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ABSTRACT 

 

A reliable estimation of the pressure drop in well tubing is essential for the solution of 

a number of important production engineering and reservoir analysis problems.  

Different methods have been discussed and analyzed in the literature. This includes 

the basics of each method, the variables used and the limitations and constraints. 

This project aims to construct a tool that can estimate the pressure drop in vertical well 

using the minimum possible variables. In this project group method of data handling 

(GMDH) approach is used in order to build the model. And for the optimization of the 

model, Trend analysis is also used for the sake of having a physically sound model. 

The developed model GMDH has shown an outstanding results and it has 

outperformed all empirical correlations and mechanistic models which have been used 

in the comparison. The analysis of the results also confirmed with the testing set which 

has not seen by the GMDH during the development of the model which could still 

achieve an accurate estimation of the pressure drop. 

The GMDH model is developed and the objective is successfully achieved. Moreover, 

the simplicity and good functionality of the model made it a better choice when it 

comes to predict a pressure drop in any multiphase vertical well.  
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Chapter 1  
 

INTRODUCTION 
 

 

1.1 Project Background 

 The main factors that cause the pressure drop in any vertical pipe can be a 

summation of three terms: gravity, friction loss and a momentum pressure drop. 

(Griffith et al, 1975): 

  ∆𝑃 = ∆𝑃𝑓 + ∆𝑃𝑔 + ∆𝑃𝑚 ……………………….………………..equation (1.1) 

  

The pressure loss due to the fiction loss, the gravity loss and the momentum loss. The 

momentum loss (∆𝑃𝑚) can be negligible in the literature (Griffith et al, 1975; Hasan 

and Kabir, 1992; Ansari et al., 1994; Abdul-Majeed & Al-Mashat, 2000). Several 

methods have been proposed to estimate the pressure drop in vertical wells which 

produce a mixture of oil and gas. Early researchers used laboratory and/or field data 

to develop empirical correlation to investigate pressure drop in multi-phase flow. 

(Duns & Ros, 1963 and Orkiszewski, 1967).  And currently, some researchers are 

using artificial intelligence such as the artificial neural networks to directly predict the 

pressure drop in any vertical pipe (Ayoub, 2004). 

 

 One of the challenges in pressure drop calculation is the determination of the 

flow regime in vertical pipe. Due to the complexity of multiphase flow, several flow 

regimes may exist that depend on different factors. Zavareh et al investigation in 1988 

using a multiphase flow loop and a photograph showed that when the well is vertical 

all flow regimes detected is bubble flow for all conditions tested. This bubble flow can 

be further subdivided as being bubble, dispersed bubble, inverted bubble or Inverted 

dispersed bubble, based on the bubble size and depending on which phase is 

continuous.   



2 
 

1.2 Group method of data handling (GMDH) Algorithms 

GMDH is a heuristic self-organization method that models the input-output 

relationship of a complex system. In 1966, the Russian cyberneticist, Prof. Alexey G. 

Ivakhnenko in the Institute of Cybernetics in Kiev (Ukraine) introduced a technique 

for constructing an extremely high-order regression-type polynomial. The algorithm, 

the Group   Method of Data Handling (GMDH), builds a multinomial of degree in the 

hundreds, whereas standard    multiple   regression    becomes    bogged   down   in 

computation and linear dependence.     

 

 The author great generosity of open code sharing has made this method quickly 

settled in the large number of scientific laboratories worldwide. The basic GMDH 

algorithm is a procedure of constructing a high order polynomial   of the form: 

 

𝑦 = 𝑎 +  ∑ 𝑏𝑖 
𝑚
𝑖=1 𝑥𝑖 + ∑ ∑ 𝑐𝑖𝑗

𝑚
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑥𝑗 +  ∑ ∑ ∑ 𝑑𝑖𝑗𝑘

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑥𝑗𝑥𝑘 +

 ∑ ∑ ∑ ∑ 𝑒𝑖𝑗𝑘𝑙
𝑚
𝑙=1

𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 + ⋯ …………………………………… equation (1.2) 

 

 GMDH modelling can be an alternative to artificial neural networks modelling 

approach that helps overcome many of the artificial neural networks limitations is that 

based on the self-organizing Group Method of Data Handling (GMDH).  Based on the 

self-organizing group method of data handling (GMDH), this technique uses well-

proven optimization   criteria   for   automatically   determining   the network size and 

connectivity, and element types and coefficients   for   the   optimum   model,   thus   

reducing   the modelling effort and the need for user intervention. 

 

 The mechanisation of model creation not only lessens the burden on the analyst 

but also safeguards the model generated from being influenced by human biases and 

misjudgements. The GMDH model automatically selects influential input parameters 

and the input-output relationship can be expressed in polynomial form. This enhances 

explanation capabilities and allows comparison of the resulting data-based machine 

learning models with existing first principles or empirical models. (Farlow, 1981; 

Osman & Abdel-Aal, 2002). 
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1.3 Selection of Independent variables 

 

 The main problem with estimation the pressure drop in vertical well is the 

number & type of independent variables that can affect the pressure drop. The model 

suggested by Aziz et al (1972) has a total of fifteen independent variables which must 

be specified as input data in order to calculate the pressure at the wellbore.  

 

 A simple linear model has been presented by Gregory (1974) which required 

only four independent variables to be specified under certain conditions. It can be used 

in straightforward hand calculations where it gives easier way to calculate the pressure 

drop than Aziz et al model.  Empirical models could not completely take into account 

all the variables and complexities of multiphase flow and resulted in limited range of 

applicability. (Takacs, 2001).  

 

 Early methods used very rude physical models and many simplifying 

assumptions, and were usually based on experimental data gathered from laboratory 

or field measurements. These empirical models could not completely take into account 

all the variables and complexities of multiphase flow and resulted in correlations of 

limited applicability 

 

 In this project, the number of independent variables will be evaluated by the 

software to minimize the number of independent variables need to be used in the 

proposed model. 

 

1.4 Problem statement 

 

 Many methods have been proposed to estimate the pressure drop in vertical 

wells that produce a mixture of oil and gas. The study conducted by Pucknell et al 

(1993) concludes that none of the traditional multiphase flow correlations works well 

across the full range of conditions encountered in oil and gas fields.  Accurate 

prediction of pressure drop in vertical wells can be greatly helpful in cost management 

when it comes to well completions and production optimization. 
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 Most of the vertical pressure drop calculation models were developed for 

average oilfield fluids and this is why special conditions such as; emulsions, non-

Newtonian flow behaviour, excessive scale or wax deposition on the tubing wall, etc. 

can pose severe problems. Accordingly, predictions in such cases could be doubtful 

(Takacs, 2001). 

 

 The accuracy of estimating the pressure drop in vertical wells has been 

discussed frequently in the last decades. Although many solutions have been produced 

but it still can’t be raised to a level to be generally accepted. Early empirical models 

treated the multiphase flow problem as the flow of a homogeneous mixture of liquid 

and gas. This approach completely disregarded the well-known observation that the 

gas phase, due to its lower density, overtakes the liquid phase resulting in “slippage” 

between the phases. Slippage increases the flowing density of the mixture as compared 

to the homogeneous flow of the two phases at equal velocities. Because of the poor 

physical model adopted, calculation accuracy was low for those early correlations. 

Another reason behind that is the complexity in multiphase flow in the vertical pipes. 

Where water and oil may have nearly equal velocity, gas have much greater one. As a 

results, the difference in the velocity will definitely affect the pressure drop. 

 

 As measuring the pressure drop in vertical wells is not a practical options due 

to its high cost. Many methods have been proposed for pressure drop estimation. 

However, the variation of well conditions from one to another is an obstacle to have 

general correlation with acceptable range of error.  

 

 The parameters affecting the pressure drop are very important for the model 

generation. While not all fluid data or production data for example are critical, 

knowing the weight effect of each parameters can lead to a simple and direct estimation 

for the pressure drop.    
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1.5 Objectives 

  

 This project aims at generating a model which is capable of estimating the 

pressure drop in vertical wells using the minimum possible number of parameters 

and compare its performance with of the best current methods.  

 

 Other specific objectives of this project can be stated as follow: 

a) Revising the best available correlations and defining the 

correlation parameters. 

b) Understating the parameters influencing the pressure drop in 

vertical pipes. 

c) Construct a new model using group method of data handling 

(GMDH) approach to estimate the pressure drop.  

d) Evaluate the model performance by comparing the predicted 

results against the actual ones. 

 

 

1.6 Feasibility of the study 

  

 This project requires a modelling software in order to conduct a successful 

study. By using Matlab Software -which is available in UTP-.  And the field data 

required to carry on the project are collected from released actual field data. Hence, 

the project is clearly feasible to be implemented and results were obtained within the 

proposed time frame for the project. 

 

 The new model is helpful for designing the facilities needed in vertical wells. 

Besides that, this new model can be generally considered for estimating pressure drop 

in vertical wells in oil and gas industry because of its simplicity and high accuracy 
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Chapter 2  

 

LITERATURE REVIEW 
 

 

2.1 Overview 

  

 The existence of multiphase flow and their associated problems have been 

recognized since 1797.Numerous correlations and equations have been proposed for 

multiphase flow in vertical, inclined and horizontal wells in the literature. However, 

most of the significant contributions have been made since 1945 (Palisetti, 1998). Due 

to the importance of two-phase flow problems, researchers have developed many 

accurate pressure drop computation methods (Takacs 2001). However, it has not yet 

been proposed a universal model that can satisfy all well conditions. 

