Reversible Digital Watermarking
In Digital Images with Recovery Scheme

by

Chung Farn Chon

Dissertation submitted in partial fulfilment of
the requirements for the
Bachelor of Technology (Honours)

(Information and Communication Technology)

MAY 2011

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Reversible Digital Watermarking

In Digital Images with Recovery Scheme
by

Chung Farn Chon

A project dissertation submitted to the
Information and Communication Technology Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirements for the
BACHELOR OF TECHNOLOGY (Hons)
(INFORMATION AND COMMUNICATION TECHNOLOGY)

Approved by,

Sl

(JALE BIN AHMAD)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOII, PERAK
May 2011

1

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and
acknowledgements, and that the original work contained herein have not been

undertaken or done by unspecified sources or persons.

/
&

CHUNG FARN CHON

ABSTRACT

Digital watermark is a signal that contains information that is inserted into a
digital medium such as images, videos, audios and ete. Digital watermarking is the
process of embedding a digital watermark into the digital medium. Watermarking is
commonly applied for copyright protection, copy protection and authentication of the
digital media. A reversible watermark can provide all this with some extra features
which include removal of the watermark safely from the watermarked media to
return back the original media. Current practise of watermarking is that the
watermark was directly embedded into the digital image by altering the image pixel
bit. However, the image pixels may not be able to restore to its original value when
the watermark is removed from the image. Memory Watermarking technique is
proposed where the watermarking process are conducted in the memory. The image
and watermark are read as memory bytes and the watermark are drawn to the image
in the memory without affecting the physical image file. The watermarked image in
the memory is displayed to the users while the physical file of the original image and
watermark remain separated. The watermark can be added and removed with the
restored image pixels one hundred per cent (100%) matched the original image
pixels. A simple recovery procedure was built in to restored the original image if

found the image of the watermark file was tempered.

ACKNOWLEDGEMENT

I would like to express profound gratitude to my supervisor, Mr. Jale bin
Ahmad, for his invaluable support, encouragement, supervision and useful
suggestion throughout this research work. His moral support and continuous
guidance cnabled me to complete my work successfully. His guidance in this
research was invaluable where he has given me lots of guide and suggestion to

improve my work to become better.

I also would like to express my gratitude to my fellow friends, Mr. Tan Kah
Meng, Mr. Yap Eng Hoe, and many others for giving me ideas and support
throughout this project. They had given me valuable feedback and suggestion to

improve my research study especially in terms of the development of the system.

Next, T would like to thank my parents who support me endlessly throughout
my studies in Universiti Teknologi PETRONAS. They had given me encouragement
in this project and constantly asking me on the progress of this project so it would

not affect my health and studies.

Finally, I would like to thank those who assisted me directly or indirectly in

this project which is not mentioned above. Thank you for the support and assistance.

TABLE OF CONTENTS

CHAPTER Lo sessssssissineeseosseenes 8
1.1 Background of StUdy ...c.ccevveerevieiieeeeeeeceeee et 8
1.2 Problem Statement........c.cocoieinriineseriesecteecennencse et se e nenaas 8
1.3 ODbJective Of StUAY ...ccceriereeeeriet ettt n b ssn st b et ne 9
L4 Scope Of StAY ..ottt a e as e e a e s 9

CHAPTER 2.ttt s e a s st besr et emn st eaa s s st b anas 10
2.1 INIOGUCTION .cvornicrerereerecresceerae et es o e e s e seeesesaneseose s reses 10
2.2 Watermark ClasstiCationcoevereereerericrricnieceiece e e eecscseseeenaeesnenes 11

22.1 Perceptible and Imperceptible Watermarkcccceeeececereieeieveniercnnn, 11
2.2.2 Conventional and Reversible Watermarkccccocvveretcnnncciniennnnn. 13
23 Watermark Embedding Schemec.ccooeicnniinicniiicic e, 14
23,1 Spatial DOMAINcovviieecrteecieec et e e esss e e s e e s e e s esesenbnsennes 14
232 Transformation DOMAINccoveeiveeeemniicrincei e 15
2.4 Reversible Watermarking Embedding Scheme............cccvvivnevrericrnrvnnnnnas 17
2.5 ReECOVETY SCHEIME ...vevveeieirnriirereiiresterneesnaesansesnesssssbessersessssasseesessensersasasses 20
2.6 Secure Hash AIZOTItRIM «....voueereereeeteececer et en e sa e 21

CHAPTER 3.ttt e ettt et sttt et et e an 23
3.1 Requirement Gathering........c..ccoooviieiiiiiiiiiiirre e neee 23
32 Equipment and ToolS.....co it e 24
3.3 System Architecture and DeSIZNcocovvverererinmrcinenererecree e 24

3.3.1 System ArChiteCIUIEcoovvereverrresieeerrerenvenrieseenrsesresresnsssssoreenaessases 24
3.3.2 SYSIEI DESIZN..c..eeveeeeeiceeeeteicrenrvtrnesssnasreassnercessesssssassssnesssssessessasssans 25

CHAPTER ...ttt ettt et e b s bs e sb s s 33
4.1 Watermarking of the Digital Image........cccccooevervnnnicnnniicinne 33
4.2 Restoration of Original IMagecccovrvericmiiicccninieicsinissinisissesssesinnions 34

CHAPTER S iassssiiasssssisssssssssesss 37
REFERENCES ..ottt vos e besescnrsesassssenseesasaes 38

APPENDICES. ...ttt sttt st s aneb et s e e e sre e srsas s temennsnesrans 40

LIST OF FIGURES

Figure 1: An image with visible digital watermarking —cccocoenecinnininicnienne. 11
Figure 2: An imperceptible watermarked image........c.coocvorvvvenerenceinecreenecrcenenes 12
Figure 3: The result of the watermark detector using PSNRc.cocvvvcnvrereecrenne. 12
Figure 4: Conventional Watermarking vs. Reversible Watermarking........o.cccueeieenne 14
Figure 5: The pyramid StrUCIUTE.covcveeveeriere et s e v serasrn e ssessessserae e eseeses 17
Figure 6: Data Compression PIOCESSceicicvivimiisiniicinnenniiiesssissssiossasssrsoses 18
Figure 7: Tian's SCREIMEovecviivieecries et ve s et s sts e ste e snssesnssnseas 19
Figure 8: Histogram bin shifting proCessccvveeveverererenrerecrerrerereeeensesseeessnnaes 20
Figure 9: Embedding Process of Chen & Sun's Scheme.........cccoovvvvvivnniseneennnene. 21
Figure 10: Extraction and Self-Recovery Process of Chen & Sun's Scheme............. 21
Figure 11: SHA-512 FUNCHONS ...c.covevviriiriererrerteerereerreseeererresreresneaesesessssnsesessassenes 22
Figure 12: System ArchiteCtlre.uiereveeveciieeirieiesieeeereerecresesreseesesnsseesesas s seessesenses 25
Figure 13: Bytes values of a bitmap image file.........cccooeoeinnciienninecececnsc e 26
Figure 14: Bitmap file StuCtUIEcoveeerreeee e 28
Figure 15: How memory watermarking Works.ccoccoceiieieviniinniesenne e ceneeenis 29
Figure 16: Graphical summary of the entire System.ccoceevrenniecnrccnncnecnenes 30
Figure 17: How watermark image iS SaVed.cccvvirmrreeinncinieei st eeve e 31
Figure 18: Output of the watermarking.couvcirrisiinininieinninc e ssionnes 31
Figure 19: Watermarked Image.. ..o vieesssesnsnns 34
Figure 20: Matlab code to compare the two Image.cccooerveecciercrieenrcrccncnercrceenns 34
LIST OF TABLES

Table 1: Result of comparing image pixels between original image and restored

IINAZE. ..vevveveverrerriisrreseresarsssesesbensssensasssesceseaebe e se s e ae e b e et s bbb eb et eh et st et s e nera e e 35

1.1

1.2

CHAPTER 1
INTRODUCTION

Background of Study

Digital watermark is a sequence of bits of signals that is inserted into
a digital media such as images, videos, audios and etc. It may contain the
information of the copyright ownership of the material. Digital watermarking
on the other hand is the process of embedding a digital watermark into the
digital media such as images. A digital watermark serves as a purpose to
enforce and provide copyright protection on the digital media. With the
digital watermark, owners can have their digital material protected and reduce

the possibilities of copyright infringement.

Problem Statement

One type of digital watermark is a reversible watermark. A reversible
watermark enables content owner to enforce their copyright of the digital
media that they owned but at the same time to recover the original digital
media that was watermarked (Feng, Chu, Lin, & Tsai, 2006). Unfortunately,
data loss in terms of the image pixel bits is unavoidable although the
watermark was removed from the watermarked media. Due to the embedding
process which alters the bits of the images, the bits of the original image
could not be recovered fully to get the same exact original image again after
the watermark being removed. This loss of data can cause some wrong
information especially in medical images, where it may lead to wrong

diagnostic and wrong treatment.

1.3 Objective of Study
In this study, the objectives that need to be met are as follows:

1. To introduce memory watermarking as a new way of reversible digital
watermarking.
2. To achieve one hundred percent (100%) matching with original image

after watermark removal.

1.4 Scope of Study

The focus of this study is to create an application that uses memory
watermarking technique to watermark an image and display it to the users.
This study will only cover for the application of digital images such as Joint
Photographic Expert Group (jpeg), Bitmap (bmp), Portable Network
Graphics (png) and etc. It also should come with a simple recovery procedure

to recover the image that was changed or corrupted.

2.1

CHAPTER 2
LITERATURE REVIEW

Introduction

Digital watermarking is a process where hidden information is
embedded into a digital media such as images, documents, videos and etc.
The digital media is watermarked using an algorithm and resultant in a
watermarked media with minimal distortion to the original media (Huang,
Pan, & Hang, 2004). A watermark is considered as a noise embedded into the
digital media which do not make significant changes to the original media as

compared to the watermarked media.

Digital watermarking is commonly used in protecting the content
ownership of the digital media. Watermark contains information of the
content owner which is used to verify the ownership and authenticity of the
watermarked digital media (Puhan & Ho, 2005). The watermark is embedded
into the media through the watermark embedding process. Through the
embedding process, the information of the ownership, copyright and etc. is

embedded or inserted into the host media.

Watermark extraction is used to extract the watermark information out
of the watermarked media. With the extraction of the watermark information,
the ownership can be verified as this information cannot be altered. Digital
watermarking is currently implemented for copyright of images as well as
music and movies by the entertainment industry. Through digitally
watermarked these media, the copyright holders are able to protect their
copyright as well to be able to combat piracy and prosecute those who

infringe their copyright.

10

2.2 Watermark Classification

2.2.1 Perceptible and Imperceptible Watermark

One of the classifications is perceptible watermark (Huang, Pan, &
Hang, 2004). This classification of watermark is the watermark where it is
visually visible in the digital media. Such digital media with perceptible
watermark enable identification of the original content owner easier as the

watermark is visually visible (Yang, Li, Sun, Yang, & Cing, 2008).

