
 

 

 

 

Hydrate Formation in Multiphase Flow in Pipe  

 

By 

 

Seng Sook Harn  

12842 

 

 

 

Interim Report submitted in partial fulfillment of 

The requirements for the  

Bachelor of Engineering (Hons) 

(Mechanical Engineering) 

 

AUGUST 2013 

 

 

 

 

Universiti Teknologi PETRONAS 

Bandar Seri Iskandar 

31750 Tronoh 

Perak Darul Ridzuan 



i 

 

 

 

Hydrate Formation in Multiphase Flow in Pipe  

 

By 

Seng Sook Harn 

 

A project dissertation submitted to the  

Mechanical Engineering Programme 

Universiti Teknologi PETRONAS 

in partial fulfillment of the requirement for the  

BACHELOR OF ENGINEERING (Hons) 

(MECHANICAL ENGINEERING) 

 

 

 

Approved by,               Approved by, 

 

__________________________                                         _______________________ 

(Dr. Aklilu Tesfamichael)                                                   (Dr. William Pao) 

 

 

 

 

 

UNIVERSITI TEKNOLOGI PETRONAS 

TRONOH, PERAK 

August 2013 



i 

 

 

 

 

CERTIFICATION OF ORIGINALITY 

 

 

This is to certify that I am responsible for the work submitted in this project, that the 

original work is my own except as specified in the references and acknowledgements, 

and that the original work contained herein have not been undertaken or done by 

unspecified sources or persons. 

 

 

 

_______________________________ 

SENG SOOK HARN 

 

 

 

 

 

 

 



ii 

 

 

 

 

ABSTRACT 

 

Hydrate blockage in pipelines is a serious problem to the oil and gas industries.  Hydrate 

formation occur in pipelines which are under high pressure and fairly low temperature, 

most frequently encountered in deep sea oil and gas production. Plugged-up pipelines 

cast impacts on the fluid multiphase flow in pipes such as pressure drop and decreased 

flow rate. Specifically, this research’s objectives are firstly i) to develop multiphase 

model of the hydrate formation and deposition inside a multiphase flow pipe and ii) to 

investigate the effect of different inlet velocity, hydrates particles diameter, interfacial 

area density and flow viscosity on the hydrate formation and plugging behavior in 

pipelines. This research had performed modeling on the multiphase flow and hydrate 

growth using ANSYS CFX. The two objectives were met at the end of the project as a 

multiphase model which is able to represent the hydrate formation in multiphase flow 

pipe was developed. Also, the relationship between flow inlet velocity, hydrates particle 

diameter, interfacial area density and flow viscosity variation and the hydrate formation 

and plugging behavior in pipelines had been determined. Knowledge obtained from the 

research serves to further improve the oil and gas industry nowadays by maximizing its 

profit margin through implementation of hydrate plug-free pipelines.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Project Background 

 

Hydrate is formed when a water molecule is added to a base molecule, producing 

another molecule with different properties.  The water molecules could either 

become a part of the base molecule structure or being attached to the center of the 

base molecule.  

 

In oil and gas industries, hydrates are found in the form of natural gas hydrates.  Gas 

hydrates (Clathrates) are crystalline compounds consisting of an ice-like water 

lattice with a “guest” molecule trapped. The water molecules form hydrogen bonds 

and with pressure increasing, these water molecules are driven together and produce 

a polyhedron with a lattice hole that traps gasses such as methane, ethane, propane, 

and other higher molecular weight hydrocarbons (Donohoue, 2000). 

 

According to an Offshore magazine article, the writer portrayed hydrates as crystals 

that form in high-pressure and low-temperature flows where water and natural gas 

are present. As the natural gas becomes encased in a lattice of ice formed from the 

water, these hydrates will cause blockages in tubing, flow lines, and pipelines 

(Cahilll, 2011).  

 

Multiphase flow occurs in almost all producing oil and gas wells and surface pipes 

that transport produced fluids. Multiphase flow is defined as simultaneous flow of 

matter of different states or phases, for example gas, liquid or solid. Besides, 

multiphase flow is also interpreted as simultaneous flow containing matter at the 

same phase but with different chemical properties. Due to the variation in the matter 

states and chemical properties, temperature and pressure tend to vary throughout the 

flow in pipe. When the situation reaches the favorable temperature and pressure for 

hydrate formation, ice or wax mixture would be produced which creates a choking 

barrier around the circumference of the pipe. 
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1.2 Problem Statement 

 

Hydrate is a form of crystalline compound consisting ice-like water lattice or wax 

mixture that under favorable temperature and pressure forms a choking barrier 

around the circumference of the pipe, obstructing the flow.  This situation is mostly 

encountered in deep sea oil/gas pipe where the subsea temperature is very cold. 

When there are hydrates formation in a pipeline, changes in fluid rates and 

compositions at the separator would be observed. Pressure drop also increases while 

flow rate decreases when the pipe diameter is decreased by hydrate formation at the 

wall in a pipeline. It also shut the gas flow rate partially or completely in well bore, 

well top pipes, system of field pipelines and installations. These impacts would 

hinder the oil / gas transportation and production process and lower the plant’s 

productivity and revenue. Therefore, there is a need to investigate the growth of the 

hydrate layer around the inner circumference of the multiphase flow pipe.   

 

1.3 Objective of Study 

 

The objectives of this study are stated as below:  

1. To develop multiphase model of the hydrate formation and deposition inside 

a multiphase flow pipe 

2. To investigate the effect of different inlet velocity, hydrates viscosity and 

hydrates particles diameter on the flow and plugging behavior in pipelines 

 

1.4 Scope of Study 

 

This study is restricted to: 

1. Restricted to gas-slurry two phase flow and its behavior in pipes  

2. Restricted to liquid-dominated system  

3. Multiphase flow is based on assumption that the fluid is a gas-slurry 

stratified flow   

4. Restricted to isothermal heat transfer model.  
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CHAPTER 2 

LITERATURE REVIEW  

 

2.1 Gas Hydrates Kinetic  

 

Hydrate formation are separated into two main stages: hydrate nucleation and 

hydrate growth. Hydrate formation is initiated by nucleation where a solid pre-

hydrate crystal/nucleus would be created. At this stage, the nucleus is unstable due to 

the energy demand for the nucleus to build onto its own surface. (Balakin, 2010)  

Figure 2.1 summarizes the main stages of hydrate formation which starts from 

nucleation until hydrates growth and their key properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Main stages of hydrate formation. 

