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ABSTRACT

The purpose of this project is to implement Model Predictive Control strategy to a
Crude Distillation Unit model and to compare it to PI controllers in terms of controller
performance. The motivation of this project comes to the fact that there is a need to
reduce CO, emission and at the same time to reduce energy consumption within the
unit. The author has developed the CDU model using HYSYS and also in state-space
representation using MATLAB, the latter was being used to design MPC controllers.
From this project, it can be seen that the success of MPC implementation depends on
the accuracy of the plant mode! to represent actual process. The MPC controller proved
to be more effective in regulating the percent liquid level of the condenser but not so

effective for the other two variables being studied.
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CHAPTER 1
INTRODUCTION

11 BACKGROUND OF STUDY

Carbon dioxide (CO,) plays a very important role in global warming, as it is one of the
greenhouse gases. Most of the current CO; emission comes from fossil fuel combustions.
High CO; emission is also often linked to high energy consumption. This is especially

true in distillation systems (Gadalla and co-workers, 2006).

As a result, Kyoto Protocol, a protocol to the United Nations Framework Convention on
Climate Change (UNFCCC or FCCC), has been adopted on 1997 to stabilize the
greenhouse gas emission to prevent global warming. As on 2009, 187 countries,

including Malaysia has signed and ratified the protocol.

The primary objective of the protocol is to stabilize and control greenhouse gas
concentration in the atmosphere to a “safe” level. By “safe”, it means that the leve] of
greenhouse gas emissions will not have adverse effects on the environment and world

climate.

Therefore, over the years, process control in industry has been developed to meet the
following objectives:
1. To maintain a process at the desired operating conditions, safely and efficiently

2. To satisfy product quality and environmental requirements

New technologies in process control have emerged with better responses to changes in
process variables and more computational speed, aside from the advances in computer

technology that enable more rigorous control calculation to be made.



One of such technologies is Model Predictive Control (MPC). Although MPC has been
around in the industry since 1970s, new technologies are still under development to meet
current demands in industry. MPC has significant applications in chemicals and other
industries, aside from the traditional PID (Proportional, Integral & Derivative)

controllers and Programmable Logic Controllers (PLCs).

1.2 PROBLEM STATEMENT

Current process control approach typically uses Pl controllers, with some process
utilized PID controllers. The type of controller used usually depends on the process
requirement and also the nature of the process variables, with temperature being a slow-

response variable and flow rate being the fast-response variable.

However, these controllers are not very energy-efficient, in which some cases; the
controller requires a large control move to the input to enable the output to reach its
desired set point. This large move will cause energy usage, and consequently COs
emission to be increased. Therefore, alternative control strategy is required that can

mitigate this situation.

1.3  OBJECTIVES

The objectives of this Final Year Project are as follow:

1. To develop a steady-state and dynamic model for Crude Distillation Unit based
on actual plant data.

2. To implement Model Predictive Control strategy on the CDU plant model by
designing the appropriate MPC controllers.

3. To compare the action of the MPC controller with PI controllers in terms of its

performances.



1.4 SCOPE OF STUDY

For this project, a Crude Distillation Unit (CDU) will be controlled by using MPC
strategy. In order to apply MPC to CDU, a plant model must first be established through

simulation program from actual plant data.

From the model, MPC calculations will then be executed on the plant model and the
response from the model is then obtained and analyzed for response speed and accuracy.

The response is then will be compared with that of PI controller for its performance.

1.5 SUMMARY OF REPORT

The report starts with an introduction to the project (Chapter 1), with an outline of the
background, problem statement and objectives of study. Then, a section of the literature
review and theory behind the study, i.e. Model Predictive Control (MPC) is presented in
Chapter 2. In Chapter 2, an introduction to distillation systems, specifically that of CDU,
will be presented. In addition, an overview of MPC concept, as well as its
characteristics, advantages and limitations is also presented. Then, the methodology of
research and project activities is outlined in the Chapter 3. After that, a detailed
description of CDU is presented in Chapter 4, together with its operating conditions. The
results of the project is presented and discussed in Chapter 5. Finally, a conclusion about

this project is made and stated in Chapter 6.



CHAPTER 2
LITERATURE REVIEW

In this chapter, a discussion on CO; emission and its relation to distillation systems is
presented first. Then, an overview of MPC technology is presented, along with its

concept, advantages and disadvantages and also further developments in MPC.

21  CO, EMISSION AND DISTILLATION SYSTEMS

A distillation system such as Crude Distillation Unit (CDU) typically utilizes a lot of
energy and consequently has significant contribution to the greenhouse gases (especially
CO,) emission. This is due to the usage of heat exchange network and auxiliary units
within the CDU itself. Efforts have been made to reduce energy consumption and

consequently, to reduce CO;, emission.

