v

TSN PR o
LA

. bt . . 1 - S .
) - IR N s RS . - < - = .-
- .y = 5 - . B - s s s d
p R el T) R T S o s e i B, e e
) e v
; . { . ' ~ = - T - - - - - = g -
¥ . 5 = - F = £
. - - Y LR T B o e R e e = AL

ACCESS CONTROL USING WIRELESS FOR DATA COMMUNICATATION
TO DATA TERMINAL

By

TAN JIA MIN

Dissertation

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

ACCESS CONTROL USING WIRELESS FOR DATA COMMUNICATATION
TO DATA TERMINAL

by

<

Tan Jia Min

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

o

| =
Mr. Patrick Sebastian

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2010

e

CERTIFICATION OF ORIGINALITY

This is to certify that | am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MG L

Tan Jia M[n

ase
1

ABSTRACT

Wireless access control system is using Wi-Fi technology for the systems to
communicate with data terminal, a computer. It has been gaining popularity in access
control industry for its flexibility, higher efficiency on systems installation and
reduces cost of material. The main objective of this project is to develop wireless
access control that can be accessed via HTML website using Microchip development
board. TCP/IP protocol is used for its wireless technology, using ZeroG module that
provides 802.11 standards. Application of wireless access control starts with
initialization of hardware and computer through IP address assigned by access point.
Transaction data can be monitored from computer through HTML website, and user
can update database from computer to hardware device wirelessly. This project was
divided into two phases. Phase | includes hardware design while Phase Il is focusing
on firmware algorithm design. Interrupt service routine was used to prompt
development board to read input signal fed from Wiegand wiring signal. Wiegand
data obtained is then compared to the database on hardware board and indication
output is displayed. Hardware and firmware algorithm are designed, tested, debugged
and verified for few user and show significant result. This operational project is

complete and has achieved its objectives.

ACKNOWLEDGEMENT

I would like to express the greatest gratitude to several people for their contribution.

This project would have been incomplete without their advices and technical supports.

First and foremost, my final year project supervisor, Mr. Patrick Sebastian, for all his
invaluable help, advices, suggestions, and encouragement given while doing the

project, right from its conception to its completion.

I would like to gratefully thank Mr. Yap and Ms. Stacy Wong, manager and
supervisor from Micro ID and all the staffs for their full supports on technical issues

and resources.

I would like to acknowledge my colleague, Ms. Ong Wen Sher who provides her
support on designing HTML data organization on computer. Her help has helped me

to complete this project on time.

Last but not least, | would like to thank Electrical and Electronics Engineering

Department for providing resources, facilities, and needs throughout this project.

TABLE OF CONTENTS

LIST OF FIGURES . cccuccississsnsmsismsssssissssnssssiassensssssissssioississssmmssessmsmmonossaanonsy viii
LIST OB TABIES o i ossinmisiassmsi s iyisis s s e s A i R e e s X
ABBREVIATIONS AND NOMENCLATURES......ccoieeeeeeeeesteeeceeeeae s Xl
CHAPTER 1 INTRODUCTION .iicicicassernessasssansorarssssosssasessessassasssasessonsesssonassessansasass 12
1.1 Background OF St ..o smemssns 12
1:2:Problem STAtemEnt. ... ceouviisssinmamimimommsmsssessirrmssntirtssasmas 13
1.3 Project OVEIVIEW ...ccccivuiueseereererereueierescsesesesesesessssssssesssssssssesnsennas 14

| ODJECEIVES .ccocenraasecsssseseonisassnsansasonssssnsnssassassnssasnsassnsiissssssvassanionsiis 13

1.3/ SCOPCIOT STUAILS .o i rirsirrassisisriiasarinssamasssasassensaressersrasesonsnsants 15
CHAPTER 2 LITERATURE REVIEW. ... uoumasinvsssnsnusssmmasnistannimm 16
Atz eroty Wik Modide o SNl . s sl O
2.2 Wiegand 26-bit FOrmMatc.eueeveveueeeeeeiececeeeeeeee e eeese s eenns 18
LB TORIP . i siihenireisnsssiossasirmimsmmnssitotsensnomnsrarmssssssnasrasnsnansasesasienss 19
2.3.1 The Microchip TCP/IP Stack..........ccoceeevueeeveeerreeessesseeenne 20
2.4 Microchip PIC24F Microcontroller.........uo.eeeeeeeeeeeeeeeeeeeeeeneeenne 21
2.5 Common Gateway Interface (CGI)couevveereeeevireeseieeseeeeeseensinens 23
&1 P VAR R R e U TR B 6 B8 G o et ot e e e 24
3. L Proposed MEHOd ... i e esemsstasnsasonsassrenerensssronssrorrrnares 24
3.2 Tool/Equipments Required ... s issmassemimrasisstiosssn srassons 27
235 B 5 10] [02 2070 <2 o S PR e e Rt 28
33,1 LAl A CIVIIICS . i v siras s asiemetods st mssesss s e Ao e i 28
3.3.1.1 Working with C30 and MPLAB IDE.........ooooovoveeeeeeennn. 28
331 2 Intermapt Hanadling ... i o st eavasetss 28
3.3.2 Project Development on Micro ID MX7 Board..................... 29
3.3.2.1 Prototype hardware debugging..........ccceueveevieievcnrereersinnnns 29
3.3.2.2 Firmware Development...............ccoceeereeeeresniresneeesessessosens 29
3.3.3 Product development on Microchip Explorer 16 Development
5T el I e e e e e et ey ey sy e ot 30
3331 Hardware development . e oririuessatossnssins 30
333 2 rmware Deyelopmenit et cte s eatis o st tensts 31
3.3.33 Sonrce Code FIOW CHATLcoorivecriereersersissenassasacsaseesssnssrs 31
3.4 Key Milestones/Project ACtiVILIes.........cceevererererenerersneseresessnensnnns 33

vi

CHAPTER 4 RESULTS AND DISCUSSION.......cnissisnsismnsnssssmssissrsvisvivorsenssssss 34

-8 T SO0 O O SR S e e R 34
A1 1L ab ACHVIHES...civivnsimss i csamsssnsnnssssassasmresasianss 34
4.1.2 Project Development on Micro ID MX7 controller board35
4.1.2:1 Hardware DeDUgEINg:msvmnmmsrissmamsmsssimisossy 35
4.1.2.2 Firmware DevelODIeNtciccuvesmsisvimiamnsiasczastosiassaessivse 36
4.1.3 Project Development on Microchip Explorer 16 Development
BOArd...cciisiinsseismisimisisasisisssmisssssessasisidarsnessosesssssnspisissosnnios 37
4.1.3.1 Hardware Debuggingcccocevveverrerresraeressenseersesessersessenne 37
4.1.3.2 Firmware Development..............ccccoccvemiiemenssnnsnesasenssansns 37

L B T T 42

4.2.1 Lab Activities and development on Micro ID MX7 Controller
BORI. .:c:.vciiossomssssumsmsinssssmmasetsissessshatanishissasnsiesassassessamantusisnisnsoesers AL

4.2.2 Project Development on Explorer 16 Development Board ...43

4.2.2.1 Additional devices/changes on hardware..........c.ccccceeneenee. 43

4.2.2.2 Access control application on firmware algorithm design.43

4.2.2.3 HTML user interface customized for access control.......... 44

CHAPTER 5 CONCLUSION AND RECOMMENDATION........cccoceneenieeneerernene 45
3.1 CONCIUSION. ... csrearsrsenseansrnssrssessonsessassansrsssosrarsassnssrssomsayssnsansassarsner=sss 45

912 B CEOMINCIIATION etk tacissrios ieismas s i s e s SrTEs A O I s o T e d s 45
REFERENGCES v it asrinsihSessasaasaisnps s shnsoriaa s s et csuaaasas 46
APPEN DI S i sttt il i 48
Appendix A Gantt chart for final year projectcccoceevveviiceccinnnnnns 49

Appendix B Gantt chart for final year project Il.....ccccocevvviveiienrannnnes 50

Appendix/C Zerol Wi-li modnle ..o i ras ot rasatssissoniosssnsianss 51

Appendix D Microchip development board.........ccccovveivenrnncinneecnennns 52

Appendix E Firmware Source Code.......ovvrininininiicrinneccnnnnsnncsaenees 53

vii

LIST OF FIGURES

Figure | Stand-alone access control SyStem......cooveverirueiereerensessesssreeessessesassennenees 12
Figure 2 PC-linked access COntrol SYSIeIN st iossssrsrmsrsissssssonsns 13
Bigure:3:ZeroG WieEl MOAUIE o sicisimsscimsassmissrsessssirarisissnsssssssnmrinsssisssrisopiesevess 17
Figure 4 Sample Wiegand data Stream........ccocceeeveecireersnrseeiessssiessassesssssseseessssessaeassnas 18
Figure 5 26-bit Wiegand format data..........ccccviviicieiiiiiiciininnceecncsceer e 18
Rigare 6 FO B Iavers o e e e 19

Figure 7 Comparison of Microchip TCP/IP Stack and TCP/IP Reference Model21

Figure 8 PIC24F memory Organization.........coueeeeieseerisenessasaessssesserseressassassssssenss 22
Figure 9 Working mechanism and data exchange mode of CGIcccceeererveerieneenes 23
Figure 10 Final Year Project Process FIOW,....:cauvmisnismsmnsssresssiisasissssmnmminsisis 25
Figure 11 Source Code Development Chartco.vooiiecieieeccierieeereereeese e ssanes 25
Figure 12 Microchip Development Boardccooueevieeoieeiecorecceeeneeceeeseeeeeee e s 26

