
1

Coordination of Multiple Mobile Robots

by

Muhammad Fudzail Bin Razlan

12733

Dissertation submitted in partial fulfillment of

the requirement for the

Bachelor of Engineering (Hons)

(Mechanical Engineering)

MAY 2013

Universiti Teknologi PETRONAS,

Bandar Seri Iskandar,

31750 Tronoh,

Perak, Darul Ridzuan

2

CERTIFICATION OF APPROVAL

Coordination of Multiple Mobile Robots

by

Muhammad Fudzail Bin Razlan

A project dissertation submitted to the

Mechanical Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(MECHANICAL ENGINEERING)

Approved by,

(Prof Dr Nagarajan Thirumalaiswamy)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2013

3

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and the original work contained herein have not been undertaken or done by unspecified

sources or persons.

MUHAMMAD FUDZAIL BIN RAZLAN

4

ACKNOWLEDGEMENT

First and foremost, thanks to God the Almighty for the chance and blessing given to me.

I would like to say thank you to my supervisor dedicated and caring supervisor, Dr. T.

Nagarajan for the support, time, guidance and knowledge in supervising me that leads to

the completion of my project. Special thanks to Ashwin Narayan, a friend and a great

contributor especially in designing control program. Also I would like to extend my

gratitude to friends who kindly support and involve directly and indirectly in my project.

Lastly, I would to like to take this opportunity to give my thanks to my parents and

family members, who gave encouragement to me to continue my study until completion.

5

ABSTRACT

In recent years, the demand for mobile robots to perform more complex tasks is

increasing and a more complex maneuverability is required. Such task can be completed

by utilizing a group of mobile robots, in a coordinate manner. To coordinate multiple

mobile robots, formation control is required. Formation control refers to the ability to

control the relative position and orientation of robots in a group, while allowing them to

move as a whole. For this project, leader and follower formation control method is

chosen. The objective of this project is to coordinate multiple mobile robots to perform

specified trajectory while maintaining spatial distance between leader robot and

followers. Three AmigoBot mobile robots are used to carry out the experiments. There

are three experiments which are experiment 1; 10m straight line trajectory path,

experiment 2; 6m zigzag shaped trajectory path and experiment 3; 10m straight line with

obstacles trajectory path. Specified trajectory path plan are developed and given to the

leader robot and the follower will move relative to the leader coordinates using the

designed control program. Deviation error for the spatial distance is recorded. The

mobile robots successfully maintain formation, with spatial distance deviation error less

than 5%.

6

Contents
CERTIFICATION OF APPROVAL ... 2

CERTIFICATION OF ORIGINALITY .. 3

ACKNOWLEDGEMENT .. 4

ABSTRACT ... 5

LIST OF FIGURE ... 7

LIST OF TABLES ... 7

INTRODUCTION .. 8

1.1 Background of Study .. 8

1.2 Problem Statement .. 10

1.3 Objective .. 10

1.4 Scope of Study.. 10

LITERATURE REVIEWS .. 11

2.1 Multiple Mobile Robots ... 11

2.2 Pattern Formation .. 11

2.3 Formation Control Methods .. 12

2.4 Layers Architecture for Leader Follower Formation .. 14

2.5 Kinematic Model .. 16

METHODOLOGY ... 18

3.1 Project Flow ... 18

3.2 Gantt Chart and Project Milestones .. 19

3.3 Software Required ... 21

3.4 Hardware Required .. 21

3.5 Experiments Description .. 23

RESULT AND DISCUSSION .. 27

4.1 Control Program ... 27

4.2 Main Control Structure .. 28

4.3 Results and Discussion ... 30

4.3.1 Experiment 1 ... 31

4.3.2 Experiment 2 ... 33

4.3.3 Experiment 3 ... 36

4.4 Error Calculation .. 39

7

CONCLUSION AND RECOMMENDATION ... 40

REFERENCES ... 41

APPENDIX ... 43

LIST OF FIGURE

Figure 1 Layered Formation Control Architecture .. 14

Figure 2 Leader-Following Formation of Two Robots .. 16

Figure 3 Project Flow ... 18

Figure 4 AmigBot Mobile Robot ... 21

Figure 5 AmigoBot axis direction .. 22

Figure 6 Starting Position for Experiments .. 24

Figure 7 Experiment 1 ... 25

Figure 8 Experiment 2 ... 25

Figure 9 Experiment 3 ... 26

Figure 10 Diagram On Information Transfer ... 28

Figure 11 Experiment 1 Result .. 31

Figure 12 Experiment 2 Result .. 33

Figure 13 Experiment 2: Follower 2, lagging behind .. 34

Figure 14 Experiment 2: Follower 1, lagging behind .. 34

Figure 15 Experiment 3 Result .. 36

Figure 16 Experiment 3: Leader Avoid Obstacle 1 ... 37

Figure 17 Experiment 3: Follower 1 Avoid Obstacle1 and 2 .. 37

Figure 18 Experiment3: Follower 2 Avoid Obstacle 3 .. 37

LIST OF TABLES

Table 1 Gantt Chart For January 2013 ... 19

Table 2 Gantt Chart For May 2013 .. 20

Table 3 Experiment 1: Coordinate Data .. 32

Table 4 Experiment 2: Coordinate Data .. 35

Table 5 Experiment 3: Coordinate Data .. 38

Table 6 Error Calculation Results .. 39

8

CHAPTER 1:

INTRODUCTION

1.1 Background of Study

Mobile robots are defined as a system with total mobility relative to environment,

perception ability and certain level of autonomy which has limited human interaction.

Mobile robots are capable of maneuvering the environment with sensors such as sonar,

light sensor, laser sight and others without depending on human control. Mobile robots

application has expanded to various areas which include deep sea and space exploration,

hazardous environment investigation and military surveillance. These areas require

extensive exploration and accurate data collection as part of their research and many are

beyond human body capability and perception. Mobile robots allows researcher to

explore uncharted environment, mapping the area while collecting relevant data.

In recent years, the demand for mobile robots to perform more complex tasks is

increasing and a more complex maneuverability is required. Such task can be completed

by utilizing a group of mobile robots, in a coordinate manner. Coordination between

multiple mobile robots is required to ensure that the mobile robots stay in formation and

move as whole while avoiding obstacles and each others to achieve the goal. A group of

robots can provide data redundancy and contribute cooperatively to perform given task

with greater reliability, speed and cost reduction compared to a single mobile robots. If

there are two or more mobile robots detecting an obstacle in their path, the probability of

such of obstacle is present is higher as compared to a single robot.

Many problems arise from keeping the robots in formations which include the difficulty

in planning, navigating and coordinating the motion of the robots while avoiding

obstacles and each others to achieve the goal. Formation control requires a more

elaborate control structure which not only allows the robots to navigate through the

environment but also allow them to communicate with each other.

