

CANSAT INTEGRATION USING MICROCONTROLLER

by

Muhammad Hafiz Bin Amir

Final project report submitted in partial fulfilment of
the requirements for the
Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

JUNE 2010

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

CANSAT INTEGRATION USING MICROCONTROLLER

by

Muhammad Hafiz Bin Amir

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Approved by,

>

(Dr. Mohamad Naufal Bin Mohamad Saad)

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
June 2010

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

% .

Muhammad Hafiz Bin Amir

11

ABSTRACT

Satellites are objects that are placed into orbit, among the types of satellites are
astronomical, communication, earth observation and weather satellites. CanSat is a nano-
scale satellite model with all the basic functions of a satellite, such as power subsystems,
communication subsystems, attitude determination and control subsystem and payload
subsystem which includes temperature and pressure monitoring sensors. This research
emphasizes on the operation of CanSat which involves monitoring the temperature and
pressure of the surrounding environment where the data can be transmitted almost
instantaneously on demand. The satellites monitoring is done by using the accelerometer
to determine the direction heading and the pressure sensor to determine the altitude. This
data is processed by the microcontroller and the data will be encrypted to be passed
through the MU-1 transmitter, then transmitted and received by the MU-1 receiver at the
Ground Station. The design process involves developing the test circuit to understand the
functionality of the sensors followed by integration of the satellite subsystems. The
results acquired for several streaming measurements captured for a certain period of time

is plotted to analyze the sensors performance and accuracy level.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor,
Dr. Mohamad Naufal Bin Mohamad Saad, for his continuous supports, guidance,

encouragement and concerns throughout the whole process of making this thesis possible.

My appreciation also goes to Universiti Teknologi PETRONAS especially
Electrical and Electronics Engineering Department lecturers and staff alike, for the aid

and support given for me to excel in theoretical and technical works.

I would also like to express my greatest appreciation to Mr. Isnani Alias, Lab
Technologist, Universiti Teknologi PETRONAS and all my course mate that play an
important role in this project. Without their guidance and valuable information, this thesis
would not be completed in time. Last but not least, thanks to my friends and family who

have been supporting me throughout this Final Year Project.

TABLE OF CONTENT

CERTIFICATIONOE APPROVAL..........co0 i ttsmmsimtmm st oorrentvasseemseres i
CERTIFICATION OF ORIGINALITY ..., 11
ABSTRACCE o s i remme i Ak e 2 s rara e AT et s s s b e e e e SRS v
ACKNOWLEDGEMENTS L. v
LISTOF TABLESooo ittt ee et tabasssaeesessseasessssasesssesssssasessssnsesnnes viii
LISTOEFIGURES ... ot e oo s i ab s et S e ix
LIST OF ABBREVIATIONcocfvionsaninioninmsssiamss mvantns dirafudasrons v o eeersonnts xi
CHAPTER 1 INT RO DG T EON e o e e v et an e e 1
1.1 Backgroundiof Study....... Ll mmnnina s e e e e ey 1

1 PO e RN . e e e e S o 2

13 OOV oo A i e A e e e e d e 3

L4 1SCOPRORSHIAY ... i smmmassresssadiasserimsmsrime bt ey b rabesd 3

CHAPTER 2 LITERATURE REVIEW ..oi..ccocio i e itk Bt b nn e van 5
2.1, “Satellite verview 0w i Er Neb i Sien I e e 5

2 PIATY COMPODENES. . N s e p e s s 8
2.2:-1Microconiroller (PICIGEBTTM) ... v icirivesei s e nraans 8

2.2.2 Temperature sensor (LM35DT)cccveeeveeeveeveaeennn.. 10

2.2.3 Pressure sensor (MPX4115A)oooooeoeooeeeeeeeeeeeeeeeenn. 11

2.2.4 Wireless Transmitter and Receiver (MU-1) 12
2.2.5Accelerometer (ADXL330) s o s et B 16

2.3 Subsystem ConlgUration .. e) 16

vi

CHAPTER 3 METHODOLOGY ... 19

3.1 Procedure Identificationccoouevsessonis e s T s R 19
3.2 Tools and Equipment Required ... iminsiminsmemuassasssms 21
CHAPTER 4 RESULTS AND DISCUSSIONS e, 22
A0 ROSUitS . e e e R W e 22
4.1.1 Feature identification of microcontroller.............................. 22
4.1.21.M35 Temperature Sensor Development 23
4.1.3MU-1 Wireless Transceiver Development ... 26
4.1.4 CanSat Ground Station Graphic Interface Software
IDEVEIODIMENT - . oottt cuisesisastriase ead s anns ke A dax S e sens 37
B D DS CUSEIONE . 2rasexrbchrntakcadsbes i o es tmern Aee st st s A SR s REe e e coceaas et 41
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS ..o 43
S aRcISION s N0l e =W el RS et I ot N o 43
5.2 Recommendationsc.ceeiiuiiieiiiireiiiiieeie e 43
REEE RN GRS e e e e B e e L 44
APPENDICES - ... coicociuiniiissravsisssssasonsasasisssssbsinsssrissiins s6isanind s sdos e eiss Ve eo s e vaans 46
APPENDIX A FIRST PROTOTYPE OF CANSATooo... 47
APPENDIX B FINAL PROTOTYPE OF CANSAT 48
APPENDIX C MICROCONTROLLER ALGORTITHM FOR
AN AT e e 49
APPENDIX D VISUAL BASIC 2008 ALGORITHM FOR MISSION
CONTROL CENTER(MCQC)...........cceovuvecirircrenrnens 57

vii

LIST OF TABLES

Table 1: Link parameters desCription.............oooiiiiiiiiiiiiic e 15
Table 2: Voltage reading based on test conditions ..., 25
Table 3: MU-1 and microcontroller development process...................ccccoeevvveeeeieeennnn, 26
Table 4: Signal Strength versus distance for MU-1.........................ooiiiii, 36
Table 5: MU-1 and GS graphic interface software development process....................... 37

Viil

LIST OF FIGURES

Figure 1: CanSat simulation Setupcoooiiiiioi oo 7
Figure 2: Pin diagram for PIC16F877A microcontroller ... 8
Figure 3: LM35 temperature sensor interface circuit..................................._ 11
Figure 4: Pin connection between MU-1 and PIC16F877 ... 14
Figure S: Link PArameter VAIUESccouiisiiipimuiionsessosiiistissessisisas sasmmmnsntesmesonsssronssss 16
Figure 6; CanSat subsystem relationShiD v .ciarsntin st e s seiioes 17
Figure 7; Flow DiagramyforProject Work ... o i bt 19
Figure 8: Flow diagram for Timer0 application ...22
Figure 9: Simulated oscilloscope reading for Timer0O application.............................. 23
Figure 10: The hardware and features of the microcontroller............................... .. 24
Figure 11: Temperature test software flow.. 24
Figure 12: Data conversion from microcontroller to computer....................................... 27
Figure 13: HyperTerminal configuration parameterscocooevveveiiorn.. 27
Figure 14: Algorithm for 19200 bps data rate calibration.. 28
Figure 15: HyperTerminal view for 19200 bps data rate calibration........................... 29
Figure 16: Algorithm for microcontroller control command transmission test............. i)
Figure 17: HyperTerminal view for microcontroller control command test.................... 30
Figure 18: HyperTerminal view for MU-1 response command test............................ 31
Figure 19: HyperTerminal view for MU-1 link setup response command test................ 32
Figure 20: Ground Station side data transmission test....................ocooooooviieioeoiein. 33
Figure 21: Satellite side data reception test.................ccooooiiiiiiiiciiiiiiiiiiii e 33
Figure 22: Data conversion from microcontroller to computer through MU-1................ 34
Figure 23: Microcontroller algorithm flow diagram for two way communication 35

Figure 24:
Figure 25:
Figure 26:

Figure 27:

Figure 26:

MU-1 two way communications at the Ground Station side through built in

graphic interface software ... 33
Signal strength signature registered with the received data at the Ground

1y) D T s N TR O 37
Overall design view of GS graphic interface software............................... 38
GS graphic interface software flow diagram ... 39
CanSat functional diagramcooooiiiiiiiii e 41

CanSat
TT&C
C&DH
EPS

AC

DC
RAM
EEPROM
ADC
PWM
LED
UART
USB
ASCII
RS-232
USART
MSB
LSB
NRZ

LIST OF ABBREVIATION

Can Satellite

Telemetry Tracking and Command

Command and Data Handing

Electrical Power Subsystem

Alternating Current

Direct Current

Random Access Memory

Electronically Erasable Programmable Read Only Memory
Analogue-to-Digital

Pulse Width Modulation

Light Emitting Diode

Universal Asynchronous Receive/Transmit

Universal Serial Bus

American Standard Code for Information Interchange
Recommended Standard 232

Universal Serial Asynchronous Receive Transmit
Most Significant Bit

Least Significant Bit

Non-Return-to-Zero

X1

CHAPTER 1

INTRODUCTION

1l Background of Study

Information is passed around ever more efficient nowadays especially in the form
of digital data. In terms of hardware, one of the fastest ways to transmitting data is using
fibre optic cables. Another method is by using wireless transmission. However for
transmission, the digital data will have to be converted to analogue data and then
combining with the carrier frequency for transmission. Stations at ground level with
antennas are able to receive and transmit data among each other. To enhance this wireless
ability, satellites play a role to further improve the speed and area coverage in wireless
transmission. Satellites are objects that are placed into orbit. Among the types of satellites
are astronomical, communication, earth observation and weather satellites. Astronomical
satellites are used for observation of distant outer space objects while communication
satellites are stationed in space for the purpose of telecommunications. Meanwhile
weather satellites are used to monitor Earth’s weather and climate and Earth observation
satellites are intended for non-military uses such as environmental monitoring,

meteorology and map-making [1].

With the availability of highly capable satellites that have high performance with
cheaper cost and weight enables Malaysia to further strengthen the venture to do business
in the space industry [2]. The use of small satellites will revolutionize the space industry

as has the laptop progressively dominated the computer industry over the bulky personal

desktop computer.

