PRODUCTION ENHANCEMENT FROM SAND CONTROL MANAGEMENT

By

Nur Farhana bt Mohd Jamil (10215)

Lecturer: AP Aung Kyaw

Dissertation submitted in partial fulfillment of The requirements for the Bachelor of Engineering (Hons) (Petroleum Engineering)

MAY 2011

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

PRODUCTION ENHANCEMENT FROM SAND CONTROL

MANAGEMENT

By

Nur Farhana binti Mohd Jamil

A project dissertation submitted to the

Petroleum Engineering Programme

Universiti Teknologi PETRONAS

In partial fulfillment of the requirement for the

Bachelor of Engineering (Hons)

(Petroleum Engineering)

Approved by,

(AP Aung Kyaw) Aung Kyaw) Associate Professor Geoscience & Petroleum Engineering Department Geoscience & Petroleum Engineering Universiti Teknologi PETRONAS Universiti Teknologi PETRONAS Bender Sen lekender, 31760 Trensk Bender Sen lekender, Makeyett. Perek Derul Ridzuen, Makeyett. LINUVED SITT TEK

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

MAY 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

whitil

NUR FARHANA BT MOHD JAMIL

ABSTRACT

This interim report is to finalize the Final Year Project II on the production enhancement from sand control management. The main objective of this report is to investigate the effectiveness of sand control, the classification and types of sand production, important factors that influencing the sand control selections and stimulate the process of sand control techniques in Tukau field using PROSPER software. Sand control is the limitation of sand production to an acceptable level. The purpose of sand control techniques are to control and manage sand production. The methodology of this project is by an enhanced gravel pack stimulation model and the screening of the sand control method. The project will do screening on the Tukau Field reservoir to find whether further study of sand control on mentioned field should be done. Initial model of using gravel pack is tested on some model as reference before applying to Tukau field model. This report will conclude the whole work done though out the semester.

ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude and a bunch of thanks to everyone that has given me support and guidance throughout the whole period of completing this final year project.

Firstly, I would like to express my greatest appreciation to Universiti Teknologi PETRONAS and the Coordinator of Final Year Project of Petroleum Engineering Department, Dr. Sonny Irawan who has planned and coordinated all activities and made the necessary arrangements, especially in terms of the logistic matters related to this study.

I would like to take this opportunity to acknowledge the endless help and support received from my supervisor, AP Aung Kyaw throughout the whole period of completing this final year project. Without his guidance and advices, I will not be able to achieve the target of the project within the given time. Apart from that, I would like to extend my greatest appreciation to my former supervisor in PCSB, Mr Donald Aryanto Tambunan for his advices and assistance in the process of resolving critical issues encountered while doing this stimulation throughout of this project.

Last but not least, I would like to express special thank to my family members and my close friends for their encouragement, continuous supports, constant love, and helpful advices that really help me to finish this training with courage and spirit. Without them at my side, I will not achieve what I have now.

iv

TABLE OF CONTENTS

CERTIFICA	TION OF APPROVALi	į
CERTIFICA	TION OF ORIGINALITYii	į
ABSTRACT		i
ACKNOWL	EDGEMENT iv	,
CHAPTER 1	I:INTRODUCTION 1	-
	1.1 Background of Study 1	
	1.2 Problem Statement 1	
	1.3 Objective	•
	1.4 Scope of Study2	,
CHAPTER 2	2:LITERATURE REVIEW	
	2.1 Definition and Mechanism of Sand Control	ŀ
	2.2 The Classification and Types of Sand Production4	
	2.3 Methods Selection	•
	2.3.1 Mechanical Sand Control6	í
	2.3.2 Chemical Sand Control7	
	2.4 Factors of Thru Tubing Sand Control12	
CHAPTER 3	3: METHODOLOGY17	1
	3.1 Project Procedure	,
	3.2 Project Process Flow	
	3.3Tool	ţ
	3.4 Gantt Chart/ Key Milestone of Project)

CHAPTER 4	: RESULT AND DISCUSSION	22
	4.1 Data gathering and Analysis	22
	4.2 Result and Discussion	24
CHAPTER 5	; CONCLUSION AND RECOMMENDATION	44
	5.1 Conclusion	44
	5.2 Recommendation	45
REFERENC	ES	46

APPENDICES	

LIST OF FIGURES

Figure 2.1: Transient Sand Production4
Figure 2.2: Sand Production - Downhole Situation5
Figure 2.3: System Component of Gravel Pack7
Figure 2.4: Simplified Schematic Reaction Pattern of the Organosilane
Figure 2.5: Concept of the Organosilane Administration12
Figure 2.6: Drawing of Flow Areas for Fluid Flow during Sand Transport
Figure 3.1: Flow Chart of the Methodology17
Figure 4.1: Graph of Depth versus Sonic Transit Time
Figure 4.2: Wellbore Diagram for well TK-X
Figure 4.3: Graph of Well Test Data
Figure 4.4: Summary Data of well TK-Y
Figure 4.5: PVT Matching Data
Figure 4.6: Reservoir Model of IPR32
Figure 4.7: Deviation Survey32
Figure 4.8: Production Performance of Well Modeling
Figure 4.9: Inflow Performance Relation (Geom Skin Model)
Figure 4.10: Graph of Inflow Performance Relation (IPR) plot
Figure 4.11: Result of production rate for IGP
Figure 4.12: Inflow (IPR) versus Outflow (VLP) Curves
Figure 4.13: Inflow Performance Relation (Geom Skin Model)

Figure 4.14: Inflow Performance Relation (IPR) plot	39
Figure 4.15: Result of production rate for SAS4	10
Figure 4.16: Inflow (IPR) versus Outflow (VLP) Curves	41

LIST OF TABLES

Table 2.1: Common Wash Pipe Sizes.	3
Table 2.2: Recommended Wash Pipe Sizes. 1	4
Table 4.1: Well Deviation Data for well TK-X	!6
Table 4.2: Parameters of Both Methods	:9
Table 4.3: Analysis Result of both wells	11

CHAPTER 1

INTRODUCTION

1.1 Objectives

The objectives of this research are:

- a) To investigate the effectiveness of sand control method in Tukau Field located in offshore of Malaysia.
- b) To compare the performance of the wells between wells equipped with enhanced gravel pack compared to other methods.
- c) To stimulate the process of enhanced gravel pack and stand-alone screen in Tukau reservoir using PROSPER software.

1.2 Problem Statement

Sand production in unconsolidated formations has brought heavy injury for the petroleum industry moving into the next century. The history of sand production dates back to the 1900's with the completion of water wells with sand control installations. Sand production problems in Tukau field have presented major obstacles to well performance and have resulted in significant lost production potential. Reduced production rates and chocking back of wells have been to control sand production to an acceptable level of less than 20 pounds per thousand barrels

Due to sand problems, this involves many challenges associated with drilling wells such as tubing erosion, mud losses, formation damage and wellbore instability. In terms of sand management, there are two main classes of techniques available; sand prevention by passive method and sand control using mechanical exclusion (gravelpacking) or screenless completion (sand stabilization by chemical consolidation or sandlock). Therefore, internal gravel pack has been the most commonly used sand control method for this field. Other methods that have been applied include external gravel pack (EGP/OHGP), chemical consolidation (SCON) and stand- alone (Stratapac) mainly installed after sand failure have been observed.

1.3 Scope of Studies

The scope of this study is to make a research on the use of production data available by using suitable and quickly method in modern production analysis on analyzing the well's problem to make a better sand control method. Techniques of sand sieve analysis have advanced significantly, over the past few years. There are many different methods available currently including passive sand control and also mechanical sand exclusion method. Due to the limitation of time, the scope of study of this project is just focusing on two methods only, which are enhanced gravel pack design and historical match in well model performance. However, the other method will also be covered to have a better understanding, such as Stratapac. This study will involve the case study specifically on Tukau field, theory and also the application in the software available.

Theoretical Knowledge:

- Study on the concepts and characteristic of sand control method selection and design.
- Research on petrography and mineralogy analysis.
- Study on the gravel pack sand sizing design and its factors.
- Sand sieve analysis and grain size analysis.

Hands on Knowledge:

• Training to use PROSPER 2008 package

CHAPTER 2

Literature Review

2.1 Definition and Mechanism of Sand Control

Sand Control is a balance between allowing a particular amount of sand to pass through the sand control solution, without plugging or eroding the solution. Retaining everything would lead to high skin values and probable plug. Sizing a solution too small – can lead to plugging or partial plugging, forcing hydrocarbon production through non-plugged sections "hot spotting" [2]. This in turn can lead to screen erosion. Sizing a solution too large – can lead to unacceptable production of sand, which can lead to erosion of not only the sand screens, but also surface equipment. Should the produced sand rates be excessive, the loss of the well may be inevitable should the wellbore fill with sand.

The most effective sand-control techniques are those implemented early in the life of the well before sand production becomes a problem. These techniques are carried out before the onset of water production or before formation damage occurs from formation disturbance or subsidence. High production rates cause excessive stress on weakly consolidated formations and exceed the capability of the cement material to bond the sand grains together. Once sand is produced as a result of formation damage, effective sand–control methods become more difficult and harder to justify. Marginal wells producing sand with poor reserves may not support the cost of a major workover program. Remedial options include sand bailing with wireline and sand washing with coiled tubing, but these only provide temporary solutions to sand production problems.

2.2 The Classification and the Types of Sand Production

The classification of field measurements of sand production is considered an essential part of sand prediction as it defines the situation assessed. The term sand production envelops a wide range of phenomena. A classification is developed, based on field observations, to allow for a better comparison and interpretation of sand production events. Subsequently, changes in the downhole producing geometry are considered on the basis of the cumulative sand volumes produced.

2.2.1 Transient Sand Production

Transient sand production refers to a sand concentration declining with time under constant well production conditions [3]. This phenomenon is frequently observed during clean-up after perforating or acidizing, after bean-up and after water breakthrough. The sand concentration, the cumulative sand volume and the decline period vary considerably. Fig. 1.1 shows three field examples with a sand volume between 1 and 200 L and a decline period between 1 and 500 hrs.

Figure 2.1: Transient sand production

2.2.2 Continous Sand Production

In a great number of fields, continuous levels of sand production are observed. The acceptable sand concentration depends on operational constraints with regard to erosion, separator capacity, sand disposal, artificial lift, well location. Typical tolerated sand cut levels are 6-6006g/m (2.1-210 pptb) in oil producers and 16 kg/l m (1 lb/MMscf) in gas producers [4]. The latter surface sand concentration is equivalent to a downhole sand concentration of about 4 g/m (1.5 pptb) (3900 m reservoir gas equivalent to106 m3 surface gas). Much higher acceptable sand cut levels of the order of 28,000 g/m (10,000 pptb) have also been reported [5, 6].

