Modelling Crude Oil Demand in Malaysia

By

Mohd Ikhsan Bin Abdul Rashid Petroleum Engineering 10760

Dissertation submitted in partial fulfilment

of the requirements for the Bachelor of Engineering (Hons.)

(Petroleum Engineering) August 2011 Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Modelling Crude Oil Demand in Malaysia

by

Mohd Ikhsan Bin Abdul Rashid

A project dissertation submitted to the Geosciences and Petroleum Engineering Department Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the Bachelor of Engineering (Hons.) (Petroleum Engineering)

Approved by (Mr. Elias Abllah)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

August 2011

ACKNOWLEDGEMENTS

First of all, I would like to say Alhamdulillah, praise to the Almighty God for giving an utmost opportunity for the author, and for giving the strength and health to do this project work until it was done.

Secondly the author is grateful for all the supports shown by parents. They have continuously provided moral and financial supports until the end of this project. The special thank goes to the helpful supervisor, Mr Elias Abllah. The supervision and support that he gave truly help the progression and smoothness of this final year project. The co-operation is much indeed appreciated.

Not forgetting, A'fza Binti Shafie, for her precious helps in providing the required data and information which are sufficient for the accomplishment of this final year project.

Last but not least, the author would like to express his gratitude to fellow colleagues who have always provided moral supports and a never-ending assistance in ensuring this final year project is finished within the given time frame.

Mohd Ikhsan Bin Abdul Rashid, Petroleum Engineering Universiti Teknologi PETRONAS.

Table of Contents

CHAPTER 1: INTRODU	6
1.1 Project Background	 6
1.2 Problem Statement	 7
1.3 Objectives	 8
1.4 Scope of Study	 8
1.5 Relevancy of Project	 9
1.6 Feasibility of Project	 10

CHAPTER 2: LITERATURE REVIEW	AND THEORY11
2.1 Literature Review	
2.2 Theory	

CHAPTER 3: METHODOLOGY	24
3.1 Research Methodology	24-25
3.2 Project Activities	25
3.3 Key Milestone	
3.4 Final Year Project Gantt Chart	
CHAPTER 4: RESULT AND FINDING	29
4.1 Result and Finding	
CHAPTER 5: CONCLUSION AND RECOMMENDATI	ON36
5. Conclusion and recommendation	
REFERENCES	
APPENDICES	

1.2 PROBLEM STATEMENT

Oil has been the cheap energy source that has fired the industrial society for the last century. However, threatening signs of oil depletion has become a horror nightmare for humankind. The implications are catastrophic for industrial societies, and also the yearned for economic development of the less developed countries.

When we are talking about demand, the first thing that will come to people mind is the price. In 2008, Malaysia petrol price rose from RM1.92 to RM2.70 a litre, cutting down the annual subsidy for petrol to only 30 sen per litre. The subsidy For diesel was also cut, raising the diesel price from RM1.58 to RM2.58 per litre.

As we can see, once the production does not satisfy the demand, the oil price will jump. This will be followed by the increase of other daily product price. Some people even taking advantages from the increment by increasing their product price without control. This will cause burden the citizen of Malaysia, especially people with low income.

Because of that, there is a real need for estimating of future demand of petroleum. This will enable the policy-makers to plan for cost effective investment and operation of existing and new refineries so that the supply of crude oil can be adequate enough to meet the future demand.

1.3 OBJECTIVES

- Create a mathematical model of crude oil demand in Malaysia. Study the method that has been chosen and develop a mathematical equation for crude oil demand in Malaysia.
- 2) Forecasting the demand for next 5 years. By completing the mathematical equation for the demand, the chart can be extended for a couple of year to estimate the demand based on a certain criteria.

1.4 SCOPE OF STUDY

The scope of study for this research project revolves around finding the mathematical equation or model that can represent the crude oil demand in Malaysia. Because of that, first the author needs to collect the historical data of petroleum consumption in Malaysia. The data must be at least from 20 years ago.

The trend of demand for each of this product need to be deliberate and observe based from the time series data covering the certain period. From this we will study when the demand has gone up or down and try to analyse the factor that affecting the product demand.

Next, the data that has been gain will be implemented into equation using econometric modelling method to create an equation form for the demand. Thus the author needs to study on mathematical method that most suitable to generate the equation based from the data that has been gain. There are a couple of method that was commonly used by the economist, like curve fitting model, time series model, and regression model.

Then the equation that has been developed will be plotted within the same time frame as the actual data. The two data then will be compared to see the similarity and the accuracy of the trend and value between the one generated from the equation and the actual demand data. If the pattern is same, it will be extended for another 5 year to forecast the demand in the future.

1.4 RELEVANCY OF PROJECT

In terms of the relevancy of this project, it poses a great deal of significance to the oil and gas industry. The world nowadays is in demand of oil as the most important source of energy. With the days of easy oil that have long gone, every oil and gas companies are striving towards the hard way to produce oil and gas.

To make it simple, forecast is required for two basic reasons. The first one is the future are uncertainty and the second one is the full impact of any decision taken today can only be felt in the future. Because of that forecasting of the future improved the efficiency of the decision making process. For example, if the weather was always the same from day to day forecast would not be produce. It is only the weather changes that forecast become relevant.

The ability to forecast demand accurately is the primary condition for optimizing business decisions. The optimization of merchandizing initiatives is only possible through the implementation of industry specific causal demand models, where the impacts of price changes, promotions, displays and ads on to future demand can be measured with sufficient confidence.

Although retail organizations recognise the importance of good forecasts, few implement an effective formal process to support it involving suitable resources, skills, methods and tools to ensure the production of accurate and relevant forecasts. Also, little effort is often spent on the systematic monitoring of the quality the different information sources used to build demand models.

Demand Forecasting also help manages the balancing act between minimizing inventory investment and optimizing revenue opportunities. It provides a sophisticated, yet easy to use solution to the forecasting challenges that overwhelm many companies. Consider the complications the forecaster faces in anticipating demand, accurately and efficiently.