There are many sources of high energy usage within the unit, some which are as below:
1. High feed preheating temperature in the column
2. Increased reflux ratio in the distillation column

" 3. Increased flow rate of the stripping steam at the column

By decreasing the three variables within the column, the energy consumption can be
reduced by decreasing reboiler and condenser duties. This in turn will lead to lesser CO;

emission.

2.2  CRUDE DISTILLATION UNIT

Crude distillation unit is at the core of any petroleum refinery and it is considered to be
one of the most complicated operations in the field of separation processes (Dave and
colleagues, 2003). The products from CDU are usually a mixture of hydrocarbon

compounds that can be used as feedstock in petrochemical plants or as a source of fuel.



There are a large number of models that are available in literature (Inamdar and co-
workers, 2004). These models are usunally used for optimization problems, as well as for
product estimation problems. For refinery scheduling of crude oil unloading, storage and
processing from the CDU, a mode] predictive control strategy can be utilized. The next

section will give an overview of Model Predictive Control

2.3  OVERVIEW OF MODEL PREDICTIVE CONTROL

Model Predictive Control can be described as an optimization based strategy in which a
plant model is utilized together with current measurements of process vartables to
predict future values of the output or control actions. The plant model must be

reasonably accurate to ensure the success of MPC.

The overall objectives of an MPC controller, as summarized by Qin and Badgwell

(2003) are:

1. To prevent violations of input and output constraints.

2. To drive some output variables to their optimal set points, while maintaining
other outputs within specific ranges.

3. To prevent excessive movement of the input variables.

4. To control as many process variables as possible when a sensor or actuator is not

available.

In MPC application, the input variables are also called manipulated variables (MV)
while the output variables are also referred to as controlled variables (CV). Disturbance
variables (DV) that can be measured are sometimes called feedforward variables. These

terms are used interchangeably in various MPC applications and literature.
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Figure 2.1: Block diagram for model predictive control

Figure 2.1 shows a block diagram of a model predictive control system. A process
model is used to predict the current values of the MV, based on the measurements from
the process. The differences between the two outputs, the residuals, are then being sent
to Prediction block in feedback manner. The Prediction block is used in two types of
MPC calculations: set-point calculations and control calculations. Both of these

calculations are done at each sampling instant.

The set-point calculations are performed from an economic optimization based on a
steady-state model of the process (usually a linear model). The optimization objectives
are usually (but not limited) to maximize a profit function, to minimize a cost function
or to maximize production rate In MPC, the set-points are typically calculated each time
the control calculations are performed. Also, the optimum value of set-points can change

due to varying process conditions.



The objective of the MPC control calculations are to determine a sequence of control
moves or manipulated input changes so that the predicted response moves to the set
point in an optimal manner. The control calculations are based on current measurements
and predictions of future values of the outputs. The predictions can be made using a
dynamic model (typically a linear model), transfer functions or state-space models. For
non-linear processes, a non-linear dynamic model can be employed to predict future

outputs.

At the current sampling instant &, the MPC strategy calculates a set of M values of the
manipulated input u {fu(k + i — 1), i = 1, 2, ..., M}. After M control moves, the input is
held constant. The inputs are calculated so that a set of P predicted outputs [y(k+i), i =
1, 2, ..., P} reaches the set-point in an optimal manner. The number of predictions P 1s
referred to as the prediction horizon while the number of control moves M is called the

control horizon.
The following figure (Figure 2.2) illustrates the basic concept of model predictive

control, with NV denotes the prediction horizon and r = #+k k = 1, 2, ..., N denotes

sampling instant.
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Figure 2.2: Basic concept of model predictive control (Adapted from Seborg & co-
workers, 2004)
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CHARACTERISTICS OF MODEL PREDICTIVE CONTROL

Following below are several important characteristics of an MPC strategy:

1. Moving horizon approach

Although a sequence of M control moves is calculated at each sampling instant,
only the first move is actually implemented. Then, a new sequence is calculated
at the next sampling instant, after new measurements become available.
However, only the first input move is implemented. This procedure is repeated at

each sampling instant.

This procedure utilizes the most recent measurements of the output to be used for
next M sampling instant. If this procedure is not used, the multistep predictions
and control moves would be based on old information which can be affected by

unmeasured disturbances.

Incorporation of constraints

Constraints usually come from variations or restrictions in process conditions,
equipment and instrumentations, as well as economic requirements. These can be
described as either hard constraints (constraints that cannot be violated at any

time) or soft constraints (constraints that can be tolerated for small violations).

If there are any constraints to the system, these constraints can be included in
either of the two MPC calculations described before. Consequently, MPC is very
useful for controlling constrained MIMO (multiple-input, multiple-output)

systems, since these constraints are accounted explicitly in the calculations.



