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ABSTRACT

Intercalation of ionic liquid in clay, mostly imidazolium based ionic liquid has been

recently evaluated. However, from the results obtained they have shown low

expansion of the interlayer spacing after the process. The low expansion of the

interlayer spacing is most probably due to ineffective intercalation process as the

process is affected by many factors such as Cations Exchange Capacity (CEC) values

of the clay, concentration of ions, temperature and reaction time. Besides that, the

commercially available organic modifier has lower thermal stability and caused a

limited usage of commercial organo-clay as adsorbents. Thus, ionic liquids which

have high thermal stability can be a good alternative to replace the lower thermal

stability of conventional organic modifier. Therefore, this project which based on

modification of clay with ionic liquids is proposed to analyze other factors that can

affect the intercalation process. The parameters that were taken into account;

different types ofexchangeable cations (e.g. Na+and Ca2+) and types ofhalides in the

imidazolium based ionic liquid. The other parameters such as types of clay,

concentration of ions, temperature and time of reaction were kept constant. Then, the

efficiency of intercalationwas measuredas expansion of the basal spacing by X-Ray

Diffraction (XRD) analysis, while the thermal stability was evaluated via thermo

gravimetric analysis (TGA). Additional qualitative characterization such as Fourier

Transform Infrared (FTIR) analysis and observation of morphology structure using

Scanning Electron Microscope (SEM) were also conducted. From the results

obtained at the end of this project, the bentonite with Na+ exchangeable cations had

shown anexpansion in its interlayer spacing (from 13.70 Ato 13.90 A) when reacted

with l-Butyl-3-methylimidazolium chloride. Moreover, all the samples had shown a

high thermal stability characteristic through TGA Analysis. Thus, they have the

potential to encounter the limited usage of commercial organoclay as adsorbents

which has low thermal stability.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

There are many techniques used for the separation of carbon dioxide from fuel gas

streams. Absorption is the large-scale separation of carbon dioxide and commercially

used throughout the world. Other techniques exist are cryogenic separation,

membrane separation, and adsorption processes. Starts from 1991, Yang & Baksh

have proposed modified clays as new class of adsorbent for gas separation.

The previous research includes modification of clay with inorganic hydroxyl cations

which are polymeric hydroxyl metal cations formed by hydrolysis of metal salts.

Recently, clay modified with organic cations from imidazolium based ionic liquid

has been evaluated. Important advantage of using organic cations from ionic liquid is

the improvement of the thermal stability compared to the commercial organic

modifier.

However, from the available research, there stil! inadequate information about

retention of gases by this organo-clay. This is most probably due to the lower

expansion of the interlayer spacing after the intercalation process, compared to the

modification of clay with inorganic cations. Lower expansion might related to

ineffective intercalation process as the process is affected by many factors such as

Cation Exchange Capacity (CEC) values of the clay, concentration of ions,

temperature and time of reaction.

Therefore, this project which based on modification of clay with ionic liquids is

proposed to analyze other factors that can affect the intercalation process. For this

project, the imidazolium based ionic liquid is intercalated with bentonite

/montmorillonite clay. The parameters that were taken into account; the different

types of exchangeable cations (e.g. Na+ and Ca2+) and types of halides in the

1



imidazolium based ionic liquid. The other parameters such as types of clay,

concentration of ions, temperature and time of reaction were kept constant.

Then, the efficiency of intercalation was measured as expansion of the basal spacing

by X-Ray Diffraction (XRD) analysis, while the thermal stability was evaluated via

thermo gravimetric analysis (TGA). Additional qualitative characterization such as

Fourier Transform Infrared (FTIR) analysis and observation of morphology structure

using Scanning Electron Microscope (SEM) were also conducted.

It is experimentally proven that the interlayer spacing of the organo-

montmorillonites, structure of the intercalated organic molecule and type of

montmorillonite influenced the adsorption values. Therefore, a critical analysis of the

comparisons for different types of clay, ionic liquid and intercalation methods were

conducted in the research period before proceeding to synthesize and characterize the

sample.

1.1.1 Ionic Liquid

Ionic liquids consist of a salt where one or both the ions are large, and the cation has

a low degree of symmetry. These factors tend to reduce the lattice energy of the

crystalline form of the salt and hence lower the melting point (Earle and Seddon,

2000). Thus, ionic liquids are often fluid at room temperature.

Ionic liquids come into two main categories, namely simple salts (made of a single

anion and cation) and binary ionic liquids. They have been described as designer

solvents (Freemantle, 1998) as the properties can be adjusted to suit the requirements

of the particular process. Properties such as melting point, viscosity, density, and

hydrophobicity can be varied by simple changes to the structure of the ions.

No measurable vapor pressure is one of the important properties, hence can emit no

volatile organic compounds (VOCs). Ionic liquids have generated significant interest



in wide range of industrial application such as catalysis, gas separation and

substituting various organic solvent.

For this project, commercial available ionic liquid is selected from imidazolium

based ionic liquid. Two types of imidazolium based ionic liquid from the same

carbon chain but different halides had been used in the intercalation process. Details

regarding these types of ionic liquids are explained in Chapter 2.

1.1.2 Clay

The clay minerals such as kaolinite, smectite and sepiolite are among the most

important and useful industrial minerals. Montmorillonite is one of clay minerals

within the Smectite Group. It forms by weathering or hydrothermal alteration of

other aluminum-rich minerals, and is particularly common in altered volcanic ashes

called bentonite. Bentonite is a native, colloidal, hydrated, non-metallic mineral of

the Smectite Group that is primarily composed of the mineral montmorillonite.

The important physical properties which related to the application are the particle

size, shape, distribution of the clay minerals, surface characteristics (chemistry, area

and surface charge), color and brightness (Zhao et al, 2003).The montmorillonite

clays are recognized as good adsorbents due to their ability to exchange interlayer

cations for charged organic or metal cations in solution (Volzone and Ortiga, 2002).