Figure 13 Micro ID'MX7 controller Doard .:ismmimmmmimmnmsmmmainimimnmm 20

Figure 14 Interrupt Handbng i o i e e e e e e avassstbons 28
Figure 15 Modification made on Explorer 16 board........cccoceovverienvciiivencneinenicnenennn 30
Figure 16 Flow chart for board initializationccceeecvviennreesensereeseseseseseseesneenes 31
Figure 17 Elow chart Tor A PROSTAINviriciissiamsismsetnssnsissssssansonsessmshssissasitrsssiosasss 32
Figure 18 Flow chart for interrupt SErvice routinecueeeeceeeeresaessasseeessesesserassans 33
Figure 19 LEDs blinking on development board............ccooiiiieoniieceeececnees 34
Figure 20 iabisessionon PIC 24 128 . . e eaesrrvss e sviz s ees 35
Figure21 Modified MX7 controller BOArd ;... . cosesiicssinsmosessninsannsasasssommssassasasmasasss 36
Figure 22 Debugging controller board using PICKit2..........cccoeveeviveeeeeeereeereereecnene 36
Figure 23 Explorer 16 board with EM card reader and ZeroG wireless module........ 37
Figure 24 EM card being read by card reader.............ccccoeseiruinsossesssssssssssassesssssnsrssonss 38
Figure 25 User ID showed 0n LCD diSPIAY....c.cceiivessisnresssssossrissesosersainassssosssesssosss 38

viii

Figure 26 Default HTML website during start-upcocccoveeeeeeieeceeecereeceeeeeee e 39
Figure 27 HTML format displaying access control SyStemscccoceevesereeniennnennes 40
Figure 28 Add function for user 1D to be stored in databasecccceevereereecereerenne 40

Figure 29 Display user when transaction OCCUIS......essessssssssesassssssssssessssesansssasssassessass & 1

ix

LIST OF TABLES

Table | Tools required in project deVelOPmMENtc.ouvveeiiiveieeieeee e

Table 2 Input/output devices’ functionality

Table 3 Planned task for Final Year Project I1

..

ADC
ARP
Cal
EEPROM
HTML
IP
LAN
LSB
MSB
MCU
MPEFS
SPI

TCP/IP

ABBREVIATIONS AND NOMENCLATURES

Analog to Digital Conversion
Address Resolution Protocol
Common Gateway Interface
Electrically Erasable Programmable Read-Only Memory
HyperText Markup Language
Internet Protocol

Local Area Network

Least Significant Bit

Most Significant Bit
Microcontroller Unit
Microchip File System

Serial Peripheral Interface

Transmission Control Protocol / Internet Protocol

Xi

CHAPTER 1
INTRODUCTION

1.1 Background of Study

Access control is process of individuals are identified and being permitted to
certain accessibility to information, systems or resources [2]. Individuals experience
access control in normal daily routine including to access entrance to individuals’
office, to log in individuals’ computer or ATM system in a bank [8]. Access control
plays an important role as to protect private and confidential information, transaction

or area from unauthorized individuals [1].

At the present time, access control has varied into different functionality and
features, yet still underlying the main principle of preserving and protecting the
confidentiality, integrity and availability of information, systems and resources.
Physical access control allows accessibility of an individual to a certain area [7].
Individuals are given tokens such as access pin number, electromagnetic (EM) card or

using their own fingerprint to seek the permission of accessing a building or an area.

ADMINISTRATION
SYSTEM

PC or
- |

Ctandanlo na

Door Controller

.
Events

Updases
.

DOCR
CONTROLLER

@)

[——
Aciess
Dedsion? |

Figure 1 Stand-alone access control system

12

Physical access control can be divided into two main categories:

e Stand-alone access control

e PC-linked access control

Stand-alone access control is a basic system of access control which usually is
installed at any physical barrier without a computer as central data base. It is simple
and suitable to be used in small buildings. On the other hand, PC-linked access
control involves a few access control and a computer as central processing unit and it
retrieves, processes and analyses data in access control systems for detailed
accessibility of individuals. It is more complicated and hence often used in bigger

building or strict security area.

To other
control panels |

C Control “ | Control H =
panel ¢ panel \!. B

| JJjL L | L

Host PC RS485 communication line

=

JmE | jmE| jEE | jEE

Figure 2 PC-linked access control system

1.2 Problem Statement

Physical access control system is gaining more attention for private and
security purposes. Conventional PC-linked access control system uses RS485 or
RS232 cable to communicate between host computer and access control system [9].
With such transmission medium, additional software such as SSoftNet is required to

interpret data retrieved from access control. Accessibility of data could be

13

inconvenient sometimes as user has to configure setting or update database on
controller hardware itself, which requires rebooting; or, through external software on
PC such as SSoftNet that sometimes failed to organize data in order. Apart from that,
transmission medium using cable limits the distance between access controls and host
computer. Due to its limitation, conventional access control systems have smaller

coverage area and inconvenience during installation process.

Hence, these problems drive to the focus of this prototype-based project, a
wireless PC-linked access control system that serves as an alternative solution to
conventional systems. With Wi-Fi technology, it provides flexibility and wider
coverage area for the system'’s installation as repeater (access point) will be added to
enhance wireless signal. Also, user can retrieve data in access control systems at

anywhere and anytime via LAN connection through internet browser.

1.3 Project Overview

In collaboration with Micro ID Sdn Bhd, access control systems using Wi-Fi
technology to communicate with PC was proposed. Conventional access control
systems require user to monitor data transaction and add or delete authorized
personnel by interfacing with access control controller. However, this project will
provide flexibility to user, as data monitoring and authorizing personnel can be done
via PC. Using Wi-Fi protocol, access control systems will communicate in TCP/IP
stacks with PC and presented it in html format, a more graphic user interface as

compare to hardware controller.

14

1.4 Objectives

This project is expected to achieve the following objectives at the end of Final

Year Project:
® To design and develop and algorithm to control microcontroller in access
control to transmit data wirelessly to communicate with PC

e To develop User Interface on PC in HTML and Telnet files for user to retrieve

and analyze data transaction in access control systems

» To develop wireless access control systems that is practical in the industry

1.5 Scope of Studies

In general, the project encompasses the following scopes of study:

e C language on developing project’s algorithm

e Microcontroller features and application

e Application of TCP/IP stack on embedded systems on wireless transmission

e HTML and Telnet application for developing user interface between PC and
users

CHAPTER 2
LITERATURE REVIEW

2.1 ZeroG Wi-Fi Module

Wi-Fi is wireless technology that uses radio waves that enables connection for
data sharing purposes between two or more devices wirelessly [12]. The organization
which owns Wi-Fi (registered trademark) term, Wi-Fi Alliance, defines Wi-Fi as any
“wireless local area network (WLAN) system that are based on Institute of electrical
and Electronics Engineers’ (IEEE) 802.11 standards™ [11]. Wi-Fi has gained its
popularity over conventional wired network between devices such as computers for

data transferring as it requires minimum usage of hardware [13].

Basically, Wi-Fi operates without any physical wired connection between data
terminal by using radio frequency, RF technology, which is frequency within
electromagnetic spectrum associated with radio wave propagation [14]). When RF
current is applied to an antenna, an electromagnetic field will be created and hence
can be propagated through space. A wireless access point (WAP) connects a group of
wireless devices to an adjacent wired LAN, which is similar to a network hub, also it
is to broadcast wireless signal for other data terminals to detect and are connected to
it.

Wi-Fi is widely used in many applications and consumers electronics
especially computers, major operating systems, PDAs, mobile phones and others.
Any devices that are tested and approved as “Wi-Fi Certified” by Wi-Fi Alliance is

interoperable to each other, even them are produced from different manufacturers
[15].

ZeroG Wi-Fi module (Refer Appendix B) will be used in this wireless access
control systems. It is designed to be easily fit in embedded systems in applications

such as consumer electronics, remote device management, medical, health and fitness

16

applications and etc., allowing users to access information from internet. ZeroG Wi-
Fi provides functions such as [14]:
e Robust networking stack and Wi-Fi driver that is compatible with
microcontrollers
e Secure network connectivity supporting WEP, WPA and WPA2
e A community of development partners with expertise in RF design, software
drivers, and building backend servers and client devices.
e Certified modules to minimize certification efforts navigating through the

process for government and industry compliance

Figure 3 ZeroG Wi-Fi module

ZeroG Wi-Fi module consists of ZG2100 single-chip transceiver, a single chip
802.11 radio supporting data rates up to 2M bits per second, which with all associated
RF components, crystal oscillator, and bypass and bias passives along with a printed
antenna. With these features, the module provides a fully integrated Wi-Fi solution
that can be controlled by an 8 or 16 bit processor or microcontroller. ZeroG Wi-Fi
module is designed for low-power and low-duty applications and has four different
power modes which are extremely low leakage and has fast “wake-up” architecture.
ZeroG Wi-Fi module supports AES and RC4 based ciphers (WEP, WPA, WPA2
security) and is under FCC Certified and Wi-Fi Certified.

17

2.2 Wiegand 26-bit Format

Due to the wide use of Wiegand technology in 1980°s, when Wiegand card
were factory coded with magnetic wires embedded in between plastic sheets most
card readers implemented the “Wiegand interface”. Hence, resulting Wiegand format
is a wiring standard which is widely used in access control industry field. Wiegand
interface are devices that receive input from users’ identification token and output

into data of 26-bits, 32-bits or 40-bits Wiegand data.

A Wiegand standard wiring consist of five wires: DATAO, DATAI1, LEDO,
power supply and ground. DATAO and DATAI are the two signaling wires that
transmit Wiegand data serially. Negative pulse on DATAO line represents a 0 bit data,
while negative pulse on DATAIlline represents a | bit data. Figure 4 shows the
Wiegand data stream of for binary value *01101°. Each dip on the line represents a

change from 5V to OV.

Data0 Lo_.l l._o_l
Data4 P [[LS

Figure 4 Sample Wiegand data stream

26-bits Wiegand data is the most commonly used format compare to 32-bits
and 40-bits. This Wiegand format consists of a parity bit at Most Significant Bit
(MSB), followed by 8-bit facility code, then a 16-bit user identification number, and a
parity bit at Least Significant Bit (LSB). Two parity bits were added to ensure
transmission of data is correct to avoid any confusion between access control systems

and users.

(PIF[FIFIFIFIFIFIFlu[ufufufufu]ulu]u]u]u]uufufufu]P]
L 26-bit wiegand data format .