Figure 1: An image with visible digital watermarking —

the text "Brian Kell 2006" is visible across the centre of the image
(Source: http://en.wikipedia.org/wiki/Digital watermarking)

As perceptible watermark is intended to be visible, the watermark

must be difficult to be removed or resist falsification by unauthorized person

11

(Shih, 2007). The watermark need not be extracted to get the information as
the visibility of the watermark can be used to verify the content owner of the

watermarked media.

Figure 2: An imperceptible watermarked image

ik e | \
ot A VS N s A A i
=

Figure 3: The result of the watermark detector using PSNR

Another classification of the watermark is imperceptible watermark
(Huang, Pan, & Hang, 2004). Imperceptible watermark or commonly known
as invisible watermark is not visually visible to the human eyes and it
normally contain information on the copyright owner of the digital media
(Bandyopadhyay, Paul, & Raychoudhury, 2010). The invisible watermark
will contain the ownership, copyright information and etc. is embedded into
the digital media which is invisible to the naked eyes but it will cause a slight
distortion which is not visible or noticeable when comparing both the

watermarked media and the original media.

12

2.2.2

Invisible watermark is embedded into the digital media by means of
complex algorithm which will discuss in the embedding scheme of this report
(Shih, 2007). An imperceptible watermark needs to be extracted using
computer as to get the hidden information in the watermark from the
watermarked media. With imperceptible watermark, no one are able to know
the existence of the watermark without extracting it which it has then become
one of the tools in order to thwart piracy especially in the video, audio or

digital images.

Conventional and Reversible Watermark

There are two different techniques for watermarking which is

conventional watermarking and reversible watermarking.

A conventional watermarking or also known as irreversible
watermark 1s a watermark which could not be removed once it was embedded
into the digital media (Feng, Chu, Lin, & Tsai, 2006). The watermark is
embedded into the host media using a certain watermarking scheme or
algorithm which will be discussed in the later part. The watermarked media
can be then published online with the watermark that being embedded
contains the copyright and ownership information. If the media was suspected
to infringe the copyright, then the media can be checked using watermark
detector such as using the peak signal-to-noise ratio (PSNR). If a watermark
is detected, then information in the watermark can be extracted and the

ownership of the media can be verified.

A reversible watermarking is a watermark that can be removed after it
was embedded into the digital image to get back the original data (Zhou,
Wang, Zhou, & Yu, 2010). When a reversible watermark is embedded into
the host media, it should have the similar features as the conventional

watermark. The difference between the reversible watermark and the

13

2.3

2.3.1

conventional watermark is that the users were able to extract out or remove
the watermark from the watermarked media (Feng, Chu, Lin, & Tsai, 2006).
With this, the original media can be retrieved back along with the watermark
and this is widely used in the medical and military industry (Yonglie, Yao,
Jeng-Shyang, & ShaoWei, 2005).

Original image

Watermarked Suspected
image image

! | ? i

| 1) - O # Publish Watermark

| \ Watermarking —p. - > Watermarking _,
Watermark scheme scheme

Conventional watermarking scheme | |

___________________________________ R T T e ————

Reversible watermarking scheme

—p Watermarking ¢==°
scheme

Suspected
image i

Watermark Watermark

Figure 4: Conventional Watermarking vs. Reversible Watermarking
(Source: (Feng, Chu, Lin, & Tsai, 2006))

Watermark Embedding Scheme

A digital watermark can be embedded into a host media by means of
two different ways. These are the different type of algorithm that can be used
to embedded watermark to the host media with each having its own way of

embedding watermark along with its own properties.

Spatial Domain

Spatial Domain is the simplest form or algorithm for embedding
watermark into a host media. A watermark is inserted into the host media for
example an image where some of the grey value in the pixels of the image is
changed (Shih, 2007). This is advantageous in terms of the small amount of

computing power due to its low complexity needed as well as the easy

14

2.3.2

implementation of the algorithm. According to Shih (2007), it is easily
detected and is usually less robust against attack such as compression and

noise.

Transformation Domain

The transform domain is introduced to address several weaknesses
and limitations of the Spatial Domain. These watermarks are more robust
against attack as compared to those embedded using Spatial Domain (Hsiang-
Cheh, Jeng-Shyang, & Hsueh-Ming, 2004). It is commonly divided into three
(3) which are Discrete Fourier Transformation (DFT), Discrete Cosine

Transformation (DCT) and Discrete Wavelet Transformation (DWT).

2.3.2.1Discrete Fourier Transformation (DFT)

In DFT, an image is discomposed into set of orthogonal functions and
can then transform the spatial intensity image into its frequency domain
(Shih, 2007). This then is used to embed the watermark by selecting the
adequate parts of the image. DFT commonly used to perform the phase
modulation between the watermark and the host image (Jean-Luc & Stephan,
2000). Phase modulation is used in DFT instead of magnitude components
for watermarking (Shih, 2007).

The general equation of DFT is defined as follows.

A= Nl

ZZFU.,!.)

.K. =ib k=t
expli 2x(ae1 by N+ sk fN)]

N | ﬁ;

15

2.3.2.2Discrete Cosine Transformation (DCT)

DCT is a transform coding module for image and video coding
standards such as MPEG and JPEG which makes this a popular watermarking
algorithm. This is due to the compression standard set in JPEG and MPEG
which this will make DCT-domain watermark are more robust (Jean-Luc &
Stephan, 2000).

From the research done by Mei, Li, & Tan (2009), the DCT turn over
the image edge to make the image transformed into the form of even function

which is mathematically defined as

F(jk)=al)lk) s 3. f{nm}'ﬂ;{ 2m+1 ﬂf} {2“ j)k.,,]

m=l} a=0 2N 2N

2.3.2.3Discrete Wavelet Transformation (DWT)

DWT is another type of algorithm that we can use to embed
watermark into the host media such as image or videos. DWT become a key
technique in source compression standard JPEG-2000. It offered a possibility
of embedding in a compressed domain which others cannot achieve. Unlike
DFT or DCT, DWT able to provide simultaneous representations for both the

spatial and frequency interpretation.

In the research done by Terzija, Repges, Luck, & Geisselhardt (2004),
the signal is decomposed or split into two part which are the high frequency
and low frequency part. A series of high pass and low pass filter is used to
analyse the high frequencies and the low frequencies respectively. The

decomposition of the signal is mathematically expressed as follows:

16

24

VigilK1= D x(kg[2k —n]

and

Viwlk]= Z X[k Jh[2k —n]

"

The above procedure can be repeated for further decomposition and
the output of both filters are known as DWT coefficients. The image is the
decomposed into pyramidal structure with various band information: low-low
frequency band LL, low-high frequency band LH, high-low frequency band
HL and high-high frequency band HH.

LLy HL,

Hi;
LH; HH;

LH; HH;

Figure 5: The pyramid structure.

Reversible Watermarking Embedding Scheme

A reversible digital watermark can be embedded using three (3)
different methods in addition to the embedding scheme that commonly

employed such as the frequency domain and spatial domain method.

The first is using data compression method. In data compression, the
remainder is calculated based on the image quantified value. The remainder is
then compressed using Context-Based, Adaptive, Lossless Image Coder

(CALIC) lossless compression. The quantified image is then concatenated

17

with the remainder value. Then, the watermarked image is obtained by adding
the compressed data and watermark to the image. The retrieval of the
watermark is by calculating the remainder back and the twelve (12) digits of
the remainder are decompressed to sixteen (16) digit. The final four (4) bit is

the hidden watermark.

Quantificd

(--n\pr‘,-“cd !
Onginal CALLIC Compressed Concatenate pemainders
: —_—

Original

Rematnders remainders ———> Witermarked
image 7 o
Wistermark -
Watermark
a) The embedding process

Quantificd
Q150 Hnage

CALLK Omnpginal

decompress remanders Recovered

Watermarked Remainders Original
Imagic
ge : nmage
U nuse -
Watermark

parts

by The retrieving and recovering processos

Figure 6: Data Compression Process

The next embedding scheme is the difference expansion. Difference
expansion works by generating some small value to represent the features of
the original image. It then expands the generated values to embed the bits of
the watermark information. The watermark is embedded in the least-
significant bit (LSB) and the watermarked image is reconstructed using the
modified values. There are some problems exist in this scheme. Using Tian’s
Scheme (2003) which uses this method, there exists the possibility of data
loss when the watermark is removed to restore the image to its original.
Difference expansion is pixel based and the data loss will affect the block of
the image pixels causing the value of the image pixel to be different but this
data loss will not affect the next block. There is a location map which

contains the additional information of the embedding of the pair of pixels. If

18

this location map is destroyed, the mismatches of the pixel values are bound

to occur.

Inverse
Integer
Transformation

Host image it — b kX2 /

|IIIL'1_‘CT
Transtormation

Watermarked
unage

Figure 7: Tian's Scheme

Histogram bin exchanging is another method to embed the reversible
digital watermark as proposed by Vleeschouwer et al. (2003). The embedding
target is converted to histogram of a block. The original image on the other
hand is segmented into several blocks of neighbour pixels. The shifting of the
bins in histograms is done by shifting either the leftmost bins or rightmost
bins of the histogram according to the corresponding bit of the watermark.
The drawback of this method is that it can have slight distortion of the pixels.
It can be due to the shifting of the bins which would cause the histogram to

have extreme value or skewness.

19

2.5

Z,

: i Separate ;
© Original
Comage ce e
P 0
L — e
F AR S H, doilliliiy

u, "

11" is W s
embuedded 4) <mbedded o>

7R H,
i NS -y

{bi Restore and reeovering procoss (¢} Festare aud recovering proeess

Figure 8: Histogram bin shifting process

Recovery Scheme

A watermarked image may suffer from attacks or even distortion
which may cause the image to loss some information and even different from
the original one. A recovery watermarking scheme would enable recovery of

the modified media back to its original form.

An image can be divided into several blocks of specified sizes and the
recovery information of the image is embedded into the least significant bits
(LSBs) of each block of the images (Liew & Jasni, 2011) (He, Zhang, & Tai,
2009). From the research of Liew & Jasni (2011), the each block in the image
is authenticated by comparing the hash value. If found any block was
tampered, the recovery block will be used for the reconstruction or restoration
of the tampered block image. Then, the watermark can be removed to restore

it to the original state.

There are other type of recovery methods that other researcher
proposed. DWT-SPHIT algorithm would also enable recovery of the digital
image that was watermarked (Chen & Sun, 2010).

20

original fatter two new MM block self-recovery
image bit to zero| image [pywT.gpryT| Watermark
Amold
transform o
bitset to original encrypted
N image’s latter two bits watermark
ry
watermarked
image

Figure 9: Embedding Process of Chen & Sun's Scheme

received bitget. decrypt self- recovery
image and decode) watermark datas
latter two
¥ bit 10 zeros

new | block DWT-SPIHT ture

image encode datas |
false
attacked block

a

-

replace the attacked
block of received image

y
reconstructed
image

Figure 10: Extraction and Self-Recovery Process of Chen & Sun's Scheme

Chen & Sun (2010) proposed that the original image is compressed
with the block discrete wavelet transform and set partitioning in hierarchical
trees (SPIHT) algorithm to get the recovery data due to the high performance
and simplicity of the algorithm. The recovery watermark is then used to
restore the attacked blocks by comparing the data in each block with the
recovery watermark (Chen & Sun, 2010).