3. An explicit system model used to predict future plant dynamics

A system model is important and required in MPC strategy because the model
serves as a replicate of the actual process. The model can be utilized to predict
future outputs from current process measurements and also can capture dynamic

and static interactions between MVs, CVs and DVs.

2.5 ADVANTAGES & DISADVANTAGES OF MODEL PREDICTIVE

CONTROL

MPC has several important advantages that make it one of the common advanced

process control (APC) technologies employed in industry. The advantages are:

Process and economical constraints are considered in a systematic manner.
The control calculations can be coordinated in a systematic manner.
Accurate model predictions can provide early warning of potential problems.

Online computations can be performed quickly.

AN O

MPC controllers are easier to be tuned than other types of controllers

However, MPC also has its own disadvantages and limitations, among them are:

1. High computational cost for complex systems limits MPC applications to linear
processes with relatively slow dynamics (Rao & Rawlings, 2000)

2. Inaccurate process model can results in inaccurate predictions and control moves
for the process.

3. Several MPC models are limited to only stable, open-loop processes (Anderson

and colleagues, 2006).

Despite these limitations, MPC are still widely used in the industry, particularly in the
refineries (Jimsa-Jounela, 2007). Appendix A shows the current MPC products and

technologies that are used in the industry.



2.6 STEPS IN MODEL PREDICTIVE CONTROL CALCULATION

Outlined below is an overview of the MPC calculations. The seven steps are shown in
the order they are performed at each control execution time, which for simplicity, will be

assumed to be same as the measurement sampling instant.

Step I: Acquire new data (CV, MV and DV values)

New process data are acquired via the regulatory control system (typically Distributed

Control System (DCS)) that is interfaced to the process.

Step 2: Update model predictions (output feedback)

After new data has been acquired, new output predictions are calculated by using the

process model together with the data.

Step 3: Determine control structure

Before each control execution, the current control structure is determined by identifying
the currently available outputs (CVs), inputs (MVs) and disturbance variables (DVs) for
MPC calculations. The numbers of variables available can change from one time to
another for a variety of reasons, one of them being the unavailability of a sensor to

measure one particular output variable.

Thus, output variables are often classified as being critical or non-critical. If the sensor
is not available for a critical output, the MPC calculations can be stopped immediately or
after a specified number of control moves. For a similar case involving non-critical
output, the missing measurements could be replaced by model predictions or the output

could be removed from the control structure.

10



Step 4: Check for ill-conditioning

Ill-conditioning occurs when the available input have very similar effects on two or
more outputs. As a result, large input movements are required to control these output
independently. Therefore, it is important to check for ill-conditioning before executing

the MPC calculations.

If ill-conditioning is detected, three effective strategies are available:

1. Assign a priority to each output variable
2. Using singular value analysis

3. Adjusting move suppression matrix R

For the first approach, each output variable is assigned a priority. When ill-conditioning
is detected, low-priority outputs are sequentially removed from the control structure

until ill-conditioning is eliminated.

The second approach is based on singular value analysis. By omitting small singular
values, the process model can be adjusted so that it is no longer ill-conditioned. This
approach does not remove any of the output variables. However, the results depend on

how the inputs and outputs are scaled.

The final approach is basically adjusting move suppression matrix R, a design parameter
of MPC. R is a positive semi-definite matrix and is an unusually diagonal matrix with

positive diagonal elements.

Step 5: Calculate set points/targets (steady-state optimization)

After ill-conditioning has been removed, the optimum set points / targets are then been
calculated in the MPC calculations. This calculation optimizes a specified objective

function while satisfying inequality constraints.

11



Step 6: Perform control calculations (dynamic optimization)

From the set points calculated together with the predicted output before, the conirol
moves then can be calculated. The control moves are calculated in order to drive the

process to the desired set point without violating constraints.

Step 7: Send MVs to the process

Finally, the calculated control moves are implemented to regulatory control loops at the

DCS level, usually as set points.

2.7 TYPES OF MODEL PREDICTIVE CONTROL

The classification of MPC system depends on the process model used in the

calculations. Typically the MPC system can be described as either linear or non-linear.

A linear MPC system uses linear model x* = Ax + Bu and usually has quadratic-type

cost function
F=xT0x +u" Ru
Where x = predicted error vector
u = control moves vector
R = move suppresion matrix

Q = positive-definite weighting matrix

A linear MPC also has linear constraints (usually in the form of Hx + Gu < 0) and the

program is in the quadratic form.

12



On the other hand, a non-linear MPC uses non-linear model x° = f{x, u) and its cost
function can be non-quadratic in nature, F(x, u). The constraints and program for a non-

linear MPC are non-linear in nature.