1.5 FEASIBILITY OF PROJECT

All the objectives stated earlier are achievable and feasible in terms of this project duration and time frame. However it can only touch a portion of forecasting method and maybe just using a simple modelling technique. Forecasting covers a really big area. Even if we give two people with identical data can end up with completely different conclusion. Each of the stockbrokers is processing the available information in the light of their year of experience and their intuitive feel for the market. For that reason, although the author was able to develop the equation and model for the demand, he would not be able to determine how accurate his forecasting was. In forecasting, everything depends on everything, where it was full of uncertainty. Sometimes the trend can change because of factors that we can't even explain, and sometimes the behaviour can change beyond our expectation or prediction. In conclusion this project can be completed in this duration of times, but it will take years of experience to develop the "feel" that will affect the forecasting itself.

CHAPTER 2

LITERATURE REVIEW AND THEORY

2.1 LITERATURE REVIEW

This paper will be discussing about model for crude oil demand in Malaysia. Unfortunately, the data that was needed is really hard to get. The reason is Malaysia statistical record was still developing hence the data that are available is not complete just for a short period of time.

As we already know, the specific nature of demand function depending on varies of factor, but it was constrain by the information availability. In much simpler word the more data that available, the better the model will be. But when there were too many uncertainties which mean lack of data, the easiest way to forecast the demand is by using Time Series method.

Time series techniques are forecasting that rely on very little information. It was quite different from the other methods that predict future movement in a variable by relating it with other variable. In fact time series method does not use information other than the past value of the data series to be forecasted is required. It depends solely on the past behaviour of the targeted variable. But most of the time this method are consider naive since we are not using the data that already available.

However this does not mean that time series method is unreliable. The predictions of even the most sophisticated forecasting procedures are always adjusted to conform with the good sense of forecaster. In that sense, if the time series method outperformed more complex and time consuming method, than it will be a total embarrassment. If the complicated method cannot be more accurate than the simple time series method, then what's the point? Because of that time series method has become a benchmark to other forecasting method as references for the better result.

Below show the summary of journal that was use as the references by the author. All of it explaining about method that they used to forecast the demand, factors that effecting demand in others country. But there were some factors that are not relevant for our country such as weather, season, and nuclear energy replacement.

Modelling energy demand of developing country By Subhes C. Bhattacharyya, Govinda R. Timilsina

In this journal the authors explain regarding method that usually used to create model for energy demand. This journal is more general since it includes energy such as electricity and etc. The author also touches briefly about econometric studies for transportation which is the largest consumption for petroleum demand. The author also give example of method that previous people has used in order to forecast demand. The most commonly used method are single equation, share model and cointegrated model. However recent econometric studies on forecasting demand have relied on combination of co-integration and error correction model.

Often these model are at aggregate level and do not consider the efficiency of the vehicle or vehicle stock and most of it focus on particular fuel type rather than considering the entire set of transport fuel thereby ignoring the substitution possibility. This journal also mention that most of the studies show that price does not play a significant role on influencing demand in developing countries where income drives the demand.

The author also emphasize that the simplicity of the model, straight forward interpretation and limited data requirement were most favoured. These kind of model often outperformed complex specification.

Forecasting the transport energy demand based on PLSR method in China By Ming Zhang, Hailin Mu, Gang Li, Yadong Ning.

This journal basically explains regarding transportation energy demand for 2010, 2015, and 2020, based on Partial Square Regression (PLSR) method. The authors divide the forecasting into two different scenarios.

Fuel consumption is likely to grow up further with economic and population growth, rapid industrialization, urbanization and agricultural development increase freight, GDP, and passenger transport and higher real income stimulate leisure related travel.

PLSR is a statistical tool that has been specifically designed to deal with multiple regression problem where the number of observation is limited, missing data are numerous and the correlation between the predictor variable are high. Authors explain that PLSR method is mainly used for modelling linear regression between multi dependent variable, and multi independence variable.

By using PLSR it can avoid harmful affection in modelling due to multi co linearity and regressing when number of observation is less than number of variable. However PLSR method is still new in economical section and it was not popular to be used for modelling and forecasting demand.

This is the result that the author gets by using PLSR method in. The charts generated from the equation have the same pattern with the actual data. This proves the accuracy of PLSR method in forecasting the energy demand.

Modelling demand for crude oil product in spain. By D.J Pedregal, O, Dejuan, N. Gomez, M.A Tobarra

Based from journal crude oil product demand in Spain, the author classified the main consumption into 2 major category, transportation model and industrial and residential model. Then from this 2 category the author divide it into 5 main petroleum products gasoline, diesel, kerosene, LPG, and gas.

The author also collects the data for substitute product to crude oil product, such as electricity from wind power, natural gas, and others to see its effect to the pattern of crude oil demand in Spain. Since those energy sources has the potential to substitute demand of crude oil.

Method that was used by this author are called unobserved component model (UCM) which decomposes a time series in unobserved component but meaningful from an economic view, such as mainly trend, seasonal, and irregularity. The benefit of using Unobserved Component model is that it enables the component of the same type to interact among the different time series. For example trends are related among them but independent of all seasonal components.

In conclusion the author said about the importance of considering the consequences in term of energy demand not only in direct term but also in indirect term. He also said that price has little impact on energy demand and tax policies are not useful to restrict consumption. Tax policies may be useful to increase government tax collection.

Forecast and analysis of demand for Petroleum Product in India By Raghavendra D Rao, Jyoti K Parikh

On the other hand, from a journal Forecast and analysis of demand for petroleum product in India, the author generates econometric models based on time series data for individual product in order to capture product specific factor affecting demand. The model was then validated against historical data by testing port he ex post forecast accuracy.

In this journal the author used trend analysis method as it is the simple's approaches for time series method. This is recommended by Subhes C. Bhattacharyya (2009) in his journal that simpler model is better and more preferable. This method involve extrapolation of past growth trend, with the restrictive assumption that factor which brought about change in past will continue unchanged in the future. However this assumption has flows where it will not always valid for future projection.

This is the example of result that the author compares with the actual chart to see the accuracy of the model compared to actual data. The data shows that time series method are one of the reliable methods to forecast demand.

