

ACCESS CONTROL USING WIRELESS FOR DATA COMMUNICATATION
TO DATA TERMINAL

By

TAN JIA MIN

Dissertation

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements

for the Degree

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

31750 Tronoh
Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

ACCESS CONTROL USING WIRELESS FOR DATA COMMUNICATATION
TO DATA TERMINAL

by

Tan Jia Min

A project dissertation submitted to the
Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

Mr. Patrick Sebastian

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

"IRONOH, PERAK

June 2010

11

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible fbr the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

III

ABSTRACT

Wireless access control system is using Wi-Fi technology for the systems to

communicate with data terminal, a computer. It has been gaining popularity in access

control industry for its flexibility, higher efficiency on systems installation and

reduces cost of material. The main objective of this project is to develop wireless

access control that can be accessed via HTML website using Microchip development

board. TCP/IP protocol is used for its wireless technology, using ZeroG module that

provides 802.11 standards. Application of wireless access control starts with

initialization of hardware and computer through IP address assigned by access point.

Transaction data can be monitored from computer through HTML website. and user

can update database from computer to hardware device wirelessly. This project was

divided into two phases, Phase I includes hardware design while Phase II is focusing

on firmware algorithm design. Interrupt service routine was used to prompt
development board to read input signal fed from Wiegand wiring signal. Wiegand

data obtained is then compared to the database on hardware board and indication

output is displayed. Hardware and firmware algorithm are designed, tested, debugged

and verified for few user and show significant result. This operational project is

complete and has achieved its objectives.

IV

ACKNOWLEDGEMENT

I would like to express the greatest gratitude to several people for their contribution.

This project would have been incomplete without their advices and technical supports.

First and foremost, my final year project supervisor, Mr. Patrick Sebastian, for all his

invaluable help, advices, suggestions, and encouragement given while doing the

project, right from its conception to its completion.

I would like to gratefully thank Mr. Yap and Ms. Stacy Wong, manager and

supervisor from Micro ID and all the staffs for their full supports on technical issues

and resources.

I would like to acknowledge my colleague. Ms. Ong Wen Sher who provides her

support on designing I ITML data organization on computer. Her help has helped me

to complete this project on time.

Last but not least, I would like to thank Electrical and Electronics Engineering

Department for providing resources, facilities, and needs throughout this project.

