3

v, 6 9 CHIP E'IAIII.E 2

s-"1Git

Aplil1993

DIP16

ORDERING NUMBER: L293B

POWERDIP(16 +2+ 2)

ORDERING NUMBER: L293E

POWERDIP (16+21-2)- L293E

CHIP E'fW'LEI I 20 ...
lfiPUT, 2 19 IIIPUT 4

""""'' , • 10 ourPUT 4

SEtt!JE 1 • , SENSE 4 ... ' ,. GH~

GNO • 1S GND

:.EN~ 2 7 ,. ~ SEN~E l

ouTPUJ·l • 13 OUTPUT l

INPUT 2 • •• INPUl 3

•• •• , ~Cl-IP ENABLE 2

S·!I1S'P

1/12

L293B - L293E

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter Value
v, Supply Voltage 36

v~ Logic Supply Voltage 36
v, Input Voltage 7

Vinh Inhibit Voltage 7

lout Peak Output Current (non repetitive t = 5ms) 2

Ptot Total Power Dissipation at Tground-pins = 80°C 5

T stg, Tj Storage and Junction Temperature --40 to +150

THERMAL DATA

Symbol Parameter Value

Rthj-case Thermal Resistance JunctionMcase Max. 14

Rth j-amb Thermal Resistance Junction-ambient Max. 80

ELECTRICAL CHARACTERISTICS
For each channel, Vs = 24V, Vss = 5V, Tamb = 25°C, unless otherwise specified

Symbol Parameter

v, Supply Voltage

v .. Logic Supply Voltage

I, Total Quiescent Supply Current

I~ Total Quiescent Logic Supply Current

V;L Input Low Voltage

V;H Input High Voltage

hL Low Voltage Input Current

I;H High Voltage Input Current --
Vinhl Inhibit Low Voltage

V;nhH Inhibit High Voltage

linhL Low Voltage Inhibit Current

linhH High Voltage Inhibit Current

VcEsatH Source Output Saturation Voltage

VcEsatl Sink Output Saturation Voltage

VsENS Sensing Voltage (pins 4, 7, 14, 17) , ••)

t, Rise Time

It Fall Time

lao Turn-on Delay

loll Turn-off Delay
See f1gure 1
Referred to L293E

TRUTH TABLE

Test Conditions

Vi= L lo = 0 Vinh = H
Vi= H Ia = 0 Vinh = H

Vinh = L
Vi= L lo = 0 Vinh:;; H

vi= H I,= 0 Vinh = H
Vinh = L

Vss ~ 7V
Vss > ?V

Vii= 1.5V

2.3V ~ VIH ::;; Vss- 0.6V _,

Vss 5. 7V
Vss > 7V
Vinhl = 1.5V

2.3V < VinhH <Vss- 0.6V

lo = -1A

lo = 1A

0.1 to 0.9 v, ,.)
0.9 to 0.1 v, n
0.5 V, to 0.5 Yo(")

0.5 v, to 0.5 v, n

V1 (each channel) v, Vinh (<»)

H H H
L L H
H x(') L
L X(') L . () H1gh output Impedance

(**) Relative to the considerate channel

Min. TYp.

v .. -
4.5

2
16

44
16
16

-03.

2.3
2.3

30

-0.3

2.3
2.3

-30

1.4

1.2

250

250

750

200

Unit

v
v
v
v
A

w
'c

Unit

°C/W

'C/W

Max. Unit

36 v
36 v
6 mA

24
4

60 mA
22
24

1.5 v
v .. v
7

-10 uA

100 11A
1.5 v
v~ v
7

-100 uA

+10 uA

1.8 v
1.8 v
2 v

ns

ns

ns

ns

4/12
i"'!l ~TctJimg~j!lit~ ---------------

ROBOT . HEAD to TOE
Product User's Manual -Medium Range Infrared Sensor

1. INTRODUCTION AND OVERVIEW

This Medium Range Infrared sensor offers simple, user friendly and fast obstacle detection

using infrared; it is non contact detection. The implementations of modulated IR signal

immune the sensor to the interferences caused by the normal light of a light bulb or the sun

light. The sensing distance can be adjusted manually. The product features include:

• 5V powered, low current consumption, less than lOrnA.

• 3 pin interface which are signal, GND and 5V.

• Small LED as indicator for detection status.