Among the endeavour of Malaysia in the space race to reach the orbit is through
the National Space Agency (ANGKASA) with the introduction of the space education
program that is SiswaSAT Program similar to the “CanSat” program in Japan and United
States [3]. CanSat is a nano-scale satellite model with all the basic functions of a satellite,
the subsystems of the satellite are fitted into a soda can of 325 millilitres. The CanSat will
have nearly identical features to a real satellite in terms of the electronic circuitry, CanSat
has its wireless communication system, sensors and central processing unit. In terms of
the mechanical CanSat shall have its structure developed in terms of structural rigidity

and the ability to be recovered after flight operation.

1.2 Problem Statement

Space technology is a major strategic tool at present and in the future due to the
unique global capabilities that it brings. It will help society overcome several threats to
the quality of life on earth. In that sense space technology is fundamental to sustain

security and one aspect of space technology is remote sensing [4].

Among the design considerations of satellites related to electronics is how the
various subsystems operate such as the operation of the payload sensors which could be
for example a temperature sensor, operation of the wireless transmitter and receiver at the
ground station, integration of all the subsystems and the power consumption of the

satellite.

Since environmental monitoring of the Earth at great heights is unfeasible with
the application of aircrafts. Therefore, the solution is by using satellites, CanSat will be
able to monitor the temperature and pressure of the surrounding environment at a specific
height while the data can be transmitted almost instantaneously on demand. The satellites
height is confirmed by monitoring the pressure reading from the pressure sensor and the

rate of descent.

1.3 Objective

The main objectives of this study are as follows.

1. To develop and manufacture the prototype CanSat that will perform the
environmental monitoring with the use of temperature monitoring sensor and pressure
monitoring sensor.

2. To develop the satellites positional system for confirmation of the location of the
satellite by gathering data from the accelerometer and pressure sensor as part of the

satellite’s payload.

1.4 Scope Of Study

The scope for this research involves identifying the features of the microcontroller
such as timers, Analogue-To-Digital (ADC) converter and communication protocols such
as the Universal Asynchronous Receive/Transmit (UART) that will be used to interface
with the other primary components of the satellite. Simulations will be done to

familiarize with the coding language.

The next procedure is the construction and individual testing of the circuit for the
separate main electronic components such as the pressure sensor, temperature sensor,

accelerometer and wireless transmitter and receiver. The individual tests are as follows:

b Temperature sensor

» Constructing the biasing circuit and testing the output voltage to confirm
with the relation between temperature and voltage value as stated in the
datasheet.

» Interfacing the output voltage of the temperature sensor with the ADC
input of the microcontroller. The microcontroller will output the ADC

values as duty cycles for the Pulse-Width-Modulation (PWM) that will be

3

connected to a Light Emitting Diode (LED). An algorithm for the

microcontroller will have to be developed.

Pressure sensor

» Constructing the biasing circuit and interfacing with the microcontroller.
An algorithm for the microcontroller will have to be developed to verify

the relationship between barometric pressure and voltage.

Wireless transmitter and receiver

» Constructing the biasing circuit and interfacing with the microcontroller.
The transmitter is tested by verifying that the receiver and the transmitted
signal, the verification is done by connecting the output of the receiver to a
serial converter circuit that enables serial communication with the

computer.

Accelerometer

» Constructing the biasing circuit and testing the output voltage to confirm
with the relation between acceleration and voltage value.

~ Interfacing the output voltage of the acceleration sensor with the ADC
input of the microcontroller. The microcontroller will output the ADC
values as duty cycles for the PWM that will be connected to a Light
Emitting Diode (LED). An algorithm for the microcontroller will have to

be developed.

CHAPTER 2

LITERATURE REVIEW

2.1 Satellite Overview

Among the subsystem for a satellite includes Control Subsystem, Telemetry
Tracking and Command (TT&C), Command and Data Handing (C&DH) and Electrical
Power System (EPS) [4]. Control Subsystem functions to stabilize the satellite and orient
it in the desired direction during missions where there are external disturbance torques
acting on the satellite. Control Subsystem also determines the satellites attitude using
sensors and controls using actuators. Control Subsystem is coupled to propulsion and
navigation subsystems. On the other hand, TT&C provides interface between spacecraft
and ground systems. Payload mission data and spacecraft housekeeping data pass from
spacecraft through this subsystem to operators and users at the operation centre. Operator
commands also pass to the spacecraft through this subsystem to control the spacecraft and

to operate the payload.

The C&DH functions to receive, validate, decode and distribute commands to
other spacecraft systems and gathers, processes, and formats spacecraft housekeeping and
mission data for downlink or use by an onboard computer. Finally, since all the
subsystems described previously consist of electronic circuits that require power to
operate. Therefore, the EPS provides, stores, distributes and controls a satellites electrical

power. Among the power subsystem functions are:

* Supply continuous source of electrical power to spacecraft loads during mission
life

¢ Control and distribute electrical power to the spacecraft

e Support power requirements for average and peak electrical load

e Provide converters for Alternating Current (AC) and regulated Direct Current
(DC) power buses, if required

e Provide command and telemetry capability for EPS health and status, as well as
control by ground station or an autonomous system

e Protect the payload against failures within the EPS

The environmental test for the CanSat involves two different tests. However, due
to the lack of time provided for this research the experiments was unable to be conducted.
The first test is to monitor the surrounding temperature and pressure, this will be done by
placing the CanSat at a height of 10 meters from the ground level for an extended period
of time from morning to evening, the setup for the test is described in Figure 1. CanSat
will be operating throughout the entire operation where the readings from the temperature
sensor, accelerometer and pressure sensor will be processed by the microcontroller and
then transmitted to the Ground Station via the MU-1 transceiver’s located on the CanSat
and at the Ground Station. A real time graph will be plotted and all the data gathered will
be recorded and saved for further analysis. All the readings will be observed through the
computer via the Ground Station interface software. By conducting this test ensures the

reliability of the CanSat operation for prolonged periods.

String tied at both ends to

buiding 22 and 23
W
\ | |l CanSat
NS
Sign:;\—
UTP academic transmitted UTP academic
Building 22 Fc = 434MHz 10, meter Building 23
Ground Level
[_h &
/" Laptop in Buiding 22 first floor
Ly in sight of CanSat

Figure 1: CanSat environmental test

The second test is to observe the operation of the operation of the accelerometer
since for the first test the CanSat is stationary and the objective is for reliability. The
second test will observe the readings of the X, Y and Z-axis readings of the
accelerometer. The setup for the test is shown in Figure 2. The operation of the CanSat
will be in the identical manner as the previous environmental test only this time the
expected result should be a spike in the value for the accelerometer while the temperature
sensor and the pressure sensor is constant. All the readings will be observed through the

computer via the Ground Station interface software.

Rotation
\ -
CanSat
Bearing 5
Structure made
w l using Perspex

Signal

transmitted

/_, / e

Figure 2: CanSat accelerometer operation test
7

2.2 Primary Components

To design the prototype CanSat with similar subsystems settings as a satellite
would have, the primary components involved in developing the prototype CanSat are as

follows:

2.2.1 Microcontroller (PIC16F877A)

The Microchip PIC16F877A microcontroller is one of the most popular

microcontrollers in the market, the pin diagram is shown in Figure 2.

MIFer —=T11 42 [J =—= FE2TF30
FAJAY0) -T2 [=—= F25Fa¢
F-H‘-n-—-:? 2 [] »— F25
SAlANZYRE -r—-E- 'jo—-——p [=K
RA2IANINEEF- -.—.-I: s 2 j-o-——-‘- F2:F3M
RATICKI -—eTT & £] e RE2
RAS2 -—[7 - < [=—= RE1
~ 2] -—= E23INT
e 2[d=—vor
R 3 [-— vzo
QO [e rovezer
© i [] = Foeczee
M 28 [] == ROZPI2E
OSCAUCLKOUT _._,I: 12 9 27 g.__._ | =im =i =F
RCATIDECTCKl =—a 12 0. 28 [J =—= RC7TRXOT
RCUTCSUCCP2 w—e[] 12 26 [] -—e RCETXCK
RCZCCF w17 22 [] -»—= FCZED0
RCIGCHECL =+—eT] 12 22 [= RC23D033A
R30F:F) -—e [12 22 [J =—= RODz=zes
AT1PEF1T -—=[] ¢ 21 [] w—e FO2EIEZ

Figure 3: Pin diagram for PIC16F877A microcontroller [11]

The PIC16F877A Microcontroller includes eight kilo bytes of internal flash
Program Memory, together with a large Random Access Memory (RAM) area and an

internal Electronically Erasable Programmable Read Only Memory (EEPROM). An 8-
8

channel 10-bit ADC is also included within the microcontroller, making it ideal for real-
time systems and monitoring applications [11]. The first step is to understand the
individual features of the PICI6F877A microcontroller that will be used to integrate the
sensors and communications subsystems of CanSat. Therefore the programs are designed
using MPLAB software and compiled using PIC C Compiler and the generated HEX file

is uploaded into PIC Simulator IDE. The features that are to be simulated are as follows.

. Timers (TimerO, Timer] and Timer2)
° ADC
° Serial communication

TimerO is usually an 8-bit timer/counter created around an 8-bit counter unit.

Hence its count range is restricted from 0 to 255. It is most often used as a time or tick.

Meanwhile, Timerl is a 16-bit timer that can be used in exactly the same manner
as Timer0. However, Timerl is actually designed to be used in an entirely different
fashion. Where TimerO usually accomplishes its tasks by reloading or resetting the timer
as needed to produce the delays, Timerl] is designed to keep running and never be reset or
reloaded. Timerl may be used alone or with the capture/compare/PWM module. The

PWM function works the same with either Timer] or Timer2.

Timer2 is involved with the capture and compare modes of operation. Capture
mode is used to capture the contents of Timerl when an external event occurs on PortC
bit 2 (RC2). Meanwhile, the Compare mode is a related function in that it uses the
contents of the Timerl registers to determine when to cause an output event on RC2.

Pulse-width modulation (PWM) is a variation of compare mode [11].

The Analogue to Digital converter in the microcontroller is a 10-bit converter that
can be used to convert analogue voltages at one of eight inputs. The analogue to digital
conversion of the analogue input signal results in a corresponding 10-bit digital number.
The A/D module has high and low voltage reference input. The results of the digitally

9

converted analogue input voltage levels are stored in a memory location

ADRESH:ADRESL registers [11].