Figure 1 Petrol: actual and estimated consumption

Future Projection of Energy Prices: predictive Model. By Hadi A. Belhaj, SPE, Texas Tech University, and T. Lay, Dalhousie University

Modelling approach criteria

- There is no accurate global energy pricing exist, since in order to accomplish that, complete accurate and transparent data with additional comprehensive modelling are needed
- Unexpected event like wars, earthquakes, severe weather, storm, tsunami, and etc is hard to capture using a single model. This is because the occurrence and frequency are uncertainty.
- China India future energy demand is one of the factors that must be taken seriously.
- > Every single world economy is directly or indirectly affecting the demand.
- Although weather was commonly consider as major factor, but normal weather factor like normal rain is not a factor.

2.2 THEORY

What is Economic Model

Economic modelling is a way of systematic thinking on how to value of one variable to determine value of another variable. Models contain endogenous variable, exogenous variable, parameter and assumption. Exogenous variable is the independent variables, which are predetermined and given outside the model. While endogenous variable is a variable in a model that was least partly function of other parameters and variables in a model.

Microeconomic and Macroeconomic

In the journal some author says about microeconomic and macroeconomics. Macroeconomic is the study of the behaviour an economy at the aggregate level, as opposed to the level of a specific subgroups or individuals. Factors studies include inflation, unemployment, and industrial production, often with the aim of studying the effect of government policy on these factors.

On the other hand microeconomics is the study of the behaviour of small economic units, such as that of individual consumers or households. It was opposite of macroeconomics.

Economic Forecasting

Economic forecasting seeks to create models that can accurately predict how the economy will change based on data that we can observe. Such models usually attempt to take historical trends and data to create formulas to make projections about the future. In some cases economists might use their own expert judgment or create guesses as to how the economy might respond to situations that have little or no historical president.

Forecasting Horizon

Forecasting can be divided into 3 category, short term, medium term, and long term. Each of these categories has their own purposes and method.

- Short term forecasting period is from 1 day until 1 year. It good for estimating staffing level, purchasing stock, and inventory level. Usually people use quantitative method for short term forecasting.
- Medium term forecasting period is about 2 years. I good for aggregate planning, capacity planning, and forecast sales of a product. It takes mixture of quantitative method and judgment in order to make this type of forecasting.
- Long term is for period of 5 years and above. Its importance for research and development program, determining the plant location, and for product planning. It required expert in principle judgment since long term forecasting tend to become not accurate, and this is a very huge risk to be taken.

Type of Forecasting

There are 2 type of forecasting method; the first one is qualitative method. This method was highly based on experience, judgment, and knowledge of the forecaster.

The second one is quantitative method, where we used data and statistic to estimate and forecast the future.

However both are equally importance since economy sometimes moves beyond the expectation of data, because of that the "feel" of an experience forecaster should be taken into account.

History and Data

At its core, economic forecasting is based upon observable data from the past and present. Data allows economists to form a historical picture of economic indicators, which they can use to predict how indicators might change. For instance, if a national census shows that population has increased 10 percent in a certain city over the past five years, that information might be able to help form a forecast about future population growth. An important part of forecasting is analyzing trends in data or behaviour in current data that resemble trends of the past

New Products

New products can be the most challenging to forecast. The products that are very new and are not similar to other items or services on the market can be particularly difficult. These items have no historical data on which to base past performance and trends in demand. So we will not know how this new product will affect petroleum demand. For example if Malaysia started project for nuclear reactor for electrical energy, how thus it will affect diesel and gas consumption. We also don't know how people in Malaysia will accept the change, will they approve it, or maybe disagree with it. All of this things will affect the scenario that forecaster will face.

Impact of India China oil demand

A leading international energy agency today says that demand for oil imports by China and India will almost quadruple by 2030 and could create a supply depletion as soon as 2015. This was cause by high population growth rate in China and India

Bolstered by speedy economic development and industrialization, energy demand from Asia has been one of the main contributors to higher oil prices. Over the last two years, China and India accounted for about 70 percent of the increase in energy demand and the world's energy needs would increase 55 percent by 2030.

Car sales in China, which overtook Japan last year and are expected to overtake the United States by 2015. This is one of the factors that will contribute to rising oil demand.

China's and India's oil imports are expected to jump until 19.1 million barrels a day in 2030.it stated that their total consumption on 2006 reach 5.4 million barrels, higher that amount that was imported by United State and Japan. By 2030, global oil demand is expected to reach 116 million barrels a day.

Time Series Approaches

Time series analysis can be classified as descriptive, predictive and control. It can be used to calculate the probability of value between two specified limit. Time series analysis account for the facts that data points that was taken, have an internal structure like variation trend and autocorrelation. Time series approach covers two element which is understand underlying forces and structure that produce the observe data, and fitting the model for casting. There are many methods that are used to model and forecast time series. But the one commonly used is moving average.

Moving Average Model (MA)

The moving average (MA) model describes a time series that is a linear function of the current and previous random shock. Random shock was also known as error, residual or a white noise process. The random shocks at each point are assumed to come from the same distribution, typically a normal distribution, with location at zero and constant scale. The distinction in this model is that these random shocks are propagated to future values of the time series. As a simple example, assume that we are forecasting a monthly time series. We might use this model.

$$F(t) = 1/12 (Y_{t-1} + Y_{t-2} + + Y_{t-12})$$

Thus in order to forecast a period ahead would be given by

$$\hat{\mathbf{Y}}_{t+1} = 1/12 \left(\mathbf{Y}_t + \mathbf{Y}_{t-1} + \mathbf{Y}_{t-2} + \mathbf{Y}_{t-3} + \dots + \mathbf{Y}_{t-11} \right)$$

Autoregressive Model (AR)

The autoregressive model (AR) is one of a group of linear prediction formulas that attempt to predict an output of a system based on the previous outputs and inputs. The best way to test code for computing AR coefficients is to generate artificial series with known coefficients and then check that the AR calculation gives the same results. For example one can generate the series.