Part of the continuously produced sand settles inside the wellbore and increases the hold-up depth. Depending on the lifting capacity of the fluid flow and the sand concentration (part of) the (perforated) producing interval may eventually be blocked. Normal production is (temporarily) restored after wellbore clean-out. The volume of sand settling in the hole depends on the well design but can be several m³.

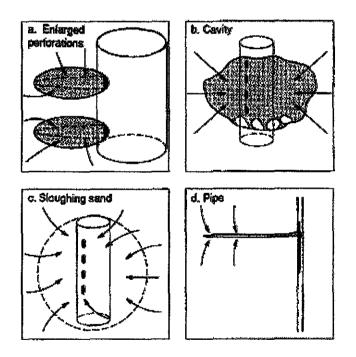


Figure 2.2: Sand production - downhole situation

2.3 Methods Selection

To restore production from the well, current economic realities favored through tubing intervention. Two major types of through remedial sand control solutions were considered namely mechanical and sand control solutions were considered namely mechanical and screen- less (chemical consolidation) methods. A proprietary HDR squeeze pack technique (mechanical method) was identified as the best solution that meets post intervention production requirements and also affords completion longevity.

2.3.1 Mechanical Methods

Enhanced Gravel Pack Technique

According to Yahaya I.O (2009)

Mechanical methods of through- tubing sand control involve the use of gravel pack screens design to be deployed through tubing, then set inside tubing, casing, or even another larger gravel- pack screen. In addition to the use of screens, a sand medium is often used to help keep the formation sand in place. The method is employed mostly for the following reasons:

- i. Cost efficiency- the operation does not require a workover rig since the screen assembly can be deployed with standard coiled tubing equipment or wireline and the well returned to production faster.
- ii. Effectiveness- sand production is controlled allowing production to match previous rate or better.
- iii. Quick intervention- operation could be accomplished quickly without impacting existing well completion jewelry or deferred production in dual completion.
- iv. Maintenance costs- maintenance costs associated with surface and downhole equipment due to sand production are now eliminated.

The HDR Squeeze Pack can be completed using various types of screens and packers and is available for various tubing sizes. The HDR tool design allows a squeeze pack to be performed with high rate and high density slurry pumped from surface, yet dependable mechanical isolation on the annulus when completed. Deployment system was a combination of a number of wireline and coil tubing runs.

System components from bottom to top are:

- Bull plug
- Screen assembly
- Flow diversion valve
- Blank pipes
- Polished nipple for HDR
- HDR vent top assembly
- Sealing overshot
- Top packer

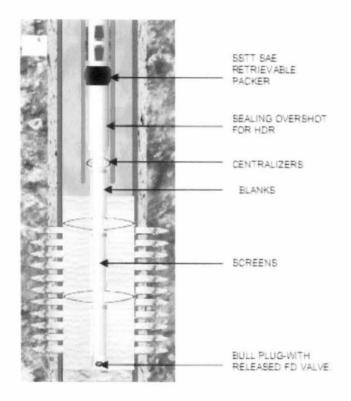


Figure 2.3: System Component of Gravel Pack

Stand- Alone Screen

Stand- Alone Screen (SAS) may be preferred because of their lower cost. Historically, SAS are used when there is a good chance of gravel pack failure due to incomplete packing with void pockets. SAS may effectively minimize the sand production. However, they have smaller inflow area, which may cause productivity decline. Also, SAS are vulnerable to being plugged by drilling mud cake, formation sand and fine particles. Preventing/ removing the damage to SAS may be the key to maximizing the well productivity. Screens may be partially or completely plugged. Localized partial plugging creates higher flow velocities at non-plugged screen sections, which in turn may initiate screen erosion. Several experimental studies have been dedicated to characterizing the damage to the screen. In several field applications where the screens were the preferred completion method, sharp declines in well productivity were reported after relatively short production periods. Therefore, the most widely used of SAS in the industry was *Stratapac* and *Stratacoil*

The screens were installed using through tubing operation at the onset of sand production, either due to gravel pack failure or where no sand control were installed previously. However it was reported in all cases, the Stratapac installations have reduced production rates after installation despite successfully preventing excessive sand production. Most of the wells were beaned-up but gross production had dropped significant compared to production prior to the installation. Screens that were pulled out of hole had shown evidence of plugging from wax and fines. Plugging due to wax is expected to be more serious in Tukau due to the high wax content of most of the Tukau crude

Stratacoil thru- tubing (TT) screens are designed for optimal flow distribution. The porous metal fiber (PMF) media, which consist of metal fibers sintered between two layers of woven wire mesh, make these screens ideal for controlling non-uniform sands. PMF media's engineered pore structure forms a specific range of pore sizes with an extremely high pore volume. *Stratacoil* screens also provide superior damage tolerance. The strength and flexibility of the PMF media better resist the crushing forces of compacting reservoirs and provide longer- lasting, more reliable sand control.

The design of Stratacoil screens advantages in the following applications:

- a) Coiled-tubing gravel packs
- b) Damaged gravel- packed screen repair
- c) Marginal reservoirs requiring minimal investment
- d) Compacting reservoirs.

Expandable Sand Screen

Expandable sand screen (ESS) is a relatively new sand control system, which combines many of the properties of gravel packs with the ease of installation of a stand- alone screen. Although they have been used in a wide variety of applications, they are not considered a panacea and have an operational envelope, which is clearer with time.

The productivity performance of the ESS has been shown to be very good, with an average skin on 0.3 being achieved in recent openhole applications. ESS completions generally perform better than the baseline models. Where field comparisons were possible, they also performed better than alternative sand control completions.

The frac- pac technique was chosen for its capability to provide stimulation in addition to its capability to reliability mitigate sand production, as shown by conventional internal gravel pack (IGPs). Some stand- alone (SAS) and expendable sand screen (ESS) in Tukau experienced severe screen plugging and sand production, especially in open hole completions. In one ESS completion, mechanical failure was experienced during initial installation.

Several advantages and benefits associated with frac packs are as follows:

- Enlarged wellbore area. The wellbore area is connected to the reservoir with a
 highly conductive fracture, increasing the effective inflow and drainage area.
- Connects multiple sand layers. Typical formation sands in the Baram Delta area are lamintaed, with thin shale streaks. Good connectivity can e achieved by creating a propped fracture adjacent to stratighraphy pay.

- iii. Reduced drawdown. Can flow at similar rates but at lower drawdown pressure because of good conductivity within the wellbore. Reduces production flow velocities and minimizes the risks of fine migration.
- iv. Bypass near-wellbore damage. Connects to the virgin reservoir reservoir beyond the damaged region thriugh a proppant- packed fracture. This could be over 50-ft fracture length.

2.3.2 Chemical Method (Sand Consolidation Technique)

In Figure 2.2, a simplified, schematic reaction pattern of the organosilane is given. The organosilane chemicals will react with water and hydrolyze. The chemical will then react with the hydroxyl groups on the surface of the silica sand. The molecules can also react with each other to form a network. The degree of consolidation achieved will vary with the concentration and possibly the volume of the chemical injected. The chemical is hydrophobic in nature and can be mixed in a hydrocarbon phase, preferentially diesel. The treatment package can be bullheaded in the well. The package consists of a pre-flush consisting of a hydrocarbon phase, the main chemical pill in hydrocarbon phase and a post-flush placement volume. Usually the pre- and post-flush is the same fluid as the mixing fluid for the chemical.

A simplified concept of the organosilane administration is shown in Figure 2.3. The organosilanes have the advantage that they are oil-soluble and the reaction is induced by water. This is why a hydrocarbon preflush is used to establish Swi or to reduce the water saturation in the near wellbore area. In this way, the organosilanes will not be able to react before the chemical is placed in, or reaches, the porous matrix. The objective is to get the organosilane to react with the irreducible water around the sand grains and not in the bulk volume in the porous matrix.

The polymerized organosilane network will increase the residual strength of the failed formation in the near wellbore. The stabilized sand matrix can therefore withstand higher hydrodynamic forces from the fluid flow and thereby prevent the erosion and transport of sand grains into the wellbore and possibly all the way to the process facilities top-side. A bi-product of the chemical reaction between the organosilane and the water is an alcohol. During start-up of a well after a sand consolidation treatment samples can be taken at the flowline and analyzed for alcohol. Furthermore, in order to calculate a mass balance on pumped and returned chemical, Si in both the oil- and water phase can be analyzed in the return. The chemistry and details regarding the chemical can be found in other publications [7, 8].

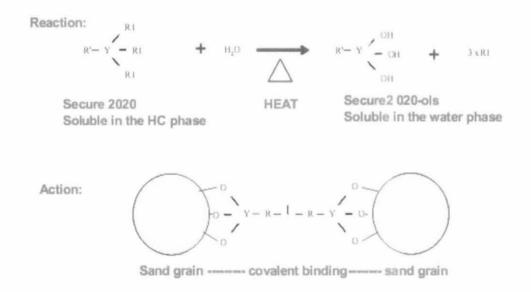


Figure 2.4: Simplified schematic reaction pattern of the organosilane

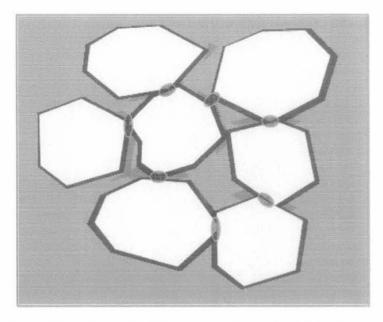


Figure 2.5: Concept of the organosilane administration

2.4 The Important Factors of Through Tubing Sand Control

2.4.1 Wash Pipe Size

One of the important considerations of all sand control done with either squeeze or circulation gravel packs is to keep the flow of slurry to the area on the outside of the screen. In order to ensure that the preferred flow path is in the casing and screen annulus instead of the screen, a wash pipe is usually placed inside of the screen to decrease the area open to flow on the inside of the screen. Figure 3.1 shows these two flow areas.

Under normal circumstances the wash pipe is sized such that the OD of the wash pipe is approximately 80 percent of the ID of the screen base pipe. A list of the most common wash pipe size used with each different screen size is given in Table 3. As long as the diameter of the OD of the screen is at least one inch less than the diameter of the ID of the pipe it is placed inside, this 80 percent guideline gives a larger area open to flow outside of the screen than inside of the screen [9].

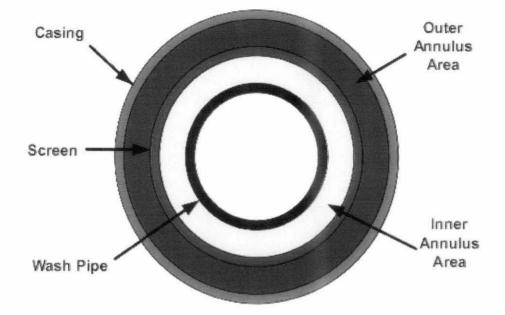


Figure 2.6: Drawing of flow areas for fluid flow during sand transport.