A thorough explanation about different types of clay will be provided in Chapter 2.

1.1.3 Preparation of Imidazolium based Ionic Liquid-Intercalated

Bentonite by Intercalation

There is a number of different approaches can be adopted to prepare hybrids using

sol-gel, intercalation or other chemical reaction. Due to the ability of bentonite which

tends to exchange interlayer cations in solution, intercalation is justified to be the

suitable method. The aims of intercalation are to:



• Expand the interlayer spacing

• Reduce solid-solid interaction between the clay platelets

• Improve interactions between the clay and the matrix.

This project is conducted to analyze the expansion of interlayer spacing after

intercalation process. The details regarding intercalation process will be explained in

Chapter 2.

1.2 Problem Statement

Intercalation of ionic liquid in clay, mostly imidazolium based ionic liquid has been

recently evaluated. However, from the result it has shown low expansion of the

interlayer spacing after intercalation process. Interlayer spacing is an important

parameter due to the previous research which indicates that it affects the retention of

gases.

Low expansion of the interlayer spacing after the intercalation process is most

probably due to ineffective intercalation process as the process is affected by many

factors such as Cation Exchange Capacity (CEC) values of the clay, concentration of

ions, temperature and time of reaction.

Besides that, the commercially available organic modifier has lower thermal stability

and caused a limited usage of commercial organo-clay as adsorbents. Thus, ionic

liquids which have high thermal stability can be a good alternative to replace the

lower thermal stability of conventional organic modifier.

Therefore, this project which based on modification of clay with ionic liquids is

proposed to analyze other factors that can affect the intercalation process. As stated

earlier, the parameters that were taken into account; the different types of

exchangeable cations (e.g. Na+ and Ca2+) and types of halides in the imidazolium

based ionic liquid. The other parameters such as types of clay, concentration of ions,

temperature and time of reaction were kept constant.



1.3 Objectives

i) To synthesize the imidazolium based ionic liquid-intercalated bentonite

ii) To analyze the efficiency of intercalation between imidazolium based

ionic liquid and bentonite by evaluating expansion of the basal spacing

and the thermal stability.

Below is the scope of studies for this project which cover a pre-requisite analyses

and two different parameters; the exchangeable cations in bentonite and halides in

imidazolium-based ionic liquid.

1.4 Scope of studies

i) To determine the Cation Exchange Capacity (CEC) of Bentonite as a pre

requisite before proceeding with intercalation process.

ii) To study the effects of different exchangeable cations (e.g.; Ca2+ andNa+) in

the intercalation process.

iii) To study the effects of different halides of ionic liquids (e.g.; Br" and CI") in

intercalation process.

1.5 The Relevancy of the Project

The availability of inexpensive clays of controlled quality is ensured by the synthetic

clay which can outweigh the expensive ionic liquids. Thus, further investigation as

possible adsorbent for gas separation and purification is warranted due to this

commercial synthetic clay. This project is hopefully will be beneficial to R&D

Industry and produce an alternative way of CO2 adsorptions.



1.6 Feasibility of the Project within the Scope and Time frame

The author was given 2 semesters to accomplish the project under course of Final

Year Project 1 for the past semester and Final Year Project 2 for this semester.

Basically, the first semester was utilized to document a thorough analysis of

available literature and purchase the consumables (e.g: ionic liquid and clay).



CHAPTER 2

LITERATURE REVIEW

2.1 Critical analysis of literature

2.1.1 Selection of Bentonite/Montmorillonite Clay

Clays are classified on the basis of their crystal structure besides the amount and

locations of charge (deficit or excess) per basic cell. Clay particles are usually plate-

shaped, less often tubular or scroll-like (Utracki, 2004, p.73).Smectites or

phyllosilicates are the most frequently used clays for a variety of non-ceramic

application. These 2:1 phyllosilicates (Figure 2.1) have a triple layer sandwich

structure that consists of a central octahedral sheet dominated by alumina, bonded to

two silica tetrahedral sheets by oxygen ions that belong to both sheet (Utracki, 2004,

p.76).

These layers are linked together by Vander Waals forces (Neung et. al, 2006). MMT

is highly reactive to interact through electrostatic interaction (e.g. ion-exchange),

secondary bonding (e.g. adsorption of neutral species) or covalent bonding (e.g.

grafting). Deficit of a surface charges due to isomorphic substitution in octahedral

and in tetrahedral sheets is balanced by exchangeable cations situated in the

interlayer position, e.g. Na+, K+ and Ca2+, etc. (Volzone et al., 2004). Size of

exchangeable cations influences the microporosity and surface area of the

montmorillonites (Rutherford et al., 1997).

T i

N^P15Slk/
O •

T\
A
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Figure 2.1: Montmorillonite structure. T, tetrahedral sheet; O, octahedral sheet



There are several species of smectite clay, but the two of greatest commercial

importance and value are montmorillonite (MMT) and hectorite (HT). Commercial

availability of HT is limited whereas MMT deposits are large and widely spread

around the globe such as Canada, USA, South Africa, Europe, Africa, Australia and

Asia (Utracki, 2004, p.79).

As mentioned earlier, synthetic clays are already produced commercially. The

availability of this synthetic clay which is inexpensive with controlled quality will

warrant further investigations ofmodified clay as possible sorbents for gas separation

and purification (Yang, 2003).

MMT is the most common phyllosilicates used for the production of commercial

Clay-Containing Polymeric Nanocomposite (CPNC). MMT color varies from brick

red (due to Fe3+) to pale yellow or blue-grey. Commercially, MMT is supplied in the

form ofpowder (Utracki, 2004, p.80-83).