Secure Hash Algorithm

Secure Hash Algorithm also commonly known as SHA is one of the
cryptographic hash functions that were published by the National Institute of
Standards and Technology. SHA is an algorithm for generating one-way

21

cryptographic secure hash. SHA-2 was currently the latest hash standard in
SHA family where it succeeded from SHA-1. Collectively, SHA-2 consists of
SHA-224, SHA-256, SHA-384 and SHA-512 hash functions which is named
after the digest lengths (Secure Hash Standard, 2008).

SHA-512 uses six (6) logical function where each function will
operates on 64-bit words and the result of each function is a new 64-bit word.
SHA-512 uses a sequence of eighty constant 64-bit words where these words
are the first 64-bits of the fractional parts of the cube roots of the first eighty
prime numbers. The message to be hashed is padded where in SHA-512 case,
the length of the message should be of a multiple of 1024 bits. The message
undergoes some pre-processing where then message will be hashed using the

functions defined (Secure Hash Standard, 2008).

Chix.yz) = (xA))B{=xrcz)
Majix.v.2) = (xA)BxanB (1A

Y " = ROTR™) € ROTR™x) & ROTR ()
Y) = ROTR¥(x) € ROTR™x) & ROTR'ix)
a*3xy = ROTR'(x) € ROTR(x) @ SHR(x)
o x) = ROTR™x) & ROTR™x) @ SHR®)

Figure 11: SHA-512 Functions

An example of SHA-512 with the resultant hash value calculated is as
follow. The resultant hash is 64-bits long.

String to be hash : The quick brown fox jumps over the lazy dog

Result hash value : 0x07e547d958616a73173fbac0435ed76951218fb7d
0c8d788a309d785436bbb642¢93a252a954£239125
47d1e8a3b5ed6e1bfd7097821233fa0538{3db854{eco

22

3.1

CHAPTER 3
METHODOLOGY

Requirement Gathering

The first stage of this research study is to gather the system
requirement. A study on the previous work and research done by others
researcher related to watermarking is done. This study on the related work is
conducted to get the general idea of how the implementation of the reversible
digital signature and the recovery scheme of the images. Through the
research, algorithms will be analysed and reviewed to understand better how

the watermarking works.

Through these studies on related works, the requirement of the system
can be obtained and drafted out. With the gathered requirement, it will make
sure that the system being build does not go out of scope as well able to
achieve the objective. At the same time, how the system will work and the
flow of the system is planned and drafted. This will give some initial kick

start on how the system may look like and work in the final system.

Next, technical specification design of the project will be decided. It is
essential to have a technical specification of the system as well as the design
specification so that the project will not go off-track or having scope creep.
This will help the developer to keep track of the functionality build in order

to prevent this scope creep from occurring.

23

3.2 Equipment and Tools

The author makes use of these tools for the system development:

1. Microsoft Visual Studio Professional 2010
Usage: Visual Studio is an integrated development tool by which the
author used for the development of the system. The tool provides .NET
Framework 3.5, C# and VB programming language for the development.
It is used to compiles codes and creates the graphical user interface

(GUL).

2. Matrix Laboratory (MATLAB) 2009a
Usage: MATLARB is used for obtaining the pixel values of the images for
the testing purposes. It enables the author to compare the image pixels

values.

3. Some digital images

Usage: The sample which is used for testing the system.

3.3 System Architecture and Design

3.3.1 System Architecture

In this study, the system consists of three (3) different modules which
each provide different functionalities. These modules works together to

enable the author to achieve the targeted objectives for this research study.

24

Image and Watermark —-——D:Module 2. "Watermark Removal’ :
1

- o o s s e e e e e

_________________ '
|
. ——>»; Module 3: Image Recovery’ :

Figure 12: System Architecture

The first module is the watermarking module. This module functions
to perform watermarking on the digital image using the memory
watermarking technique. This module will read the image and watermark and

finally display the watermarked image to the user.

The next module is the watermark removal module. It functions as to
remove watermark from the watermark media. This module ensures the
original image of the watermarked image can be obtained. The final module
is the recovery module. The recovery module is to function as to check the
integrity of the image loaded and if there exist any changes to the original
images, it will restore the image back to its original value. Further
explanation of how the modules and memory watermarking works is at

section 3.3.2 System Design.

3.3.2 System Design
3.3.2.1Memory Watermarking

In the present, watermarking is done by embedding the watermark
directly into the image by changing the bits of the images by using the
embedding algorithm such as discrete wavelet transformation (DWT) and etc.
The resulted watermarked image is save as a physical file such as jpeg, png or

etc. which contains the watermarked image that being embedded into it.

25

p image

ader

In this system, the author is proposing memory watermarking
technique to perform watermarking for digital images. Memory watermarking
is a technique where the watermarking procedure is done in the memory and
displayed to the users and it is different from the present technique used.
There are no any physical watermarked image files that exist when using this
technique as the image and the watermark are separated in different files. The
watermarking is only done in the memory without affecting the original

image.

Firstly, the selected image read by a memory stream as sequence of
bytes where it contains the image information such as the pixel value and etc.

In this, we are taking the example of a bitmap file.

’ 66771341911000005400
37321174241115474911313313919218919824215016219613514

T BLTATIZIZ28T8598 T8I 3TTUUTIBI3295 T 12810 112908203208 21130
95111118971131209911311996110116931061149510811698111119100113121
97107114961061139510511293103110931031109410411193105109921041089
01031059110410693107106941081079210610589103102861009884999581969
28096897995888096897995887793867692857793867589837286807382797281
78717875465350212624283331192423667271104109110869696839595829695
79929477909270818571828672838773848873858972879072879071868972828
9768491768791789092809294819393819492819492789189829593869€969010
01009510210588959878848977818670737772758071778469788771809372849
£6984936682897586946576805059634451543134384649535861668488931031
15117100114120617790809912015617720916919523217920925019522725520
82442552072452552092462552092462552112462552162482532202492542252
50254228250255231250255231251255230250255228251253226251255223252
25522025225521925225519923725518722625515619825511415623175120207

A ANTAAANAATITI AT ANNTITTIAATY TAANAYT ACA FTIANDA FAAAAATAAL FATTIANT A4 FAYTIAAT T

Figure 13: Bytes values of a bitmap image file.

From the image bytes value above, the one that highlighted in yellow
is the bitmap file header. There is magic number which it represents the file
format of the image. In bitmap it was unsigned integer 66 and 77 which
represents the value BM. The value 134, 19, 11 and 0 represents the size of
the bitmap file while the next 0, 0, 0 and 0 are unused. The final value of 54,

0, 0 and 0 represents the offset where the pixel array can be found.

26

The values highlighted in blue are the Device Independent Header
(DIB). After the DIB, the values are the image pixels array containing the
colour value of each pixel. The value here represented are in bytes which one
(1) byte equals to eight (8) bits and the bytes values start from 0 to 255. The

bitmap file structure is represented as in the image below.

27

Bitmap File Heade: The Structure Of

BITHK 'FILEHEADER

the Bitmap Image File

(BMP)
ﬂl Older DIB Headers can be substituted
for the BITMAPYSHEADER
s
_______________ e i i e A e e
¢ 5 E
-y g :
- -\‘. i \
- | s
o = :
. | |
- | Note: The size of :
E Color Space Endpoints is 36 Bytes 4
: | (This ciagram does not depict it proportionally |
: ! I is drawn in that manner only to save H
[| wvertical space.) E
E | Note: The presence of the Color Table !
i ! ! is mandatory when Bits per Pixel <8 :
: : | Note: The size of Color Table Entries |
' e | is 3 Bytes if BITMAPCOREHEADER |
E v E ! is substituted for BITMAPVSHEADER. |
s - f f 5
i g g fc% ! /Pad row size to a multiple of 4 Bytes 5
! W i ' :
: = N ¥ ¥ i
' H 3 A = A N
] ' N\) :
SRR AR
T 5 ' Pixel{0 h-1) Pixef1 h-1] Pixel[2 h-1] = Pixelfw-1 h-1] Padding |) }
| 5 ’ Pixel[0h-2] | Pixelf1 h-2] | Pixel2h-2] = Piceffw-1h-2] | Padding :
: . i
o J ~ 5
’ ; | Pixel[0,9] Pixel[1,9] Pixei{2,9] e Pixeljw-1,9] Padding .
' | Pixel[0,8] Pixel[1 8] Pixel[2 8] ses Pixel[w-1,8] Padding !
. ‘: Pixel[0,7] Pixel[1,7] Pixel(2,7] 0 Pixeljw-1,7] Padding . (_j
: Pixel[0 6] Pixed{1 5] Pixel[2,6] b Pixelfw-1 6] Padding
: | Pixel[0,5] Pixef{1,5] Pixel[2,5] aen Pixelw-1.5] Padding
i 5 | Pixel[0,4] Pixel1,4] Pixelf2,4] Pixel{w-1 4] Padding
y | Pixell0,3] Pixel[1,3] Pixei[2,3] rer Pixelfw-1,3] Padding
‘ : } Pixel[0,2] Pixel[1,2] Pixel[2,2] . Pixelw-1,2] Padding
| 1 Pixel[0,1] Pixel[1,1] Pixel[2,1] T Pixelfw-1,1] Padding
| Pixei[0,0] Pixef[1,0] Pixei2,0} o Pixelfw-1,0] Padding
]

Note: The ICC Color Profile may be present only when

1;_ Embedded, variable size the BITMAPVSHEADER is used.
; ICC Color Profile Data.
Sl & (or path to a linked file (This diagrarn wrongly suggests that the size of
containing Color Profile must be a multiple of 4 Bytes.
L ICC Color Profile Data) | It is drawn in that manner only to save vertical space.)
Byte offset: e 1 2 3 4 5 & L4 8 9 10 "

Figure 14: Bitmap file structure
(Source: http://en.wikipedia.org/wiki/BMP_file_format)

28

The value 37, 32, 117, 42 are the bytes value of the first pixel in the
format of RGBA (red, green, blue, alpha). The array of the image pixels will
build up the entire image where each pixel is represented in RGBA values. In

this example, all the values are in bytes which OxFF in bytes are 255.

Next in the process, the watermark image is also transformed into
array of bytes in the memory stream. Using these bytes value, the images are
built in the memory as a bitmap image object. Then, it is a graphic object was
created out of this bitmap object using the Graphic Developer Interface
(GDI+). Then, the watermark image is drawn to the graphic drawing surface
of the graphic object with the position and the watermark opacity specified.
Then, the graphic object that consist of the bitmap image and watermark are

displayed to the user as watermarked image.

» > ——
- ' 1 -12 ji +
Image Bytes
Image Bitmap GDI+ Graphic
Data in Drawing Surface
Memory
’ .‘
Watermark Bytes
vt Watermark
Watermark Bitmap Data
in Memory
Y
Watermark

.
_i e Ny

Watermarked Image

Figure 15: How memory watermarking works.

29

aeane W tmgs 12 Wb 3
[P e sy B i
et 42 b gakm 1§ Ly aOMbarve 2T Inhampr e *
LIt M T hva, P DRARpRAL
B2 84 APyt (STgRaP 1 L
Srod Tad W by JO2 Y8er

User Password it

Figure 16: Graphical summary of the entire system.