• Obstacle detection up to 1 Ocm.

• Adjustable sensing range (2cm - 1 Ocm).

• Small size makes it easy to assembly.

• Single bit output.

• Compatible with all types of microcontrollers.

• Dimension: 2.6cm x 2cm

Created by Cytron Technologies Sdn. Bhd. -All Rights Reserved 1

ROBOT . HEAD to TOE
Product User's Manual- Medium Range Infrared Sensor

3. PRODUCT SPECIFICATION AND LIMITATIONS

3.1 Theory of Operation

IROIA uses special sensor to modulate IR signal emitted from 2 IR transmitters and detects
the modulated IR signal reflected back from a nearby object. This sensor has a built-in IR
LED driver to modulate theIR signal at 38KHz to match the built-in detector. The modulated
IR signal immunes the sensor from the interferences caused by the normal light of a light
bulb or the sun light. The module will output a IDGH if no object is detected and a LOW if
an object is detected.

3.2 Pin Definitions and Ratings

Pin Name Function
+ vee Connects to V cc J +4V to + 6V)
- Ground Connects to Ground
s Output Connects to an 110 pin of microcontroller which set to INPUT mode

signal (or transistor/MOSFET).
Table 3.1

AbltMaxi Rf sou e mum a mg
Parameter Min Max Unit

Operating voltage 4 6 v
Sensing range 2 10 em

3.3 Sensitivity

The Medium Range Infrared Sensor has a sensing range of approximately 2cm to 1 Ocm The
sensitivity can vary with the reflectivity of the object and the ambient lighting. The
modulated IR signal will reflect more on white surface and reflect less on black surface. The
sensor is designed to adjustable sensing range. User may adjust sensing range by using the
preset on IROlA for different application.

Created by Cytron Technologies Sdn. Bhd.- All Rights Reserved 3

ROBOT . HEAD to TOE
Product User's Manual - Medium Range Infrared Sensor

4. PRODUCT DIMENSIONS AND LAYOUT

4.1 Product Dimensions

4.2 Product Layout

c

G F E

Label Function Label Function
A Signal indicator LED E The hole to solder and connect VCC(+).
8 IR transmitter F The hole to solder and connect GND (-)
c IR sensor G The hole to solder and connect output sigt1al (s)
D Preset

A - is a signal indicators LED for IRO I A. The LED Will tum ON when signal is detected on
IROlA.

B - are 2 IR transmitters, the output IR s•gnal is modulated at 38Khz.

C - is IR sensor This sensor modulates IR signal emitted from 2 IR transmitters and detects
the modulated IR signal reflected back from a nearby obJect.

Created by Cytron Technologies Sdn. Bhd. - All Rights Reserved 4

ROBOT . HEAD to TOE
Product User's Manual- Medium Range Infrared Sensor

D - is a lK Ohm preset for user to adjust the sensing range. The sensing range is 2cm -
lOcm (Performance of the sensor will vacy with the reflectivity of the object and the ambient
lighting.)

E- is a hole to solder and connect the power supply to IROIA. User may supply 4V-6V to
IROIA, the typical voltage is 5V.

F -is a hole to solder and connect Ground to IROIA. User may connect the GND(-) of
IROIA to the Ground (OV) of the control board

G- is a hole to solder and connect the output signal from IROIA. User may connect the
signal pin(s) from IROIA to an I/0 pin of microcontroller which set to INPUT mode. The
output signal ofiROIA is LOW or OV when an object detected

Created by Cytron Technologies Sdn. Bhd.- All Rights Reserved 5

APPENDIXG

INITIAL PROGRAMMING FOR TESTING MOVEMENT OF

ROBOT WITH PIC 16F628A

//Nadhira Abdul Malek
II To test out the movement of the motor.
II Movements: Forward, Reverse, Turn right, Turn left.