28 FUTURE DEVELOPMENT IN MODEL PREDICTIVE CONTROL

TECHNOLOGY

MPC technologies are still evolving from the first-generation technologies developed in
the 1970s until now (fifth-generation). The following areas of MPC are possible

developments in the future:

1. Adaptive MPC

Currently, there are a few adaptive MPC algorithms, the most common being the
Generalized Predictive Control (GPC) algorithms developed by Clarke, Mohtadi and
Tuffs in 1987.

However, in the industry, only two of such algorithms have been employed:
Connoisseur from Invensys and STAR from DOT Product, despite the market
opportunity for self-tuning (adaptive)} MPC controllers. Thus, there are possibilities that

more adaptive MPC technologies may emerge in the market in the future.

2. Nonlinear MPC
In the future, new MPC technologies will allow nonlinear models to be developed by
combination of process knowledge with operating measurements. In this process, first

principle models and other modelling methods may be required for data based modelling

of nonlinear systems.

i3



3. Robust MPC

Robustness is an important feature of controllers as it can significantly reduces the time
required for tuning and testing of industrial MPC algorithms. Robustness can also

guarantee that the system is feasible and stable.

There is possibility that robust MPC technology to make their appearances in the
industry, since a combination of robust stability guarantees with uncertainty estimates
from identification software can greatly simplifies the design and tuning of MPC

controllers.

14



CHAPTER 3
METHODOLOGY

For the project methodology, the project started with plant model development which
consists of steady state and dynamic model by using HYSYS process flow diagram. The
project then followed by MPC design implementation which are involve with plant
testing, MPC design and implementation and lastly, the comparison with base layer

control (PT Control) are implemented.

3.1 PROJECT ACTIVITIES

For this project, the author has outlined several important steps in the project. Figure 3.1

shows the flow of the activities that the author has done throughout the project time.

15
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1. Literature Review

A literature review of the project and its underlying theory has been
conducted by the author. Among other aspects of the project that are being
reviewed are MPC applications in the industry and its advantages and

limitations.

2. Familiarization with application of HYSYS and MATLAB

Since this project will be modelling-based, it 1s important for the author to be
familiar with the functions and features of software that will be used
throughout this project. For the beginning, the author has attempted the
tutorials on HYSYS and MATLAB modules to understand its functions.

3. Simulation of CDU to obtain steady-state and dynamic model

After the author has familiarized with the software, the author proceeded
with simulation of the CDU plant. Due to time constraints, the author decided
(with approval from supervisor) to use the HYSYS simulation tutorial for the
CDU as the plant model. The objective of the simulation is to get the CDU
steady-state and dynamic model that will be applied to the MPC on
MATLAB.

From the simulation, the author has identified three possible controlled and
manipulated variables to be utilized in the next step. Table 3.1 shows the
simulated variables, while Table 3.2 shows the selected variables in the

CDhU.

17



Condenser Liquid Level rreﬂux 1;150 Rate

Reboiler Liquid Level Kero SS_Draw Flow Rate
Off Gas Flow Rate AtmosCond Flow Rate
AGO Stream Flow Rate AGO_SS_Draw Flow Rate
Diesel Stream Flow Rate | Diesel SS_Draw Flow Rate

Table 3.2: The Selected CVs and MVs for the Atmospheric Crude Column

1 y1 = Condenser Liquid Level (%) u; = Reflux Flow Rate (m3hr)

y2 = AGO Liquid Flow Rate @ Std.
Cond. (m3hr)

y3 = Diesel Liquid Flow Rate @ Std. | uy = Diesel_SS_Draw Flow Rate
Cond. (m?*hr) (m%hr)
*Note: Std. Cond. @ P= 1 atmand T = 25°C

u; = AGO_SS_Draw Flow Rate (m?3hr)

3

4. Performing Step-testing on the model

The author then performed step testing on the plant model to determine the
response of the CVs when a step change is imposed for each MV, From the
test, the author was able to determine the relationship between the MVs’ step
changes to response of the corresponding CVs. The step test was done for
one MV at a time for all MVs. After each step change, the MV will be

brought back to its initial value to ensure the stability of the system.
Table 3.3 shows the step input moves that were used for the step testing. The

changes are at the range of 5 to 10 percent change from the initial OP

(opening percentage) of the control valve.

18



Table 2.3: The Step Input Moves CVs and MV for the Atmospheric Crude Column

Controller PV MV SP Input# | % Change | OP (%)
1 5 5
2 -5 0
3 6 6
4 -6 0
5 7 7
.. Reflux
CondrLc | Tauid | oo 50% 6 7 0
Level Flow 7 8 8
8 -8 0
9 9 9
10 -9 0
11 10 10
12 -10 0
1 -5 95
2 5 100
3 -6 -94
Diesel 4 6 100
Lilc‘;jin Diesel_SS 5 -7 93
. Draw 127.5 6 7 100
Diesel FC | Flowrate | < A
@ Std Molar m®*hr 7 -8 92
Cond Flow 8 8 100
9 -9 91
10 9 100
11 -10 90
12 10 100
1 -5 95
2 5 100
3 -6 94
4 6 100
Iﬁ;}u% AGO _SS 5 -7 93
AGOFC | Flow rate I?Iraw 23'8 6 7 100
@ Std olar m*/hr 7 -8 92
Cond Flow 8 8 100
9 -9 91
10 9 100
11 -10 90
12 10 100

19




5. Derivation of Plant Transfer Functions Model using Systems
Identification (SI) tool in MATLAB

After that, the author used System Identification tool in MATLAB to
determine respective transfer functions for all the possible variable pairs. The

control problem will be in 3-by-3 system, with 3 inputs and 3 outputs.