V

TABLE OF CONTENTS

LIT OF FIGURES
.. viii

LIST OF TABLES
.. X

ABBREVIA'T'IONS AND NOMENCLATURES ... X1

CHAPTER 1 INTRODUCTION
.. 12

1.1 Background of Study .. 12

1.2 Problem Statement
... 13

1.3 Project Overview
.. 14

1.4 Objectives ... 15

1.5 Scope of Studies
... 15

CI-IAPTER 2 LITERATURE REVIEW ... 16

2.1 ZeroG Wi-Fi Module
.. 16

2.2 Wiegand 26-bit Format
.. 18

2.3 TCP/IP
.. 19

2.3.1 The Microchip TCP/IP Stack
... 20

2.4 Microchip PIC24F Microcontroller
.. 21

2.5 Common Gateway Interface (CGI) .. 23

CHAPTER 3 METHODOLOGY
... 24

3.1 Proposed Method
.. 24

3.2 Tools/Equipments Required
... 27

3.3 Project Progress .. 28

3.3.1 Lab Activities
... 28

3.3.1.1 Working with C30 and MPLAB IDE 28

3.3.1.2 Interrupt Handling
.. 28

3.3.2 Project Development on Micro ID MX7 Board
.................... 29

3.3.2.1 Prototype hardware debugging
... 29

3.3.2.2 Firmware Development
.. 29

3.3.3 Product development on Microchip Explorer 16 Development
Board ... 30

3.3.3.1 Hardware development ... 30

3.3.3.2 Firmware Development
.. 31

3.3.3.3 Source Code Flow Chart
.. 31

3.4 Key Milestones/Project Activities .. 33

vi

CHAPTER 4 RESULTS AND DISCUSSION ... 34

4.1 Results
..

34

4.1.1 Lab Activities ... 34

4.1.2 Project Development on Micro ID MX7 controller board
.... 35

4.1.2.1 Hardware Debugging ...
35

4.1.2.2 Firmware Development .. 36

4.1.3 Project Development on Microchip Explorer 16 Development
Board ... 37

4.1.3.1 Hardware Debugging ... 37

4.1.3.2 Firmware Development
..

37

4.2 Discussion ..
42

4.2.1 Lab Activities and development on Micro ID MX7 Controller
Board

...
42

4.2.2 Project Development on Explorer 16 Development Board ...
43

4.2.2.1 Additional devices/changes on hardware
...........................

43

4.2.2.2 Access control application on firmware algorithm design. 43

4.2.2.3 HTML user interface customized for access control.......... 44

CHAPTER 5 CONCLUSION AND RECOMMENDATION
....................................

45

5.1 Conclusion .. 45

5.2 Recommendation ..
45

REFERENCES ..
46

APPENDICES ... 48

Appendix A Gantt chart for final year project
49

Appendix B Gantt chart for final year project 11
50

Appendix C ZeroG wi-fi module ...
51

Appendix D Microchip development hoard
...

52

Appendix E Firmware Source Code ...
53

V11

LIST OF FIGURES

Figure I Stand-alone access control system .. 12

Figure 2 PC-linked access control system .. 13

Figure 3ZcroG Wi-Fi module .. 17

Figure 4 Sample Wiegand data stream .. 18

Figure 5 26-bit Wiegand format data .. 18

Figure 6 TCP/IP layers .. 19

Figure 7 Comparison of Microchip TCP/IP Stack and TCP/IP Reference Model
.....

21

Figure 8 PIC24F memory organization ...
22

Figure 9 Working mechanism and data exchange mode of CGI
................................

23

Figure 10 Final Year Project Process Flow
... 25

Figure II Source Code Development Chart
...

25

Figure 12 Microchip Development Board
..

26

Figure 13 Micro ID MX7 controller board
...

26

Figure 14 Interrupt I landling .. 28

Figure 15 Modification made on Explorer 16 board ... 30

Figure 16 Flow chart for board initialization
..

31

Figure 17 Flow chart for main program .. 32
....................

Figure 18 Flow chart for interrupt service routine .. 33

Figure 19 LEDs blinking on development board
..

34

Figure 20 Lab session on PIC24FJ 128
..

35

Figure 21 Modified MX7 controller board
... 36

Figure 22 Debugging controller board using PlCkit2 ... 36

Figure 23 Explorer 16 board with EM card reader and ZeroG wireless module........ 37

Figure 24 EM card being read by card reader ... 38

Figure 25 User ID showed on LCD display
..

38

viii

Figure 26 Default HTML, wehsite during start-up .. 39

Figure 27 HTML format displaying access control systems
40

Figure 28 Add function for user ID to be stored in database 40

Figure 29 Display user when transaction occurs ... 4I

IX

LIST OF TABLES

Table I 'fools required in project development .. 27

"Table 2 Input/output devices' functionality
.. 29

Table 3 Planned task for final Year Project 11
.. 33

X

ABBREVIATIONS AND NOMENCLATURES

ADC Analog to Digital Conversion

ARP Address Resolution Protocol

CGI Common Gateway Interlace

EEPROM Electrically Erasable Programmable Read-Only Memory

I ITM 1, HyperText Markup Language

IP Internet Protocol

LAN Local Area Network

LSB Least Significant Bit

MSB Most Significant Bit

MCU Microcontroller Unit

MPFS Microchip File System

SPI Serial Peripheral Interlace

TCP/lP Transmission Control Protocol / Internet Protocol

XI

CHAPTER I

INTRODUCTION

1.1 Background of Study

Access control is process of individuals are identified and being permitted to

certain accessibility to information, systems or resources [2]. Individuals experience

access control in normal daily routine including to access entrance to individuals'

office, to log in individuals' computer or ATM system in a bank [8]. Access control

plays an important role as to protect private and confidential information, transaction

or area from unauthorized individuals [I].

At the present time, access control has varied into different functionality and

features, yet still underlying the main principle of preserving and protecting the

confidentiality, integrity and availability of information, systems and resources.
Physical access control allows accessibility of an individual to a certain area [7].