Hydrate 

Formation 
Nucleation 

Unstable Region 

 Pre-hydrate Crystal/nucleus is 

unstable 

 Increase in particle surface leads 

to increase in free energy of solid 

phase relative to homogeneous-

mixture phase  

Hydrate Stable Region 

 Increase in nucleus particle 

volume causes decrease in 

free energy of the solid phase 

 Nucleation stops when the 

nucleus particle grown beyond 

its critical size 

Growth  

 Further growth of the stable hydrate particles leads to 

release of energy as the system does not require 

additional energy for nuclei surface stabilization 
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Assuming the hydrate particles to be spherical, Gibbs free energy of the solid phase 

relative to the homogeneous solution is given by Equation 2.1: 

ΔGhom= 
 

  
                      (2.1) 

Where, ΔGhom is the change of Gibbs free energy of the system upon dissolution of 

the particles if no impurities are present. From Equation 2.1, the critical size, rcr of 

the pre-hydrate particle at which the energy of the system is at an extremum can be 

obtained as:  

    
  

  
                                                                                                  (2.2) 

The nucleation process above is an idealized case of homogeneous nucleation which 

occurs in highly supersaturated systems. However, there are conditions where there 

are impurities in the system such as solid contaminant, liquid droplet or gas bubble. 

The solution is then known as heterogeneous solution and these impurities may form 

the center of heterogeneous nucleation. According to Boris V. Balakin, the energy 

gain for the hydrate nucleation on the impurities’ surface is lower compared to that in 

homogeneous nucleation.  The free energy equation for heterogeneous nucleation is 

shown in Equation 2.3:  

                                                                                                   (2.3) 

 

Figure 2.2 Nucleation on a distinct solid surface (I) and on 

an interphase between hydrocarbon and aqueous phases (II). (Boris V. Balakin, 

2010) 

____________________________________________________________________ 

Gv is the energy release due the formation of solid per unit volume; r is the radius of hydrate nuclei; σ 

is the energy gain for the formation of new surface per unit surface; f(a, b, c) is a correction factor, 

which depends on the contact angles a, b, c between the tangential line to the nuclei surface and the 

interphase (Figure 2.2). 
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2.2 Hydrates Plugging Scenario 

 

Hydrates formation occur differently in different systems. In a liquid-dominated 

system, hydrates form on the interface between the oil and aqueous phases, usually 

occurs on the water droplets dispersed in the oil phase. During the inter-phase, solid 

shell would be form around the water droplets and further converted to hydrates 

particles. However, the hydrates formation is rather slow due to the low diffusion 

rate of gas molecules through the shell.  (Balakin, 2010) 

 

 

Figure 2.3 Gas hydrate formation in a liquid-dominated system. (Balakin,2010) 

 

Presence of hydrates particles in the system increases the viscosity of a solid-liquid 

slurry flow. Consequently, pressure loss due to frictions in the system is increased 

and causes the flowing solid particles to aggregate and further increase the flow 

viscosity. The aggregates form large assemblies as time pass by until the system 

reaches a state where the system agitators in the flow fail to overcome the frictional 

resistance. Thus, the aggregates are joined together and plug the pipeline. There are 

also cases where the hydrate-covered water droplets’ shells are broken due to the 

inter-particle or particle-wall collisions and turbulent pulsations in the carrier flow. 

This would enhance hydrate growth in the system.  
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Figure 2.4 Gas hydrate formation in a gas-dominated system. (Balakin,2010) 

 

On the other hand, the hydrates formation process occurs in a different way for a gas-

dominated system. In natural gas industry pipelines, water exists as vapor. When the 

natural gas is being transferred in subsea, the ambient temperature is often lower than 

the equilibrium temperature for gas-water vapor flow. Due to this, condensation of 

water occurs on the walls of the pipelines, thus producing a gas-liquid flow. In 

contrast to liquid-dominated system, the hydrates are formed on the pipe walls 

instead of having the hydrates particles to form in bulk. As shown in Figure 2.4, the 

hydrates particles formed from condensation form a monolith hydrate layer from the 

pipe walls. Further condensation on the hydrate layer makes it thicker and plugging 

the pipeline.  

 

2.3 Hydrates Shell Model 

 

Considering a multiphase flow model which assumes that the flow is in a stratified 

regime, regardless of the hydrates form or not, it is assumed that the hydrate particles 

are formed at interface between oil and water droplet and then dispersed in the oil 

phase. The hydrate formation is described using a hydrate shell model developed 

through numerical simulation by Gong, Shi and Zhao. (Gong et al., 2010) 

 

In developing the hydrate shell model, it is assumed that the hydrate shell is at the 

same temperature as the hydrate-water interface. Secondly, the heat released from 

hydrate formation is transferred only via the water phase. The phase equilibrium was 

assumed to be established instantly. Besides that, it is also assumed that the gas 

content is higher than water. Therefore, the system still exists as a gas-liquid flow 

even if the water is totally converted to hydrates.   
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Figure 2.5 Gas hydrate formation in a gas-dominated system. (Gong et al., 2010) 

 

Gong et al. (2010) focused on four main components in the hydrate shell growth 

model which are i) gas diffusion through the hydrate shell, ii) gas consumed in 

hydrate kinetic model, iii) water consumed in core of hydrate shell, and iv) gas mass 

balance at the surface of hydrate shell.  