For successful intercalation, the selected clay should have a cation-exchange

capacity, (CEC) = 0.5-2.0 meq/g.

• For CEC < 0.5, the ion exchange is insufficient

• For CEC > 2.0, the interlayer bonding is too strong for easy intercalation

Thus, smectites and vermiculites have the optimum CEC, theoretically 1.39 and

experimentally 0.8 to 1.2 meq/g. By contrast, kaolin has a CEC < 0.1 meq/g while

mica, illites, attapulgite and sepiolite are about 0.2 meq/g.

As a consequence, MMT, saponite and hectorite are the preferred clays for CPNCs,

but since MMT is more abundant and it has a fairly large aspect ratio, p= 300

(natural hectorite has the smallest), it became the main nanofiller for Polymeric

Nanocomposite (PNC) technology (Utracki, 2004, p.97-98).



2.1.2 Selection of Imidazolium based Ionic Liquid

A number of investigations have shown that C02 is remarkably soluble in

imidazolium-based ionic liquid (Husson Borg et al., 2003). More detailed

investigations have shown that the anion and substituent on the cation did affect the

C02 solubility. All of the imidazolium-based ILs for which C02 solubility has been

measuredpreviously possessed hydrogen attached to the C2 carbon. Acidic hydrogen

on the imidazolium ring is particularly intriguing as a potential additional mechanism

for C02 solvation (Cesar et al, 2003).

Based on the available literature, many ionic liquids (ILs) show good selectivity for

C02 and S02 over gases such as N2, 02 and H2 (Anthony et al., 2002; 2005;

Anderson et al., 2006). The most common organic cations containing nitrogen are

imidazolium and pyridinium derivatives which potentially increase the effectiveness

of C02 adsorption. In fact, ionic liquids containing long chain cations (mostly

imidazolium based) have been recently evaluated as montmorillonite (MMT)

modifiers (Neung et al. 2006).

Therefore, the author has decided to choose ionic liquid from imidazolium based.

The ionic liquids which will be used in the intercalation process are l-butyl-3-

methylimidazolium bromide and l-butyl-3-methylimidazolium chloride as shown in

Figure 2.2 and Figure 2.3.

Figure 2.2:

l-Butyl-3-methylimidazolium bromide

Figure 2.3:

1-Butyl-3-methylimidazolium chloride



2.1.3 Cation Exchange Capacity (CEC)

CEC is a numerical value to describe the ion exchange capability of clay minerals, in

particular smectites. This property influences their unique physical properties, such

as the cation retention and diffusion processes of charged and uncharged molecules.

CEC values are dependent on the method used. The exchange with ammonium

acetate is the standard method for CEC determination (Mackenzie, 1951).

Other methods for determining CEC involve the complete exchange of the naturally-

occurring cations by a cationic species, such as ammonium, K, Na, methylene blue,

and Co (II) hexamine complex. Methylene blue can be used in a rapid qualitative

procedure, but the results are not reliable in comparison to other methods (Kahr and

Madsen, 1995; Yariv et al., 1990).

Therefore, the author has decided to use ammonium acetate method as it is well-

known as standard method for CEC determination. CEC determines the amount of

negative charge of lOOg of soil. Analysis of the CEC value for clay is very important

as this value is varies even though the clays come from the same group (e.g.

smectite).

Basically, in determination of cation exchange capacity of soils and clays, it is

expected to saturate the exchange sites with an index cation, which is then replaced

and determined. CEC value can be obtained from various methods as stated earlier.

This value is used as reference for the ionic liquid's concentration which intercalated

in clay.

2.1.4 Intercalation Method

Clay minerals are the common group of self-assembling ceramic host materials for

intercalation. For this project, intercalation process involves a mixing of clay and

ionic liquid at specific concentration, temperature and time. Then, the mixture is

washed with distilled water to get rid excess ionic liquid. The amount of ionic liquid

10



added to clay is determined by considering the clay's Cation Exchange Capacity

(CEC). The details of calculation are explained in the Appendix.

Montmorillonite (MMT) which consists of anionic charge of the aiuminosiiicate

layer will be neutralized by the intercalation of exchangeable cations (e.g. Na+ and

Ca2+) (Neung et al, 2006). It is an important step in order to achieve electroneutrality

as the substitution of the trivalent aluminium by divalent Mg or Fe imparts a net

charge to the clay layer (Yang, 2003). The interlayer accessible exchangeable cations

can be exchanged with a wide variety of hydrated inorganic cations or organic

cations in the modification of montmorillonites by ion exchange.

Based on the preparation of pillared clay (Yang, 2003), the charge compensating

cations between the clay layer are exchanged with larger inorganic hydroxyl cations,

which are polymeric hydroxyl metal cations formed by hydrolysis of metal salts.

Upon heating, the metal hydroxyl cations undergo dehydration and dehydroxylation,

forming stable metal oxide clusters. They act as pillars to keep the clay layers

separated and thus creating interlayer spacing as shown in Figure 2.4.

O o
O Q<H)

- Si

• Al, Mg

Figure 2.4: Schematic of Structures of clay and pillared clay, with cation sites

(Yang, 2003)
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Figure 2.5: General scheme for synthesis of pillared clays (Yang, 2003)

The intercalation of organic cations from imidazolium based ionic liquid will

basically follow the same concept as explained previously for the inorganic hydroxyl

cations intercalated in the clay. The details of intercalation process will be explained

in the methodology part under Chapter 3.

Basically, intercalation will result in overall changes (e.g.; increase or decrease) in

the interlamellar spacing due to sodium cations exchange with the cations of the

ionic liquid. For the author's case study, the cations of the ionic liquid will be the

imidazolium cations, which will undergo ion exchange with sodium cations in

montmorillonite. As mentioned earlier, this process will be based on the scope of

studies which are to study the effects of different exchangeable cations (e.g.: Ca2+

and Na+), different halides of ionic liquid (e.g.: Br" and CI") and different

concentration of ionic liquid in the intercalation process.