#include <picl6f62xa.h>
#fuses INTRC~IO, NOWDT, NOPUT, PROTECT, NOBROWNOUT, MCLR

void delay_ms(unsigned int D);

void main{void)
{

TRISE ~ OxOO; //make all bits of portE as outputs

while{l)
{

//move forward
PORTE ~ Ob00110101;
delay_ms {200);

//turn right
PORTB ~ Ob00110001;
delay_ms {200);

//move forward
PORTB ~ Ob00110101;
delay_ ms {200);

//turn left
PORTB ~ Ob00110100;
delay_ms{200);

//move forward
PORTE ~ Ob00110101;
delay_ ms {200 I ;

//move backward
PORTE ~ Ob00111010;
delay_ms {2001;

//stop
PORTE ~ OxOO;
delay_ms{200);

II Delay Function
void delay_ms(unsigned int D)

unsigned int i, j;
for(i=O; i<D; i++)
for{j~O; j<lOOO; j++);

45

APPENDIXB

INITIAL PROGRAMMING FOR TESTING MOVEMENT OF

ROBOT Wim PIC 16F887

II Nadhira Abdul Malek
II To test out the movement of the motor.
II Movements: Forward, Reverse, Turn right, Turn left.
II Compiler: Hitech-C

*include <stdio.b>
#include <htc.h>

II Configuration bit: use internal oscillator
CONFIG(UNPROTECT & LVPDIS & BORDIS & MCLREN & PWRTDIS & WDTDIS & INTCLK);

#define _XTAL_FREQ 4000000

II Defining IIO
#define Ledl
#define Buzz

#define EML
#define EMR
#define MRl
#define MR2
#define MLl
#define ML2

#define SenF
#define SenL
#define SenR

Connections on MC40A
RB7
RB7

RCl
RC2
RB2
RB3
RB4
RBS

RC6
RC7
RC4

II Declaring Sub-Functions

II General LED
II Buzzer

II Enable pin for
II Enable pin for
II Right motor
II Right motor
II Left motor
II Left motor

II Front sensor
II Left sensor
II Right sensor

left motor
right motor

void delay(unsigned int D); //delay function for 1 second
//void motor(unsigned char uc left motor speed, unsigned char
uc_right_motor_speed);

II PWM functions
//void pwm init(void);
//void set-pwmr(unsigned char uc_duty_cycle);
//void set=pwml(unsigned char uc_duty_cycle);

II Main Program
void rnain(void)

TRISA
TRISB
TRISC
TRISD
TRISE

PORTA
PORTB
PORTC
PORTO
PORTE

OxOO; II Make all bits of portA as outputs
OxOO;
OxDO; // Set RC7, RC6, RC4 as inputs
OxOO;
OxOO;

0;
0;
0;
O;
0;

while (1)
{

I /move forward
MRl 1;
MLl = 1;

46

delay (10);

//turn right
MRl = 1;
ML1 ~ 0;
delay(S);

//move forward
MRl = 1;
MLl = 1;
delay(10);

//turn left
MR1 ~ 0;
ML1 ~ 1;
delay(5);

//move forward
MR.l = 1;
ML1 ~ 1;
delay(10);

//move backward
MR1 0;
ML1 0;
MR2 1;
ML2 1;
delay(S);

//stop
PORTC ~ OxOO;
delay (2);

II Delay Function
void delay{unsigned int D)

unsigned int i, j;
for(i~O; i<D; i++) II # seconds

for(j~O; j<lO; j++)
__ delay_ms(100);

47

APPENDIX I

MAZE ROBOT NAVIGATION SOURCE CODE

/*
II Nadhira binti Abdul Malek
II Date: August 2011
II Title: Navigation Algorithm for Maze Robot
II through Event-Driven Programming
II (Final Year Project)
II Universiti Teknologi PETRONAS
II Compiler: CCS C Compiler
*I

#include <16F887.h>
#device ADC=lO
#fuses XT,NOWDT,NOPROTECT,NOLVP,NOPUT,NOBROWNOUT
#use delay(clock- = 4000000)
#include <string.h>

II Defining I/O
#define Buzz
#define BuzzO

Connections on MC40A
output_high(PIN_B7)
output_low(PIN_B7)

II Buzzer ON
I/ Buzzer OFF

#define EML
#define EMR

output_high(PIN_Cl)
output_high(PIN_C2)

II Enable pin for left motor
II Enable pin for right motor

#define
#define
reverse
#define
#define
reverse

MRl
MR2

MLl
ML2

output high(PIN B2),output low(PIN B3J
outPut_ high (PIN_ B3) , outPut~ low (PIN_ B2)

output_high(PIN_B4),output_low(PIN_B5)
output_high(PIN_B5),output_low(PIN_B4)

If Right motor
II Right

II Left motor
II Left

motor

motor

#define MLO output_low(PIN_B4),output_low(PIN_B5)
output_low(PIN_B2),output_low(PIN_B3)

