

Estimating Pressure Drop in Vertical Wells Using Group

Method of Data Handling (GMDH) Approach; a

Comparative Study

by

Musaab Mohamed Ahmed Alamin

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Petroleum Engineering)

May 2013

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

ii

CERTIFICATION OF APPROVAL

Estimating Pressure Drop in Vertical Wells Using Group Method of

Data Handling (GMDH) Approach; a Comparative Study

by

Musaab Mohamed Ahmed Alamin

A project dissertation submitted to the

Petroleum Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(PETROLEUM ENGINEERING)

Approved by,

(Dr. Mohammed Abdalla Ayoub)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

May 2013

 iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this

project, that the original work is my own except as specified in the

references and acknowledgements, and that the original work contained

herein have not been undertaken or done by unspecified sources or

persons.

MUSAAB MOHAMED AHMED ALAMIN

 iv

ABSTRACT

A reliable estimation of the pressure drop in well tubing is essential for the solution of

a number of important production engineering and reservoir analysis problems.

Different methods have been discussed and analyzed in the literature. This includes

the basics of each method, the variables used and the limitations and constraints.

This project aims to construct a tool that can estimate the pressure drop in vertical well

using the minimum possible variables. In this project group method of data handling

(GMDH) approach is used in order to build the model. And for the optimization of the

model, Trend analysis is also used for the sake of having a physically sound model.

The developed model GMDH has shown an outstanding results and it has

outperformed all empirical correlations and mechanistic models which have been used

in the comparison. The analysis of the results also confirmed with the testing set which

has not seen by the GMDH during the development of the model which could still

achieve an accurate estimation of the pressure drop.

The GMDH model is developed and the objective is successfully achieved. Moreover,

the simplicity and good functionality of the model made it a better choice when it

comes to predict a pressure drop in any multiphase vertical well.

 v

ACKNOWLEDGEMENTS

All the thanks firstly go to Allah who helped me completing this project in a proper

way, and within the time, my thanks also go to my parents who helped me along during

the entire study life. And my deepest gratitude shall be given to my supervisor Dr.

Mohammed Abdalla Ayoub who helps me in order to complete this project with his

full support, guidance and sharing knowledge, working on this project has given me a

very good experience of how to obtain knowledge and work as engineers work. Not to

be forgotten all my friends and colleagues, and also Universiti Teknologi PETRONAS

which provided the facilities to complete this work.

 vi

TABLE OF CONTENTS

Chapter 1 .. 1

INTRODUCTION .. 1

1.1 Project Background ... 1

1.2 Group method of data handling (GMDH) Algorithms 2

1.3 Selection of Independent variables .. 3

1.4 Problem statement ... 3

1.5 Objectives .. 5

1.6 Feasibility of the study .. 5

Chapter 2 .. 6

LITERATURE REVIEW .. 6

2.1 Overview ... 6

2.2 Empirical Correlations .. 8

2.3 Mechanistic Models .. 10

2.4 Artificial Neural Networks .. 11

Chapter 3 .. 13

RESEARCH METHODOLOGY ... 13

3.1 Overview ... 13

3.2 Data Gathering & Processing .. 14

1.2.3 Partitioning... 15

3.3 Building GMDH Model .. 16

3.4 Software Used ... 16

3.5 Trend analysis .. 17

3.6 Statistical Error Analysis ... 17

3.7 Graphical Error Analysis ... 17

 vii

3.7.1 Cross-plots ... 18

3.7.2 Error Distribution ... 18

3.8 Limitations of the Model ... 18

Chapter 4 .. 19

RESULTS AND DISCUSSION .. 19

4.1 Development of the GMDH model ... 19

4.1.1 Introduction .. 19

4.1.2 Summary of the Model’s Equation .. 20

4.1.3 GMDH Model Optimization .. 21

4.2 Trend Analysis for the Proposed GMDH Mode ... 22

4.3 Statistical Error Analysis for the Proposed GMDH Model against Other

Investigated Models ... 25

4.4 Graphical Error Analysis for the Proposed GMDH Model against Other

Investigated Models ... 25

4.4.1 Cross Plots of GMDH Model against Investigated Models 26

4.4.2 Error Distribution of GMDH Model against Investigated Models 33

4.5 Discussion of the Results .. 35

CHAPTER 5 ... 39

CONCLUSION AND RECOMMENDATION ... 39

5.1 Conclusions .. 39

5.2 Recommendations .. 40

REFERENCES ... 41

APPENDIX A - Statistical Error Equation .. 46

APPENDIX B- GMDH CODE ... 47

 viii

LIST OF FIGURES

Figure 3.1 Modelling Construction Process ... 14

Figure 4.1 Schematic Diagram Of The Proposed GMDH Model Topology 20

Figure 4.2 Effect of Gas Rate on Pressure Drop .. 22

Figure 4.3 Effect of Water Rate on Pressure Drop .. 23

Figure 4.4 Effect of Oil Rate on Pressure Drop ... 23

Figure 4.5 Effect of Depth “Pipe Length” on Pressure Drop 24

Figure 4.6 Effect of Oil Gravity on Pressure Drop .. 24

Figure 4.7 Cross plot of pressure drop for Training set (GMDH Model) 27

Figure 4.8 Cross plot of pressure drop for Validation set (GMDH Model) 27

Figure 4.9 Cross plot of pressure drop for Testing set (GMDH Model).................... 28

Figure 4.10 Cross plot of pressure drop for Hagedorn & Brown Correlation 28

Figure 4.11 Cross plot of pressure drop for Beggs Brill Correlation 29

Figure 4.12 Cross Plot of Pressure Drop for Orkiszewski Correlation 29

Figure 4.13 Cross plot of pressure drop for Gray Correlation 30

Figure 4.14 Cross plot of pressure drop for Duns & Ros Correlation 30

Figure 4.15 Cross plot of pressure drop for Ansari et al Model 31

Figure 4.16 Cross plot of pressure drop for Mukherjee & Brill Correlation 31

Figure 4.17 Cross plot of pressure drop for Aziz et al Model.................................... 32

Figure 4.18 Cross plot of pressure drop for Ayoub Model .. 32

Figure 4.19 Error Distribution for Training Set ... 33

Figure 4.20 Error Distribution for Validation Set .. 34

Figure 4.21 Error Distribution for Testing Set ... 34

 ix

Figure 4.22 Error Distribution for All models including GMDH model 35

Figure 4.23 Average Absolute Relative Error for All Models 36

Figure 4.24 Root Mean Square Error for All Models .. 37

Figure 4.25 Coefficient of Determination for All Models ... 37

Figure 4.26 Root Mean Square Error against Standard Deviation for All Models 38

Figure 4.27 Average Absolute Relative Errors against the Confident Of

Determination for All Models .. 38

 x

LIST OF TABLES

Table 3.1 Statistical Analysis of the Used Data ... 15

Table 4.1 Statistical Analysis Results of the Proposed GMDH Model 25

Table 4.2 Statistical Analysis Results of the Proposed GMDH Model and Investigate

Models .. 26

1

Chapter 1

INTRODUCTION

1.1 Project Background

 The main factors that cause the pressure drop in any vertical pipe can be a

summation of three terms: gravity, friction loss and a momentum pressure drop.

(Griffith et al, 1975):

 ∆𝑃 = ∆𝑃𝑓 + ∆𝑃𝑔 + ∆𝑃𝑚 ……………………….………………..equation (1.1)

The pressure loss due to the fiction loss, the gravity loss and the momentum loss. The

momentum loss (∆𝑃𝑚) can be negligible in the literature (Griffith et al, 1975; Hasan

and Kabir, 1992; Ansari et al., 1994; Abdul-Majeed & Al-Mashat, 2000). Several

methods have been proposed to estimate the pressure drop in vertical wells which

produce a mixture of oil and gas. Early researchers used laboratory and/or field data

to develop empirical correlation to investigate pressure drop in multi-phase flow.

(Duns & Ros, 1963 and Orkiszewski, 1967). And currently, some researchers are

using artificial intelligence such as the artificial neural networks to directly predict the

pressure drop in any vertical pipe (Ayoub, 2004).

 One of the challenges in pressure drop calculation is the determination of the

flow regime in vertical pipe. Due to the complexity of multiphase flow, several flow

regimes may exist that depend on different factors. Zavareh et al investigation in 1988

using a multiphase flow loop and a photograph showed that when the well is vertical

all flow regimes detected is bubble flow for all conditions tested. This bubble flow can

be further subdivided as being bubble, dispersed bubble, inverted bubble or Inverted

dispersed bubble, based on the bubble size and depending on which phase is

continuous.

2

1.2 Group method of data handling (GMDH) Algorithms

GMDH is a heuristic self-organization method that models the input-output

relationship of a complex system. In 1966, the Russian cyberneticist, Prof. Alexey G.

Ivakhnenko in the Institute of Cybernetics in Kiev (Ukraine) introduced a technique

for constructing an extremely high-order regression-type polynomial. The algorithm,

the Group Method of Data Handling (GMDH), builds a multinomial of degree in the

hundreds, whereas standard multiple regression becomes bogged down in

computation and linear dependence.

 The author great generosity of open code sharing has made this method quickly

settled in the large number of scientific laboratories worldwide. The basic GMDH

algorithm is a procedure of constructing a high order polynomial of the form:

𝑦 = 𝑎 + ∑ 𝑏𝑖
𝑚
𝑖=1 𝑥𝑖 + ∑ ∑ 𝑐𝑖𝑗

𝑚
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑥𝑗 + ∑ ∑ ∑ 𝑑𝑖𝑗𝑘

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑥𝑗𝑥𝑘 +

 ∑ ∑ ∑ ∑ 𝑒𝑖𝑗𝑘𝑙
𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 + ⋯ …………………………………… equation (1.2)

 GMDH modelling can be an alternative to artificial neural networks modelling

approach that helps overcome many of the artificial neural networks limitations is that

based on the self-organizing Group Method of Data Handling (GMDH). Based on the

self-organizing group method of data handling (GMDH), this technique uses well-

proven optimization criteria for automatically determining the network size and

connectivity, and element types and coefficients for the optimum model, thus

reducing the modelling effort and the need for user intervention.

 The mechanisation of model creation not only lessens the burden on the analyst

but also safeguards the model generated from being influenced by human biases and

misjudgements. The GMDH model automatically selects influential input parameters

and the input-output relationship can be expressed in polynomial form. This enhances

explanation capabilities and allows comparison of the resulting data-based machine

learning models with existing first principles or empirical models. (Farlow, 1981;

Osman & Abdel-Aal, 2002).