12



2.1.5 Characterization of Imidazolium based Ionic Liquid-Intercalated

Bentonite: X-Ray Diffraction (XRD)

X-Ray Diffraction (XRD) will be used to measure quantitatively the expansion of the

basal spacing or interlayer spacing of the clay after intercalation process. It is an

important analysis as a guide for determining the pore size (Yang, 2003). Due to the

statement that cation situated in interlayer position can have an effect on clay

characterization (MacEwan and Wilson, 1980), therefore the author decided that this

test is fairly important to determine the effectiveness of the intercalation process.

Theoretically, larger cations will produce greater expansion of interlayer spacing.

Larger cations can be explained by larger ionic radius for example Na+ compared

with Ca2+. Clay modified with Ca2+ will produce larger expansion compared to clay

modified with Na* due to larger ionic radius of Ca2+ (Volzone, 2004).However, as

stated earlier the intercalation process depends on various factors which the author

has to be thoroughly taken into consideration.

Basically, XRD is a non-destructive technique that reveals detailed information about

the chemical composition and crystallographic structure of natural and manufactured

materials.XRD applies the Bragg's Law; when a monochromatic x-ray beam with

wavelength X is incident on the lattice planes in a crystal planes, in a crystal at an

angle 0, diffraction occurs only when the distance traveled by the rays reflected from

successive planes differs by a complete number n of wavelengths.

A crystal consists of a periodic arrangement of the unit cell into a lattice. The unit

cell can contain a single atom or atoms in a fixed arrangement. Crystals consist of

planes of atoms that are spaced a distance d apart, but can be resolved into many

atomic planes, each with a different d spacing. By varying the angle 0, the Bragg's

Law conditions are satisfied by different d-spacing in polycrystalline materials.

Plotting the angular positions and intensities of the resultant diffraction peaks

produces a pattern which characterized the sample.

13



2.1.6 Characterization of Imidazolium based Ionic Liquid-Intercalated

Bentonite: Thermal Gravimetric Analyzer (TGA)

Basically, TGA measures weight changes in a material as a function of temperature

(or time) under a controlled atmosphere. Measurements are used mainly to determine

the composition of materials and to predict their thermal stability at temperatures up

to 800°C.

Thermal Gravimetric Analyzer is used to measure the thermal stability of the

intercalated clay. The main problem faced by the previous research (Barrer, 1978) is

low thermal and hydrothermal stabilities of the modifier, thus their product has

limited usage as adsorbents and catalyst (Yang, 2003). Therefore, after the weakness

of the research was pointed out, the following researches have been directed towards

the synthesis of pillaredclays withhighthermal and hydrothermal stabilities.

Therefore, the author has decided to include this analysis as thermal stability is rather

an important specification of a good adsorbent. Besides that, the commercial

modifiers are not thermally stable even though they can produce a great expansion of

the clay's interlayer spacing (Neung et al., 2006). In fact, ionic liquids have been

recently evaluated as montmorillonite (MMT) modifiers due to important incentive

of thermally stable.

Imidazolium-based ionic liquid is provedto be a thermally stable as shown in Figure

2.6 of characteristic decomposition curve, determined by TGA. From this graph, the

decomposition of the sample begins at fairly high temperature which is 220°C,

represent by Tstart as stated on the graph.

Bentonite/montmorillonite also considered as thermally stable as shown in Figure

2.7. From the graph, it shows two mass loss steps at 25-500 °C and 500-1000 °C.

They correspond to the dehydration at 20-300 °C and dehydroxylation at 500-900 °C.

Thephysically bounded molecular water was eliminated at 100-120 °C and the water

in interlayer space at 120 °C and above. The OH groups began to release at 500 °C

(Lalikovaetal., 2010).

14
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Figure 2.6: Characteristic decomposition curve, determined by TGA for imidazolium

ILs, indicating the start temperature (Christopher et al, 2004)
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2.1.7 Characterization Imidazolium based Ionic Liquid-Intercalated

Bentonite: Fourier Transform Infrared (FTIR) Spectrometer

FTIR is useful for identifying types of chemical bonds in a molecule by producing an

infrared absorption spectrum that is like a molecular "fingerprint". The data collected

and converted from an interference pattern to a spectrum. The analysis involves can

be divided into two kind of analysis which are qualitative and quantitative analysis.

For qualitative analysis, FTIR is capable to identify types of chemical bonds

(functional groups) by interpreting the infrared absorption spectrum. The wavelength

of light absorbed is the characteristic of the chemical bond as can be seen in the

annotated spectrum. Molecular bonds vibrate at various frequencies depending on the

elements and the type of bonds. There are several specific frequencies at which it can

vibrate for any given bond. These frequencies correspond to the ground state (lowest

frequency) and several excited states (higher frequencies), according to quantum

mechanics.

The spectrum of an unknown can be identified by comparison to a library of known

compounds, IR will need to be combined with nuclear magnetic resonance, mass

spectrometry, emission spectroscopy, X-ray diffraction or other technique, in order to

identify less common materials. On the other hand, quantitative analysis can be

conducted using FTIR due to the proportionality of the strength of the absorption to

the concentration.

2.1.8 Characterization of Imidazolium based Ionic Liquid-Intercalated

Bentonite: Scanning Electron Microscope (SEM)

SEM will be used to study the morphology and surface atomic analysis of ionic

liquid-clay hybrid. The Scanning Electron Microscope (SEM) is a microscope that

uses electrons rather than light to form an image. There are many advantages to use

the SEM, instead of a light microscope.