Individuals are given tokens such as access pin number, electromagnetic (EM) card or

using their own fingerprint to seek the permission of accessing a building or an area.

"J"rairn, -P n-rorJ
srs-rr, +
U-0

.1 PC ur

Q,. c r i.,. n"rý: Ili r

Cý. rmr. Upýfyr".

DOCR
RO. CR

0 JEVIi. F ý

Figure 1 Stand-alone access control system

12

Physical access control can be divided into two main categories:

" Stand-alone access control

" PC-linked access control

Stand-alone access control is a basic system of access control which usually is

installed at any physical barrier without a computer as central data base. It is simple

and suitable to be used in small buildings. On the other hand, PC-linked access

control involves a few access control and a computer as central processing unit and it

retrieves, processes and analyses data in access control systems for detailed

accessibility of individuals. It is more complicated and hence often used in bigger

building or strict security area.

Host PC RS485 communication line

ýý
ý

Figure 2 PC-linked access control system

1.2 Problem Statement

To other
control panels

fl

Physical access control system is gaining more attention for private and

security purposes. Conventional PC-linked access control system uses RS485 or
RS232 cable to communicate between host computer and access control system [9].

With such transmission medium, additional software such as SSoftNet is required to
interpret data retrieved from access control. Accessibility of data could be

13

inconvenient sometimes as user has to configure setting or update database on

controller hardware itself, which requires rebooting; or, through external software on

PC such as SSoftNet that sometimes failed to organize data in order. Apart from that,

transmission medium using cable limits the distance between access controls and host

computer. Due to its limitation, conventional access control systems have smaller

coverage area and inconvenience during installation process.

Hence, these problems drive to the focus of this prototype-based project, a

wireless PC-linked access control system that serves as an alternative solution to

conventional systems. With Wi-Fi technology, it provides flexibility and wider

coverage area for the system's installation as repeater (access point) will be added to

enhance wireless signal. Also, user can retrieve data in access control systems at
anywhere and anytime via LAN connection through internet browser.

1.3 Project Overview

In collaboration with Micro ID Sdn Bhd, access control systems using Wi-Fi

technology to communicate with PC was proposed. Conventional access control

systems require user to monitor data transaction and add or delete authorized

personnel by interfacing with access control controller. However, this project will

provide flexibility to user, as data monitoring and authorizing personnel can be done

via PC. Using Wi-Fi protocol, access control systems will communicate in TCP/IP

stacks with PC and presented it in html format, a more graphic user interface as

compare to hardware controller.

14

1.4 Objectives

This project is expected to achieve the following objectives at the end of Final

Year Project:

" To design and develop and algorithm to control microcontroller in access

control to transmit data wirelessly to communicate with PC

" To develop User Interface on PC in HTML and Telnet files for user to retrieve

and analyze data transaction in access control systems

" To develop wireless access control systems that is practical in the industry

1.5 Scope of Studies

In general, the project encompasses the following scopes of study:

"C language on developing project's algorithm

" Microcontroller features and application

" Application of TCP/IP stack on embedded systems on wireless transmission

" HTML and Telnet application for developing user interface between PC and

users

15

CHAPTER 2

LITERATURE REVIEW

2.1 ZeroG Wi-Fi Module

Wi-Fi is wireless technology that uses radio waves that enables connection for

data sharing purposes between two or more devices wirelessly [12]. The organization

which owns Wi-Fi (registered trademark) term, Wi-Fi Alliance, defines Wi-Fi as any

"wireless local area network (WLAN) system that are based on Institute of electrical

and Electronics Engineers' (IEEE) 802.11 standards" [11]. Wi-Fi has gained its

popularity over conventional wired network between devices such as computers for

data transferring as it requires minimum usage of hardware [13].

Basically, Wi-Fi operates without any physical wired connection between data

terminal by using radio frequency, RF technology, which is frequency within

electromagnetic spectrum associated with radio wave propagation [14]. When RF

current is applied to an antenna, an electromagnetic field will be created and hence

can be propagated through space. A wireless access point (WAP) connects a group of

wireless devices to an adjacent wired LAN, which is similar to a network hub, also it

is to broadcast wireless signal for other data terminals to detect and are connected to

it.