Screen Base Pipe Size, inches	Wash Pipe Size, inches
2.375	1.315
2.875	1.900
3.500	2.375
4.000	2.875
4.500	2.875
5.000	3.500
5.500	4.000
6.675	4.500

Table 2.1: Common Wash Pipe Sizes.

Screen Base Pipe Size,	Wash Pipe Size,
inches	inches
2.375	1.315
2.875	1.900
3.500	2.375
4.000	2.875
4.500	3.500
5.000	4.000
5.500	4.500
6.675	5.500

Table 2.2: Recommended Wash Pipe Sizes.

2.4.2 Wellbore Deviation

With low viscosity fluid systems the placement of gravel inside of the wellbore is controlled by the fluid velocity and by gravity. As long as the fluid velocity is below the critical transport velocity for sand particles in the slurry, the controlling factor for gravel placement is gravity itself. For vertical wells or wells with wellbore deviation less than 55 degrees, this means that any sand particles placed in the screen/ casing annulus will simply fall to the bottom of the wellbore.

However in wellbores with small clearances on the outside of the screen, it takes only a few sand grain thickness to cause a bridge in the annulus. Once this bridge starts, it can perpetuate itself up the wellbore and around the outside of the screen. So for wells with deviations other than vertical, it is recommended that the screen be centralized to minimize the chance of this bridge starting to form.

2.4.3 Sand Concentration

The concentration of sand in the gravel slurry also has an effect on the likelihood of bridging to occur in the screen annulus. In the tests that were conducted, the sand concentration was varied between 1.0 ppa and 0.25ppa.

At the higher sand concentrations in deviated wells, the higher concentrations of sand caused some duning of the sand along the bottom of the wellbore. This duning causes extra friction of the sand particles and further decreases the effects of gravity on their movement to the bottom of the wellbore. This allows other particles to accumulate and soon a bridge starts along the low side.

2.4.4 Flow Rates

There are two flow rates that can be controlled during any circulation gravel pack: pump rate going down the tubing and the amount of flow that is returned back at the surface. However, the amount of flow that enters the perforations can also be critical to the success of the completion.

One of the critical factors for high productivity in any cased hole sand control operation is being able to effectively place sufficient high permeability gravel pack sand into each formation sand. To accomplish his objective, it is critical to get sufficient flow of slurry into the perforation tunnel to carry the sand particles. A good general guideline to follow for this flow rate is to allow at least 0.2 gallons per minute of slurry leak off into each perforation.

2.4.5 Turbulence

Another factor that was observed during simulator testing was the effect of turbulence on sand hold- up, particularly at the bottom of the wellbore and at couplings. In regions at the end of the screen and wash pipe, there were portions of the wellbore where there is virtually no fluid movement. The fluid flow just above these 'dead' regions creates a turbulent effect. This effect is really magnified in situations with the small clearances.

The sand would tend to be suspended by this turbulence and would accumulate in the small annular area. Eventually, the amount of sand being kept in this turbulent area would start to bridge. Once this occurred, the bridge would rapidly expand and would encircle the entire screen. Once this happened, the bridge would continue up the wellbore, leaving an area at the bottom with incomplete sand pack. Once the gravel placement was completed, the sand would redistribute itself to fill these voids. This situation should always be avoided because it will lead to possible screen erosion or screen plugging when the well is placed on production.

CHAPTER 3

METHODOLOGY

3.1 Project Procedure

FIRST SEMESTER Perform Literature Review

- Understand the fundamentals of Tukau field and its rock formations.
- Understand grain size distribution and perform preliminary screening
- Study the various types of sand control method for cased hole completion
- · Research on petrology and mineralogy analysis.
- · Identify important parameters from Sensitivity Analysis

SECOND SEMESTER

Model Case Study

- Stimulate and construct well model performance of Tukau Field
- Conduct sensitivity analysis to determine the effect of varying injection rate strategies, prediction of skin, reservoir rock properties, the value of productivity index and well deliverability.
- Propose the best sand control method for Tukau Field based on the analysis
- · Identify important parameters for Sensitivity Analysis

Final Report write up and Oral Presentation

3.2 Project Process Flow

3.2.1 Diagnostics

Diagnostic production data is an important step that should be taken seriously before we want to analyze any production data. This vital step is just like pre-analysis and pre-modeling to ensure the data that to be analyzed is in good quality, consistent and complete. Hence, the meaningful result can be obtained. However, if the quality of the data is questionable, inconsistent, and poor quality, the production analysis data method should be used with caution. This process ensures that errors in each step are identified and minimized before proceeding. The matching technique also highlights inconsistencies in the input. If this systematic approach is not applied, there is no way to identify the source of possible errors in the final result.

By ensuring that well models are matched to historical data, the quality of forward prediction is enhanced. The accuracy of any prediction cannot be guaranteed under all circumstances, but a minimum requirement is that model can reproduce current observed conditions.

3.2.2 PVT data input and Analysis

The next method is interpretation and analysis of the production data. This is the part that this project focusing on. The modeling options are first established. This sets up the data input screens so that only the data required for the problem need be entered. The author is then guided through the steps of entering PVT data. Since all subsequent steps use the PVT data in some form or other it is essential that the PVT model is accurate.

3.2.3 Modeling and History Matching

The next steps (Equipment and IPR) can then be approached in the knowledge that potential errors in the PVT have already be identified and minimized. In the matching module, VLP correlations are adjusted so that measured bottom hole pressures can be reproduced by the model. The IPR can also be adjusted so that the measured bottomhole flowing pressures can be reproduced by working from both the surface and reservoir pressures.

3.2.4 Analyzing Result

After all the analysis, interpretation and the modeling had done, the result will be analyzed to make decision either the well is needed to be stimulated or not. It depends on the parameter that come out from the analysis, which are skin damage, permeability, and also the reserves to make sure the stimulation jobs are economical to be done.

3.3 Tool

The tool used in this project is PROSPER software provided by Petroleum Experts toolkit is designed to build and study a complete integrated modeling aspect. PROSPER has been designed to approach a system analysis application in a systematic and efficient manner. By ensuring that well models are matched to historical data, the quality of forward prediction is enhanced. Basically, the output of the modeling is to construct a well model performance in order to see the effect of PI value, prediction of skin, and the production rate from different techniques.

3.4 Gantt Chart/ Key Milestone of Project

						PRO	POSI	EDG	ENE	RAL	GAN	TTC	HAR	TFO	RFIN	AL	EAF	RPRO	DJEC	т													
	NO	DETAIL/WEEK	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	1	2	3	4	5	6	7	1	3	9 10	11	12	13	14	15 16
	1	Selection of project topic															_	_															
[2	Preliminary research work			F	PART	1																										
	3	Submission of preliminary report					X																										
11	4	Project work					P	ART	1				PAR	RT 2,	3, 4	& 5																	
Sem	5	Submission of progress report									X																						
	6	Seminar (compulsory)								ak	X														1	ак							
	7	Submission of interim report final draft								Bre							X									Bre							
	8	Oral presentation								E								x								E							
	10	Project work continues								Midse											PAR	RT 5,	6,7			Midse			PAR	8			
	11	Submission of progress report 1								Σ											X					Σ							
	13	Submission of progress report 2		1]														_			K						
m2	14	Seminar (compulsory)																								3	ĸ						
Sei	16	Poster exhibition																										X					
	17	Submission of dessertation final draft]																						X	
-	18	Oral presentation																															X
	19	Submission of dessertation (hard bound)																															X

CHAPTER 4

RESULTS AND DISCUSSION

4.0 Reviews on Field Background

The Tukau field was discovered in 1966 by the appraisal well TK-2. First oil was produced in August 1975. The current PSC is valid for the period 2003-2018. PCSB is the operator with 60% participation and the balance 40% by Shell.

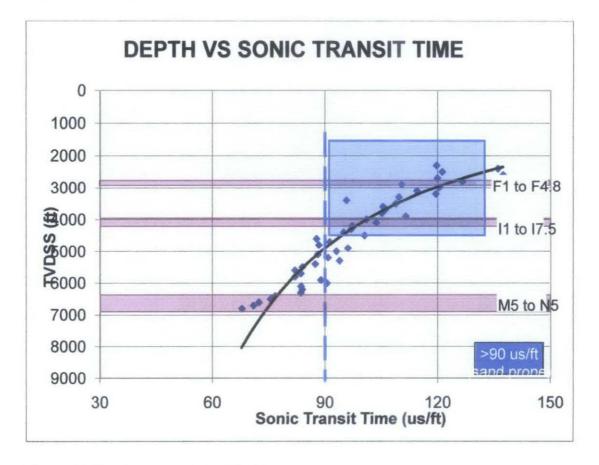
The Tukau structure is a north-south elongated anticline dissected by a system of WNW-ESE trending synthetic/antithetic normal faults at the shallow levels and complicated by growth faults at deeper levels. The major hydrocarbon accumulations are between 2400 ft ss and 7500 ft ss in the E,F,I,J and N sands. Oil columns range from 10 to 150 ft. The main prospective sequence consists of fine to very fine grained sand of the Upper Cycle V of late Miocene age, deposited in a deltaic, fluviomarine, coastal and near-shore environment.

Most reservoirs are characterized as moderate to strong water drive with varying amounts of energy from gas cap expansion. Recovery factors range from around 11% to almost 100%, based on historic volumetric STOIIP estimates. Based on the new geologic interpretation and correlations many oil-bearing sands have not been perforated.

The Tukau field consists of unconsolidated reservoirs which require active sand control. Conventional Internal Gravel Packed (IGP) technique has been widely applied as it has provided a reliable means of abating sand production. These completions however, have shown high skins (>15) which had increase with time due to fines migration into the packed area especially with the advent of water production. In many cases, flow efficiencies were reduced by 70% and this had severely affected well performances with aging.

Stand Alone Screens (SAS) and Expandable Sand Screens (ESS) had also been applied in some fields with mixed success especially for high angle or horizontal wells. Experience gathered from these previous sand control measures coupled with the emergence of improved design and production of SAS has enabled a shift in our sand control philosophy.

Proper sizing of the screen slot size is critical to ensure that screens are not plugged as commonly experienced in SAS applications. Annular flow was minimized by running constrictors suitably placed with the screen assembly. Finally, strict enforcement of slow bean-up policy during the initial production of the new wells has maintained the screen's integrity in the wells completed so far.


This project is to investigate the impact of stimulation strategy on the improved well performance, examined the different sand control methods by looking at several parameters.