$\mathbf{x}_{t} = \mathbf{a}_{1}\mathbf{x}_{t-1} + \mathbf{a}_{2}\mathbf{x}_{t-2} + \mathbf{a}_{3}\mathbf{x}_{t-3} + \mathbf{a}_{4}\mathbf{x}_{t-4} + \mathbf{a}_{5}\mathbf{x}_{t-5}$

"a" will work as a weightage that was given to each data. Usually a bigger weight will be given to latest data and smaller weight will be given to alder one. It imply on how the much that specific data will effect the forecasted data.

Autoregressive Moving Average Model (ARMA)

Forecasting model or process in which both autoregressive analysis and moving average methods are applied to a well-behaved time series data. ARMA assumes that the time series is stationary-fluctuates more or less uniformly around a time-invariant mean. Non-stationary series need to be differenced one or more times to achieve stationary. ARMA models are considered inappropriate for impact analysis or for data that incorporates random shocks.

$$F_{t} = \alpha D_{t} + \alpha (1 - \alpha) D_{t-1} + \alpha (1 - \alpha)^{2} D_{t-2} + \cdots$$

$$F_{t} = \alpha D_{t} + (1 - \alpha) [\alpha D_{t-1} + \alpha (1 - \alpha) D_{t-2} + \cdots]$$

$$F_{t} = \alpha D_{t} + \alpha (1 - \alpha) D_{t-1} + \alpha (1 - \alpha)^{2} D_{t-2} + \cdots$$

$$F_{t} = \alpha D_{t} + (1 - \alpha) [\alpha D_{t-1} + \alpha (1 - \alpha) D_{t-2} + \cdots]$$

$$F_t = aD_t + (1-a)F_{t-1}$$

Autoregressive Integrated Moving Average Series (ARIMA)

The models developed by this approach are usually called ARIMA models because they use a combination of autoregressive (AR), integration (I) - referring to the reverse process of differencing to produce the forecast, and moving average (MA) operations. It was developed by BOX and Jenkins

For ARMA process, the series must have stationary (moving sideways). This means all that both the expected value of the series and its autocovarience function are independence of time. Most of the time series are non stationary but some of it can be transforming to a stationary series by integrating. So the inclusions of integration into ARMA model change it into ARIMA. This will allow the model to predict a value in a response time series as a linear combination of its own past value, past error, and current and past value of other time series.

- ARIMA(1,1,0) = differenced first-order autoregressive model
- ARIMA(0,1,1) without constant = simple exponential smoothing
- > ARIMA(0,1,1) with constant = simple exponential smoothing with growth
- ARIMA(0,2,1) or (0,2,2) without constant = linear exponential smoothing
- A "mixed" model--ARIMA(1,1,1)

Development of Model

There are 3 modelling stages procedure in order to develop ARIMA model

CHAPTER 3 METHODOLOGY

3.1 RESEARCH METHODOLOGY

Basically, there are eight strategic approaches involved in this project research methodology. Those elements will be further discussed below.

3.1.1 Problem Statement

3.2.1 Crude oil productions in Malaysia are decreasing by years. By creating a demand model we can estimate whether our production can meet the demand or not. Hence opening a new path for investment strategies to ensure the security of Malaysia energy supply.

3.1.2 Project Objectives

- Create a model of crude oil demand in Malaysia.
- Forecasting the demand for next 5 years.

3.1.3 Background Study

- Study on factor that effecting the demand.
- To study trend of petroleum demand in Malaysia.

3.1.4 Literature Review & Theory

- Study on method that was used to forecast demand in India
- Study on method that was used to forecast demand in Spain
- Study on other method used for modelling

3.1.5 Data Acquisition

- Analyse production and demand from the past
- Collect data regarding crude oil product that was highly consume by citizen of Malaysia
- Collect total oil consumption in Malaysia for the past 20 years

3.1.6 Data Analysis & Calculation

- Choosing the best method to use based on the data that was required.
 - > Curve fitting model
 - Regression model
 - > Time series model

3.2 PROJECT ACTIVITIES

- 3.2.1 Study on past journal to understand about economic modelling. From here we can have a brief idea about the method that the author used, factors that effecting the demand, and assumption about the scenario that they made.
- 3.2.2 Collect data regarding crude oil product that was highly consumed by people in Malaysia.
- 3.2.3 Discuss with lecturer or expert regarding model method that are most suitable to be used based on the data that has been collected
- 3.2.4 Study about the method that has been selected, time series modelling, moving average.
- 3.2.5 Identify all factors and variable affecting the trend of the demand in order to generate a mathematical equation for the demand.
- 3.2.6 Apply the method to collected data, using Microsoft excel. Generate graph from the new data that was gained
- 3.2.7 Try to compare the generated model with an actual data collected

3.3 KEY MILESTONE

The key milestones for Final Year Project I have been planned and organized in detail, as summarized below:

Week 1 - 2: Selection of Final Year Project title

Week 2 - 5: Preliminary literature review on Modelling Crude Oil Demand in Malaysia

Week 6: Submission of Extended Proposal

Week 6 - 8: Collecting past data on crude oil demand in Malaysia

Week 7: Identify Affecting factors for the demand

Week 7 - 8: Collect data on the factor effecting demand

Week 9: Project defence and progress evaluation

Week 9-11: Meet with expert to select the best method to generate the demand model

Week 12: Analysis of results and discussions

Week 13: Submission of draft Interim Report

Week 14: Submission of Interim Report

The key milestones for Final Year Project II have been planned and organized in detail, as summarized below:

Week 1-5: Study method to be used for modelling

Week 6-7: selecting the most suitable method for data availability and demand trend in Malaysia

Week 7: applying the method with the data available

Week 8: Submission of Progress Report

Week 9: create the equation and prepared the graph of the model

Week 10: comparing the result with actual data

Week 11: Pre-EDX, submission of draft Final Report & Technical Paper

Week 12: EDX & Submission of Final Report

Week 13: Oral presentation

3.4 Final Year Project Gant Chart

		Week													
no	Task	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Selection of Project Topic		-												
2	Preliminary research work						1								
3	Preliminary report submission							eak							
4	Literature Review							n Br							
5	Collecting Data							Se			and a				
6	Generate Equation							Nie							
7	Draft Interim Report Submission													light -	
8	Interim Report Submission														

	Task	Week													
NO	143%	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Study method to be used for modelling														
2	selecting the most suitable method for data availability and demand trend in Malaysia														
3	applying the method with the data available														
4	Submission of Progress Report														
5	create the equation and prepared the graph of the model					1					-				
6	comparing the result with actual data														
7	Pre-EDX, submission of draft Final Report & Technical Paper								-						
8	EDX & Submission of Final Report														
9	Oral presentation														

FYP II Gantt Chart

CHAPTER 4 RESULTS / FINDINGS

In this chapter, the author will present the finding and data result from the project. The author will also present the data calculation that will lead to the parameters that we need to analyze the result. Lastly the author will present the Data Analysis.