 

 The early approaches used the empirical correlation methods such as Hagedorn 

& Brown (1965) Duns & Ros, (1963), and Orkiszewski (1967). Then the trend shifted 

into mechanistic modelling methods such as Ansari (1994) and Aziz et al (1972) and 

lately the researchers has introduced the use of artificial intelligence into the oil and 

gas industry by using artificial neural networks such as Ayoub (2004) and 

Mohammadpoor (2010) and many others. The application of factorial design analysis 

for a well pressure drop modelling has been discussed by Gregory in 1974.  The study 

discussed the proper usage of fractional factorial design analysis which can generate a 

direct simple linear approximation of the computer model that can be used in the 

prediction model.  In that study, ranges of variables selected was aided by the well data 

tabulated by Aziz et al (1972). As the remaining input data for the computer program 

were arbitrarily specified.  Gregory (1974) claims that his single linear equation with 

four independent variable can predict the pressure drop more accurate than the 
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mechanistic model. However, this model proposed by Gregory is only applicable to be 

used under certain conditions. Gregory suggested to generate similar model by normal 

regression analysis techniques using the available well data. This may lead to find 

better and more accurate values for the pressure drop.   

 

 Takacs (2001) has collected and summarized the findings of many previous 

investigation on the accuracy of the different pressure drop calculation models. 

Statistical parameters of these investigations are shown to be widely scattered and to 

be of limited use to engineers seeking the most accurate model. The Early methods 

used very rude physical models and many simplifying assumptions, and were usually 

based on experimental data gathered from laboratory or field measurements. The era 

from the early 1980s to the present experienced the emergence of the so-called 

“mechanistic” models. These apply a modelling approach to the solution of the 

pressure drop calculation and are founded on a comprehensive description of the basic 

mechanisms occurring in multiphase flow. Takacs concluded his paper in the 

following points: 

 None of the available vertical multiphase pressure drop calculation models is 

generally applicable because their prediction errors may considerably vary in 

the different ranges of the flow parameters. 

 There is no “over-all best” calculation method, and all efforts to find one are 

deemed to fail. 

 In spite of the claims found in the literature, the introduction of mechanistic 

models did not deliver a breakthrough yet because their accuracy not 

substantially exceed that of the empirical ones. 

 Based on a sufficiently great number of experimental data from the oilfield 

considered, one can determine the optimum pressure drop prediction method 

for that field. 

 

 A different method using two phase fluid flow models is proposed to calculate 

the pressure drop in vertical and inclined oil wells (Griffith et al, 1975). The study has 

been implemented to oil and gas wells with an accuracy of about 10 %. Griffith 

methods is considered as very simple equation. However, some variables have been 

dropped out of the equation such as; pipe roughness, viscosity for liquid and gas and 
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entrainment effect.  The justification for these variables not be considered in his 

equation is simple as stated by the author. Pipe roughness effect is almost the same as 

in single phase flow. And the existence of liquid may increase or decrease the friction 

drop but with low effect and therefore it can be negligible. For the gas and liquid 

viscosity, they have little of consequence but the error under these conditions would 

be considerable. 

 

 Some correlations have been developed to calculate the pressure drop in special 

cases such as; deep gas wells (Moradi et al, 2011) and the presence of surfactant in the 

well (Soni et al, 2009). 

 

2.2 Empirical Correlations 

 

 The empirical correlation was created by using mathematical equations based 

on experimental data. Most of the early pressure drop calculation was based on these 

correlations because of thier direct applicability and fair accuracy to the data range 

used in the model generation. In this study, the empirical correlation for pressure drop 

estimation in multiphase flow in vertical wells are reviewed and evaluated with 

consideration of its required dimensions, performance, limitation and range of 

applicability. 

 

 Duns & Ros Correlation (1963): This empirical correlation is resulted from 

laboratory experiments with some modification and adjustments in the correlation by 

using actual field data. Duns & Ros correlation are in terms of a dimensionless gas 

velocity number, diameter number, liquid velocity number and a dimensionless 

mathematical expression.  The acceleration gradient is neglected in the methods.  

Although this method is developed to calculate the pressure drop with dry oil/gas 

mixtures, it can also be used with wet oil/gas mixtures in some cases. 

 

 Hagedorn & Brown Correlation (1965): Hagedorn & Brown correlation is 

one of the most common correlations used in the industry. Hagedorn & Brown 

correlation has developed using an experimental study of pressure gradients occurring 

during continuous two-phase flow in small diameter vertical conduits, a 1500 ft 
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vertical wellbore and considering 5 different fluids types in the experiment which is 

water and four types of oil. This correlation involve only dimensionless groups of 

variables and it can be applied over a much wider range of conditions comparing to 

other correlations. 

 

 Orkiszewski Correlation (1967): This correlation developed an equation for 

two-phase pressure drops in flowing and gas-lift production wells over a wide range 

of well conditions with range of a precision about 10 percent. The method is an 

extension of the work done by Griffith and Wallis (1961).  The correlation is valid for 

several flow regimes such as; bubble flow, slug flow, transition flow and annular-mist 

flow. Orkiszewski proved his assumption by comparing the measured pressure drop 

results of 184 wells to the calculated ones. The parameter considered in his equation 

for the pressure drop is the effect by the energy lost by friction, the change in potential 

energy and the change in kinetic energy. The results obtained by these methods still 

applicable for wide range of well conditions (e.g. heavy oil). But, there are some well 

conditions that have not been evaluated (e.g., flow in the casing annulus and in the 

mist flow regime). 

 

 Beggs & Brill Correlation (1973): The Beggs and Brill method was 

developed to predict the pressure drop for horizontal, inclined and vertical flow. It also 

took into account the several flow regimes in the multiphase flow. Therefore, Beggs 

& Brill (1973) correlation is most widely used. In their experiment, they used 90 ft 

long acrylic pipes to produce data. Fluids used were air and water and 584 tests were 

conducted. Gas rate, liquid rate and average system pressure was varied. Pipes of 1 

and 1.5 inch diameter were used. The parameters used are gas flow rate, Liquid flow 

rate, pipe diameter, inclination angel, liquid holdup, pressure gradient and horizontal 

flow regime. This correlation has been developed so it can be used predict the liquid 

holdup and pressure drop.  

 

 Gray Correlation (1978): The Gray correlation was developed by H.E. Gray 

(Gray, 1978), specifically for wet gas wells. Although this correlation was developed 

for wet gas vertical flow, but it can also be used in multiphase vertical and inclined 

flow. In his correlation Flow is treated as single phase, and dropped out water or 

condensate is assumed to adhere to the pipe wall. The parameters considered in this 
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method are the phase velocity, tube size gas condensate ratio and water ratio. The 

pressure difference due to friction is calculated using the Fanning friction pressure loss 

equation. 

 

 Mukherjee & Brill Correlation (1985): Mukherjee & Brill Proposed a 

correlation for Pressure loss, Holdup and flow map. Their correlation was developed 

following a study of pressure drop behaviour in two-phase inclined flow. However, it 

can also be applied to vertical flow. Prior knowledge of the liquid holdup is needed to 

compute the pressure drop using Mukherjee & Brill (1985) correlation. The results 

obtained from their experiments were verified with Prudhoe Bay and North Sea data. 

 

2.3 Mechanistic Models 

 

 Mechanistic models or known also as semi-empirical correlations deal with the 

physical phenomena of the multiphase flow. These kinds of models are developed by 

using mathematical modelling approach.  A fundamental hypothesise in this type of 

models is the existence of various flow configurations or flow patterns, including 

stratified flow, slug flow, annular flow, bubble flow, churn flow and dispersed bubble 

flow. The first objective of this approach is, thus, to predict the existing flow pattern 

for a given system. Although most of the current presented mechanistic models have 

been developed under certain condition which limits their ability to be used in different 

range of data, these models are expected to be more reliable and general because they 

incorporate the mechanisms and the important parameters of the flow (Gomez et al. 

2000). 

 

 Aziz et al. Model (1972): Aziz, Govier and Fogarasi (1972) have proposed a 

simple mechanistically based scheme for pressure drop calculation in wells producing 

oil and gas.  The scheme was based on the identification of the flow pattern map.  The 

mechanical energy equation was presented in the relationship between the pressure 

gradient, the flow rate, the fluid properties and the geometry of the flow duct. While 

the model proposed new equation for bubble and slug flow patterns, it recommended 

the old Dun & Ros equations for annular mist pattern. The new prediction method 

incorporates an empirical estimate of the distribution of the liquid phase between that 
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flowing as a film on the wall and that entrained in the gas core. It employs separate 

momentum equations for the gas-liquid mixture in the core and for the total contents 

of the pipe. The model has presented 44 value of predicted pressure drop with an 

absolute error almost equal to the Orkiszewski correlation.  However, the uncertainties 

and lack of some filed data made it difficult to develop a fully mechanistically, reliable 

based computation method. 

 

 Ansari et al. Model (1994): This mechanistic model is developed for upward 

two-phase flow in wellbores. This model was developed as part of the Tulsa University 

Fluid Flow Projects (TUFFP) research program. The model predict the existence of 

four flow patterns which are; bubble flow, slug flow, churn flow and annular flow. The 

model was evaluated by using the TUFFP well databank that is composed of 1775 well 

cases, with 371 of them from Prudhoe Bay data. Ansari et al (1994) claim that the 

overall performance of the comprehensive model is superior to all other methods 

considered with an exception of Hagedorn & Brown empirical correlation due to its 

extensive data used in its development and modifications made to the correlation. 