[F] [FIFIFIFIFIFIFIF] |u|u|u|u[u|u[u|u]uTU|ulu1u]u[u[u| [P]

L—Facility Code— | User ID

Figure 5 26-bit Wiegand format data

18

2.3 TCP/IP

Commonly known as TCP/IP, TCP/IP Internet Protocol suite is used to
communicate across any set of interconnected networks. It is a set of networks
standards and convention on computers communication and interconnecting networks

and routing traffic respectively [10]. TCP/IP comprises of three layers,

e TCP layers
e [P layers
e Sockets

Conceptual Layering

Application

Reliable Stream (TCP) User Datagram(UDP)

Internet (IP)

Network Interface

Figure 6 TCP/IP layers

The Transmission Control Protocol (TCP) is a communication protocol that
provides format of the data and acknowledgements between two computers exchange
for a reliable transfer. Also, it is the procedures computers involved to ensure data
arrives correctly [10]. TCP is to have reinforcement on detecting error data during

transmission until data is correctly received [11].

Internet Protocol (IP) has three main functions. It specifies the exact format of
data transfer used throughout a TCP/IP internet. Also, it consists of the routing
function that chooses a path to send data. Besides, it define a set of rules of that
represent the idea of unpackets, how and when error messages should be generated
and the conditions under which packets can be discarded [10]. IP can be concluded
that it move packet of data from a place to another that based on a four byte
destination address (the IP number) [11].

19

In application layer, socket is used to transmit data [11]. It can be known as

packet in subroutine systems in TCP/IP network [10].

TCP/IP communication is primarily point-to-point that is a host computer
from a point in the network communicates with another host computer, at another
point. Higher layer application protocols usually are packaged together with TCP/IP
in data transferring, including World Wide Web’s Hypertext Transfer Protocol
(HTTP), the File Transfer Protocol (FTP), Telnet that allows user to logon to remote
computers and the Simple Mail Transfer Protocol (SMTP) [12].

2.3.1 The Microchip TCP/IP Stack

The Microchip TCP/IP Stack is a suite of programs developed by Microchip
to provide services to standard or custom TCP/IP based application. It is implemented
in a modular block, with all of its services creating highly abstracted layers.
Microchip TCP/IP Stack divides itself into multiple layers, which is similar to TCP/IP

reference model.

However, Microchip TCP/IP Stack differs from the reference model with its
feature of directly accessing one or more layers which are not directly below it. Also,
it has additional two modules, which are “StackTask™ and “ARPTask™ as compare to
conventional TCP/IP stack. StackTask handles the operations of the stack and its
entire module. On the other hand, ARPTask operates the services of the Address
Resolution Protocol (ARP) layer. These two modules are cooperative tasks, which are
implemented in the stack’s cooperative multitasking systems as Microchip TCP/IP
Stack is designed to be independent of any operating systems.

20

TCP/IP Reference Model Microchip Stack Implementation
HTTPIFTP/
Application = - DHCP StackTask
L UDPITCP
ICMP
Dienat R P ARPTask
l ARP
Y Y
Host-to-Network — - MAC (or SLIP)

Figure 7 Comparison of Microchip TCP/IP Stack and TCP/IP Reference Model

Figure 7 shows the comparison between Microchip TCP/IP Stack and a
reference model. From the figure, it is observed that the Microchip TCP/IP Stack
does not implement all of the modules, that reference model normally employ.
However, they can always be implemented as a separate task or module if required.

Microchip’s stack will implement additional protocols based on this stack.

2.4 Microchip PIC24F Microcontroller

Microchip PIC24F microcontroller is chosen to be implemented in wireless
access control project. In the programmer’s model, it has 16-bit working register.
Each of the working registers can act as a data, address or address offset register. The
16" working register (W15) operates as a Software Stack Pointer for interrupts and
calls. The program to data space mapping feature lets any instruction access program
space as if it were data space. The Instruction Set Architecture (ISA) has been
significantly enhanced beyond that of the PIC18, but maintains an acceptable level of
backward compatibility, is optimized by high level language such as C language. The
core supports Inherent (no operand), Relative, Literal, Memory Direct and Three
group of addressing modes. All modes support Register Direct and various Register

Indirect modes. Each group offers up to seven addressing modes. Instructions are

21

associated with predefined addressing modes depending upon their functional
requirements. For most instructions, the core is capable of executing a data (or
program data) memory read, a working register (data) read, a data memory write and

a program (instruction) memory per instruction cycle.

Intarrupt
Controlier ‘

(- 16
PEV L Table
Dats Accas s
Conbol Black [Fcr] _Per]
Program C ounter
Slack Repeat PORTAY
Cortrol Conbol *
Loghe | Loghe RAD:RAD
16
Addrass Latch
- = PORTE
Togiam Memery *.
RBO:RB15
D ata Latch
Address Bus i
poRTCY)

’ RCORCO

Literal D ata

Instruction [et
Dacode L | o =12
Contiol | g RPO:RF25
Divide
‘ Conlrol Signak Support 16518
[W‘" W Reg Array ' l
oscoiko| Timng |o)| Fomerup e e
08CVELK Otnﬂ.*?m Time o
Ee> Oscillator
FRCALPRC art up Timer
Oscllaton P osi-0n
Resat
Frecigion
Band Gap Pp{| Wachdeg
Reterance Tima/
DISVREQ BOR and
Velage »
Ragulster L
VOOCOREAT AP Voo, Vee T3
Timert Time22®)| | Timeras® RTCC ';B; Comparatonst®

1 g O TR 1
‘ ‘ & ‘ ‘ =P PMP/PSP

ocrs8) | |Ems22 | |sPna®) 2c1z2 UART12f)

1c1-6%

Mote 1: Mol all ping of testures are implemented on all device pinout configwations. See Table +2for VO port pin descriptions .
2: BOR and LVD tunctionsity & providedwhen thie on-board vollage regulaior & enabled.
3: Paripheral VOg 2re sccess bAe through remappable ping.

Figure 8 PIC24F memory organization

22

2.5 Common Gateway Interface (CGI)

Common Gateway Interface (CGI) is a standard interface of external extended
application program interacting with WWW server [4]. It is an interface used to
communicate with HTML form and server program, a static information provider.
CGI request is defined as users on client side send a HTTP request to the server
through browser and then the script program is executed according to file name of
CGI script program of client request [5]. When the program is executing, client
information is transferred to the running program through server. After program
execution, operation results were sent to the server and the server take over the role to
transfer result obtained back to client side. HTTP server may create HTML document

dynamically via execution of CGI program [4].

(Connection by TCP/IP) Transfer CGI program
Transmit HTTP and data paramcter for
uest transmission .
Web e HTTP cGl | Transter | Aoolication
Browser H resultang | Server | Remum resut Program [* Function
disconnect

Figure 9 Working mechanism and data exchange mode of CGI

Many languages such as C, C++, Perl, Visual Basic can be used to design the

algorithm of CGI application, but commonly in C.

23

CHAPTER 3
METHODOLOGY

3.1 Proposed Method

From the studies, the overall project will be divided into two main phase,
Phase | and Phase II. Phase 1 of the project includes on hardware design and
configuration. These include Microchip Development Board, Micro ID MX7
controller, ZeroG wireless module and other output indication devices. Also,
laboratory activities were performed to study C language on C30 compiler and both
Microchip development board and MX7 controller. Phase 1l was focusing on
firmware algorithm design: on receiving input from Wiegand card reader, verify it
with database and execute proper output; and, updating user 1D database via
computer internet browser. The prototype project was tested, debugged and verified
for few users’ transaction. Both phases will be conducted in semester 1 and semester

2 correspondingly.

Figure 10 shows the process flow throughout the one year period from
hardware configuration and initialization until testing and debugging stage on an

actual access control systems.

24

Hardware Configuration N

Familiarization on Tools and >' Phase |

Equipment

7
Algorithm Design and Development
On Wireless Communication \

Development Board Testing and

Debugging

i > AS=h

Developing User Interface
I

-
w7

~

Testing and Debugging on Access

Control Systems

Figure 10 Final Year Project Process Flow

Figure 11 shows the source code development in wireless access control. In
board initialization section, ports and setting of Microchip Development board are
configured to provide suitable setting for programming code later. TCP/IP Stack
software configuration is to allow data transmit data to computer in network form.
Main program will process corresponding input and instruct hardware to assign
suitable output. HTML application will organize and display transmitted data in
HTML form for further analysis.

\ TCP/IP Stack Y e Dre e T HTML
- Aain Pr S
Configuration ESTOEtem Applicatin

Figure 11 Source Code Development Chart

Figure 12 Microchip Development Board

Figure 12 shows the Microchip Development Board which will be developed
into wireless access control hardware during initial stage. Later, the firmware

developed will be transfer into Micro ID’s designed hardware.

Figure 13 shows Micro ID MX7 hardware board that is specially designed for
wireless access control. MX7 hardware circuit board consists of PIC24F)J that serves
as central processing unit of wireless access control systems, EEPROM to store users’
data and transaction, and input ports for push button, Electromagnetic (EM) card

readers, and output port for door lock.

Figure 13 Micro ID MX7 controller board

26

3.2 Tools/Equipments Required

To develop this wireless access control systems, several tools are needed. The

following tools are:

Table 1 Tools required in project development

MPLABIDE v8.33 An integrated toolset for the
development of Microchip’s PIC* and
dsPIC* microcontroller applications.

Software Version 8.33 is used as it allows
PICkit2 debugging feature.
Microchip C30 C|C Compiler for microcontroller
Compiler PIC24F]) series.
Microchip PICKit2 | A development tool with user-friendly
Programmer/Debugger interface to program and debug
Microchip’s Flash families

microcontrollers.

Microchip Development | A general microcontroller board
Board Explorer 16 consists of LCD, I/O ports for user to
understand and familiarize with the
features and application of Microchip’s
microcontroller.

Micro ID MX 7 Board Controller board designed by Micro ID
that serves as central processing unit in
an access control systems.

ZeroG Wireless Module | It is a single-chip Wi-Fi transceiver,
which will be attached to access control
systems to transmit data via wireless
medium to communicate with PC.