9

There are three main methods to formation control for multiple robots which are

behavioral, virtual structure and leader-following method. This project will be focusing

on the leader-following approach. In leader-follower formation approach, some of the

robots act as leaders in the group while the others as followers following the leader‟s

movement. The followers are required to maintain a constant spatial distance with

respect to the leader as the mobile robots navigate the environment. Advantages of this

approach are that it is easy to understand and implement and the formation can still be

maintained even if the leader is disturbed. The disadvantages is that there no explicit

feedback from followers to the leader especially in dynamically changing, unknown,

unstructured environments.

The main objective of this project is to coordinate multiple mobile robots to perform

specified trajectory while maintaining spatial distance between leader robot and

followers. Experiments will be conducted using 3 AmigoBot mobile robots. Using the

leader- following approach, the multiple mobile robots will navigate the environment

using specified trajectory path. At the end of the experiments, the spatial distance of the

robots is recorded any deviation error will be noted.

10

1.2 Problem Statement

Mobile robots application has expanded to various areas which include underwater,

space exploration and hazardous environment. These areas requires a more complex

maneuver to complete given task and with multiple robots coordination, such maneuver

can be done. Many problems arise from keeping the robots in formations which include

planning, navigating and coordinating the motion of the robots while avoiding obstacles

and each others to achieve the goal. The robots are required to move around the

environment as whole while maintaining their formation.

1.3 Objective

1. To coordinate multiple mobile robots to perform specified trajectory while

maintaining spatial distance between leader robot and followers.

1.4 Scope of Study

The study will be conducted by experiments using three AmigoBot mobile robots.

Specified trajectory path plan will be given to the three robots and data on the relative

position of the follower robots with respect to the leader are analyze to find any

deviation error.

11

CHAPTER 2:

LITERATURE REVIEWS

2.1 Multiple Mobile Robots

In recent decade, mobile robots application has expanded to various areas which include

underwater, space exploration and hazardous environment. The demand for mobile

robots to perform more complex tasks is increasing and with that, coordination between

multiple mobile robots will allow such task to be completed. A group of robots can

provide data redundancy and contribute cooperatively to perform given task with greater

reliability, speed and cost reduction compared to a single mobile robots (Ota,

J., Arai, T., and Asama, H. 2002).

To coordinate multiple mobile robots, formation control is required. Formation control

refers to the ability to control the relative position and orientation of robots in a group,

while allowing them to move as a whole as described by Kuppan Chetty R.M., et al,

(2011). Kuo-Yang Tu and Min-Tzung Chang Chien (n.d.) added that formation control

is also how multiple mobile robots maintain formation to overcome unexpected events

in crucial situation to finish task given.

2.2 Pattern Formation

According to Bahceci, E., Soysal O. and Sahin E., (2003), pattern formation refers to the

coordination of a group of mobile robot to get into and maintain formation with a certain

shape. There are two groups of pattern formations which are centralized pattern

formation and distributed pattern formation.

 In centralized pattern formation method, the group motion will be planned by a single

computational unit as it oversees the others as stated by Belta C. and Kumar V., (2002).

Each robot will then receive their respective movement via communication network.

Centralized patter formation depends on a single central unit that oversee the entire

group with communication channel between central unit and other robots as the

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ota,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ota,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ota,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Arai,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Asama,%20H..QT.&newsearch=partialPref

12

receiver which makes it more costly, less robust to failures, and less scalable to the

control of large number of robots.

Decentralized pattern formation uses local communication and sensor for each robots

and it tends to be more scalable, robust and easier to build but limited in variety and

precision of formations according to Balch T. and Hybinette M (2000) and

Dudenhoeffer D.D. and Jones M.P., (2000). This pattern applies on multi robot system.

Multi-robot system are preferred compared over a single central robot in centralized

pattern due to the robustness and it can be improved by incorporating adaptation

mechanisms that responds to change in environment and individual robot capabilities.

2.3 Formation Control Methods

According to Gomman J., et al, (2009), there are three main methods to formation

control for multiple robots each with their own advantage and disadvantage. The three

main methods are behavioral, virtual structure and leader-following.

Behavioral approach is define as a set of desired behaviors for each individual in the

group, and measures them such that desirable group behavior emerges without explicit

model of the subsystem or the environment. Balch T. and Arkin R.C. (1998), state that

in multi robot system, behavioral approach is described as implementation of others

navigational behaviors on the formation to derive control strategies for goal seeking,

collision avoidance and formation maintenance. The advantage for this approach is that

it is natural to derive control strategies when vehicles have multiple objectives, and a

clear feedback is included through communication between group members. The

disadvantages are that the group behavior cannot be explicitly defined and it is difficult

to analyze the approach mathematically and guarantee the group stability according to

Gomman J., et al, (2009).

13

For virtual structure approach, the whole formation is described as a single, virtual,

structure and it acts as a unit. The governing control for each individual robot is derived

by defining the motion of the virtual structure and interpreted it into the desired

movement for each mobile robot as stated by Do, K.D (2007). Beard R., Lawton, J. and

Hadaegh, (1999), mentioned that virtual structure has been achieved by having all

members of the formation tracking assigned nodes which move into required

configuration. Advantage of the virtual structure approach is that is easy to follow the

coordinated behavior for the group and information can be maintained very well during

maneuvers. The disadvantage is that the formation has to maintain the exact same virtual

structure all the time limiting the application‟s potential.

 In leader-follower formation approach, some of the robot act as leaders in the group

while the others as followers following the leader‟s movement as described by Wang

P.K.C., (1992). Kuppan Chetty, R.M., et al., (2011), added that the main objective of the

robot acting as the follower is to position themselves relative to the leader and maintain

a required distance and orientation among each others. Complex formation is possible to

achieve by controlling relative positions and orientation of the leader and followers.

Advantages of this approach are that it is easy to understand and implement and the

formation can still be maintained even if the leader is disturbed. The disadvantages is

that there no explicit feedback from followers to the leader especially in dynamically

changing, unknown, unstructured environments.

14

2.4 Layers Architecture for Leader Follower Formation

Figure 1 shows the hybrid formation control strategy consisting of layered behavior

based architecture. The lower level consists of navigation control for robots and the

supervisor level is a decentralized leader-follower formation controller. Formation and

navigation switch is done based on the local information and the role of robots in the

group.

Figure 1 Layered Formation Control Architecture

Navigation capabilities of the robots is achieved at lower level which consist of two

layers which are the explore layer and avoid obstacle layer. The higher level formation

control consists of supervisor layer required for higher level operation such as formation

and communication.

In leader-follower formation approach, the robot acting as leader of the group navigate

the environment with the lower level behavioral architecture. At this point, the

functionality of the system is divided into simpler task or behaviors that are manipulated

sequentially and transmit its relative position and orientations through higher level

behavior of message passing. The followers execute the formation while the leader

navigates independently.