16



During SEM inspection, a beam of electrons is focused on a spot volume of the

specimen, resulting in the transfer of energyto the spot. These bombarding electrons,

also referred to as primary electrons, dislodge electrons from the specimen itself.

The dislodged electrons, also known as secondary electrons, are attracted and

collectedby a positively biased grid or detector, and then translated into a signal.

To produce the SEM image, the electron beam is swept across the area being

inspected, producing many such signals. These signals are then amplified, analyzed,

and translated into images of the topography being inspected. Finally, the image is

shown on a CRT.
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CHAPTER 3

METHODOLOGY

3.1 Research Methodology

The research process starts with stating the hypothesis after choosing the problem.

Then, the author has to formulate the research design which is mainly related to

laboratory experiment in the synthesis period. After the synthesis period, the

products were characterized under specific parameters. After that, available data and
information were collected from reliable sources, followed by analysis and

interpretation of result obtained from the characterization.

3.2 Project Activities

3.2.1 Literature Review

Project activities for the first semester ofthe course are mainly on documentation of
literature review which is related to the project. Literature review is a formal survey

ofprofessional literature and review theories and research already done on the topic.
A thorough literature search which covers the background studies of ionic liquids,

clay and intercalation process is conducted inorder to obtain a clear picture ofwhat

the project is all about as documented in the previous chapter.

3.2.2 Materials for Synthesis

The consumables which were used in the synthesis are listed in Table 3.1. The

Material Safety Data Sheet (MSDS) were obtained and understood before

conducting any experiment in the lab to avoid any accident in handling the

chemicals. Besides that, the author had conducted a thorough lob Safety Analysis

(JSA) and Hazard Identification before starting the laboratory's work.



i) Ionic Liquid

No Ionic Liquid Physical & Chemical Properties

1 l-Butyl-3-methylimidazolium bromide

Formula: C8H,5BrN2

i) Melting Point: 76°C

ii) Molecular Weight: 219.13 g/mol

iii) Form : Solid

2 1- Butyl-3-methylimidazolium chloride

Formula: C8H15C1N2

i) Melting Point: 60 °C

ii) Molecular Weight: 174.68 g/mol

iii) Form: Solid

Table 3.1: List of Ionic Liquid

ii) Bentonite (Homoionic Bentonite)

2+1) Bentonite-Ca
2) Bentonite-Na+

Note: Homoionic Bentonite are synthesized from the pure Bentonite.

iii) Others

1) Silver Nitrate (0.1 M)

3.3 Determination of Cation Exchange Capacity (CEC)

The method was carried out as described by Dohrmann (1997). The sample must be

prepared distilled and titrated. The sample is first ammonium exchanged. Then the
ammonium ions in the supernatant are deprotonated into ammonia with sodium

hydroxide solution. Then the ammonium content is obtained by back-titrating the
ammonium nitrate result from reaction between ammonia and nitric acid. Details of

calculation are shown in the Appendix.
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3.4 Synthesis

3.4.1 Synthesis of homoionic clay

The CEC often occupied with variety ofcations; H*, Ca2+, K+, Mg24, but can occupy

with only one type of cation or is named as homoionic clay. Ca2+ and Na+ are used

respectively to produce two types of homoionic clay, Bentonite-Ca2+ and Bentonite-

Na . It is an important step as it will neutralize the anionic charge of the

aiuminosiiicate layer in clay before proceeding to synthesis of ionic liquid-clay

hybrid by intercalation process. Then, the homoionic clay is preceded with the XRD

analysis to observe the effects of different exchangeable cations in clay.

Characterization of these two types of homoionic clay proved that Bentonite-Ca2+

has larger basal spacing compared to Bentonite-Na+ which is due to larger ionic

radius of Ca2+ compared to Na+. The author will continue to evaluate the effects of

these homoionic clays in intercalation process with the ionic liquids.

3.4.2 Synthesis of Imidazolium based Ionic Liquid-Intercalated

Bentonite

Cationic exchange of Bentonite-Na+ and Bentonite~Ca2+ is carried out with ionic

liquids by stirring at 80 °C for 6 hours at 2X concentrations of the clay based on CEC

(Appendix). Centrifugation is used to separate the supernatant and solid phase. Then,

all modified clays will be repeatedly (more than 5 times) washed with distilled water.

Washing is continued until no residual halogen anion is detected by adding 0.1 M

silver nitrate solution in the filtrate. After 24 h at room temperature, drying continued

at 80 °C under vacuum in order to avoid oxidation. Water has to be totally extracted

out during drying process as it can affect the adsorption of CO2. The synthesis will

produce 12 different products based on 2 types of ionic liquid available in UTP,

namely as IL-1 and IL-2, as listed in Table 3.2:
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Table 3.2: List of Imidazolium based Ionic Liquid-Intercalated Bentonite

No Imidazolium based Ionic Liquid-Intercalated Bentonite

1. IL1+ Bentonite-Na+ (2XCEC)

2. IL2 + Bentonite-Na+ (2XCEC)

3. 1L1+ Bentonite-Ca2+ (2XCEC)

4. IL2 + Bentonite-Ca^ (2XCEC)

Note:

i)

ii)

ILland IL2 refer to 1- Butyl-3-methylimidazolium chloride, 1- ButyI-3-

methylimidazolium bromide.

Different types ofclay (e.g. Bentonite-Na+, Bentonite-Ca2+) refer todifferent

type ofcations (e.g. Na+, Ca2+).

Determination of Cation Exchange Capacity (CEC) of

Bentonite using Ammonium Acetate Method

T

Synthesis ofHomoionic Bentonite by intercalating Ca2+

and Na+ Cations in Bentonite

' '

Synthesis of Imidazolium-Based Ionic Liquid

Intercalated Bentonite from Homoionic Bentonite.