EM Card Reader To serve as an input device to access
control systems that read the data on an
EM card and convert it into 26-bits
Wiegand format, a standard protocol
used in access control

Wireless Access Point Wireless router

Hardware

27

3.3 Project Progress

3.3.1 Lab Activities

Several lab activities on MPLAB IDE were performed in order to understand

and familiarize with C30 C compiler and Microchip Development Board.

3.3.1.1 Working with C30 and MPLAB IDE

This lab exercise introduces C language in C30 and compiled the source file
and programmed Microchip Development Board using PICKIT2. This exercise
introduced the structure of a main program that comprises of Initialization, Main, and

Subroutines. The compiled program will turn on LED3 all the while.

3.3.1.2 Interrupt Handling

= D
kil | LRl - - wam el - -

Figure 14 Interrupt Handling

Interrupt handling exercise shows how the user can set the level of priority on
interrupt functions based on value of input switch. The program can later assign
different output functions based on level of interrupt priority. This feature allows the
main program to be multitasking.

28

3.3.2 Project Development on Micro ID MX7 Board

After Micro ID MX7 hardware circuit board which is specifically designed for
wireless access control was ready, hardware debugging and firmware development

were conducted.

3.3.2.1 Prototype hardware debugging

MX7 board was designed on printed circuit board (PCB) and soldered with
respective electronics components. Then, it was verified using connectivity test based
on schematic design done by design engineers in Micro 1D. Finally, the input output

ports were tested to check their functionality after microcontroller was programmed.

3.3.2.2 Firmware Development

Firmware development is generally referring to algorithm design that will
instruct what microcontroller need to do. For this project, MX7 hardware consists of
three input devices, two output indications, and an HTML format output on computer.

Table 2 shown below describes the role of devices attached to MX7 controller board.

Table 2 Input/output devices’ functionality

Electromagnetic To read the data stored in EM card and send out 26-bits
(EM) Card Reader | Wiegand format to controller board

Push Button An alternative for user to exit an enclosed area
Electromagnetic A lock that is attached to door and will be released if
(EM) Lock authorized personnel access the enclosed area

Buzzer An indication for user

PC Transaction data will be projected using HTML form

As described in Table 2, firmware needs to be capable of generating an
interrupt service routine when there is an EM card entry. Then, it needs to verify the
user and prompt the right decision. If it is a valid entry, EM lock will be released and
vice versa. Also, the results will be shown to PC, displaying the transaction occurs at

all time.

29

3.3.3 Product development on Microchip Explorer 16 Development Board

Project progress was decided to continue on developing Microchip Explorer
16 Development board as development on Micro ID MX7 controller board has
encountered few problems on hardware design:

e Faulty circuit design on voltage regulator to step down 12V from power
adaptor, causing voltage regulator failed to produce 3.3V. High voltage from
power source has resulted in a few electronics components failure, including
microcontroller

e Pin connections on Wiegand EM card reader to microcontroller were not
connected to interrupt pins thus cannot generate hardware interrupts

e EEPROM on MX7 board could not be accessed as Serial Peripheral Interface
(SPI) registers on microcontroller could not be declared resulting in data could
not be stored in EEPROM

e Hardware interface for ZeroG wireless module was not included on MX7

board

3.3.3.1 Hardware development

As Explorer 16 board is a general purpose development board, few
modifications were made to suit the features of MX7 board as an access control
controller board. Passive electronic components were added for as pull-up resistors
and connector were connected to interface with Wiegand EM card reader, push

buttons and electromagnetic (EM) lock.

Figure 15 Modification made on Explorer 16 board

30

3.3.3.2 Firmware Development

Firmware development on Explorer 16 development board board will include
interrupt functions on Wiegand EM reader when read in data, verifying input data
with data stored in EEPROM, transmit required data wirelessly to PC in HTML
format, and from PC transmit data back to controller board on users’ identification
and details. The inputs for this access control systems are Wiegand EM card reader
and push button while the outputs are EM lock and html format on PC. On
developing firmware, usage of external interrupt was used in Wiegand EM card
reader to prompt microcontroller on getting ready to receive 26-bit Wiegand data.

Also, paging method is used on EEPROM to store users’ wiegand data on EEPROM.

3.3.3.3 Source Code Flow Chart

Flow chart of firmware development was prepared to display step-by-step

logical approach to the given problem.

Initialization

I/O Initialization

Tick Initialization

MPFS Initialization

Application Configuration Initialization

y

Stack Initialization

Figure 16 Flow chart for board initialization
Figure 16 shows the algorithm flow for board initialization. /0 initialization
will configure certain microcontroller pins into digital input output ports. Tick

initialization is a tick manager that uses Timer(interrupt to update the task part by

31

part. MPFS initialization is the configuration process of extracting data stored in
EEPROM and convert into HTML format on PC. MAC address of the board was
configured during application configuration initialization. Then, modules in TCP/IP

stack will be configured in stack initialization.

‘H I Main Program I |
YES Compare ID to data
ff.‘g‘:l“‘“ “">——' sored in EEPROM
—--""‘.P
NO
Unlock EM lock
] Stack Task — & Display Result
Stack ication Display Result at
l Agseis | 4 HIML
s L
YES
Add user from PC? Store input into register I—i‘ Store in EEPROM I
NO
YES
Qﬁlﬁm\)‘————bl Store input into register l
et i
Compare register with
data stored in
EEPROM
- { Delete entry I

Figure 17 Flow chart for main program

From the main program flow chart, main program will keep looping to check
on user ID register. If the register is filled with 26 bit of data, main program will
compare 1D to the data stored in EEPROM. Authorized user will be allowed to enter
in and transaction data will be displayed on PC and vice versa. Stack Task will check
for incoming packets, types of packets and calling for appropriate stack entity to
process it. Stack Application is the core functions of each stack, defining its objective,
flags and its features to process packets. Development board will process data when
user 1D is either being add or delete from PC, whether to store input into EEPROM or
to delete the data entry from EEPROM. Via this method, EM card being fed from

card reader can be verified as there is user database stored in development board’s

memory.

32

Interrupt Service Routine A

Clear interrupt flag

v
Countert++

Pin D0 = LOW?

NO

Pin D1 = LOW?

ID Register =0 » ID Register <<1 |

ID Register =1 1 ID Register <<1 [*

Y

Figure 18 Flow chart for interrupt service routine

Figure 18 shows the algorithm flow of interrupt service routine. When data
signal at EM reader goes LOW, interrupt service routine will occur. Increment
counter is added that when the counts reach 25, main program will verify the input
from EM card reader. When interrupt occurs, value “1° or ‘0" will be assigned into
register and shift to left side by a bit. This will result in an ID register which consist
of 26 bits.

3.4 Key Milestones/Project Activities

Table 3 Planned task for Final Year Project Il

Table 3 displayed above describes the tasks that need to be completed during

this fourteen academic weeks.

33

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Results

4.1.1 Lab Activities

A working sample program code was tested on development board to test
LED’s blinking. This exercise is to provide better understanding on the usage of C
language on Microchip C30 C compiler and the configuration of I/O (Input/ Output)
ports on PIC24F microcontroller.

Figure 19 LEDs blinking on development board

Figure 19 shows LED being turned on which is prompted by Switch 1 using
polling-system approach. The program will check on input from Switch 1 all the time
and if Switch 1 is pressed, LED will turn on. Another approach to blink LEDs is to
use interrupt function. Hardware interrupt will process the high priority interrupt task
which is to blink LED for a while then continue the uncompleted task in main

program with the aid of program counter register in microcontroller.

34

am= T —

Pers T —)

Figure 20 Lab session on PIC24FJ128

Figure 20 shows the lab sessions conducted on PIC24FJ128 controller that
introduces the usage of C language on C30 C compiler using interrupt functions that
will turn on LEDs. The following lab sessions were conducted on interrupt functions
handling, attributes, PSV handling, ADC usage and 32-bits timer utilization. Timer0
interrupt was developed and tested on Development Board. Every occurrence of
interrupt will count down a decrement counter value which its value was declared
during initialization fraction. As counter value has not approach the value zero, LEDs
will remain ON. This approach is known as system tick that allows a few tasks to be

performed at the same time.

4.1.2 Project Development on Micro ID MX7 controller board

4.1.2.1 Hardware Debugging

MX?7 controller board was soldered and verified using connectivity test and
input/output test. The controller board was short-circuited after power-up as there was
a few of errors being made including wrong configuration of voltage regulator
resulting voltage supplied to the whole circuit exceeded the limiting level. Also, pull-
up resistors were added to programming pin as microcontroller can differentiate
between programming mode and normal-operating mode. Normal-operating mode
runs at circuit’s voltage level at programming pin while at programming mode
PicKit2 will flush programming pin at higher voltage than circuit’s voltage. An LED

was added to MX7 board as indication purposes.

35

Figure 21 Modified MX7 controller board

4.1.2.2 Firmware Development

Firmware development is started with read and writes SPI EEPROM function.
SPI protocol was used because it provides faster speed on data transmission. As the
EEPROM was not connected to physical SPI pins on microcontroller, reassignment
on SPI pins is required using software declaration. Read and write tasks using dummy
value were tested on EEPROM. To verify source code, debugger mode was chosen to
monitor desired registers stored. During debugger mode, registers that stored
correspondence dummy value showed no response and hence confirming that source

code was not functioning.

Figure 22 Debugging controller board using PICkit2

36

4.1.3 Project Development on Microchip Explorer 16 Development Board

4.1.3.1 Hardware Debugging

Since a few modifications made on Explorer 16 board, connectivity test were
conducted to ensure added components were not short-circuited and damage the
development board. Connectors were added to interface development board with EM

card reader, EM lock and push button.

Figure 23 Explorer 16 board with EM card reader and ZeroG wireless module

As shown in Figure 23, ZeroG wireless module and EM card reader were
attached to Explorer 16 development board. LCD display on board showed an IP
address, which indicates that PC could communicate with development board by

using that address shown.