4.1 Sonic Log Cut off

Most of Tukau wells completed in the shallower reservoir such as D, E, F, G, H, I, J, and K were completed with sand control. The sonic transit times above this level is above 90 usec/ft are considered unconsolidated. The SW Ampa SPADE study has been applied to Tukau which uses the sonic transit time (dT) of 90 microseconds per foot as the boundary of sand consolidation, i.e., when dT was lower than 90 us/ft, the formation was considered consolidated and sand control installation was not recommended. The sonic transit time versus depth plot suggested that formations shallower than 5300ft TVD would be unconsolidated, and therefore 5300 ft had been used as cut-off depth for sand control exclusion.

This cut- off criteria is further confirmed where sand failure was observed in the shallower reservoirs that were completed conventionally i.e. without sand control. TK-46L was completed in reservoir 2-J2.0/J6.0 without sand control due to operational problems and experienced sand failure soon after it came to production. TK-54L completed in reservoir 1A-H2/H3 reservoirs without sand control (zone was perforated through tubing) showed sand failure and Stratapac had to be installed in order to produce the well. Another well, TK-15 (1-F6/G1) that was treated with Eposand also reported sand failure.

Wells which were completed in the deeper reservoirs i.e L, N, and O completed conventionally without sand control. Excessive sand production was reported in TK-53L (1-L2/L3 reservoirs) later in production life where stratacoil was installed to control sand. Sand failures were also reported in TK-9, 10 and 29L in earlier reviews but data could not be found to support omservation. No other sand failure were reported in the deeper sands. This observation leads to question of the validity of a single cut-off depth as the sand control area.

Basically, if sonic transit more than 90us/ft, there is a tendency to have sand prone. From the graph of sonic transit time, we can see that the transition time between 90us/ft. Normally, between this transition some of the wells are using other than internal gravel pack (IGP) since mostly of Tukau wells used EHGP.

4.2 Data Gathering and Sand Analysis

There are several case studies had been selected to be analyzed by using modern production analysis are presented. The objective is to analyze this well is to see the effect of performance for different method based on the value of Productivity Index (PI), production rate and skin value and to determine whether a remedial stimulation could increase production.

4.2.1 Well history

In order to get a good overview of all well data relevant for surveillance, optimization and well intervention purposes, well histories have been compiled for all producing wells. Information was as much as possible retrieved from its original source. Based on these a written section on the well's history covering drilling and completion, production trends and well interventions such as stimulations and zone changes were developed. The information from well history is important due to latest well performance is reviewed and potential opportunities and data acquisition requirements are highlighted.

4.2.2 Wellbore Diagram

Wellbore diagrams have been stated using tubing tallies (components and depth), completion and perforation reports and wireline reports (status of SSD open/ closed, screens, plugs, insert strings). From this report we can see the depth of perforation and the allocation of each valve. This is important when we want to key in the data in deviation survey.

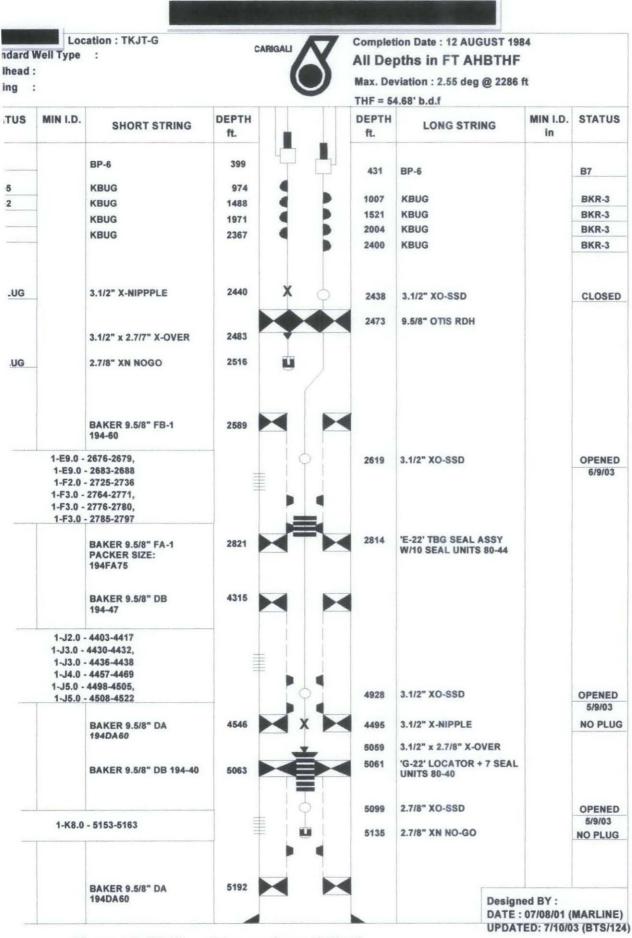


Figure 4.2: Wellbore Diagram for well TK-X.

4.2.3 PVT Data

In order to see the reservoir properties of the well, we need PVT data to proceed with further analysis. From Black Oil PVT data we could see the value of GOR, oil gravity, gas gravity and water salinity.

4.2.4 Well Deviation Data

Basically, well deviation data is important to get the measured depth (MDT) and true vertical depth (TVD) data.

TK-X		TK-Y	
MD	TVD	MD	TVD
0.0	0.0	0.0	0.0
500.0	500.0	400.0	400.0
900.0	899.9	700.0	699.4
1300.0	1299.9	1000.0	999.2
1700.0	1699.9	1300.0	1298.3
2100.0	2099.9	1600.0	1595.5
2500.0	2499.9	1900.0	1891.8
2900.0	2899.9	2200.0	2180.8
3300.0	3299.9	2500.0	2457.4
3700.0	3699.8	2800.0	2721.2
4100.0	4099.8	3100.0	2978.1
4500.0	4499.7	3400.0	3246.1
4900.0	4899.7	3700.0	3514.8
5300.0	5299.4	4000.0	3785.3
5700.0	5699.2	4300.0	4061.1
6100.0	6099.1	4600.0	4336.4
6500.0	6499.1	4874.0	4589.0
6700.0	6699.1	4966.0	4674.9
6883.0	6882.1	5150.0	4847.6
7003.0	7002.1	5217.0	4910.6

Table 4.1: Well Deviation Data for TK-X

4.2.4 Well Test Data

A review of the production history can be performed using basic plots of oil, water and gas production, water- cut and cumulative production. These decline curve analyses were done at both the reservoir and the well level. This overview helps in understanding of how the field was historically developed and may identify significant events or anomalies. The production performance trends were heavily relied on estimating future additional production for successful inflow enhancement (stimulation).

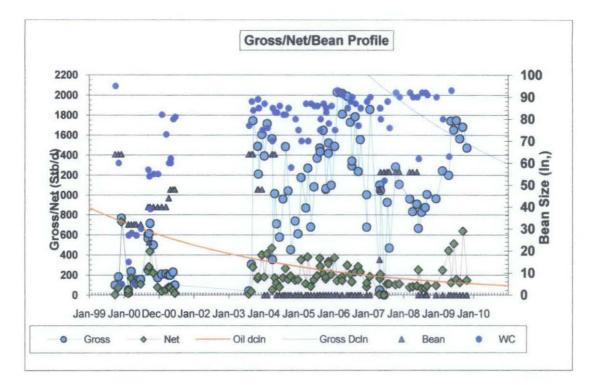


Figure 4.3: Well Test Data Based on Certain Parameters

4.3 Construction of Enhanced Gravel Pack Model

Step by step of model construction is made through the example. There is no exact model that can be used as reference for the real model. Therefore trial and error of the example need to be done by changing the parameter and the dimension. The construction of the model started with the 1 dimensional model of sand control to identify the keywords used.

Enhanced gravel-pack techniques apply fracturing technology to soft, high permeability formations requiring sand control. Traditionally, propped fracturing was applied to low permeability, hard rock formations where the goal was to create fracture-length dimensions to provide a conductive path for production. With the advent of tip-screen-out fracture designs, fracture length is arrested, and fracture inflation occurs, achieving significantly higher fracture conductivities that are in the order of 10s of thousands of md-ft. This allows the fracturing application envelope to be expanded to include higher permeability formations where achieving fracture width and near-wellbore conductivity is paramount. Since high permeability formations where sand exclusion treatments are necessary might sustain damage during the drilling and completion operations, a short, propped, highly-conductive fracture can produce wells with higher productivity and reduced skin values.

Criteria	Internal Gravel Pack (IGP)	Stand –Alone Screen (SAS)	
°API	22.8	29	
Viscosity, cp	2.9	0.41	
Oil Gradient (psi/ft)	0.372	0.29	
Gas Gradient (psi/ft)	0.026	0.023	
Porosity (%)	21-30	25	
Average Permeability (mD)	10-800	640	
Datum Depth (ft.ss)	2795	5772	
Average Reservoir Temperature	140-200	119	
Bgi(rb/Mscf)	2.254	2.345	
GOR	600	600	
Water Cut (%)	90	70	

4.3.1 Screening of Diffrent Methods

Table 4.2: Parameters of Both Methods

Based on the screening criteria to the Tukau field, studies on the sand control method should be further embark. Studies will be conducted referring to the mechanics of sand control mentioned in the literature review.

Well model performance on the Tukau field reservoir will be constructed after the author has undergone the training on using the PROPER 7.1. The training will be on using the stimulation in PROSPER and identifying the effects of well performance based on certain parameters.

The parameters identified are on prediction on skins, the production rates, and the value of productivity index (PI). Author is currently doing sample model by using the keywords before implementing to Tukau stimulation model.

4.3.2 Analysis Procedure in PROSPER Model

Step 1: Key in the system summary

The first step is to key in the data to the software to be loaded into the program. In the step, we have to make sure the unit used in the data is correct. From this option summary, the author can select which method will be used in the well model construction.

Done	Cancel Report Export	Help	Datestamp				
Fluid Description			Calculation Type				
Fluid	Dilland Water	•	Predict	Pressure and Temperature (offshore)			
Method	Black Oil	*	Model	Rough Approximation	*		
			Range	Full System	4 4 4 4		
Separator	Single-Stage Separator	*	Output	Output Show calculating data			
Emulsions	No	-	AND NO.				
Hydrates	Disable Warning	*					
Water Viscosity	Use Default Correlation	*					
Viscosity Model	Newtonian Fluid	*					
Vell			Well Completion				
Flow Type	Tubing Flow	•	Туре	Cased Hole	*		
Well Type	Producer	*	Sand Control	Wire Wrapped Screen	*		
			Reservoir				
utificial Lift			(ICOCIYUN				
utificial Lift Method	Gas Lift (Continuous)	*		Single Branch	-		
Method		*					
Method Type	and the second sec		Inflow Type Gas Coning	No			
Method Type Iser information	and the second sec		Gas Coning	No	-		
Method Type Iset information	No Friction Loss In Annulus		Inflow Type Gas Coning Comments [Cntl-E Analysis for TK-10	No nter for new line) SL Add Perforation.	1		
Method Type Iset information Company	No Friction Loss In Annulus PCSB		Inflow Type Gas Coning Comments [Cntl-E Analysis for TK-10	No	1		
Method Type Iser information Company Field	No Friction Loss In Annulus PCSB Tukau		Inflow Type Gas Coning Comments [Cntl-E Analysis for TK-10	No nter for new line) SL Add Perforation.	1		
Method Type Iser information Company Field Location Well	No Friction Loss In Annulus PCSB Tukau BDO		Inflow Type Gas Coning Comments [Cntl-E Analysis for TK-10	No nter for new line) SL Add Perforation.	1		
Type Jset information Company Field Location Well	No Friction Loss In Annulus PCSB Tukau BDO TK-16ST1		Inflow Type Gas Coning Comments [Cntl-E Analysis for TK-10	No nter for new line) SL Add Perforation.			