15

Detail of some of the behaviors according to Kuppan Chetty R.M, et al, (2011) is as

follows:

a) Heading: This behavior process provides approximate heading values for

the safe wandering and obstacle avoidance behaviors by processing the

positioning data, providing the robot current position and orientation at

any time in two dimensional workspace.

b) Avoid Obstacle: By using the sensors, this behavior allows the robots to

avoid obstacle without colliding and to navigate through the

environment. This behavior is initiated when the robot sensor detects an

obstacle and it will manipulate the wheel‟s translational and rotational

velocity.

c) Safe-wandering: With piece wise constant velocity, this behavior guide

the robot through the environment by turning left or right at regular

intervals at set angle. This allows the robot to explore the environment

thoroughly and look for the goal.

d) Message passing: According to Hu H., et al (1998) and James L.C. and

Patrick R., (1993), message passing behavior allows the robots to

exchange information such as position, orientation and velocity by using

the explicit socket communication capability through wireless links. In

leader-following formation approach, this behavior provides the

necessary interaction between the leader and follower by allowing the

leader to current tasks or behavior to the follower and the follower will

navigate through the environment according to the leader‟s information

and also allows leader to know the follower‟s current position.

e) Formation: This behavior manipulates the required wheel velocities of

the follower when the leader path is known to maintain the follower

position relative to the leader with specified separation and orientation.

16

The proposed leader-follower formation control approach was experimented using two

Pioneer P3DX mobile robots research platform and it was concluded that the dynamic

switching between the behaviors and robot helps the follower to trade their roles with

the leader to avoid obstacle in their path while maintaining the desired formation.

2.5 Kinematic Model

Figure below shows a system modeling of two robots in a leader-follower formation

(Wang Z, et. al., 2012).

Figure 2 Leader-Following Formation of Two Robots

Let L be leader and F as the follower. For the follower, the desired position is defined as

follows:

𝐿𝑋 = − 𝑋𝐿 − 𝑋𝐹 cos 𝜃𝐿 − 𝑌𝐿 − 𝑌𝐹 sin(𝜃𝜄) (1)

𝐿𝑌 = − 𝑋𝐿 − 𝑋𝐹 sin 𝜃𝐿 − 𝑌𝐿 − 𝑌𝐹 cos(𝜃𝜄)

LX and LY are the followers relative position along X and Y direction respectively. XL,

YL and XF, YF are the global positions of the leader and follower respectively. The

orientation angles are represented by θL and θF. ι and φ are the spatial distance with

respect to the leader. To get the desired result ιD and φD for this project, it is required to

control the ι and φ at which „D‟ denotes the desired result..

17

Since:

𝐿𝑋𝐷 = 𝐿𝐷cos(∅𝐷) (2)

𝐿𝑌𝐷 = 𝐿𝐷sin(∅𝐷)

Then:

𝐿𝑋𝐷
 = 𝐿𝐷

 cos φD − 𝐿𝐷∅𝐷
 𝑠𝑖𝑛(∅𝐷) (3)

𝐿𝑌𝐷
 = 𝐿𝐷

 sin φD − 𝐿𝐷∅𝐷
 𝑐𝑜𝑠∅𝐷)

Define:

𝑒𝐹 =

𝑥𝑒

𝑦𝑒

𝜃𝑒

 =
𝐿𝑋𝐷 − 𝐿𝑋

𝐿𝑌𝐷 − 𝐿𝑌

𝜃𝐹 − 𝜃𝐿

 (4)

From equation (1):

𝐿𝑋
 = 𝐿𝑌𝑤𝐿 + 𝑣𝐹 cos 𝜃𝑒 − 𝑣𝐿 (5)

𝐿𝑌
 = −𝐿𝑋𝑤𝐿 + 𝑣𝐹 sin 𝜃𝑒

If the desired distance, LD, between the leader and follower is kept constant, then:

𝑥𝑒
𝑦𝑒

𝜃𝑒

 = −

𝑦𝑒𝑤𝐿 − 𝑣𝐹 cos 𝜃𝑒 + 𝑓1

𝑥𝑒𝑤𝐿 − 𝑣𝐹 sin 𝜃𝑒 + 𝑓2

𝑤𝐿 − 𝑤𝐹

 (6)

In which:

𝑓1 = −𝐿𝐷 ∅𝐷sin ∅𝐷 − 𝑤𝐿𝐿𝐷 sin ∅𝐷 + 𝑣𝐿 (7)

𝑓2 = 𝐿𝐷 ∅𝐷cos ∅𝐷 + 𝑤𝐿𝐿𝐷 cos ∅𝐷

18

CHAPTER 3:

METHODOLOGY

3.1 Project Flow

Figure 3 Project Flow

At the early stage of the project, study will be done on the multiple mobile robots

coordination and formation. The research is conducted to acquire better understanding

on the subject through literature reviews, journals reading, and internet research. Robot-

to-PC connection will be established with client-server relationship. The next step is to

connect the three AmigoBot mobile robots using the wireless network. After forming

connection between the three robots, testing and trial run is done to test the working

principle and maneuverability. Trajectory plan will be developed and uploaded to the

robots. Experiment will be done using various trajectory plans and set environments.

The relative position and orientation of the follower robots with respect to the leader

will be recorded and if the error is more than 5% the result will not be accepted.

Modification will be done until the result is acceptable.

19

3.2 Gantt Chart and Project Milestones

Table 1 Gantt Chart For January 2013

No. Detail/ Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Selection of Project Topic

M
ID

 S
EM

 B
R

EA
K

2 Initial Research

3 Submission of Extended
Proposal Defence

4 Proposal Defence

5 Establish Robot-to-PC
connection

6 Develop Trajectory Plan and
Control Program

7 Testing and Trial Run

8 Submission of Interim Draft
Report

9 Submission of Interim Report

 Suggested
milestone

 Process

20

Table 2 Gantt Chart For May 2013

No. Detail/ Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Develop Trajectory Plan
and Control Program

M
ID

 S
EM

 B
R

EA
K

2 Testing and Trial Run

3 Experiment and Data
Collection

4 Submission of Progress
Report

5 Experiments, Data
Collection, Report writing

6 Pre-SEDEX

7 Submission of Draft
Report

8 Submission of Dissertation
(soft bound)

9 Submission of Technical
Paper

10 Oral Presentation

11 Submission of Project
Dissertation (Hard Bound)

 Suggested
milestone

 Process

21

3.3 Software Required

Software involved includes Microsoft Visual Studio Express 2010, Python Server 2.7

MobileSim and advance robot interface for application (ARIA) library. Microsoft Visual

Studio Express 2010 software is used to develop and compile control program by using

action group available in ARIA library to dynamically control robot's velocity, heading,

relative heading, and other motion parameters either through simple low-level

commands or through its high-level Actions infrastructure. Python Server 2.7 allows

communication between leader and follower robots by navigating information transfer

via wireless network. MobileSim software is for simulating mobile robots platforms and

their environments and for debugging and experimentation of the compiled command

structure.

3.4 Hardware Required

Figure 4 AmigBot Mobile Robot

22

AmigoBot mobile robots track their position and orientation based on dead-reckoning

from wheel motion derived from encoder readings. The robot maintains its internal

coordinate position in platform-dependent units, but reports the values in platform-

independent millimeters and angular units in the standard SIP (X, Y, heading).