 

I. Gas Diffusion through the hydrate shell 

Based on Fick’s second law, the quasi-steady diffusion equation is formulated 

as below: 

 

  
   

  

  
                                                                             (2.4) 

With the boundary equations of, 

         

         

Analytical solution to equation 2.4 with the boundary equations above gives 

the gas molecules diffusion rate at the interface as 

   
  

  
     

     
  

  
             

     
 

  
 

 

  

         (2.5) 

 

____________________________________________________________________ 

C is the concentration of gas; Rc is the radius of water droplet; Rs is the radius of hydrate shell; Cc is 

the gas concentration at Rc; Cs is the gas concentration at Rs; M1 is the gas consumption rate 

calculated by hydrate shell model; Deff is the diffusion coefficient. 
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II. Gas consumed in hydrate kinetic model 

Number of moles of gas consumed per particle per second is given by: 

  

  
                                                                                           (2.6) 

Assuming the number of moles of water remains practically constant, the 

concentration of gas expressed in terms of its fugacity, 

   
  

      
  

  

   
           (2.7) 

Where H is the Henry’s law constant, which depends on the solute, solvent 

and temperature. 

At the interface, equation 2.7 is expressed as  

   
 

  
     

      

   
     

   
      

   
                                         (2.8) 

 

III. Water consumed in core of hydrate shell  

Water consumption rate is in proportion to the radius of the water droplet and 

is expressed as: 

   
 

  
 
 

 
   

   

  
      

   

  

   

  
                                                    (2.9) 

 

IV. Gas mass balance at the surface of hydrate shell 

In the quasi-steady condition during the unit intervals, it is assumed that the 

gas molecules diffusing through the hydrate shell equal to the gas molecules 

consumed around the water droplets’ surface. Besides, it is in proportion to 

the water molecules consumed. 

      
     

 
                                                                                  (2.10) 

Combining equations 2.5, 2.8, 2.9 and 2.10 leads to the expression below: 

   

  
  

               

   
       

  
  

 

  
 

 

  
   

  
                   (2.11)                             

 

 

____________________________________________________________________ 

K is the combined rate parameter; H is the Henry’s law constant; Ap is the hydrate shell surface area; 

Ci is the gas concentration at the hydrate-water interface; Cw0 is the concentration of water; f is the 

fugacity of gas at the system pressure and temperature; feq is the fugacity of gas at equilibrium; M2 is 

the gas consumption rate calculated by hydrate kinetic model; rw is the water consumption rate; λ is 

the hydrate structure constant; Mw is the molar mass of water; ρw is the water density; Ceq is the gas 

concentration at equilibrium.  
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2.4 Hydrate Formation Conditions 

  

Sloan (2000) stated that for hydrates to form, free water and natural gas components 

must be present. Free water for hydrates formation can be from the reservoir or 

condensation from cooling the hydrocarbon fluid. Hydrates formation requires low 

temperature condition. However, even though hydrates are made up of 85 % mol of 

water, the system temperature does not need to be below 32°F or water freezing point 

for hydrates to be formed. In offshore operations, below approximately 3,000 ft of 

water depth would have an uniform ocean-bottom temperature at 38°F to 40°F. At 

38°F, common natural gases form hydrates at pressure as low as 100psig. At a high 

pressure of 1500 psig, hydrates formation could occur at a temperature of 66°F. 

(Sloan Jr, 2000) 

 

Knowing the gas component in a pipeline allows the identification of the hydrates 

formation pressure given the temperature, and vice versa, with the aid of gas gravity 

chart for the specific gas involved. The gas gravity chart should be able to provide 

the mole fraction, molecular weight, and fraction molecular weight of each 

component. The following gas-gravity equation is used: 

   
  

  
             (2.12) 

With the gas gravity from Equation 2.12 and temperature known, the pressure for 

hydrates formation can be obtained from the graph in Figure 2.6 below.  

 

Figure 2.6 Hydrate-formation curve for various gas gravities. (Sloan Jr, 2000) 
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2.5 Factors Affecting Hydrate Formation and Pipe Plugging 

As an effort to study on hydrate formation kinetics, an experiment was conducted to 

investigate the duration of the induction period and the hydrate growth rate as a 

function of flow velocity and gas composition. Induction time is defined as the 

duration of the nucleation phase and it is influenced by several parameters including 

the level of subcooling (Englezos, 1987a) and the guest to cavity size ratio (as 

suggested by Sloan and Fleyfel, 1991). In the experiment, there were four types of 

natural gas being studied which are pure methane (gas A), methane/ethane mixture 

(gas B), natural gases (gas C and D). Gas C contains more ethane and propane as 

compared to gas D which has more nitrogen. Lipmann et.al. (1995) found that 

methane and natural gas C show different behavior in which the induction time is 

longer than for the natural gas C than that of methane for all flow velocities, as 

shown in figure 2.7. This is due to the different hydrate structures formed from the 

two gases thus indicating gas composition greatly affects the hydrate formation and 

pipe plugging.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Required subcooling for methane (gas A0 and a natural gas (gas C). 

(Lipmann et al., 1995) 

 

Lipmann et.al. (1995) also investigated the hydrate growth rate by determining the 

gas consumed to be incorporated in to the hydrate structure and how it is affected by 

the flow velocity. From figure 2.8,   it can be observed that a significant increase of 
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the hydrate growth with increasing flow velocity when the flow velocity is up to 

4.5m/s. This is due to an increased mass transfer at the gas-water interface and also 

an enhanced heat transfer via convection. Figure 2.8 also showed the dependence of 

hydrate growth rate on the gas composition. For example, the gas C has a higher 

hydrate growth rate due to the ethane and propane contents which are able to 

stabilize the hydrates structures better than gas D. Again, it is proven that gas 

composition and flow velocity cast a great influence on hydrate formation. 

 

Figure 2.8 Comparison of the gas inclusion rates for two different natural gases. 