 

2.4 Artificial Neural Networks 

 

 An artificial neural networks is a structure (network) composed of a number of 

interconnected units (artificial neurons). Each unit has an input/output (I/O) 

characteristic and implements a local computation or function (Jahanandish & 

Jalalifar, 2011). It has been only a few years since neural networks first gained 

popularity. In the past two to three years, banks, credit card a companies, 

manufacturing companies, high tech companies and many more institutions have 

adopted neural nets to help them in their day-to-day operation. Within the past few 

years, several software companies have surfaced that work solely on neural net 

products. Most researchers believe that artificial neural networks  may be able to 

produce what rule based artificial intelligence (expert systems) have promised for so 

long but failed to deliver. 

 

 The use of Artificial Neural Networks (ANNs) in petroleum industry can be 

tracked several years ago. Since the literature have many industry problems solved by 
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several authors using ANNs models. ANNs have been used in several area of oil and 

gas industry such as; permeability prediction, well testing, enhanced oil recovery, PVT 

properties prediction, improvement of gas well production, prediction & optimization 

of well performance,  integrated reservoir characterization and portfolio management. 

(Ayoub, 2004). 

 

 Experience showed that empirical correlations and mechanistic models failed 

to provide a satisfactory and reliable tool for estimating pressure drop in multiphase 

flowing wells. Large errors are usually associated with these models and correlations 

(Takacs, 2001). Artificial neural networks gained wide popularity in solving difficult 

and complex problems, especially in petroleum engineering (Mohaghegh and Ameri, 

1995). 

 

 Ayoub Model (2004): Ayoub presented an Artificial Neural Networks (ANNs) 

model for prediction of the bottom-hole flowing pressure and consequently the 

pressure drop in vertical multiphase flow. The model was developed and tested using 

field data covering a wide range of variables. A total of 206 field data sets collected 

from Middle East fields; were used to develop the ANN model. These data sets were 

divided into training, cross validation and testing sets in the ratio of 3:1:1. The testing 

subset of data, which were not seen by the ANN model during the training phase, was 

used to test the prediction accuracy of the model. Trend analysis of the model showed 

that the model correctly predicted the expected effects of the independent variables on 

bottomhole flowing pressure. This indicated that the model simulates the actual 

physical process. Although, the results showed that his model significantly 

outperforms all existing methods and provides predictions with higher accuracy. The 

author warned that the new developed model can be used only within the range of used 

data. Caution should be taken beyond the range of used input variables. Ayoub (2004) 

model demonostrate the power of artificial neural networks model in solving 

complicated engineering problems.
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Chapter 3  

 

RESEARCH METHODOLOGY 

 

 

3.1 Overview 

 

 There are many approaches that can be used in order to solve engineering 

problems. These approaches can be classified as: 

1. Exact or rigorous approach. 

2. Modelling approach. 

3. Mechanistic approach. 

4. Experimental approach. 

 

In this project, GMDH approach is classified as “modelling approach”. To the 

best of my knowledge it has not been used before in this kind of estimation. GMDH 

polynomial neural networks are being used to construct a mathematical model that can 

estimate the pressure drop in vertical wells. This mathematical model is built and 

developed as an attempt to replace the previously developed rigorous correlations 

either empirical correlations or mechanistic models. This model consists of a very 

simple approach of predicting the pressure drop with high accuracy and minimum 

usage of parameters. 
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The outcomes of these models have been compared against the measured one. 

An optimization study also used the trend analysis that confirmed the physical 

possibility of the proposed model. Figure (3.1) is illustrates the sequence of research 

procedure. 

Figure 3.1 Modelling Construction Process 

  

 

3.2 Data Gathering & Processing 

 

The most important and critical step in the project is the data gathering which 

has the main impact on generating a successful model. During the data gathering and 

collection, it has been considered the quantity and quality of the collected data to 

ensure sufficient information that help to build the model. 

 

When it comes to estimation the pressure drop in multiphase vertical wells, 

there are so many parameters known to be contribute to it.  However, not all these 

parameters might be significantly contributed to the final output. Besides that, some 

of these parameters cannot be available in the data collection process due to some 

technical problems. Although this insufficiency in the data can reduce the accuracy of 

the model, it also might not have significant effects as it will be discussed later. 

Additionally, some of these input parameters were removed from the final data 

selection due to their low ranges. 

Limitations of the Model

Error Estimation "Statistical & Graphical"

Trend Analysis

Model  Validation & Testing

Model Construction

Data Gathering & Processing 
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A total number of 260 data sets had been used in this project in order to 

construct the mathematical model. The Input variables have been selected based on 

the most commonly used empirical correlations and mechanistic models used by the 

industry. These input variables are oil rate, water rate, gas rate, diameter of the pipe, 

length of pipe ”depth”, wellhead pressure, surface temperature and oil gravity “API”. 

Table (3.1) shows the statistical analysis of the used data in this project. 

 

Table 3.1 Statistical Analysis of the Used Data 

Flow Parameter Min Max Average STD 

Bottomhole Pressure, (psi) 1019.79 3124 2234 476.971 

Oil Rate, (bbl/D) 45.2 19618 5068.5 4838.1 

Water Rate, (bbl/D) 0 7900 1757.3 2309 

Gas Rate, (Mscf/D) 0 13562.2 2563.6 3047.57 

Depth, (ft) 2726.4 8070.87 5830 1040 

Tubing Diameter, (in) 2 4 3.75 0.33 

Surface Temperature, (degreeF) 70 160 113.55 27.44 

Wellhead Pressure, (Psi) 5 800 249.5 159.17 

Oil Gravity, (API) 12.4 37 31.1 5.675 

 

 

1.2.3 Partitioning  

 

Partitioning the data is the process of dividing the data into three different sets: 

training sets, validation sets, and test sets. By definition, the training set is used to build 

and develop the model, the validation set is used to ensure the optimum generalization 

of the developed model and the test set, which is not be seen by the network during 

training, is used to examine the final performance of the model. Although different 

partitioning ratios were tested (2:1:1, 3:1:1, and 4:1:1), the author has choosen the 

2:1:1 ratio because it’s more popular and frequently used by researchers (Ayoub, 

2004). 

According to the chosen partition ration 130 data set reserved for training the 

model while 65 data sets were utilized for validation purposes. The last 65 data set had 
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been kept aside for testing the new model performance. Needless to mention that this 

testing set was never seen by the network during training and validation. 

 

3.3 Building GMDH Model 

 

 The process of building the GMDH model started with selecting the input 

parameters which has been discussed earlier. Free software was being used for this 

purpose (Jekabsons, 2011).  This source code was tested with MATLAB version 8.1 

(R2013a). Despite the software allows great flexibility in selecting the model 

parameters, it also provides ample interference. Although, all of the input parameters 

had been used in generating the model, just a few are used in the final equation to 

estimate the pressure drop. 

 

3.4 Software Used 

 

 In this Project, MATLAB software (version R2013a), [MATLAB], environment 

was utilized due to flexible programming and graphs visualization. This software 

provides a good way to monitor the performance of the three data sets (training, 

validation and testing data) simultaneously which ease the optimization process and 

the sensitivity analysis.  

 

 A MATLAB code was developed by Jekabsons (2011). His code represents a 

simple implementation of Group Method of Data Handling (GMDH) for building 

Polynomial Neural Networks. The algorithm uses the training data to build the network 

in a layer by layer arrangement. The connectivity and number of layers of the network 

is controlled by an evaluation criterion. The code algorithm gives the user either to use 

measuring performance in an additional validation data explicitly taking network's 

complexity into account such as Corrected Akaike's Information Criterion or 

Minimum Description Length. The code algorithm also includes other parameters such 

as, max number of inputs for individual neurons, degree of polynomials in the neurons, 

whether to allow the neurons to have inputs not only from the immediately preceding 

layer but also from the original input variables, number of neurons in a layer, whether 

to decrease the number of neurons in each subsequent layer. 
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3.5 Trend analysis 

A trend analysis is carried out for the proposed GMDH model to check whether 

the model is physically possible. For this purpose, synthetic sets will be prepared 

where in each set only one input parameter will be changed while other parameters 

will be kept constant. To test the developed model, the well-known effects of different 

input parameters such as; oil rate, gas rate, water rate, oil gravity “API”, pipe length 

(depth) will be studied. These created trends from the developed model will be 

expected to match with the inflow performance relationship (IPR) and typical pressure 

trends in well testing for multiphase flow in vertical pipes.  

 

 

3.6 Statistical Error Analysis 

 

This type of error analysis has been used to check the accuracy of the proposed 

models and also the other investigated models. The statistical parameters used in this 

project is average absolute percentage relative error, average percentage relative error, 

maximum absolute percentage error, minimum absolute percentage error, root mean 

square error, coefficient of determination and the standard deviation of error. 

Equations for those parameters are given in the appendices. 

 

 

3.7 Graphical Error Analysis 

 

 Graphical tools aid in visualization the performance and the accuracy of the 

generated model. Three graphical analysis tools will be used; those are crossplots and 

error distribution. 
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3.7.1 Cross-plots 

Cross plots were used to compare the performance of all the selected methods. 