Universal Synchronous Asynchronous Receiver Transmitter (USART) is also
another serial communication feature for the PIC16F877A and can be configured as full
duplex asynchronous communication. UART uses the non-return-to-zero (NRZ) format
with one START bit, eight or nine data bits and one STOP bit. An eight bit baud rate
generator is used to generate the oscillator [11]. The UART transmits and receives the
Least Significant Bit (LSB) first.

2.2.2 Temperature sensor (LM35D7T)

The LM35 series are precision integrated-circuit temperature sensors, whose
output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35
thus has an advantage over linear temperature sensors calibrated in Kelvin, the user is not
required to subtract a large constant voltage from its output to obtain convenient

Centigrade scaling.

The LM35 does not require any external calibration or trimming to provide
typical accuracies of £14°C at room temperature and =3/4°C over a full =55 to +150°C
temperature range [5] and the sensitivity of the temperature sensor will be set to
10mV/°C. The circuit for the LM35 is quite straightforward with only a parallel
100kOhm resistor at the voltage output pin to limit the current and a 5V supply at the
voltage supply pin to bias the LM35. The temperature sensor will be part of the payload

subsystem. The interface circuit for the LM35 is shown in Figure 4.

10

R
LM35 Vout

Figure 4: LM35 temperature sensor interface circuit
2.2.3 Pressure sensor (MPX41154)

The MPX4115A series (115 kPa) absolute pressure sensor is suitable for the

application of barometric pressure measurement and altimeter with the following

advantages [6]:

. 15 kPa to 115 kPa measuring range

- Single +4.85V to 5.35V supply

e Ideally suited for microcontroller based systems

° Temperature compensated from -40°C to +125°C

e Durable Epoxy Unibody Element or Thermoplastic (PPS) Surface Mount
Package

The pressure sensor will be part of the payload subsystem and also part of
the ADCS subsystem due to the usefulness of the data since pressure values can also be
used in determining altitude. The altitude calculation by using pressure value is related by

the following equation:

Altitude (m) = -2616 x In (pressure/101.325).................. (1)

2.2.4 Wireless Transmitter and Receiver (MU-1)

The selected wireless transmitter and receiver is the MU-1 since it is a low power
radio modem capable to be embedded with various interface circuits for transmission of
serial data. Using a simple system of commands, the user can concentrate on designing
the transmitting and receiving protocols for the data using the commands, without
needing to be aware of the control system of the radio component. By using the Universal
Asynchronous Receive/Transmit (UART) protocol interface with a single-chip CPU, or a
RS232 format interface for computers as the interface for transmitting and receiving data
and for issuing commands, it is possible for the user to develop systems quickly. In
addition, it is designed to minimize design difficulties involving the high frequency
components in the user system. Using the relay function it is also possible to gather data
from and control equipment in remote locations that require several intermediate
receiving stations before reaching the target station [7]. The wireless transmitter and

receiver will be part of the communication subsystem.

The communication subsystem can be divided into several sub-components. It
consists of the transmitter, communication medium and receiver. The characteristics of

the communication subsystem are:

. Perform data transmission from the satellite to the ground station from at

most 200m away

. Maintain data integrity with band-pass filtering and digital modulation
techniques

. To communicate the status and position of the satellite to the ground
station

. Utilizing 434 MHz armature radio frequency band for communication

. Communication shall convey at least 1kbps in full-duplex mode

o The baud rate is 19200bps

12

In this communication subsystem, the selected operating frequency is chosen to
be 434 MHz; according to International Telecommunications Union (ITU) Band
designations, 434 MHz falls under band number 9 with the designation of UHF (Ultra
High Frequency). The length of the antenna corresponds to the wavelength of the
transmitted signal; with some analysis the length of the antenna has been determined to
be 0.18m (18cm). We will be using telescopic antenna for the system as it provides a

more directive signal with higher transmitting power [9].

For the connection of the MU-1 at the Ground Station is basically via Universal
Serial Bus (USB) connection as the module has a built in interface circuit. Meanwhile,
for the interface with the microcontroller requires a proper interface circuit. The interface
circuit to integrate MU-1 with the PIC16F877 microcontroller is shown in Figure 5. The

descriptions for the pins of the MU-1 that will be used are used are as follows.

° RXD - Serial data receive terminal from the microcontroller
° TXD - Serial data transmit terminal to the microcontroller
o CTS - Hardware flow control signal to determine if the MU-1 can

output data through the TXD pin on active low and is
controlled by the microcontroller

8 RTS - Hardware flow control signal to determine if the MU-1 can
input data through the RXD pin on active low and is

controlled by the microcontroller

13

MU-1-R PIC16F877
microcontroller
RXD e RCBITX
XD » RCT7/RX
CTS | RCO
RTS [RC1

Figure 5: Pin connection between MU-1 and PIC16F877

To ensure successful command and response signal transmission between the
MU-1 and the microcontroller the baud rate is set at 19200kbps. The type of command
that the microcontroller can send to the MU-1 are Control Transmit Command which is
used for system control and Data Transmit Command which is used for transmitting

system data between the MU-1’s.
Link parameters between the transmitting and receiving MU-1 need to be

initialized with the specific Control Transmit Command. Table 1 describes the link

parameters

14

Table 1: Link parameters description

Parameter

Description

Frequency channel

There are 64 values that can be set within the 434MHz
band range, both MU-1 stations must have the same

frequency channel

User ID ID given to the MU-1 user for identification of the user
system. Communication is not possible unless all
equipment within the user system is set with the same
User ID

Group ID Set the same Group ID for all equipment within the

group as identifications numbers when building other

systems

Equipment ID

The Equipment ID differentiates the MU-1 of the
transmitting and the receiving station, therefore the

Equipment ID must be unique.

Destination ID

At the transmitting and receiving MU-1, the Equipment

ID of the receiving MU-1 is entered.

Route Information

Indicates the route to the target which has the list of the
Equipment IDs of the relay stations and Equipment ID of

the target station.

There are various connections configuration for the MU-1 network when there are
more than two MU-1"s in use. However for the CanSat prototype there will only be two
MU-1 units in use that is the transmitting MU-1 as part of the CanSat TT&C Subsystem
and the receiving MU-1 as part of the Ground Station setup. This configuration is also
called a 1 hop communication and to configure this setup both MU-1"s must have the

relay function disabled and this is done through the Route Information link parameter

setup. Figure 6 shows the link parameter setup values that will be used.

CanSat TT&C Ground Station

Subsystem
\\ DI = 01 "\\" : /‘__..,'
=
Source Station Target Station
<
Ul = 0000 DI =02 Ul = 0000

Gl=01 Gl=01

El =02 El =01
Ul = User ID El = Equipment ID
Gl = Group ID DI = Destination ID

Figure 6: Link parameter values

2.2.5 Accelerometer (ADX1.330)

The ADXL330 is a small, thin, low power, complete three axis accelerometer

with signal conditioned voltage outputs, all on a single monolithic integrated circuit.
Acceleration is measured with a minimum full-scale range of +3 g. It can measure the
static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration
resulting from motion, shock, or vibration [8]. The accelerometer will be part of the

ADCS subsystem in determining the rate of movement as to provide external feedback to

the microcontroller.

Subsystem Configuration

From the setup of a typical satellite configuration consisting of the Control,

TT&C, C&DH and EPS subsystem. CanSat hardware configuration is related to each

other as described in Figure 7.

16

CanSAT Subsystems
1
v . v v : v

Controll i (TI&C)' i (C&DH) EPS
Temperature * ADC 4.,.
Sensor b ammm— : (uC) ' Datteny
i ; & 4 . v
: : E Voltage
Pressure : H :
Serisil « : regulaltor 3
% ' i Voltage
Accelerometer 1 : 25 tor 3.3V
| MU (SR :
transmitter E (uC)
e Y i 3
: Transmit ! :
Fc = 434MHz

uC - microcontroller

Figure 7: CanSat subsystem relationship

The EPS subsystem consists of the power supply for the satellite which will be
powered by batteries rated at 9V. Since the temperature sensor requires a supply voltage
of 5V therefore the battery terminals are connected to the 5V voltage regulator circuit and
the output is then used to bias the temperature sensor and also to be stepped down by the
3V voltage regulator for the accelerometer, MU-1 transmitter, barometric pressure sensor

and microcontroller supply voltage.

The Control subsystem shall include the sensors that are the temperature sensor,
accelerometer and pressure sensor as the data obtained provides information of the
satellites altitude, movement direction and temperature of the surrounding environment.
Control subsystem is then linked to the C&DH subsystem when the data output of the

sensors are processed by the microcontroller. The microcontroller will receive the
17

analogue voltage level output from the temperature sensor and accelerometer through the
ADC port and convert into eight bits of digital data. Since the ADC ports cannot be
triggered all at once, the sequence will be the ADC port for temperature followed by X-
axis acceleration, Y-axis acceleration, Z-axis acceleration and finally the barometric
pressure. An added feature of the accelerometer is the Self Test pin that is used to test if
the accelerometer module is functioning correctly [8], this can be verified using the

microcontroller.

Finally is the TT&C subsystem where the microcontroller will rearrange the eight
bits of data which is the temperature, X-axis acceleration, Y-axis acceleration, Z-axis
acceleration, and pressure sensor reading and will send the data to the MU-1 to for a
sequence of transmissions until all the readings are transmitted and the loop transmits the
next reading for the temperature and so on. On the other hand, in between transmissions
the microcontroller will also poll for any incoming signals from the Ground Station to be

passed to C&DH for further processing.

Sl

Procedure Identifi

CHAPTER 3

METHODOLOGY

cation

: Start |
i
| Literature review |
]
| Circuit schematics simulation '

+

| Identifying microcontroller features and simulation I

=Temperature sensor with microcontroller integration on breadboard
—| *Wireless transceiver with microcontroller integration on breadboard
=Pressure sensor with microcontroller integration on breadboard
*Accelerometer sensor with microcontroller inte gration on breadboard
~Entire circuit integration on breadboard
X
" Circuit .
No functioning?
Ty Yes
e Entire circuit integration on veroboard
7 Circuit
No - functioning? —
H“{"_'Yes
e .
Environmental test
~ Circuit

No "“\ft_:_nctloning}’_ fs 3
--"['.Yes

| Completing Final Report I

Figure 8: Flow Diagram for Project Work

19

Reference is done by referring to the previous technical documentations done
from the participation of Universiti Teknologi PETRONAS (UTP) in the previous
SiswaSAT competition and also referring to the technical documents from other
universities and higher education centres which have also participated in the competition
and relevant knowledge in satellite development. Hands-on technical aid is also gained by
becoming a mentee to the participants from the UTP satellite team (AeroUTP) and also
lecturers and technicians to gain knowledge on building electronic circuits and

programming,

Among the necessary information that is required are the sensors that will be used
and the number of sensors that will be implemented, other than that is to understand how
the wireless communications between the satellite and Ground Station is established.
Besides that, crucial information is essential for the programming to ensure that all the

satellite subsystems and Ground Station can communicate effectively.