(Lipmann et al., 1995) 

 

Aspenes et al. (2009) stated that hydrate’s tendency to stick to the surface depends 

on the pipe surface’s wettability. Wettability is measured by droplets’ tendency to 

wet the surface. This model indicates that surface changes, for example surface 

treatment or corrosion, would also influence the hydrate blockage tendency. 

Increased surface roughness is believed to be a contributing factor in speeding up 

hydrate formation.  

Ova Bratland (2010) also stated that hydrate formation is influenced by fluid flow 

where the interaction between phases in the different flow regimes varies. The rate of 

hydrate formation and dissociation is governed by the mixing rate, the surface area 

between the hydrocarbon-rich phase and water, and lastly the temperature. In the 
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book, the author had included hydrate curves for various pure components which 

illustrate the hydrate growth of various components such as propane, hydrogen 

sulfide and methane under a range of pressure and temperature variation. (Bratland, 

2010) 

2.6 Gas Hydrates Equilibrium Condition  

The pressure and temperature conditions for hydrate formation depend on the water 

and the gas composition. Computer programs are used for prediction of the hydrate 

equilibrium line, which is the line in the pressure-temperature diagram that defines 

the hydrate forming area. By using statistical thermodynamics, the hydrate formation 

equilibrium pressure for a gas and a water phase can be computed given the 

temperature, or vice versa. (Andersson, 1999) 

A computer program which was developed at the Colorado School of Mines 

(CSMhyd 1998) was used to obtain the hydrate equilibrium lines for two gases which 

are methane (Structure I) and a gas mixture (Structure II). The equilibrium lines are 

portrayed in Figure 2.9.  

 

Figure 2.9 Hydrate equilibrium curves for methane and a gas mixture (obtained 

using computer program from CSMhyd 1998).  
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Based on Figure 2.9, the equilibrium lines separate hydrate stable region from 

hydrate dissociates region. It is observed that at high pressures or above the 

equilibrium lines, the hydrates are stable. On the other hand, hydrates will dissociate 

at conditions under the lines. The equilibrium pressure for the gas mixture of 92% 

methane, 5% ethane, and 3% propane at 0°C is 8.2 bar whereas for methane, the 

equilibrium pressure is at 25.5 bar. However, when the temperature is below 0°C, 

equilibrium thermodynamics alone can no longer describe the natural gas hydrates 

system. Hydrates are meta-stable at atmospheric pressure in cases where the 

temperature is kept below 0°C.     

 2.7 Hydrates Particles Aggregation 

Hydrates particle size is significantly influenced by aggregation and breakage, 

related to shear in the flow. It is not only the result of hydrate particle evolution in 

the pipeline but also includes the effect from the upstream feed pump. Particle size 

distribution is depended on the flow parameters and their cohesive properties. 

    
      

     

   
 

 

                                                                                            (2.13) 

 

Where, dh is the hydrate aggregate diameter,   the shear rate and some parameters 

determined by the series of population balance simulations: d1 =7 μm which is the 

diameter of the hydrate primary particle, Fa = 1.75 nN which is the floc adhesion 

force and f r = 1.83 which is the aggregate fractal dimension. (Mühle, 1993) 

The particle size as a function of the mean flow velocities is given in Figure 2.10 

below
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Figure 2.10 Spatially averaged hydrate particle diameter as a function of mean 

velocity. (Fatnes, 2010) 
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CHAPTER 3 

METHODOLOGY 

 

This project is broken down into a few phases which need various methods to be 

carried out. Firstly, identification of problem and objective of project was carried out. 

Following that, phase 1 of the project was commenced which is project background 

study. It is then proceeded with research phase where ample studies and literature 

review was done. The project would then be continued with modeling stage. 

Multiphase model would be developed and analyzed using related software. The 

methodology involved for all project phases is explained at the few methodology 

breaks down below: 

 

3.1  Research Methodology  

 

At the beginning of the project, project background study was made by researches on 

related books, journals, research papers, internet articles and etc. Ample studies were 

done to understand the characteristics and behaviors of multiphase flow, narrowing 

down to the single phase and multiphase flow in pipes. At the same time, researches 

were done on hydrates composition, nature, characteristics, and condition of 

formation. The impacts of hydrates formation on the multiphase flow in pipes and 

the oil / gas transportation and production process were looked into, too.  

 

After background study, project problem and objective identification, the project is 

go on with  literature reviews on research papers previously done by researchers all 

over the world, earliest from the 1980’s to the 2010’s. The focus of the literature 

reviews includes effect of factors such as flow velocity, presence of inhibitor, and 

pressure variation on hydrates formation in pipes, relationship of heat transfer and 

hydrate formation or dissociation, boundary conditions and factors contributing to 
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hydrate formation, and numerical study on flow characteristics of Gas-Hydrate slurry 

two phase stratified flow. However, the literature reviews are not limited to the few 

focuses stated above as it changes and would be widen as the project goes on. 

Literature review would be constantly carried out throughout the project as an 

information gathering or data validation process.  

 

3.2 Modeling Methodology  

3.2.1  Geometry Setup   

In the third phase of the project, modeling of the multiphase flow would begin. 

A 90 degree band pipe of 45.2 mm diameter was modeled using ANSYS 

Designmodeler. The length of the horizontal pipe section was 450 mm and the 

vertical pipe section is 200 mm. The radius of the bend is 105 mm. The 

geometry used in the study is shown in Figure 3.1. Fluid will flow from the 

upper end of the vertical pipe through the bend and flow out through the 

horizontal pipe. 

 

 

 

Figure 3.1 The three-dimensional CAD-model used in the study. 
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3.2.2 Mesh Generation 

Meshing is an important process in simulation because meshing allows the 

fluid flow to be analyzed better. With meshing, the flow domains would be 

split into smaller subdomains. The discretized governing equations are then 

solved inside each of the subdomains. Element-based finite volume method 

would be used via ANSYS CFX to mesh the pipe geometry into 15705 nodes 

and 70361 elements at an element size of 0.0044m with five inflated layers near 

the wall. However, the mesh dependency needs to be refined to obtain the most 

accurate result.  