4.1.3.2 Firmware Development

4.1.3.2.1 Wiegand EM Card Reader
In order to prompt development board to feed in data from EM card reader,

the reader device’s connections are connected to external interrupt pins of
microcontroller. When there is a change of logic level from high to low, interrupt
service routine will be generated to receive 26-bit Wiegand data from two signal
lines, Data0 and Datal. An increment counter was used to ensure 26-bit signals

generated and to differentiate MSB and LSB parity bit.

37

Figure 24 EM card being read by card reader

Figure 23 displayed the process of EM card being read by card reader. EM
card is a LC circuit fabricated between PVC sheets. Red LED indication shows

Wiegand 26-bit data was being fed into input port of development board.

Figure 25 User ID showed on LCD display

After EM card was being read, main program will process user ID from input
port and compare it with the data stored in EEPROM. Once the data matches, it is

known that ID is from authorized user and LCD display will show the user ID.

38

4.1.3.2.2 HTML Format

ek Vervon: ol
Bt Date g ¥ JOM0 S0

iDs

Buttoas
AAAA
T wrte midl darmerglc tas ampba el otace
D e) Potastiometer: 112
e ster @ B8 Work Wide Tl on D - -
watture of faptorw 16 Do Bustd 11t on
» b bt s sty e PICIF I LISCAD LS with TP/1P Slach.

U plr'g o JIR AN D LT PROM
T paga oll wnatis yiu 1o parterm U Kilsarg Ques opm 3000

& Add Usar
o lieta e
Lach Natnisa T

Lot men © S0 e ey b

Figure 26 Default HTML website during start-up

Access control system is displayed on computer using internet browser in
HTML format provides convenience on data accessibility. Data shown on internet
browser includes of build version of firmware, build date of firmware, eight LEDs
indication, four buttons indication, potentiometer indicator, add and user ID features
and transaction display. Potential meter indicator obtained from ADC functions,
while LEDs blinking indication is obtained from Timer0 interrupt, showing tick
features. When ZeroG wireless module is attached on development board, and
connected to a LAN network through a wireless access point, a PC can access its data
through the same network. IP address will be displayed on LCD display on
development board. By accessing the IP address using web browser, the result will be

shown in following figure.

39

HOME

S d Porsmm o1 10
ot fomi o e T 3040 00 00 02

The bte ad fmmcratstes weym e imte .

s H-v—-&*"j‘]uub"‘ﬂ'ml
B e e L L]
O B gt) hee P Curend 1ot of B fums Buard Fof 8 @b

e e vt
Then #ramgens wass ASLE Lo Prmdas 19 groveie cag bemm
Tha te 4 Bt S Fu g o T by e
* Irpmane: Varutts Subuteten bugies fes e daTd

¢ Form Pracossing - harda reut Sum B Clent
FERSY & wnaw nama il pavsmnd

Figure 27 HTML format displaying access control systems

The html coding that is designed to display graphical interface for user was
studied and modified to suit the data projection and data entry, which accommodate
the features of wireless access control. Figure 27 portrayed that LEDO blinking, at
one second period, showing that data from the board could be sent to PC

instantaneously.

The POST method submits the data after the request headers are sent.

As an example, this POST form sets the text shown on the LCD display:

i ADDUSER: |

Copynght @ 2009 Microchip Technology, Inc.

Figure 28 Add function for user ID to be stored in database

Figure 28 displays add function for user to store identification number in the
access control system, specifically EEPROM on development board. When user key
in 6-digit identification number on electromagnetic card, for example: 14568, and
click save, the string of data will be sent through TCP/IP protocol and is received by
development board. The string of data will be converted into integers and stored in

two register, IDHigh and IDLow, then stored into EEPROM using paging method.

40

Vice versa, to delete a user, instead of storing IDHigh and IDLow into memory, these

two registers will compare the data stored in memory and delete the entry.

it Wired LAN interface between microcontroller-based access controller and World

Home HOME o
] {nce ts 2aggE)

Dyné
V:::‘:Ell',_‘.,‘ Stack Version: v5.20 .

. Apr 26 2010 07:35:31 Buttons:
Form Processing Added User: User 11 AAAMNA

File Uploads This site will demonstrates simple interface = P otentiometer: 662
between microcontroller-based access .
Send E-mail controller and the World Wide Web on the
platform of Explorerl6 Demo board. It runs on a 16-bit microcontroller
Network PIC24F1128GA010 with TCP/IP Stack.

Configuration

Operating on 32K on-board EEPROM.

SNMP
Configuration

This page will enable you to perform the following three operations :

* Add User
e Delete User
* Lock Release Time

Copyright § 2009 Micrechip Technolegy, Inc.

e]
Figure 29 Display user when transaction occurs

Transaction occurs when user came across flashing their user ID to card
reader. Wiegand input received will be processed and microcontroller will determine
whether the user is authorized user or not. Valid transaction will display user ID at

*Added User’ column showed in Figure 29.

41

4.2 Discussion

4.2.1 Lab Activities and development on Micro ID MX7 Controller Board

Through the sample code demonstration on Microchip Development Board,
the C language portrayed using C30 compiler is more complicated than CCS C
compiler as it has more built in functions. However, with these attributes and built in

functions, the programming code can be utilized in a more efficient way.

Based on the lab activities performed, Timer0 interrupt and Interrupt functions
play an important role in wireless access control systems. System tick approach was
implemented using Timer0 interrupt as this method will replace the conventional
delay function. For example, push button, an input in access control systems, is
pressed to unlock a door for 10 seconds. Using system tick approach, a counter is
declared with a certain value, then every occurrence of Timer0 interrupt will
countdown the counter till it reaches zero. Door is remained unlock when value of
counter has not reach zero and vice versa. At the same time, the main program in
microcontroller will be able to process other data allowing the systems to be
multitasking as compared to delay function that spend 10 seconds waiting for the
door to remain unlock. Interrupt function is important in wireless access control
systems as occurrence of emergency access requires the systems to service the highest
priority of interrupt and halt the other tasks handled in access control systems. Lab
sessions conducted on PIC24FJ128 microcontroller has given a deeper understanding

on utilizing microcontroller using C30 C compiler.

The lab activities performed previously has provided a foundation in
developing wireless access control systems on MX7 controller board. As MX7
controller board is the first version of circuit hardware, prototype debugging process
is required to ensure the board will run smoothly. Few corrections and modifications
were made for friendlier user interface and to fully utilize the board. LED indication
was provided to monitor results and to verify MX7 controller board’s functionality.
Throughout this debugging process, it is known that user has to ensure the stability of

voltage supply in circuit hardware design as it may cause damage to electronics
circuit hardware.

42

4.2.2 Project Development on Explorer 16 Development Board

In the course of doing this project, the main challenge is to overcome
algorithm design on user interface application along with wireless communication
protocol. This project design was referring as much as possible to Microchip Wi-Fi
solutions using ZeroG technology. However, few changes were made to
accommodate the features of an access control system. The changes are:

e Additional devices/changes on hardware
e Access control application on firmware algorithm design

e HTML user interface customized for access control

This project which is designed on Microchip development board requires
additional and modification on hardware. Additional input output components such as
push buttons, alarm, electromagnetic lock, card reader were added to function as a
basic access control unit that is installed at a physical barrier. Also, a few additional
and changes on pins assignment were made to accommodate the practice of

EEPROM and external interrupt functions for card reader.

4.2.2.2 Access control application on firmware algorithm design

To prompt development board to read Wiegand input from card reader,
interrupt service routine was developed. Negative pulses at Wiegand signaling wire
will generate interrupt. When the user ID data from EM reader is received through
wireless transmission, data received will be checked on LSB and MSB parity bit, to
ensure error free input data. Then, checked data will be compared to EEPROM using
SPI protocol. SPI protocol is chosen over I°C on addressing EEPROM because it
provides faster data rate up to 100M/bit which 1°C is limited to 10M/bit.

Firmware development on EEPROM was important as access control system
accommodates thousands of users and transactions, which requires large permanent
memory system. Verification process on user 1D occurs after interrupt service routine
filled up user ID register and compare it with the data stored in EEPROM using
paging method. Paging method is a virtual tables labeled by value from 0 to 9. MSB

43

of user ID will be stored according to the label of virtual tables in EEPROM. Similar
process occurs on add or delete user function. Authorized staff can perform such
operation via computer, entering string of integer on the form prepared in HTML
display. String of data will be converted into integer value and stored in register.
Through stack application, the data will be transmitted to development board.
Depending on the requested operation:

* Add function — user ID register will be stored in the assigned location

o Delete function — user ID register will be compare to data stored in memory

location, then clear stored data once it has the same data as user ID register.

4.2.2.3 HTML user interface customized for access control

HTML on computer browser is generated from MPFS binary image files
stored in EEPROM on board. When hardware board is start up, the binary image file
will be fetched from memory location and then posted up to PC. Then input and
output parameters such as LED indications, user transaction and user ID add or delete
functions will be updated every millisecond. HTML on PC will be responsible on
user data entry, which will store details of user on EEPROM and project the
transaction time on PC. A blank row was made for user to key in user ID on EM card.
Then the string of data is converted into integer value and stored in two register, user
ID Low and user ID High, as a register can only store 16 bits of data. Through stack
application, the data will be transmitted to development board and store in EEPROM
using paging method. Vice versa, to delete a user entry, string of data from
computer’s HTML input will be converted into integer value, stored into a register
and then locates the same data register in EEPROM and clear the value.

44

CHAPTER S
CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In conclusion, wireless access control system provides flexibility to users for
its data retrieval with Wi-Fi services at any corner around the world and for its larger
coverage area for access control system installation. Microchip TCP/IP Stack module
and wireless module are the main components in this system as the stack module
involves in transmission protocol and wireless module is to transmit data wirelessly to
data terminal. During the progress of this project, a few problems had been
encountered such as electronics components shortage and failure, firmware algorithm
design had met bottleneck, designed hardware did not fit the features and applications
require. However, these problems had been overcome and this project has completed
and the objectives were fully archived. An operational access control system based on
Microchip Explore 16 development board has been designed, modified, tested,
debugged and verified, with the maximum distance of 25m of it from access point. It

is hoped that this project will bring forth notable resource to the future.