A 45° straight line between the calculated pressure drop values versus measured 

pressure drop values is plotted which represent a perfect correlation line. When the 

values go closer to the line, it will indicate better results between the measured and the 

estimated values. 

 

3.7.2 Error Distribution 

Error distribution shows the error sharing histograms for the proposed GMDH 

model (both training, validation and testing data sets). Normal distribution curves had 

been fitted to each one of them. The errors are said to be normally distributed with a 

mean around 0% and the standard deviation equal to 1.0. The normal distribution is 

often used to describe, at least roughly, any variable that tends to cluster around the 

mean. In our case it was used to describe the error tendency around the mean, (which 

is alternatively known as a normal or Gaussian distribution).  

 

3.8  Limitations of the Model 

 

 The proposed GMDH model may be limited due to two main reasons. The first 

one in the limitation of the collected data; as it has been discussed earlier and definitely 

this will have direct impact on the results accuracy. The second one is the range of 

each input variable and the availability of that input parameter. Each parameter has 

specific range that works well, however, the accuracy may be lightly or severely 

affected if the parameters are not in the proposed range. Therefore, care must be taken 

if obtained results applied for data range beyond that used in generating the model. 
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Chapter 4  

 

RESULTS AND DISCUSSION 
 

 

 

4.1 Development of the GMDH model 

4.1.1 Introduction 

 

Group Method of Data Handling approach is a set of several algorithms for 

different problems solution.  This inductive approach is based on sorting-out of 

gradually complicated models and selection of the best solution by minimum of 

external criterion characteristic. Not only polynomials but also non-linear, 

probabilistic functions or cauterizations are used as basic models. Polynomial GMDH 

technique is offering a sound representation of input regime to output through the 

application of so called “regularity criterion”. Usually this one will be average absolute 

percentage error. It is implemented to reduce the error between the actual and 

estimated target in each layer. A threshold level is applied before each layer is added 

since addition of a new layer and neurons depends on this threshold level. 

 

As it has been described earlier, free software has been used to construct the 

GMDH model. The constructed model consists of two layers. 84 neurons were tried in 

the first layer, while only three neurons were included at the end of the trial. Only one 

neuron had been included (by default) for the second layer, which was the pressure 

drop target.  However four input parameters had shown pronounced effect on the final 

pressure drop estimate, which were; oil rate, length of the pipe “depth”, oil gravity and 



20 
 

water rate. The selection of these three inputs had been conducted automatically 

without any interference from the user. They were selected based on their mapping 

influence inside the data set on the pressure drop values. 

 

This topology was achieved after a series of optimization processes by 

monitoring the performance of the network until the best network structure was 

accomplished. Figure (4.1) shows the schematic diagram of the proposed GMDH 

topology. The final output layer “pressure drop” is being formed from five variables 

from the input layer which are, oil rate, depth “pipe length”, water rate, oil gravity and 

gas rate. Whereas, the first three variables combined in one variable in the hidden layer 

and then with the other two variables used to build the output layer. 

 

 

Figure 4.1 Schematic Diagram Of The Proposed GMDH Model Topology 

 

4.1.2 Summary of the Model’s Equation 

As described in the previous section the model consists of two layers as follows: 

 

Number of layers: 2 
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Layer #1 

Number of neurons: 1 

x9 = -2301.44790006229 -2.60953702100053*x3 +1.84520074544553*x2 -

0.076677907649031*x1 +0.00077962057680922*x2*x3 -4.41529120121688e-

05*x1*x3 +9.86884816305755e-05*x1*x2 +3.67549182129376e-05*x3*x3 -

0.000316306612876803*x2*x2 -2.64450254505861e-05*x1*x1 

+2.31597897389801e-09*x1*x2*x3 -7.00811416239125e-09*x2*x3*x3 -

5.4336357577612e-08*x2*x2*x3 +1.94571672043658e-09*x1*x3*x3 -

1.54237211114233e-08*x1*x2*x2 +1.73342685500666e-09*x1*x1*x3 

+5.42470488360359e-09*x1*x1*x2 +1.35589606927285e-10*x3*x3*x3 

+2.09789302765354e-08*x2*x2*x2 -1.83874781fig894772e-10*x1*x1*x1 

Layer #2 

Number of neurons: 1 

y = 3415.95672012025 -0.605615045600824*x9 -1.04616288868911*x7 -

357.669124247228*x4 +0.000262141590712973*x7*x9 

+0.166695464057425*x4*x9 -0.00880002548519891*x4*x7 -

0.000230414682054698*x9*x9 +0.000212921162434079*x7*x7 

+10.9074140098337*x4*x4 -2.26040538469408e-06*x4*x7*x9 -

8.03293262244177e-08*x7*x9*x9 +1.26383450874532e-08*x7*x7*x9 

+0.000159284034091951*x4*x9*x9 -7.62764844346145e-06*x4*x7*x7 -

0.0125022347939832*x4*x4*x9 +0.00120868087696399*x4*x4*x7 -

8.18463853556531e-07*x9*x9*x9 +1.67003375432709e-09*x7*x7*x7 

+0.0651784907669141*x4*x4*x4 

Where; 

x1 = oil rate, bbl/d 

x2 = length of the pipe, ft 

x3 = water rate, bbl/d 

x4 = oil grvity, API 

x7= gas rate, scf/d 

y = simulated pressure drop by GMDH Model 

 

4.1.3 GMDH Model Optimization 

In order to optimize the GMDH model, many factors have been taken into 

consideration. These factors are; whether to use measuring performance in an 

additional validation data explicitly taking network's complexity into account such as 

Corrected Akaike's Information Criterion or Minimum Description Length, max 

number of inputs for individual neurons, degree of polynomials in the neurons, 

whether to allow the neurons to have inputs not only from the immediately preceding 
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layer but also from the original input variables, number of neurons in a layer, whether 

to decrease the number of neurons in each subsequent layer. 

The effects of all the above mentioned factors have been studied and verified 

using the software. The selection of the best criteria to choose for the model was based 

on having the highest correlation coefficient for the testing and validation data sets. 

 

4.2 Trend Analysis for the Proposed GMDH Mode 

A trend analysis was carried out to check whether the developed model is 

physically correct or not. To test the developed model, the effects of gas rate, oil rate, 

water rate, and depth “pipe length” on pressure drop were determined and plotted on 

Figure (4.2) through Figure (4.6).  

 

As expected, the developed model has achieved truthful trends that match the 

normal pressure trends. The pressure drop increases as the gas, water and oil increases 

as justified by the general energy equation. Same goes to the increase in pressure drop 

with depth.  The increase in pressure drop when oil gravity in increased in simply 

justified by the specific gravity equation, where specific gravity is directionally 

proportional to pressure. 

 

Figure 4.2 Effect of Gas Rate on Pressure Drop 
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Figure 4.3 Effect of Water Rate on Pressure Drop 

 

 

Figure 4.4 Effect of Oil Rate on Pressure Drop 
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Figure 4.5 Effect of Depth “Pipe Length” on Pressure Drop 

 

 

Figure 4.6 Effect of Oil Gravity on Pressure Drop 
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4.3 Statistical Error Analysis for the Proposed GMDH Model against 

Other Investigated Models 

As mentioned in methodology chapter, this error analysis was used to check 

the accuracy of all investigated models. The statistical parameters used in this project 

are average absolute percentage relative error (AAPE), average percentage relative 

error (APE), maximum absolute percentage error (MaxAE), minimum absolute 

percentage error (MinAE), root mean square error (RMSE), coefficient of 

determination (R2) and the standard deviation of error (STD). 

Summary of statistical comparisons between all model’s sets (training, 

validation, and testing) is presented in Table 4.1. And Table 4.2 summarizes these 

statistical parameters of the proposed GMDG model and the investigated models. 

 

  

4.4 Graphical Error Analysis for the Proposed GMDH Model against 

Other Investigated Models 

Graphical tools aid in visualization the performance and the accuracy of the 

generated model. Two graphical analysis tools used to check to model accuracy, 

heterogeneity and limitation. Those graphical error analysis are crossplots and error 

distribution. 