Wi-Fi is widely used in many applications and consumers electronics

especially computers, major operating systems, PDAs, mobile phones and others.
Any devices that are tested and approved as "Wi-Fi Certified" by Wi-Fi Alliance is

interoperable to each other, even them are produced from different manufacturers
[15].

ZeroG Wi-Fi module (Refer Appendix B) will be used in this wireless access

control systems. It is designed to be easily fit in embedded systems in applications

such as consumer electronics, remote device management, medical, health and fitness

16

applications and etc., allowing users to access information from internet. ZeroG Wi-

Fi provides functions such as [14]:

" Robust networking stack and Wi-Fi driver that is compatible with

microcontrollers

" Secure network connectivity supporting WEP, WPA and WPA2

"A community of development partners with expertise in RF design, software
drivers, and building backend servers and client devices.

" Certified modules to minimize certification efforts navigating through the

process for government and industry compliance

^'; I : ý, I1m 1111

W;

Figure 3 ZeroG Wi-Fi module

ZeroG Wi-Fi module consists of ZG2 100 single-chip transceiver, a single chip
802.11 radio supporting data rates up to 2M bits per second, which with all associated
RF components, crystal oscillator, and bypass and bias passives along with a printed

antenna. With these features, the module provides a fully integrated Wi-Fi solution
that can be controlled by an 8 or 16 bit processor or microcontroller. ZeroG Wi-Fi

module is designed for low-power and low-duty applications and has four different

power modes which are extremely low leakage and has fast "wake-up" architecture.
ZeroG Wi-Fi module supports AES and RC4 based ciphers (WEP, WPA, WPA2

security) and is under FCC Certified and Wi-Fi Certified.

17

2.2 Wiegand 26-bit Format

Due to the wide use of Wiegand technology in 1980's, when Wiegand card

were factory coded with magnetic wires embedded in between plastic sheets most

card readers implemented the "Wiegand interface". Hence, resulting Wiegand format

is a wiring standard which is widely used in access control industry field. Wiegand

interface are devices that receive input from users' identification token and output

into data of 26-bits, 32-bits or 40-bits Wiegand data.

A Wiegand standard wiring consist of five wires: DATAO, DATA I, LEDO,

power supply and ground. DATAO and DATA 1 are the two signaling wires that

transmit Wiegand data serially. Negative pulse on DATAO line represents a0 bit data,

while negative pulse on DATA 1 line represents aI bit data. Figure 4 shows the

Wiegand data stream of for binary value *01101'. Each dip on the line represents a

change from 5V to OV.

Data 0J

0
Dns1

Figure 4 Sample Wiegand data stream

26-bits Wiegand data is the most commonly used format compare to 32-bits

and 40-bits. This Wiegand format consists of a parity bit at Most Significant Bit

(MSB), followed by 8-bit facility code, then a 16-bit user identification number, and a

parity bit at Least Significant Bit (LSB). Two parity bits were added to ensure

transmission of data is correct to avoid any confusion between access control systems

and users.

PFFFFFFFFUUUUUUUUUUUUUUUUP

n

I 26-bit Wiegand data tormal I

FFFFFFFF uuuuuuuuuuuvuuuu P

IFacility Code--J I User ID

Figure 5 26-bit Wiegand format data

18

2.3 TCP/IP

Commonly known as TCP/IP, TCP/IP Internet Protocol suite is used to

communicate across any set of interconnected networks. It is a set of networks

standards and convention on computers communication and interconnecting networks

and routing traffic respectively [101. TCP/IP comprises of three layers,

" TCP layers

" IP layers

" Sockets

Conceptual Layering
Application

Reliable Stream (TCP) User Datagram(UDP)
Internet (IP)

Network Interface

Figure 6 TCP/IP layers

The Transmission Control Protocol (TCP) is a communication protocol that

provides format of the data and acknowledgements between two computers exchange
for a reliable transfer. Also, it is the procedures computers involved to ensure data

arrives correctly [10]. TCP is to have reinforcement on detecting error data during

transmission until data is correctly received [11 J.

Internet Protocol (1P) has three main functions. It specifies the exact format of
data transfer used throughout a TCP/IP internet. Also, it consists of the routing
function that chooses a path to send data. Besides, it define a set of rules of that

represent the idea of unpackets, how and when error messages should be generated

and the conditions under which packets can be discarded [10]. IP can be concluded
that it move packet of data from a place to another that based on a four byte

destination address (the IP number) [11].