The approach done is by conducting the research and development of the

prototype satellite at the same time.

20

3.2 Tools and Equipment Required

The tools and equipment to be used for the studies are as follows.
18 MPLAB IDE 8.10

PIC C Compiler

PIC Simulator IDE

Microsoft Visual Basic 8.0

Accelerometer (ADXL330)

Pressure Sensor (MPX4115A)

Temperature Sensor (LM35DT)

P1C16F877A Microcontroller

8]

L¥S]

M opeE = O8N B B

Wireless Transmitter and Receiver (MU-1)
10. PICC Lite C Compiler

For the part one of the project research will be concentrating on identifying the
features of the microcontroller, therefore extensive and familiarization of the software
MPLAB IDE 8.10, PIC C Compiler and PIC simulator IDE is used. The temperature
monitoring circuit is also developed in the first part involving the LM35DT. The second
part of the research involves the remaining sensors and wireless transmission which is the
Pressure Sensor (MPX4115A), Accelerometer (ADXL330), and Wireless Transmitter
and Receiver (MU-1). The Ground Station development mainly involves the graphic

interface software that will be developed using Microsoft Visual Basic 8.0.

21

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

Results are obtained from the analysis of two different tests which is to identify
the features of the microcontroller. The second test is the individual testing of the

temperature sensor.
4.1.1 Feature identification of microcontroller

All the timers function similarly with each other in the microcontroller, therefore

only TimerO is simulated. A demonstration of this feature is as shown in Figure 9.

Ko
Setup Timer(

——‘ Start TimerQ count F

< Timer0 count maxmum? ;:NL‘ Turn off PortD7

Turn on PortD6

Ye‘rslvr
[Turn on PortD7 I

Turn off PortD6

Figure 9: Flow diagram for Timer0 application

22

:"b'\j()scilloscope “..] & @
Settings Mode

#1

[PORTD.7

[T Pullup

Figure 10: Simulated oscilloscope reading for Timer0 application

From Figure 10, it is observed that the states of the logic level at PortD6 and
PortD7 changes as the count for Timer0 reaches maximum, the exact frequency of the

changes cannot be observed for the software.

4.1.2 LM35 Temperature Sensor Development

One of the essential components in the CanSat is the temperature sensor as part of
the payload systems. Therefore, tests should be done to confirm that the readings of the
temperature sensor correspond to the exact temperature. The flow diagram in terms of the
hardware configuration and the microcontroller features that is used for the experiment

and also the software flow diagram are shown in Figure 11 and Figure 12 respectively.

Voltage requlator

5V
PIC16F877
Temperature sensor 8-bit ADC PWM duty cycle CCP_1RC2
LM35DT

Timer 2

Figure 11: The hardware and features of the microcontroller

Setup ADC, Timer 2, CCP_2 PWM

v

Turn on ADC

!

Duty cycle = {ADC channel 1)*100/255

4

v

RC1 /CCP2 PWM LED

Figure 12: Temperature test software flow

The tests are conducted for various temperature levels to confirm that the
temperature sensor (LM35DT) is operational with the following test conditions. The

observed voltage readings are shown Table 2.

24

Table 2: Voltage reading based on test conditions

Test condition Voltage reading (V)
Room temperature 0.284
Below room temperature 0.213
Above room temperature 0.370
Touching with finger 0.334

The method to test the temperature monitoring circuit at room temperature is
straightforward and just turning on the circuit in standard conditions on the laboratory
table and observing the reading of the voltage output level at the LM35DT and also
observing the brightness of the LED. The voltage reading at the LM35DT voltage output

terminal for this condition is 0.284V.

Meanwhile to test the sensor below room temperature is by turning on the circuit
in a chilled environment and this test is conducted in the refrigerator and the reading in
0.213V, it is also observed that the LED brightness is dimmer than when the circuit is
tested at room temperature. The next test is to obtain the voltage reading to be above the
room temperature, the method chosen is to heat a metal object and then touch the metal
with the body of the LM35DT and the voltage reading is observed to be 0.370V, the LED
brightness for this test seems to be brighter than when the test in conducted at room
temperature. Finally, an extra observation made is that by touching the body part of the

LM35DT with our fingers, the voltage reading changes to 0.334V.

Since the other remaining sensors which is the accelerometer and the pressure
sensor operate on the same principle with the temperature sensor that they all have
analogue output voltage values that will be fed to the ADC input of the microcontroller.
Therefore, the development of the accelerometer and pressure sensor is similar and the

next procedure for the sensors is for the environmental test.

25

4.1.3 MU-1 Wireless Transceiver Development

UART protocol is used for communication between the MU-1 and the
microcontroller, the development process for the integration with the satellite and Ground

Station design is described in Table 3.

Table 3: MU-1 and microcontroller development process

Development process

Description

Microcontroller

frequency calibration

Configuring HyperTerminal in the computer to be

able to receive serial data at 19200 bps

Microcontroller UART

transmission

Transmission of sequence of ASCII characters from

microcontroller and viewed from HyperTerminal

MU-1 transmitter

response test

Microcontroller transmission of control commands to

MU-1 and response observed through HyperTerminal

MU-1 link parameter

setup

Setting up the MU-1 with the microcontroller as

receiver or transmitter

MU-1 data transmission

One way communication between Ground Station

transceiver and satellite transceiver

Microcontroller data

reception from MU-1

Processing of MU-1 data reception to the

microcontroller and observing with HyperTerminal

Satellite and Ground

Station communication

Two way communication between satellite and

Ground Station

The first step in developing the integration system between the microcontroller
and the MU-1 as described in Table 3 is to calibrate the data rate to 19200 bps which is
the default data rate of the MU-1. To observe the ASCII characters as the microcontroller
sweeps the data rate frequency range, the signals are observed through HyperTerminal
from the computer. HyperTerminal is a built in Windows XP software which is an
intermediate software to monitor peripheral data inputs from the various ports of the

computer. To interface the microcontroller with the computer, an interface circuit is
26

constructed that converts UART signals to RS-232 protocol which is the communication
format for the computer. Figure 13 describes the flow of data from the microcontroller to
the computer and Figure 14 describes the settings for the HyperTerminal software to be

able to process incoming data rate of 19200 bps and each frame shall consists of eight

bits of data.
©
® ©
e 5
o w
= o~ g
= = =3
g b : -
Data from S| uARTIORS-232 |® | Rs-232touse |9 HVE;”IE"?;I"B'
Microcontroller converter circuit converter adapter = mﬂ:gmr

Figure 13: Data conversion from microcontroller to computer

D & on &

E ey
: e ond
Bit rate '—E—'{ ' -]
) il Daabes 8
Data bits per frame T~ i
Paty Hore »
Swpbds 1 v
Flow conbiol - Hadware b4
Lot J(coee J[v] »
l:-mwmnd ANE) SO0 &-N-1 5

Figure 14: HyperTerminal configuration parameters

27

An algorithm is developed for the microcontroller to be able to transmit the
predetermined ASCII sequence of characters which is “TEST”. The flow diagram for the

algorithm is described in Figure 15.

Start

1

Setup PORTC
RCE — UART output

A
SPERG++
i e — _ Yes
<Z___ SPBRG==255? _=—{ SPBRG=0
No le
PORTD = SPBRG
BRGH = 1
SPEN=1
TXEN=1
Characler sequence ++

No_ ¥

e e Y e e]

=____ Firstcharacter? == Transmit "T" -

No. ¥

e e Yesii=m

<____Second character ? ___“=——| Transmit "E" >

Nq_,_f____‘

i T Yes

=aT Third character 7 e Transmi "S"
Nu{
Transmit " T"
Fourth Character " | Character sequence =0
A J

Figure 15: Algorithm for 19200 bps data rate calibration

From Figure 15, SPBRG is the data register in the microcontroller that is used to
assign the data rate and since the values of SPBRG are output at PORTD where PORTD
is connected to LED’s, the value assigned to SPBRG can be determined as an adequate
delay time is assigned for the period where each sequence of characters are transmitted.

SPEN is to enable the peripherals outputs for the UART signals through PORTC, BRGH
28

is to enable the high frequency data rate for the microcontroller, and TXEN is to enable
the UART transmitter function. Figure 16 shows the observed data sequence captured in

HyperTerminal.

‘& uart - HyperTerminal
Fio fo2 wew Cal Tiarsler Hep

0w 3 o &

e Character sequence

YESI JESTTESTTIESTIESTTESTIESTIESTIESTIESTIESTT
[bTTLb]’TEbTTES”EthS”ES”LSIIESTlfSI
lbl Ilsl llbl usl ILSI ILS»I ILSI]LSI IESTIESTIEST -
' ao aooaoia‘-'

‘-.1

".‘ jlj GG
e

! . s ol o
ST TY o bh LY RS T (T 1Y A LT R 1T Pt 1T A Y RS AT RN TT R TY AN TY R4 115

LXK AR T A 4TTIAA

LU

Corrected 010857 R 150 8-

Figure 16: HyperTerminal view for 19200 bps data rate calibration

From Figure 17, it is observed that for the data sequence “TEST” the LED’s lit up
in a sequence from PORTDO until PORTD7 is 01000000 and this also corresponds to the
value for SPBRG for 19200 bps. The next procedure is to program the microcontroller to
transmit the sequence characters that will be used to transmit control commands to the
MU-1. The sequence of characters are “@IZCrLf’, “@SRCrLf’, and
“@BRY6CrLf"where Cr is Carriage Return and Lf is Line Feed, the combination of Cr
and Lf is equivalent to pressing the ‘enter’ key on the keyboard. Figure 17 describes the
algorithm flow diagram for this procedure and Figure 18 is the sequence of commands

observed through HyperTerminal.