3

1.3 Selection of Independent variables

 The main problem with estimation the pressure drop in vertical well is the

number & type of independent variables that can affect the pressure drop. The model

suggested by Aziz et al (1972) has a total of fifteen independent variables which must

be specified as input data in order to calculate the pressure at the wellbore.

 A simple linear model has been presented by Gregory (1974) which required

only four independent variables to be specified under certain conditions. It can be used

in straightforward hand calculations where it gives easier way to calculate the pressure

drop than Aziz et al model. Empirical models could not completely take into account

all the variables and complexities of multiphase flow and resulted in limited range of

applicability. (Takacs, 2001).

 Early methods used very rude physical models and many simplifying

assumptions, and were usually based on experimental data gathered from laboratory

or field measurements. These empirical models could not completely take into account

all the variables and complexities of multiphase flow and resulted in correlations of

limited applicability

 In this project, the number of independent variables will be evaluated by the

software to minimize the number of independent variables need to be used in the

proposed model.

1.4 Problem statement

 Many methods have been proposed to estimate the pressure drop in vertical

wells that produce a mixture of oil and gas. The study conducted by Pucknell et al

(1993) concludes that none of the traditional multiphase flow correlations works well

across the full range of conditions encountered in oil and gas fields. Accurate

prediction of pressure drop in vertical wells can be greatly helpful in cost management

when it comes to well completions and production optimization.

4

 Most of the vertical pressure drop calculation models were developed for

average oilfield fluids and this is why special conditions such as; emulsions, non-

Newtonian flow behaviour, excessive scale or wax deposition on the tubing wall, etc.

can pose severe problems. Accordingly, predictions in such cases could be doubtful

(Takacs, 2001).

 The accuracy of estimating the pressure drop in vertical wells has been

discussed frequently in the last decades. Although many solutions have been produced

but it still can’t be raised to a level to be generally accepted. Early empirical models

treated the multiphase flow problem as the flow of a homogeneous mixture of liquid

and gas. This approach completely disregarded the well-known observation that the

gas phase, due to its lower density, overtakes the liquid phase resulting in “slippage”

between the phases. Slippage increases the flowing density of the mixture as compared

to the homogeneous flow of the two phases at equal velocities. Because of the poor

physical model adopted, calculation accuracy was low for those early correlations.

Another reason behind that is the complexity in multiphase flow in the vertical pipes.

Where water and oil may have nearly equal velocity, gas have much greater one. As a

results, the difference in the velocity will definitely affect the pressure drop.

 As measuring the pressure drop in vertical wells is not a practical options due

to its high cost. Many methods have been proposed for pressure drop estimation.

However, the variation of well conditions from one to another is an obstacle to have

general correlation with acceptable range of error.

 The parameters affecting the pressure drop are very important for the model

generation. While not all fluid data or production data for example are critical,

knowing the weight effect of each parameters can lead to a simple and direct estimation

for the pressure drop.

5

1.5 Objectives

 This project aims at generating a model which is capable of estimating the

pressure drop in vertical wells using the minimum possible number of parameters

and compare its performance with of the best current methods.

 Other specific objectives of this project can be stated as follow:

a) Revising the best available correlations and defining the

correlation parameters.

b) Understating the parameters influencing the pressure drop in

vertical pipes.

c) Construct a new model using group method of data handling

(GMDH) approach to estimate the pressure drop.

d) Evaluate the model performance by comparing the predicted

results against the actual ones.

1.6 Feasibility of the study

 This project requires a modelling software in order to conduct a successful

study. By using Matlab Software -which is available in UTP-. And the field data

required to carry on the project are collected from released actual field data. Hence,

the project is clearly feasible to be implemented and results were obtained within the

proposed time frame for the project.

 The new model is helpful for designing the facilities needed in vertical wells.

Besides that, this new model can be generally considered for estimating pressure drop

in vertical wells in oil and gas industry because of its simplicity and high accuracy

6

Chapter 2

LITERATURE REVIEW

2.1 Overview

 The existence of multiphase flow and their associated problems have been

recognized since 1797.Numerous correlations and equations have been proposed for

multiphase flow in vertical, inclined and horizontal wells in the literature. However,

most of the significant contributions have been made since 1945 (Palisetti, 1998). Due

to the importance of two-phase flow problems, researchers have developed many

accurate pressure drop computation methods (Takacs 2001). However, it has not yet

been proposed a universal model that can satisfy all well conditions.

 The early approaches used the empirical correlation methods such as Hagedorn

& Brown (1965) Duns & Ros, (1963), and Orkiszewski (1967). Then the trend shifted

into mechanistic modelling methods such as Ansari (1994) and Aziz et al (1972) and

lately the researchers has introduced the use of artificial intelligence into the oil and

gas industry by using artificial neural networks such as Ayoub (2004) and

Mohammadpoor (2010) and many others. The application of factorial design analysis

for a well pressure drop modelling has been discussed by Gregory in 1974. The study

discussed the proper usage of fractional factorial design analysis which can generate a

direct simple linear approximation of the computer model that can be used in the

prediction model. In that study, ranges of variables selected was aided by the well data

tabulated by Aziz et al (1972). As the remaining input data for the computer program

were arbitrarily specified. Gregory (1974) claims that his single linear equation with

four independent variable can predict the pressure drop more accurate than the

7

mechanistic model. However, this model proposed by Gregory is only applicable to be

used under certain conditions. Gregory suggested to generate similar model by normal

regression analysis techniques using the available well data. This may lead to find

better and more accurate values for the pressure drop.

 Takacs (2001) has collected and summarized the findings of many previous

investigation on the accuracy of the different pressure drop calculation models.

Statistical parameters of these investigations are shown to be widely scattered and to

be of limited use to engineers seeking the most accurate model. The Early methods

used very rude physical models and many simplifying assumptions, and were usually

based on experimental data gathered from laboratory or field measurements. The era

from the early 1980s to the present experienced the emergence of the so-called

“mechanistic” models. These apply a modelling approach to the solution of the

pressure drop calculation and are founded on a comprehensive description of the basic

mechanisms occurring in multiphase flow. Takacs concluded his paper in the

following points:

 None of the available vertical multiphase pressure drop calculation models is

generally applicable because their prediction errors may considerably vary in

the different ranges of the flow parameters.

 There is no “over-all best” calculation method, and all efforts to find one are

deemed to fail.

 In spite of the claims found in the literature, the introduction of mechanistic

models did not deliver a breakthrough yet because their accuracy not

substantially exceed that of the empirical ones.

 Based on a sufficiently great number of experimental data from the oilfield

considered, one can determine the optimum pressure drop prediction method

for that field.

 A different method using two phase fluid flow models is proposed to calculate

the pressure drop in vertical and inclined oil wells (Griffith et al, 1975). The study has

been implemented to oil and gas wells with an accuracy of about 10 %. Griffith

methods is considered as very simple equation. However, some variables have been

dropped out of the equation such as; pipe roughness, viscosity for liquid and gas and

8

entrainment effect. The justification for these variables not be considered in his

equation is simple as stated by the author. Pipe roughness effect is almost the same as

in single phase flow. And the existence of liquid may increase or decrease the friction

drop but with low effect and therefore it can be negligible. For the gas and liquid

viscosity, they have little of consequence but the error under these conditions would

be considerable.

 Some correlations have been developed to calculate the pressure drop in special

cases such as; deep gas wells (Moradi et al, 2011) and the presence of surfactant in the

well (Soni et al, 2009).

2.2 Empirical Correlations

 The empirical correlation was created by using mathematical equations based

on experimental data. Most of the early pressure drop calculation was based on these

correlations because of thier direct applicability and fair accuracy to the data range

used in the model generation. In this study, the empirical correlation for pressure drop

estimation in multiphase flow in vertical wells are reviewed and evaluated with

consideration of its required dimensions, performance, limitation and range of

applicability.

 Duns & Ros Correlation (1963): This empirical correlation is resulted from

laboratory experiments with some modification and adjustments in the correlation by

using actual field data. Duns & Ros correlation are in terms of a dimensionless gas

velocity number, diameter number, liquid velocity number and a dimensionless

mathematical expression. The acceleration gradient is neglected in the methods.

Although this method is developed to calculate the pressure drop with dry oil/gas

mixtures, it can also be used with wet oil/gas mixtures in some cases.

 Hagedorn & Brown Correlation (1965): Hagedorn & Brown correlation is

one of the most common correlations used in the industry. Hagedorn & Brown

correlation has developed using an experimental study of pressure gradients occurring

during continuous two-phase flow in small diameter vertical conduits, a 1500 ft

9

vertical wellbore and considering 5 different fluids types in the experiment which is

water and four types of oil. This correlation involve only dimensionless groups of

variables and it can be applied over a much wider range of conditions comparing to

other correlations.

 Orkiszewski Correlation (1967): This correlation developed an equation for

two-phase pressure drops in flowing and gas-lift production wells over a wide range

of well conditions with range of a precision about 10 percent. The method is an

extension of the work done by Griffith and Wallis (1961). The correlation is valid for

several flow regimes such as; bubble flow, slug flow, transition flow and annular-mist

flow. Orkiszewski proved his assumption by comparing the measured pressure drop

results of 184 wells to the calculated ones. The parameter considered in his equation

for the pressure drop is the effect by the energy lost by friction, the change in potential

energy and the change in kinetic energy. The results obtained by these methods still

applicable for wide range of well conditions (e.g. heavy oil). But, there are some well

conditions that have not been evaluated (e.g., flow in the casing annulus and in the

mist flow regime).

 Beggs & Brill Correlation (1973): The Beggs and Brill method was

developed to predict the pressure drop for horizontal, inclined and vertical flow. It also

took into account the several flow regimes in the multiphase flow. Therefore, Beggs

& Brill (1973) correlation is most widely used. In their experiment, they used 90 ft

long acrylic pipes to produce data. Fluids used were air and water and 584 tests were

conducted. Gas rate, liquid rate and average system pressure was varied. Pipes of 1

and 1.5 inch diameter were used. The parameters used are gas flow rate, Liquid flow

rate, pipe diameter, inclination angel, liquid holdup, pressure gradient and horizontal

flow regime. This correlation has been developed so it can be used predict the liquid

holdup and pressure drop.

 Gray Correlation (1978): The Gray correlation was developed by H.E. Gray

(Gray, 1978), specifically for wet gas wells. Although this correlation was developed

for wet gas vertical flow, but it can also be used in multiphase vertical and inclined

flow. In his correlation Flow is treated as single phase, and dropped out water or

condensate is assumed to adhere to the pipe wall. The parameters considered in this

10

method are the phase velocity, tube size gas condensate ratio and water ratio. The

pressure difference due to friction is calculated using the Fanning friction pressure loss

equation.