Registration between external and internal coordinates deteriorates rapidly with

movement due to gearbox play, wheel imbalance and slippage, and many other real

world factors. The dead reckoning ability of the robot can only be relied on for just a

short range on the order of a few meters and one or two revolutions, depending on the

surface. Carpets tend to be worse than hard floors.. On start-up, the robot is at the origin

(0, 0, 0), pointing along the positive X-axis at 0 degrees. Figure 5, shows the axis

direction for the AmigoBot. For the ease of understanding, the coordinates obtain for

results will be change such that positive x-axis is in the right direction and positive y-

axis is in the up direction.

Figure 5 AmigoBot axis direction

23

The project will be conducted by experiments using 3 AmigoBot mobile robots from the

manufacturer Adept Mobile Robots. The following are given specification of the mobile

robot:

◦ Weight: 3.6 kg

◦ High maneuverability: 750 mm/sec translation speed, 300 degree/second

rotation, turns in place

◦ High-impact resistant polycarbonate body and lightweight aluminum

chassis

◦ Driven by 12 VDC motor

◦ Eight range finding SONAR, 360 degree coverage

◦ Built in tracking system

◦ Wireless Ethernet-to-Serial accessory

3.5 Experiments Description

To test the coordination method for multiple mobile robots for this project, experiments

will be conducted by using three AmigoBot mobile robots with similar specification.

One robot assigned „leader mode‟ while the other two robots is in „follower mode‟..

Each robot will have individual onboard PC connected to the robot using a 9 pin serial-

to-USB tether cable and each PC will be connected to each other via a wireless

communication network using wireless router.

 In Leader mode the robot directly drives to the coordinates while transmitting its

position to the Python server. In follower mode the robots will connect to the Python

server to receive continuous updates on the position of the leader robot. It will then

continuously change the goal of to match the path of the leader. The follower mode

cannot be run without the server and a leader running at the same time. The leader mode

can however, be run independently.

24

At the start of the experiment, each robot will be position such that the leader robot will

be place in front while the 2 follower more than 30 cm at the back to avoid each other

obstacle avoidance range. Distance between the robots is measured before starting and

will be measured again at the end to find formation error that may occurred.

Figure 6 Starting Position for Experiments

Three experiments will be conducted using different trajectory path in coordinating

multiple mobile robots. In the first experiment, the robots will move together in a

straight line at constant speed until it reaches the desired coordinates. Each coordinates

is represented in millimeter unit. The leader is required to move to coordinate (10000,

0). Figure 7 shows the trajectory path for the first experiment:

25

Figure 7 Experiment 1

In the second experiment, the mobile robots are required to complete a more complex

trajectory path. The leader robot will be assigned to move in zigzag trajectory by going

through the following coordinates, (1500, 1500), (3000,-1500), (4500, 1500) and (6000,

1500) as shown in figure 8.

Figure 8 Experiment 2

26

For the third experiment, the leader robot is tasked to travel in a straight path similar to

the first experiment but with obstacles to avoid along the way. The experiment measures

the ability of the multiple robots to avoid obstacles while maintaining formation along

the set path. 3 obstacles will be placed as shown in figure 6. The leader is expected to

avoid the obstacles and followers are to follow the leader trajectory while avoiding

obstacle on their respective path. The obstacles is placed at (4500, 0), (6000, 700) and

(6000, -700). Figure 9 shows the obstacles placement for experiment 3.

Figure 9 Experiment 3

In all three experiments, the data on the spatial distance between the leader and follower

is recorded. Error calculation will be done by comparing starting and end spatial

distance using the robots relative coordinates. Modification will be made if the error is

more than 5%.

27

CHAPTER 4:

RESULT AND DISCUSSION

4.1 Control Program

A control program is design to fulfill experiment requirements include performing given

task and collecting required data. The control program is developed using Microsoft

Visual C++ express utilizing ARIA library. ARIA library contain various action groups

and among them are ones that allow communication between robots and onboard PC

and controlling the robot‟s motor and sensors. Following are the main function for the

designed control program:

 Build robot-to-PC and PC-to-server connection

 Assign „leader mode‟ and „follower mode‟ to respective robots

 Goal setting by defining required X and Y coordinates

 Transmit and receive coordinate information and differentiate between leader

and follower coordinates

 Behavior control which include stall recovery, pit sensing and obstacle detection

and avoidance

 Trajectory plan for more complex trajectory path

The program utilizes Python Server to allow message passing from the leader to the

followers. Server receive current position information from all the robots in real time at

a rate of 100 milliseconds per cycle and select only the coordinates from the leader and

transmit it to follower‟s onboard PC and updates the follower current goal. This process

repeats itself until the leader reaches the target. The server can be installed in either one

leader or follower PC. Figure 10 shows a diagram depicting robot-PC and PC-server

relation.

28

Figure 10 Diagram On Information Transfer

4.2 Main Control Structure

In leader mode, the first priority is stall recovery to ensure that the robot will move after

being stopped until it reaches desired destination. The next priority is to stop when the

bumper touches an obstacle to avoid any physical damage. Next is to avoid obstacles

from a distance with avoid front command line. Avoid obstacles action is divided into

short range and long range. Finally, after ensuring safety, the leader priority is to reach

destination. Additional priority is set to check for server connection. Below is leader

mode C++ code:

 leader = new ArActionGroup(&robot);

 leader->addAction(new ArActionStallRecover, 100);

 leader->addAction(new ArActionBumpers, 75);

 leader->addAction(new ArActionAvoidFront("Avoid Front Near", 225, 0), 50);

 leader->addAction(new ArActionAvoidFront, 45);

 leader->addAction(&GoTo, 43);

 leader->addAction(new ActionCom(&data_link, &robot),44);

29

In follower mode, the first priority is to connect to the server to obtain leader robot

current coordinates and update goal. Other priority is the same as in leader mode. Below

is the C++ code for follower:

follow = new ArActionGroup(&robot);

follow->addAction(new ActionCom(&data_link, &robot), 100);

 follow->addAction(new ArActionStallRecover, 99);

 follow->addAction(new ArActionBumpers, 75);

 follow->addAction(new ArActionAvoidFront("Avoid Front Near", 225, 0), 50);

 follow->addAction(new ArActionAvoidFront, 45);

 follow->addAction(&GoTo, 43);

For a more complex trajectory, the control structure is similar but it requires proper

planning in determining direction, coordinates and the shape of the trajectory path. The

shape of trajectory is based on coordinate where the direction changes. The robots will

continue to reach the next coordinate after reaching its destination until it reaches the

goal. The C++ code is given below:

drawZigZag->addAction(new ArActionStallRecover, 100);

drawZigZag->addAction(new ArActionBumpers, 75);

drawZigZag->addAction(new ArActionAvoidFront("Avoid Front Near", 225, 0), 50);

drawZigZag->addAction(new ArActionAvoidFront, 45);

drawZigZag->addAction(new ArActionGoto("Side 1", ArPose(1500, 1500), 100, 400,

150, 7), 44);

drawZigZag->addAction(new ArActionGoto("Side 2", ArPose(-1500, 3000), 100, 400,

150, 7), 43);

drawZigZag->addAction(new ArActionGoto("Side 3", ArPose(1500, 4500), 100, 400,

150, 7), 42);

drawZigZag->addAction(new ArActionGoto("Side 4", ArPose(-1500, 6000), 100, 400,

150, 7), 41);

 Other control structure includes robot-to-PC and PC-to-server connection, coordinates

information transfer and command key setting.