29

Setup PORTC
RCB - UART output

|

SPBRG = 01000000
BRGH =1
SPEN=1
TREN=1

command segquence ++

v

= . Yes
First sequence ? = Transmit "@IZCrLf"

— e

NE.;'E.-

= ——
— ———

Second sequence ? __——=——{Transmit "@SRCrL{" +

—— =

N L
No ;

e
-

Y

=
T
———

it

Third sequence Transmit "@BRIBCILI" —»

A

Figure 17: Algorithm for microcontroller control command transmission test

‘¢ uart - HyperTerminal
Fle Ect View Cal Tiarsfer Help

D& & D &

@17+

@SR <= Second command sequence

€12 Third command sequence

@SR
@BR96
eIz
@SR
@BR96
@I7
BSR
BBRI6

First command sequence

Figure 18: HyperTerminal view for microcontroller control command test

Following the control command transmission test from the microcontroller is the
test to observe the response from the MU-1 therefore the UART to RS-232 circuit is

receiving input signal from the MU-1 TX terminal instead of connected to the TX pin of

30

the microcontroller as in Figure 13. The microcontroller software algorithm for this test is
the same as Figure 17 with a slight modification to include an adequate amount of delay
time to allow the MU-1 to transmit the response command signals after each control
command sequence from the microcontroller. The response from the MU-1 is observed in

HyperTerminal and is shown in Figure 19.

“¢ vart - HyperTerminal
Fle Edr Yew Cal Trarsfer Help

D & OB &

17-00 < — First command response
ek Second command response

- Third command response

Figure 19: HyperTerminal view for MU-1 response command test

Since the previous tests where MU-1 retransmits control responses confirms that
the microcontroller can transmit control commands to MU-1, the next step in the MU-1
development is to setup the link parameter for the MU-1 at the satellite side either as the
receiver of the transmitter as described in Table 1 and the values will follow Figure 5 in
Literature Review. The software algorithm flow resembles the flow in Figure 16 with
changes made to the transmitted command sequence where the first command is
“UI0000CrLf” followed by “GI0O1CrLf” and “EIO1CrLf”, the Destination ID is set with
the Route Information parameter whereby if value is the same as the Equipment ID (EI)
than that MU-1 unit becomes the receiver, otherwise the MU-1 becomes the transmitter.
Therefore both values are tested to setup the MU-1 as the receiver followed by
transmitter using the commands“RTOICrLf” and “RTO2CrLf". The command response

from the MU-1 is observed through HyperTerminal as shown in Figure 20.

31

“¢ uart - HyperTerminal
Fle Edt Vew Call Transfer Help

0 & DS =

~E1-01
~RT=01
=RT1=02
~G1=01
«E1=01
=RT=01
=RT=02

Figure 20: HyperTerminal view for MU-1 link setup response command test

The next procedure to confirm successful communication link is establish
between both MU-1s at the satellite side and at the Ground Station side is to transmit
data command signals from the Ground Station to the Satellite. The parameter link setup
of the Ground Station MU-1 is done using the built in graphic interface software where
the commands are issued in the Data Input Line [10] and the control command values
follows the values in Figure 5 in Literature Review. Figure 21 is the view for the built in
graphic interface software for the Ground Station meanwhile Figure 22 is the

HyperTerminal view to observe the processes of the MU-1 at the satellite side.

32

[0 MU-1 Evaluation Software Program Edition2 for MUT-USH 4. @@
File Setting Help
s oot p
[—} = .
=) mcrs B COMIO port
Binary Cormmand Text et Yeron
™ Control & Test Window | ,¢* Samples Air Monitor
[*E1=01 T e e e -
@c!
*GI=00
@aciol
*Gl=01 -
@EI02 Ground Station data
- = . -
EJ:@DWAE’R £ transmission of
el character “AB”
{ ~
Serser ode LB pmli® Yo
“ Tet HEX Extend Function
Toscreenend Display code %9 Cleax Screen /F7 Perel Change /F5
Ddaf Ceslipit Lae 7™ Data [nput Line

Figure 21: Ground Station side data transmission test

& uart - HyperTerminal
Fle Edt vew Cdl Trandfer Hep

D& & DO &

‘E{;gﬁ ' Data“AB
- = a a . ”
«DR-02MB ¢—‘ received by MU1

1ot | at satellite side
~E1=01
~RT-01

Figure 22: Satellite side data reception test

Since the satellite is considered to be in orbit, therefore the satellite requires a
certain level of autonomous manoeuvring capabilities. Therefore the next procedure is to
integrate the MU-1 and the microcontroller at the satellite side where the MU-1 is able to
receive signals from the MU-1 for further processing. The hardware flow diagram from

the microcontroller to the HyperTerminal software in the computer is shown in Figure 23.

33

n 0 0
[+ [1+] [
= c =
k= o o
w w w
= = -
g % AN
Datafrom |[3| MU1Rx [| MU1Tx |3] reci‘"'ftmcc’”“""e’.
Microcontroller terminal terminal i procee.;smg
and retransmit
w
©
5 UART signals
t w
2 &
@ o
HyperTerminal % RS-232to USB | ©| UARTto RS-
. . [:4
display in converter 232 converter
computer adapter circuit

Figure 23: Data conversion from microcontroller to computer through MU-1

Finally in the MU-1 development process is to simulate the autonomous
capabilities when the MU-1 at the satellite side is integrated with the microcontroller. The
simulation begins as the satellite sends a data sequence “@DTOSHELLO/RCrLf” to the
Ground Station and repeats this process, if Ground Station replies “@DTO03YES/RCrLf”
and the microcontroller correctly oversamples the data sequence the response data to the
Ground Station will be “@DT04GOOD/RCrLf’. Figure 24 shows the algorithm flow
diagram for the microcontroller and Figure 25 shows the signal processes from the MU-1

at the Ground Station side via the built in graphic interface software.

34

Sian

Setup PORTC
RCB — UART output

‘

SPBRG = 01000000
BRGH =1
+ SPEN=1
TXEN=1
Transmit "@DTOSHELLO/RCrLf*

“YES" respond from GS ?

No

Transmit "'@DT04GOOD/RCrL" —.1

Figure 24: Microcontroller algorithm flow diagram for two way communication

[@ein &
| *El=01
%?lgi “HELLQO" from satellite
| @RTO2

“YES” response to satellite

.%._ “GOOD” from satellite |

Scrsen mode . after processing “YES"
@ Tt He Exind Foriuon
Tosceenend Display code @ ClearScween /F7 Pagel Change / F5

Figure 25: MU-1 two way communications at the Ground Station side through built in

graphic interface software

Once all the basic command and transmit command sequence to operate the MU-
1 have been understood, the capabilities of the MU-1 are tested in order to find the
maximum range that the MU-1 can communicate between each other. A range test was
conducted at a horizontal ground level to determine the maximum distance that the MU-1
can communicate with each other, for each increment there is an indication of the
received signal strength attached with the received data and the distance was confirmed
by visual inspection of the measured distance using a measuring tape. The software flow
is the same as in Figure 23 with the modification being that every transmit signal is

changed from “..../RCrLf” to *....%ACrLf”, the character “%A” sends the command to
35

attach the signal strength at the beginning of the transmitted data before the actual data

[7].

The received signal strength displayed at the built in graphic interface software for the

MU-1 is shown in Table 4 and for the next increment at 117m no signal was received

anymore which indicates that the transmitted signal from CanSat was too weak. An

example of how the readings were taken is shown in Figure 26.

Table 4: Signal Strength versus distance for MU-1

Distance (meter) Signal Strength (dB)
0 O0x3A =58
10.5 O0x3F =63
21 0x42 = 66
315 0x3B =59
52.5 0x43 = 67
63 0x4C =76
73.5 0x4D =77
49 0x50 = 80
84 0x52 =82
94.5 0x54 = 84
105 0x55 =85

36

Fla Seiting Help

= =
Binary

*DC#ISHELLO
*DC#CDSHELLO
*DC=4 ANSHELLD
‘DCw -
*DCESOSHELLO
‘:-cw%ms;.w
*DCH4FRSHELLO
*DCF530SHELLO
*DCHEQSHELLO

Screen wmode
o Text Hex

Tu sczeen end

Date 0

Tx Data Auts Asegn
* Lestiation 1D

Diree: entry

Gl co | 00

Socxe Rl

IT __MU-1 Evaluation Soltware Propram EditionZ for MU1.USB. 4., g@

D000 53m:23s Hex.Dec

Control £ Test Window “‘ Saraple Az Mozstor
[*DCcR3ADSHELLD '

Cleas Input Lire (FR or SANFE 4 @ Tias ¥o |

Route information repstes

Reute befermariex

00 (oo ‘0o (oo foo [oc |oo [co 09
K2 R3 R4 5 Rs K7 RS R? RIO

el =\ DR
Text mcrs B CONIO porr
©= DTR

3

Signal strength |
signature ‘

Line 57 Daaper

Extend Function

Panel Charge /F5

@ Clear Serven 1 F7

FSSI Laval

Tupet S,N Sowce N
TxDes Route Infonratior.
st St NA Add Chect

o

Tasget

Figure 26: Signal strength signature registered with the received data at the Ground

Station

4.1.4 CanSat Ground Station Graphic Interface Software Development

UART protocol is used for communication between the MU-1 at the Ground

Station (GS) and the computer where ASCII characters will be sent and received among

the devices, the development process for the software is shown in Table 5.

Table 5: MU-1 and GS graphic interface software development process

Development process

Description

Configuring the GS MU-I

using the software

Setting the Group ID and observing the reply

data signal from the MU-1

Receiving data from CanSat
MU-1

Receiving and displaying the data from the

temperature and accelerometer of the CanSat

37

Classifying the data from | Classifying the data for the temperature and 3-
CanSat payload axis from the accelerometer and displaying in

separate columns for each data representation

Plotting the graph for the | Plotting the graph for each data representation
classified data representation | on the same axis by converting the ASCII

characters to decimal numbers

The overall design view of graphic interface for the GS software is shown in

Figure 27 and the software flow diagram is shown in Figure 28.