This is the data that has been collected; it shows the petroleum usage in Malaysia. However the data available was only from 1980 until 2010 and this quite limited data that can be used to create the model

lear	Oil - consumption
1980	160000
1981	165000
1982	180000
1983	192000
1984	194000
1985	194000
1986	192270
1987	197300
1988	202500
1989	220070
1990	265980
1991	281530
1992	301520
1993	335950
1994	377510
1995	399160
1996	435260
1997	469340
1998	449230
1999	454320
2000	465020
2001	475100
2002	462750
2003	472,000
2004	460,000
2005	460,000
2006	510,000
2007	515,000
2008	501,100
2009	501,100
2010	536.000

Malaysia crude oil Consumption 1980 - 2010

Malaysia crude oil Consumption 1980 - 2010

The increment trend in crude oil demand is already been expected since; the consumption is likely to grow up further with population growth, and rapid industrialization. But as we can see from the trend, crude oil demand in Malaysia is quite stable and not volatile. Just from 1980 until 1998 there was a huge increment in the demand.

When we look back to the history that is where Tun Dr. Mahathir bin Mohamad was announced as Malaysia 4th prime minister. Tun Dr. Mahathir bin Mohamad who was titled with father of modernization who has bring Malaysia into era of globalization fits the theory of rapid industrialization will increase demand in crude oil energy.

Why used Times Series method

Other method such as single equation – regression method and multi equation model, can be used and constructed to explain and forecast of the future with one or more variable. However since the data that was collected was too short and did not meet the period of crude oil demand in Malaysia (1980 – 2010) then this method was not suitable for this project due to lack of data.

On the other hand, time series method did not predict the future movement by relating it with to a set of other variable. Instead, the prediction was made solely on the past behaviour of the variable. A time series model account for pattern in the past movement of a variable and use that information to predict it future movement

Statistic population growth in Malaysia

Statistic of Inflation rate in Malaysia

Malaysia Natural gas consumption statistic

Petrol Price Statistic in Malaysia

Data that the author collects was not sufficient to do a regression technique; all of this data was only from 2003 until 2010. It did not meet the time frame of crude oil demand in Malaysia data so it's impossible to study the impact of this variable to the demand. Due to this reason and time restriction to complete this project, time series model is the best choice the author have.

However there was an interesting fact that was show from above data. When we have a look on petrol price statistic in Malaysia, in 2008 there was sudden increase in petrol price. But when we compare it with crude oil demand, there were no changes for the demand at that particular year. This shows that petrol price does not effecting the demand for petroleum. On the other hand, when we look at inflation rate in Malaysia, there was an increase in 2009. Inflation occurs when there was increase in price of the goods in other word decrease of purchasing power for the currency. The increment in petrol price causes increase in production cost forcing supplier to increase the price of the goods resulting in higher living cost.

That the reason why subsidizing play an importance roll to control goods price in order to reduce inflation. A country usually will try to maintain their inflation and depletion rate below 3%.

Result

For the 1st try, the author used a **simple moving average model**. Where this method use solely on the history of the demand to create the modal and forecast the future. He used 2 periods of last historical data as a guide to predict the future data. The equation used was:

$$D_{t+1} = (D_{t-1} + D_{t-2} + D_{t-3} + D_{t-4})/4$$

If the period used as a guide to create the model was too long, then the new data that gain will be very short and its value was far from the actual value. Below was the result gain from the equation

Actual Vs simple average Model

Based from the graph generated its shows that demand in Malaysia has stable increment, however since the forecasted graph is moving below the actual demand there a possibility that the demand will go down.

The simple moving average model is useful if we believe that a likely value for the series is a simple average of its value for the last 4 years. It may be unrealistic however to assume that a good forecast of demand can be given by a simple average of its past value. It is more reasonable to have more recent value of demand play more role than earlier value. Because of that for the 2nd try, the author used an **exponentially weighted moving average model**.

$$D_{t+1} = \alpha D_t + \alpha(\alpha - 1) D_{t-1} + \alpha(\alpha - 1)^2 D_{t-1} + \alpha(\alpha - 1)^3 D_{t-3}$$

Here α is a number from 0-1 that indicates how heavy we weight the recent value relative to the older one. In general, the more erratic a data series, the close to zero α should be set. This is because, if the data was volatile, we must not have too much trust that the future be affected by the previous data. Hence less weightage is more suitable to be implied.

In this case, since the data of crude oil demand in Malaysia is quite stable, then the author put a larger weightage to the α which is 0.8. So the result was:

Actual Vs exponentially weighted moving average model

We can see that the forecasted model is almost similar to the actual one meaning lest error compared to simple moving average. The forecast also shows that the demand have the possibility to move down in next 5 years. Based from both result we can see that Exponential Weighted Moving Average Model is much more suitable to represent crude oil demand in Malaysia.

Production Vs Demand in Malaysia

Author also have made a comparison and forecast on crude oil production in Malaysia. Since demand and supply is something that can't be separated, it wise to see whether production in Malaysia can cope with the demand.

As we can see Malaysia production has declining from the last ten years. There a possibility in the next couple of years, production in Malaysia can't satisfy the demand. So it is really importance for us to prepare for the worst. Maybe someday our country needs to import oil from outside like country such as India.

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

The purpose of forecasting is to reduce the risk and cost in decision making, by predicting the uncontrollable aspect of event. It's one of the options so that we will be prepared for the worse condition that may come hence we will be able to come up with a backup plan.