19

In application layer, socket is used to transmit data [I I]. It can be known as

packet in subroutine systems in TCP/IP network [10].

TCP/IP communication is primarily point-to-point that is a host computer

from a point in the network communicates with another host computer, at another

point. Higher layer application protocols usually are packaged together with TCP/IP

in data transferring, including World Wide Web's Hypertext Transfer Protocol

(HTTP), the File Transfer Protocol (FTP). Telnet that allows user to logon to remote

computers and the Simple Mail Transfer Protocol (SMTP) [121.

2.3.1 The Microchip TCP/IP Stack

The Microchip TCP/IP Stack is a suite of programs developed by Microchip

to provide services to standard or custom TCP/IP based application. It is implemented

in a modular block, with all of its services creating highly abstracted layers.

Microchip TCP/IP Stack divides itself into multiple layers, which is similar to TCP/IP

reference model.

However, Microchip TCP/IP Stack differs from the reference model with its

feature of directly accessing one or more layers which are not directly below it. Also,

it has additional two modules, which are "StackTask" and "ARPTask" as compare to

conventional TCP/IP stack. StackTask handles the operations of the stack and its

entire module. On the other hand, ARPTask operates the services of the Address

Resolution Protocol (ARP) layer. These two modules are cooperative tasks, which are

implemented in the stack's cooperative multitasking systems as Microchip TCP/IP

Stack is designed to be independent of any operating systems.

20

TCP/IP Reference Model

Application

Transport

Microchip Stack Implementation

HTTPIFTPI
DHCP

UDPRCP

StadcTask

I
ICMP

Internet
v

IP ARPTask

ARP

Host-to-Network MAC (or SUP)

Figure 7 Comparison of Microchip TCP/IP Stack and TCP/IP Reference Model

Figure 7 shows the comparison between Microchip TCP/IP Stack and a

reference model. From the figure, it is observed that the Microchip TCP/IP Stack

does not implement all of the modules, that reference model normally employ.
However, they can always be implemented as a separate task or module if required.
Microchip's stack will implement additional protocols based on this stack.

2.4 Microchip PIC24F Microcontroller

Microchip PIC24F microcontroller is chosen to be implemented in wireless

access control project. In the programmer's model, it has 16-bit working register.
Each of the working registers can act as a data, address or address offset register. The

16`s working register (W15) operates as a Software Stack Pointer for interrupts and

calls. The program to data space mapping feature lets any instruction access program

space as if it were data space. The Instruction Set Architecture (ISA) has been

significantly enhanced beyond that of the PIC 18, but maintains an acceptable level of
backward compatibility, is optimized by high level language such as C language. The

core supports Inherent (no operand), Relative, Literal, Memory Direct and Three

group of addressing modes. All modes support Register Direct and various Register

Indirect modes. Each group offers up to seven addressing modes. Instructions are

21

associated with predefined addressing modes depending upon their functional

requirements. For most instructions, the core is capable of executing a data (or

program data) memory read, a working register (data) read, a data memory write and

a program (instruction) memory per instruction cycle.

Intarrupt
C orArol4r

P8V & TýEk
6Mý N. ýs[[
C OIrIf 0119 la dt

2Z

AddfHf LrV, A

Piopixn AWmovy

Gita LMcA

ia

oscoicuco
oBCUCLW

Ew*

614VAEO

Timnp
OtnqAbon

iRGLPRC
CMCIIMoK

plrckbn
Band dop
RtMýýnot

Vt14pt
RtpulslM r-lr

4
Data BW

8

PCN PCL
Pln, jilm C amtot

stack Con4ol
P. oPoil
Conlol
Logv

Address Bus

I

C onLel

Int4uoW, n
6ooods L

Mt IJk

ý
Inst R*ysta

i ýý ýMla
CoMolSqnik support

Powa. up
Tim. i

Of cd4ta
944 up Trna

Fowti"on
patt

w, t*r. doo
Timtf

ewA) e

6 -6 VDDCORlM. 'R/ NIVD, VW

Until

-6
WLA

r. n. a0p) TYr. tr40

17x17
Muk4iti

RTCC

ib

Diti utce
Data RAN

Mduss
Latch
f

15
RNOAGU
Wiiit AGU

TE...