Figure 4.4: Summary Data of TK-Y

Step 2: Input PVT Data

Enter parameters data as listed at the beginning of this section. Solution GOR, oil gravity, gas gravity and water salinity are the minimum data required to be able to continue with the analysis.

Use Tables		Export	PVT #	MATCHED	
Input Parameters		1.1	Correlations		
Solution GOR	600	sci/ST8	Pb, Rs, Bo	Standing	<u>•</u>
Oil Gravity	29	API	Oil Viscosity	Beggs et al	•
Gas Gravity	0.65	sp. gravity			
or de la faith thy		The constraints			
Water Salinity	2	pprin			
Water Salinity	15000	ppm			
Water Salinity Impurities Mole Percent H2S	15000	pprin percent			
Water Salinity	15000 0 0	ppm			

Figure 4.5: PVT Matching Data

Step 2: Select Reservoir Model

By using this software, it is recommended to select the better reservoir model based on sand control method being used. This is because to optimize the efficiency of this software for analysis purposes and history matching.

Done Validate Cancel Reset Help			Transfer Data	Sand F	abare		Stable (M
fodel and Global Variable Sel	lection						
Reserves	Model	1	Mechanical / Geometrical Skin D			Pathel Periotiabon Skins	
Pt Entry Vogel Composite		Loci	Locke			-Biona	
Hydraulically Fractured Well Horizontal Well - No Flow Bou Horizontal Well - Constant Pre MultiLayer Reservoir Enternal Entro			n	eservair Pressus	• [1620	- 100	
Horizontal Well - dP Friction L	oss in WellBore		Fieter	ryoli 7 emperatur	e 155	dep F	
MultiLayer - dP Loss In WellEr SkinAlde (ELF)	UND.			Water Cu	# 70	personal line	
Dual Poronity Horizontal Well - Teansverse V	Instituted Franklaution			TURN GO		HT/578	
SPOT		0	ompaction Permestality		and the second se	*	
			Ret	alive Permeabilit	No .	¥.	

Figure 4.6: Reservoir Model of IPR.

Step 4: Importing data

The next step is to import the production data of deviation survey to the software to be loaded into the program. In the step, we have to make sure the unit used in the data is correct.

~		Main Help		Filter	
Data					
	Measured Depth	True Vertical Depth	Cumulative Displacement	Angle	
1	(feet)	(feet)	[feet]	[degrees]	
		0	0	0	
44	5.3	445.3	0	0	
84	5.3	845.3	0	0	
12	45.3	1245.3	0	0	
16	45.3	1645.2	8.94371	1.2812	
20	45.3	2045.2	8.94371	0	
24	45.3	2445.2	8.94373	2.6999e-6	
28	45.3	2845.2	8.94373	0	
32	45.3	3245.2	8.94373	0	
36	45.3	3645.2	8.94373	0	
40	45.3	4045.1	17.8874	1.2812	
44	45.3	4445.1	0	0	
48	45.3	4845	8.94371	1.2812	
52	45.3	5244.7	24.4327	2.21919	
56	45.3	5644.5	37.0803	1.81193	
60	45.3	6044.5	37.0803	0	
64	45.3	6444.4	46.024	1.2812	
66	45.3	6644.4	46.024	0	
68	28.3	6827.4	46.024	0	
69	48.3	6947.4	46.024	0	
Cul	Paste Inst	ert Delete All	Invert Plot In	Dont Export	

Figure 4.7: Deviation Survey

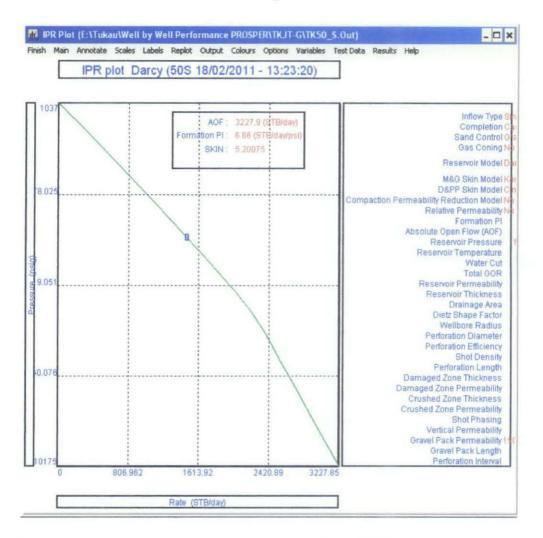
Step 4: Well Model Performance Calculations

This PROSPER software is will calculate the liquid rates and perform Inflow Perform Realtion (IPR) plot and hence the production performance of the well.

Calculate	Plot	Sensitivity	Sensitivity Pv(Report	Export	Options	Done	Main		Lift	Curves	Help
asute						Vari	ables					
	Liquid Flate	Oil Plate	VLP Pressure	(PR Pressure	dP Total Skir		Gast	ift Gas Injection	Rale	256	Huet/	day!
	STERAS	STE/day	preg	pilo.	pii							
11	3.22785	0.32279	357.639	1036.18	0.33114	Solu			-			
	172,809	17,2809	446.234	993.251	17,7817		Sol	ution Details				
2	342.39	34.239	484.815	950.128	35.352			Liquid		1468.4	STB/day	
4	511.971	51,1972	516.628	906,794	53.0556				Rale	88.103	Mecl/da	
5	681.553	68.1553	544.102	863.222	70.9094			08	Flate	146.8	STB/day	
6	851.134	85.1134	and the second second	819.378	88.9345	S ALL I		Water	Flate	1321.5	STB/day	
7	1020.71	102.072	590.732	775.221	107.157		Se	lution Node Pre	disure:	656.58	psig	
								Wellhead Pre	BRADE	150.00	peig	
8	1190.3	119.03	616.476	730.693	125.613		W	elhead Temper	ceture.	141.84	deg F	
9	1359.88	135.988	641.449	685.715	144.347		En	st Node Temps	rolure	141.84	deg E	
10	1529.46	152.946	665.09	640.176	163.423			Tota	Skin	5.60		
11	1699.04	169.904	738.596	593.902	182.932			Total dF	Skin	156.51	10.07	
12	1868.62	186.862		546.599	203.01			dP Fi	liction	17.65	pol	
13	2038.2	203.82	773.945	497.693	223.981			dP G	itovity	485.45	200	
14	2207.78	220.778	790.389	445.682	245.953			dP Sand C	lostro	10.77	pot	
15	2377.36	237.736	806.597	381.504	270.144			Sand Control	Skin	0.39826		
16	2546.95	254.695	870.999	305.7	299.889	1.3		Gravel Pa	ok Ve	0.10749	N/nec	
17	2716.53	271.653	984.63	229.873	345.577							
18	2886.11	288.611	896.632	154.023	392.607			Injection I	Pepth .	2367.0	Jest	
19	3055.69	305.569	908.647	78.1513	440.187							
20	3225.27	322.527	922.188	1.17219	0							

Figure 4.8: Production Performance of Well Modelling.

4.4 Result and Discussion


4.4.1 Comparison between Different Techniques

Internal Gravel Pack (IGP)

1. Karakas and Tariq Mech/Geom Skin Model

Done Cancel Help	Validate Reset	Calculate Plot Test Data	Report Export Sensitivity	Transfer Data	Sand Failure	Select Mod
	Karakas and Tariq	Mech/Geam SI	iin Model			
		law.				
A	eservoir Permeability	and the second se	ad	1 1 1 1 1 1		
	Shot Density Perforation Diameter	2.12 ···································	170 inches	1	1	
	Perforation Diameter Perforation Length		inches	Calculate using API RP43	Calculate using Spot	
-	Perforation Efficiency		Iraction	design the te	and ig open	
	ged Zone Thickness	the second se	inches			
	ed Zone Permeability	-	md			
	hed Zone Thickness	for the second s	inches			
	ed Zone Permeability	2	nid			
Mindelle	Shot Phasing	and the second se	degrees			
12= 11	WelBore Radius		laet	The Mary Lake		
	Vertical Permeability	and the second se	md			

Figure 4.9: Inflow Performance Relation (Geom Skin Model)

2. Inflow Performance Relation Analysis

Figure 4.10: Graph of Inflow Performance Relation (IPR) plot

Calcula	te	Plot	Sensitivity	Sensitivity Pv	D Report	Export Op	tions	Done	Main	Lift	Curves Help
Results							Variabl	85			
	1	Liquid Rate	Ol Rate	VLP Pressure	IPR Pressure	dP Total Skin		Gastift	Gas Injection Rate	256	(Macil/day)
		STB/day	STB/day	pag	paig	gisi	1				
1	1	3.22785	0.32279	191.322	1036.18	0.33114	Solutio		on Details		
	2	172.809	17.2809	205.274	993.251	17.7817	-	50100	Liquid Rate	2590.1	ST8/dav
	3	342.39	34.239	212.139	950.128	35.352			Gas Rate	154.804	Maci/day
	- B	511.971	51.1972	219.229	906.794	53.0556			01 Rate	258.0	ST8/day
		681.553	68.1553	226.001	863.222	70.9094			Water Bale	2322.1	ST0/day
1	6	851.134	85.1134	232.064	819.378	88.9345		Cak	tion Node Pressure	2322.1	
1		1020.71	102.072	237.758	775.221	107.157			Wellhead Pressure	150.00	psig psig
	8	1190.3	119.03	243.276	730.693	125.613			Weineau Messure	152.14	deg F
3	9	1359.88	135.988	248.746	685.715	144.347			Node Temperature	152.14	
1	0	1529.46	152.946	254.23	640.176	163.423		1.0.01	Total Skin	5.62	deg F
1	1	1699.04	169.904	259.776	593.902	182.932			Total dP Skin	307.90	100
1	2	1868.62	186.862	265.414	546.599	203.01			dP Friction	48.84	pai
1	3	2038.2	203.82	271.153	497.693	223.881			dP Gravity	91.13	pai
1	4	2207.78	220.778	277.053	445.682	245.953			dP Sand Control	20.05	pu
-	-11	2377.36	237.736	283.198	381.504	270.144			Sand Control Skin	0.42205	pai
	-11-	2546.95	254.695	289.597	305.7	299.889			Gravel Pack Vo	0.18887	ll/sec
1	7	2716.53	271.653	296.195	229.873	345.577			UISYSL TOUR YO	0.10007	In yes.
	-18	2886.11	288.611	303.576	154.023	392.607			Injection Depth	2367.0	Toet
-	-11	3055.69	305.569	311.439	78.1513	440.187			willeenergine section.	courd	
	-11	3225.27	322.527	319.135	1.17219	0					
-	- 12	•	Transaction and the second	and sectors.							