3.3.2.28aving Watermarked Image

When saving the watermark image, the users are required to enter the
ownership information as well a password to protect the watermark from
being removed. The user entered password will be hashed using SHA-512
which is known as Secure Hashing Algorithm. In the hashing algorithm, a
strong pseudo-random number generator that uses the CryptAPI is generated
as a salt to the hashing. This can improve the security of the password and

reverse engineering of the password can prevent.

Using the hash of the password and the system generated salt, these
values are hashed again and the final hash value of this are used to encrypt
the images which are then converted to string from the bytes value. For the
watermark, the same process also occurs where it is also encrypted with the
final hash value of the salt and the hash. A header containing the password
hash and salt are appended to the image and a file is generated. Another
header containing the watermark information and the watermark ownership
are appended to the encrypted watermark file and saved as another different
file. Recovery information that contains both the watermark values and the

images are stored in a different file encrypted.

30

All the three (3) files are then zipped together as one single file and
saved with Watermarked Image (wmim) extension. The idea is adapted from

docx format where a docx file contains various xml and cabinets files.

=

- .i . - .

Hash + Salt

image Bytes Encrypted Image ﬁ 9 g ’
J""

Eruiypimd (Crypied Rucovery
Image atwerniaek ko

Cntpat

Watermark Bytes
Watermark Encrypted Watermark

&a

User
Information

Figure 17: How watermark image is saved.

: m __ Testwmim - ZIP archive, unpacked size 679,976 bytes
Testwmim | j—— = _—
WMIM File Size Packed Type
03KE &—
| image.enmg 260,092 197,035 ENMG File
| ! recovery.recv 340,244 257,757 RECV File
wmimage.enmg 79,640 60,322 ENMG File

Figure 18: Output of the watermarking.

3.3.2.3Watermark Removal

In the watermark removal process, the user needs to enter the

password that they input during the creation of the watermark image file. The

31

password entered by the user will be hashed with the salt in encrypted image
file header and the resultant hash will be compared to the original hash. Only
if the hash value matched, then the user can recover the original image. As
the watermark is not directly embedded into the image itself, the originality
of the image is maintained and user can select the format output type they

want, With this feature, the watermark is reversible where it can be removed.

3.3.2.4Image Recovery

In the image recovery, the image bytes values are converted to base64
string. This is also similar to the watermark image and the watermark

information will also be included in the recovery file.

The integrity of the image and watermark are check by calculating the
SHA-512 hash of the image loaded in the memory stream. If found the value
are different, then the recovery process started where the image information
are loaded into the memory and the watermarking process continues. At the
same time, the file will be overwritten with new values so that the next time

the watermarked image file is loaded, it able to load correct image file.

32

4.1

CHAPTER 4
RESULT AND DISCUSSION

Watermarking of the Digital Image

The author had conducted testing on the different image format such
as Joint Photographic Expert Group (jpeg), Portable Network Graphic (png),
Bitmap (bmp) and etc. The watermark types also are different where it was

tested for both image watermark and also text watermark.

It shows that the watermarking can be done and presented to the users
without the needs of the physical watermarked image file. Compared to the
current watermarking technigues which embeds the watermark directly into
the image and resulted in a physical watermarked file, the memory
watermarking technique is able to display a watermarked image while having

both the image and watermark separated in different file.

In the system, the watermarking of the images can be done in the
memory while both the image and the watermark are separated in different

file. The watermarked image in the memory is displayed to the users.

33

Vatermark Inserted

4.2

Figure 19: Watermarked Image

Restoration of Original Image

In the test conducted, the result of the values of the selected pixels of
the original image and the restored image are recorded. The values of the
pixels are compared using MatLab. By reading the image as matrices which
represents the individual pixel value each, the original image and restored
image are compared. The comparison process is done by subtracting the
original image matrix with the restored image matrix. The result matrix of the
subtraction is then sum up. If the value of the sum of the matrix is equivalent

to zero (0), then both of the images are the same.

>> Originallmage = imread('C:; Users CFC Desktop Test Testdpeg.ipg'):

>> PestoredImage = imread('C: Users CFC Desktop Test Restorsddpegl.jpg'):
>> PesultSubtraction = Originallmages - RestorsdImage;
>> SumPesultColumns = sum|P=sultSubtraction);

>> SumAll = sum({SumPesulcColumns):

Figure 20: Matlab code to compare the two image.

34

The sample test images are as attached in Appendix I. The results of the tests

done on five sample images of different file type each are as follows:

File type Image Sum of Matrix | Original Image =
Subtraction Restored Image
Jpeg Jpeg Image A Sum =0 Yes
Jpeg Jpeg Image B Sum =0 Yes
Jpeg Jpeg Image C Sum = ¢ Yes
Tpeg Jpeg ImageD | Sum =0 Yes
Jpeg Jpeg Image E Sum =0 Yes
Bitmap BMP Image A | Sum =0 Yes
Bitmap BMP Image B Sum =0 Yes
Bitmap BMP Image C Sum=0 Yes
Bitmap BMP Image D | Sum=90 Yes
Bitmap BMP Image E Sum =0 Yes
PNG PNG Image A Sum = 0 Yes
PNG PNG Image B Sum =0 Yes
PNG PNG Image C Sum =0 Yes
PNG PNG Image D Sum =0 Yes
PNG PNG Image E Sum = 0 Yes

Table 1: Result of comparing image pixels between original image and restored image.

During the study, the author found that the restored image file could
have different file size as well as the file hashes could be different between
the original image and the restored image. After further analysis, the
difference was found in the image header information. As for the image pixel
information, there are no any differences between the original image and the

restored image. The author found this problem where the image file headers

35

are different between original image and the restored image for bitmap, jpeg

and png files.

36

CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

This project highlights memory watermarking technique of embedding a
watermark into a digital image which can be removed to get back the original image.
It explores the possibility of performing the watermarking in the memory and not
having the physical file that the watermark was embedded to it. The recovery scheme
enables user to recover the image to restore it to the original condition if it was
tampered with. The application of this can be applied to the medical images as well

as software models and etc.

The final outcome of this project is able to achieve both the objectives which

are as follows:

1. To introduce memory watermarking as a new way of reversible digital
watermarking.
2. To achieve one hundred percent (100%) matching with original image after

watermark removal.

There is vast improvement can be made to the system and this research to
make it better. The author currently uses simple encryption and decryption which
make it insecure. In the conducted study, the author does not give much attention on
the security of the system. There is much room of improvement of this system in

terms of the security of this system especially in the encryption of the file.

The file size of the watermarked image file can be improved and reduced
especially in the bitmap data which is large. There should be a better way of
compression method used to compress all the files so that the file size can be reduced
but at the same time do not cause any information to be loss or missing. This is one

of the future works that can be done to improve the system.

37

ii.

iii.

iv.

V1.

vii.

Vil

REFERENCES

Secure Hash Standard. (2008, October). Federal Information Processiong
Standards Publication. United States of America: National Institute of
Standards and Technology.

Bandyopadhyay, S., Paul, T., & Raychoudhury, A. (2010). Invisible Digital
Watermarking Through Encryption. International Journal of Computer
Applications, 4(5), 18-20.

Chen, M., & Sun, X. (2010). A Digital Image Watermarking of Self-recovery
Base on the SPIHT Algorithm. 2nd International Conference on Signal
Processing Systems. 2, pp. 621-624 . Dalian: IEEE.

Feng, J.-B., Chu, Y.-P., Lin, L-C., & Tsai, C.-S. (2006). Reversible
Watermarking: Current Status and Key Issues. International Journal of
Network Security, 2(3), 161-171.

He, H.-J., Zhang, J.-S., & Tai, H-M. (2009). Self-recovery Fragile
Watermarking Using Block-Neighborhood Tampering Characterization. In S.
Katzenbeisser, & A.-R. Sadeghi (Eds.), Information Hiding (Vol. 5806, pp.
132-145). Berlin: Springer Berlin / Heidelberg.

Hsiang-Cheh, H., Jeng-Shyang, P., & Hsueh-Ming, H. (2004). Watermarking
Based on Transform Domain. In P. Jeng-Shyang, H. Hsiang-Cheh, & J.
Lakhmi C. (Eds.), Intelligent Watermarking Techniques (Vol. 7, pp. 147-
163). Singapore: World Scientific Publishing Co. Pte. Ltd.

Huang, H.-C., Pan, J.-S., & Hang, H.-M. (2004). An Introduction to
Watermarking Techniques. In J.-S. Pan, H.-C. Huang, & L. Jain, Infelligent
Watermarking Techniques (Vol. 7, pp. 3-40). Singapore: World Scientific
Publishing.

Jean-Luc, D., & Stephan, R. (2000). A Survey of Current Watermarking
Techniques. In K. Stefan, & P. Fabien A.P. (Eds.), Information Hiding :
Techniques for Steganography and Digital Watermarking (pp. 121-148).
Boston: Artech House Books.

38

iX.

xi.

XIi.

Xiii.

X1v.

Liew, S., & Jasni, M. (2011). Reversible Tamper Localization and Recovery
Watermarking Scheme with Secure Hash. Furopean Journal of Scientific
Research, 49(2), 249-264.

Puhan, N., & Ho, A. (2005). Restoration in Secure Text Document Image
Authentication Using Erasable Watermarks. Computational Intelligence and
Security, Part II (pp. 661-668). Xi'an: Springer-Verlag Berlin Heidelberg.
Shih, F. (2007). Digital Watermarking and Steganography: Fundamentals
and Technigues. CRC Press.

Yang, H., Li, C.-T., Sun, X., Yang, Y., & Cing. (2008). Removable Visible
Image Watermarking Algorithm in the Discrete Cosine Transform Domain.

Journal of Electronic Imaging, 17(3), 033008.
Yonglie, W., Yao, Z., leng-Shyang, P., & ShaoWei, W. (2005). A Reversible

Watermark Scheme Combined with Hash Function and Lossless
Compression. In R. Khosla, R. Howlett, & L. Jain (Eds.), Knowledge-Based
Intelligent Information and Engineering Systems (Vol. 3682, pp. 1168-1174).
Heidelberg: Springer Berlin.

Zhou, X, Wang, S., Zhou, N., & Yu, J. (2010). An Erasable Watermarking
Scheme for Exact Authentication of Chinese Word Documents. 3rd

International Congress on Image and Signal Processing (pp. 1156-1160).
Yantai: [EEE.