Com Port to select MU-1 MU-1 configuration automatically detected

B AerolJ TP Mission Control Cer® .. g

COMPort COMU w BeRate bafs) V200 - DalaBts @ - Paty tore w Softmae Flow Contrgl Hone

Temperature readings :
Received data from MU-1 P g% Accelerometer readings

% \
N
Pioceised dota

-~
B cccreawn s Atedcn Y IERESRETIGN
PE=O4TCe - I O | ~ A O
“DR=04AX-0 ‘ : - .
*DR=D4AT-0 \ ' 1 bt
PDRE04ATO v o v v
Recarved
Tz
Clewr [sew | | | |
Tismmeted
40 47 49 30 32 0D OA
((Cao@ [imbosd | [Setopseemd] [Sed | [Bea | (o1R| (A8

Transmitted data Button to set MU-1
from laptop to MU-1 Group ID = 02

Figure 27: Overall design view of GS graphic interface software

38

Start
}

Detect COM Fort for all peripherals
connected to computer

P

h 4

NO'V User select MU-1 ™ ‘
COM Port? -~

1 Yes

Autormatically configure COM Port Bit
»| rate, data hits, panty preference and
software flow control

¥
NO_ " User clickto set ™~ J
~_Group ID=02? 7
Yes
LA "l Receve data from MIL-1

Classify data for
temperature and 3-axis
accelerometer reading

!

VWait for next data from
CanSat

Figure 28: GS graphic interface software flow diagram

Upon executing the program AeroUTP MCC.exe from Figure 27, all the
textboxes will be blank, the textboxes are the COM Port, Bit Rate (bit/s), Data Bits,
Parity, and Software Flow Control. Once the selection of the appropriate port designated
for the MU-1 is done, the other textboxes will be automatically configured with the
software auto detection feature. Up to this process, all the other textboxes will still be
empty and the next button to be clicked is the ‘Set GI=02" and the textbox ‘Processed
Data’ will display ‘*GI=02’ and this is the reply from the MU-1, Group ID is set to 02
since it is earlier defined for the MU-1 at the CanSat and this must be the same for
successful communication [7]. The ‘Transmitted’ textbox will display ‘40 47 49 30 32

0D OA’ which is “*GI02CrLf" in hexadecimal.
39

After a moment while waiting for the data from the CanSat sensors to be ready,
the data will be received and the initial reception will be displayed in the ‘Processed
Data’ textbox. The program processes each byte of data received to find the sequence
code to classify the readings for the temperature and the three values for the three axis

acceleration.

The software will scan all the sequence of ASCII characters received for the
sequence ‘TC’ for temperature, ‘AX’ for the X-axis acceleration, ‘AY’ for the Y-Axis
acceleration, ‘AZ’ for the Z-Axis acceleration. Upon detecting this sequence, the
software will automatically assume the following ASCII characters after the character ‘=
are the readings. The readings will then be displayed in their respecting textboxes where

the change in values can be observed.

40

4.2 Discussion

From the Results, it is observed that the features of the microcontroller that was
used includes Timer0, Timerl, Timer2, Analogue-to-Digital converter and Serial
Communication which is the UART protocol. The circuit diagram of the microcontroller

that describes the connection between the sensors is shown in Figure 29.

Output of temperature sensor

Output of accelerometer X-axis
Output of accelerometer Y-axis
Output of accelerometer Z-axis

QOutput of pressure sensor

| TX pin of MU-1

RX pin of MU-1

Figure 29: CanSat microcontroller schematic

The circuit in Figure 29 is used for the final environmental test of the CanSat.
Two voltage regulators are used for the circuit which are 5V and 3V regulators, the

circuit for each voltage regulator is shown in Figure 30 and the overall voltage regulator

circuit for the CanSat is shown in Figure 31.

ViN 1) TA4BM X xF | 2 VouT
= +

C

—
0.1 &«F
:w
Cout

Over 33 u«F

Figure 30: Voltage regulator schematic [12]
41

9V battery DII

1N4001 diode

5V voltage regulator

__I—@ TASBM x xF [2)—9 VDD Temperature sensor

i
!

— VDD Pressure sensor

Cour

Over 33 uF

3V voltage regulator — VDD crystal oscillator

——\/DD microcontroller

VDD MU-1

Figure 31: CanSat voltage regulator schematic

The Design of the CanSat requires the use of two voltage regulators is that the
temperature sensor and pressure sensor has a typical operating voltage of 5V meanwhile
the wireless transceiver MU-1 can only operate up to a typical voltage of 3V and since
there is serial communication between the MU-1 and the microcontroller therefore the
microcontroller and the crystal oscillator for the microcontroller need to be operating at
the same voltage as the MU-1 which is at 3V. A concern is also raised if the output
voltage for the temperature sensor and pressure sensor exceeds 3V, this is not a problem
since it is calculated that both the sensors shall not have readings of more than 3V which
is acceptable for the analogue input voltage for the microcontroller ADC to give an
accurate reading. The value of the capacitors used for the voltage regulators is determined
experimentally and found that the values used is suitable in eliminating any oscillating
frequency and ensure constant DC voltage supply. A 1N4001 diode is also connected
between the 9V battery and the input of the 5V voltage regulator to avoid any unwanted

reverse bias voltages that could damage the circuit.

42

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

As a conclusion, the features of the PIC16F877 microcontroller are relevant to the
development for the satellite development with the use of Timer0, Timerl, Timer2 and
the Analog-to-Digital Converter. Whereby, Timer0, Timerl, Timer2 will be used for the
timing sequence to arrange the storage of data flow starting from temperature, pressure
and the three axis acceleration values finally followed by the transmission. The serial
communication between the transceiver will is done using the UART feature. The test
conducted on the temperature sensor also proved the functionality of LM35DT in

correctly matching the voltage value to the exact temperature reading.

5.2 Recommendation

Future development plans for the CanSat integration involves redeveloping the
circuit in the Printed Circuit Board format. Extra features to further develop the CanSat
into a more functional satellite include the integration between a digital camera and
global positioning satellite receiver. Finally, the mechanical structure can be developed
for the CanSat and to perform the simulation at the specific height with the use of helium
filled balloon tethered by a string to the ground to ensure the balloon does not cause the

satellite to drift away.

43

[4]

(3]

[6]

[7]

REFERENCE

Committee on the Peaceful uses of Outer Space (2008), Report of the United
Nations/Russian Federation/European Space Agency Workshop on the Use of
Microsatellite Technologies for Monitoring the Environment and Its Impact on

Human Health, Programs and projects on space science and technology, pp. 6.

Azreena Ahmad (2006), Malaysia CanSat Program, The Program, pp 5 - 11.

Ibrahim Seeni Mohd, Mazlan Hashim, Samsudin Ahmad (2004), Research
Strategies for remote sensing development in Malaysia, Current Status of Remote

Sensing Applications, pp. 2 — 3.

Ahmad Sabirin Arshad (2004), Small Satellites Technology Development in
Malaysia, TiungSAT-1 Program, pp. 13-20.

National Semiconductor Corporation (2000), LM35 Precision Centigrade

Temperature Sensors, Features, pp. 1.

Motorola Freescale Semiconductor Inc (2001), MPX4115A Series, Integrated
Silicon Pressure Sensor for Manifold Absolute Pressure, Altimeter or Barometer

Applications On-Chip Signal Conditioned, Temperature Compensated and
Calibrated, Features, pp. 1.

Circuit Design Inc (2006), Embedded Low Power Radio Modem MU-1-R

434MHz Operation Guide, How to Use the MU-1, pp 14 — 24.
44

8]

(]

(10]

(11]

Analog Devices Inc. (2006), Small, Low Power, 3-Axis, +3g /MEMS®

Accelerometer, Feature, pp. 1.

Tan Chew Huoy, Er Mee Hoon, Faridah bt. Zainul Hashimi, Muhd. Zaiful Asmi
Sulaiman, Mohamad Fakhruruddin Romeli (2008), Malaysia SiswaSat
Competition 2008 UKM Team Critical Design Review, SiswaSat Design and
Development, pp. 12 - 17.

Circuit Design Inc. (2005), Embedded Low Power Radio Modem MU-1
Evaluation Software Program Operation Guide, Explanation of the Control and

Test Windows, pp. 7 - 15.

Microchip Technology Inc. (2001), PIC16F87X Data Sheet 28/40-Pin 8-Bit
CMOS FLASH Microcontrollers, Device Overview, pp. 5 — 10.

Toshiba (1999), Bipolar Liner Integrated Circuit Silicon Monolithic
TA48MOXXF Three Terminal Low Dropout Voltage Regulator, Features, pp. 1.

45

APPENDICES

46

APPENDIX A

FIRST PROTOTYPE OF CANSAT

-
-l
- |
-t
-

47

APPENDIX B

FINAL PROTOTYPE OF CANSAT

48

APPENDIX C

MICROCONTROLLER ALGORTITHM FOR CANSAT

//this part only up to lway communication from CanSat to GS

/fand CanSat MU-1 response feedback to microcontroller

/fand CanSat transmit voltage level of temperature +33decimal

/fand CanSat transmit voltage level of X-axis acceleration +33decimal
/fand CanSat transmit voltage level of Y-axis acceleration +33decimal

/Jand CanSat transmit voltage level of Z-axis acceleration +33decimal

#include <stdio.h>
#include <string.h>

#include <pic.h>

__CONFIG (0x3F32);

static unsigned char receivedata20[20] =
{0x()().().\;()0.()x()().(}x-l().()x4U.()x-l().()x4().0x40.Dx-HJ‘(l.\;UO.()x()0.0.\'()0.0xUU.()x()().(}x(}U.OxOO.()NOI).Ox()O.()xOO.
0x00}:

static unsigned long valueL = 0,sequence = 0,valuecLow = 0,valueHi = 0.value = 0:

const char * HELLO = "@DTO05HELLO/RO1":

const char * RTNA = "@RTNA";

const char * EI02 = "@EI02";

const char * G102 = "@GI02";

const char ¥ GOOD = "@DT04GOOD/RO1":

const char * datastored = 0:

void uartwrite9k6(unsigned char datachar);
void vartwrite] 9k2(unsigned char datachar);

void varttransmit(const char * datachar);

49

void uartreceive 19k2(void);

unsigned char SPI(unsigned char myByte):

void main()

!
L

TRISB =0b11111110; // Port B bits 7 and 6 are output

TRISD = 0b00000000;
TRISA = 0b00011111;
TRISC = 0b10000000;
PEIE = I,

GIE= 1.