 

Table 4.1 Statistical Analysis Results of the Proposed GMDH Model 

Statistical Parameter Training Validation Testing 

AAPE 4.36119 7.156847 4.462313 

APE 0.128042 1.450954 -0.38283 

MaxAE 18.96302 29.13439 22.31491 

MinAE 0.017754 0.164541 0.215909 

RMSE 5.632366 9.624206 5.861574 

R2 0.933 0.7234 0.9233 

STD 3.564207 6.434662 3.800766 
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Table 4.2 Statistical Analysis Results of the Proposed GMDH Model and Investigate Models 

  AAPE APE MaxAE MinAE RMSE R2 STD 

Aziz et al 18.1616 15.3085 60.5106 0.1688 25.7129 0.2044 18.2019 

Hagedorn & 

Brown 
11.9679 10.8906 25.6410 0.2806 13.7067 0.7888 6.6815 

Gray 11.7019 10.0595 25.1312 0.0611 13.7572 0.7346 7.2337 

Orkiszewski 11.5102 10.1379 28.1472 0.4975 13.4310 0.7758 6.9215 

Mukhrejee 

& Brill 
9.6868 5.5606 39.3635 0.4499 11.6977 0.8061 6.5575 

Ansari et al 7.8973 4.9361 30.0916 0.0918 9.5092 0.8614 5.2970 

Duns & Ros 7.6357 5.5159 24.2722 0.0475 9.4680 0.8362 5.5981 

Beggs & 

Brill 
6.5778 3.2094 24.9539 0.3135 8.1210 0.8710 4.7626 

Ayoub 4.5295 -0.3216 18.2205 0.0150 6.1522 0.9052 4.1633 

GMDH 

Model 
4.4623 -0.3828 22.3149 0.2159 5.8616 0.9233 3.8008 

 

 

4.4.1 Cross Plots of GMDH Model against Investigated Models 

 

Figure (4.7) through Figure (4.9) present cross-plots of estimated pressure drop 

versus measured pressure drop for the proposed GMDH model data sets; Training, 

Validation and Testing. In these figures, the coefficient of determination obtained by 

the training set was (0.933), while the validation set obtained a value of (0.7234) and 

the testing set obtained a value of (0.9233). Moreover, Figure (4.10) through Figure 

(4.18) present cross-plots of estimated pressure drop versus measured pressure drop 

for other investigated models including the coefficient of determination for each 

model. 
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Figure 4.7 Cross plot of pressure drop for Training set (GMDH Model) 

 

 

 

 

Figure 4.8 Cross plot of pressure drop for Validation set (GMDH Model) 
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Figure 4.9 Cross plot of pressure drop for Testing set (GMDH Model) 

 

 

 

Figure 4.10 Cross plot of pressure drop for Hagedorn & Brown Correlation 
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Figure 4.11 Cross plot of pressure drop for Beggs Brill Correlation 

 

 

 

Figure 4.12 Cross Plot of Pressure Drop for Orkiszewski Correlation 
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Figure 4.13 Cross plot of pressure drop for Gray Correlation 

 

 

 

Figure 4.14 Cross plot of pressure drop for Duns & Ros Correlation 
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Figure 4.15 Cross plot of pressure drop for Ansari et al Model 

 

 

 

 Figure 4.16 Cross plot of pressure drop for Mukherjee & Brill Correlation 
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Figure 4.17 Cross plot of pressure drop for Aziz et al Model 

 

 

Figure 4.18 Cross plot of pressure drop for Ayoub Model 
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4.4.2 Error Distribution of GMDH Model against Investigated Models 

Figure (4.19), Figure (4.20) and Figure (4.21) show the error distribution histograms 

for the GMDH model data sets, training, validation and testing sets. And, Figure (4.22) 

shows the error distribution histograms for the GMDH model and other investigated 

models. 

 

Analyzing the GMDH model’s error distribution histogram is quite important. It can 

give a clear idea about the model’s performance for all data sets. According to the 

obtained results, the training set has normal distribution without any noticeable shifting 

towards the negative or positive side of the plot which indicates a good estimation, 

validation set has a slight shift towards the positive side of the plot which means that 

the pressure drop was slightly underestimated, and the testing set has also a slight shift 

towards the positive side of the plot which means that the pressure drop was slightly 

underestimated. 

 

 

Figure 4.19 Error Distribution for Training Set 
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Figure 4.20 Error Distribution for Validation Set 

 

 

Figure 4.21 Error Distribution for Testing Set 
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Figure 4.22 Error Distribution for All models including GMDH model 

 

4.5 Discussion of the Results 

  

 Comparison between the performance of all investigated models plus the new 

proposed GMDH model has been showed earlier in Table (4.2). Figure (4.23) through 

Figure (4.25) indicate the performance of all investigated models. Aziz et al 

mechanistic model achieved the worst AAPE, RMSE and coefficient of determination 

among all investigated models. 

  

 The training set has achieved the best results statistically among the three sets of 

data. This is due to the fact that the training set has been used as the primary set for 

the model development. On the other hand, the validation set has achieved lower than 

the testing although the validation also used during the model development. This low 

performance of the validation maybe attributed to the nature of the validation set. The 

latter is introduced during the training process to control the performance of the 

training set whereas several failure cases may be occurred in order to obtain high 

accuracy and allow thee training set to learn effectively.  
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 A close result can be extracted when root mean square errors (RMSE) of each 

model have been plotted against the standard deviation (STD) of errors, as presented 

in Figure (4.25). However, this time the best model will be located at the left lower 

corner, which indicated by the intersection of both lower values of RMSE and STD. 

Also, average absolute relative errors (AAPE) of each model has been plotted against 

the confident of determination (R2), as presented in Figure (4.26). However, this time 

the best model will be located at the left upper corner, which indicated by the 

intersection of both low AAPE value with High R2. 

GMDH Model has always fallen in the best corner of the graph as compared against 

the other models. This indicates better-quality performance of GMDH model when 

compared to other tested models. 

 

  

Figure 4.23 Average Absolute Relative Error for All Models 
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Figure 4.24 Root Mean Square Error for All Models 

 

 

 Figure 4.25 Coefficient of Determination for All Models 
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Figure 4.26 Root Mean Square Error against Standard Deviation for All Models 

 

 

 

Figure 4.27 Average Absolute Relative Errors against the Confident of Determination for All 

Mode
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   CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION  
 

5.1 Conclusions 

This project aims at developing a model based on Group method of data 

handling (GMDH) approach. The literature study has shown that none of the current 

methods used to predict the pressure drop is applicable for general usage. 

GMDH approach has been used successfully in developing a model that can 

estimate the pressure drop in vertical wells. This developed model showed better 

results when it has been compared against the common used models in the industry.  

Comparison of the statistical error proves the GMDH model superiority over 

the existing correlations and models. The developed model achieved the lowest 

average absolute percent relative error (4.4623%), the lowest root mean square error 

(5.8616), the highest coefficient of determination (0.9233) and the lowest standard 

deviation of error (3.8008%). The trend analysis of the model showed that the model 

is correctly predicting predicted the expected effects of the independent variables on 

pressure drop.  

Not to be forgotten, the new developed model is highly recommended to be 

used within the same range of the used data. Otherwise, unexpected results may come 

up when different ranges of inputs variables is used.  

The GMDH model is successfully developed and the objectives of this project 

are successfully achieved. 
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5.2 Recommendations 

 

Based on the above conclusions, the author suggests the following 

recommendation: 

 A wide range of data that can be collected from different fields with additional 

input variables can be used to construct more accurate model using GMDH 

approach. 

 More improvements and developments in the group method of data handling 

code and process for predicting pressure drop in the multiphase vertical 

flowing wells will definitely lead to better and accurate prediction in the future. 

Hence, all focuses and researches are highly recommended to go through that 

direction. 

 Smart simulator like PIPESIM and PROSPER can be utilized to double check 

the presented models results. 

 

Not to be forgotten, there are still many empirical correlations, mechanistic models 

and artificial neural networks in the literature which have not be evaluated in this 

project and may have more or less accuracy compared to GMDH model for predicting 

pressure drop in vertical wells. However, the methods were selected based on the 

author’s perspective. And therefore, all the conclusions and recommendations were 

based on the selected me
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APPENDIX A - Statistical Error Equation 

 

a) Average Absolut Percent Relative Error: 

Ea =  
1

n
 ∑|Ei|

n

i=1

 

 

b) Average Percent Relative Error: 

Er =  
1

n
 ∑ Ei

n

i=1

 

 

c) Maximum Absolute Relative Error: 

Emax = maxi+1
n |Ei|  

 

d) Minimum Absolute Relative Error: 

Emax = mini+1
n |Ei|  

 

 

e) Root Mean Square Error: 

RMSE =  [
1

n
 ∑ Ei

2

n

i=1

]

0.5

 

 

f)  Coefficient of determination: 

R2 = √1 −
∑ [(∆P)m − (∆P)c]n

i=1

∑ [(∆P)m −  ∆∆P̅̅ ̅̅ ̅]n
i=1

 

 

g) Standard Deviation: 

𝑆𝑇𝐷 = √[ (
1

𝑚 − 𝑛 − 1
 )] [∑ {

[(∆𝑃)𝑚 − (∆𝑃)𝑐] 

(∆𝑃)𝑚
}

𝑛

𝑖=1

∗ 100]

2

 

Where, Ei is the relative deviation of a calculated value from the measured value; 

𝑬𝒊 =  [
(∆𝑷)𝒎 − (∆𝑷)𝒄 

∆𝑷𝒎
] ∗ 𝟏𝟎𝟎%,        𝒊 = 𝟏, 𝟐, 𝟑, … … … , 𝒏 

Where: 

(∆𝑃)𝑚 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑜𝑝  

(∆𝑃)𝑐 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑟𝑜𝑝 

∆∆𝑃̅̅ ̅̅ ̅̅ =
1

𝑛
 ∑[(∆𝑃𝑚)]𝑖 

𝑛

𝑖=1
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APPENDIX B- GMDH CODE 
 

Function gmdhbuild  
function [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, 

inputsMore, ... 

maxNumNeurons, decNumNeurons, p, critNum, delta, Xv, Yv, verbose) 

% GMDHBUILD 

% Builds a GMDH-type polynomial neural network using a simple 

% layer-by-layer approach 

% 

% Call 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p, critNum, delta, Xv, Yv, 

verbose) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p, critNum, delta, Xv, Yv) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p, critNum, delta) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p, critNum) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons, p) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons, 

%                   decNumNeurons) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore, 

maxNumNeurons) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs, inputsMore) 

%   [model, time] = gmdhbuild(Xtr, Ytr, maxNumInputs) 

%   [model, time] = gmdhbuild(Xtr, Ytr) 

% 

% Input 

% Xtr, Ytr     : Training data points (Xtr(i,:), Ytr(i)), i = 

1,...,n 

% maxNumInputs : Maximum number of inputs for individual neurons - 

if set 

%                to 3, both 2 and 3 inputs will be tried (default = 

2) 

% inputsMore   : Set to 0 for the neurons to take inputs only from 

the 

%                preceding layer, set to 1 to take inputs also from 

the 

%                original input variables (default = 1) 

% maxNumNeurons: Maximal number of neurons in a layer (default = 

equal to 

%                the number of the original input variables) 

% decNumNeurons: In each following layer decrease the number of 

allowed 

%                neurons by decNumNeurons until the number is equal 

to 1 

%                (default = 0) 

% p            : Degree of polynomials in neurons (allowed values 

are 2 and 

%                3) (default = 2) 
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% critNum      : Criterion for evaluation of neurons and for 

stopping. 