-'

Characterization of the intercalated bentonite via X-Ray

Diffraction (XRD) Analysis, Thermal Gravimetric

Analysis (TGA), Fourier Transform Infrared (FTIR)

Spectroscopyand ScanningElectron Microscope (SEM).

Figure 3.1: Flow Diagram of Synthesis & Characterization
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3.5 Characterization

As stated earlier, this step will consist of 4 characterizations:

i) Basal spacing using XRD

ii) Thermal stability using TGA

iii) Analysis on functional groups using FTIR

iv) Analysis on morphology structure using SEM

X-ray diffraction has been used to study the changes in the surface properties of

montmorillonitic clay through the changes in the basal spacing of montmorillonite

(Yunfei Xi, 2004). Variation in the ^/-spacing was found to be a step function of the

surfactant concentration.

Organo-montmorillonites are synthesized by grafting cationic surfactants such as

quaternary ammonium compounds into the interlayer space (Chaiko et al., 2002).

When long chain alkylammonium cations are used, a hydrophobic partition medium

can form within the clay interlayer. The clay which has not been organically

modified has a relatively small intergallery distance of the d (001) plane and the

intergallery environment is hydrophilic. Intercalation of organic surfactant between

layers of clays not only changes the surface properties from hydrophilic to

hydrophobic, but also greatly increases the basal spacing of the layers.

Next, the ionic-clay hybrid will be characterized under thermal stability analysis

using TGA. It is important in order to obtain their thermal stability as the products

are heated up to 800 °C. Then the weight changes in a material as a function of

temperature (or time) under a controlled atmosphere. The highest thermal stability

can be explained by the product which obtains the highest temperature before its

weight % decreases significantly.

On the other hand, the peaks obtained from the FTIR can illustrate functional groups

in the products. Therefore, a comparison of FTIR spectra of unmodified clay, pure

ionic liquid and clay modified by the ionic liquids can be obtained.
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3.6 Tools required

Table 3.3: Synthesis of Imidazolium-based Ionic Liquid Intercalated Bentonite

No. Process Figure

1. The mixture is stirred at 80 °C for 6 hours using hot plate with

stirrer.

3.2

2. Supernatant and solid phase is separated using centrifuge. 3.3

3. Modified clays are repeatedly (more than 5 times) washed with

distilled water and continued until no residual halogen anion is

detected by adding 0.1 M silver nitrate solution in the filtrate.

3.4

4. After 24 h at room temperature, drying continued at 80 ° C in

vacuum oven in order to avoid oxidation of organic compound.

3.5

5. The modified clay is grinded using ceramic mortar 3.6

Figure 3.2: Stirred by Hot Plate with Stirrer Figure 3.3: Centrifuge Tubes
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Figure 3.4: White precipitates which

represented residual halogen ion

detected by Silver Nitrate

Figure 3.5: Vacuum Oven

Figure 3.6: Grinded using Ceramic Mortar
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CHAPTER 4

RESULT AND DISCUSSION

4.1 The Synthesized Imidazolium based Ionic Liquid-intercalated Bentonite

Four samples are synthesized as listed in Table 4.1, and sent for characterization (e.g.
FTIR, XRD, TGA and SEM). Interpretation of results was conducted in order to
analyze the efficiency of intercalation of ionic liquid in bentonite and discover the
potential of the sample to be used asa good adsorbent.

Table 4.1: Listof Synthesized IonicLiquid-Clay Hybrid

No. of

Sample

Sample

1. ILl+Bentonite-Na+ (2XCEC)

2. IL2 + Bentonite-Na+ (2XCEC)

ILl + Bentonite-Ca2+ (2XCEC)

4. IL2 + Bentonite-Ca2+ (2XCEC)

** IL1 is referring to l-Butyl-3-methylimidazolium chloride

andIL2 is referring to l-Butyl-3-methylimidazolium bromide

4.2 Result and Discussion for FTIR

The purpose ofhaving this characterization is to prove that the intercalation occured
by analyzing the peaks that appear by comparing the sample before and after
intercalation. As mentioned earlier, the sample consists of different homoionic clay,

interact with two types of ionic liquid. The author has arranged the result of FTIR
into 4 set of comparisons in order to analyze the pattern of peaks before and after

intercalation under different ionic liquid (e.g. bmimCl and bmimBr) and different

types ofhomoionic clay (e.g. Na+ and Ca ).
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Figure 4.1: FTIR's result for Homoionic Clay

The silicon-oxygen stretching vibrational modes give rise to strongly absorbing

bands in the 1100-1000 cm"1 region. Some of these involve the basal oxygens of the

silicon oxygen tetrahedra, i.e., they correspond to Si-O-Si linkages at the surface of

the clay layers and have their transition moment (the direction of dipole oscillation

during the vibration) lying in the plane of the layer; they are thus designated "in-

plane" (Cole, 2008).

A sharp peak at 3618 cm"1 was due to Al-OH stretching vibration. The peaks at 3420

and 1629 cm"1 were the H-O-H stretching and bending vibrations of the adsorbed

water respectively. The peak at 1,018 cm-1 was attributed to Si-0 stretching

frequency. Tetrahedral bending modes were observed for Si-O-Al at 516 cm" . OH

bending vibrations in octahedral 2:1 layer silicates were assigned for A1-A1-OH at

908 cm"1 and for Mg-Fe-OH at 783 cm"1. A peak at 682 cm"1 was due to the bending

vibration of Si-O-Si (Farmer and Russell, 1964).
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Table 4.2: The Group Wavenumbers

Vibration Wavenumber Range (cm" )

Silanol SiO-H Stretch 5700-3200

Si-O-Si Asymmetric stretch 1200-1000

Silanol Si-0 Stretch -940

Si-O-Si Symmetric stretch ^805

Si-O-Si Bend -450

Significant differences in the silicate stretching region, v Si-o = 1150 to 950 cm" are

related to water (H20) and hydrated cation of Na+ and Ca2+ content, which in turn
is related to the spacing between the clay platelets (Shrewing et al., 1995). In the

spectrum of Bentonite-Na+, the silicon-oxygen and aluminum-oxygen bonds are
respectively observed at 1044cm"1 and 620cm"1, and the magnesium-oxygen is
assigned to a band between 530-470 cm"1. The strong peak at 1650 cm"1 and the
broad band at 3440 cm"1 have been assigned to the bending and stretching modes of

absorbed water (Gustavo et al, 2004).