39

APPENDIX I
APPENDIX I
APPENDIX HI
APPENDIX 1V
APPENDIX V
APPENDIX IX
APPENDIX VII
APPENDIX VIII

APPENDICES

: IMAGES USED IN TEST CASES

: C# CODE - CLASS FORM1

: C# CODE - CLASS WATERMARK DETAILS

: C# CODE - CLASS PROJECT HELPER

: C# CODE — CLASS WATERMARKING

: C# CODE - CLASS HASHING

: C# CODE - CLASS ENCRYPTION AND DECRYPTION
: C# CODE - CLASS RECOVERY SCHEME

40

APPENDIX 1

IMAGE USED IN TEST CASES

a) Joint Photographic Expert Group (JPEG)

i. JPEG Image A

ii. JPEG Image B

4]

iii. JPEG Image C

iv. JPEG Image D

v. JPEG Image E

b) Portable Network Graphic (PNG)

i. PNG Image A

ss
11.

ili. PNG Image C

43

iv. PNG Image D

v. PNG Image E

¢) Bitmap (BMP)

i. BMP Image A

ii. BMP Image B

iii. ~BMP Image C

iv. BMP Image D

45

BMP Image E

46

APPENDIX II

C# CODE: CLASS FORM1

using System;

using System Collections. Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System. Windows. Forms;
using Watenmarking;

namespace FYP
d
public partial class Form] : Form
{
private string imageFilePath;
private string watermarkImageFilePath;
private Color textWatermarkColor;
private Font textFont;
private Watcrmark imgWatermarked;

public Form1()
{

InitializeComponent();

initSystem();
initDropDownList();
initTextbox(};

public void initTextbox()
{
xtXpos. Text="10";
xtYpos. Text="]0";
H

public void initSystem()

{
binRemoveWatermark., Visible = false;
bmWatermarkinfo. Visible = false;
textWatermarkColor = Color Black;
textFont = new Font("Times New Roman", 10);

}

public void initDropDownList()
{
string]} opacityList =new string[11] { "0%", "10%", "20%", "30%", "40%", " 50%", "60%",
"100%"};

chxOpacity. DataSource = opacityList;

H

public void toadlmageFromFife(bool watermarked, string imageFilePath}
{

if (watermarked)
{
try
{
IblWatermark. Visible = true;
IbiWatermark Text = "Watermarked Detected”;
IbiWatermark ForeCaolor = Coler,Red;

47

"70%", IESO%H, ugo%u:

binRemoveWatermnark. Visible = true;
binWatermarklInfo. Visible = true;

binSelectWMImage. Enabled = false;
binSave. Enabled = false;

binFont Enabled = false;
txiWatermarkText. ReadOnly = true;
xtXpos.ReadOnly = true;
xtYpos.ReadOnly = true;
¢bxOpacity.Enabled = false;

displayWatermarkedImage{imageFilePath);
!
catch
{
Hlexception
}
'
clse
{
try
{
IWatermark Text="";
IbiWatermark. Visible = false;
binRemoveWatermark. Visible = false;
btnWatermarkinfo. Visible = false;

btaSelectWMimage. Enabled =true;
hinSave.Enabled = true;
btnFont.Enabled =true;
xtWatermark Text ReadOnly = false;
txtXpos.ReadOnly = false;
£xtYpos.ReadOnly =false;
chxQOpacity. Enabled = true;

Image image = Iimage. FromFile(imageFilePath),
pictureBox1.Image = image;

pictureBox1.Size = image. Size;
i
catch
{
ffexception
}
}
}

private void btnLoadlmage Click(object sender, EventArgs €)
{
openFileDialogl. Title = "Open Image File";
openFileDialog] . Filter = "Watermarked Image Files|*. wmim|JPEG Files|*.jpg” +
"|Enhanced Windows MetaFile* em{" +
"[Exchangeable Image Filel* exif" +
"|Gif Files|* gif Bitmap Files[* bmp" +
"PNG Files|* pug[TIFF Files/* tif| Windows MetaFile|*. winf™;
openFileDialogi DefaultExt = "wmim";
openFileDialog] .Filterlndex = 1;
openFileDialogi FileName ="";
openFiteDiatogl . ShowDialog();

/fif the user did not select a file, return
if {openFileDialog! FileName == ""}

refurn;

imageFilePath = openFileDialog! FileName;

48

if(IsWMIMFilc(imageFilcPath))

{
loadimageFromFile(true, imageFilePath);
'
else
{
loadimageFromFile(false, imageFilePath);
i
}
static bool sWMIMFile(string £
{
return f1=null && £ EndsWith{".wmim", StringComparison.Ordinal);
}

privatc void bmSave_Click{object sender, EventArgs ¢}

{
if (Istring. IsNul{OrEmpty{imageFilePath)} && (Istring IsNullOrEmpty(watermarklmageFilePath) |
Istring IsNullOrEmpty(txt Watermark Text. Text)))

t

//string password = Microsoft. VisualBasic. Interaction. Input Box("Please input your password?", "Input Password”,
IIIY};
WatermarkDetails wmDetail =new WatermarkDetails();

DialogResuilt result = wmDetail, ShowDialog();

while(result '= DialogResult.OK || wmDetail.Error)

{
if (result = DialogResult.Cancel)
break;
else
result = wmDetail. ShowDialog();
}

if (*'wmDetail Error && (result == DialogResult.OK))

{
saveFileDialogl Title = "Save Watermarked File";
saveFileDialogl FilterIndex = 1;
saveFileDialogl FileName = string. Empty;
saveFileDialog] . Filter = "Watermarked lmage Files[*. wmim";
saveFileDialogt. DefaudtExt = "wmim";

if (saveFileDialog! ShowDialog() == DialogResuit, OK)

{
if (saveFilePialogl FileName ="")

{

MessageBox.Show("File name cannot be empty", "Error", MessageBoxButtons.QK,
MessageBoxIcon, Warning);
return;

)

else

{
int posY = getPosY();
inf posX = getPosX():

float opacity = getOpacity(),
/save watermark ownership detaiis

if (fstring. IsNullOrEmpty(watermark ImageFilePath))
{

new Watermark().SaveWatermarkedFile{saveFileDialog | .FileName, wmDetail Password, imageFilePath,
watermarkimageFilePath, opacity, posY, posX, wmbDetail. OwnerName, wmDetail. Organization, wmbDetail. Email);
1

else

{
49

new Waiermark().SaveWatermarkedFile(saveFileDialog] FileName, wmDetail Password, imageFilePath,
txtWatermark Text. Text, opacity, posY, posX, textWatermarkColor, textFont, wmDetail. OwnerName, wmbDetail Organization,
wmDetail. Email);

H
}
MessageBox. Show("TFite saved", "Fite Saved”, MessageBoxButtons. OK, MessageBoxlcon. Information);
}
}
H
clse
{

Hdisplay error
if (string IsNullOrEmpty(imageFilePath))
{
MessageBox Show("There is no image selected to be watermarked", "Error", MessageBoxButtons. 0K,
MessageBoxicon Error);
}
else if {string. IsNullOrEmpty(watermarkImageFilePath) && string ISNullOrEmpty{txtWatermark Text. Text))
{
MessageBox Show("There s no watermark image selected or text inserted”, "Error", MessageBoxButtons.OK,
MessageBoxlcon.Error),
}
h
H

private void binSelectWMImage Click({object sender, EventArgs €}
{
openFileDialog2.Title = "Open Image File";
openFileDiatog? Filter = "JPEG Files|* jpg" +
"|Enhanced Windows MetaFile[* emf” +
"[Exchangeable Image File|* exif" +
"|Gif Files|*.gif{Bitmap Files|*.bmp" +
"|PNG Files|*. png|TTFF Filest* tiff Windows MetaFile|* winf";
openFileDialog?. Defaultbxt = "jpg";
openFiteDialog2 FilterIndex = 1;
openFileDialog2. FileName = "";
openFileDialog2 ShowDialog();

// if the user did not select a file, return
if (openFileDialog2 FileName = ""}
Teturn;

watermarkimageFilePath = openFileDialog2 FileName;
xtWMImgPath. Text = watermarkImageFilePath;

float opacity = getOpacity();

int posX = getPosX();

int posY = getPosY();

displayWatermarkedimage(posX, posY, opacity);
j

private void chaOpacity_SelectedindexChanged(object sender, EventArgs e}

{
float opacity = getOpacity();
int posX = getPosX();
int posY = getPosY();

displayWatermarkedlmage(posX, posY, opacity);
H

private void txtXpos_TextChanged(object sender, EventArgs €)
{

float opacity = getOpacity();

int posX = getPosX();

int posY = getPosY{);

50

display Watermarkedlmage(posX, posY, opacity);
H

private void txtYpos_TextChanged(object sender, CventArgs €}
{

float opacity = getCpacity();

int posX = getPosX();

int posY = getPosY(};

displayWatermarkedlmiage{posX, posY, opacity),
}

private float petOpacity()

{
string opacityStr = cbxOpacity.SelectedValue. ToSiring();
float opacity = 0;

switch {opacityStr)
{
case "0%"; opacity =
break;
case "10%": opacity = 1{);
break;
case "20%": opacity = 20;
break;
case "30%": opacity = 30;
break;
case "40%"; opacity = 40;
break;
case "50%": opacity = 50;
break;
case "60%": opacity = 60;
break;
case "T0%"; opacity = 70;
break;
case "80%": opagity = 80,
break;
case "90%": opacity = 90;
break;
case "100%": opacity = 100,
break;
}

return opacity;
i

private int getPosX()
{
if (string INullOrEmpty(ixtXpos. Text))
return 0;
else
return Convert. Tolnt32(txtXpos. Text);
}

private int getPosY()
{
if (string IsNulOrEmpty(txt Y pos. Text))
return {;
else
refurn Convert, Tolnt32(xtY pos. Text);
}

private void displayWatermarkedimage(int posX, int posY, float opacity}

{
if (Istring ISNuOrEmpry{watermarkImageFilePath) && !string IsNollOrEmpty(imageFilePath))

51

{

Bitmap bmp = new Watermark().combinecImage(opacity, Image FromFile(watermarkImagcFilePath),
Image.FromFile{imageFilePath), posX, posY);

pictureBox1.image = bmp;
pictureBox1.Size = bmp.Size;

)

else

{

flerror message

}
}

private void display Watermarkedimage{siring filepath)
{

Watermark wm =new Watermuark();

Image im = wm loadWatermarkedimage(filepath);
pictureBox1.Image = im;
pictureBox1 Size = im.Size;

imgWatermarked = wm;

!

private void displayWatermarkedImage(int posX, int posY, float opacity, string text)
{
if (Istring ISNullOrEmpty(imageFilePath))

{
Bitinap bmp = new Watermark().combineTexiopacity, Image FromFile(imageFilePath), text, textFont,
textWatermarkColor, posX, posY);

pictureBox1.Image = bmyp;
pictureBox1.Size = bmp.Size;

}
}

privite void btnFont_Click(ebject sender, EventArgs e}

{
if (fontDialogi.ShowDialog() = DialogResult.Cancel)

{
textFont = fontDialogl Font;

textWatermarkColor = fontDialogl.Color;
string WatermarkText = txtWatermark Text. Text;

float opacity = getOpacity(};
int posX = getPosX();
int posY = getPosY();

displayWatermarkedImage(posX, posY, opacity, WatermarkText),
}
}

private void txtWatermarkText TextChanged(object sender, EventArgs €)

{

steing WatermarkText = tatWatermark Text. Text;
float opacity = getOpacity();

int posX = getPosX();

int posY = getPosY(};

displayWatermarkedimage(posX, posY, opacity, Watermark Text);
}

private void bmRemoveWatermark_Click({object sender, EventAras e)