 Mukherjee & Brill Correlation (1985): Mukherjee & Brill Proposed a

correlation for Pressure loss, Holdup and flow map. Their correlation was developed

following a study of pressure drop behaviour in two-phase inclined flow. However, it

can also be applied to vertical flow. Prior knowledge of the liquid holdup is needed to

compute the pressure drop using Mukherjee & Brill (1985) correlation. The results

obtained from their experiments were verified with Prudhoe Bay and North Sea data.

2.3 Mechanistic Models

 Mechanistic models or known also as semi-empirical correlations deal with the

physical phenomena of the multiphase flow. These kinds of models are developed by

using mathematical modelling approach. A fundamental hypothesise in this type of

models is the existence of various flow configurations or flow patterns, including

stratified flow, slug flow, annular flow, bubble flow, churn flow and dispersed bubble

flow. The first objective of this approach is, thus, to predict the existing flow pattern

for a given system. Although most of the current presented mechanistic models have

been developed under certain condition which limits their ability to be used in different

range of data, these models are expected to be more reliable and general because they

incorporate the mechanisms and the important parameters of the flow (Gomez et al.

2000).

 Aziz et al. Model (1972): Aziz, Govier and Fogarasi (1972) have proposed a

simple mechanistically based scheme for pressure drop calculation in wells producing

oil and gas. The scheme was based on the identification of the flow pattern map. The

mechanical energy equation was presented in the relationship between the pressure

gradient, the flow rate, the fluid properties and the geometry of the flow duct. While

the model proposed new equation for bubble and slug flow patterns, it recommended

the old Dun & Ros equations for annular mist pattern. The new prediction method

incorporates an empirical estimate of the distribution of the liquid phase between that

11

flowing as a film on the wall and that entrained in the gas core. It employs separate

momentum equations for the gas-liquid mixture in the core and for the total contents

of the pipe. The model has presented 44 value of predicted pressure drop with an

absolute error almost equal to the Orkiszewski correlation. However, the uncertainties

and lack of some filed data made it difficult to develop a fully mechanistically, reliable

based computation method.

 Ansari et al. Model (1994): This mechanistic model is developed for upward

two-phase flow in wellbores. This model was developed as part of the Tulsa University

Fluid Flow Projects (TUFFP) research program. The model predict the existence of

four flow patterns which are; bubble flow, slug flow, churn flow and annular flow. The

model was evaluated by using the TUFFP well databank that is composed of 1775 well

cases, with 371 of them from Prudhoe Bay data. Ansari et al (1994) claim that the

overall performance of the comprehensive model is superior to all other methods

considered with an exception of Hagedorn & Brown empirical correlation due to its

extensive data used in its development and modifications made to the correlation.

2.4 Artificial Neural Networks

 An artificial neural networks is a structure (network) composed of a number of

interconnected units (artificial neurons). Each unit has an input/output (I/O)

characteristic and implements a local computation or function (Jahanandish &

Jalalifar, 2011). It has been only a few years since neural networks first gained

popularity. In the past two to three years, banks, credit card a companies,

manufacturing companies, high tech companies and many more institutions have

adopted neural nets to help them in their day-to-day operation. Within the past few

years, several software companies have surfaced that work solely on neural net

products. Most researchers believe that artificial neural networks may be able to

produce what rule based artificial intelligence (expert systems) have promised for so

long but failed to deliver.

 The use of Artificial Neural Networks (ANNs) in petroleum industry can be

tracked several years ago. Since the literature have many industry problems solved by

12

several authors using ANNs models. ANNs have been used in several area of oil and

gas industry such as; permeability prediction, well testing, enhanced oil recovery, PVT

properties prediction, improvement of gas well production, prediction & optimization

of well performance, integrated reservoir characterization and portfolio management.

(Ayoub, 2004).

 Experience showed that empirical correlations and mechanistic models failed

to provide a satisfactory and reliable tool for estimating pressure drop in multiphase

flowing wells. Large errors are usually associated with these models and correlations

(Takacs, 2001). Artificial neural networks gained wide popularity in solving difficult

and complex problems, especially in petroleum engineering (Mohaghegh and Ameri,

1995).

 Ayoub Model (2004): Ayoub presented an Artificial Neural Networks (ANNs)

model for prediction of the bottom-hole flowing pressure and consequently the

pressure drop in vertical multiphase flow. The model was developed and tested using

field data covering a wide range of variables. A total of 206 field data sets collected

from Middle East fields; were used to develop the ANN model. These data sets were

divided into training, cross validation and testing sets in the ratio of 3:1:1. The testing

subset of data, which were not seen by the ANN model during the training phase, was

used to test the prediction accuracy of the model. Trend analysis of the model showed

that the model correctly predicted the expected effects of the independent variables on

bottomhole flowing pressure. This indicated that the model simulates the actual

physical process. Although, the results showed that his model significantly

outperforms all existing methods and provides predictions with higher accuracy. The

author warned that the new developed model can be used only within the range of used

data. Caution should be taken beyond the range of used input variables. Ayoub (2004)

model demonostrate the power of artificial neural networks model in solving

complicated engineering problems.

13

Chapter 3

RESEARCH METHODOLOGY

3.1 Overview

 There are many approaches that can be used in order to solve engineering

problems. These approaches can be classified as:

1. Exact or rigorous approach.

2. Modelling approach.

3. Mechanistic approach.

4. Experimental approach.

In this project, GMDH approach is classified as “modelling approach”. To the

best of my knowledge it has not been used before in this kind of estimation. GMDH

polynomial neural networks are being used to construct a mathematical model that can

estimate the pressure drop in vertical wells. This mathematical model is built and

developed as an attempt to replace the previously developed rigorous correlations

either empirical correlations or mechanistic models. This model consists of a very

simple approach of predicting the pressure drop with high accuracy and minimum

usage of parameters.

14

The outcomes of these models have been compared against the measured one.

An optimization study also used the trend analysis that confirmed the physical

possibility of the proposed model. Figure (3.1) is illustrates the sequence of research

procedure.

Figure 3.1 Modelling Construction Process

3.2 Data Gathering & Processing

The most important and critical step in the project is the data gathering which

has the main impact on generating a successful model. During the data gathering and

collection, it has been considered the quantity and quality of the collected data to

ensure sufficient information that help to build the model.

When it comes to estimation the pressure drop in multiphase vertical wells,

there are so many parameters known to be contribute to it. However, not all these

parameters might be significantly contributed to the final output. Besides that, some

of these parameters cannot be available in the data collection process due to some

technical problems. Although this insufficiency in the data can reduce the accuracy of

the model, it also might not have significant effects as it will be discussed later.

Additionally, some of these input parameters were removed from the final data

selection due to their low ranges.

Limitations of the Model

Error Estimation "Statistical & Graphical"

Trend Analysis

Model Validation & Testing

Model Construction

Data Gathering & Processing

15

A total number of 260 data sets had been used in this project in order to

construct the mathematical model. The Input variables have been selected based on

the most commonly used empirical correlations and mechanistic models used by the

industry. These input variables are oil rate, water rate, gas rate, diameter of the pipe,

length of pipe ”depth”, wellhead pressure, surface temperature and oil gravity “API”.

Table (3.1) shows the statistical analysis of the used data in this project.

Table 3.1 Statistical Analysis of the Used Data

Flow Parameter Min Max Average STD

Bottomhole Pressure, (psi) 1019.79 3124 2234 476.971

Oil Rate, (bbl/D) 45.2 19618 5068.5 4838.1

Water Rate, (bbl/D) 0 7900 1757.3 2309

Gas Rate, (Mscf/D) 0 13562.2 2563.6 3047.57

Depth, (ft) 2726.4 8070.87 5830 1040

Tubing Diameter, (in) 2 4 3.75 0.33

Surface Temperature, (degreeF) 70 160 113.55 27.44

Wellhead Pressure, (Psi) 5 800 249.5 159.17

Oil Gravity, (API) 12.4 37 31.1 5.675

1.2.3 Partitioning

Partitioning the data is the process of dividing the data into three different sets:

training sets, validation sets, and test sets. By definition, the training set is used to build

and develop the model, the validation set is used to ensure the optimum generalization

of the developed model and the test set, which is not be seen by the network during

training, is used to examine the final performance of the model. Although different

partitioning ratios were tested (2:1:1, 3:1:1, and 4:1:1), the author has choosen the

2:1:1 ratio because it’s more popular and frequently used by researchers (Ayoub,

2004).

According to the chosen partition ration 130 data set reserved for training the

model while 65 data sets were utilized for validation purposes. The last 65 data set had

16

been kept aside for testing the new model performance. Needless to mention that this

testing set was never seen by the network during training and validation.

3.3 Building GMDH Model

 The process of building the GMDH model started with selecting the input

parameters which has been discussed earlier. Free software was being used for this

purpose (Jekabsons, 2011). This source code was tested with MATLAB version 8.1

(R2013a). Despite the software allows great flexibility in selecting the model

parameters, it also provides ample interference. Although, all of the input parameters

had been used in generating the model, just a few are used in the final equation to

estimate the pressure drop.

3.4 Software Used

 In this Project, MATLAB software (version R2013a), [MATLAB], environment

was utilized due to flexible programming and graphs visualization. This software

provides a good way to monitor the performance of the three data sets (training,

validation and testing data) simultaneously which ease the optimization process and

the sensitivity analysis.

 A MATLAB code was developed by Jekabsons (2011). His code represents a

simple implementation of Group Method of Data Handling (GMDH) for building

Polynomial Neural Networks. The algorithm uses the training data to build the network

in a layer by layer arrangement. The connectivity and number of layers of the network

is controlled by an evaluation criterion. The code algorithm gives the user either to use

measuring performance in an additional validation data explicitly taking network's

complexity into account such as Corrected Akaike's Information Criterion or

Minimum Description Length. The code algorithm also includes other parameters such

as, max number of inputs for individual neurons, degree of polynomials in the neurons,

whether to allow the neurons to have inputs not only from the immediately preceding

layer but also from the original input variables, number of neurons in a layer, whether

to decrease the number of neurons in each subsequent layer.

17

3.5 Trend analysis

A trend analysis is carried out for the proposed GMDH model to check whether

the model is physically possible. For this purpose, synthetic sets will be prepared

where in each set only one input parameter will be changed while other parameters

will be kept constant. To test the developed model, the well-known effects of different

input parameters such as; oil rate, gas rate, water rate, oil gravity “API”, pipe length

(depth) will be studied. These created trends from the developed model will be

expected to match with the inflow performance relationship (IPR) and typical pressure

trends in well testing for multiphase flow in vertical pipes.