5.2 Recommendation

This project can be enhanced in the future based on the following suggestion:
i. Additional features on access control such as:

a. Real-time clock operation

b. Authorized user ID at specific time slot
ii. Increase the distance limit from controller hardware to computer by

adding a few more access points in between

45

REFERENCES

[1] II-Kyu Hwang, Jin-Wook Baek. (2007, November). Wireless Access
Monitoring and Control based on Digital Door Lock. IEEE Transactions on
Consumer Electronics, Vol, 53, No. 4.

[2] Douglas E.Comer. (2000). Internetworking with TCP/IP Principles, Protocols,
and Architectures. Prentice Hall International, 4" Edition.

[3] Liu, K.T.; Yang, C. H. (2008). Design and Implementation of Campus Gate
Control System Based on RFID. IEEE Asia Pacific Conference. National Kaoshiung
Normal University.

[4] Chang, F. C.; Huang, H. C; Hang, H. M. (2007). Layered Access Control
Scheme on Watermarked Scalable Media. Dept. of Electronics Engineering, National
Chiao Tung University.

[5] Kou, C. Y.; Springsteel, F,; (1999). The Security Mechanism in the World
Wide Web (WWW) and the Common Gateway Interface (CGI) Example of Central
Police University Entrance Examination System. Central Police University.

[6] Lester LaPierre. (2009, June 2). Wireless Access Control and Security
Dempystified. Retrived August 10, 2009, from Security Info Watch:
http://www.securityinfowatch.com/root+level/1279325?pageNum=3

[7] Lionel Silverman. (2009, April 2). Where is Wireless Access Control?
-Retrieved August 10, 2009, from Security Info Watch:
http://www.securityinfowatch.com/root+level/1295745

[8] Laura Taylor. (2003, October 11). Access Control 101. Retrieved August 10,
2009, from Intranet Journal:
http://www.intranetjournal.com/articles/200311/if 11 10 03a.html

[9] Andy Geremia. (2008, June 1). Wireless Access Control Design 101.
Retrieved August 10, 2009, from Article Archive:
http://www.articlearchives.com/media-
telecommunications/telecommunications/959972-1.html|

[10] Mark Lesswing. (2006, July 13). Access Control - You Practice It Everyday.
Retrieved August 10, 2009 from Realtor Secure:

46

http://www.realtor.org/wps/wem/connect/5d81b80048a28cafacdcfeOc8be 1 f2ed/SOS

Wk4_Access.pdf?MOD=AJPERES&CACHEID=5d81b80048a28cafacdcfe0c8be 12
ed

[11] Wi-Fi and Wireless Network. Retrieved August 11, 2009 from Wifinotes:
http://www.wifinotes.com/

[12] Wi-Fi. Retrieved August 11, 2009 from Wikipedia:
http://en.wikipedia.org/wiki/Wi-Fi

[10] Douglas E. Comer. (2000). Internetworking with TCP/IP Principles,
Protocols, and Architectures. Prentice Hall International, 4™ Edition.

[13] H. Gilbert. (1995). Introduction to TCP/IP. Retrieved August 12, 2009 from
PC and Lube: http://www.vale.edu/pclt/COMM/TCPIP.HTM

[14] TCP/IP. Retrieved August 12, 2009 from SearchNetworking:
http://searchnetworking.techtarget.com/sDefinition/0..sid7_gci214173.00.html|

[14] ZeroG Wireless Technology. Retrieved August 12, 2009 from ZeroG wireless
technology: http://www.zerogwireless.com/technology/techchips.html

[15] Wi-Fi. Retrieved September 10, 2009 from webopedia:
http://www.webopedia.com/TERM/W/Wi_Fi.html

47

APPENDICES

48

6t

Selection of Project Topic

2 |Preliminary Research Work

3 |Submission of Preliminary Report

4 |Project Work %

5 |Submussion of Progress Report :?
2

6 |Seminar %
&)
b

Project work continues

Submission of Interim Report Final Draft

Submission of Interim Report

10

Oral Presentation

Suggested milestone
Process

LOHATOUd dVIA TVNIA 4OA LIVHO LINVD

V XIAN3AddV

0¢

Project Work Cortimue

Submssion of Pregress Report |

3 |Project Work Cortimue

£ |Submssion cf Progress Report 2 é
3 [Semminar Z

2

6 [Project work continue &
. - 2
i |Pasier Exhibiticn

§ [Submussion cf Dissertation (soft bound)

9 |Cral Presentation

1) |Submussion cf Prcject Dissertation (Hard)

Suggested Milestone
Precess

II LOArOUd dVIA TVNIA 404 LAVHD LINVD

4 XIANAddV

APPENDIX C
ZEROG WI-FI MODULE

Product Overview

zero®

e T T S

AN Wz

Easy-Ff|®

Dt e 18 Thps
s ooy o i . R e
Voot b o i
| Sy Votage v A
m
) T 1 -
© e i s { e

FCCAC, IS, Jagin, W8 105, O, R

The Fourth Age of Wireless

e 25 s o e e st o e i b e e B

R e et
s i 4 o ity g e prm— b w
Y L L Ll B e R

TP ——

@ ® O ¢

Low

Limem ey e

Low
Cmgn W i bemtam Tad

Launch WA £ with minim um

g usn e s W 114 e
o —

Laverage a massive Wi-Fl infra-
sructure

O R i
B el

P e bt e et
B e e
B L T
e e

@ @anmwﬂ'ﬂ" 1
o Dmtme sl S g e P4
Projiiedy S

S
: -wm-,-_,-.ri-q-.w

DY

zero®

AWoridol
Mini Webservers
 TheTC2H00WE mosdde ks 1
powdiefet bucont mbseran o
€21 neay By antwided dace

Consumer Electronics

Cortgan and tored 8 Irmud sl
Morily vl 0Ie RYIe | RO
Farmoten 18<onnact LANG power Gtsge
Dty ond snatyie iy meters

& a00n a0 aTE Pmdia smay WOm home

® Cagture and T eTages 3t rermule ki o
& Comrel oy 5 wewwaddy

f -
R o
Mar g rits e
= i o
e ve ¥ et ol G tws
e R Wi e
it 2 dobewn b ges e

® Natly e record
paecty led v msts

TR @

industnial contrais Ram ota Device Manigem ant

Moo el (oMY willh ateie sy CaTed By
Upcste Aghe me issgIng i 18 5 e
Detect @ surt of ryBons g DOmEtAC L

® Upseta sdventasmarts n res bre
* Configae a0 upeate daLs o Mg 1od 3004
* Track srd randge ieeets

51

e —

APPENDIX D
MICROCHIP DEVELOPMENT BOARD

Y
w
co00
co00

cllcocoocogoocoo

- cooooQRhoo0og0
cjoocooogooooobo

cpooooghbocoogoo (]
shoooogoooonbod®
ooo 000OPOOO
=3 ooogo0CcOQOO00O
lre) e o0 ooCOopOOOO
ocofooo0goo000

r { G 0900000000000
16
.

Y

>
e |
?l

J
L]
8
Co0IR0I00000
LS

B N\bp¥ ¥ T

et

Il
O
LB
TS
B

"

- .
"l " 1

a1

o

3L
TR p o
PR dae

o
§
8

]

AL PP T

i
iE
(@)
Q

EXPLORER 16 DEVELOPMENT BOARD FUNCTIONALITY AND FEATURES

A layout of the Explorer 16 Development Board is shown in Figure 1-1. The board
includes these key lealures, as indicated in the diagram:

1. 100-pin PIM riser, compatible with the PIM versions of all Microchip

PIC24F /24H/dsPIC33F devices

Diroct 9 VDC power input that provides +3.3V and +5V (regutated) o the enlire
board

N

Power indicator LED

RAS-232 serial port and associated hardware

On-board analog thermal sensor

USB connectivity for communications and device programming/debugging
Sandard 6-wire In-Circuit Debugger (ICD) connector for connections 10 an
MPLAB ICD 2 programmer/debugger module

8. Hardware selection of PIM or soldered on-board microcontroller
(in future versions)

9. 2-ine by 16-character LCD

10. Provisioning on PCB lor add on graphic LCD

11. Push button switches for device Reset and user-delined inputs
12. Polentiomeler for analog input

13. Eight indicator LEDs

14, 74HCT 4053 multiplexers for selectable crossover configuration on serial com-
munication lines

15, Serial EEPROM

16. Independent crysials for precision microcontioller clocking (8 MHz) and RTCC
operation (32.768 kHz)

17. Prolotype area for developing custom applications

18. Socket and edge connector for PIC1ail™ Plus card compatibiity

19, Six-pin interface lor PICKi 2 Programmer

20. JTAG connector pad for optional boundary scan functionality

Both picture and descriptions are taken from Microchlp Explorer 16 Development Board User's Guide page 12 and page 13.

NP O AW

52

APPENDIX E

FIRMWARE SOURCE CODE

#define THIS_IS_STACK_APPLICATION

// Include all headers for any enabled TCPIP Stack functions
#include "TCPIP Stack/TCPIP.h"

// Include functions specific to this stack application
#include "MainDemo.h"

// Declare AppConfig structure and some other supporting stack variables
APP_CONFIG AppConfig;
BYTE ANOString[8];

// Use UART2 instead of UART1 for stdout (printf functions). Explorer 16
// serial port hardware is on PIC UART2 module.
#if defined (EXPLORER_16)
int _ C30_UART = 2;
#endif

static void InitAppConfig(void);
static void InitializeBoard(void);
static void ProcesslO(void);

void Change (void);
defined(__C30_)
#define UARTZ2PrintString putrsUART
void _ attribute_ ((interrupt, auto psv)) _DefaultInterrupt (void)

{
UART2PrintString({ "!!! Default interrupt handler !!!\r\n");

while (1)
{
Nop():
Nop ()i
Nop():
}
}
void __attribute__ ((interrupt, auto_psv)) _OscillatorFail (void)

{
UART2PrintString("!!! Oscillator Fail interrupt handler !!!\r\n"):

while (1)
{
Nop();
Nop():
Nop():
)
}
void _ attribute ((interrupt, auto_psv)) _AddressError(void)

53

UARTZPrintString("!!! Address Error interrupt handler !!!\r\n"):
while (1)
{

Nop ()

Nop ()

Nop():

}
void _ attribute_ ((interrupt, auto_psv)) _StackError(void}
{
UART2PrintString("!!! Stack Error interrupt handler !!!\r\n" };
while (1)
{
Nop () :
Nop():
Nop();

}
vold __ attribute__ ((interrupt, auto_psv)) MathError(void)
{
UART2PrintString("!!! Math Error interrupt handler !!!\r\n");
while (1)
{
Nop ()
Nop();
Nop():

#elif defined(__C32_)
void _general_exception_handler (unsigned cause, unsigned status)
{
Nop():
Nop():

#endif

// Main application entry point.