 

Figure 3.2 Grid generation on the surface of the pipe.  

 

3.2.3 Fluid Setup  

The model created is a two-fluid model created by defining the fluid properties. 

For the study, water was modeled as the continuous phase with a density of 

1000kg/m
3
, molar mass of 18.02 g/mole and viscosity of 0.001 Pa S. The 

second fluid, Freon R11 hydrates were modeled as dispersed solid phase with a 
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density of 1140kg/m
3
, molar mass of 137.7g/mole, and viscosity 0.00321 Pa S. 

However, these properties of the Freon R11 Hydrates will be modified as the 

study reaches the stage of parametric analysis. 

3.2.4 Multiphase Model  

In this study, the multiphase flow in the pipe model is being modeled using the 

Eulerian-Eulerian two-fluid model. In other words, the multiphase flow is 

treated as turbulent and isothermal. The multiphase model is set to be 

inhomogeneous where each fluid has its own properties. For example, the two 

phases may have different velocity field, turbulence field and temperature 

fields. The fluids in an inhomogeneous model interact through interphase 

transfer terms.  

Interfacial transfer of momentum, heat and mass depend on the contact area 

between the two phases involved in the model. This is measured by the 

interfacial area per unit volume, or the interfacial area density, Aχy, between the 

continuous phase and dispersed phase, named phase χ and phase y accordingly. 

A particle model is used to model the interphase transfer between the 

continuous phase and the dispersed phase of hydrates. The surface area per unit 

volume is done based on the assumption that phase y is made up of spherical 

particles. From the particle model, the interfacial area density, Aχy is expressed 

as below: 

    
   

  
                                                                                                  (3.1) 

Where,    is the volume fraction of the dispersed phase;    is the means 

diameter of the hydrates particles/dispersed particle. 

Non-dimensional interphase transfer coefficients can be correlated in terms of 

the particle Reynolds number and the fluid Prandtl number [10].  

     
           

  
                                                                                   (3.2) 

     
     

  
              (3.3) 
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3.2.5 Boundary Conditions 

Different boundary conditions were set at different location on the fluid model. 

At the pipe inlet, the velocities and the volume fractions for the continuous 

phase and dispersed phase were set.  On the other hand, the pressure, which is 

the atmospheric pressure, at the outlet was specified. For the pipe wall, a no-

slip wall condition was specified for the two phases.   

3.2.6 Turbulence Model 

A turbulence model is used to predict the effects of turbulence by simplifying 

the solution of the governing equations of turbulence.  It is also defined as a 

computational procedure to ‘close’ the systems’ mean flow equations 
[4]

.  

In turbulence modeling of the continuous phase, the k-ε model was used. A 

standard k-ε model is a semi-empirical model which is based on model 

transport equations for the turbulent kinetic energy, k and the dissipation rate, ε 

[10]
. It was assumed that the flow is fully turbulent and the effect of molecular 

viscosity is negligible.  

On the other hand, a dispersed phase zero equation model was used for the 

dispersed solid phase in the study. The model relates the dispersed phase 

kinematic eddy viscosity, υtd, to the continuous phase kinematic eddy viscosity, 

υtc, using a turbulent Prandtl number, σ. The relationship is shown in the 

expressions below: 

    
   

 
              (3.4) 

3.2.7 Particle Model  

The Particle Model is also known as the Solid Pressure Force Model where the 

forces due to solid collisions are considered by having additional solids 

pressure and solids stress terms into the solid phase momentum equations based 

on either the Gidaspow model or by specifying the elasticity modulus directly. 

In this work, the approach used to illustrate particle-particle interactions is 

through Gidaspow solid pressure model.  
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The radial distribution function, g0 which measures the probability of 

interparticle contact is given by Gidaspow model as below: 

               
  

 
 

   
 

  

                                                                        (3.5) 

where     is the volume fraction of the settled bed of solids,    is the volume 

fraction of the solid phase. The function in Equation 3.5 above becomes infinite 

when the in situ solids volume fraction approaches    . The forces from solid 

collisions are considered by introducing additional solid pressure and solids 

stress terms into the solid phase momentum equation based on the Gidaspow 

model.  

The equation below defines the coalitional solid stress tensor in the solid phase 

momentum equation. 

                
   

   
  

   

   
 

 

 

   

   
       

   

   
                         (3.6) 

where     is the solid pressure,    is the solids shear viscosity and    is the 

solids bulk viscosity. The setting of the particle model is made at the Fluid 

Specific Model tab in ANSYS CFX. 

 

3.3 Multivariate Regression Analysis 

 

Regression analysis is a statistical process for estimating the relationships among 

variables. It is used for modeling and analyzing several variables, when the focus is 

on the relationship between a dependent variable and one or more independent 

variables. Besides, it helps on the understanding of how the typical value of the 

dependent variable changes when any one of the independent variables is varied, 

while the other independent variables are held fixed.  

With the aid of Microsoft Excel solvers, an experimental design is developed using a 

second order regression method. The relationship between hydrates thickness formed 

and various factors would be analyzed through the regression to identify the most 

significant factors contributing to hydrate formation. Tornado diagram would be used 



21 

 

to illustrate the sensitivity of hydrate formation object to the factors within the scope 

of the study. Apart from this, bar chart would be plotted to show the significance of 

the various factors on hydrates formation.  