3.6 Statistical Error Analysis

This type of error analysis has been used to check the accuracy of the proposed

models and also the other investigated models. The statistical parameters used in this

project is average absolute percentage relative error, average percentage relative error,

maximum absolute percentage error, minimum absolute percentage error, root mean

square error, coefficient of determination and the standard deviation of error.

Equations for those parameters are given in the appendices.

3.7 Graphical Error Analysis

 Graphical tools aid in visualization the performance and the accuracy of the

generated model. Three graphical analysis tools will be used; those are crossplots and

error distribution.

18

3.7.1 Cross-plots

Cross plots were used to compare the performance of all the selected methods.

A 45° straight line between the calculated pressure drop values versus measured

pressure drop values is plotted which represent a perfect correlation line. When the

values go closer to the line, it will indicate better results between the measured and the

estimated values.

3.7.2 Error Distribution

Error distribution shows the error sharing histograms for the proposed GMDH

model (both training, validation and testing data sets). Normal distribution curves had

been fitted to each one of them. The errors are said to be normally distributed with a

mean around 0% and the standard deviation equal to 1.0. The normal distribution is

often used to describe, at least roughly, any variable that tends to cluster around the

mean. In our case it was used to describe the error tendency around the mean, (which

is alternatively known as a normal or Gaussian distribution).

3.8 Limitations of the Model

 The proposed GMDH model may be limited due to two main reasons. The first

one in the limitation of the collected data; as it has been discussed earlier and definitely

this will have direct impact on the results accuracy. The second one is the range of

each input variable and the availability of that input parameter. Each parameter has

specific range that works well, however, the accuracy may be lightly or severely

affected if the parameters are not in the proposed range. Therefore, care must be taken

if obtained results applied for data range beyond that used in generating the model.

19

Chapter 4

RESULTS AND DISCUSSION

4.1 Development of the GMDH model

4.1.1 Introduction

Group Method of Data Handling approach is a set of several algorithms for

different problems solution. This inductive approach is based on sorting-out of

gradually complicated models and selection of the best solution by minimum of

external criterion characteristic. Not only polynomials but also non-linear,

probabilistic functions or cauterizations are used as basic models. Polynomial GMDH

technique is offering a sound representation of input regime to output through the

application of so called “regularity criterion”. Usually this one will be average absolute

percentage error. It is implemented to reduce the error between the actual and

estimated target in each layer. A threshold level is applied before each layer is added

since addition of a new layer and neurons depends on this threshold level.

As it has been described earlier, free software has been used to construct the

GMDH model. The constructed model consists of two layers. 84 neurons were tried in

the first layer, while only three neurons were included at the end of the trial. Only one

neuron had been included (by default) for the second layer, which was the pressure

drop target. However four input parameters had shown pronounced effect on the final

pressure drop estimate, which were; oil rate, length of the pipe “depth”, oil gravity and

20

water rate. The selection of these three inputs had been conducted automatically

without any interference from the user. They were selected based on their mapping

influence inside the data set on the pressure drop values.

This topology was achieved after a series of optimization processes by

monitoring the performance of the network until the best network structure was

accomplished. Figure (4.1) shows the schematic diagram of the proposed GMDH

topology. The final output layer “pressure drop” is being formed from five variables

from the input layer which are, oil rate, depth “pipe length”, water rate, oil gravity and

gas rate. Whereas, the first three variables combined in one variable in the hidden layer

and then with the other two variables used to build the output layer.

Figure 4.1 Schematic Diagram Of The Proposed GMDH Model Topology

4.1.2 Summary of the Model’s Equation

As described in the previous section the model consists of two layers as follows:

Number of layers: 2

21

Layer #1

Number of neurons: 1

x9 = -2301.44790006229 -2.60953702100053*x3 +1.84520074544553*x2 -

0.076677907649031*x1 +0.00077962057680922*x2*x3 -4.41529120121688e-

05*x1*x3 +9.86884816305755e-05*x1*x2 +3.67549182129376e-05*x3*x3 -

0.000316306612876803*x2*x2 -2.64450254505861e-05*x1*x1

+2.31597897389801e-09*x1*x2*x3 -7.00811416239125e-09*x2*x3*x3 -

5.4336357577612e-08*x2*x2*x3 +1.94571672043658e-09*x1*x3*x3 -

1.54237211114233e-08*x1*x2*x2 +1.73342685500666e-09*x1*x1*x3

+5.42470488360359e-09*x1*x1*x2 +1.35589606927285e-10*x3*x3*x3

+2.09789302765354e-08*x2*x2*x2 -1.83874781fig894772e-10*x1*x1*x1

Layer #2

Number of neurons: 1

y = 3415.95672012025 -0.605615045600824*x9 -1.04616288868911*x7 -

357.669124247228*x4 +0.000262141590712973*x7*x9

+0.166695464057425*x4*x9 -0.00880002548519891*x4*x7 -

0.000230414682054698*x9*x9 +0.000212921162434079*x7*x7

+10.9074140098337*x4*x4 -2.26040538469408e-06*x4*x7*x9 -

8.03293262244177e-08*x7*x9*x9 +1.26383450874532e-08*x7*x7*x9

+0.000159284034091951*x4*x9*x9 -7.62764844346145e-06*x4*x7*x7 -

0.0125022347939832*x4*x4*x9 +0.00120868087696399*x4*x4*x7 -

8.18463853556531e-07*x9*x9*x9 +1.67003375432709e-09*x7*x7*x7

+0.0651784907669141*x4*x4*x4

Where;

x1 = oil rate, bbl/d

x2 = length of the pipe, ft

x3 = water rate, bbl/d

x4 = oil grvity, API

x7= gas rate, scf/d

y = simulated pressure drop by GMDH Model

4.1.3 GMDH Model Optimization

In order to optimize the GMDH model, many factors have been taken into

consideration. These factors are; whether to use measuring performance in an

additional validation data explicitly taking network's complexity into account such as

Corrected Akaike's Information Criterion or Minimum Description Length, max

number of inputs for individual neurons, degree of polynomials in the neurons,

whether to allow the neurons to have inputs not only from the immediately preceding

22

layer but also from the original input variables, number of neurons in a layer, whether

to decrease the number of neurons in each subsequent layer.

The effects of all the above mentioned factors have been studied and verified

using the software. The selection of the best criteria to choose for the model was based

on having the highest correlation coefficient for the testing and validation data sets.

4.2 Trend Analysis for the Proposed GMDH Mode

A trend analysis was carried out to check whether the developed model is

physically correct or not. To test the developed model, the effects of gas rate, oil rate,

water rate, and depth “pipe length” on pressure drop were determined and plotted on

Figure (4.2) through Figure (4.6).

As expected, the developed model has achieved truthful trends that match the

normal pressure trends. The pressure drop increases as the gas, water and oil increases

as justified by the general energy equation. Same goes to the increase in pressure drop

with depth. The increase in pressure drop when oil gravity in increased in simply

justified by the specific gravity equation, where specific gravity is directionally

proportional to pressure.

Figure 4.2 Effect of Gas Rate on Pressure Drop

23

Figure 4.3 Effect of Water Rate on Pressure Drop

Figure 4.4 Effect of Oil Rate on Pressure Drop

24

Figure 4.5 Effect of Depth “Pipe Length” on Pressure Drop

Figure 4.6 Effect of Oil Gravity on Pressure Drop

25

4.3 Statistical Error Analysis for the Proposed GMDH Model against

Other Investigated Models

As mentioned in methodology chapter, this error analysis was used to check

the accuracy of all investigated models. The statistical parameters used in this project

are average absolute percentage relative error (AAPE), average percentage relative

error (APE), maximum absolute percentage error (MaxAE), minimum absolute

percentage error (MinAE), root mean square error (RMSE), coefficient of

determination (R2) and the standard deviation of error (STD).

Summary of statistical comparisons between all model’s sets (training,

validation, and testing) is presented in Table 4.1. And Table 4.2 summarizes these

statistical parameters of the proposed GMDG model and the investigated models.

4.4 Graphical Error Analysis for the Proposed GMDH Model against

Other Investigated Models

Graphical tools aid in visualization the performance and the accuracy of the

generated model. Two graphical analysis tools used to check to model accuracy,

heterogeneity and limitation. Those graphical error analysis are crossplots and error

distribution.

Table 4.1 Statistical Analysis Results of the Proposed GMDH Model

Statistical Parameter Training Validation Testing

AAPE 4.36119 7.156847 4.462313

APE 0.128042 1.450954 -0.38283

MaxAE 18.96302 29.13439 22.31491

MinAE 0.017754 0.164541 0.215909

RMSE 5.632366 9.624206 5.861574

R2 0.933 0.7234 0.9233

STD 3.564207 6.434662 3.800766

26

Table 4.2 Statistical Analysis Results of the Proposed GMDH Model and Investigate Models

 AAPE APE MaxAE MinAE RMSE R2 STD

Aziz et al 18.1616 15.3085 60.5106 0.1688 25.7129 0.2044 18.2019

Hagedorn &

Brown
11.9679 10.8906 25.6410 0.2806 13.7067 0.7888 6.6815

Gray 11.7019 10.0595 25.1312 0.0611 13.7572 0.7346 7.2337

Orkiszewski 11.5102 10.1379 28.1472 0.4975 13.4310 0.7758 6.9215

Mukhrejee

& Brill
9.6868 5.5606 39.3635 0.4499 11.6977 0.8061 6.5575

Ansari et al 7.8973 4.9361 30.0916 0.0918 9.5092 0.8614 5.2970

Duns & Ros 7.6357 5.5159 24.2722 0.0475 9.4680 0.8362 5.5981

Beggs &

Brill
6.5778 3.2094 24.9539 0.3135 8.1210 0.8710 4.7626

Ayoub 4.5295 -0.3216 18.2205 0.0150 6.1522 0.9052 4.1633

GMDH

Model
4.4623 -0.3828 22.3149 0.2159 5.8616 0.9233 3.8008

4.4.1 Cross Plots of GMDH Model against Investigated Models

Figure (4.7) through Figure (4.9) present cross-plots of estimated pressure drop

versus measured pressure drop for the proposed GMDH model data sets; Training,

Validation and Testing. In these figures, the coefficient of determination obtained by

the training set was (0.933), while the validation set obtained a value of (0.7234) and

the testing set obtained a value of (0.9233). Moreover, Figure (4.10) through Figure

(4.18) present cross-plots of estimated pressure drop versus measured pressure drop

for other investigated models including the coefficient of determination for each

model.