The process model for each variable pair was estimated by FOTPD (first

order plus time delay) method.

Figure 3.2 shows the System Identification interface in MATLAB. For this
case, the tool is used to estimate the process model for the pair {yi, ur], where
yy is the condenser % liquid level and u, is the Reflux molar flow rate. Figure
3.3 shows the estimated process model for Gy;. The rest of the transfer

functions are presented in the results as per Chapter 5.
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Figure 3.2: System Identification Toolbox interface
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Figure 3.3: The resulting process model estimated using System Identification

For the process model, the transfer function is in the form of:

¥ ﬁs

Gij(s) =

.5+ 1

Where K, = Process Gain
Tp = process time constant

T4 = process time delay

6. Utilization of MATLAB and HYSYS to run MPC on plant model

The plant model from the previous activity was used on MATLAB (via
Simulink) to apply MPC strategy on the model. The MPC calculation steps as
per Figure 3.5 and Chapter 2 of this report was applied to this activity. The
resulting controller was then implemented on the plant model via HYSYS.
The results from this activity were interpreted and analysed to be compared
with that of PI controllers. Figure 3.4 shows the MPC implementation done
on CDU plant model] via HYSYS.
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Acquirz new data (CV, MV and
DV values)

Update model predictions (output
feadback)

Determine control strocfure

Check for dl-conditioning

Calculate set ponts/targets (steady-
state optimuzation)

Parform control calcunlations {(dvnanic
optimization}

Send MVs to the process

Figure 3.5: Flow chart for MPC calculation (modified from Qin & Badgwell 2003).
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3.2 GANTT CHART

Figure 3.6 shows the Gantt chart and key milestones for the Final Year Project.

Item

Month

Feb

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Selection of FYP Title

Literature Review

Progress Report | (FYP 1)

HYSYS & MATLAB Tutorial

Plant Model Simuiation &
Dynamic Model Development

Interim Report

Plant Model Testing (including
Step-Testing and System
Identification)

MPC Controller Design

Simulation and MPC
Implementation

Comparison with PI Controllers

Progress Report 1 (FYP 2)

Progress Report 2 (FYP 2)

Final Report (Dissertation)

Figure 3.6: Gantt Chart for FYPI and FYP 11

To ensure the project run smoothly and will be finish on time, a Gantt chart is needed.

For the FYP 1 progress, literature reviews are needed for the author to get the

understanding on project throughout the semester. For the steady state model simulation,

it was completed on June. After steady state model is simulated, the dynamic model is

the next step by using maximum two months which was finished by the end of July.

For FYP 2 planning progress, MPC design and implementation were done within two
months. After that, MPC design was done from August until September. After MPC

design is done, MPC implementation is the next step in this project and it was done

throughout October and November.
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3.3

SOFTWARE REQUIRED

The following software wiil be utilized in the project:

1.

AspenTech HYSYS

HYSYS is common simulation software developed by AspenTech. This software
will be used for simulation of CDU and thus, development of steady-state and

dynamic model for CDU.

MATLAB (with Simulink or MPC toolbar)

MATLAB is a mathematical software and also fourth-generation programming
language developed by TheMathWorks. For this project, MATLAB will be used

for MPC application on the CDU dynamic model using the Model Predictive
Control toolbar available in the MATLAB.
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CHAPTER 4
PROCESS DESCRIPTION

In this project, a Crude Distillation Unit is being simulated using HYSYS and from this
simulation, the author has expected to obtain a steady-state and dynamic model of the
CDU. The CDU in this project consists of a pre-fractionation train and an atmospheric
crude column, as shown in Figure 4.1. The pre-fractionation train heats the crude oil,

while the atmospheric crude column separates the crude oil into its respective products

or fractions.