3.3  Parametric Analysis  

Using the multiphase model developed, parametric analysis would be conducted by 

simulating the model in ANSYS CFX via various setting of the inlet mean flow 

velocity, hydrates viscosity, interfacial are desnity and hydrates particle size. With 

the aid of ANSYS CFX Solver and CFX-Post, the effect of inlet flow velocity and 

hydrates particles diameter on hydrates formation and plugging behavior in pipeline 

would be investigated. Graphs and various contours would be plotted using results 

extracted from ANSYS CFX and would further be interpreted as in results and 

discussion section.  
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3.4 Project Flow Chart  
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3.5 Gantt Chart  

PROJECT ACTIVITIES 
SEMESTER 1 SEMESTER 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

Project Topic Selection                                                         

Identification of Problems 
and Objectives of Project                                                         

Background Study                                                          

Literature Review                                                          

Modeling of Multiphase 
Flow in Pipe                 

   
                                  

Modeling of hydrate 
formation and deposition                                                         

Validation on Models                                                         
Model Simulation and 
Multivariate Regression                                                          

Parametric Analysis                                                         

Final Report                                                          
 

Note:             Key Milestones  
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

In this chapter, the results from the simulation of the hydrate formation in multiphase 

flow in a 90 degree elbow pipe using ANSYS CFX are presented. The results that 

will be presented below include the model validation results by comparing the 

results obtained with experimental study from Balakin et al. (2010) and research 

study by Eirik Daniel Fatnes (2010). After the model being validated, the study 

proceeds to regression analysis and lastly the parametric study. All results obtained 

would be discussed further. 

 

The simulation done is on a two phase flow with water as the continuous phase and 

the Freon R11 Hydrates as the dispersed solid phase in an isothermal environment at 

2°C which is the temperature favorable for hydrates to form. The regression analysis 

shows the significance and sensitivity of various factors affecting hydrate formation 

in the multiphase flow pipe. Parametric study would investigate the effect of 

interfacial area density, particle size of the hydrates particles, flow inlet velocity and 

the flow viscosity on the hydrate formation. The results obtained from simulation are 

extracted and plotted in graphs to illustrate the effect of the various factors on 

hydrates formation more clearly.  

 

4.1 Model Validation Results and Discussion   

 

Using ANSYS CFX, a model of multiphase flow in pipe which consists of water as 

the continuous fluid and Freon R11 hydrates as the dispersed solid was built. To 

make sure that the model is valid for further parametric studies, validation was done 
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on the model based on an experimental study from Balakin et al. (2010) 
[21]

 and 

research study by Eirik Daniel Fatnes (2010) 
[10]

.  

Particle deposition is the natural attachment of particles to surfaces, mainly due to 

gravitational force acting on it. In oil and gas industries, hydrates particle deposition 

in pipelines would increase the pressure drop of the flow, leading to plugging of the 

pipeline as the hydrates particles gradually aggregate.  

 

Mean Velocity (m/s) Hydrate Particle Size (m) 

0.1 0.0033 

0.2 0.0020 

0.3 0.0018 

0.4 0.0017 

 

Table 4.1 Sets of input data used in ANSYS CFX simulation of hydrate formation and 

deposition. 

In the simulation conducted which aims to model the hydrate formation and 

deposition in the pipe studied, different inlet mean velocities of the flow were used 

as the inlet boundary conditions, following with the respective hydrate particle mean 

diameter for the dispersed phase. The input data are summarized in the Table 4.1 

above.  

Summarizing the results obtained from study by Eirik Daniel Fatnes (2010) and 

experimental work by Balakin et al. (2010), a graph of hydrate precipitates thickness 

against mean flow velocity is plotted as shown in Figure 4.9. The hydrate 

precipitates thickness from the ANSYS CFX simulation in this study is extracted and 

plotted on the graph. 

Comparing the results produced by Eirik Daniel Fatnes (2010) and experimental 

work by Balakin et al. with the current results, it is observed that in all three set of 

results obtained the hydrates precipitation or the hydrate volume fraction near the 

wall decreases as the mean flow velocity increases from 0.1 m/s to 0.4 m/s.  
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Figure 4.1 Graph of hydrate precipitates/bed thickness against mean flow velocity. 

Comparison of ANSYS CFX, experimental data and study by Fatnes.  

 

On the whole, the results from ANSYS CFX simulation is in good agreement with 

the experimental work of Balakin et al. over the whole velocity range. The slight 

differences in the results between ANSYS CFX and the experiment are mainly due 

to several reasons. Firstly, the mesh generation and discretization in the CFX 

simulation could never be the same as the set up in real experiment.  In this study, 

the model only includes geometry of an elbow pipe which is a part of the 

experimental loop whereas in the experiment, the fluid flows through a series of 

bends and equipments such as pumps and valves.    
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4.2   Regression Analysis  

There are a large number of parameters involved in this study as hydrates formation 

is a complicated mechanism which behavior is rarely recognized or reported. 

Moreover, in oil and gas industries from drilling process to production in plant, the 

fluid flow is made up of vast mixture of various gasses, liquid, and solid particles 

flow, making the control over hydrates formation even more complicated due to the 

large amount of possible factors. Thus, an experimental design was developed using 

a second order regressed method.  

 

Figure 4.2 Sensitivity of different parameters to hydrate thickness formed in 

multiphase flow pipe. Results obtained from experimental design and second order 

regression.   

 

A tornado chart is constructed as shown in Figure 4.2 for sensitivity analysis. From 

the tornado chart, the longer the bar the greater the sensitivity of hydrate formation 

object to the factor and vice versa. Starting from the top, particle size of the flow has 

the greatest impact following by interfacial area density, mean inlet velocity, and 

flow viscosity. Both ends of the bars indicate the minimum and maximum effect of 

the factors. For instance, the size of the particles in the flow have an impact of up to 
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3000% maximum increase on the hydrates thickness while a proper control on the 

particles’ diameter can prevent the hydrates formation which is shown on the 

minimum end of the bar. 

From the sensitivity analysis, it is noted that a careful control over particle size of the 

hydrates particles and interfacial area density is crucial to reduce or prevent hydrate 

formation. On the other hand, the other two factors which are the flow inlet velocity 

and flow viscosity are less significant thus less emphasize on the two factors is 

acceptable in cases of insufficient time or budget on hydrates mitigation and 

remediation planning.  

Using the multiphase flow model built in ANSYS CFX, a total of four factors are 

predicted to be affecting hydrate formation in multiphase flow pipe. With the aid of 

second order regressed method, the graphs in Figure 4.3 are plotted. Those variables 

are flow viscosity, particle size, inlet velocity of the flow, and interfacial area density. 