27

Figure 4.7 Cross plot of pressure drop for Training set (GMDH Model)

Figure 4.8 Cross plot of pressure drop for Validation set (GMDH Model)

28

Figure 4.9 Cross plot of pressure drop for Testing set (GMDH Model)

Figure 4.10 Cross plot of pressure drop for Hagedorn & Brown Correlation

29

Figure 4.11 Cross plot of pressure drop for Beggs Brill Correlation

Figure 4.12 Cross Plot of Pressure Drop for Orkiszewski Correlation

30

Figure 4.13 Cross plot of pressure drop for Gray Correlation

Figure 4.14 Cross plot of pressure drop for Duns & Ros Correlation

31

Figure 4.15 Cross plot of pressure drop for Ansari et al Model

 Figure 4.16 Cross plot of pressure drop for Mukherjee & Brill Correlation

32

Figure 4.17 Cross plot of pressure drop for Aziz et al Model

Figure 4.18 Cross plot of pressure drop for Ayoub Model

33

4.4.2 Error Distribution of GMDH Model against Investigated Models

Figure (4.19), Figure (4.20) and Figure (4.21) show the error distribution histograms

for the GMDH model data sets, training, validation and testing sets. And, Figure (4.22)

shows the error distribution histograms for the GMDH model and other investigated

models.

Analyzing the GMDH model’s error distribution histogram is quite important. It can

give a clear idea about the model’s performance for all data sets. According to the

obtained results, the training set has normal distribution without any noticeable shifting

towards the negative or positive side of the plot which indicates a good estimation,

validation set has a slight shift towards the positive side of the plot which means that

the pressure drop was slightly underestimated, and the testing set has also a slight shift

towards the positive side of the plot which means that the pressure drop was slightly

underestimated.

Figure 4.19 Error Distribution for Training Set

34

Figure 4.20 Error Distribution for Validation Set

Figure 4.21 Error Distribution for Testing Set

35

Figure 4.22 Error Distribution for All models including GMDH model

4.5 Discussion of the Results

 Comparison between the performance of all investigated models plus the new

proposed GMDH model has been showed earlier in Table (4.2). Figure (4.23) through

Figure (4.25) indicate the performance of all investigated models. Aziz et al

mechanistic model achieved the worst AAPE, RMSE and coefficient of determination

among all investigated models.

 The training set has achieved the best results statistically among the three sets of

data. This is due to the fact that the training set has been used as the primary set for

the model development. On the other hand, the validation set has achieved lower than

the testing although the validation also used during the model development. This low

performance of the validation maybe attributed to the nature of the validation set. The

latter is introduced during the training process to control the performance of the

training set whereas several failure cases may be occurred in order to obtain high

accuracy and allow thee training set to learn effectively.

36

 A close result can be extracted when root mean square errors (RMSE) of each

model have been plotted against the standard deviation (STD) of errors, as presented

in Figure (4.25). However, this time the best model will be located at the left lower

corner, which indicated by the intersection of both lower values of RMSE and STD.

Also, average absolute relative errors (AAPE) of each model has been plotted against

the confident of determination (R2), as presented in Figure (4.26). However, this time

the best model will be located at the left upper corner, which indicated by the

intersection of both low AAPE value with High R2.

GMDH Model has always fallen in the best corner of the graph as compared against

the other models. This indicates better-quality performance of GMDH model when

compared to other tested models.

Figure 4.23 Average Absolute Relative Error for All Models

37

Figure 4.24 Root Mean Square Error for All Models

 Figure 4.25 Coefficient of Determination for All Models

5

10

15

20

25

30

R
M

SE

38

Figure 4.26 Root Mean Square Error against Standard Deviation for All Models

Figure 4.27 Average Absolute Relative Errors against the Confident of Determination for All

Mode

5

6

7

8

9

10

11

12

13

14

15

3 4 5 6 7 8

R
M

SE

STD

Hagedron & Brown

Gray

Orkzwiski

Mukhrejee & Brill

Ansari

Duns & Ros

Beggs & Brill

Ayoub

GMDH Model

0.7000

0.7500

0.8000

0.8500

0.9000

0.9500

3 5 7 9 11 13

co
ef

fi
ci

en
t

o
f

d
et

er
m

in
at

io
n

AAPE, %

Hagedron & Brown

Gray

Orkzwiski

Mukhrejee & Brill

Ansari

Duns & Ros

Beggs & Brill

Ayoub

GMDH Model

39

 CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusions

This project aims at developing a model based on Group method of data

handling (GMDH) approach. The literature study has shown that none of the current

methods used to predict the pressure drop is applicable for general usage.

GMDH approach has been used successfully in developing a model that can

estimate the pressure drop in vertical wells. This developed model showed better

results when it has been compared against the common used models in the industry.

Comparison of the statistical error proves the GMDH model superiority over

the existing correlations and models. The developed model achieved the lowest

average absolute percent relative error (4.4623%), the lowest root mean square error

(5.8616), the highest coefficient of determination (0.9233) and the lowest standard

deviation of error (3.8008%). The trend analysis of the model showed that the model

is correctly predicting predicted the expected effects of the independent variables on

pressure drop.

Not to be forgotten, the new developed model is highly recommended to be

used within the same range of the used data. Otherwise, unexpected results may come

up when different ranges of inputs variables is used.

The GMDH model is successfully developed and the objectives of this project

are successfully achieved.

40

5.2 Recommendations

Based on the above conclusions, the author suggests the following

recommendation:

 A wide range of data that can be collected from different fields with additional

input variables can be used to construct more accurate model using GMDH

approach.

 More improvements and developments in the group method of data handling

code and process for predicting pressure drop in the multiphase vertical

flowing wells will definitely lead to better and accurate prediction in the future.

Hence, all focuses and researches are highly recommended to go through that

direction.

 Smart simulator like PIPESIM and PROSPER can be utilized to double check

the presented models results.

Not to be forgotten, there are still many empirical correlations, mechanistic models

and artificial neural networks in the literature which have not be evaluated in this

project and may have more or less accuracy compared to GMDH model for predicting

pressure drop in vertical wells. However, the methods were selected based on the

author’s perspective. And therefore, all the conclusions and recommendations were

based on the selected me

41

REFERENCES

Abdul-Majeed, G. H., & Al-Mashat, A. M. (2000). A mechanistic model for vertical

and inclined two phase slug flow. Journal of Petroleum Science and

Engineeringn, 59-67.

Al-Attar, H. H., Mohamed, M. Y., & AMin, M. E. (2012). A Modified Version of the

Aziz et al. Multiphase Flow correlation Imporoves Ressure drop Calculation

in High-Rate Oil wells. EAGE annula conference and exhibition, 4-7 June

2012. Copenhagen, Denemark.

Ansari, A. M., Sylvester, N. D., Sarica, C., Shoham, O., & Brill, J. P. (1994). A

Comperhensive Mechanistic Model for Upward Two-Phase Flow in Wellbore.

SPE Production and Facilities, May 1994, 143-152.

Ayoub , M. A. (2011). Development and Testing of Universal Pressure Drop Model

in Pipelines Using Abductive and Artificial Neural Networks. Bandar Seri

Iskander, Perak: Phd Thesis, Universiti Teknologi Petronas.

Ayoub, M. A. (March 2004). Development and Testing of an Artificial Neural Network

Model for Predicting Bottomhole Pressure in Vertical Multiphase Flow.

Dahran, Saudi Arabia: M S Thesis, King Fahd University of Petroleum and

Minerals.

Aziz, K., Govier, G. W., & Fogarasi, M. (1972). Pressure Drop in Wells producing Oil

and Gas. The Journal of Canadian Petroleum, 38-48.

Beggs, H. D., & Brill, J. P. (May 1973). A Study in Two-Phase Flow in Inclined Pipes.

Journal of Petroleum Technology, 607-17., AIME 255.

Chierici, G. L., Ciucci, G. M., & Sclocchi, G. (1974). Two-Phase Vertical Flow in Oil

Wells- Prediction of Pressure drop. Journal of Petroleum Technology, August

1974, 927-938.

42

Dun, R., & Ros, N. C. (1963). VERTICAL FLOW OF GAS AND LIQUID

MIXTURES IN WELLS. Proc., Sixth World Pet. Con- gress, Frankfort (J nne

19-26, 1963) Section II, Paper 22-PD6., (pp. 451-465).

Farlow, S. J. (1981). The GMDH algorith of ivkhnenko. The American Statistian,

Vol.35, No.4, 210-215.

Farlow, S. J. (1984). The GMDH algorithm,” in Self-Organizing Methods in

Modeling: GMDH Type Algorithms. New York: Marcel-Dekker.

Gomez, L. E., Shoham, O., Schmidt, Z., Chokshi, R. N., & Northug, T. (2000). Unified

Mechanistic Model Foe Steady State Two-Phase Flow: Horizontal to Vertical

Upward Flow. SPE Journal, Vol. 5, No. 3, September , 393-350.

Gould, T. L., Tek, M. R., & Katz, D. L. (1974). Two-Phase Flow Through Vertical,

Inclined or Curved Pipe. Journal of Petroleum Technology, 915-926.

Govier, G., & Aziz, k. (1972). The Flow of Complex Mixtures in Pipes. Van Nostrand-

Reinhold, New York.

Gregory, G. A. (1974). Application of Factorial Design Analysis to Producing Well

Pressure-Drop Modelling. The Journal of Canadian Petroelum Technology,

21-27.

Griffith, P., & Wallis, G. B. (1961). Two-Phase Slug Flow. Journal of heat Transefer,

A.S.M.E transaction (AUG 1961) Vol.83, 307-320.

Griffith, P., Lau, C. W., Hon, P. C., & Pearson, J. F. (1975). Two Phase Pressure Drop

in Inclined and Vertical Wells.

Hagedorn, A., & Brown, K. (1965). Experimental study of pressure gradients

occurring during continuous two-phase flow in small diameter vertical

conduits. Journal of Petroleum Technology (April 1965) 475; Tran., AIME.

Hasan, R., & Kabir, S. (2005). A Simple Model for Annular Two-Phase Flow in

Wellbores. SPE Annual Technical Conference and Exhibition. Dallas, Texas,

U.S.A: Paper SPE 95523.

Ivakhenko, A. G. (1968). The Group Method of Data Handling A Rival of the Method

of Stochastic Approximation.