%                In each layer only the best neurons (according to 

the 

%                criterion) are retained, and the rest are 

discarded. 

%                (default = 2) 

%                0 = use validation data (Xv, Yv) 

%                1 = use validation data (Xv, Yv) as well as 

training data 

%                2 = use Corrected Akaike's Information Criterion 

(AICC) 

%                3 = use Minimum Description Length (MDL) 

%                Note that both choices 0 and 1 correspond to the so 

called 

%                "regularity criterion". 

% delta        : How much lower the criterion value of the network's 

new 

%                layer must be comparing the the network's preceding 

layer 

%                (default = 0, which means that new layers will be 

added as 

%                long as the value gets better (smaller)) 

% Xv, Yv       : Validation data points (Xv(i,:), Yv(i)), i = 

1,...,nv 

%                (used when critNum is equal to either 0 or 1) 

% verbose      : Set to 0 for no verbose (default = 1) 

% 

% Output 

% model        : GMDH model - a struct with the following elements: 

%    numLayers     : Number of layers in the network 

%    d             : Number of input variables in the training data 

set 

%    maxNumInputs  : Maximal number of inputs for neurons 

%    inputsMore    : See argument "inputsMore" 

%    maxNumNeurons : Maximal number of neurons in a layer 

%    p             : See argument "p" 

%    critNum       : See argument "critNum" 

%    layer         : Full information about each layer (number of 

neurons, 

%                    indexes of inputs for neurons, matrix of 

exponents for 

%                    polynomial, polynomial coefficients) 

%                    Note that the indexes of inputs are in range 

[1..d] if 

%                    an input is one of the original input 

variables, and 

%                    in range [d+1..d+maxNumNeurons] if an input is 

taken 

%                    from a neuron in the preceding layer. 

% time         : Execution time (in seconds) 

% 

% Please give a reference to the software web page in any 

publication 

% describing research performed using the software e.g., like this: 

% Jekabsons G. GMDH-type Polynomial Neural Networks for Matlab, 

2010, 

% available at http://www.cs.rtu.lv/jekabsons/ 

  

% This source code is tested with Matlab version 7.1 (R14SP3). 
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% 

====================================================================

===== 

% GMDH-type polynomial neural network 

% Version: 1.5 

% Date: June 2, 2011 

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv) 

% URL: http://www.cs.rtu.lv/jekabsons/ 

% 

% Copyright (C) 2009-2011  Gints Jekabsons 

% 

% This program is free software: you can redistribute it and/or 

modify 

% it under the terms of the GNU General Public License as published 

by 

% the Free Software Foundation, either version 2 of the License, or 

% (at your option) any later version. 

% 

% This program is distributed in the hope that it will be useful, 

% but WITHOUT ANY WARRANTY; without even the implied warranty of 

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

% GNU General Public License for more details. 

% 

% You should have received a copy of the GNU General Public License 

% along with this program. If not, see 

<http://www.gnu.org/licenses/>. 

% 

====================================================================

===== 

  

if nargin < 2 

    error('Too few input arguments.'); 

end 

[n, d] = size(Xtr); 

[ny, dy] = size(Ytr); 

if (n < 2) || (d < 2) || (ny ~= n) || (dy ~= 1) 

    error('Wrong training data sizes.'); 

end 

if nargin < 3 

    maxNumInputs = 2; 

elseif (maxNumInputs ~= 2) && (maxNumInputs ~= 3) 

    error('Number of inputs for neurons should be 2 or 3.'); 

end 

if (d < maxNumInputs) 

    error('Numbet of input variables in the data is lower than the 

number of inputs for individual neurons.'); 

end 

if nargin < 4 

    inputsMore = 1; 

end 

if (nargin < 5) || (maxNumNeurons <= 0) 

    maxNumNeurons = d; 

end 

if maxNumNeurons > d * 2 

    error('Too many neurons in a layer. Maximum is two times the 

number of input variables.'); 

end 

if maxNumNeurons < 1 

    error('Too few neurons in a layer. Minimum is 1.'); 

end 

if (nargin < 6) || (decNumNeurons < 0) 
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    decNumNeurons = 0; 

end 

if nargin < 7 

    p = 2; 

elseif (p ~= 2) && (p ~= 3) 

    error('Degree of individual neurons should be 2 or 3.'); 

end 

if nargin < 8 

    critNum = 2; 

end 

if any(critNum == [0,1,2,3]) == 0 

    error('Only four values for critNum are available (0,1 - use 

validation data; 2 - AICC; 3 - MDL).'); 

end 

if nargin < 9 

    delta = 0; 

end 

if (nargin < 11) && (critNum <= 1) 

    error('Evaluating the models in validation data requires 

validation data set.'); 

end 

if (nargin >= 11) && (critNum <= 1) 

    [nv, dv] = size(Xv); 

    [nvy, dvy] = size(Yv); 

    if (nv < 1) || (dv ~= d) || (nvy ~= nv) || (dvy ~= 1) 

        error('Wrong validation data sizes.'); 

    end 

end 

if nargin < 12 

    verbose = 1; 

end 

ws = warning('off'); 

if verbose ~= 0 

    fprintf('Building GMDH-type neural network...\n'); 

end 

tic; 

if p == 2 

    numTermsReal = 6 + 4 * (maxNumInputs == 3); %6 or 10 terms 

else 

    numTermsReal = 10 + 10 * (maxNumInputs == 3); %10 or 20 terms 

end 

  

Xtr(:, d+1:d+maxNumNeurons) = zeros(n, maxNumNeurons); 

if critNum <= 1 

    Xv(:, d+1:d+maxNumNeurons) = zeros(nv, maxNumNeurons); 

end 

%start the main loop and create layers 

model.numLayers = 0; 

while 1 

    if verbose ~= 0 

        fprintf('Building layer #%d...\n', model.numLayers + 1); 

    end 

    layer(model.numLayers + 1).numNeurons = 0; 

    modelsTried = 0; 

    layer(model.numLayers + 1).coefs = zeros(maxNumNeurons, 

numTermsReal); 

    for numInputsTry = maxNumInputs:-1:2 

  

        %create matrix of exponents for polynomials 

        if p == 2 

            numTerms = 6 + 4 * (numInputsTry == 3); %6 or 10 terms 
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            if numInputsTry == 2 

                r = [0,0;0,1;1,0;1,1;0,2;2,0]; 

            else 

                r = 

[0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;1,1,0;0,0,2;0,2,0;2,0,0]; 

            end 

        else 

            numTerms = 10 + 10 * (numInputsTry == 3); %10 or 20 

terms 

            if numInputsTry == 2 

                r = [0,0;0,1;1,0;1,1;0,2;2,0;1,2;2,1;0,3;3,0]; 

            else 

                r = 

[0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;1,1,0;0,0,2;0,2,0;2,0,0; ... 

                     

1,1,1;0,1,2;0,2,1;1,0,2;1,2,0;2,0,1;2,1,0;0,0,3;0,3,0;3,0,0]; 

            end 

        end 

        %create matrix of all combinations of inputs for neurons 

        if model.numLayers == 0 

            combs = nchoosek(1:1:d, numInputsTry); 

        else 

            if inputsMore == 1 

                combs = nchoosek([1:1:d 

d+1:1:d+layer(model.numLayers).numNeurons], numInputsTry); 

            else 

                combs = 

nchoosek(d+1:1:d+layer(model.numLayers).numNeurons, numInputsTry); 

            end 

        end 

        %delete all combinations in which none of the inputs are 

from the preceding layer 

        if model.numLayers > 0 

            i = 1;             

            while i <= size(combs,1) 

                if all(combs(i,:) <= d) 

                    combs(i,:) = []; 

                else 

                    i = i + 1; 

                end 

            end 

        end 

        makeEmpty = 1; 

         

        %try all the combinations of inputs for neurons 

        for i = 1 : size(combs,1) 

  

            %create matrix for all polynomial terms 

            Vals = ones(n, numTerms); 

            if critNum <= 1 

                Valsv = ones(nv, numTerms); 

            end 

            for idx = 2 : numTerms 

                bf = r(idx, :); 

                t = bf > 0; 

                tmp = Xtr(:, combs(i,t)) .^ bf(ones(n, 1), t); 

                if critNum <= 1 

                    tmpv = Xv(:, combs(i,t)) .^ bf(ones(nv, 1), t); 

                end 

                if size(tmp, 2) == 1 

                    Vals(:, idx) = tmp; 
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                    if critNum <= 1 