{
52

string password = Microsoft. VisualBasic Interaction. InpatBox("Please input your password?", "Input Password”, ™;
bytef] imageBytes = new Watermark ().check WatermarkPassword(password, imageFilePath);

if {irnageBytes = null}
{
MessageBox.Show("Incorrect Password", "Error", MessageBoxButtons.OK, MessageBoxleon.Error);
return;
H
else
‘
saveFileDialog?. Title = "Save Image File";
saveFileDialog2 FilterIndex = 1;
saveFileDialog2 FileName = string. Empty,
saveFileDialog2 Filter = "JPEG Files/* jpg" +
"|Enhanced Windows MetaFile[*.emf" +
"|[Exchangeable Image File|*.exif" +
"|Gif Files|* .gtfBitmap Files|* bmp" +
"IPNG Files{*.png[TTFF Files|* tiff] Windows MetaFile[*.wmf";
saveFileDiatog2 DefaultExt = "jpg";

if (saveFileDialog2. ShowDialog() == DialogResult.OK)
{

if (saveFileDialog2.FileName — "")

{

MessageBox. Show("File name cannot be empty”, "Error’, MessageBoxButtons. 0K, MessageBoxIcon, Warsing);
retirn;

}

clse

{
new Watermark().Savelmage(saveFiteDialog2 FileName, imageBytes, saveFileDialog2 Filterindex);
MessageBox Show("File saved", "File Saved", McssageBoxButtons. OK, MessageBoxIlcon Information);

}

H
i
}

private void binWatermarkinfo_Click{object sender, EventArgs €}
{
string [Jowner = imgWatermarked. OwnerDetail;

string displayOwner = string. Format("Owner's Name : {0}\nOrganization ; {1}\nE-Mail - {2}\n", owner[0], owner{1],
ownerf[2]);

McssageBox.Show(displayOwner, "Owner Information", MessageBoxButtons.OK, MessageBoxcon. Informaiion);

}

53

| APPENDIX HI
C# CODE: CLASS WATERMARK DETAILS

using System;

using System.Collections. Generic;
using System.ComponentModel;

using System.Data;

using System.Drawing,

using System.Ling;

using System. Text;

using System. Windows.Forms;

using System. Text, RegularExpressions;

namespace FYP
{
public partial class WatermarkDetails : Form
{
private string password;
private string ownerName;
private string organization,
private string email;
private hool error;

public WatermarkDetails()

{
InitializeComponent();
password = string Empty;
ownerName = siring. Empty;
organization = siring Fmpty;
email = string, Empty;

}

private void bmConfirm_Click{object sender, EventArgs €)

{

error = false;

if (Istring. sNulOrEmpty({txtPassword. Text) && Istring. sNullOrEmpty(btConfirmPassword. Text))
{

if(tixtPassword. Text. Equats(ttConfirmPassword Text))

{

MessageBox Show("Password and Confinm Password value is different", "Error", MessageBoxButtons OK,
MessageBoxlcon Error);
return;

b
}

string errorMsg = string. Empty;
bool encounterError = false;

if (string IsNullOrEmpty(txtOvwnerName. Text))
{

encounterError = true;
errorMsg = string Format(errorMsg + "Owner's Namg is required.\n");

b

if {string IsNullOrEmpty(txtOrganization. Text))
{

encounterErmor = true;
crrorMsg = string. Format(errorMsg + "Organization is required.\n");

¥

if (string. EsNullOrEmpty(txteMail. Text))

54

}

{
encounterError =true;
errorMsg = string. Format{errorMsg + "E-mail address is required.\n");

}

it (string. IsNeltOrEmpty{txtPassword. Text))
{
encounterError = true;
errorMsg = string. Format({errorMsg + "Password is required.\n");

}

if (slring.IsNuJIOrEmpty(txlConﬁnnPassword.Texi))
{
encounterError = true;
errorMsg = string Format(errorMsg + "Confirm Password is required.\n");

}

string emailExpression = @"\wH{[-+. Tow+) ¥ @ vw+([- ow-+) U w ([Jow-H) "
Regex emailRe = new Regex({emailExpression),

if (Istring IsNullOrEmpty(txteMail. Text) £& lemailRe IsMatch(txteMail. Text))
{

encounterBrror = true;

errorMsg = string. Format(errorMsg + "E-Mail entered format is wrong.\n");

}

if (encounterError)

{
MessageBox . Show(errorMsg, "Error”, MessageBoxButtons. OK, MessageBoxicon Emor);
error = true;

}

if (ferror)

{
password = txtPassword. Text;
ownerName = txtOwnerName. Text;
organization = txtOrganization. Text;
email = txteMail Text;
Close();

}

private void binCancel_Click{object sender, EventArgs €)

{
}

Close();

public string Password

{

}

get
{

refurn password;

}

public string OwnerName

{

}

get

{

return ownerMName:;

}

public string Organization

¢

get

35

{
Teturn organization;
}
}

public string Email
{
get
{
retarn email;
)
i

public bool Error
{
get
{
return error;
!
¥

56

APPENDIX IV

C# CODE: CLASS PROJECT HELPER

using, System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ProjectHelper

{
public class ConstantHelper
{
public class AppsSciting
{
public const string TEMP_FILE_PATH = @"C:\Temp\",
public const string IMAGE = "image.enmg”;
public const string WATERMARK. IMAGE = "wmlImage.enmg";
public const string RECOVERY = "recovery.recv”;
i
}
H

57

APPENDIX V
C# CODE: CLLASS WATERMARKING

using System;

using System.Collections.Genetic;
using System.Text;

using System.Drawing;

using System.Drawing Imaging;
using System.10;

using Security;

using lonic.Zip;

using ProjectHelper;

using System.ComponentModel;
using System.Security. Cryptography;
using Recovery;

namespace Watermarking

{

public class Watermark

{

private string[] ewnerDetail;

public Image loadWatermarkedlmage(string filePath)
{
return loadWMImageFile(fitePath);

}

public void SaveWatermarkedFile(string fileName, string password, string ImagePath, string WatermarkImagePath, float
opacity, int posY, int posX, string ownerName, string organization, string email)
{
string Hash;
string Salt;

Hashing _hashObj = new Hashing();

EncrypticnandDecryption _EncandDecObjl = new EncryptionandDecryption();
EncryptionandDecryption _EncandDecObj2 = new EncryptionandDecryption();
EncryptionandDecryption _EncandDecObj3 = new EncryptionandDecryption();
RecoveryScheme _RecoveryObj = new RecoveryScheme(),

_bashObj GetHash AndSaltString(password, out Hash, out Sait);

string imageString = convertlmageToBase64String(ImagePath);

string watermarkImageSiring = convertlmageToBase64 String(WatermarkImagePath);
ffimage

string encPass = _hashObj.GetHash(Hash, Sait};

string encryptedimageString = _EncandDecObj 1. EncryptString(imageString, encPass);
/lappend header that contain the salt and hash value of the password

string header = Hash + Salt;

encryptedimageString = header + encryptedimageString;
writeToFile{encryptedImageString, true, fileName, false);

/iWatermark

string wmPass = _hashObij.GetHash(Salt, Hash);

Howner
string watermarkOnwerString = string. Format("{0};{1};{2};", ownerName, organization, email);

58

string wmOnwerBase64 = Cenvert. ToBaseb4String(Encoding ASCH GetBytes(watermarkOnwerString));
string encryptedOwner = _EncandDecObj2 EncryptString(wmOnwerBase64, wmPass);

string encrypted WatermarkString = _FncandDecObj3.EncryptString(watermark ImageString, wmPass);

/fwatermark header contains the watermark information and position + opacity
string wmHeader = string Format("{0},{1},{2},{3}.", opacity, posX, posY, true);

string wmHeaderBase64 = Convert. ToBase64String(Encoding. ASCIL GetBytes(wmHeader));

encryptedWatermarkString = string.Format("{0}//,//{1}//,//2}", wmHeader, encryptedOwner,
encryptedWatermarkString);

writeToFile(encryptedWatermark String, false, fileName, false);

string recoverylnfo = RecoveryObj. createRecoveryFile(imageString, watermarkImageString, Hash, Salt,
wmOnwerBase64, wmHeaderBase64, true);

writeToFile(recoverylnfo, false, fileName, true);

}

public void SaveWatermarkedFile(string fileName, string password, string ImagePath, string WatermarkText, float
opactty, int posY, int posX, Color myColor, Font myFont, string ownerName, string organization, string emai)
{
string Hash;
string Sait;
Hashing _hashObj = new Hashing{);
EncryplicnandDecryption _EncandDecObj1 = new EncryptionandDecryption{);
EncryptienandDecryption _EncandDecObj2 = new EncryptionandDeeryption();
EncryptionandDecrypticn _EncandDecObj3 = new EncryptionandDecryption();
RecoveryScheme _RecoveryObj =new RecoveryScheme(),
_hashOhbj GetHashAndSaltString(password, out Hash, out Salt);
string imageString = convertimageToBase64String(ImagePath);

ffimage
string encPass = _hashObj.GetHash(Hash, Salt);

string encryptedimageString = _EncandDecObj 1. EncryptString(imageString, encPass);
/fappend header that contain the salt and hash value of the password

string header = Hash + Salt;

encryptedimageString = header + encryptedImageString;
writeToFile(encryptedImageString, true, fileName, false);

HWatermark

string wmPass = _hashObj.GetHash(Salt, Hash);

TypeConverter tcFont = TypeDescriptor. GetConverter(typeof(Fout));
string fontString = tcFont ConvertToString(myFont);

TypeConverter teColor = TypeDescriptor GetConverter{typeof(Color));
string colorString = tcCotor.ConvertToString{myColor);

string watermarkString = string. Format("{0}; {1};{2},", WatermnarkText, colorString, fontString);

string watermarkOnwerString = string. Format(" {0} ;{1 }.{2}.", ownerName, organization, ¢mail);

string wmOnwerBase64 = Convert. FoBase64String(Encoding. ASCIHL GetBytes(watermarkOnwerString));
string encryptedOwner = _ EncandDecObi2 EncryptString(wmOnwerBase6d ,wmPass);

string encryptedWatermarkString = _EncandDecObj3. EncryptString(watermarkString, wmPass},

59

{iwatermark header contains the watermark information and position + opacity
string wmHeader = string.Format("{0};§1}:{2}.{3}.", opacity, posX, posY, false);

string wmHeaderBase64 = Convert. ToBase64String(Encoding. ASCIL GetBytes(wmHeader));
encryptedWatermark String = string Format{" {0}//;//{1}//,//{2}", wmHeader, encryptedOwner,
encryptedWatermarkString);

writeToFile(encryptedWatermarkString, faise, fileName, false);

string recoverylnfo = RecoveryObj.createRecoveryFile(imageString, watermarkString, Hash, Salt, wmOnwerBase64,
wmHeaderBase64, false);

writeToFile(recoverylnfo, false, fileName, true);