30

4.3 Results and Discussion

The formation control structure designed is independent of the robot capability to

maintain trajectory while unaffected by terrain condition. AmigoBot mobile robots are

for research purpose and not suitable to do an actual field work thus the results may

differ depending on type of mobile robot.

The results and discussion for all 3 experiments will be based on coordinate data

acquired instead of actual position of the robots in the environment. This due to the fact

that the mobile robots tends diverge from its path because of the terrain condition.

Moving either too fast or too slow tends to exacerbate the absolute position errors. The

robots dead reckoning capability is a means of tying together sensor readings taken over

a short period of time.

The graph plot represents the path taken by the robots as seen from top view. As the

robots move to reach specified goal, real time coordinate for all the robots is captured

using python server. Coordinate information is used to plot the graph. Error calculation

will be done based on the coordinate data instead of measuring it in actual environment.

31

4.3.1 Experiment 1

Figure 11 Experiment 1 Result

Figure 11 shows a graph plot showing the result for experiment 1. Based on the figure,

leader robots travel in a straight path with little to no deviation. Both followers manage

to follow the leader without any difficulties. This experiment proves that the control

program designed is working and capable of message passing to coordinate the mobile

robots.

32

Table 3 Experiment 1: Coordinate Data

No Leader Follower 1 Follower 2

 x y x y x y

1 0 0 -600 -600 -600 600

2 378 -1 -514 -600 -514 599

3 767 -1 -111 -601 -132 601

4 1246 -1 384 -601 357 600

5 1695 -1 838 -601 810 600

6 2085 -1 1229 -602 1201 599

7 2445 -1 1589 -603 1560 599

8 2805 -1 1949 -603 1919 599

9 3149 -2 2339 -603 2309 599

10 3583 -2 2728 -603 2698 598

11 3973 -2 3117 -602 3088 598

12 4362 -2 3508 -604 3477 598

13 4752 -2 3896 -603 3867 597

14 5141 -2 4287 -601 4256 597

15 5561 -2 4706 -602 4676 598

16 5950 -2 5095 -601 5065 597

17 6370 -3 5515 -602 5485 598

18 6759 -3 5904 -603 5874 598

19 7119 -3 6264 -603 6234 597

20 7509 -3 6654 -603 6623 596

21 7982 -3 7073 -603 7043 596

22 8317 -3 7463 -603 7433 595

23 8706 -3 7852 -603 7822 596

24 9096 -4 8241 -603 8212 597

25 9486 -4 8630 -603 8600 597

26 9869 -1 9020 -603 8990 595

27 9900 0 9377 -601 9377 599

33

4.3.2 Experiment 2

Figure 12 Experiment 2 Result

The result for experiment 2 is shown in figure 12. For this experiment, the leader

successfully reaches each coordinates points, forming a zigzag pattern until it reaches

the end coordinates. The follower robots still follow leader robot‟s movement but not as

smooth as the previous experiment. From (0, 0) until (1500. 1500) Follower 1 and

Follower 2 follow the leader without much trouble. After the first turn at (1500, 1500)

until (3000, -1500), Follower 2 is struggling to find the correct path but eventually

manages maintain the original trajectory path as shown in figure 13. Similar incident

happened from (3000, -1500) to (4500, 1500) but this time to Follower 1. This is shown

in figure 14. A possible explanation for this incidence is that, at the turning point,

distance between leader and follower closes in causing follower to detect the leader as

an obstacle. The follower slows down to avoid collision. As the leader continue moving

the stall recovery command become first priority as the obstacle is no more. Possible

solution to prevent such incidence from occurring includes increasing the initial spatial

distance, decrease the obstacle avoidance range of the follower, adjust follower velocity

to prevent it from getting too near and increase leader velocity.

34

Figure 13 Experiment 2: Follower 2, lagging behind

Figure 14 Experiment 2: Follower 1, lagging behind

35

Table 4 Experiment 2: Coordinate Data

No. Leader 1 Follower 1 Follower 2

1 0 0 -600 -600 -600 600

2 414 227 -490 -584 -465 625

3 914 834 -115 -260 -78 992

4 1312 1240 267 180 235 1169

5 1492 1490 606 567 539 1588

6 1698 1614 878 855 920 2116

7 2275 1349 1295 1003 1698 1906

8 2483 582 1703 580 1716 1742

9 2702 -289 1901 -105 1902 1091

10 2871 -966 2037 -646 2047 515

11 2993 -1473 2203 -1305 2235 107

12 3081 -1637 2341 -1755 2363 -746

13 3590 -1748 2494 -2160 2563 -1080

14 3976 -1400 2948 -2346 2928 -1102

15 4090 -813 3262 -2038 3225 -866

16 4175 -312 3367 -1693 3406 -424

17 4303 416 3529 -1080 3537 160

18 4444 1208 3640 -967 3661 826

19 4498 1488 3833 -507 3763 1344

20 4593 1667 3863 52 3861 1884

21 5254 1731 4029 618 4144 2400

22 5561 1084 4663 1142 4544 2066

23 5715 199 4893 524 4963 1552

24 5846 -589 5086 -274 5042 1256

25 5956 -1257 5188 -863 5209 717

26 5909 -972 5211 -1089 5309 -372

27 5983 -1307 5321 -1714 5381 -793

28 5983 -1407 5382 -2001 5381 -801

36

4.3.3 Experiment 3

Figure 15 Experiment 3 Result

Figure 15 shows the result for the third experiment. The obstacle is placed is such away

so that it will test follower‟s ability to follow leader as the leader avoid obstacles and

when followers meet an obstacle in their own path as it follow the leader. Based on the

figure above, it shows that all three robots manage to reach specified goal while

avoiding obstacles in their respective path. Leader moves in a straight line and when it

detect Obstacle 1, it stops as avoid obstacle command line becomes main priority and

changes orientation pointing away from obstacles as shown in figure 16. Stall recovery

command takes over to move away from the obstacle. When the path is clear from any

obstacle, the main priority will be to reach specified goal.

For both followers, even without any obstacle in their path, they will still follow the

leader as it avoids Obstacle 1. Follower 1 and Follower 2 will then keep following the

leader until they detect obstacles on their respective path. Follower 1 detects Obstacle 1

from a distance as it follows Leader using avoid front command line and change its

course. Follower 1 repeats the same action to avoid obstacle 2 as shown in figure 17.

Follower 2 did not detect Obstacle 3 from distance. The cause may due to Follower 2

moving too fast or the sensor is lagging. Figure 18 show that follower 2 still manages to

avoid the obstacle by bumper command action. When Follower 2 touches the obstacle, it

37

will stop and try to find a different path to avoid the obstacle. When both followers path

are cleared, they will continue to move according to leader.