As for time series forecasting technique, it was a procedure that only relies on a very little information. Because of this reason Time series method are inexpensive in term of time and effort. It also suitable when there is not much data available to do the forecasting, or in the need of quick estimation. However this technique was consider naive since it ignore all readily available data. But it does not mean that time series method is unreliable, it still used as a bench mark for other forecasting technique

As in the author opinion, Time series technique specializes for moving average model, it is more accurate for a short period of forecasting. Since it only rely solely from past historical data, there a high chance that it will miss some unexpected value such as riot, earthquake, war, or even new founding of technology that will change the outcome. For example for oil and gas there a new technology such as LPS that can enhance the production rate of a depleted well with lower cost. This will make the production economical hence increasing the supply in the market.

Because of that it is better to used a method that consider all effecting factor in order to gain more accurate result for long term forecasting such as multi equation regression model. Although it was more complicated and time consuming, but having a sight of the future can change everything.

References

- 1. www.investorwords.com
- 2. www.investorwords.com
- 3. www.nytimes.com/2007/11/07/business/07cnd-energy.html
- 4. www.clear.rice.edu/elec431/projects96/digitalbb/autoregression.html
- 5. http://paulbourke.net/miscellaneous/ar/
- 6. http://arnoldkling.com/~arnoldsk/aimst3/aimst320.html
- 7. http://pages.stern.nyu.edu/~churvich/Forecasting/Handouts/Chapt3.1.pdf
- 8. http://www.ltrr.arizona.edu/~dmeko/notes_5.pdf
- 9. http://www.answers.com/topic/moving-average-model
- 10. http://www.ltrr.arizona.edu/~dmeko/notes_5.pdf
- 11. http://www.businessdictionary.com/definition/autoregressive-moving-average-ARMA-model.html
- 12. http://www.duke.edu/~rnau/411arim.htm
- Raghavendra D Rao and Jyoi K Parikh "Forecast and Analysis of demand for petroleum product in India "
- 14. Subhes C. Bhattacharyya, Govinda R. Timilsina "Modelling energy demand of developing countries: Are the specific features adequate capture?"
- 15. Ming Zhang, Hailin Mu, Gang Li, Yadong Ning "Forecasting the transport energy demand based on PLSR method in China"
- 16. Sajal Gosh "Future demand of petroleum products in India"
- 17. Willem P. Nel, Cristopher J. Cooper "A critical review of IEA's oil demand forecast for China"
- D.J Pedregal, O, Dejuan, N. Gomez, M.A Tobarra "Modelling demand for crude oil product in spain"
- 19. Paolo Biondi, Danilo Monarca, Arduino Panaro "Simple forecasting model for farm tractor demand in Italy, France and the United States"
- 20. Hadi A. Belhaj, SPE, Texas Tech University, and T. Lay, Dalhousie University "Future Projection of Energy Prices: predictive Model"
- 21. Demand Forecasting : Time series Model "Professor Stephen R. Lawrence, College of Business and Administration University of Colorado"
- 22. Economic Modelling "K.R Bhattarai, Business School, University of Hull"