II Left motor stop
#define MRO II Right motor stop

#define
#define
#define

#define

F
L
R

dutyL

input (PIN_ C6)
input(PIN_C7)
input (PIN_ C4)

II Front sensor
II Left sensor
II Right sensor

80 II duty cycle value= PR2 x %duty cycle
#define dutyR 90 II speed value=> 0-102 where 51=> 50% and 102 =>100%

II State Definition
#define IDLE
#define FORWARD
#define RIGHT
#define LEFT
#define UTURN
#define FIN
#define END

1
2
3
4
5
6
7

II Declaring Sub-Functions of Robot Movement
void gofwd();
void turnleft();
void turnright();
void makeuturn();
void reverse();
void stop(};

int k=O;

/****Main Program****/
void main(void)
{

int state ~IDLE; /! Initial state= IDLE

setup_timer_2(T2_DIV_BY_l,l02,5); //(PR2+1)*4*(1/Fosc)*prescaler
setup ccpl(CCP PWM);
setup=ccp2(CCP=PWM);

48

PWM period

II I/0 Definition for all ports
set tris A{OxOO);
set=tris=B{OxOO);
set_tris_C(OxDO); II Set RC7, RC6, RC4 as inputs {sensors)
set_tris_D(OxOO);
set_tris_E(OxOO);

output_A{O); II RESET output
output_B{O);
output_C(208); II Reset sensors F,L,R
output_D(O);
output_E(O);

while(!)
{
if(F == 0)
{Buzz;
break;}

)

II Speed of left and right motor based on PWM
set_pwrol_duty{dutyR);
set_pwm2_duty(dutyL);

delay_ms(500);
BuzzO;
gofwd{);

while(state!=END)
{

output_C(208);

II Maze navigation program based on FSM
switch (state)
{

case IDLE:

stop();
if (L == 0 && F == 1 && R 0)
{

state =FORWARD;
break;

else
{ break;}

case FORWARD:

gofwd();

II No walls: Forward/Stop
if (L == 1 && F == 1 && R 1)
{

while(!}
{

delay_ms(200);

if{L == 1 && F
{

k++;

else
{

1 && R == 1)

state=FORWARD;
break;

if (k>5)
{

Buzz;
state FIN;
break;

49

II Wall on Right only: Forward
else if (L ~~ 1 && F ~~ 1 && R 0)
{

state~FORWARD;

II Wall at Front only: Right
else if (L =~ 1 && F ~= 0 && R 1)
{

state=RIGHT;

II Walls on Right and Front: Left
else if (L· == 1 && F == 0 && R == o·)
{

state= LEFT;

II Wall on Left only: Right
else if (L == 0 && F == 1 && R 1)
{

state=RIGHT;

II Walls on Left and Right: Forward
else if (L == 0 && F == 1 && R == 0)
{

state= FORWARD;

II Walls on Left and Front: Right
else if (L == 0 &.& F == 0 && R == 1}
{

state,RIGHT;

II Walls on everyside: U-turn
else if (1 == 0 &.&. F 0 && R === 0)
{

else{}

Buzz;
state=UTORN;

II Buzz while u-turning

break; //to choose only either one of the cases, so we break
} II break from FORWARD

case LEFT:
{

reverse ();
turnleft(};
state =FORWARD;
break;

case RIGHT:

reverse ();
turnright () ;
state =FORWARD;
break;

case UTURN:

reverse();
m.akeuturn () ;
BuzzO;
state =FORWARD;
break;

50

case FIN:

)

delay_ms (500);
BuzzO;
stop{};
state=END;
break;

II end of select-case

delay ms{500}; //pause between cases
//} //-end of main navigation program

II end of Main Program

/***Subfunctions***/
void gofwd{}
{

MRl;
MLl;

void turnleft ()
{

MRl;
ML2;
delay_ms(1300);
MRl;
MLl;
delay_ms(300);

void turnright {)
{

MR2;
MLl;
delay_ms (1300};
MRl;
MLl;
delay_ms(300);

void makeuturn()
{

MRl;
ML2;
delay~ms{2500);
MRl;
MLl;
delay_ms(lOOO);

void reverse ()
{

MR2;
ML2;
delay_ms (500);

void stop{}
{

MRO;
MLO;

51