Based on Figure 4.2, the spectrum of bmimCl shows peaks for the imidazolium

group in the range between 1650 and 1000 cm"1; for example the peaks in the range
between 1600 to 1320 cm1 are due to carbon-carbon and carbon-nitrogen vibrations.

The conjugated strong peaks around 1630 and 1570 cm"1 are due to carbon-nitrogen-
carbon or carbon-carbon bonds. The spectrum of Bentonite-Na+-bmimCl shows a

resemblance with peaks due to homoionic bentonite and ionic liquid {refer to

arrows).
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Bentonite-Na+

1650 and 1000 cm

1-Butyl-3-methylimidazolium

B entonite-Na+-bmimCl

Figure 4.2: FTIR's Result for Bentonite-Na+, l-Butyl-3-methylimidazolium chloride

and Bentonite-Na+-bmimCl

Based on Figure 4.3 and 4.4, the similar pattern is observed for both types of

homoionic, Bentonite-Ca2+ or Bentonite-Na+ which interacts with different ionic

liquids, l-Butyl-3-methylimidazoliurn chloride and l-Butyl-3-methyliniidazolium

bromide. It is qualitatively proven that different halides in the ionic liquid does not

give significantly difference inthe spectra. This is due to the ionexchange of Na or

Ca2+ with imidazolium cations which then producing the same product regardless

types ofhalides in ionic liquid, Br" or CI"
30
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Bentonite-Na+-bmimBr

Bentonite-Na+-bmimCl

Figure 4.3: FTIR's Result for Bentonite-Na+, Bentonite-Na+-bmimBr
and Bentonite-Na+-bmimCl

Nevertheless, this is a qualitative characterization as we cannot conclude that all the

exchangeable cations inthe homoionic clay exchanged with the imidazolium cations.

Further quantitatively analysis should beconducted to analyze aboutthis matter.
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Figure 4.4: FTIR's Result for Bentonite-Ca2+, Bentonite- Ca2+-bmimBr
and Bentonite- Ca2+-bmimCl

Recommendation'.

i) Pellet spectra recorded immediately after the preparation ofthe disk generally
shows water bands. This water is adsorbed from the atmosphere during the

preparation of the disk. Therefore, pellet spectra in the O-H stretching region
(3750-3200 cm"1) should be analyzed carefully. A reliable interpretation of
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the spectrum in this region can be made only by thermo-IR spectroscopy

analysis.

ii) In preparing the disk, it is advisable not to grind the clay vigorously without
the alkali halide. The mechanochemical reactions occurring during the

grinding of clay minerals can be classified into four groups; delamination,
thermal diffusion, layer breakdown and sorption of water. Grinding the neat

clay gives particle oflower crystallinity, with a lower proportion of structural
hydroxyls and a lower temperature of dehydroxylation than unground clay.

The hydration energy increases with grinding time.

4.3 Result and Discussion for XRD

XRD is used to obtain the interlayer spacing of the clay, before and after

modification. Basically, the interlayer spacing, basal spacing ord(001) spacing of the

MMT is measured from the top of the Si tetrahedral silica sheet (T) to the top of the

Si tetrahedral sheet of the following layer. The clay which has not been organically

modified has a relatively small intergallery distance of the d (001) plane and the

intergallery environment is hydrophilic. Intercalation of organic surfactant between

layers of clays not only changes the surface properties from hydrophilic to

hydrophobic, but also greatly increases the basal spacing ofthe layers.

Fromthe result of XRD analysis obtained for Homoionic Bentonite (e.g.; Bentonite-

Na+ and Bentonite-Ca2+) in Table 4.3 and 4.4, it is proved that the Bentonite-Ca2+
has larger basal spacing compared to Bentonite-Na+ which is due to larger ionic
radius of Ca2+ compared to Na+. Then, after the homoionic clay proceeded with the

modification using ionic liquid, the samples of modified clay are sent again for

XRD's characterization.

Based on the result obtained, only one sample (Bentonite-Na+-bmimCl) as tabulated

in Table 4.5, has shown an increment of basal spacing compared to the homoionic

clay. It is most probably due to insufficient amount of ionic liquid being added
during the intercalation process as the different basal spacing of the montmorillonite



is a function of the saturated interlayer cation characteristics (MacEwan and Wilson,

1980).Besides that, the duration ofreaction might be one ofthe factors as the ions are

not totally exchanged during the 6 hours period.