Appendices

Year Oil - consumptio Average Weighted Movin 1980 1980 1980 1980 1980 160000 1983 1982 1983 1983 1982 180000 1985 192000 1986 190000 193536 1983 192000 1986 190000 193538 192033 1984 194000 1987 193068 192233 1986 192270 1989 196518 200962 1987 197300 1988 194533 255738 1988 202500 1991 221463 255738 1989 220070 1993 256725 296181 1992 301520 1994 377510 1995 332412 367275 1991 281530 1996 453235 392410 1997 386370 426304 1993 335950 1996 452038 4503137 2001 459478 462086 2001 45				Year	Simple Moving	Exponentially
Year Oil - consumptio 1980 1981 1980 160000 1981 1982 1982 180000 1982 180000 1982 180000 1982 180000 1984 194000 1985 192000 1986 192270 1987 197300 1988 202500 1989 220070 1999 265880 1992 246520 1993 325550 1994 377510 1995 339160 1994 377510 1995 324128 1996 435260 1997 463340 1998 449230 1999 454320 2000 465020 2001 475500 2002 462750 2003 472000 2004 468000 2005 460000 20				1001	Average	Weighted Moving
Year Oil - consumptio 1980 160000 1981 165000 1982 1981 1983 192000 1984 194000 1985 194000 1986 192200 1986 192200 1985 194000 1985 194000 1986 192270 1988 202500 1989 220070 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1993 335950 1994 449230 1995 399160 1993 4554320 2000 465020 2001 475500 2002 4662750 2003 472000 2004 460000 2005 4660000 2006 463888 459666				1980		
Year Oil - consumptio 1980 160000 1981 165000 1982 180000 1983 192000 1984 194000 1985 192000 1986 192000 1987 197300 1988 202500 1988 202500 1989 24652 1990 265980 1991 281530 1993 335950 1994 377510 1995 399160 1997 463340 1998 449230 1999 4554320 2000 465020 2001 475100 2002 462750 2001 475500 2002 462750 2003 472000 2004 460000 2005 460000 2006 513000 2007 515000 2008 501100 <t< td=""><td></td><td></td><td></td><td>1981</td><td></td><td></td></t<>				1981		
Year Oil - consumptio 1980 160000 1981 165000 1982 180000 1983 195000 1984 192000 1985 194000 1986 192270 1987 197300 1988 202500 1989 220070 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1994 377510 1995 399160 1996 435260 2000 465020 2001 475100 2002 462750 2001 452088 2002 462760 2001 452080 2002 462360 1993 454320 2003 472000 2004 462000 2005 466000 <t< td=""><td></td><td></td><td></td><td>1982</td><td></td><td></td></t<>				1982		
Year Oil - consumptio 1980 160000 1980 160000 1981 165000 1982 180000 1983 192000 1984 194000 1985 194000 1986 192270 1986 192270 1987 197300 1988 202500 1990 265980 1991 281530 1993 335950 1994 377510 1995 399160 1993 335950 1994 377510 1995 399160 1996 435260 2000 465020 2001 475100 2002 462750 2001 47500 2002 462750 2001 47580 2002 462750 2003 472000 2004 460014 2005 460000				1983		
consumptio 1980 160000 1981 165000 1982 180000 1983 192000 1984 194000 1985 194000 1986 192270 1986 192270 1986 192270 1987 197300 1988 202500 1999 220070 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 339160 1996 435260 1997 463340 1998 449230 1999 454320 2000 465020 2001 475100 2002 462750 2003 472000 2004 46298 486250 511264 2003 472000 2004 463688 459366 2	Year	011-		1984	174250	188704
1980 160000 1981 165000 1982 180000 1983 192000 1984 194000 1985 194000 1986 192270 1987 197300 1988 202500 1989 20070 1990 265980 1991 281530 1992 301520 1993 335950 1996 435260 1993 335950 1994 377510 1995 399160 1994 377510 1995 399160 1996 435260 1999 454320 2000 465020 2001 475100 2002 462750 2003 472000 2004 462086 2005 460000 2006 510000 2007 515000 2008 501100 2009		consumptio		1985	182750	192736
1981 165000 1982 180000 1983 192000 1984 194000 1985 194000 1986 192270 1987 197300 1988 202500 1989 220070 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1997 463340 1998 449230 1999 454320 2000 465020 2001 475100 2002 466384 2003 472000 2005 460000 2005 460000 2006 510000 2008 501100 2008 501100 2009 501100 2009 501100 2010 515873 515873 525679	1980	160000		1986	190000	193536
1982 180000 1983 192000 1984 194000 1985 194000 1986 192270 1987 197300 1988 202500 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 4662750 2001 47500 2002 466000 2005 460000 2006 510000 2006 510000 2008 496525 502544 2007 515000 2008 501100 2009 501100 2009 501100 2009 501100 2009 501100	1981	165000		1987	193068	192293
1983 192000 1984 194000 1985 194000 1986 192270 1987 197300 1988 202500 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1996 435260 1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 462750 2003 472000 2005 460000 2007 515000 2008 5011000 2009 5011000 2009 5011000 2009 5011000 2009 5011000 2009 5011000 2010 515373 2010 515373	1982	180000		1988	194393	196053
1984 194000 1985 194000 1985 194000 1986 192270 1986 192270 1987 197300 1988 202500 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1996 435260 1997 469340 1998 420318 460303 1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 462750 2004 468718 2005 467463 2006 510000 2007 515000 2008 501100 2009 501100 2009 501100 2009 501100 2009 501100 <	1983	192000		1989	196518	200962
1985 194000 1986 192270 1987 197300 1988 202500 1989 220070 1990 265980 1991 281530 1992 301520 1993 325950 1994 377510 1995 3399160 1996 435260 1997 469340 1998 420318 460303 1997 469340 1998 4435260 1999 438248 450961 2000 465020 2001 475100 2002 460918 471897 2003 472000 2004 460000 2005 4667463 461369 2006 510000 2007 515000 2008 501100 2008 501100 2009 501100 2009 501100 2009 501100 <	1984	194000		1990	203035	216000
1986 192270 1987 197300 1988 202500 1989 220070 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1996 435260 1997 469340 1998 42038 453137 2000 465020 2001 475100 2002 462750 2001 475000 2005 460000 2005 460000 2007 515000 2008 501100 2009 501100 2009 501100 2009 501100 2009 501100 2009 501100 2009 501100 2010 51848 518373 528365 2015 515373	1985	194000		1991	221463	255738
1987 197300 1988 202500 1989 220070 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1996 435260 1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 4662750 2003 472000 2004 460000 2005 460000 2006 510000 2007 515000 2008 501100 2009 501100 2009 501100 2009 501100 2010 515373 515373 525679	1986	192270		1992	242520	276119
1988 202500 1989 220070 1990 265980 1991 281530 1992 301520 1993 335950 1994 296245 327714 1993 335950 1994 377510 1995 399160 1996 435260 1997 463340 1998 442038 1999 438248 2000 452038 1997 463340 1998 449230 1999 438248 2001 459478 462086 2001 459478 2002 460918 2003 464298 2004 468718 2005 467463 2006 463688 2007 515000 2008 501000 2009 501000 2009 501100 2009 501100 2010 </td <td>1987</td> <td>197300</td> <td></td> <td>1993</td> <td>267275</td> <td>296181</td>	1987	197300		1993	267275	296181
1989 220070 1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1996 435260 1997 463340 1998 449230 1999 454320 2000 465020 2001 475100 2002 462750 2001 475100 2002 462750 2003 472000 2004 460000 2005 460000 2005 460000 2005 466000 2006 50800 2007 515000 2008 501100 2009 501100 2009 501100 2010 53630 2010 53630 2010 505373 2011 51373	1988	202500		1994	296245	327714
1990 265980 1991 281530 1992 301520 1993 335950 1994 377510 1995 399160 1996 435260 1997 463340 1998 442038 2000 455020 2001 475100 2002 4667463 2001 475100 2002 4667463 2001 475100 2002 4667463 2003 472000 2004 466000 2005 460000 2005 460000 2005 460000 2006 50800 2007 515000 2008 501100 2009 501100 2009 501100 2010 53630 2010 53630 2010 506800 2010 506800 2010 506800 2010 <td>1989</td> <td>220070</td> <td></td> <td>1995</td> <td>324128</td> <td>367210</td>	1989	220070		1995	324128	367210
1991 281530 1992 301520 1992 301520 1997 386970 426304 1993 335950 1997 386970 426304 1994 377510 1998 420318 460303 1995 399160 1999 438248 450961 1996 435260 2000 452038 453137 1997 469340 2001 459478 462086 2000 465020 2002 460918 471897 2002 462750 2004 468818 4636819 2002 462750 2006 463688 459666 2001 475100 2008 486250 511264 2003 472000 2008 486250 511264 2004 460000 2009 496525 502544 2007 515000 2010 506800 500800 2008 501100 2013 515819 52707 2010	1990	265980		1996	353535	392410
1992 301520 1993 335950 1994 377510 1995 399160 1997 469340 1998 4435260 1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 462750 2003 472000 2004 460000 2005 460000 2005 460000 2005 460000 2006 510000 2007 515000 2008 501100 2009 501000 2009 501000 2010 51819 2011 51819 2013 51819 2014 51848 518300 526365 2015 515373	1991	281530		1997	386970	426304
1993 335950 1994 377510 1995 399160 1996 435260 1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 462750 2003 472000 2004 460000 2005 460000 2006 510000 2007 515000 2008 501100 2009 501100 2009 501100 2010 515373	1992	301520		1000	420219	460202
1994 377510 1995 399160 1996 435260 1997 469340 1998 449230 1999 454320 2000 468718 2001 47500 2001 468718 2002 462750 2003 472000 2004 460000 2005 460000 2005 460000 2005 460000 2006 510000 2005 460000 2006 510000 2008 501100 2009 501100 2009 501000 2010 518300 2011 51819 2013 51819 2014 51848 2015 515373	1993	335950		1999	420310	450961
1995 399160 1996 435260 1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 463688 2003 47500 2004 463688 469010 2005 2003 472000 2004 466000 2005 460000 2006 510000 2007 515000 2008 501100 2009 501100 2010 536000	1994	377510		2000	4520290	452127
1996 435260 1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 463688 2003 476363 2004 468718 463819 2005 463688 2001 475100 2002 462750 2003 472000 2004 4663688 456205 5011264 2003 472000 2005 460000 2005 460000 2006 506800 2007 515000 2008 501100 2009 501100 2009 501100 2010 536000	1995	399160		2000	402000	403137
1997 469340 1998 449230 1999 454320 2000 465020 2001 475100 2002 462780 2003 464298 2004 463819 2005 463688 2001 475100 2002 462750 2003 472000 2004 486250 2005 460000 2005 460000 2006 50000 2007 515000 2008 501100 2009 501100 2010 515819 2015 515373 2015 515373	1996	435260		2001	403470	402000
1998 449230 1999 454320 2000 465020 2001 475100 2002 462750 2003 472000 2004 463688 2004 463688 2005 463688 2004 463688 2005 463688 2006 463688 2007 475500 2008 486250 2009 510000 2008 501100 2009 501100 2009 501100 2010 515373 2015 515373	1997	469340		2002	400310	4(103)
1999 454320 2000 465020 2001 475100 2002 462750 2003 472000 2004 463688 2007 475500 2003 472000 2005 460000 2005 460000 2006 506800 2007 515000 2008 501000 2009 501100 2009 501100 2009 501100 2010 515373 2015 515373	1998	449230		2003	404238	404004
2000 465020 2001 475100 2002 462750 2003 472000 2004 460000 2005 466250 2006 463688 2007 475500 2008 486250 2009 496525 2006 506800 2007 513000 2008 501000 2009 501000 2009 501100 2009 501100 2010 515373 2015 515373	1999	454320		2004	468/18	463819
2001 475100 2002 462750 2003 472000 2004 460000 2005 460000 2006 510000 2007 515000 2008 501000 2009 512875 2009 501000 2009 501000 2009 501000 2009 501000 2009 501000 2009 501000 2009 501100 2010 515373 2015 515373	2000	465020		2005	46/463	461369
2002 462750 2007 47500 499341 2003 472000 2008 486250 511264 2004 460000 2009 496525 502544 2006 510000 2010 506800 500800 2007 515000 2012 512875 527648 2009 501100 2013 515819 527007 2009 501100 2014 519498 526365 2010 536000 2015 515373 525679	2001	475100		2006	463688	459666
2003 472000 2004 460000 2005 460000 2006 510000 2007 515000 2008 50100 2009 50125 2009 501200 2009 501200 2009 501200 2009 501000 2009 501100 2010 51819 2014 519498 2015 515373 2015 515373	2002	462750		2007	475500	499341
2004 460000 2005 460000 2006 510000 2007 515000 2008 501100 2009 51819 2010 51819 2011 51819 2013 51819 2014 519498 2015 515373 2010 515373	2003	472000		2008	486250	511264
2005 460000 2010 506800 500800 2006 510000 2011 513300 528307 2007 515000 2012 512875 527648 2009 501100 2014 519498 526365 2010 536000 2015 515373 525679	2004	460000		2009	496525	502544
2006 510000 2007 515000 2008 501100 2009 501100 2010 536000	2005	460000		2010	506800	500800
2007 515000 2008 501100 2009 501100 2010 536000	2006	510000	400	2011	513300	528307
2008 501100 2009 501100 2010 536000	2007	515000	the (2012	512875	527648
2009 501100 2014 519498 526365 2010 536000	2008	501100	na A Pres	2013	515819	527007
2010 536000	2009	501100	in a a	2014	519498	526365
	2010	536000	Σ	2015	515373	525679