Figure 16 Experiment 3: Leader Avoid Obstacle 1

Figure 17 Experiment 3: Follower 1 Avoid Obstacle1 and 2

Figure 18 Experiment3: Follower 2 Avoid Obstacle 3

38

Table 5 Experiment 3: Coordinate Data

No. Leader 1 Follower 1 Follower 2

 x y x y x y

1 0 0 -900 600 -900 -600

2 439 -1 -788 600 -765 -601

3 888 -1 -302 599 -283 -601

4 1397 -1 139 599 211 -601

5 1787 -1 585 599 594 -602

6 2177 -1 967 599 977 -602

7 2596 -2 1360 598 1383 -601

8 2985 -2 1772 598 1779 -602

9 3375 -2 2160 598 2172 -603

10 3708 -1 2578 598 2588 -603

11 3773 -47 2823 579 2826 -621

12 3815 -275 2838 572 2839 -628

13 4141 -494 3015 285 3013 -920

14 4576 -457 3239 -157 3256 -1350

15 5024 -417 3792 -114 3805 -1274

16 5470 -378 4154 263 3927 -960

17 5831 -341 4067 713 4611 -936

18 6248 -305 4584 796 5036 -938

19 6665 -270 5049 491 5455 -897

20 7082 -235 5577 304 5597 -810

21 7469 -202 6114 377 5585 -926

22 7916 -164 6648 405 5866 -1299

23 8364 -130 7130 444 6428 -1193

24 8810 -95 7590 479 6981 -966

25 9287 -58 8071 518 7598 -803

26 9794 -18 8579 556 8923 -616

27 9991 -1 9035 594 8911 -619

39

4.4 Error Calculation

Error calculation is done using the coordinate information obtained. Table 6 shows the

error calculation done for all 3 experiments.

Table 6 Error Calculation Results

Experiment Mobile Robot Initial Spatial

Distance (mm)

End Spatial

Distance (mm)

Error

Calculated

(%)

1 Follower 1 848.5 796.7 6 .1

Follower 2 848.5 795.2 6 .2

2 Follower 1 848.5 848.5 0.4

Follower 2 845.0 854.2 0.7

3 Follower 1
1081.7 1126.0

4.0

Follower 2
1081.7 1244.3

15.0

 Average 5.4

For experiment 1, the average error calculated is 6.15 %. For experiment 2, 0.55 % and

9.5 % for experiment 3. The average error calculated for all three experiment 5.4%

which is still acceptable error for this project. Error for experiment 1 is quite high due to

the ineffectiveness of the mobile robots to travel a long distance. The same goes for

experiment 3 but with higher calculated error as the obstacles interfere with the

follower‟s trajectory and possibly making it deviate from its original designated

position. For experiment 2, the calculated error is lower since zigzag shaped trajectory

path requires the robots to travel in short distances to reach each coordinate point which

is more for AmigoBot mobile robots.

40

CHAPTER 5:

CONCLUSION AND RECOMMENDATION

Based on the experiment results, coordination between three mobile robots is successful

done for experiment 1; 10m straight line trajectory path, experiment 2; 6m zigzag

shaped trajectory path and experiment 3; 10m straight line with obstacles trajectory

path. The designed control programming allows information transfer and behavior

control which are vital to coordinate the mobile robots. From the three experiments, the

follower follows the leader trajectory and successfully maintains spatial distance and

orientation with an average error of 5.4 %. For future experiment, it is recommended

that the designed trajectory path is in short distance but if long distance is required, it is

preferred to divide it into several coordinates point reduce margin of error. To increase

the effectiveness of the designed control program, additional function can be added such

that to control translational and rotational velocity, area mapping, line tracing and object

recognition.

41

REFERENCES

1. Balch T. and Hybinette M., 2000, “Behavior-based coordination of large-scale

robot formations,”. Proceedings. Fourth International Conference on MultiAgent

Systems. < http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=858476>

2. Bahceci, E., Soysal, O., and Sahin, E., October 2003, A Review: Pattern

Formation and Adaptation in Multi-Robot Systems. CMU-RI-TR-03-43,

Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania 15213.

< http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1013622>

3. Belta C. and Kumar V. 2002. “Trajectory design for formations of robots by

kinetic energy shaping”. In Proceedings. ICRA '02. IEEE International

Conference on Robotics and Automation.

4. Crowly, J. L. and Reigner, P., 1993 “Asynchronous Control of Rotation and

Translation for a Robot Vehicle,” International Journal of Robotics and

Autonomous Systems, Vol. 10, pp. 243-251.

5. Do, K.D., 2007, “Formation tracking control of unicycle-type mobile robots,” in:

Proc. of Robotics and Automation Conf., Roma.

< http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4209441>

6. Dudenhoeffer D.D. and Jones M.P. 2000, “A formation behavior for large-scale

micro-robot force deployment,” Simulation Conference Proceedings.

7. Ghommam, J., Saad, M., and Mnif, F. 2008, “Formation path following control

of unicycle-type mobile robots”, IEEE International Conference on Robotics

and Automation Pasadena, CA, USA.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4543495>

8. Hu H. et al., 1998 “Coordination of Multiple Mobile Robots via

Communication,” In Proceedings of SPIE ’98 Mobile Robots XIII Conference,

Boston, pp 94-103.

9. J.P. Desai, J. Ostrowski, V. Kumar, 1998. “Controlling formations of multiple

mobile robots,” In IEEE International Conference on Robotics and Automation,

pp. 2864–2869.

10. Vyas, K, Metsis, V. and Makedon, F., n.d., “ARIA: Getting Started Quickly,”

416 Yates Street, 250 Nedderman Hall, Arlington. TX76019, USA

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4543495

42

11. Kuppan Chetty, RM., Singaperumal, M. and Nagarajan, T., 2011, “Planning and

Control Formation in Multiple Mobile Robots,” International Journal of

Advanced Robotics System. ISSN 1729-8806.

12. Kuppan Chetty, RM., Singaperumal, M. Karsiti N.B and Nagarajan, T., n.d., “

State Based Modelling and Control of a Multi Robot Systems using SIMULINK

13. M. Breivik, T. Fossen, 2006, “Guided formation control for wheeled mobile

robots,” In9th IEEE Conference on Control, Automation, Robotics and Vision,

Singapore, pp. 1_7.

14. Ota, J., Arai, T., and Asama, H. 2002, “Cooperative transport by multiple

mobile robots in unknown static environments associated with real-time task

assignment,” In Proceedings. ICRA '02. IEEE International Conference on

Robotics and Automation.

< http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1067997>

15. R. Beard, J. Lawton, and Hadaegh, 1999, “A coordination architecture for

spacecraft formation control”, IEEE Transactions on Control Systems

Technology , pp. 777-790.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=960341

16. T. Balch and R.C. Arkin, 1998, “Behavior-based formation control for

multirobot teams,” IEEE Transactions on Robotics and Automation, pp. 926-

939. < ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=736776>

17. T. D. Barfoot and C. M. Clark,2004. Motion Planning for Formations of Mobile

Robots, Robot. Auton. Syst., vol. 46, pp. 65-78.