Table 4.3: Result of XRD for Bentonite-Na4

Caption Angle

2-Theta °

d value

Angstrom

2th=26.720 °, int=91.4 Cps, d=3.33360

2th=19.621 °, int-40.5 Cps, d-4.52070
2th=6.461 °, int=32.8 Cps, d=13.66977

26.72

19.621

6.461

3.3336

4.5207

13.66977

2+
Table 4.4: Result ofXRD for Bentonite-Ca

Caption Angle

2-Theta °

d value

Angstrom

2th-26.626 °, int=55.9 Cps, d=3.34515
2th=5.740 °, int=50.3 Cps, d=15.38497

26.626

5.74

3.34515

15.38497

2th=19.711 °, int=25.1 Cps, d=4.50040 19.711 4.5004

Table 4.5: Result of XRD for Bentonite-Na+ modified with Ionic Liquid

No. of Sample Samples

Bentonite-Na

Bentonite-Na+-bmimCl

Bentonite-Na+-bmimBr

d(001) spacing

A

13.70988

13.90302

13.27835

Table 4.6: Result of XRD for Bentonite-Ca2+ modified with Ionic Liquid

No. of Sample Samples

2+
Bentonite-Ca

Bentonite- Ca +-bmimCl
2+~

Bentonite- Ca -bmimBr

34

d(001) spacing

A

15.5001:

14.15735

14.10206
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Figure 4.5: Compilation of XRD's Result
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4.4 Result and Discussion for TGA

As mentioned earlier, TGA is used to measure any weight changes in a material as a

function of temperature (or time) under a controlled atmosphere. Measurements are

used mainly to predict the thermal stability ofthe sample up to 800 °C. Based on the
result obtained as plotted in a graph (Figure 4.6), overall weight losses of the

modified clay are considered low as the samples are heated up to 500°C.

As the temperature increased from room temperature up to 100°C, all sample shown

some weight loss (10%) which is referring to evaporation of water. The moisture
content might probably due to unavoidable exposure to the open air during handling
the sample for characterization. Previously, the samples went to a long drying period
as they were dried 24 hours at room temperature after centrifugation. Then, the
samples were dried in the oven at 80°C for 6 hours in the vacuum environment in

order to avoid oxidation.

Thermal stability of the samples is higher compared to the commercial organoclays.

Based on the graph, the commercial organoclays shows tremendously weight loss

(30%) after 250°C. As compared with the modified clay, the samples only shows
10% weight losses as they are heated from 100°C up to 500°C. One of the factors

which contributed to the results might due to the large amount of thermally unstable

based quaternary ammonium salts in the commercial organoclays compared to the

high thermal stability of ionic liquid used to modify the clay.
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Weight %

100 200

Bentonite-Ca2+-bmimCi

Bentonite-Na+-bmimCI

Bentonite-Ca2+-

bmimBr

Bentonite-Na+-bmimBr

Commercial

300 400 500

Temperature (°C)

Figure4.6: Graphof Weight % vs. Temperature for TGA
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4.5 Result and Discussion for SEM

Observation of morphology structure after modification appears to be more porous.

Figure 4.7: Bentonite-Caz+-bmimCl Figure 4.8: Bentonite-Na -bmimCl

2+Figure 4.9: Bentonite- Ca -bmimBr Figure4.10: Bentonite-Na+-bmimBr

Figure 4.11: Bentonite
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CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Conclusion

• Imidazolium based ionic liquid can be intercalated into bentonite. The

intercalation of ionic liquid into bentonite through exchange with exchangeable

Na+ and Ca2+ cations is confirmed by comparing with the results of untreated

bentonite and pure imidazolium based ionic liquids by the following quantitative

methods (XRD and TGA) and qualitative method (FTIR and SEM).

From XRD analysis, only one sample has shown an expansion of the basal

spacing which is the bentonite with Na+ exchangeable cations. The sample shown

an expansion from 13.70 A to 13.90 A when reacted with l-Butyl-3-
methylimidazolium chloride. Therefore, different type of exchangeable cations

(Na+ and Ca2+) and different types ofhalides in imidazolium based ionic liquid

have not significantly affect the expansion of the basal spacing.

From TGA analysis, the samples are identified to have a high thermal stability.

Thus, they have the potential to encounter the limited usage of commercial

organoclay as adsorbents which has low thermal stability.

5.2 Recommendation

Small expansion of the interlayer spacing might due to insufficient ions intercalated

in the clay or insufficient time of reaction. Therefore, the author has proposed for an

additional concentration of ionic liquids and proposedto increase the time of reaction

for the intercalation process.
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APPENDIX

1) Determination ofCation Exchange Capacity (CEC) ofBentonite

Experiment was repeated 3 times and below is the sample calculation to determine
the CECvaluefrom the 1.101 % ofNitrogen obtained usingKjedahl Distillation:

1.10 %x 0.5 g = 5.5 x!0"3g
= 5.5x 10"3 g of ammonium / 0.5 g of Bentonite

= 5.5 mg ofammonium / 0.5 g of Bentonite

= 1100 mg / 100 g ofBentonite

The valence of ammonium, [NH4] = [NH4]

Meq wtof \Niht = 18.04 mg/meq

If soil can occupied 1100 mg [Nttf /100 g ofBentonite,

Therefore the CEC value of soil is;

=(1100 mg [NH4]+ / 100 gofBentonite) x(meq /18.04 mg \NH4f)

=0.61 meq / g ofBentonite

= 61 meq /100 g ofBentonite
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2) Determination of how much ionic liquid in clay based on CEC value.

Based on cation of butylimidazolium, [bmim]:

H3C^r XnT ^ xca

i) The valence of [bmim] = [bmim]+ = 1 mmol/meq

ii) MW of [bmim], C8H15N2 = 8(12.01)+15(1.0)+2(14)

= 139.08 g/mol

iii) meq wt of [bmim] = MW of [bmim] / valence of [bmim]

= (139.08 mg/mmol) X (1 mmol/meq)

iv) If soil has 61 meq of CEC/lOOg, the amount of [bmim]+, will be:

= (61 meq CEC /100 g of bentonite) X (139.08 mg [bmim]4" / meq)

= 84.84 mg

=0.8484gof[bmim] +inl00g of bentonite.

v) If the concentration of [bmim]+ is 2X CEC, therefore the amount of

ionic liquid[bmim]+ willbe :

= 2 X 0.8484 g

= 1.6968 g of [bmim]+ in lOOg of bentonite.
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