43

Ivakhnenko, A. G. (1966). Group Method of Data Handling a Rival of the Method of

Stochastic Approximation. Soviet Automatic Control, 13, 43-71.

Ivakhnenko, A. G. (1971). Polynomial Theory of Complex Systemq. IEEE

Transections on System, Man and Cybernetics, 364-378.

Jahanandish, I., Sakimifard, B., & Jalalifar, H. (2011). Predicting bottomhole pressure

in vertical multiphase flowing wells using artificial neural networks. Journal

of Petroleum science and engineering, 336-342.

Mohaghegh, S., & Ameri, S. (1995). Artificial Neural Network As A Valuable Tool

For Petroleum Engineers. West Virginia University. U.S.A. Telex: SPE 29220.

Mohammadpoor, M., Shahbazi, K., Torabi, F., & Qazfini, A. (2010). A new

methodology for prediction of bottomhole flowing pressure in vertical

multiphase flow in Iranian oil fields using artificial neural networks (ANNs).

SPE latin american and caribbean petroleum engineering conference, 1-3,

December 2010. Lima, Peru.

Moradi, B., Awang, M., & Shoushtari, M. A. (2011). Pressure Drop Prediction in Deep

Gas Wells. SPE Asia pacific oil & gas conference and exhibition, September

20-22, 2011. Jakerta, Inonesia.

Mukherjee, H., & Brill, J. P. (December 1985). Pressure DRop Correlations for

Inclined Two-Phase Flow. Journal of Energy Resources Technology, 549-554.

Orkiszewski, J. (1967). Predicting Two-.Phase Pressure Drops in Vertical Pipe.

Journal of Petroleum Technology, 829-838.

Osman, E. A., & Abdel-Aal, R. E. (2002). Abductive Networks: A New Modeling

Tool for the Oil and Gas Industry. SPE Asia Pacific Oil and Gas Conference

and Exhibition, 8-10 October 2002. Melbourne, Australia: Research Institute,

KFUPM, Dhahran, Saudi Arabia.

Palisetti, R. V., & Heinze, L. (1998). Simplified Approach for Predicting Pressure

Profiles in a Flowing Well. SPE Permain Basin Oil and Gas REcovery

Conference , 23-26 March, 1998. Midland, Texas.

44

Persad, S. (2005). Evaluation of Multiphae-Flow Correlations for Gas Wells Located

Off the Trinidad Southeast Coast. Latin American and Carribean Petroluem

Engineering Comference. Rio de Janeiro, Brazil, 20-23 June.

Poettmann, F. H., & Carpenter, P. G. (n.d.). The Multiphase Flow of Gas, Oil, and

Water Through Vertical Flow Strings with Application to the Design of Gas-

lift Installations. 257-317.

Pucknell, J., Mason, J., & Vervest, E. (1993). An Evaluation of Recent Mechanistic

Models of Multiphase Flow for Predicting Pressure Drops in Oil and Gas

Wells. Paper SPE26682 , the 1993 offshore European Conference , 7-10

September. Aberdeen.

Soni, S., Kelkar, m., & Perez, C. (2009). Pressure Drop Predictions in Tubing in The

Presence of Surfactants. SPE production and operations symposium.

Oklahoma, USA.

Subsurface Controlled Subsurface Safety Valve Sizing Computer Program. (1978). In

Institute American Petroleum. API Manual 14 BM, Second Ed., p. 38, API.

Sukubo, I. A., & Igboanugo, A. C. (2011). Improved analytical model for predicting

field production performance in vertical multiphase flow in pipes using

MATLAB; A case study. the Nigeria annual international conference and

exibition,30 July - 3 August 2011. Abuja, Nigeria.

Takacs, G. (2001). Consideration on the Selection of an Optimum Vertical Multiphase

Pressure drop Prediction Model for oil Wells. SPE Production and Operation

Symposium , 24-27 March 2001. Oklahoma.

Trick, M. D. (2003). Comparision of Correlations For Predicting Wellbore Pressure

Losses in Gas-Condensate and Gas-Water Wells. The Petroleum Society's

Canadian International Petroleum Conference. Calgari, Alberta:

Neotechnology Consultants Ltd.

Wei Ma , S., Chen, L., Huan Kou, C., & Pei Wang, A. (2009). Application of Group

Method of Data Handling to Stream-Way Transition. International Joint

Conference on Artificial Intelligence (pp. 301-304). IEEE.

45

Xiao, J. J., Shoham, O., & Brill, J. P. (1990). A Comperhensive Mechanistic Model

for Two-Phase Flow in Pipelines. 65th Anuual technical Conference and

Exibition of the Society of Petroleum Engineering, September 23-26 (pp. 167-

180). New Orleans, LA: University of Tulsa.

Zafareh, F., Hill, A. D., & Podio, A. L. (1988). Flow regimes in vertical and inclined

Oil/Water flow in pipes. 63rd Annual technical conference and exibition of the

society of petroleum engineers, October 2-5. Huoston, TX: U. of Texas.

46

APPENDIX A - Statistical Error Equation

a) Average Absolut Percent Relative Error:

Ea =
1

n
 ∑|Ei|

n

i=1

b) Average Percent Relative Error:

Er =
1

n
 ∑ Ei

n

i=1

c) Maximum Absolute Relative Error:

Emax = maxi+1
n |Ei|

d) Minimum Absolute Relative Error:

Emax = mini+1
n |Ei|

e) Root Mean Square Error:

RMSE = [
1

n
 ∑ Ei

2

n

i=1

]

0.5

f) Coefficient of determination:

R2 = √1 −
∑ [(∆P)m − (∆P)c]n

i=1

∑ [(∆P)m − ∆∆P̅̅ ̅̅ ̅]n
i=1

g) Standard Deviation:

𝑆𝑇𝐷 = √[(
1

𝑚 − 𝑛 − 1
)] [∑ {

[(∆𝑃)𝑚 − (∆𝑃)𝑐]

(∆𝑃)𝑚
}

𝑛

𝑖=1

∗ 100]

2

Where, Ei is the relative deviation of a calculated value from the measured value;

𝑬𝒊 = [
(∆𝑷)𝒎 − (∆𝑷)𝒄

∆𝑷𝒎
] ∗ 𝟏𝟎𝟎%, 𝒊 = 𝟏, 𝟐, 𝟑, … … … , 𝒏

Where:

(∆𝑃)𝑚 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑜𝑝

(∆𝑃)𝑐 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑜𝑝

∆∆𝑃̅̅ ̅̅ ̅̅ =
1

𝑛
 ∑[(∆𝑃𝑚)]𝑖

𝑛

𝑖=1

47

APPENDIX B- GMDH CODE

Function gmdhbuild
function [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs,

inputsMore, ...

maxNumNeurons, decNumNeurons, p, critNum, delta, Xv, Yv, verbose)

% GMDHBUILD

% Builds a GMDH-type polynomial neural network using a simple

% layer-by-layer approach

%

% Call

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore,

maxNumNeurons,

% decNumNeurons, p, critNum, delta, Xv, Yv,

verbose)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore,

maxNumNeurons,

% decNumNeurons, p, critNum, delta, Xv, Yv)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore,

maxNumNeurons,

% decNumNeurons, p, critNum, delta)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore,

maxNumNeurons,

% decNumNeurons, p, critNum)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore,

maxNumNeurons,

% decNumNeurons, p)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore,

maxNumNeurons,

% decNumNeurons)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore,

maxNumNeurons)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore)

% [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs)

% [model, time] = gmdhbuild(Xtr, Ytr)

%

% Input

% Xtr, Ytr : Training data points (Xtr(i,:), Ytr(i)), i =

1,...,n

% maxNumInputs : Maximum number of inputs for individual neurons -

if set

% to 3, both 2 and 3 inputs will be tried (default =

2)

% inputsMore : Set to 0 for the neurons to take inputs only from

the

% preceding layer, set to 1 to take inputs also from

the

% original input variables (default = 1)

% maxNumNeurons: Maximal number of neurons in a layer (default =

equal to

% the number of the original input variables)

% decNumNeurons: In each following layer decrease the number of

allowed

% neurons by decNumNeurons until the number is equal

to 1

% (default = 0)

% p : Degree of polynomials in neurons (allowed values

are 2 and

% 3) (default = 2)

48

% critNum : Criterion for evaluation of neurons and for

stopping.

% In each layer only the best neurons (according to

the

% criterion) are retained, and the rest are

discarded.

% (default = 2)

% 0 = use validation data (Xv, Yv)

% 1 = use validation data (Xv, Yv) as well as

training data

% 2 = use Corrected Akaike's Information Criterion

(AICC)

% 3 = use Minimum Description Length (MDL)

% Note that both choices 0 and 1 correspond to the so

called

% "regularity criterion".

% delta : How much lower the criterion value of the network's

new

% layer must be comparing the the network's preceding

layer

% (default = 0, which means that new layers will be

added as

% long as the value gets better (smaller))

% Xv, Yv : Validation data points (Xv(i,:), Yv(i)), i =

1,...,nv

% (used when critNum is equal to either 0 or 1)

% verbose : Set to 0 for no verbose (default = 1)

%

% Output

% model : GMDH model - a struct with the following elements:

% numLayers : Number of layers in the network

% d : Number of input variables in the training data

set

% maxNumInputs : Maximal number of inputs for neurons

% inputsMore : See argument "inputsMore"

% maxNumNeurons : Maximal number of neurons in a layer

% p : See argument "p"

% critNum : See argument "critNum"

% layer : Full information about each layer (number of

neurons,

% indexes of inputs for neurons, matrix of

exponents for

% polynomial, polynomial coefficients)

% Note that the indexes of inputs are in range

[1..d] if

% an input is one of the original input

variables, and

% in range [d+1..d+maxNumNeurons] if an input is

taken

% from a neuron in the preceding layer.

% time : Execution time (in seconds)

%

% Please give a reference to the software web page in any

publication

% describing research performed using the software e.g., like this:

% Jekabsons G. GMDH-type Polynomial Neural Networks for Matlab,

2010,

% available at http://www.cs.rtu.lv/jekabsons/

% This source code is tested with Matlab version 7.1 (R14SP3).

49

%

==

=====

% GMDH-type polynomial neural network

% Version: 1.5

% Date: June 2, 2011

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv)

% URL: http://www.cs.rtu.lv/jekabsons/

%

% Copyright (C) 2009-2011 Gints Jekabsons

%

% This program is free software: you can redistribute it and/or

modify

% it under the terms of the GNU General Public License as published

by

% the Free Software Foundation, either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program. If not, see

<http://www.gnu.org/licenses/>.