3. Well Model Production Performance

Figure 4.11: Result of production rate for IGP

4. History Matching Analysis

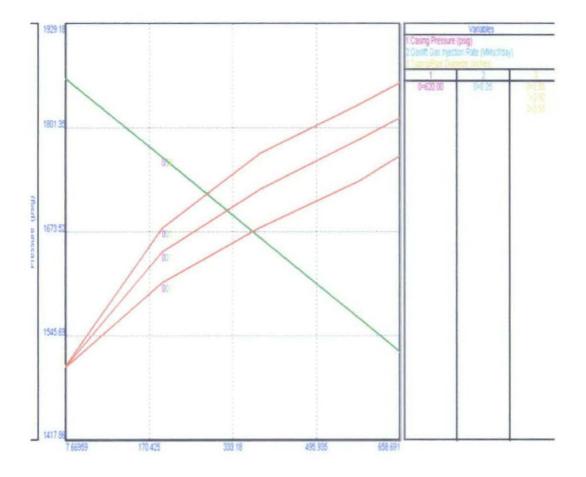


Figure 4.12: Inflow (IPR) versus Outflow (VLP) Curves

Done Cancel Help	Validate Reset	Calculate Plot Test Data	Report Export Sensitivity	Transfer Data	Sand Failure	Select Mode
	Katakas and Tariq	Mech/Geom Si	kin Model			
R	eservoir Permeability	50	md			
	Shot Density	6	1/11			
	Perforation Diameter	0.34	inches	Calculate	Calculate	
	Perforation Length	21.2	inches	using API RP43	using Spot	
Î.	Perforation Efficiency	0.8	(taction)			
Dama	ged Zone Thickness	18	indhes			
Damage	ed Zone Permeability	17	md			
Crust	hed Zone Thickness	0.4	inches	A REAL PROPERTY.		
Crushe	ed Zone Permeability	13	md			
	Shot Phasing	0	degrees			
	WellBore Radius		inches			
	Vertical Permeability	5	md			

1. Karakas and Tariq Mech/Geom Skin Model

Figure 4.13: Inflow Performance Relation (Geom Skin Model)

2. Inflow Performance Relation Analysis

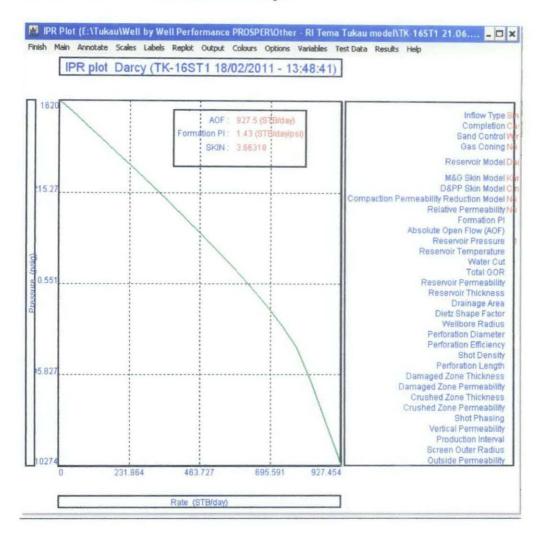


Figure 4.14: Inflow Performance Relation (IPR) plot

Calculate	Plot	Sensitivity	Sensitivity Pv	D Report	Export	Options Done Main	Lin	Curves Help
lesults						Variables		
	Liquid Rate	Oil Rate	VLP Pressure	IPR Pressure	dP Total Skir			
	STB/day	STB/day	puig	pug	[ps]			
1	0.9052	0.8052	701.367	1619.04	0.39767	Solution Solution Details		
2	1.15819	1.15819	639.909	1618.62	0.57247	Liquid Rate	650.3	ST8/day
3	1.66593	1.66593	697.803	1618.01	0.82355	Gas Rate	0.3902	MMsct/day
4	2.39625	2.39625	694.756	1617.14	1.18519	DiRate	650.3	STB/day
4	3.44674	3.44674	690.338	1615.88	1.70483	Water Rate	0	STB/day
67	4.95776	4.95776	683.906	1614.07	2.4538	Solution Node Pressure	493.32	otig
7	7.13119	7.13119	674.488	1611.47	3.53316	Wellhead Pressure	70.00	Dard
8	10.2574	10.2574	660.586	1607.72	5.08851	Wellhead Temperature	102.65	deg F
9	14.7542	14.7542	639.802	1602.31	7.3326	First Node Temperature	102.65	deg F
10	21.2222	21.2222	608.148	1594.5	10.5762	Total Skin	4.46	MoN I
11	30.5258	30.5258	505.271	1583.23	15.2724	Total dP Skin	513.74	psi
12	43.908	43.908	337.61	1566.9	22.0935	dP Friction	11.57	pu
13	63.1568	63.1568	298.904	1543.19	32.0478	d ^P Gravity	410.50	pai.
14	90.8441	90.8441	321.405	1508.58	46.6735	dP Sand Control	57.35	Dai
15	130.669	130.669	352.201	1457.72	68.3981	Sand Control Skin	0.79633	Por
16	187.953	187.953	381.304	1382.11	101.234			
17	270.35	270.35	410.173	1267.52	152.368			
18	388.868	388.868	444.262	1087.52	236.622	Injection Depth	2548.0	Test
19	559.344	559.344	480.041	780.914	394.669	in the second se		
20	804.554	804.554	515.832	5.84281	951			
_								

3. Well Model Production Performance

Figure 4.15: Result of production rate for SAS

4. History Matching Analysis

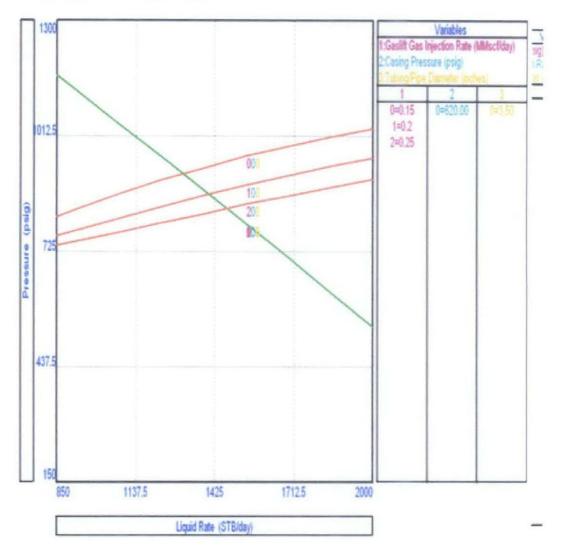


Figure 4.16: Inflow (IPR) versus Outflow (VLP) Curves

Result of both wells:

one Screen (S)
56
43
.50
.30
902
57

Discussion on the result of IGP

From the interpretation and analysis that had been done, as stated in the table above, The production rate for IGP is larger than stand –alone screen (SAS) which means that the techniques of IGP is much better than any other sand control method. From this analysis, the author compared some of the parameter such as skin value, productivity index (PI), liquid rate and friction. As we all know, when the skin is high it may cause less restriction. That is the reason why the production performance IGP is more productive rather than SAS or any other sand control method.

According to the Table 4, that summarizes the result of each method, it indicates the value of PI is 6.66 stb/day/psi. With the high PIs, the well can initially be produced at desired rate with low drawdown so that with some inherent strength in the relatively unconsolidated formation, there would still be no physical movement of the sand. As the reservoir pressure depletes under the scenario of weak to medium aquifer support, the total drawdown could exceed the critical drawdown sanding prediction (CDP) whence at this point there will be sand movement. At this stage, the IGP, properly designed and sized would serve as the active down hole sand control device.

In order to ensure success in the new sand control strategy, changes in well operation was eminence. The wells were drilled with high angles in the reservoir section using specially designed mud (DIF) and well bore clean-up were closely scrutinized especially prior to running the screen assembly. In order to avoid shocking the well bore, the well bean-up during initial production followed strict procedures and close monitoring.

The next parameter that we concern is the liquid rate,q. As shown in the table, by applying the reservoir model of Darcy and history matching we can calculate the the liquid rate which is 2580.10 stb/day. It shows that, by using the technique of IGP, the well could produce higher production rate compared to the other. From both methods, it is clearly indicates that a big number of liquid rate even the values of absolute open flow (AOF) is having a larger different.

Discussion on the result of SAS

In order to maximize the wells productivities in the main reservoir target, I-65 sand, the wells were drilled highly deviated using drill in fluid (DIF) along the I-65 sand. This will ensure that there will be maximum exposure and minimum formation damage to the well bore. The cased IGP option was replaced with properly designed SAS in open hole completions to avoid recurrence of plugging and impairment as seen in the previous IGP installations in Tukau. As no GP solids and damaging fluids were introduced, the SAS option should provide maximum productivity.

However, we should expect movement of the sand at later stage as the reservoir pressure depletes and the SAS should provide an active control, retaining the coarse sand for natural packing. According to the table, the value of PI is 1.43 (stb/day/psi) which is quite different compared to IGP. The PIs are expected to be reduced at this stage and therefore the onus is to delay this situation as long as possible, hopefully assisted by the moderate aquifer support.

For the next parameter which is liquid rate, as shown in the table, the well model by using SAS is only produced 650.30 stb/day. Instead of low production rate, the result also shows that the skin is quite low. Postive sign of skin means that the formation does really need the remedial stimulation plan to improve the production. This direct wire wrapped screens has higher mechanical strength compared to the WWS used in gravel packing operations. As such, the screen and base pipe behave as one unit whereby both end connections and screen jacket will still be intact in tension and compression conditions.