//RCIE = 1;

PORTB = 0;
PORTD = 0.

for(valucL = 0; valueL < 100000; valueL++);
varttransmit(RTNA);

for(valucL = 0; valueL < 100000; valueL.++).
varttransmit(E102);

for(valueL = 0; valueL < 100000 valucL++);
varttransmit(G102);

while(1)

{

for(valucL = 0; valueL < 100000; valueL++);

uarttransmit(HELLO);

for(sequence = 0; sequence < 6; sequence++)

t
TXSTA = 0b00000100;
SPBRG = 0b01000000;

SPEN = 1;
CREN = I:
while(RCIF == 0);
receivedata20[sequence + 5] = RCREG:
i
CREN = 0;

for(valueL = 0; valueL < 100000; valueL++),
vartwrite19k2('@");

uartwrite 19k2('D");
uartwrite19k2('T"):
nartwrite19k2('0");
uvartwrite19k2('3"):
nartwrite19k2(receivedata20[5]);
vartwrite19k2(receivedata20[6]):
uartwrite19k2(receivedata20]7]):
uartwrite19k2('/"):
uartwrite19k2('R");

uartwrite 19k2('0");
vartwrite19k2('1");
uartwrite19k2(0x0D);

vartwrite 19k2(0x0A);

for(valueL = 0; valucL < 100000; valueL++);
ADCONI1 = 0b10000010;

ADCONO = 0b10100000;

ADON =1;

ADCONO [= 0b00000100;

while((ADCONO & 0x04) == 1);

valueLow = ADRESL;

valueHi = ADRESH:

valueHi = valucHi << 8;

51

value = ((valucLow + valucHi)*255)/1023;

receivedata20[1] = value + 33;

uartwrite19k2('@");
vartwrite19k2('D'),
vartwrite 19k2('T");
uartwrite19k2('0").
uartwrite19k2('4");
uartwrite 19k2('T").
uartwrite19k2('C"):
uartwrite19k2('=').
vartwrite 19k2(receivedata20[1]);
vartwrite 19k2('/);
uartwrite19k2('R"):
uartwrite 19k2('0"):
nartwrite19k2('1');
uartwrite19k2(0x0D);
uartwrite19k2(0x0A):

for(valueL = 0; valueL < 100000; valueL++);
ADCONI = 0b10000010;

ADCONO = 0b10001000;

ADON = 1.

ADCONO |= 0b00000100;

while((ADCONO & 0x04) == 1)

valueLow = ADRESL;

valueHi = ADRESH;

valueHi = valueHi << 8;

value = ((valueLow + valueHi)*255)/1023:

receivedata20[2] = value + 33;

uartwrite19k2('@');

52

uartwrite19k2('D");
vartwrite19k2('T'):
uartwrite19k2('0"):
vartwrite19k2('4");
vartwrite19k2('A");
vartwrite19k2('X"):
uartwrite19k2('=").
vartwritel19k2(receivedata20(2]);
uartwrite19k2('/");
uvartwrite19k2('R");
uartwrite19k2('0"):;
uartwrite19k2('1");
uartwrite19k2(0x0D);
uartwrite 19k2(0x0A);

for(valueL = 0; valueL < 100000; valueL++);
ADCONI = 0b10000010;

ADCONO = 0b10010000;

ADON =1,

ADCONO [= 0b00000100;
while((ADCONO & 0x04) == 1);
valueLow = ADRESL;

valueHi = ADRESH:

valueHi = valucHi << 8:

value = ((valucLow + valucHi)*255)/1023;
receivedata20[3] = value + 33;

vartwrite 19k2("@);
uartwrite19k2('D");
uartwrite 19k2('T");
uartwrite19k2('0");
vartwrite19k2('4");

53

uartwrite 19k2('A");

vartwrite 19k2("Y");

vartwrite 19k2('=");

uartwrite 1 9k2(receivedata20[3]):
unartwrite 19k2('/"):

vartwrite 19k2('R");

uartwrite 19k2('0");

uartwrite 19k2('1");
uartwrite19k2(0x0D);

uartwrite 19k2(0x0A);

for(valueL = 0; valueL < 100000; valueL++);
ADCONI = 0bl10000011;

ADCONO = 0b10011000;

ADON = 1.

ADCONO |= 0b00000100;

while((ADCONO & 0x04) == 1);

valueLow = ADRESL;

valueHi = ADRESH;

valueHi = valueHi << 8;

value = ((valueLow + valueHi)*255)/1023:

receivedata20[4] = value + 33

nartwrite19k2("@");
nartwrite19k2('D");

uartwrite 19k2("T");

uartwrite 19k2('0");

uartwrite 19k2('4');

uartwrite 19k2('A");
uartwrite19k2('Z');
uartwrite19k2('=");

vartwrite 1 9k2(receivedata20[4]);

54

vartwrite 19k2('/);
uartwrite19k2('R");
uartwrite19k2('0");
vartwrite19k2('1");
vartwrite 1 9k2(0x0D);
uartwrite19k2(0x0A);

ar

e

void uartreceive 1 9k2(void)
t

for(sequence = 0; sequence < 6; sequence++)

{

TXSTA = 0b00000100;

SPBRG = 0b01000000;

SPEN =1;

CREN = 1;

while(RCIF == 0);

receivedata20[sequence] = RCREG;

1
)

CREN =0;

-

void uarttransmit(const char * datachar)

{ unsigned char datasequence = 0;
do
{ uartwrite 19k2(datachar|datasequence]);
datasequence++;

if(datachar{datasequence] == 0)
datasequence = 21;
H

while(datasequence != 21);

wh
h

datachar = 0;
uartwrite19k2(0x0D);
uartwrite 19k2(0x0A);

void nartwrite19k2(unsigned char datachar)

¥
t

——

TXSTA = 0b00000100;
SPBRG = 0b01000000;
SPEN=1;

TXEN =1,

TXREG = datachar:
while(TXIF == 0).
while(TRMT == 0);

void uartwrite9k6(unsigned char datachar)

{

—

TXSTA = 0b00000100;
SPBRG = 0b10000010;
SPEN = 1;

TXEN=1;

TXREG = datachar;
while(TXIF == 0);
while(TRMT == 0);

56

APPENDIX D
VISUAL BASIC 2008 ALGORITHM FOR MISSION CONTROL

CENTER (MCC)

Imports System

Imports System.Drawing

Impo System.IO.Ports

Imports System.Threading

Imports System.Threading.Thread
Imports System.Drawing.Drawing2D

rts

LLs

Public Class MaxiTester
Dim SpaceCount As Byte

0

Dim LookUpTable As String =

Dim RXArray(2047)

P oy
LS v i als

As Char
RXCnt A

more LAXedads.,

5

Integer
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

TextString As String
RXByte As Byte

result As Integer
RXArray2(2047) As
RXCnt2 Integer 0

sample As Integer 199
samplebuffery As Integer
samplebufferx As Integer

Char

AL

AT
Vic

System.EventArgs)

iim WithEvents COMPort As New SerialPort

Private Sub Forml Load(EyVal sender As System.Object, ByVal e As

Handles MyBase.Load

Dim I As Integer

Dim gl As Graphics = Me.CreateGraphics()

gl.DrawLine (Pens.Black, 60, 325, 960, 325)

gl.DrawlLine (Pens.Blue, 260, 70, 960, 325)

Eoxay 0 To 199
gl.Drawline (Pens.Black,

(B0 (T) 32:5, E {601

330)

Next

57

HESS Bl IE

End Sub
Private Sub Receiver (ByVal sender As Object, ByVal e As

SerialDataReceivedEventArgs) Handles COMPort.DataReceived

'Dim RXEyte As Eyte

RXByte = COMPort.ReadByte
RXArray2 (RXCnt2) = ChrW(RXByte)
RXCnt2 = RXCnt2 + 1

Loop Until (COMPort.BytesToRead = 0)

Fommimn [End of

Me.Invoke (New MethodInvoker (AddressOf Display)) ' Start

"Bisplay" on the I thread
Loop Until (COMPort.BytesToRead = 0} ' Don't return if more
bytes have become available in the mean
End Sub
’ 23 ! vhiich appends the received string te any
3= i} .

Private Sub Display()
Received.AppendText (New String(RXArray, 0, RXCnt))
TextBoxl.AppendText (New 3tring(RXArray2, 0, RXCnt2))
Displayprocessed()

'EYArray

by ot " A ot A
End Sub

' Transmitter subroutine.

Private Sub Send(ByVal sender As Object, ByVal e As EventArgs)
Handles SendButton.Click
Transmitter ()
End Sub

Private Sub Transmitter()

Received.AppendText ("T<" & vbCrLf) ' Bwitch to a new line

after every transmission
SpaceCount = 0
"Dim TextString As String
Dim TXArray(2047) As Byte

Dim I As Integer

Dim J As Integer = 0

Dim Ascii As Boolean = False

58

Dim Quote As Boolean = Fals
Dim Temp As Boolean
Dim Second As Boolean = False
Dim TXByte As Byte = 0
Dim CharByte As Byte
If COMPort.IsOpen Then
TextString = Transmitted.Text
For I = 0 To TextString.Length - 1
CharByte = Asc(TextString. Chars(I)}

8

w

1f CharByte = 34 Then ' If "
Temp = Ascii
Ascii = Ascii Or Quote
Quote = Not (Temp And Quote)
Else
Ascii = Ascii Xor Quote
Quote = False
End If

If tlot Quote Then
1f Ascii Then
TXArray(J) = CharByte
J=J + 1
Else
If (CharByte <> 32) And (CharByte <> 10) And
(CharByte <> 13) Then ' Skip spaces, LF and CR

CharByte = (CharByte - 48) And 31 ' And 21

case insensitive
If CharByte > 16 Then
CharByte = CharByte - 7
End If
1f Second Then
TXArray(J) = TXByte + CharByte
Second = False
Jdi= J 41
Else
TXByte CharByte << 4
Second = True
End If
End 1f
ENaNLE
End If

1l

Next
Ak a1
COMPort.Write (T¥Array, 0, J)
Catch ex As Exception
MsgBox (ex.Message & " heck €T3 signal or set
Control te Nene.“)

End Try

7]

Else

59

MsgBox ("COM porxt is closed. Pleasgs select a COM port")