3 CABAGL4 - CDI NODTLUNG -Agpon HYAYS 2006 - supenONS - [P Caoe fhans;
71 Fle Edit Simuistion Fiowsheet PFD Tock Window Help

ToW Cmalk —c. X o9 A ' Eraieet Co B
HHE HEY CAP® . D Defauk Colowr Scher

IMBEEEENER,

s SR S e |

o

Figure 4.1: Overall Process Flow Diagram of CDU |

Crude oil is processed in a CDU to produce several products, namely naphtha, kerosene,
diesel, atmospheric gas oil and atmospheric residues. Crude oil is first preheated and fed
to pre-flash drum, where vapours at the top of drum are separated from liquids, which
flows at the bottom of the drum. The liquid products are then heated in a furnace at a
temperature of 650 °F and the resulting hot crude is mixed with the vapour product
before being fed to the atmospheric tower at the CDU for fractionation.
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For the purpose of simulation, the pre-flash drum is modelled as a Separator, while the

furnace is modelled as a Heater. Also, the atmospheric column is modelled as a

Refluxed Absorber with a Condenser

L L lrl

] CAB 4614 - SO MODEBING {DYHARICE 51 Aspen

T) Fie Edit Simmion Flowshest Coumn PFD Togis Window Help:
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ey
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R s AP RR : . ] @ DynamioP/F Specs

Figure 4.2: PFD of Atmospheric Crude Tower

Figure 4.2 shows the PFD of atmospheric crude tower or column that is used to
fractionate the crude oil into its components. The column has 29 trays or stages, plus a
partial condenser. The feed, labelled “Atm Feed” enters the column on stage 28 as
shown in Figure 4.3, while the “Main Steam™ stream enters the bottom stage and an

additional energy stream representing the Trimn Duty enters on stage 28 as well,
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Figure 4.4: Top section of column (including partial condenser)
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From Figure 4.4, it is shown that the outputs from the three-phase condenser at the top

of column are Naphta as a product and waste water (represented as “Waste H20”).

The column contains three-stage side strippers; each stripper yields a straight run
product. The following ﬁgﬁres (Figures 4.5 through 4.7) shows the three-stage strippers.
The Kerosene Side Stripper contains a reboiler that produces Kerosene from the stripper,
while the Diesel Side Stripper and AGO Side Stripper does not contain such reboiler; the

respective products being produced via steam stripping of the side streams.
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- mFigure 4.5: Kerosene Side Stripper
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Figure 4.7: Atmospheric Gas Oil (AGO) Side Stripper and Bottom Section of Column
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Figure 4.8: Pump-Around streams at the column

Figure 4.8 shows the three pump-arounds at the column; the purpose being to recover
process heat from the product streams and also acts as reflux, to increase the

composition of end products at each stage by further separation of the refluxed streams.

For this project, the feed enters the pre-fractionation train at temperature of 232.2 °C and
pressure of 517.1 kPa, with a molar flow rate of 1730 kgmole/hr. After the train, the
heated crude oil then enters the atmospheric column at temperature of 338.5 °C and
pressure of 448.2 kPa, an increase in temperature but a decrease in pressure of crude oil.

The molar flow rate remains uhchanged after the train.
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CHAPTERS
RESULTS AND DISCUSSION

Firstly, the author has developed the dynamic model for CDU using HYSYS. The model
used is based on the simulation tutorial provided by HYSYS. As shown in Figure 5.1,
the face plates represent the control valves that are used to control the flow of the

streams.

Off Gas FC gl
Emcit Sp L :
: 107.00

Ao v [Timglf
Diesel£C: ko3
gwott Swt- L

34628 mdh

Qe 1CUEE . 1

F igure 5.1: Dynam:c Model ofthe CDU with the faé::e ﬁates.

5.1 STEP TESTING

Figure 5.2 shows the response of the PV of Condenser LC with step change of +10%
(10% increase) from initial OP, while Figure 5.3 shows the response of the PV with step
change of -10% (10% decrease) from initial OP.
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Figure 5.2: Condenser LC — PV response to +10% step input
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Figure 5.31: Condenser LC — PV response to -10% step input
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From Figure 5.2, it is shown that when a step input is introduced to the plant, the system
will initially increase slightly above its steady-state value and then the value of PV
decreases until it reaches its steady state value (19.05%). For the step decrease case
(Figure 5.3), the PV value will decrease to below its steady state value before incréase-s
again until it reaches its steady state value (19.09%).

Figure 5.4 shows the response of the PV of Diesel FC with step change of +10% (10%
increase) from initial OP, while Figure 5.5 shows the response of the PV with step
change of -10% (10% decrease) from initial OP.
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Figure 5.42: Diesel FC — PV response to +10% step input
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Figure 5.53: Diesel FC — PV response to -10% step input

From both figures, it can be seen that even when step changé in input is introduced to
the system, the value of the PV did not change significantly from its steady state value
(7.334 x 102! m*/h). This is probably due to the low flow rate of the product stream

(Diesel).
Figure 5.6 shows the response of the PV of AGO LC with step change of +10% (10%

increase) from initial OP, while Figure 5.7 shows the response of the PV with step
change of -10% (10% decrease) from initial OP.
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Figure 5.7: AGO FC — PV response to -10% step inpu
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From both figures, it can be seen that even when step change in input is introduced to
the system, the value of the PV did not change significantly from its steady statc value
(2.421 x 10 m*h). This is probably due to the low flow rate of the product stream
(AGO).