                        Valsv(:, idx) = tmpv; 

                    end 

                else 

                    Vals(:, idx) = prod(tmp, 2); 

                    if critNum <= 1 

                        Valsv(:, idx) = prod(tmpv, 2); 

                    end 

                end 

            end 

            %calculate coefficients and evaluate the network 

            coefs = (Vals' * Vals) \ (Vals' * Ytr); 

            modelsTried = modelsTried + 1; 

            if ~isnan(coefs(1)) 

                predY = Vals * coefs; 

                if critNum <= 1 

                    predYv = Valsv * coefs; 

                    if critNum == 0 

                        crit = sqrt(mean((predYv - Yv).^2)); 

                    else 

                        crit = sqrt(mean([(predYv - Yv).^2; (predY - 

Ytr).^2])); 

                    end 

                else 

                    comp = complexity(layer, model.numLayers, 

maxNumNeurons, d, combs(i,:)) + size(coefs, 2); 

                    if critNum == 2 %AICC 

                        if (n-comp-1 > 0) 

                            crit = n*log(mean((predY - Ytr).^2)) + 

2*comp + 2*comp*(comp+1)/(n-comp-1); 

                        else 

                            coefs = NaN; 

                        end 

                    else %MDL 

                        crit = n*log(mean((predY - Ytr).^2)) + 

comp*log(n); 

                    end 

                end 

            end 

            if ~isnan(coefs(1)) 

                %add the neuron to the layer if 

                %1) the layer is not full; 

                %2) the new neuron is better than an existing worst 

one. 

                maxN = maxNumNeurons - model.numLayers * 

decNumNeurons; 

                if maxN < 1, maxN = 1; end; 

                if layer(model.numLayers + 1).numNeurons < maxN 

                    %when the layer is not yet full 

                    if (maxNumInputs == 3) && (numInputsTry == 2) 

                        layer(model.numLayers + 

1).coefs(layer(model.numLayers + 1).numNeurons+1, :) = [coefs' 

zeros(1,4+6*(p == 3))]; 

                        layer(model.numLayers + 

1).inputs(layer(model.numLayers + 1).numNeurons+1, :) = [combs(i, :) 

0]; 

                    else 

                        layer(model.numLayers + 

1).coefs(layer(model.numLayers + 1).numNeurons+1, :) = coefs; 

                        layer(model.numLayers + 

1).inputs(layer(model.numLayers + 1).numNeurons+1, :) = combs(i, :); 
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                    end 

                    layer(model.numLayers + 

1).comp(layer(model.numLayers + 1).numNeurons+1) = length(coefs); 

                    layer(model.numLayers + 

1).crit(layer(model.numLayers + 1).numNeurons+1) = crit; 

                    layer(model.numLayers + 

1).terms(layer(model.numLayers + 1).numNeurons+1).r = r; 

                    if makeEmpty == 1 

                        Xtr2 = []; 

                        if critNum <= 1 

                            Xv2 = []; 

                        end 

                        makeEmpty = 0; 

                    end 

                    Xtr2(:, layer(model.numLayers + 1).numNeurons+1) 

= predY; 

                    if critNum <= 1 

                        Xv2(:, layer(model.numLayers + 

1).numNeurons+1) = predYv; 

                    end 

                    if (layer(model.numLayers + 1).numNeurons == 0) 

|| ... 

                       (layer(model.numLayers + 1).crit(worstOne) < 

crit) 

                        worstOne = layer(model.numLayers + 

1).numNeurons + 1; 

                    end 

                    layer(model.numLayers + 1).numNeurons = 

layer(model.numLayers + 1).numNeurons + 1; 

                else 

                    %when the layer is already full 

                    if (layer(model.numLayers + 1).crit(worstOne) > 

crit) 

                        if (maxNumInputs == 3) && (numInputsTry == 

2) 

                            layer(model.numLayers + 

1).coefs(worstOne, :) = [coefs' zeros(1,4+6*(p == 3))]; 

                            layer(model.numLayers + 

1).inputs(worstOne, :) = [combs(i, :) 0]; 

                        else 

                            layer(model.numLayers + 

1).coefs(worstOne, :) = coefs; 

                            layer(model.numLayers + 

1).inputs(worstOne, :) = combs(i, :); 

                        end 

                        layer(model.numLayers + 1).comp(worstOne) = 

length(coefs); 

                        layer(model.numLayers + 1).crit(worstOne) = 

crit; 

                        layer(model.numLayers + 1).terms(worstOne).r 

= r; 

                        Xtr2(:, worstOne) = predY; 

                        if critNum <= 1 

                            Xv2(:, worstOne) = predYv; 

                        end 

                        [dummy, worstOne] = 

max(layer(model.numLayers + 1).crit); 

                    end 

                end 

            end 

        end 
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    if verbose ~= 0 

        fprintf('Neurons tried in this layer: %d\n', modelsTried); 

        fprintf('Neurons included in this layer: %d\n', 

layer(model.numLayers + 1).numNeurons); 

        if critNum <= 1 

            fprintf('RMSE in the validation data of the best neuron: 

%f\n', min(layer(model.numLayers + 1).crit)); 

        else 

            fprintf('Criterion value of the best neuron: %f\n', 

min(layer(model.numLayers + 1).crit)); 

        end 

    end 

  

    %stop the process if there are too few neurons in the new layer 

    if ((inputsMore == 0) && (layer(model.numLayers + 1).numNeurons 

< 2)) || ... 

       ((inputsMore == 1) && (layer(model.numLayers + 1).numNeurons 

< 1)) 

        if (layer(model.numLayers + 1).numNeurons > 0) 

            model.numLayers = model.numLayers + 1; 

        end 

        break 

    end 

    %if the network got "better", continue the process 

    if (layer(model.numLayers + 1).numNeurons > 0) && ... 

       ((model.numLayers == 0) || ... 

        (min(layer(model.numLayers).crit) - 

min(layer(model.numLayers + 1).crit) > delta) ) 

%(min(layer(model.numLayers + 1).crit) < 

min(layer(model.numLayers).crit)) ) 

        model.numLayers = model.numLayers + 1; 

    else 

        if model.numLayers == 0 

            warning(ws); 

            error('Failed.'); 

        end 

        break 

    end 

  

    %copy the output values of this layer's neurons to the training 

    %data matrix 

    Xtr(:, d+1:d+layer(model.numLayers).numNeurons) = Xtr2; 

    if critNum <= 1 

        Xv(:, d+1:d+layer(model.numLayers).numNeurons) = Xv2; 

    end 

end 

  

model.d = d; 

model.maxNumInputs = maxNumInputs; 

model.inputsMore = inputsMore; 

model.maxNumNeurons = maxNumNeurons; 

model.p = p; 

model.critNum = critNum; 

%only the neurons which are actually used (directly or indirectly) 

to 

%compute the output value may stay in the network 

[dummy best] = min(layer(model.numLayers).crit); 

model.layer(model.numLayers).coefs(1,:) = 

layer(model.numLayers).coefs(best,:); 

model.layer(model.numLayers).inputs(1,:) = 

layer(model.numLayers).inputs(best,:); 
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model.layer(model.numLayers).terms(1).r = 

layer(model.numLayers).terms(best).r; 

model.layer(model.numLayers).numNeurons = 1; 

if model.numLayers > 1 

    for i = model.numLayers-1:-1:1 %loop through all the layers 

        model.layer(i).numNeurons = 0; 

        for k = 1 : layer(i).numNeurons %loop through all the 

neurons in this layer 

            newNum = 0; 

            for j = 1 : model.layer(i+1).numNeurons %loop through 

all the neurons which will stay in the next layer 

                for jj = 1 : maxNumInputs %loop through all the 

inputs 

                    if k == model.layer(i+1).inputs(j,jj) - d 

                        if newNum == 0 

                            model.layer(i).numNeurons = 

model.layer(i).numNeurons + 1;                           

model.layer(i).coefs(model.layer(i).numNeurons,:) = 

layer(i).coefs(k,:);                           

model.layer(i).inputs(model.layer(i).numNeurons,:) = 

layer(i).inputs(k,:);                            

model.layer(i).terms(model.layer(i).numNeurons).r = 

layer(i).terms(k).r; 

                            newNum = model.layer(i).numNeurons + d; 

                            model.layer(i+1).inputs(j,jj) = newNum; 

                        else 

                            model.layer(i+1).inputs(j,jj) = newNum; 

                        end 

                        break 

                    end 

                end 

            end 

        end 

    end 

end 

  

time = toc; 

warning(ws); 

if verbose ~= 0 

    fprintf('Done.\n'); 

    used = zeros(d,1); 

    for i = 1 : model.numLayers 

        for j = 1 : d 

            if any(any(model.layer(i).inputs == j)) 

                used(j) = 1; 

            end 

        end 

    end 

    fprintf('Number of layers: %d\n', model.numLayers); 

    fprintf('Number of used input variables: %d\n', sum(used)); 

    fprintf('Execution time: %0.2f seconds\n', time); 

end 

return 

%===================  Auxiliary functions  ==================== 

function [comp] = complexity(layer, numLayers, maxNumNeurons, d, 

connections) 