%

==

=====

if nargin < 2

 error('Too few input arguments.');

end

[n, d] = size(Xtr);

[ny, dy] = size(Ytr);

if (n < 2) || (d < 2) || (ny ~= n) || (dy ~= 1)

 error('Wrong training data sizes.');

end

if nargin < 3

 maxNumInputs = 2;

elseif (maxNumInputs ~= 2) && (maxNumInputs ~= 3)

 error('Number of inputs for neurons should be 2 or 3.');

end

if (d < maxNumInputs)

 error('Numbet of input variables in the data is lower than the

number of inputs for individual neurons.');

end

if nargin < 4

 inputsMore = 1;

end

if (nargin < 5) || (maxNumNeurons <= 0)

 maxNumNeurons = d;

end

if maxNumNeurons > d * 2

 error('Too many neurons in a layer. Maximum is two times the

number of input variables.');

end

if maxNumNeurons < 1

 error('Too few neurons in a layer. Minimum is 1.');

end

if (nargin < 6) || (decNumNeurons < 0)

50

 decNumNeurons = 0;

end

if nargin < 7

 p = 2;

elseif (p ~= 2) && (p ~= 3)

 error('Degree of individual neurons should be 2 or 3.');

end

if nargin < 8

 critNum = 2;

end

if any(critNum == [0,1,2,3]) == 0

 error('Only four values for critNum are available (0,1 - use

validation data; 2 - AICC; 3 - MDL).');

end

if nargin < 9

 delta = 0;

end

if (nargin < 11) && (critNum <= 1)

 error('Evaluating the models in validation data requires

validation data set.');

end

if (nargin >= 11) && (critNum <= 1)

 [nv, dv] = size(Xv);

 [nvy, dvy] = size(Yv);

 if (nv < 1) || (dv ~= d) || (nvy ~= nv) || (dvy ~= 1)

 error('Wrong validation data sizes.');

 end

end

if nargin < 12

 verbose = 1;

end

ws = warning('off');

if verbose ~= 0

 fprintf('Building GMDH-type neural network...\n');

end

tic;

if p == 2

 numTermsReal = 6 + 4 * (maxNumInputs == 3); %6 or 10 terms

else

 numTermsReal = 10 + 10 * (maxNumInputs == 3); %10 or 20 terms

end

Xtr(:, d+1:d+maxNumNeurons) = zeros(n, maxNumNeurons);

if critNum <= 1

 Xv(:, d+1:d+maxNumNeurons) = zeros(nv, maxNumNeurons);

end

%start the main loop and create layers

model.numLayers = 0;

while 1

 if verbose ~= 0

 fprintf('Building layer #%d...\n', model.numLayers + 1);

 end

 layer(model.numLayers + 1).numNeurons = 0;

 modelsTried = 0;

 layer(model.numLayers + 1).coefs = zeros(maxNumNeurons,

numTermsReal);

 for numInputsTry = maxNumInputs:-1:2

 %create matrix of exponents for polynomials

 if p == 2

 numTerms = 6 + 4 * (numInputsTry == 3); %6 or 10 terms

51

 if numInputsTry == 2

 r = [0,0;0,1;1,0;1,1;0,2;2,0];

 else

 r =

[0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;1,1,0;0,0,2;0,2,0;2,0,0];

 end

 else

 numTerms = 10 + 10 * (numInputsTry == 3); %10 or 20

terms

 if numInputsTry == 2

 r = [0,0;0,1;1,0;1,1;0,2;2,0;1,2;2,1;0,3;3,0];

 else

 r =

[0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;1,1,0;0,0,2;0,2,0;2,0,0; ...

1,1,1;0,1,2;0,2,1;1,0,2;1,2,0;2,0,1;2,1,0;0,0,3;0,3,0;3,0,0];

 end

 end

 %create matrix of all combinations of inputs for neurons

 if model.numLayers == 0

 combs = nchoosek(1:1:d, numInputsTry);

 else

 if inputsMore == 1

 combs = nchoosek([1:1:d

d+1:1:d+layer(model.numLayers).numNeurons], numInputsTry);

 else

 combs =

nchoosek(d+1:1:d+layer(model.numLayers).numNeurons, numInputsTry);

 end

 end

 %delete all combinations in which none of the inputs are

from the preceding layer

 if model.numLayers > 0

 i = 1;

 while i <= size(combs,1)

 if all(combs(i,:) <= d)

 combs(i,:) = [];

 else

 i = i + 1;

 end

 end

 end

 makeEmpty = 1;

 %try all the combinations of inputs for neurons

 for i = 1 : size(combs,1)

 %create matrix for all polynomial terms

 Vals = ones(n, numTerms);

 if critNum <= 1

 Valsv = ones(nv, numTerms);

 end

 for idx = 2 : numTerms

 bf = r(idx, :);

 t = bf > 0;

 tmp = Xtr(:, combs(i,t)) .^ bf(ones(n, 1), t);

 if critNum <= 1

 tmpv = Xv(:, combs(i,t)) .^ bf(ones(nv, 1), t);

 end

 if size(tmp, 2) == 1

 Vals(:, idx) = tmp;

52

 if critNum <= 1

 Valsv(:, idx) = tmpv;

 end

 else

 Vals(:, idx) = prod(tmp, 2);

 if critNum <= 1

 Valsv(:, idx) = prod(tmpv, 2);

 end

 end

 end

 %calculate coefficients and evaluate the network

 coefs = (Vals' * Vals) \ (Vals' * Ytr);

 modelsTried = modelsTried + 1;

 if ~isnan(coefs(1))

 predY = Vals * coefs;

 if critNum <= 1

 predYv = Valsv * coefs;

 if critNum == 0

 crit = sqrt(mean((predYv - Yv).^2));

 else

 crit = sqrt(mean([(predYv - Yv).^2; (predY -

Ytr).^2]));

 end

 else

 comp = complexity(layer, model.numLayers,

maxNumNeurons, d, combs(i,:)) + size(coefs, 2);

 if critNum == 2 %AICC

 if (n-comp-1 > 0)

 crit = n*log(mean((predY - Ytr).^2)) +

2*comp + 2*comp*(comp+1)/(n-comp-1);

 else

 coefs = NaN;

 end

 else %MDL

 crit = n*log(mean((predY - Ytr).^2)) +

comp*log(n);

 end

 end

 end

 if ~isnan(coefs(1))

 %add the neuron to the layer if

 %1) the layer is not full;

 %2) the new neuron is better than an existing worst

one.

 maxN = maxNumNeurons - model.numLayers *

decNumNeurons;

 if maxN < 1, maxN = 1; end;

 if layer(model.numLayers + 1).numNeurons < maxN

 %when the layer is not yet full

 if (maxNumInputs == 3) && (numInputsTry == 2)

 layer(model.numLayers +

1).coefs(layer(model.numLayers + 1).numNeurons+1, :) = [coefs'

zeros(1,4+6*(p == 3))];

 layer(model.numLayers +

1).inputs(layer(model.numLayers + 1).numNeurons+1, :) = [combs(i, :)

0];

 else

 layer(model.numLayers +

1).coefs(layer(model.numLayers + 1).numNeurons+1, :) = coefs;

 layer(model.numLayers +

1).inputs(layer(model.numLayers + 1).numNeurons+1, :) = combs(i, :);

53

 end

 layer(model.numLayers +

1).comp(layer(model.numLayers + 1).numNeurons+1) = length(coefs);

 layer(model.numLayers +

1).crit(layer(model.numLayers + 1).numNeurons+1) = crit;

 layer(model.numLayers +

1).terms(layer(model.numLayers + 1).numNeurons+1).r = r;

 if makeEmpty == 1

 Xtr2 = [];

 if critNum <= 1

 Xv2 = [];

 end

 makeEmpty = 0;

 end

 Xtr2(:, layer(model.numLayers + 1).numNeurons+1)

= predY;

 if critNum <= 1

 Xv2(:, layer(model.numLayers +

1).numNeurons+1) = predYv;

 end

 if (layer(model.numLayers + 1).numNeurons == 0)

|| ...

 (layer(model.numLayers + 1).crit(worstOne) <

crit)

 worstOne = layer(model.numLayers +

1).numNeurons + 1;

 end

 layer(model.numLayers + 1).numNeurons =

layer(model.numLayers + 1).numNeurons + 1;

 else

 %when the layer is already full

 if (layer(model.numLayers + 1).crit(worstOne) >

crit)

 if (maxNumInputs == 3) && (numInputsTry ==

2)

 layer(model.numLayers +

1).coefs(worstOne, :) = [coefs' zeros(1,4+6*(p == 3))];

 layer(model.numLayers +

1).inputs(worstOne, :) = [combs(i, :) 0];

 else

 layer(model.numLayers +

1).coefs(worstOne, :) = coefs;

 layer(model.numLayers +

1).inputs(worstOne, :) = combs(i, :);

 end

 layer(model.numLayers + 1).comp(worstOne) =

length(coefs);

 layer(model.numLayers + 1).crit(worstOne) =

crit;

 layer(model.numLayers + 1).terms(worstOne).r

= r;

 Xtr2(:, worstOne) = predY;

 if critNum <= 1

 Xv2(:, worstOne) = predYv;

 end

 [dummy, worstOne] =

max(layer(model.numLayers + 1).crit);

 end

 end

 end

 end

54

 if verbose ~= 0

 fprintf('Neurons tried in this layer: %d\n', modelsTried);

 fprintf('Neurons included in this layer: %d\n',

layer(model.numLayers + 1).numNeurons);

 if critNum <= 1

 fprintf('RMSE in the validation data of the best neuron:

%f\n', min(layer(model.numLayers + 1).crit));

 else

 fprintf('Criterion value of the best neuron: %f\n',

min(layer(model.numLayers + 1).crit));

 end

 end

 %stop the process if there are too few neurons in the new layer

 if ((inputsMore == 0) && (layer(model.numLayers + 1).numNeurons

< 2)) || ...

 ((inputsMore == 1) && (layer(model.numLayers + 1).numNeurons

< 1))

 if (layer(model.numLayers + 1).numNeurons > 0)

 model.numLayers = model.numLayers + 1;

 end

 break

 end

 %if the network got "better", continue the process

 if (layer(model.numLayers + 1).numNeurons > 0) && ...

 ((model.numLayers == 0) || ...