Based on the analysis result, this well is suitable candidate to have stimulation treatment to improve the future production. The declining of the production rate was because of the formation damage. Hence, the stimulation treatment is needed to increase the well performance. For the economic point of view, we have to look at the type of screen and the restriction of the well. This means that the reserve is still high and this well is economical to have a stimulation treatment. According to the resulted permeability, skin factor and type of formation, other sand control techniques should be applied as the appropriate stimulation method.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Based on the results obtained from the case study presented before, it is showing that modern production analysis is a worthy tool to evaluate well performance. In addition, it enables the engineer to choose or select the suitable well candidate for stimulation treatment by seeing the parameters such as PI value and skin factor. However, a perfect match or most accurate match should be done in each method to have a good quality result of interpretation. A big different result from each analysis shows that the match is less accurate. Thus, it has to be careful and pay full attention to make a good match.

As can be seen from the above comparison, it is quite conclusive that IGP completed wells would have higher PI compared to SAS The method of Internal Gravel Pack (IGP) completion has proven to deliver maximum productivity in the new wells completed in the J2-J9 sand. With the much improved PIs, the wells have faster clean up time (within 24 hours) in comparison to SAS well in Tukau. Well production averaging 2000bopd per well is higher that forecasted in the field development (FDP). No sand production has been observed on the surface so far as the current total drowdown pressure has not exceeded CDP and this is supported by the sustained excellent performance of the wells. Therefore, it is concluded that the method of IGP is most effective and be a major contributor for production performance in Tukau field.

44

5.2 Recommendation

Based on this pilot result, it is recommended to seriously considered applications of the new sand control philosophy in other similar reservoirs in Tukau to emphasis on study rock properties, screen design, drive mechanism and grain size distribution. The comparison of any methods would be made using the history matching analysis. By doing this, we can compare certain parameters which will be included in the modeling. IGP should be considered for future wells for bottom zones where zonal isolation is not an issue. More modeling is required to evaluate the benefits of IGP relative to other methods.

REFERENCES

- Jenny Hugget, Petrographic and mineralogical analysis of samples from Tukau and West Lutong Fields, offshore Sarawak, 15 Gladstone Road, Ashtead, Surrey, KT21 2NS, (November 2005).
- 2. Brian Scott, "Selection Process- Sand Control Solutions Weatherford", presented at Petronas Carigali, Well Screen Product Line Manager, (July 13, 2007).
- 3. Risnes, R., Bratli, R.K. and Horsrud, P.: "Sand Arching a Case Study," paper EUR 310 presented at the European Petroleum Conference, Oct.25-28,1982.
- Ghalambor, A., Hayatdavoudi, A., Alcocer, C.F. and Koliba, R.J.: "Predicting Sand Production in U.S. Gulf Coast Gas Wells Producing Free Water," JPT (Dec. 1989) 1336-1343.
- Elkins, L.F., Morton, D. and Blackwell, W.A.: "Experimental Fireflood in a Very Viscous Oil- Unconsolidated Sand Reservoir, S.E. Pauls Valley Field, Oklahoma," paper SPE 4086 presented at the 47th Annual Fall Meeting, San Antonio, Oct. 8-11, 1972.Zapata V. J. and Lake L. W. (1981).
- Phillips, F.L. and Whitt, S.R.: "Success of Openhole Completions in the Northeast Butterfly Field, Southern Oklahoma," paper SPE 11555 presented at the 1983 Production Operation Symposium, Oklahoma City, (Feb.27-March 1).
- Kotlar, H. K., Haavind, F., Torsæter, O., 2005. A New Concept of Chemical Sand Consolidation: From Research Idea to Field Application SPE 95723. Presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, U.S.A., (October 9-11).
- Kotlar, H. K., Haavind, F. Springer, M., Bekkelund, S. S., Moen, A., Torsæter, O., 2006. Encouraging results with a new environmentally acceptable, oil-soluble chemical for sand consolidation. From laboratory experiments to field application SPE 98333. Presented at the 2006 SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, U.S.A., (February 15-17).
- 9. E. Harold Vickey, SPE, Baker Oil Tools, "Through- Tubing Gravel Pack with Small Clearance: The Important Factors", paper presented at the SPE

International Symposium and Exhibition on Formation Damage Control held in Lafayette, Louisiana, (20- 21 February 2002).

- Reslink® (Schlumberger): "Reslink Screen Design Methodology". Manual was taken from Reslink®, Schlumberger. [4] Reslink®, "Evaluation of Slot Opening", Technical Report to PCSB, 9th June 2006.
- PETRONAS Research, "Grain Size Analysis of SWC Samples of TE-A Well", Service Report, July 2005.
- P. Markestad, O. Christie, Aa. Espedal: "Selection of Screen Slot Width to Prevent Plugging and Sand Production", SPE 31087.
- Paper prepared for SPE Formation Damage Control Symposium in LaFayette, USA, 14-15 Feb 1996
- Burton, "Impact of Open Hole Sand Control on Well Performance", presentation at Completions Engineering Association Open Hole Sand Control Symposium, Houstan, texas, November 4-5, 2009.
- 15. Kotlar, H. K., Haavind, F. S. Springer, M., Bekelund, S. S., Moen., Torsaeter,O., 2006. Encouraging results with a new environmentally acceptable, oil- soluble chemical for sand consolidation. From laboratory experiments to field application SPE 98333. Presented at the 2006 SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisina, USA,. (February 15-17)
- Weatherford: ESS Expansion System, Expandable Tubular technology, February 2003.
- 17. E. Harold Vickey, SPE, baker Oil Tool, "Through- Tubing Gravel Pack with Small Clearence: The Important Factors", paper presented at the SPE international Symposium and Exhabition on Formation Damage Control held in Lafayette, Louisiana, (20-21 February 2002).
- 18. Marques, L.C.C. et al,"The 200th Horizontal Openhole Gravel-Packing Operation in Campos basin: A Milestone in the History of Petrobas Completion Practices in Ultradeep Waters", SPE 106364 presented at the Europian Formation Damage Conference, Scheveningen, the Netherland, May 30-June 1, 2007

APPENDICES

Nomenclature

IGP	= internal gravel pack
SAS	= stand alone sand screens
ESS	= expandable sand screens
CDP	= critical drawdown sanding pressure
OH	= open hole
WWS	= wire wrapped sand screens
LPSA	= laser particle size distribution analysis
PST	= production screen tester
PSD	= particle size distribution
FTHP	= flowing tubing head pressure
GOR	= gas oil ratio
PBU	= pressure build up survey
PI	= productivity index
GOC	= gas oil contact
PDG	= permanent downhole gauge

Zones/Depth (ft	D50 (um)	D40	D90	D10	Fine content<44um(%)	UC(D40/D90)	Definition	Lithology
3578	125	150	10	200	35	15	Highly non uniform	SS
3583	150	175	10	250	30	18	Highly non uniform	SS
*Definition: UC=d40/d90								

,

Figure : Dry Sieve and Uniformity Coefficient (UC)

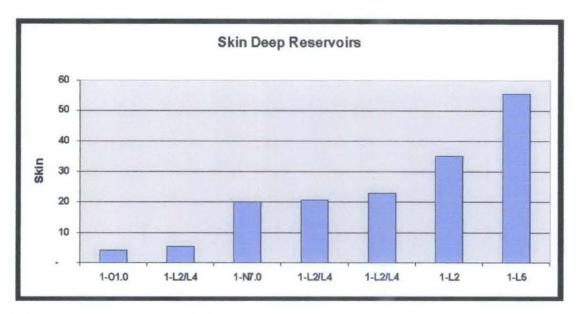


Figure: Prediction of Skin for Deep Reservoirs

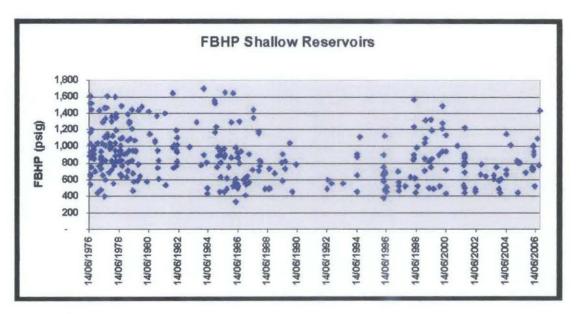


Figure: Flowing Bottom Hole Pressure for Shallow Reservoir

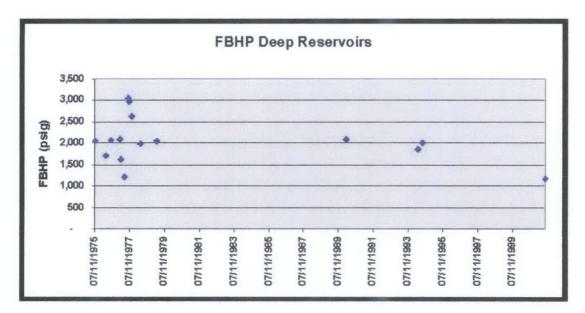


Figure: Flowing Bottom Hole Pressure for Deep Reservoir

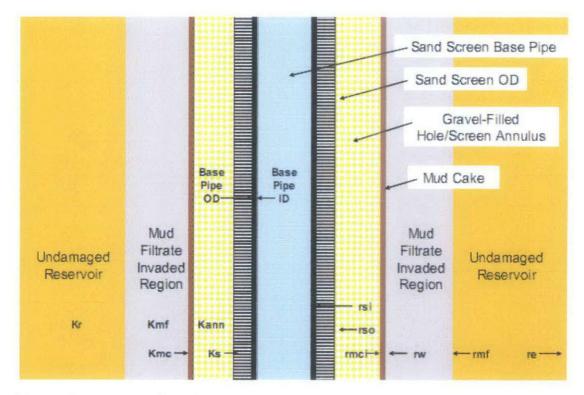


Figure: Gravel packs flow elements.