These variables are regressed to a second order to investigate the stability and 

significance of each factor on hydrate formation. In Figure 4.3, it shows the 

influence percentage for each variable upon the hydrate thickness formed in the pipe. 

Out of all factors, particle size of the solid dispersed phase in the flow significantly 

influences the hydrates thickness formed up to 2500%. It is then followed by 

influence from the flow inlet velocity and interfacial area density, both with an 

influence percentage upon hydrates thickness of around 800%. Influence from flow 

inlet velocity is slightly higher than that of interfacial area density. Flow viscosity 

has the least influence on the hydrate thickness formed among all the factors. The 

effect of the factors on hydrate formation would be further discussed in the following 

section. 
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Figure 4.3 Significance of factors on hydrates thickness formed in the pipe. 

 

4.3  Hydrate Formation and Deposition Simulation 

In the current study, the geometry model used in the simulation is a 90 degree bend 

pipe to model the multiphase flow and hydrate formation in the pipe. This section 

would discuss the hydrate formation and deposition process in different sections of 

the pipe.  

The bend and obstructions in a 90 degree bend pipe cast impacts on the hydrate 

formation and deposition process. In the simulation done, the velocity of the 

continuous phase is being investigated, too apart from the hydrate formed in the pipe. 

Figure 4.4 shows the contour of hydrates volume fraction at midline cross-section of 

the pipe for one of the simulation conducted whereas Figure 4.5 is the contour of the 

water speed at midline cross-section of the pipe. 
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Figure 4.4 Contour of the hydrate volume fraction at midline cross-section of the 

pipe. Mean inlet velocity of 0.1 m/s, particle size of 0.0033 m.  

 

 

 

Figure 4.5 Contour of the water (continuous phase) speed at midline cross-section 

of the pipe. Mean inlet velocity of 0.3 m/s, particle size of 0.0035 m, interfacial area 

density of 0.075 and viscosity of 0.0061.  
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From Figure 4.5, it can be observed that the highest speed of the continuous phase is 

at the inner part of the bend which is denoted by an orange color contour. The water 

speed is the lowest at the lower horizontal region. This observation is mainly due to 

the hydrates formed at the bottom of the inner pipe wall which causes obstruction to 

the flow. It is also noticed that the lowest speed denoted by the blue colour contour 

along the inner walls boundary. This could be explained by the no-slip boundary 

condition at the pipe wall where the water speed has zero velocity relative to the 

boundary.  

On the other hand, from Figure 4.4, there is a higher volume fraction of hydrates at 

the bend than the horizontal section of the pipe. Apart from this, it is also observed 

that there is a higher hydrate volume fraction at the bend’s outer section. This 

indicates that the particle concentration is at a maximum at the outer section bend of 

the pipe. When the fluid flows through the 90 degree bend section, there is a 

centripetal acceleration which acts radially inwards. Pressure near the outer wall of 

the bend would increase whereas the pressure near the inner wall of the bend would 

decrease. As the fluid flow through the pipe from the vertical end through the 90 

degree bend to the horizontal end of the pipe, the flow experiences an adverse 

pressure gradient where the pressure increases in the direction of flow. Due to this, 

the hydrates particles in the flow are influenced by their close proximity to the wall. 

The hydrates particles would have low velocities and unable to overcome the 

adverse pressure gradient, causing a separation of flow from the boundary. Apart 

from this, as shown in Figure 4.5 the water speed is lower at the bend. A lower 

velocity then give rise to more hydrates precipitation at the pipe wall and eventually 

lead to hydrate plugging of the pipe.      
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4.4  Effect of Hydrate Particle Size on Hydrates Formation 

Particle size is the most influential factor in the current study based on the regression 

analysis. In order to investigate the effect of hydrate particle size on hydrates 

formation, simulations were done using Gidaspow solid pressure model at three 

different conditions:  i) 0.00465 kg/ms viscosity, minimum interfacial area density of 

0.063, 0.2m/s to 0.4m/s inlet velocity; ii) 0.00755 kg/ms viscosity, minimum 

interfacial area density of 0.088, 0.2m/s to 0.4m/s inlet velocity; iii) 0.00610 kg/ms 

viscosity, minimum interfacial area density of 0.075, 0.1m/s to 0.5m/s inlet velocity 

 

 

Figure 4.6 Effect of hydrates particle size on hydrates thickness for condition i.) 
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Figure 4.7 Effect of hydrates particle size on hydrates thickness for condition ii.) 

 

 

Figure 4.8 Effect of hydrates particle size on hydrates thickness for condition iii.) 
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Based on the graphs in Figure 4.6 to 4.8, it is shown that the hydrates thickness 

increases with increasing particle size. This could be explained by the terminal 

velocity given by the equation below:  

   
 

  

       

  
         

                                                                (4.1) 

 

Where,       the density of hydrates particle,    is the density of the water,    is the 

water viscosity, d is the hydrate particle diameter,    is the hydrates volume fraction, 

and g is the gravitational acceleration (Fatnes E. D., 2010). Terminal velocity is the 

speed in which a particle subsides and deposited. As shown in Equation 4.1, terminal 

velocity is directly proportional to particle size, causing the hydrates thickness to 

increase with increasing particle size. In other words, the rate of hydrates deposition 

increases with the increasing particle size.  

 

4.5  Effect of Interfacial Area Density on Hydrates Formation 

 

Interfacial area density, A is also characterized as interfacial area per unit volume 

between two phases in a flow which indicates the transfer of momentum, heat and 

mass between the phases. In the model simulation of the current study, control over 

the interfacial transfer is done by settings on minimum volume fraction for area 

density in a Particle Model. The Particle Model provides the algebraic prescriptions 

for the interfacial area density. Assumption made in Particle Model is one of the 

phases is continuous, which is water phase for this study, and the other phase is 

dispersed, which is the Freon R11 Hydrate phase.  