 (min(layer(model.numLayers).crit) -

min(layer(model.numLayers + 1).crit) > delta))

%(min(layer(model.numLayers + 1).crit) <

min(layer(model.numLayers).crit)))

 model.numLayers = model.numLayers + 1;

 else

 if model.numLayers == 0

 warning(ws);

 error('Failed.');

 end

 break

 end

 %copy the output values of this layer's neurons to the training

 %data matrix

 Xtr(:, d+1:d+layer(model.numLayers).numNeurons) = Xtr2;

 if critNum <= 1

 Xv(:, d+1:d+layer(model.numLayers).numNeurons) = Xv2;

 end

end

model.d = d;

model.maxNumInputs = maxNumInputs;

model.inputsMore = inputsMore;

model.maxNumNeurons = maxNumNeurons;

model.p = p;

model.critNum = critNum;

%only the neurons which are actually used (directly or indirectly)

to

%compute the output value may stay in the network

[dummy best] = min(layer(model.numLayers).crit);

model.layer(model.numLayers).coefs(1,:) =

layer(model.numLayers).coefs(best,:);

model.layer(model.numLayers).inputs(1,:) =

layer(model.numLayers).inputs(best,:);

55

model.layer(model.numLayers).terms(1).r =

layer(model.numLayers).terms(best).r;

model.layer(model.numLayers).numNeurons = 1;

if model.numLayers > 1

 for i = model.numLayers-1:-1:1 %loop through all the layers

 model.layer(i).numNeurons = 0;

 for k = 1 : layer(i).numNeurons %loop through all the

neurons in this layer

 newNum = 0;

 for j = 1 : model.layer(i+1).numNeurons %loop through

all the neurons which will stay in the next layer

 for jj = 1 : maxNumInputs %loop through all the

inputs

 if k == model.layer(i+1).inputs(j,jj) - d

 if newNum == 0

 model.layer(i).numNeurons =

model.layer(i).numNeurons + 1;

model.layer(i).coefs(model.layer(i).numNeurons,:) =

layer(i).coefs(k,:);

model.layer(i).inputs(model.layer(i).numNeurons,:) =

layer(i).inputs(k,:);

model.layer(i).terms(model.layer(i).numNeurons).r =

layer(i).terms(k).r;

 newNum = model.layer(i).numNeurons + d;

 model.layer(i+1).inputs(j,jj) = newNum;

 else

 model.layer(i+1).inputs(j,jj) = newNum;

 end

 break

 end

 end

 end

 end

 end

end

time = toc;

warning(ws);

if verbose ~= 0

 fprintf('Done.\n');

 used = zeros(d,1);

 for i = 1 : model.numLayers

 for j = 1 : d

 if any(any(model.layer(i).inputs == j))

 used(j) = 1;

 end

 end

 end

 fprintf('Number of layers: %d\n', model.numLayers);

 fprintf('Number of used input variables: %d\n', sum(used));

 fprintf('Execution time: %0.2f seconds\n', time);

end

return

%=================== Auxiliary functions ====================

function [comp] = complexity(layer, numLayers, maxNumNeurons, d,

connections)

%calculates the complexity of the network given output neuron's

connections

%(it is assumed that the complexity of a network is equal to the

number of

56

%all polynomial terms in all it's neurons which are actually

connected

%(directly or indirectly) to network's output)

comp = 0;

if numLayers == 0

 return

end

c = zeros(numLayers, maxNumNeurons);

for i = 1 : numLayers

 c(i, :) = layer(i).comp(:)';

end

%{

%unvectorized version:

for j = 1 : length(connections)

 if connections(j) > d

 comp = comp + c(numLayers, connections(j) - d);

 c(numLayers, connections(j) - d) = -1;

 end

end

%}

ind = connections > d;

if any(ind)

 comp = comp + sum(c(numLayers, connections(ind) - d));

 c(numLayers, connections(ind) - d) = -1;

end

%{

%unvectorized version:

for i = numLayers-1:-1:1

 for j = 1 : layer(i).numNeurons

 for k = 1 : layer(i+1).numNeurons

 if (c(i+1, k) == -1) && (c(i, j) > -1) && ...

 any(layer(i+1).inputs(k,:) == j + d)

 comp = comp + c(i, j);

 c(i, j) = -1;

 end

 end

 end

end

%}

for i = numLayers-1:-1:1

 for k = 1 : layer(i+1).numNeurons

 if c(i+1, k) == -1

 inp = layer(i+1).inputs(k,:);

 used = inp > d;

 if any(used)

 ind = inp(used) - d;

 ind = ind(c(i, ind) > -1);

 if ~isempty(ind)

 comp = comp + sum(c(i, ind));

 c(i, ind) = -1;

 end

 end

 end

 end

end

return

function gmdhpredict

function Yq = gmdhpredict(model, Xq)

% GMDHPREDICT

57

% Predicts output values for the given query points Xq using a GMDH

model

%

% Call

% [Yq] = gmdhpredict(model, Xq)

%

% Input

% model : GMDH model

% Xq : Inputs of query data points (Xq(i,:)), i = 1,...,nq

%

% Output

% Yq : Predicted outputs of query data points (Yq(i)), i =

1,...,nq

% This source code is tested with Matlab version 7.1 (R14SP3).

%

==

=====

% GMDH-type polynomial neural network

% Version: 1.5

% Date: June 2, 2011

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv)

% URL: http://www.cs.rtu.lv/jekabsons/

%

% Copyright (C) 2009-2011 Gints Jekabsons

%

% This program is free software: you can redistribute it and/or

modify

% it under the terms of the GNU General Public License as published

by

% the Free Software Foundation, either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program. If not, see

<http://www.gnu.org/licenses/>.

%

==

=====

if nargin < 2

 error('Too few input arguments.');

end

if model.d ~= size(Xq, 2)

 error('The matrix should have the same number of columns as the

matrix with which the network was built.');

end

[n, d] = size(Xq);

Yq = zeros(n, 1);

for q = 1 : n

 for i = 1 : model.numLayers

 if i ~= model.numLayers

 Xq_tmp = zeros(1, model.layer(i).numNeurons);

58

 end

 for j = 1 : model.layer(i).numNeurons

 %create matrix for all polynomial terms

 numTerms = size(model.layer(i).terms(j).r,1);

 Vals = ones(numTerms,1);

 for idx = 2 : numTerms

 bf = model.layer(i).terms(j).r(idx, :);

 t = bf > 0;

 tmp = Xq(q, model.layer(i).inputs(j,t)) .^ bf(1, t);

 if size(tmp, 2) == 1

 Vals(idx,1) = tmp;

 else

 Vals(idx,1) = prod(tmp, 2);

 end

 end

 %predict output value

 predY = model.layer(i).coefs(j,1:numTerms) * Vals;

 if i ~= model.numLayers

 %Xq(q, d+j) = predY;

 Xq_tmp(j) = predY;

 else

 Yq(q) = predY;

 end

 end

 if i ~= model.numLayers

 Xq(q, d+1:d+model.layer(i).numNeurons) = Xq_tmp;

 end

 end

end

return

function gmdhtest

function [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst)

% GMDHTEST

% Tests a GMDH-type network model on a test data set (Xtst, Ytst)

%

% Call

% [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst)

%

% Input

% model : GMDH model

% Xtst, Ytst: Test data points (Xtst(i,:), Ytst(i)), i = 1,...,ntst

%

% Output

% MSE : Mean Squared Error

% RMSE : Root Mean Squared Error

% RRMSE : Relative Root Mean Squared Error

% R2 : Coefficient of Determination

% Copyright (C) 2009-2011 Gints Jekabsons

if nargin < 3

 error('Too few input arguments.');

end

if (size(Xtst, 1) ~= size(Ytst, 1))

59

 error('The number of rows in the matrix and the vector should be

equal.');

end

if model.d ~= size(Xtst, 2)

 error('The matrix should have the same number of columns as the

matrix with which the model was built.');

end

MSE = mean((gmdhpredict(model, Xtst) - Ytst) .^ 2);

RMSE = sqrt(MSE);

if size(Ytst, 1) > 1

 RRMSE = RMSE / std(Ytst, 1);

 R2 = 1 - MSE / var(Ytst, 1);

else

 RRMSE = Inf;

 R2 = Inf;

end

return

function gmdheq

function gmdheq(model, precision)

% gmdheq

% Outputs the equations of GMDH model.

%

% Call

% gmdheq(model, precision)

% gmdheq(model)

%

% Input

% model : GMDH-type model

% precision : Number of digits in the model coefficients

% (default = 15)

% This source code is tested with Matlab version 7.1 (R14SP3).

%

==

=====

% GMDH-type polynomial neural network

% Version: 1.5

% Date: June 2, 2011

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv)

% URL: http://www.cs.rtu.lv/jekabsons/

%

% Copyright (C) 2009-2011 Gints Jekabsons

%

% This program is free software: you can redistribute it and/or

modify

% it under the terms of the GNU General Public License as published

by

% the Free Software Foundation, either version 2 of the License, or

% (at your option) any later version.

%

% This program is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with this program. If not, see

<http://www.gnu.org/licenses/>.

60

%

==

=====

if nargin < 1

 error('Too few input arguments.');

end

if (nargin < 2) || (isempty(precision))

 precision = 15;

end

if model.numLayers > 0

 p = ['%.' num2str(precision) 'g'];

 fprintf('Number of layers: %d\n', model.numLayers);

 for i = 1 : model.numLayers %loop through all the layers

 fprintf('Layer #%d\n', i);

 fprintf('Number of neurons: %d\n',

model.layer(i).numNeurons);

 for j = 1 : model.layer(i).numNeurons %loop through all the

neurons in the ith layer

 [terms inputs] = size(model.layer(i).terms(j).r);

%number of terms and inputs

 if (i == model.numLayers)

 str = ['y = ' num2str(model.layer(i).coefs(j,1),p)];

 else

 str = ['x' num2str(j + i*model.d) ' = '

num2str(model.layer(i).coefs(j,1),p)];

 end

 for k = 2 : terms %loop through all the terms

 if model.layer(i).coefs(j,k) >= 0

 str = [str ' +'];

 else

 str = [str ' '];

 end

 str = [str num2str(model.layer(i).coefs(j,k),p)];

 for kk = 1 : inputs %loop through all the inputs

 if (model.layer(i).terms(j).r(k,kk) > 0)

 for kkk = 1 :

model.layer(i).terms(j).r(k,kk)

 if (model.layer(i).inputs(j,kk) <=

model.d)

 str = [str '*x'

num2str(model.layer(i).inputs(j,kk))];

 else

 str = [str '*x'

num2str(model.layer(i).inputs(j,kk) + (i-2)*model.d)];

 end

 end

 end

 end

 end

 disp(str);

 end

 end

else

 disp('The network has zero layers.');

end

return