All step-test data for the three controllers were stored in a csv file, where the file is used

in system identification tool in MATLAB.

52 SYSTEM IDENTIFICATION

Table 5.1 shows the parameters for all the process models estimated by System
Identification tool. It is noted that Gy, is the transfer function for a particular MV (or u)
and CV (or y) pair.

Table 5.1: The Transfer Function Parameters for All Variable Pairs

Transfer Function O Kp | m T
G11 0.0014604 1.47625 2.4203
G12 -0.0027793 177.5026 30
G13 -5.5909 x 10 136.5467 30
G21 1.5269 x 107~ 0.010081 0.52765
G2 -5.2072 x107% 0.01013 0.4722
G23 -1.2531 x 107 0.010318 0.48041
G31 6.1182 x 107 0.01056 0.4722
G32 -3.2871 x 107 0.010043 0.4722
G33 208383 x 107 0.010503 0.4722

For the transfer function, a negative value of the process gain indicates that the process
is reverse-acting, i.e. an increase in the input will cause a decrease in the output. For a
positive value of the gain, the process is direct-acting, that is an increase in the input will

cause an increase in the output as well.
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53 MPCDESIGN

The author used the MPC toolbar in MATLAB to design the MPC controllers and
implement the controllers on the plant model. However, at this time, the author is only
able to come up with the state-space model of the plant. The author then used this model
to design the MPC controllers to be implemented to the CDU.

The state-space model is in the format of matrix notations, as follows:

x=Ax+ Bu
y = Cx+ D

Where A = the system matrix (n X n)
B = the input matrix (n x r)
C = the output matrix (m x n)
D = the transmission matrix {m X r}
X = process states matrix (number of states, n = 9)
u = input {(manipulated) variables matrix (number of inputs, r = 3)

y = output (controlled) variables matrix (number of outputs, m = 3)

The MATLAB m-file that is used to derive the state-space model of the CDU are as

shown:

et

; gli=gll';

gl

}
glz2=data{2,:); gl2=gi2';
gl3=data(3,:); gl3=gl3';
g2l=data{d,:): g2i=g2l';
g22=data(5, :}; g22=g227;
g23=data(6,:); g23=g23';
g3l=data{?,:); g3l=g31';
g32=data(g, :); g32=g32';
g33=data(9,:); g33=¢g33';

model=[gil gl2 gl3 g21 g22 g23 g31 g32 g33}';
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Kp(i,j}=model (k,1};
Tp(i,jr=model (k,2)¢
Td(i,j}=model (k,3);
k=k+1;

oo v [ g
s Giwm komodal

—— mulniplz 3IE0
g(l 1y= tf(Kp(l 1y, [Tp(l,1) 1], Iodelay',Td{l,1));
gil,2)=tE{Kp(1,2), [Tp{l,2) 1], I10delay',Td(1,2)):
gil,3)=tf(Kp(1,3),1Tpi{l,3) 11, 'ICdelay',Td{1,3));
g(2,l)=tf({Kp(2,1),[Tp(2,1) 1], 'I0delay',Td(2,1));
g(2,2)=tf{Kpl(2,2),1Tp{2,2) 1], IOdelay',Td(2,2));
g{2,3)=tf{Kp(2,3), [Tp{2,3) 1], Iodelay',Td{2,3));
g(3,1)=tf(Kp(3,1), [Tp{3,1) 1], I0delay',Td{3,1)):
g(3,2)=tf{Kp(3,2), [Tp{3,2) 1], I0delay',Td(3,2)):
g{3,3)=tf(Kp(3,3), [Tp{3,3) 1}, 'I0delay’,Td{(3,3));

MO fooniinoons ]
sysc tf=[g(1,1) o(1,2) g(1,3}); g(2,1} gi2,2) g{2,3)7 g{3,1) g{(3,2) g(3,3)}:; % in TF iomm
sysc=ss{sysc_tf}); % in 58 form

From' the file, the state space model for the CDU is as follows:
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54 COMPARISON OF CONTROLLER PERFORMANCES ON CDU MODEL

After MPC implementation was done on the plant model via HYSYS, the resuiting responses of
the output variables were compared with that of PI controllers. The measure used to compare
both controllers’ performance is the time taken for the controller to bring the output to its steady

state value,

Figure 5.8 shows the response of the 1* PV (liquid level percent inside the condenser) to change
in input variable using PI controller, while Figure 5.9 shows the same PV response using MPC

controlier.
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F igure 5.8: Condenser LC (Pl controliér)' - fz‘quid percent level ﬂuctuarwnsover time
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From Figure 5.8, the percent level was initially lower than 12% due to less liquid containment
inside the condenser at the beginning of the simulation. However, after around 360 minutes (6
hrs) of simulation, the percent liquid level increases as the control valve opening percentage
decreases to avoid more liquid being refluxed back to the column. The steady state value of the

liquid level, 19.09% has been reached after around 420 minutes from the start of simulation.