18. Wang, P.K.C.,1992 “Navigation strategies for multiple autonomous robots

moving in formation,” Journal of Robotic Systems 8 (2), pp. 177-195.

< http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=637948>

19. Wang Z., Mao Y., Chen G., and Chen Q., 2012, “Leader Follower and

Communication Based Formation Control of Multi-Robots,” In Proceedings of

the 10
th

 World Congress on Intelligent Control and Automation

20. Wu J., and Jiang Z., 2009, “Formation Control of Multiple Mobile Robots Via

Switching Strategy,” In International Journal of Information and System

Sciences Volume 5, number 2, pg 210-218

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ota,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Arai,%20T..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Asama,%20H..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=637948

43

APPENDIX

Control Program C++ Code

#include "Aria.h"

#include <stdio.h>

#include <iostream>

#define SERVER_IP "127.0.0.1"

#define DEFAULT_PORT "27015"

#define DEFAULT_BUFLEN 22

#include <string.h>

#include <sstream>

using namespace std;

//Variable that determines if the robot is in leader mode or not

char *L = "L";

char *F = "F";

char *leader_flag = L;

int modeFlag = 1;

int switchFlag = 0;

//Target coordinates when the robot is in follower mode. This keeps changing

double X_goal = 2500;

double Y_goal = 2500;

char * pch; char *end;

char *s; char *s2;

ArActionGoto GoTo("drive to target", ArPose(X_goal, Y_goal));

//Target coordinates for when the robot is leading. This does not change.

double leader_goalX;

double leader_goalY;

//Side length of the square for the drawSquare action group

double side_length = 10000;

//Network data

char *sendbuf = "Bot1 ACK";

char recvbuf[DEFAULT_BUFLEN];

int iResult;

int recvbuflen = DEFAULT_BUFLEN;

///Strings that will contain the conversions

string xcord; string ycord;

//Function to convert from number to string

template <typename T>

 string NumberToString (T Number1, T Number2, T Number3)

 {

 ostringstream ss;

 if(modeFlag==0) ss << Number1<<","<<Number2<<","<<Number3<<".";

 if(modeFlag==1) ss <<"L"<<Number1<<","<<Number2<<","<<Number3<<".";

 return ss.str();

 }

44

void updateGoal(string str)

{

 size_t found1 = str.find(",");

 X_goal = (double)atoi((str.substr(0, found1)).c_str());

 size_t found2 = str.find(",", found1+1);

 Y_goal = (double)atoi((str.substr(found1+1,found2-found1)).c_str());

 if(modeFlag==0)

 {

 GoTo.setGoal(ArPose(X_goal,Y_goal));

 }

 if(modeFlag==1)

 {

 GoTo.setGoal(ArPose(leader_goalX, leader_goalY));

 }

}

//ArAction classes

class ActionCom : public ArAction

{

public:

 //Constructor

 ActionCom(ArTcpConnection *data_link, ArRobot *robot);

 //Destructor. Does not need to do anything

 virtual ~ActionCom(void) {};

 //Called by the action resolver to obtain the action's requested behaviour

 virtual ArActionDesired *fire(ArActionDesired currentDesired);

//Store the robot pointer and it's ArSonarDevice object, or deactivate this action

if there is no sonar

 virtual void setRobot(ArRobot *robot);

 int x_goal, y_goal;

protected:

 //the sonar device object is obtained from the robot by setRobot()

 ArRangeDevice *mySonar;

 ArTcpConnection *tcpptr;

 ArRobot *robotptr;

 int x_pos; int y_pos; int heading;

 double obsDist, angle;

 /* Our current desired action: fire() modifies this object and returns to the

 action resolver a pointer this object. This object s kept as a class member

 so that it persists after fire() returns (otherwise fire() would have to

 create a new object each invocation but would never be able to delete that

 object).

 ArActionDesired myDesired;

};

ActionCom::ActionCom(ArTcpConnection *data_link, ArRobot *robot) : ArAction("Go")

{

 //This is the constructor. Some data setup is needed

 data_link->write("Red Leader Checking in!", DEFAULT_BUFLEN);

45

 //Set an internal pointer to point to the TCP connection

 tcpptr = data_link;

 //Set an internal pointer to the robot

 robotptr = robot;

 //Get the curent pose of the robot.

 x_pos = (robotptr->getX());

 y_pos = (robotptr->getY());

 heading = robotptr->getCompass();

 printf("Sending data to server.");

}

void ActionCom::setRobot(ArRobot *robot)

{

 ArAction::setRobot(robot);

 mySonar = robot->findRangeDevice("sonar");

 if(robot==NULL)

 {

 ArLog::log(ArLog::Terse, "ActionCom: Warning! I found no sonar.

Deactivating");

 deactivate();

 }

}

/*

 This file is the whole point of the action.

 currentDesired is the combined desired action from other actions

 previously processed by the action resolver. In this case, we're

 not interested in that, we will set our desired forward velocity

 in the myDesired member and return it.

 Note that myDesired must be a class member since this method will

 return a pointer to myDesired to the caller. If we had declared

 the desired action as a local variable in this method the pointer we

 returned would be invalid after this method returned.

*/

ArActionDesired *ActionCom::fire(ArActionDesired currentDesired)

{

 //Get the current pose of the robot

 x_pos = robotptr->getX();

 y_pos = robotptr->getY();

 heading = robotptr->getCompass();

 obsDist = (robotptr->checkRangeDevicesCurrentPolar(-70, 70, &angle) - robotptr-

>getRobotRadius());

 if(obsDist < 450) switchFlag = 1;

 //Send the pose as a string over the TCP connection

 tcpptr->write(NumberToString(x_pos, y_pos, heading).c_str(), DEFAULT_BUFLEN);

 //Get the position of the leader

 tcpptr->read(recvbuf, DEFAULT_BUFLEN, 5);

 printf("Received: %s\n", recvbuf);

46

 //Convert the message to a string

 string str = (string)recvbuf;

 //cout<<"\nString: "<<str<<"\n";

 //Update the goal of the robot

 if(recvbuf[0] == 'S') modeFlag ^= 1;

 updateGoal(str);

 return &myDesired;

}

ArActionGroup *teleop;

ArActionGroup *follow;

ArActionGroup *leader;

ArActionGroup *drawZigZag;

// Activate the wander action group. activateExlcusive() causes

// all other active action groups to be deactivated../

void followMode(void)

{

 follow->activateExclusive();

 printf("\n== Follow Mode ==\n");

 printf(" The robot will now follow the leader around\n Press 't' to switch to

teleop mode.\n Press escape to exit.\n");

}

//Activate the leader mode of the robot.

void leaderMode(void)

{

 leader->activateExclusive();

 printf("\n== Leader Mode ==\n");

 printf("\nThe robot will now act as a leader in cooperative navigation.\n");