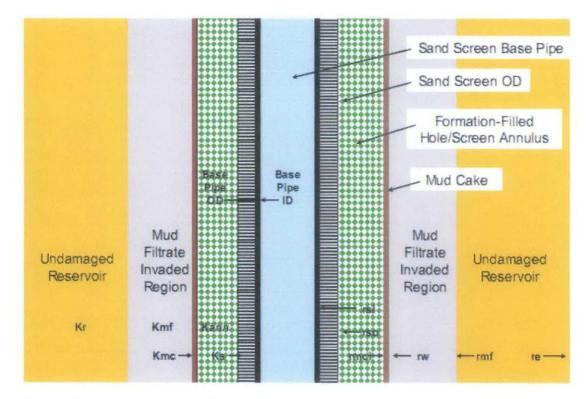
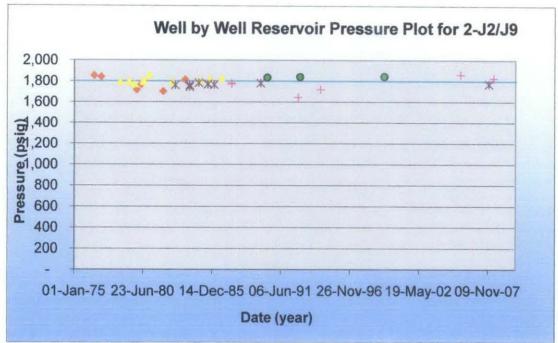



Figure: Stand- Alone Screen flow elements

I Well	Measured		Reservoir Group					Pressure	Remarks
	Pressure	Date	Reservoir	Ave. Pressure	Datum	Delta P	Cutoff	for prosper	
	(psig)		(psig)	(psig)	(FT TVDSS)	(psig)	+- 100 psig	(psig)	
	711	Aug-93	2-D9/E9	750	2570	39		750	Use average due to within 100 psig
	1315	Jul-06	1-H1/H3.5	1325	3280	10		1325	Use average due to within 100 psig
	1103	Apr-08	1-E9/F4.8	1100	2795	3		1100	Use average due to within 100 psig
	1722	May-08	1-17/18	1700	4210	22		1700	Use average due to within 100 psig
	-	-	2-H4.5/H8	1350	3505			1350	Use average due to within 100 psig
	1025	Aug-08	1AB-F6/G5.5	1050	3000	25		1050	Use average due to within 100 psig
8	966	May-08	1AB-F6/G5.5	1050	3000	84		1050	Use average due to within 100 psig
	895	Feb-04	1AB-E6/F4.8	900	2920	5		900	Use average due to within 100 psig
	1116	Aug-03	1AB-F6/G5.5	1050	3000	66		1050	Use average due to within 100 psig
	1097	Jun-05	1-E9/F4.8	1100	2795	3		1100	Use average due to within 100 psig
	1096	Sep-98	1-E9/F4.8	1100	2795	4		1100	Use average due to within 100 psig
	1145	May-06	1-F6/G3	1200	2895	55		1200	Use average due to within 100 psig
	1428	Apr-06	1-H4/H9	1400	3570	28		1400	Use average due to within 100 psig
	1048	Dec-08	1-E9/F4.8	1100	2795	52		1100	Use average due to within 100 psig
	-	-	1AB-E6/F4.8	900	2920			900	Use average due to within 100 psig
	1198	Apr-06	1-F6/G3	1200	2895	2		1200	Use average due to within 100 psig
	1066	Apr-06	1-E9/F4.8	1100	2795	34		1100	Use average due to within 100 psig
	-	-	2-J2/J9	1800	4390			1800	Use average due to within 100 psig
	1276	Mar-09	1-H4/H9	1400	3750	124	use well data	1276	Localised pressure depletion.
	-	-	1-E9/F4.8	1100	2795			1100	Use average due to within 100 psig
	913	Apr-99	2-D9/E9	750	2520	163	use well data	913	Local pressure higher than the rest.
	791	Feb-09	2-D9/E9	750	2520	41		750	Use average due to within 100 psig
	_	-	1AB-F6/G5.5	1050	3000			1050	Use average due to within 100 psig
	-	-	1AB-E6/F4.8	900	2920			900	Use average due to within 100 psig
	1050	Jan-08	2-F1/F6	1035	2790	15		1035	Use average due to within 100 psig
		- Wilder -				-	use well		
	920	Jan-08	2-F8/G5.5	1120	2940	200	data	920	Localised pressure depletion.
	770	Jan-08	2-D9/E9	750	2570	20		750	Use average due to within 100 psig
	1772	Nov-07	2-J2/J9	1800	4390	28		1800	Use average due to within 100 psig
	943	Nov-07	1AB-E6/F4.8	900	2920	43		900	Use average due to within 100 psig
	1292	Jul-04	1-G4/G6	1250	3080	42		1250	Use average due to within 100 psig
	1362	Jul-04	H1/H3.5	1325	3280	37		1325	Use average due to within 100 psig
	1167	Nov-95	1-F6/G3	1200	2895	33		1200	Use average due to within 100 psig
	1451	Sep-03	1-H4/H9	1400	3570	51		1400	Use average due to within 100 psig
	2197	Apr-86	1-K8	2200	5120	3		2200	Use average due to within 100 psig
	1075	Aug-89	1-E9/F4.8	1100	2795	25		1100	Use average due to within 100 psig
	977	Jul-98	1AB-E6F4.8	900	2920	77		900	Use average due to within 100 psig
	1106	Jul-07	1-E9/F4.8	1100	2795	6		1100	Use average due to within 100 psig
	1498	Apr-08	2-11/16	1500	3840	2		1500	Use average due to within 100 psig
	1070	Dec-06	2-F8/G5.5	1120	2940	50		1120	Use average due to within 100 psig
	646	Oct-08	2-D9/E9	750	2570	104	use well data	646	Localised pressure depletion.

Figure: Well by Well Reservoir Pressure I	Plo		sure	Pressu	servoir	R	Well	by	ell	W	Figure:
---	-----	--	------	--------	---------	---	------	----	-----	---	---------

Label	Type Xmas Tree Tubing	Measured Depth (faet) 0	Tubing Inside Diameter (inches)	Tubing Inside Roughness (inches)	Tubing Outside Diameter	Tubing Outside Roughness	Casing Inside Diameter	Casing Inside Roughness	Rate Multiplier
LV1	Xmas Tree	Depth [feet]	Inside Diameter	Inside Roughness	Outside Diameter	Outside	Inside	Inside	
LV1			(inches)	(inches)	And a second				and the second se
LV1		0			[inches]	[inchuss]	(inches)	[inches]	
	Tubing		1						
V2		879	2.992	0.0012	-				1
	Tubing	1477	2.992	0.0012					1
LV3	Tubing	2043	2.992	0.0012		V.	N.S.S.		1
LV4	Tubing	2548	2.992	0.0012					1
acker	Tubing	2737	2.992	0.0012					1
id Perf	Tubing	4228	2.992	0.0012					1
	1								
				1					
					1			20000	
						7 7 1			
	V4 icker	V4 Tubing icker Tubing	V4 Tubing 2548 cker Tubing 2737	V4 Tubing 2548 2.992 cker Tubing 2737 2.992	V4 Tubing 2548 2.992 0.0012 cker Tubing 2737 2.992 0.0012	V4 Tubing 2548 2.992 0.0012 cker Tubing 2737 2.992 0.0012	V4 Tubing 2548 2.992 0.0012 cker Tubing 2737 2.992 0.0012	V4 Tubing 2548 2.992 0.0012 cker Tubing 2737 2.992 0.0012	V4 Tubing 2548 2.992 0.0012 cker Tubing 2737 2.992 0.0012

Figure: Downhole Equipment Data

Downhole Equipment Drav	ing (E:\Tukau\Well by Well Performanc 🖕 🗖
Kmas Tree —	S- MD 0(fe
	TVD: 0(fe
Tubing St.V1	
LILY	
10	
11	MD : 500.0 (fe
Name and the second	TVD : 463 0 (fe
Gaslift Valve 2:88 (inch	MD : 879.0 (fe
GLV2	TVD : 841 9 (fe
Fubing 2 88 (Inch	
SLV2	
ALL	
S	
8	
13	MD : 1000.0 (fe
N	TVD : 962.9 (fe
Saslift Valve 2 88 (mch	MD : 1477.0 (fe
SLV3	TVD : 1439 3 (fe
ubing 2 99 (mch	25) Z
GLV3	
	8
10	8
10	MD : 2000.0 (fe
Sacia Valla 288 (met	TVD 1856 2 (fe
Saslift Valve 289 (Incl 3LV4	MD : 2043.0 (fe
	TVD : 1996 9 (fe
Tubing 2 39 (Inc)	(5)
BLV4	B
8	10 ano 000
	MD : 2500 0 (fe TVD : 2429 2 (fe
Gaslift Valve 2:89 (mch	25) IVU 2428 2(IE
Packer	MD : 2548.0 (fe
	TVD : 2474 7 (fe
Tubing 2.88 (mat	<u>s</u>
/id Perf	
2	
8	MD : 4228 0 (fe
8	TVD : 4037 0 (fe

Figure: Downhole Equipment Drawing.

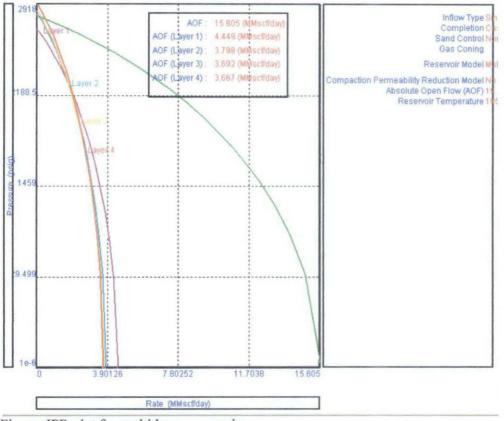


Figure: IPR plot for multi layer reservoir

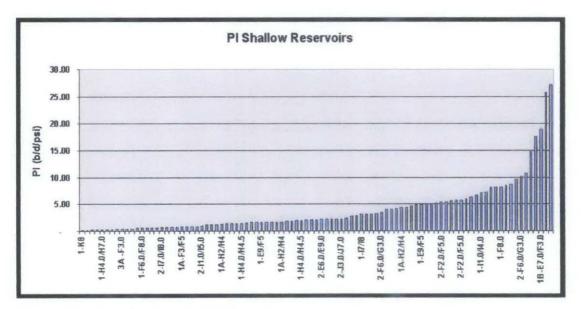


Figure : Productivity (PI) for Shallow Reservoirs

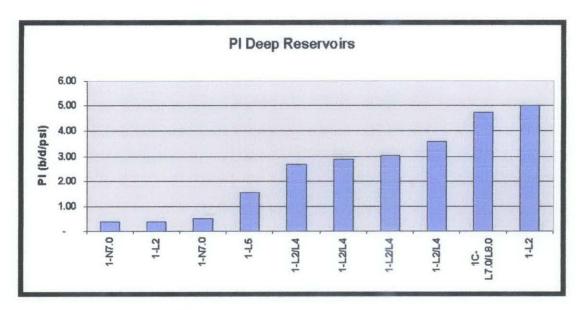


Figure: Productivity (PI) for Deep Reservoirs

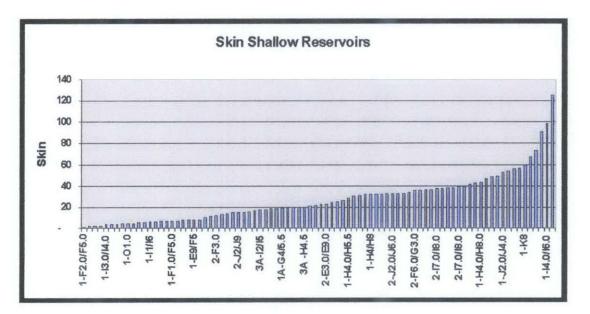


Figure: Prediction of Skin for Shallow Reservoirs