The graphs in Figure 4.9 to Figure 4.11 were plotted by using the results extracted 

from ANSYS CFX. Based on all three graphs, it is observed that a higher interfacial 

area density of the fluid gives a lower hydrate thickness. From the negative gradient 

on the plot on Figure 4.9 and 4.10, it can be seen that the higher interfacial area 

density decreases the rate of hydrate formation. A similar fluid viscosity but a lower 

particle diameter causes the hydrate thickness to decrease 1mm which is quite drastic. 
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On the other hand, in Figure 4.10 and Figure 4.11, a different viscosity but similar 

particle diameter of 0.002m only reduces 0.25mm of the hydrates thickness  This 

observation is a proof on the finding in section 4.2 where particle diameter has the 

most significant impact on hydrate formation.  As a conclusion for this section, 

increase in interfacial area density between two phases will decrease the rate of 

hydrate formation. The effect from viscosity on hydrate formation would be 

discussed in following section 4.7. 

 

Figure 4.9 Effect of interfacial area density on hydrates thickness for 0.00465 kg/ms 

viscosity, 0.003m particle diameter, 0.2m/s to 0.4m/s inlet velocity 
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Figure 4.10 Effect of interfacial area density on hydrates thickness for 0.00465 

kg/ms viscosity, 0.002m particle diameter, 0.2m/s to 0.4m/s inlet velocity 

 

Figure 4.11 Effect of interfacial area density on hydrates thickness for 0.00755 

kg/ms viscosity, 0.002m particle diameter, 0.2m/s to 0.4m/s inlet velocity 
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4.6  Effect of Inlet Velocity on Hydrates Formation 

Flow inlet velocity is a crucial factor in oil and gas industries as it could be 

monitored easily with the aid of pumps and compressors. Moreover, inlet velocity of 

a flow affects the efficiency and productivity of the industries as a proper control 

over the flow velocity would save plenty of time. Therefore, it is necessary for us to 

look into the impact of inlet velocity on hydrates formation in order to prevent 

hydrates plugging that would lower the industries' productivity.  

In the current study, simulations are done in the range of inlet velocity of 0.1 m/s to 

0.5 m/s. At the end of simulations, the results are extracted and plotted into graphs in 

Figure 4.12 to Figure 4.14. A trend of higher inlet velocity gives a lower hydrate 

thickness is observed from all three graphs. Such phenomenon is due to the flow 

patterns in solid-liquid flow in the current study. At a lower inlet velocity, the solid-

liquid flow is becoming a flow with stationary hydrates bed. This is because a lower 

inlet velocity has a lower ability to enable motion of the immersed hydrates particles 

formed in the pipe. Thus, the hydrates particles deposits and increases the hydrates 

thickness. In contrast, a higher inlet velocity enables the solid-liquid to flow with a 

moving hydrates bed. Despite of the aggregation of the hydrates particles over time, 

the hydrates particles which accumulate at the bottom of pipe would form a packed 

bed layer and is able to move along the pipe bottom with the aid of a higher flow rate 

of water phase (continuous phase). Due to this, a higher inlet velocity would give a 

lower hydrate thickness formed in the pipe.   

Besides that, as the particle diameter increases to 0.003m, the effect from flow inlet 

velocity on the hydrates thickness decreases. This is portrayed by the gradually 

flatten lines on the graph which indicates that the gradient is zero or in other words, 

the rate of change of hydrates thickness over change in particle diameter is zero.    
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Figure 4.12 Effect of inlet velocity on hydrates thickness for 0.00755 kg/ms viscosity, 

0.002m to 0.0035m particle diameter, 0.088 min. area density  

 

 

Figure 4.13 Effect of inlet velocity on hydrates thickness for 0.00610 kg/ms viscosity, 

0.0015m to 0.0035m particle diameter, 0.075 min. area density  
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Figure 4.14 Effect of inlet velocity on hydrates thickness for 0.00465 kg/ms viscosity, 

0.002m to 0.0035m particle diameter, 0.063 min. area density  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

In oil and gas industries, hydrates formation in multiphase flow pipelines leading to 

pipe plugging had been a serious issue. Moreover, hydrates formation is a 

complicated mechanism which behavior is rarely reported. Thus, it is important to 

study on hydrates formation in multiphase flow pipe and the factors affecting it. In 

the current study, the factors being studied are size of the particles in the flow, 

interfacial area density, inlet velocity and flow viscosity.  

In a nutshell, hydrates plugging in pipelines are governed by hydrates particles size, 

interfacial area density, flow inlet velocity and flow viscosity, with an increasing 

order of its significance on hydrates formation around the pipe circumference. To 

prevent hydrates formation and plugging, the fluid flow should be maintained at a 

high inlet velocity with minimum particle size. The two objectives of the study had 

been achieved.  

Mitigation steps and remediation of hydrates should be emphasized in oil and gas 

project planning in order to prevent hydrate plugging. As mentioned in the findings 

from the study, hydrate particle diameter has the most influence on hydrates 

formation. Hydrate plugging can be prevented by applying depressurization where a 

hydrate plug is depressurized simultaneously from both ends. Depressurization will 

cause the hydrates to dissociate and reduces the hydrate particles diameter until the 

solid hydrate phase is depleted. Other hydrate prevention method includes hydrate 

control through water removal by removing the host water molecules, hydrate 

control through thermodynamic inhibition chemicals, and injection of anti-
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agglomerants. According to the findings in section 4.3, fluid flow through a pipe 

bend is more prone to hydrates formation and plugging due to the adverse pressure 

gradient occurs at the bend. Thus, in the process of designing and constructing oil 

and gas pipelines, pipe bend should be avoided whenever possible to lower the risk 

of hydrates plugging.  

For future studies, more parameters such as pipe diameter and pipe orientation 

should be investigated. Optimization should be done using solver to predict the 

optimum condition for a multiphase flow in pipelines to avoid hydrates 

formation/plugging. 
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