}

//Activate the actionGroup that makes the robot draw a square.

void drawZigZagMode(void)

{

 drawZigZag->activateExclusive();

 printf("\n== Draw ZigZag Mode ==\n");

 printf("\nThe robot will now move in a ZigZag path\n");

}

int main(int argc, char** argv)

{

 Aria::init();

 ArArgumentParser argParser(&argc, argv);

 char* server = argParser.checkParameterArgument("-rs");

 char* mode_flag = argParser.checkParameterArgument("-mode");

 if(!mode_flag) modeFlag = 1;

 else if(strcmp(mode_flag, "F")) modeFlag = 0;

 else if(strcmp(mode_flag, "L")) modeFlag = 1;

 else leader_flag = mode_flag;

 if(!server) server = "localhost";

47

 char* x_togo = (argParser.checkParameterArgument("-X"));

 char* y_togo = (argParser.checkParameterArgument("-Y"));

 if(x_togo) X_goal = (double)(atoi(x_togo));

 if(y_togo) Y_goal = (double)(atoi(y_togo));

 if(x_togo) leader_goalX = (double)(atoi(x_togo));

 if(y_togo) leader_goalY = (double)(atoi(y_togo));

 cout<<"\nX: "<<X_goal<<" Y: "<<Y_goal<<"\n";

 GoTo.setGoal(ArPose(X_goal, Y_goal));

 ArSimpleConnector con(&argParser);

 ArRobot robot;

 ArSonarDevice sonar;

 //Initialize the TCP connection

 ArTcpConnection data_link;

 //Connect to the server.

 //Replace 127.0.0.1 with the IP address of the server.

 data_link.open(server, 27015);

 //WSAStartup(MAKEWORD(2,2), &wsaData);

 argParser.loadDefaultArguments();

 if(!Aria::parseArgs() || !argParser.checkHelpAndWarnUnparsed())

 {

 Aria::logOptions();

 return 1;

 }

 /* - the action group for follow actions: */

 follow = new ArActionGroup(&robot);

 //Transmit location and receive goal

 follow->addAction(new ActionCom(&data_link, &robot), 100);

 // if we're stalled we want to back up and recover

 follow->addAction(new ArActionStallRecover, 99);

 // react to bumpers

 follow->addAction(new ArActionBumpers, 75);

 // turn to avoid things closer to us

 follow->addAction(new ArActionAvoidFront("Avoid Front Near", 225, 0), 50);

 // turn avoid things further away

 follow->addAction(new ArActionAvoidFront, 45);

 // keep moving

 follow->addAction(&GoTo, 43);

 //The action group for the leader mode operation

 leader = new ArActionGroup(&robot);

 //Highest priority for recovering froma stall.

 leader->addAction(new ArActionStallRecover, 100);

 //Next highest priiority for responding to bumpers.

 leader->addAction(new ArActionBumpers, 75);

 //Avoiding obstacles detected by the sonar that are close by.

 leader->addAction(new ArActionAvoidFront("Avoid Front Near", 225, 0), 50);

 //Avoiding obstacles that are far away.

 leader->addAction(new ArActionAvoidFront, 45);

48

 //Going to the goal.

 leader->addAction(&GoTo, 43);

 //Connection test

 leader->addAction(new ActionCom(&data_link, &robot),44);

 //The action group for moving the robot in a square

 drawZigZag = new ArActionGroup(&robot);

 drawZigZag->addAction(new ArActionStallRecover, 100);

 //Next highest priiority for responding to bumpers.

 drawZigZag->addAction(new ArActionBumpers, 75);

 //Avoiding obstacles detected by the sonar that are close by.

 drawZigZag->addAction(new ArActionAvoidFront("Avoid Front Near", 225, 0), 50);

 //Avoiding obstacles that are far away.

 drawZigZag->addAction(new ArActionAvoidFront, 45);

 //Sides of ZigZag pattern

 drawZigZag->addAction(new ArActionGoto("Side 1", ArPose(1500, 1500), 100, 400, 150,

7), 44);

 drawZigZag->addAction(new ArActionGoto("Side 2", ArPose(-1500, 3000), 100, 400, 150,

7), 43);

 drawZigZag->addAction(new ArActionGoto("Side 3", ArPose(1500, 4500), 100, 400, 150,

7), 42);

 drawZigZag->addAction(new ArActionGoto("Side 4", ArPose(-1500, 6000), 100, 400, 150,

7), 41);

 /* - use key commands to switch modes, and use keyboard

 * and joystick as inputs for teleoperation actions. */

 // create key handler if Aria does not already have one

 ArKeyHandler *keyHandler = Aria::getKeyHandler();

 if (keyHandler == NULL)

 {

 keyHandler = new ArKeyHandler;

 Aria::setKeyHandler(keyHandler);

 robot.attachKeyHandler(keyHandler);

 }

 // set the callbacks

 ArGlobalFunctor followCB(&followMode);

 ArGlobalFunctor leaderCB(&leaderMode);

 ArGlobalFunctor squareCB(&drawZigZagMode);

 keyHandler->addKeyHandler('F', &followCB);

 keyHandler->addKeyHandler('f', &followCB);

 keyHandler->addKeyHandler('l', &leaderCB);

 keyHandler->addKeyHandler('L', &leaderCB);

 keyHandler->addKeyHandler('s', &ZigZagCB);

49

 keyHandler->addKeyHandler('S', &ZigZagCB);

 //Setting up the robot as the client

 /* - connect to the robot, then enter teleoperation mode. */

 robot.addRangeDevice(&sonar);

 if(!con.connectRobot(&robot))

 {

 ArLog::log(ArLog::Terse, "actionGroupExample: Could not connect to the robot.");

 Aria::exit(1);

 }

 robot.enableMotors();

 robot.run(true);

 Aria::exit(0);

 data_link.close();

}

50

Python server script

#Importing all the libraries necessary

#for socket programming.

import socket

import select

import sys

#Setting up the TCP connection

host = ''

port = int(raw_input("Enter port Number (Try 27015 or 27016): "))

backlog = 5

size = 512

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind((host, port))

#Listen for incoming connection on the port given by user

s.listen(backlog)

count = 1

addrlist=['192.168.0.103', '127.0.0.1']

raw_data = []

leaderPos = '0,0,0.'

i=0

#Open a file to write the data to.

datafile = open("exp1.txt", 'a')

51

#Cycle through the connections from the robots.

#This loop keeps running as long as there are connections

#coming from the robots.

read_list = [s]

while True:

 readable, writable, error = select.select(read_list, [], [],0)

 for sock in readable:

 if sock is s:

 client, address = sock.accept()

 read_list.append(client)

 print "Connection from", address

 else:

 data = sock.recv(size)

 #write data to file

 datafile.write("%s\n" %(data))

 if(data[0]=="L"):

 leaderPos = data

 print data

 if ((data)):

 sock.sendall(leaderPos)

 else:

 sock.close()

 read_list.remove(sock)

#close the file

datafile.close()