End If

s

B Ly 1
mnga oun

Private Sub PortSelection(ByVal sender As Object, ByVal e As

EventArgs) Handles COMPortsBox.SelectedIndexChanged
RTSLamp.BackColor = Color.Gray
DTRLamp.BackColor = Color.Gray
1f COMPort.IsOpen Then

COMPort.RtsEnable = False
COMPort.DtrEnable = False
ClosePort ()
Application.DoEvents ()

Sleep (200) L Pair 0.2 sacond Tor 1
ro elose as this does not happen immeciately
End If
COMPort.PortName = COMPortsBox.Text
COMPort.BaudRate = 19200 ' Default for Max-i: 19
Lit/s, B8 date bits, no parity, 1 stop kit
COMPort.WriteTimeout = 2000 ! Maz time to wait fox
v I ogd N £ L638¢ Necessary buifer size
Try
COMPort.Open ()
*fatch ex As Exception
MsgBox (ex.Message)
End Try
BaudRateBox,.Text = COMPort.BaudRate.ToString
BitsBox.Text = COMPort.DataBits.ToString
ParityBox.Text = COMPort.Parity.ToString
FlowControlBox.Text = COMPort.Handshake.ToString
If COMPort.IsOpen Then
COMPort.RtsEnable = True
RTSLamp.BackColor = Color.LightGreen
COMPort.DtrEnable = True
DTRLamp.BackColor = Color.LightGreen
End It
End Sub

Private Sub MaxiTesterLoad(ByVal sender As Object,

EventArgs) Handles MyBase.Load

For Each COMString As String In
My.Computer,.Ports.SerialPortNames ' Load all available

COMPortsBox.Items.Add (COMString)

Next

COMPortsBox.Sorted = True

BaudRateBox.Items.Add("110")

ByVal e As

LU0V vy e
COM ports.,

60

BaudRateBox.Items.Add ("3C0"
BaudRateBox.Items.Add ("! !
BaudRateBox.Items.Add (" ..
BaudRateBox.Items.Add ("
BaudRateBox.Items.Add ("
BaudRateBox.Items.Add ("
BaudRateBox.Items.Add ("
BaudRateBox.Items.Add (" 2t
BaudRateBox.Items.Add (" 1440¢
BaudRateBox.Items.Add (" 15200

BaudRateBox.Items.Add (" 234

BaudRateBox.Items.Add("57700") ’ 8 hvtes
BaudRateBox.Items.Add ("115200) : & bute
BaudRateBox.Items.Add (" 230400") ' Min. FIFO size 32 Lytes
BaudRateBox.Items.Add ("450800") ' Min., FIFQ size €4 bytes
BaudRateBox.Items.Add ("22i6G0") ' Min. FIFC size 128 bhytes
BitsBox.Items.Add("5")

BitsBox.Items.Add("6")

BitsBox.Items.Add("7")

BitsBox.Items.Add("%")

ParityBox.Items.Add("None")

ParityBox.Items.Add(A7)

ParityBox.Items.Add("Even")

ParityBox.Items.Add("Marh") ' fLeaves the parity bit s
ParityBox.Items.Add("5pace") ' Leaves the parity bLit se

FlowControlBox.Items.Add("Ncne")
FlowControlBox.Items.Add("F 2 8
FlowControlBox.Items.Add ("keques
FlowControlBox.Items.Add ("¥OnA0L
RTSLamp.BackColor = Color.Gray

DTRLamp.BackColor = Color.Gray
CTSLamp.BackColor = Color.Gray
DSRLamp.BackColor = Color.Gray

End Sub

Private Sub ClosePort()
I1f COMPort.IsOpen Then COMPort.Close()
End Sub

Private Sub MaxiTesterClosing(ByVal sender As Object, ByVal e As
CompcnentModel.CancelEventArgs) Handles MyBase.Closing

61

If MessageBox.Show("D¢ veou really want to close the window
MessageBoxButtons.YesNo) = Windows.Forms.DialogResult.No Then
e.Cancel = True
Else

COM moart on = new Phirean whern tho Ffaym o rmerms e o
OM FOXT Oon & nNew chread wien tiie Iorm 15 Terminata2d

LA

Dim t As New Thread(AddressCf ClosePort)
t.Start ()
End If
End Sub

Private Sub ClearReceivedText (ByVal sender As Object, ByVal e As
EventArgs) Handles ClearButton.Click
Received.Text = ""
SpaceCount = 0
Enc Sub

Private Sub SendBreak(ByVal sender As Object, ByVal e As EventArgs)
Handles BreakButton.Click
I1f COMPort.IsOpen Then
COMPort.BreakState = True
Sleep((11000 / COMPort.BaudRate) + 10)

» P ooy gt - Ing 4o N, T I P | -
GelLay SR 1S LS parivy oat

AG wrd

S S

yviher ! (
= aclel 15 m8 i
COMPort.BreakState =
Else
MsgBox ("llo COM FPort Selected")
End 1f

End Sub

Private Sub BaudRateSelection(ByVal sender As Object, ByVal e As
EventArgs) Handles BaudRateBox.SelectedIndexChanged
COMPort.BaudRate = CInt (BaudRateBox.Text)
End Sub

Private Sub DataBitsSelection(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles BitsBox.SelectedIndexChanged
COMPort.DataBits = CInt (BitsBox.Text)
End Sub

Frivate Sub ParitySelection(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles ParityBox.SelectedIndexChanged

62

COMPort.Parity = CType([Enum] .Parse(GetType (Parity),
ParityBox.Text), Parity)
End Sub

Private Sub SoftwareFlowControlSelection (EyVal sender As
System.Object, ByvVal e As System.EventArgs) Handles
FlowControlBox.SelectedIndexChanged

COMPort.Handshake = CType([Enum].Parse (GetType (Handshake),
FlowControlBox.Text), Handshake)
End Sub

Private Sub ModemLamps (ByVal sender As Cbject, ByVal e As
SerialPinChangedEventArgs) Handles COMPort.PinChanged
If COMPort.DsrHolding Then
DSRLamp.BackColor = Color.LightGreen

ok (=
l se

DSRLamp.BackColor = Color.Gray

End TIf

If COMPort.CtsHolding Then
CTSLamp.BackColor = Color.LightGreen

Else
CTSLamp.BackColor = Color.Gray

End If

End Sub

private Sub SaveText (ByVal sender As System.Object, EByVal e As
System.EventArgs) Handles Buttonl.Click
Dim SaveFileDialogl As New SaveFileDialog()
SaveFileDialogl.Filter = "Text Files (*.txt}i”
SaveFileDialogl.Title = "3ave Recaived :
Tf SaveFileDialogl.ShowDialog() =
System.Windows.Forms.DialogResult.OK _
And SaveFileDialogl.FileName.Length > 0 Then

My.Computer.FileSystem.WriteAllText (SaveFileDialogl,FileName,
Received,Text, False) ' Overwrite file
End If
End Sub

Private Sub Transmitted TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Transmitted.TextChanged

End Sub

Private Sub Button2 Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button2.Click
Transmitted.Text = "44 47 49 30 32 0D OAM
Transmitter ()

63

End Sub

Protected Overrides Suby OnPaint (ByVal e As PaintEventArgs)
Dim I As Integer

Dim gl As Graphics = Me.CreateGraphics()
gl.Drawline (Pens.Black, 60, 325, 960, 325)
gl.DrawlLine (Pens.Blue, 960, 70, 960, 325)
For I = 0 To 199
gl.DrawlLine (Pens.Black, (60 + (I * 4)), 325, (60 + (I * 4)),
330)
Next
End Sub 'OnPaint
'This is the Paint event handler
Private Sub Forml_Paint(ByVal sender As Object, ByVal e As
System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

End Sub 'Forml Paint

Private Sub Received TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Received.TextChanged

End Sub

Private Sub ReceivedLabel Click(ByvVal sender As System.Object, ByvVal
e As System.EventArgs) Handles ReceivedLabel.Click

End Sub

Private Sub Displayprocessed()
Dim I As Integer

Dim gl As Graphics = Me.CreateGraphics()

" | B v T % v { Doty =1} . 1o { =03 1 S 4 - Ay '] 2l : T . £
| . Drawline (Peng,Black, (U + 1 433y B25; {blE # UE T 433,

sample = sample - 1
For I = 0 To RXArray2.Length - 1

If RX¥Array2(I) = "T" Then
If RXArray2(I + 1) = "C" Then
Temp.AppendText (AscW (RXArray2 (I + 3)) & vbCrLf)
If sample = 198 Then
gl.DrawLine (Pens.Red, 60 + (sample * 4), 325 -
é?scW(RXArrayz(I + 3))), 60 + (sample * 4), 325 - (AscW(RXArray2(I +
\RN]

64

samplebufferx
samplebuffery

Else

60 + (sample * 4)
325 - AscW(RXArray2(I + 3))

gl.DrawLine (Pens.Red, 60 + (sample * 4), 325 -
(AscW (RXArray2 (I + 3))), samplebufferx, samplebuffery)
samplebufferx = 60 + (sample * 4)

samplebuffery = 325 - AscW(RXArray2(I + 3))
End If
End If
End 1If
If RX¥Array2(I) = "A" Then
If R¥Array2(I + 1) = "X" Then
Xaxis.AppendText (AscW (RXArray2 (I + 3)) & vbCrLf)
End If
End If
TIf RXArray2(I) = "A" Then
1f RXArray2(I + 1) = "¥" Then
Yaxis.AppendText (AscW (R¥Array2(I + 3)) & vbCrLf)
End If
End If
I1f RXArray2(I) = "A" Then
If RXArray2(I + 1) = "2" Then
Zaxis.AppendText (AscW (RXArray2(I + 3)) & vbCrLf)
End If
End If

Next
1f sample = 0 Then
sample = 199

End If

End Sub

Private Sub Temp TextChanged(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Temp.TextChanged

End Sub

Private Sub TextBoxl TextChanged(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles TextBoxl.TextChanged

End Sub

Private Sub Xaxis TextChanged(Byval sender As System.Object, ByVal e
As System.EventArgs) Handles Xaxis.TextChanged

End Sub

65

private Sub Yaxis TextChanged(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Yaxis.TextChanged

End Sub

Private Sub Zaxis_TextChanged(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Zaxis.TextChanged

End Sub

End Class

66