#if defined(__ 18CXX)

void main(void)

felse

int main(void)

fendif

{
static DWORD t = 0;
static DWORD dwLastIP = 0;

// Initialize application specific hardware

InitializeBoard();

#if defined(USE_LCD)

// Initialize and display the stack version on the LCD
LCDInit();

DelayMs (100) ;

strcpypgm2ram((char*)LCDText, "ZeroG Demo v2.1 "

"TCPStack " VERSION "
LCDUpdate () 7

#if defined(STACK USE_UART)

54

")

putrsUART ((ROM char*)"\r\n\r\n");
putsUART ((char *)LCDText):

putrsUART ((ROM char*)"\r\n");

#endif

#endif

// Initialize stack-related hardware components that may be
// required by the UART configuration routines

TickInit();
#if defined(STACK_USE MPFS) || defined(STACK USE MPFS2)
MPFSInit():
fendif

// Initialize Stack and application related NV variables into AppConfig.

InitAppConfig():

// Initiates board setup process if button is depressed
// on startup
if (BUTTONO_IO == Qu)
{
#if defined(EEPROM_CS_TRIS) || defined (SPIFLASH _CS_TRIS)

// Invalidate the EEPROM contents if BUTTONO is held down for more than 4 seconds

DWORD StartTime = TickGet();
LED_PUT (0x00) ;

while (BUTTONO_IO == Qu)
{
if (TickGet() - StartTime > 4*TICK_SECOND)
{
#if defined (EEPROM_CS_TRIS)
XEEBeginWrite (0x0000) ;
XEEWrite (OxFF);
XEEEndWrite();
#elif defined(SPIFLASH CS_TRIS)
SPIFlashBeginWrite (0x0000);
SPIFlashWrite (OxFF);
#endif

#if defined(STACK_USE UART)

putrsUART ("\r\n\r\nBUTTONO held for
Default settings restored.\r\n\r\n");

#endif

LED_PUT (0x0F) ;

while((LONG) (TickGet () - StartTime) <=
LED_PUT (0x00) ;

while (BUTTONO_IO == QOu);

Reset (),

break;

}
#endif

#if defined (STACK_USE_UART)

DoUARTConfig();
#endif

// Initialize core stack layers (MAC, ARP, TCP, UDP) and
// application modules (HTTP, SNMP, etc.)

55

more than 4 seconds.

(LONG) (9*TICK_SECOND/2)):

StackInit();

// Blink LEDO (right most one) every second.
if (TickGet () - t >= TICK_SECOND/2ul)
{

t = TickGet():

LEDO_IO "= 1;

// This task performs normal stack task including checking
// for incoming packet, type of packet and calling

// appropriate stack entity to process it.

StackTask():

// This tasks invokes each of the core stack application tasks
StackApplications();

// Process application specific tasks here.

#if defined(STACK USE GENERIC_TCP_CLIENT_ EXAMPLE)
GenericTCPClient();
#endif

#if defined(STACK USE_GENERIC_TCP_SERVER EXAMPLE)
GenericTCPServer();
#endif

#if defined (STACK_USE_SMTP_CLIENT)
SMTPDemo() 7
#endif

#if defined(STACK USE_ICMP_CLIENT)
PingDemo() ;
#endif

#if defined (STACK USE_SNMP_ SERVER) && !defined(SNMP_TRAP_DISABLED)
SNMPTrapDemo () 7
if (gSendTrapFlaqg)
SNMPSendTrap() ;
#endif

#if defined (STACK USE_BERKELEY API)
BerkeleyTCPClientDemo();
BerkeleyTCPServerDemo () ;
BerkeleyUDPClientDemo () ;

fendif

ProcesslO();

// Writes an IP address to the LCD display and the UART as available
void DisplayIPValue (IP_ADDR IPVal)
{

/1 printf("%u.%u.%u.%u", IPVal.v[0], IPVal.v[l], IPVal.v[2], IPVal.v[3]):
BYTE IPDigit[4];
BYTE i:
#ifdef USE_LCD
BYTE j:

56

BYTE LCDPos=16;
fendif

for(i = 0; 1 < sizeof (IP_ADDR); i++)
{
uitoa ((WORD)IPVal.v[i], IPDigit):

#if defined (STACK_USE_UART)
PutsUART (IPDigit) ;
#endif

#ifdef USE_LCD
for(j = 0; j < strlen({char*)IPDigit); j++)
{
LCDText [LCDPos++] = IPDigit([jl;
1
if (i == sizeof (IP_ADDR)-1)
break;
LCDText [LCDPos++] = '.';
#else
if (i == sizeof (IP_ADDR}-1)
break;
#endif

#if defined (STACK USE UART)
while (BusyUART()):
WriteUART('."):

#endif

#ifdef USE_LCD
if (LCDPos < 32u)
LCDText [LCDPos] = 0;
LCDUpdate () ;
#endif

// Processes A/D data from the potentiometer

static void ProcessIO(void)

{

#if defined(_ C30_) || defined(_C32_)
// Convert potentiometer result into ASCII string
uitoa ((WORD)ADC1BUFO, ANOString):

#else
// ANO should already be set up as an analog input
ADCONObits.GO = 1;

// Wait until A/D conversion is done
while (ADCONObits.GO) ;

// AD converter errata work around (ex: PIC18FB7J10 A2)

#if !defined(__18FB7J50) (17 !defined(_1BF87J50) && tdefined(__ 1BFB7J11)

&& !defined(_18F87J11)
PRODL = ADCONZ2;
ADCON2 |= 0x7; // Select Frc mode by setting ADCS0/ADCS1/ADCS2
ADCON2 = PRODL;
#endif

// Convert 10-bit value into ASCII string
uitoa(* ((WORD*) (6ADRESL)), ANOString):

57

#endif
)

A)

Function:

static void InitializeBoard(void)

R R AR A R e s e R e e N

static void InitializeBoard(void)
{

// LEDs

LEDO_TRIS = 0:

LED1_TRIS = 0;

LED2_TRIS = 0;

LED3_TRIS = 0;

LED4_TRIS = 0;

LEDS_TRIS = 0;

LED6_TRIS = 0;

#if !defined (EXPLORER 16) // Pin multiplexed with a button on EXPLORER 16

LED7_TRIS = 0;
#endif
LED_PUT (0x00) ;

#if defined(__ 1BCXX)

// Enable 4x/5x/96MHz PLL on PIC18F87J10,

OSCTUNE = 0x40;

// Set up analog features of PORTA

PIC1BF97J60,

// PICDEM.net 2 board has POT on AN2, Temp Sensor on AN3

#if defined (PICDEMNET2)
ADCONO = 0x09;
ADCON1 = 0x0B;
#elif defined (PICDEMZ)
ADCONO = 0xB1;
ADCON1 = O0xOF;
digital
#elif defined(_ 18F87J11)
defined(_1BF87350)
ADCONO = 0x01;
WDTCONbits.ADSHR = 1;
ANCONQ = OxFC;
ANCON1 = OxFF:
WDTCONbits.ADSHR = 0;

#else
ADCONQ = 0x01; // RADON,
ADCON1 = Ox0E;

#endif

ADCON2 = OXBE; // Right justify,

// Enable internal PORTB pull-ups
INTCONZbits.RBPU = 0;

// Configure USART
TXSTA = 0x20;
RCSTA = 0x90;

Il

// ADON,

// vdd/Vss is +/-REF, ANO, AN1, AN2, AN3 are analog

// ADON, Channel O,

Channel 2

// vdd/vss is +/-REF,

defined(_18FB87J11)

PIC18FB7J50, ertc.

Fosc/32

ANO, AN1, AN2, AN3 are

I defined(_ 1BFB7J50)

// RADON, Channel 0, Vdd/Vss is +/-REF

// ANO (POT) and ANl (temp sensor) are anlog

Channel 0

/f Vdd/Vss is +/-REF, ANO is analog

20TAD ACQ time,

// See if we can use the high baud rate setting
#if ((GetPeripheralClock()+2*BAUD_RATE)/BAUD RATE/4 - 1) <= 255
SPBRG = (GetPeripheralClock()+2*BAUD_RATE)/BAUD_RATE/4 - 1;:

58

Fosc/64 (~21.0kHz)

all

TXSTAbits.BRGH = 1;
#else // Use the low baud rate setting

SPBRG = (GetPeripheralClock(]+B‘BAUD_RATE)/BAUDARATEIIG = L3
#endif

// Enable Interrupts

RCONbits.IPEN = 1; // Enable interrupt pricrities
INTCONbits.GIEH = 1;
INTCONbits.GIEL = 1;

#telse // 16-bit C30 and and 32-bit C32

#if defined(_dsPIC33F_) || defined(_ PIC24H_)

// Crank up the core frequency

PLLFBD = 38; // Multiply by 40 for 160MHz VCO
output (BMHz XT oscillator)

CLKDIV = 0x0000; // FRC: divide by 2, PLLPOST: divide by 2,

PLLPRE: divide by 2

// Port I/0

AD1PCFGHbits.PCFG23 = 1; // Make RA7 (BUTTON1) a digital input

AD1PCFGHbits.PCFG20 = 1; // Make RAl12 (INT1) a digital input for ZeroG ZG2100M
PICtail Plus interrupt