}

private void writeToFile(string content, bool isImageFile, string fileName, bool isRecovery)
{
string tempFileName;
string templmagePath = string Format("{0} {1}", ConstantMHelper. AppsSctting. TEMP_FILE PATH,
ConstantHelper AppsSetting IMAGE),
string tempWatermarkPath = string Format(" {0} {1} ", ConstantHelper. AppsSetting. TEMP_FILE_PATH,
ConstantHelper. AppsSeiting. WATERMARK IMAGE),

string tempRecoveryPath = string.Format(" {0} {1}", ConstantHelper. AppsSctiing. TEMP_FILE PATH,
ConstantHelper. AppsSeiting. RECOVERY),

if (iskmageFile)

tempFileName = templmagcPath;
else if(isRecovery)

tempFileName = tempRecoveryPath;
slse

tempFifeName = tempWatermarkPath;

using (StreamWriter sw = new S{reamWriter(tempFileName))
{
sw. Write(content);

H

if (isRecovery)
{
using (ZipTile zip = new ZipFile())
{
String[} filenames = { templmagePath, tempWatermarkPath, tempRecoveryPath };
zip.CompressionLevel = lonic. ZHb.Compressionicvel BestCompression;
zip.AddFites(filenames, "),
zip.Save(string Format{" {0}", fileName})),
H

File DeleteftemplmagePath);
File.Delete(tempWatermarkPath),
Iile.DeleteftempRecoveryPath);
}
}
private string convertlmageToBase64String(string ImagePath)
{

Image orilmage;

orilmage = Image FromFile(ImagePath);
byte[] bytestream = imageToByteArray(orilmage);

string imageSiring = Convert. ToBase64String(bytestream);

return imageString;

60

private byte[] imageToByteArray(lmage nmageln)
{
MemeryStream ms =new MemoryStream();
ImageFormal format = imageln RawFormat;
imageln Save(ms, format),
/imageln.Save{ms, ImageFormat Bmp);
refurn ms. ToArray();

¥

private string readFromFile(string filepath)

{
string str;

using (StreamReader st =new StreamReader(filepath))
{
str = sr.ReadToEnd();

}

return str;

}

privaie Image byteArrayTolmage(byte[] byte ArrayIn)

{
MemoryStream ms = new MemoryStrcam(byteArrayln);
Image returnlmage = Inage FromStream{ms};
return returnimage;

}

public Bitmap combinelmage(float opacityvalue, Image watermarkTmage, Image orifmage, int xPosOfWm, int
yPosOfWm)

{
opacityvalue = opacityvalue / 100;

Bitmap bmPhoto = new Bitmap{orilmage};
Graphics grPhoto = Graphics.FromImage(bmPhoto);

int wmimgHeight = watermarkImage. Height;
int winimgWidth = watermarklmage, Width;

ImageAttribules imageAttributes = new TmageAttributes();

ColorMatrix cotormatrix = new ColorMatzix();
colormatrix Matrix33 = opacityvalve;

tmageAttributes. SetColorMatrix(colormatrix, ColorvatrixFlag Default, ColorAdjustType Bitmapy),

grPhoto. Drawlmage(watermarkimage,
new Rectangle(xPosOfWm, yPosOfWm, wmimgWidth, wmimgHeight), //Set the detination Position
0, /i x-coordinate of the portion of the source image to draw.
0, # y-coordinate of the portion of the source image to draw.
wmimgWidth, /f Watermark Width
wrimgHeight, # Watermark Height
GraphicsUnit Pixel, // Unit of measurment
imageAstributes);, //ImageAttribuies Object

return bmPhoto;
}

public Bitmap combineText(float opacityvalue, Image orilmage, string textWaiermark, Font myFont, Coler
myWatermarkColor, int posX, int posY)

{
int opacity = Converl.Tolnt32(opacityvalue / 100 * 255),

Bitmap bmPhoto = new Bitmap{crilmage);
Graphics grPhoto = Graphics. Fromimage(bmPhoto),

61

/ Create a solid brush o write the watermark text on the image
Brush myBrush =new SolidBrush(Color. FromArgb(opacity, myWatermarkColor));

/# Calculate the size of the text
SizeF sz = grPhoto. MeasureString(textWatermark, myFont);

/I draw the water mark text
grPhoto. DrawString(textWatenmark, myFont, myBrush, new Point(posX, posY));

return bmPhoto;

}

private Image loadWMImageFile(string filepath)
{

var wmMemoryStream = new MemoryStream();
var imageMemoryStream = new MemoryStream();

using {ZipFile zip = ZipFile. Read(filepath))

{
ZipEntry imentry = zip[ConstantElelper.AppsSetiing IMAGEY;
imentry Extract(imageMemoryStream);

ZipEntry wmentry = zip[ConstantHelper AppsSetiing. WATERMARK IMAGE];
wmentry. Extraci{wmMermnoryStream);
}

EncryptionandDecryption _EncandDecObjl = new EncryptionandDecryption(};
EncryptionandDecryption _EncandDecCbj2 = new EncryptionandDecryption();
EncryptionandDecryption _EncandDecObj3 =new EncryptionandDecryptiond);
Hashing _hashObj = new Hashing(};

RecoveryScheme _recoveryObj = new RecoveryScheme(),

ffimage
string imageFileContent = Fncoding. ASCH. GetString(imageMemoryStream. ToArray());

string Hash = imageFileContent. Substring(0,88) ;
string Salt = imageFileContent Substring(88,12) ;

siring encryptedimage = imageFileContent.Substring(100);
string encPass = _hashObj.GetHash(Hash, Sakt);

string decryptedimageSiring = _EncandDecObj1. DecryptString{encryptedlmage, encPass);
bytel] imageBytes = Convert FromBase64String{decryptedImageString);

if {!_recoveryObj.compareHash(filepath, imageBytes, true))
{
/fperform recovery
string recovery = _recoveryObj.performRecovery(filepath, ConstantHelper. AppsSetting IMAGE, true);

imageBytes = Convert.FromBase64String(recovery);

}

[hwatermark

string [separator = {"//;//"};

string wmFileContent = Cncoding ASCIL GetString(wmMemoryStream. ToArray());
string{} wmContent = wmFileContent. Split(separator, 3, StringSplitOptions None);

string wmlntd = wmContentf0];
siring encryptedOnwer = wmContent[1];
string encrypiedWMImage = wmContent]2};

Hwm info

62

false);

false);

}

stringf} info = wminfo.Split(";);

float opacityvatue = float.Parse(info{01);

int posX = Convert. Tolnt32({info{1]);

int posY = Convert. Tolnt32(infof2]);

bool isImage = Convert. ToBoolean(info[3]);

Hwatermark password

string encWMPass = hashObj.GetHash(Salt, Hash};

{iwatermark owner details
string decryptedOwner64String = _EncandDecObj2 DecryptString(encryptedOnwer, encWMPass);

byte]] byteOnwer = Convert. FromBase64String(decryptedOwner64String);

string wmOwner = Encoding ASCILGetString(byteOnwer);
ownerDetail = wmOwner. Split(;');

string decryptedWMString = EncandDecObj3. DecrypiString(encryptedWMimage, encWhMPass);

Bitmap bmp =null;

Image image = byte Array Tolmage({imageBytes);

if (isTmage)
{
byte[] wmimageBytes = Convert. FromBase64String{decrypted WMString);

if {1_recoveryObj.comparcHash(filepath, wimimageBytes, false))

{
string recovery = _recoveryObj.performRecovery(filepath, ConstaniHelper. AppsSetling. WATERMARK IMAGE,

wmbmageBytes = Convert, FromBase64String(recovery),
}

Image wmimage = byteArrayTolmage(wmImageByies);

bmp = combineImage(opacityvalue, wmlmage, image, posX, posY);
H

else

{
byte[} wmBytes = Encoding. ASCH.GetBytes(decryptedWMString);
if (1_recoveryObj.comparcHash(filepath, wmByies, false))
{

Hperform recovery
string recovery = _recoveryObj.performRecovery(filepath, ConstantHelper. AppsSetting. WATERMARK, IMAGE,

decrypted WMString = recovery;
}

string[] textinfo = decrypted WMString. Sphit(';');

TypeConverter tcFont = TypeDescriptor.GetConverer(typeofiFont));
Font myFont = (Font)icFont. ConvertFromString(textinfo{2]);

TypeConverter teColor = TypeDescripior. GetConverter{typeof(Color));
Color myColor = {ColonteColor.ConvertFromSwring(textInfo[1T);

bmp = combineText{opacityvalue, image, textlnfo[0], myFont, myColor, posX, posY);
}

return bmp;

public byte[] checkWatermarkPassword(string password, string filepath)

{

var imageMemoryStream = new MemorySireamd);

63

using (ZipFile zip = ZipFile. Read(filepath))

{
ZipEntry imentry = zipfConstantHelper AppsSetting IMAGE],
imentry.Exiract{imageMemoryStream);

}
string imageFiteContent = Encoding. ASCIL GetString(imageMemorySteam. ToArmray()),

string Hash = imageFileConient.Substring(0, 83);
string Salt = imageFileContent Substring(88, 12);

Hashing hashObj = new Hashing();
string hashValue = _hashObj.GetHash(password, Sait);

if (Hask.Equals(hashValue))

{
string encryptedimage = imageFileContent Substring(100};

return removeWatermark(Hash, Salt, encryptedlmage);

}

clse

{

return nell;
}
}

private byte[} remove Watermark(string Hash, string Salt, string encryptedimage)

{
EncryptionandDecryption _EncandDecObj! = new EncryptionandDecryption();

Hashing _hashObj =new Iashing();
string encPass = _hashObj.GetHash{Hash, Salt};

string decryptedimageString = _FEncandDecObjt.DecryptString(encryptedimage, encPass);
bytef] imageBytes = Converl.FromBase64String(decryptedImageString);

return imageBytes;

}

public void Savelmage(string path, byte[] imageByte, int filierTndex}
{

MemoryStream ms = new MemoryStream(imageByte);
Image image = Image. FromStream(ms);

switch {filterlndex)

{

casc 1:
{fpash = string. Format(" {0} jpg", path};
image.Save(path, ImagcFormat. Jpeg),
break;

case 2:
/ipath = string Format(" {0} .em{", path);
image Save{path, Imagelormat. Emif);
break;

case 3:
{/path = string Format{" {0} .exif", path);
image.Save(path, Imagel'ormat.Exif},
break;

case 4:

ffpath = string Format(" {0} .zif", path},
image.Save(path, ImageFormat.Gif);
break;

64

}

H

case 5:
/path = string Format(" {0} bmp", path),
nnage.Save(path, inageFormat. Bop),
break;

case 6
Hpath = string. Format(" {0}.png", path);
image.Save(path, ImageFormat. Png);
break;

case 7:
Hpath = string Format{" {0 }.tiff", path);
image Save(path, ImagcFormat. Tiff),
brealk;

case 8:
Hpath = string. Format(" {0} .wmf", path};
image.Save(path, ImageFormat. Wmf);
break;

public string{} OwnerDetail

get

return ownerDetail;

65

APPENDIX IX

C# CODE: CLASS HASHING

using Systent;

using System.Collections.Generic;
using System. Text;

using System.Security.Cryptography;

namespace Security

public class Hashing

{
private HashAlgorithm HashProvider;
private int Saltl ength;

public Hashing(HashAlgorithm HashProvider, int SaltLength)
{

this.HashProvider = HashProvider;

this.SaltLength = SaltLength;
}

public Hashing()