From Figure 5.9, the controller took less than 50 minutes to bring the percent liquid level around
its steady state value,. which is 13.33%. This shows that the MPC controller takes less time to
control the liquid percent level inside the condenser than that of PI controller (50 minutes vs.,

420 minutes).

Figure 5.10 shows the response of the 2™ PV (AGO liquid flow rate) to change in input variable
using PI controlier, while Figure 5.11 shows the same PV response using MPC controlier.
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Figure 5.11: AGO FC (MPC controller) — liquid flow rate fluctuations over time

From Figure 5.10, it can be seen that at the beginning of the simulation, the liquid flow rate of
AGO from the AGO side stripper is around 1.0 m*/h. However, due to problems associated with
the pump-arounds at the column, the flow rate decreases significantly to 1.872 x 102 m’/h after

around 280 minutes from the start of simulation.
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From Figure 5.11, the value of AGO flow rate is constant around 3.296x 10 m*/h. This is due
to material and energy balance problems inside the column that results in the significant least

amount of AGO being produced from the side stripper.

Figure 5.12 shows the response of the 3% PV (Diesel liquid flow rate) to change in input variable
using PI controller, while Figure 5.13 shows the same PV response using MPC controller.
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Figure 5.12: Diesel FC (PI controller) — liquid flow rate fluctuations over time
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Figure 5.13: Diesel FC (MPC coniroller) — liquid flow rate fluctuations over time
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From Figure 5.12, it can be seen that at the beginning of the simulation, the liquid flow rate of
Diesel from the Diesel side stripper is around 1.0 m’/h. However, due to problems associated
with the pump-arounds and flash calculations at the column, the flow rate decreases significantly

to 0 m°/h after around 270 minutes from the start of simulation.

From Figure 5.13, the value of Diesel flow rate is also constant around 0 m’/h. This is also due to
material and energy balance problems inside the column that results in the significantly no Diesel

being produced from the side stripper.

55 OVERALL DISCUSSIONS ON MPC IMPLEMENTATION

From the results of controller performances, it can be seen that the plant model may not be
reasonably accurate enough to predict future input moves for the process model. The controller
performances can be compared for condenser percent level but cannot be compared for the other
two variables due to insignificant steady state value and inability of the author to determine the

time taken for the output to reach steady state.

Therefore, it is important for a plant model to be accurate enough for successful implementation

of MPC, since an accurate plant model is one of the requirements and characteristics of MPC.
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CHAPTER 6 -
CONCLUSION & RECOMMENDATIONS

From the project, the author was able to develop a dynamic model of CDU using HYSYS and
then the state-space model of the plant was also presented. The author was able to see the
difference of performances of the MPC controllers with that of P1 controllers in terms of speed of
response of the CVs with step change in MVs. The author also realized the importance of having

an accurate plant model to ensure successful implementation of MPC.
For further improvements of this project, the author would like to suggest that this model been

modified to include actual plant data from a current operating CDU. Also, the input and output

variables must be chosen in such a way that their responses to input changes can be seen clearly.
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APPENDIX A
MODEL PREDICTIVE CONTROL TECHNOLOGY & PRODUCTS

Table A.1 summarizes the currently available MPC products that are employed in the industry.
Table A.1: MPC Industrial Technology

Company Product Name . Deseription MPC Type
Aspen Tech DMC-plus Dynamic Matrix Control package | Linear
DMC-plus model Identification package Linear
Aspen Target Nonlinear MPC package Nonlinear
Adersa IDCOM Identification and Command Linear
HIECON Hierarchical Constraint Control Linear
PFC Predictive Functional Control Linear &
Nonlinear
Honeywell Profimatics | RMPCT Robust Model Predictive Control | Linear
' Technology
PCT Predictive Control Technology
Sheli Globa! Solutions | SMOC-II Shell Multivariable Optimizing Linear
Control
Pavillion Technologies | PP Process Perfecter Nonlinear
Inc.
Invensys Connoisseur Control and Identification Linear
Package
Continental Controls, MVC Multivariable Control Nonlinear
Inc.
DOT Products NOVA-NLC NOVA nonlinear controller Nonlinear

Linear MPC products are usuaily employed by refining, petrochemicals and chemicals plants,

while nonlinear MPC products have wide applications in chemicals, polymers and air & gas
plants. (Qin & Badgwell, 2003)
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