%calculates the complexity of the network given output neuron's 

connections 

%(it is assumed that the complexity of a network is equal to the 

number of 
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%all polynomial terms in all it's neurons which are actually 

connected 

%(directly or indirectly) to network's output) 

comp = 0; 

if numLayers == 0 

    return 

end 

c = zeros(numLayers, maxNumNeurons); 

for i = 1 : numLayers 

    c(i, :) = layer(i).comp(:)'; 

end 

%{ 

%unvectorized version: 

for j = 1 : length(connections) 

    if connections(j) > d 

        comp = comp + c(numLayers, connections(j) - d); 

        c(numLayers, connections(j) - d) = -1; 

    end 

end 

%} 

ind = connections > d; 

if any(ind) 

    comp = comp + sum(c(numLayers, connections(ind) - d)); 

    c(numLayers, connections(ind) - d) = -1; 

end 

%{ 

%unvectorized version: 

for i = numLayers-1:-1:1 

    for j = 1 : layer(i).numNeurons 

        for k = 1 : layer(i+1).numNeurons 

            if (c(i+1, k) == -1) && (c(i, j) > -1) && ... 

               any(layer(i+1).inputs(k,:) == j + d) 

                comp = comp + c(i, j); 

                c(i, j) = -1; 

            end 

        end 

    end 

end 

%} 

for i = numLayers-1:-1:1 

        for k = 1 : layer(i+1).numNeurons 

            if c(i+1, k) == -1 

                inp = layer(i+1).inputs(k,:); 

                used = inp > d; 

                if any(used) 

                    ind = inp(used) - d; 

                    ind = ind(c(i, ind) > -1); 

                    if ~isempty(ind) 

                        comp = comp + sum(c(i, ind)); 

                        c(i, ind) = -1; 

                    end 

                end 

            end 

        end 

end 

return 

 

function gmdhpredict 

function Yq = gmdhpredict(model, Xq) 

% GMDHPREDICT 
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% Predicts output values for the given query points Xq using a GMDH 

model 

% 

% Call 

%   [Yq] = gmdhpredict(model, Xq) 

% 

% Input 

% model     : GMDH model 

% Xq        : Inputs of query data points (Xq(i,:)), i = 1,...,nq 

% 

% Output 

% Yq        : Predicted outputs of query data points (Yq(i)), i = 

1,...,nq 

  

% This source code is tested with Matlab version 7.1 (R14SP3). 

  

% 

====================================================================

===== 

% GMDH-type polynomial neural network 

% Version: 1.5 

% Date: June 2, 2011 

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv) 

% URL: http://www.cs.rtu.lv/jekabsons/ 

% 

% Copyright (C) 2009-2011  Gints Jekabsons 

% 

% This program is free software: you can redistribute it and/or 

modify 

% it under the terms of the GNU General Public License as published 

by 

% the Free Software Foundation, either version 2 of the License, or 

% (at your option) any later version. 

% 

% This program is distributed in the hope that it will be useful, 

% but WITHOUT ANY WARRANTY; without even the implied warranty of 

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

% GNU General Public License for more details. 

% 

% You should have received a copy of the GNU General Public License 

% along with this program. If not, see 

<http://www.gnu.org/licenses/>. 

% 

====================================================================

===== 

  

if nargin < 2 

    error('Too few input arguments.'); 

end 

if model.d ~= size(Xq, 2) 

    error('The matrix should have the same number of columns as the 

matrix with which the network was built.'); 

end 

  

[n, d] = size(Xq); 

Yq = zeros(n, 1); 

  

for q = 1 : n 

    for i = 1 : model.numLayers 

        if i ~= model.numLayers 

            Xq_tmp = zeros(1, model.layer(i).numNeurons); 
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        end 

        for j = 1 : model.layer(i).numNeurons 

   

            %create matrix for all polynomial terms 

            numTerms =  size(model.layer(i).terms(j).r,1); 

            Vals = ones(numTerms,1); 

            for idx = 2 : numTerms 

                bf = model.layer(i).terms(j).r(idx, :); 

                t = bf > 0; 

                tmp = Xq(q, model.layer(i).inputs(j,t)) .^ bf(1, t); 

                if size(tmp, 2) == 1 

                    Vals(idx,1) = tmp; 

                else 

                    Vals(idx,1) = prod(tmp, 2); 

                end 

            end 

  

            %predict output value 

            predY = model.layer(i).coefs(j,1:numTerms) * Vals; 

            if i ~= model.numLayers 

                %Xq(q, d+j) = predY; 

                Xq_tmp(j) = predY; 

            else 

                Yq(q) = predY; 

            end 

  

        end 

        if i ~= model.numLayers 

            Xq(q, d+1:d+model.layer(i).numNeurons) = Xq_tmp; 

        end 

    end 

end 

  

return 

 

function gmdhtest 

function [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst) 

% GMDHTEST 

% Tests a GMDH-type network model on a test data set (Xtst, Ytst) 

% 

% Call 

%   [MSE, RMSE, RRMSE, R2] = gmdhtest(model, Xtst, Ytst) 

% 

% Input 

% model     : GMDH model 

% Xtst, Ytst: Test data points (Xtst(i,:), Ytst(i)), i = 1,...,ntst 

% 

% Output 

% MSE       : Mean Squared Error 

% RMSE      : Root Mean Squared Error 

% RRMSE     : Relative Root Mean Squared Error 

% R2        : Coefficient of Determination 

  

% Copyright (C) 2009-2011  Gints Jekabsons 

  

if nargin < 3 

    error('Too few input arguments.'); 

end 

if (size(Xtst, 1) ~= size(Ytst, 1)) 
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    error('The number of rows in the matrix and the vector should be 

equal.'); 

end 

if model.d ~= size(Xtst, 2) 

    error('The matrix should have the same number of columns as the 

matrix with which the model was built.'); 

end 

MSE = mean((gmdhpredict(model, Xtst) - Ytst) .^ 2); 

RMSE = sqrt(MSE); 

if size(Ytst, 1) > 1 

    RRMSE = RMSE / std(Ytst, 1); 

    R2 = 1 - MSE / var(Ytst, 1); 

else 

    RRMSE = Inf; 

    R2 = Inf; 

end 

return 

 

function gmdheq 

function gmdheq(model, precision) 

% gmdheq 

% Outputs the equations of GMDH model. 

% 

% Call 

%   gmdheq(model, precision) 

%   gmdheq(model) 

% 

% Input 

%   model         : GMDH-type model 

%   precision     : Number of digits in the model coefficients 

%                   (default = 15) 

  

% This source code is tested with Matlab version 7.1 (R14SP3). 

  

% 

====================================================================

===== 

% GMDH-type polynomial neural network 

% Version: 1.5 

% Date: June 2, 2011 

% Author: Gints Jekabsons (gints.jekabsons@rtu.lv) 

% URL: http://www.cs.rtu.lv/jekabsons/ 

% 

% Copyright (C) 2009-2011  Gints Jekabsons 

% 

% This program is free software: you can redistribute it and/or 

modify 

% it under the terms of the GNU General Public License as published 

by 

% the Free Software Foundation, either version 2 of the License, or 

% (at your option) any later version. 

% 

% This program is distributed in the hope that it will be useful, 

% but WITHOUT ANY WARRANTY; without even the implied warranty of 

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

% GNU General Public License for more details. 

% 

% You should have received a copy of the GNU General Public License 

% along with this program. If not, see 

<http://www.gnu.org/licenses/>. 
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% 

====================================================================

===== 

  

if nargin < 1 

    error('Too few input arguments.'); 

end 

if (nargin < 2) || (isempty(precision)) 

    precision = 15; 

end 

  

if model.numLayers > 0 

    p = ['%.' num2str(precision) 'g']; 

    fprintf('Number of layers: %d\n', model.numLayers); 

    for i = 1 : model.numLayers %loop through all the layers 

        fprintf('Layer #%d\n', i); 

        fprintf('Number of neurons: %d\n', 

model.layer(i).numNeurons); 

        for j = 1 : model.layer(i).numNeurons %loop through all the 

neurons in the ith layer 

            [terms inputs] = size(model.layer(i).terms(j).r); 

%number of terms and inputs 

            if (i == model.numLayers) 

                str = ['y = ' num2str(model.layer(i).coefs(j,1),p)]; 

            else 

                str = ['x' num2str(j + i*model.d) ' = ' 

num2str(model.layer(i).coefs(j,1),p)]; 

            end 

            for k = 2 : terms %loop through all the terms 

                if model.layer(i).coefs(j,k) >= 0 

                    str = [str ' +']; 

                else 

                    str = [str ' ']; 

                end 

                str = [str num2str(model.layer(i).coefs(j,k),p)]; 

                for kk = 1 : inputs %loop through all the inputs 

                    if (model.layer(i).terms(j).r(k,kk) > 0) 

                        for kkk = 1 : 

model.layer(i).terms(j).r(k,kk) 

                            if (model.layer(i).inputs(j,kk) <= 

model.d) 

                                str = [str '*x' 

num2str(model.layer(i).inputs(j,kk))]; 

                            else 

                                str = [str '*x' 

num2str(model.layer(i).inputs(j,kk) + (i-2)*model.d)]; 

                            end 

                        end 

                    end 

                end 

            end 

            disp(str); 

        end 

    end 

else 

    disp('The network has zero layers.'); 

end 

  

return 

 

 