Data For crude oil demand in Malaysia and generated data from model

				Simple	Exponentially
	Oil .			Moving	Weighted Moving
Year	Draduation		1980		
1000	Production		1981		
1980	283000		1982		
1981	264000		1983		
1982	306000		1984	304500	351219
1983	365000		1985	343750	421882
1984	440000		1986	387750	436038
1985	440000		1987	437250	490016
1986	504000		1988	470250	495136
1987	497000		1989	495250	530464
1988	540000		1990	531500	573530
1909	595000		1991	560250	609261
1000	619000		1992	597500	638016
1001	613000		1993	625848	649624
1991	646000		1994	639598	641176
1992	653390		1995	646095	643435
1993	640000		1996	655218	673852
1994	644990		1997	665628	689958
1995	682490		1998	680628	69/1/2
1996	695030		1999	702000	714603
1997	700000		2000	702008	030440
1998	720000		2001	C00FC0	030424
1999	693000		2002	COE17E	690759
2000	690030		2003	600110	727552
2000	659210		2004	712720	749907
2001	03210		2005	705685	653794
2002	707000		2007	684220	619945
2003	737860		2008	646810	593620
2004	755350		2009	610173	604797
2005	631070		2010	596873	582448
2006	612600	* -	2011	582213	558873
2007	588220	4(10 4)	2012	580711	558120
2008	608800	a fu	2013	573688	557341
2009	577870	Fare	2014	572643	556602
2010	553960	Ĩ	2015	577314	555892

Data oil production in Malaysia and generated data from model