// ADC
ADICHSO = 0; // Input to ANO (potentiometer)
AD1PCFGLbits.PCFG5 = 0; // Disable digital input on AN5 (potentiometer)
AD1PCFGLbits.PCFG4 = 0; // Disable digital input on AN4 (TC1047A temp
sensor)
#else //definedl__P1024F__) Il defined(__PIC32MX_)
#if defined(_ PIC24F_)
CLKDIVbits.RCDIV = 0; // Set 1:1 BMHz FRC postscalar
#endif
// ADC
ADICHS = 0; // Input to ANO (potentiometer)
AD1PCFGbits.PCFG4 = 0; // Disable digital input on AN4 (TC1047A temp
sensor)
#if defined(_ 32MX460FS12L_) || defined(_ 32MX795F512L) // PIC32MX460F512L
and PIC32MX795F512L PIMs has different pinout to accomodate USB module
AD1PCFGbits.PCFG2 = 0; // Disable digital input on AN2
(potentiometer)
#else
AD1PCFGbits.PCFGS = 0; // Disable digital input on ANS5
(potentiometer)
#endif
#endif
// ADC
ADICON1 = OxB4E4; // Turn on, auto sample start, auto-convert, 12 bit
mode (on parts with a 12bit A/D)
AD1CON2 = 0x0404; // AVdd, AVss, int every 2 conversions, MUXA only, scan
ADICON3 = 0x1003; // 16 Tad auto-sample, Tad = 3*Tcy
#if defined(__32MX460F512L_) 1| defined(__ 32MX795F512L_) // PIC32MX460F512L and
PIC32MX795F512L PIMs has different pinout to accomodate USB module
ADICSSL = 1<<2; // Scan pot
#else

59

ADICSSL = 1<<5; // Scan pot
#endif

// UART
#if defined(STACK_USE_UART)
UARTTX_TRIS = 0;
UARTRX_TRIS = 1;
UMODE = 0x8000; // Set UARTEN. Note: this must be done before
setting UTXEN

#if defined(_ C30_)
USTA = 0x0400;: // UTXEN set
#define CLOSEST_UBRG_VALUE
((GetPeripheralClock () +Bul*BAUD RATE)/16/BAUD_RATE-1)
#define BAUD ACTUAL (GetPeripheralClock()/16/(CLOSEST_UBRG_VALUE+1))
#else //defined(__C32_)
USTA = 0x00001400; // RXEN set, TXEN set
f#define CLOSEST_UBRG_VALUE
((GetPeripheralClock () +8ul*BAUD_RATE) /16/BAUD_RATE-1)
#define BAUD ACTUAL (GetPeripheralClock()/16/(CLOSEST UBRG_VALUE+1))
#endif

#define BAUD_ERROR ((BAUD_ACTUAL > BAUD_RATE) ? BAUD _ACTUAL-BAUD_RATE %
BAUD_RATE-BAUD_ACTUAL)
#define BAUD_ERROR_PRECENT { (BAUD_ERROR*100+BAUD_RATE/2) /BAUD_RATE)
#if (BAUD_ERROR_PRECENT > 3)
#warning UART frequency error is worse than 3%
#elif (BAUD_ERROR_PRECENT > 2)
#iwarning UART frequency error is worse than 2%
tendif

UBRG = CLOSEST_UBRG_VALUE;
#endif

#endif

#if defined (SPIRAM_CS_TRIS)
SPIRAMInit():

#endif

#if defined(EEPROM_CS_TRIS)
XEEInit():

#endif

#if defined (SPIFLASH_CS_TRIS)
SPIFlashInit();

#lendif

}

P R e

* Function: void InitAppConfig(void)
T L L T Ty
static ROM BYTE SerializedMACAddress|[6] - {MY_DEFAULT_MAC_BYTE1, MY DEFAULT MAC BYTEZ,
MY DEFAULT MAC BYTE3, MY DEFAULT MAC_BYTE4, MY DEFAULT MAC BYTES, MY DEFAULT MAC BYTE6):

//#pragma romdata

static void InitAppConfig(void)

{
AppConfig.Flags.bIsDHCPEnabled = TRUE;
AppConfig.Flags.bInConfigMode = TRUE;

memcpypgm2ram((void*) &AppConfiqg.MyMACAddr, (ROM void*)SerializedMACAddress,
sizeof (AppConfig.MyMACAddr)) ;

60

AppConfig.MyIPAddr.Val = MY_DEFAULT_IP_ADDR BYTE1 | MY DEFAULT IP ADDR BYTE2<<8ul
MY_DEFAULT IP_ADDR BYTE3<<16ul | MY DEFAULT IP ADDR BYTE4<<24ul;

AppConfig.DefaultIPAddr.Val = AppConfig.MyIPAddr.Val;

AppConfig.MyMask.Val - MY_DEFAULT_MASK BYTE1 | MY_DEFAULT_MASK_BYTE2<<Bul
MY DEFAULT_MASK_BYTE3<<16ul | MY_DEFAULT MASK_BYTE4<<24ul;

AppConfig.DefaultMask.Val = AppConfig.MyMask.Val;

AppConfig.MyGateway.Val - MY DEFAULT GATE_BYTEl | MY DEFAULT_GATE_BYTEZ2<<8ul
MY _DEFAULT_GATE_BYTE3<<l6ul | MY_DEFAULT GATE_BYTE4<<24ul;

AppConfig.PrimaryDNSServer.Val - MY DEFAULT_PRIMARY DNS BYTElL
MY_DEFAULT_PRIMARY DNS_BYTE2<<B8ul | MY_DEFAULT_PRIMARY_DNS_BYTE3<<1l6ul
MY DEFAULT PRIMARY DNS BYTE4<<24ul;

AppConfig.SecondaryDNSServer.Val - MY_DEFAULT_ SECONDARY_DNS_BYTE1l
MY _DEFAULT_SECONDARY_DNS_BYTE2<<8ul | MY DEFAULT SECONDARY DNS_BYTE3<<16ul

MY_DEFAULT_SECONDARY DNS_BYTE4<<24ul;

// SNMP Community String configuration

#if defined (STACK USE SNMP_SERVER)

{
BYTE 1;
static ROM char * ROM cReadCommunities[] = SNMP READ COMMUNITIES;
static ROM char * ROM cWriteCommunities[] = SNMP_WRITE COMMUNITIES;
ROM char * strCommunity;

for(i = 0; i < SNMP_MAX_COMMUNITY_ SUPPORT; i++)
{
// Get a pointer to the next community string
strCommunity = cReadCommunities[i];
if(i >= sizeof (cReadCommunities}/sizeof (cReadCommunities[0]))
strCommunity = "";

// Ensure we don't buffer overflow. If your code gets stuck here,
// it means your SNMP_COMMUNITY MAX LEN definition in TCPIPConfig.h
// is either too small or one of your community string lengths

// (SNMP_READ COMMUNITIES) are too large. Fix either.

if (strlenpgm(strCommunity) >= sizeof (AppConfig.readCommunity(0]))
while(1);

// Copy string into AppConfig
strcpypgm2ram((char*)AppConfig.readCommunity([i], strCommunity):

// Get a pointer to the next community string

strCommunity = cWriteCommunities[i];

if(i >= sizeof (cWriteCommunities)/sizeof (cWriteCommunities([0]))
strCommunity = "";

// Ensure we don't buffer overflow. If your code gets stuck here,

// it means your SNMP_COMMUNITY MAX LEN definition in TCPIPConfig.h

// is either too small or one of your community string lengths

// (SNMP_WRITE_COMMUNITIES) are too large. Fix either.

if (strlenpgm(strCommunity) >= sizeof (AppConfig.writeCommunity(0]))
while(1);

// Copy string into AppConfig
strcpypgm2ram((char*)AppConfig.writeCommunity(i], strCommunity);

1
#endif

// Load the default NetBIOS Host Name
memcpypgm2ram (AppConfig.NetBIOSName, (ROM void*)MY DEFAULT HOST NAME, 16);

61

[

FormatNetBIOSName (AppConfig.NetBIOSName) ;

#if defined(ZG_CS_TRIS)
// Load the default SSID Name
if (sizeof (MY DEFAULT_SSID NAME) > sizeof (AppConfig.MySSID)
[
ZGErrorHandler ((ROM char *)"AppConfig.MySSID[] too small");
}
memcpypgm2ram (AppConfig.MySSID, (ROM void*)MY DEFAULT_SSID NAME,
sizeof (MY _DEFAULT_ SSID NAME));
#endif

#if defined (EEPROM CS TRIS)
{
BYTE c:

// When a record is saved, first byte is written as 0x61 to indicate
// that a valid record was saved.

XEEReadArray (0x0000, &c, 1):
if(c == 0x61u)
KEEReadArray (0x0001, (BYTE*)&AppConfig, sizeof (AppConfig));
else
SaveAppConfig():
¥
#elif defined(SPIFLASH CS_TRIS)
{
BYTE c:

SPIFlashReadArray (0x0000, &c, 1);
if (c == 0x6lu)
SPIFlashReadArray (0x0001, (BYTE*)&AppConfig, sizeof (AppConfig));
else
SaveAppConfig();
}
fendif

#if defined (EEPROM_CS_TRIS) || defined(SPIFLASH CS_TRIS)
void SaveAppConfig({void)
{
// Ensure adequate space has been reserved in non-velatile storage to
// store the entire AppConfig structure.
#if defined(STACK‘USE_HPFS) || defined(STACK USE_MPFS2)
if (sizeof (AppConfig) > MPFS_RESERVE_BLOCK)
while(1);
#endif

#if defined (EEPROM_CS_TRIS)
XEEBeginWrite (0x0000) ;
XEEWrite (0x61) ;
XEEWriteArray((BYTE*) &AppConfig, sizeof (AppConfig)):;

#else
SPIFlashBeginWrite (0x0000) ;
SPIFlashWrite (0x61);
SPIFlashWriteArray ((BYTE*) &éAppConfig, sizeof (AppConfig));:
#endif

62