{
HashProvider =new SHAS512Managed();
SaltLength = §;

}

private byte[} ComputcHash(byte[] Data, byte[] Salt)

{
// Allocate memory to store both the Data and Salt together
byte[] DataAndSalt = new byte{Data.Length + SaltLength];

// Copy both the data and salt into the new array
Array.Copy(Data, DataAndSalt, Data. Length);
Array.Copy(Salt, 0, DataAndSalt, Data.Length, SaltLength);

/ Cafculate the hash
/f Compute hash value of our plain text with appended salt.
return HashProvider. ComputeHash{DataAndSalt),

}

public void GetHashAndSatt(byte[] Data, out byte[] Hash, out byte[] Sait)
{

/f Allocate memory for the salt

Salt = new byte[SaltLength];

// Strong runtime pseudo-random number generator, o Windows uses CryptAP]
/ on Unix /dev/urandom
RNGCryptoServiceProvider random = new RNGCryptoServiceProvider();

// Create a random satl
random. GetNonZeroBytes(Salt);

// Compute hash value of our data with the salt.
Hash = ComputeHash(Data, Salt);
}

public void GetHashAndSaitString(string Data, out string Hash, out string Salt)

{
byte[] HashOui;
bytel] SaltOut;

66

/1 Obtain the Hash and Salt for the given string
GetHashAndSalt(Encoding. UTF8.GetBytes(Data), out HashOut, out SaltOut);

{f Transform the byte]] to Base-64 encoded strings
Hash = Convert. ToBase64 String{HashOut);
Salt = Convert. ToBase64String(SaltOut);

}

public string GetHash(string Data, string Salt)
{
byte[] HashOut;
HashOut = ComputeHash(Encoding UTF8.GetBytes{Data), Convert. FromBasc64String(Salt));

return Convert. ToBase64String(HashOut),
}

67

APPENDIX VII

C# CODE: CLASS ENCRYPTION AND DECRYPTION

using System;

using System.Collections.Generic;
using System. Text;

using System.Security. Cryptography;
using System.IO;

namespace Security

{
public class EncryptionandDecryption
{

public string EncryptString(string InputText, string HashVahue)
{

/ "hash value" string variable the key(vour secret key)

A "nputFext” string variable is the text to be encrypted.

/ We are now going to create an instance of the

// Rihndaet class.

RijndaeIManaged RijndaelCipher =new RijndaciManaged();

byte{] PlainText = Encoding Unicode GetBytes(InputText),

i We are using Salt to make it harder to guess our key
/ using a dictionary attack.
byte[} Salt = Encoding. ASCIL GetBytes(Hash Vatue.Length. ToString());

/f The (Secret Key) will be generated from the specified

// HashValue and Sait.

/f PasswordDeriveBytes - It Derives a key from a HashValue
PasswordDeriveBytes SecretKey = new PasswordDeriveByics(HashValue, Salt);

Create a encryptor from the existing SecretKey bytes.

/ We use 32 bytes for the secret key

// {the default Rijndael key length is 236 bit = 32 bytes) and
/f then 16 bytes for the TV (initialization vector),

/ (the defavlt Rijndael IV length is 128 bit = 16 bytes)

[CryptoTransform Encryptor = RijndaelCipher. CreateEncryptor(SecretKey.GetBytes(16), SecretKey.GetBytes(16));

// Create a MemoryStream that is going to hold the encrypted bytes
MemorySéream memoryStream = new MemoryStream(};

{/ Create a CryptoStream through which we are going to be processing our data.

// CryptoStreamMode. Write means that we are going to be wrifing data

/ to the stream and the output will be written in the MemoryStream

/f we have provided. (always use write mode for encryption)

CryptoStream cryptoStream = new CryptoStream({memoryStream, Encryptor, CryptoStreamMode. Wriie);

// Start the encryption process.
cryptoStream. Write(PlainText, 0, PlainText.Length);

// Finish encrypting.
cryptoStream FlushFinalBlock();

/f Convert our encrypted data from a memoryStream into a byte array.
byte[] CipherBytes = memoryStream. ToArray();

{f Close hoth streams,

memoryStream. Close();
cryptoStream.Close();

68

// Convert encrypted data into a base64-encoded string,

/i A common mistake would be to use an Encoding class for that,

/ It does not work, because not all byte values can be

/l represented by characters. We are geing to be using Base64 encoding
// That is designed exactly for what we are trying to do.

string EncryptedData = Convert. ToBase64String{CipherBytes);

RijndaelCipher.Clear();

/f Return encrypted string.
return EncryptedData;
}

public string DecryptSiring(string InputText, string Password)
{
try

{
RijndaciManaged RijndaclCipher =new RijndaelManaged();

byte[] EncryptedData = Convert. FromBase64String(lnput Text);
byte[] Salt = Encoding. ASCIH.GetBytes(Password. Length. FoString(});

PasswordDeriveBytes SecretKey = new PasswordDeriveBytes(Password, Salt);

/ Create a decryptor from the existing SecretKey bytes.
{Cryptotransform Decryptor = RijndaelCipher. CreateDecryptor{SecretKey. GetBytes(16), SecretKey. GetBytes(16)),
MemoryStream memoryStream = new MemorySiream(EncryptedData);

/ Create & CryptoStream. {always use Read mode for decryption).
CryptoStream cryptoStream = new CryptoStream{memoryStream, Decryptor, CryptoStreamMode. Read);

/ Since at this point we don't know what the size of decrypted data
/ will be, atlocate the buffer long enough to hold EncryptedData,
H DecryptedData is never longer than EncryptedData.

byte[] PlainText = new byte]{EncryptedData. Length];

Start decrypting.
int DecryptedCount = cryptoStream Read{PlainText, 0, PlainText.Length);

memoryStream.Close();
cryptoStream.Close();

Convert decrypted data into a string.
string DecryptedData = Encoding. Unicode. GetString({PlainText, 0, DecryptedCount);

RijndaelCipher.Clear();

return DecryptedData;
}
catch(Exception e)
{
using (StreamnWriter sw = new StreamWriter(@"C:\Users\CFC\Desktop'error. ixt")}
{
sw.WriteLine(e. Message);
sw.WritéLinig(e. InnerException);
sw.WriteLine(e.Source);
sw.WriteLine(e. StackTrace),

}

return null;
}
3
}
i

69

APPENDIX VIII
C# CODE: CLASS RECOVERY SCHEME

using System;

using System.Collections.Generic;,
using System.Text;

using System.Security.Cryptography;
using Security;

using lomic.Zip;

using ProjectHelper;

using System.1Q;

namespace Recovery

{

public class RecoveryScheme

{

private string recoveryContentString;

public RecoveryScheme()

{
recovervContentString = string. Empty;

}

public string createRecoveryFile(string imageString, string watermarkString, string Hash, string Salt, string onwerlnfo,
string watermarkProperties, bool isimage)

{
hyte[] imageBytes = Convert FromBase64String(imageString);

string imageHash = calculateSHAS12Hash(imageBytes);
string watermarkHash;

if(isimage)

watermarkHash = calculateSHAS 12Hash{Convert FromBase64 String{watermark String));
else

watermarkHash = calculateSHAS 12Hash(Encoding. ASCIL GetBytes(watermarkString));

string recoveryContent = string Format(" {0 }//;// {1} /12U AH{3 Y4753 ", Hash, Salt, imageString,
watermarkProperties, onwerlnfo, watermarkString);

[Hashing _hashQObj = new Hashing();
EncryptionandDeeryption EncandDeeObj1 = new EncryptionandDecryption();

string recoveryHash,
string recoverySalt;

string password = calculateSHAS12Hash{Encoding. ASCILGetBytes(recoveryContent)),

_hashObj GetHashAndSalSiring(password, out recoveryHash, out recoverySait);
string encPass = _hashObj GetHash(recoveryHash, recoverySalt);

string encryptedRecoveryContent = _EncandDecObjl.EncryptSiring(recoveryContent,encPass);

string finatContent = string. Format(" {0} {1} {2} {3} {4}", imageHash, watermarkHash, recoveryHash, recoverySalt,
encryptedRecoveryContent);

return finalConfent;

}

private string calculateSHAS12Hashi{byte [] imageBytes)

{
SHAS512 sha512 = SHAS12CryploServiceProvider.Create();

byte[] hash = sha512 . ComputeHash(imageBytes);

70

return Convert, ToBase64String(hash);
}

private bool compareTwoHash(byte[} imageBytes, string hashString)}

{
string hashValue = caloulateSHAS12Hash(imageBytes);

if (string Equals(hashValue, hashString))
return true;

else
retum false;

}

public bool comparcHash(string filePath, byte[] imageBytes, bool islmage}
{

var recoveryStream = new MemoryStream{);

using {ZipFile zip = ZipFile Read(filePath))

{
ZipEntry imentry = zip[ConstantHelper AppsSetling. RECOVERY],
imentry Extract{recoveryStream);

}
recoveryContentString = Encoding ASCIL GetString{recoveryStream, ToArray());
string Hash;

if{isimage)

Hash = recoveryContentString. Substring(0, 88);
else

Hash = recoveryContentString. Substring(88, 88);

retumn compare TwoHash(imageBytes, Hash);
H

public string performRecovery(string filepath, string fileName, bool isImage}
{

Hashing _hashObj = new Hashing();
EncryptionandDecryption _EncandDecObj1 = new EncryptionandDecryption();
EncryptionandDecryption _EncandDecObj2 =new EncryptionandDecryption();

string recoveryHash = recoveryContentString. Substring(176, 88);
string recoverySalt = recoveryContentString. Substring(264, 12);

string encPass = _hashObj.GetHash(recoveryHash, recoverySait),
string encryptedRecoveryContent = recoveryContentSiring Substring(276);

string decryptedRecoveryContent = _EncandDecObji.DecryptString(encryptedRecoveryContent, encPass);

string [] separator = {"//,//"},;
string [] recoveryContent = decryptedRecoveryContent. Split(separator, 6, SiringSplitOptions. None);

string Hash = recoveryContent{(];
string Salt = recoveryContent[!];

string fileContent = string. Empty;
string returnString = string Empty;

if (isImage)

{
refurnString = recoveryContent[Z];

string encPassimage = _hashObj.GetHash(Hash, Salt);
string encryptedimageString = EncandDecObj1. EncryptString(recoveryContent[2], encPassimage);

71

string header = Hash + Salt;

fileContent = header + encryptedlmageString;
i

else

{

returnString = recoveryContent[3];
string wrnPass = hashObj.GetHash(Salt, Hash),

string encryptedOwner = _EncandDecObj . EncryptString(recoveryContent]4], wmPass);
string encryptedWalermarkString = _EncandDecOby2 EncryptSiring{recoveryContent[5], wmPass);

fileContent = string. Format(" {0}//,//{1}//;//{2}", recoveryContent[3], encryptedOwner, encryptedWatermarkString);
}

using (ZipFile zip = ZipFile.Read(filepath))

{
zip.UpdateEntry(fileName, fileContent);

zip.CompressionLevei = lonic.Zlib.Compression Level BestCompression;
zip.Save();
}

retum retumString;

72