"
;

to

16
0

ý J

Ti
10 x 16

W RepWsiy

1
10.0

ý

iw

,a

last
ADC

ici-50)
PWºV

al-60)
C Nb22P) 6PIV22) t2C12

Compirriols(%1

UART V2F)

VORT41)

Rl6: Rlig

PORTO

RBO: RBt5

ii PoarCý'ý

RCDRCD

aPl+)
RPO: RP25

PMP/PSP

Nott 1: NotiIlpinsortoaWrHarrimptornr, rdodonMtdaicrpnoutcontiqurionsSor, TUDM1"21orUOportpndescrptiors.
2; BOR xrd WO lunotwndity r prordodwfrn th" on-board rotispt roryuUtor's ensA4d.
3' ptripAnil UOs sit iurs Me through rarrippjbl" pm

Figure 8 PIC24F memory organization

RCDRCD

22

2.5 Common Gateway Interface (CGI)

Common Gateway Interface (CGI) is a standard interface of external extended

application program interacting with WWW server [4]. It is an interface used to

communicate with HTML form and server program, a static information provider.
CGI request is defined as users on client side send a HTTP request to the server
through browser and then the script program is executed according to file name of
CGI script program of client request [5]. When the program is executing, client
information is transferred to the running program through server. After program

execution, operation results were sent to the server and the server take over the role to

transfer result obtained back to client side. HTTP server may create HTML document

dynamically via execution of CGI program [4].

Web
Browser

(Conncnion by TCP/IP) Transfer CGI program
Transmit HTTP and data parameter for

1 Request (-
_l transmission

Rcturn result and
disconnect

HI II'
Server

Rctum result

CGI
Program

Figure 9 Working mechanism and data exchange mode of CGI

Transfer
Application
Function

Many languages such as C, C++, Perl, Visual Basic can be used to design the

algorithm of CGI application, but commonly in C.

23

CHAPTER 3

METHODOLOGY

3.1 Proposed Method

From the studies, the overall project will be divided into two main phase,

Phase I and Phase 11. Phase I of the project includes on hardware design and

configuration. These include Microchip Development Board, Micro ID MX7

controller, ZeroG wireless module and other output indication devices. Also,

laboratory activities were performed to study C language on C30 compiler and both

Microchip development board and MX7 controller. Phase II was focusing on
firmware algorithm design: on receiving input from Wiegand card reader, verify it

with database and execute proper output; and, updating user ID database via

computer internet browser. The prototype project was tested, debugged and verified
for few users' transaction. Both phases will be conducted in semester I and semester
2 correspondingly.

Figure 10 shows the process flow throughout the one year period from

hardware configuration and initialization until testing and debugging stage on an

actual access control systems.

24

Hardware Configuration

..

o .:. "0 .

_II= i"-

--_---

Development Board Testing ar-. '
Debugging

ý ..

ý q

Figure 10 Final Year Project Process Flow

Figure II shows the source code development in wireless access control. In

board initialization section, ports and setting of Microchip Development board are

configured to provide suitable setting for programming code later. TCP/IP Stack

software configuration is to allow data transmit data to computer in network form.

Main program will process corresponding input and instruct hardware to assign

suitable output. HTML application will organize and display transmitted data in

HTML form for further analysis.

ý EMEROM m. fElm

Figure II Source Code Development Chart

Figure 12 Microchip Development Board

Figure 12 shows the Microchip Development Board which will be developed

into wireless access control hardware during initial stage. Later, the firmware

developed will be transfer into Micro ID's designed hardware.

Figure 13 shows Micro ID MX7 hardware board that is specially designed for

wireless access control. MX7 hardware circuit board consists of PIC24FJ that serves

as central processing unit of wireless access control systems, EEPROM to store users'
data and transaction, and input ports for push button, Electromagnetic (EM) card

readers, and output port for door lock.

Figure 13 Micro ID MX7 controller board

26

3.2 Tools/Equipments Required

To develop this wireless access control systems, several tools are needed. The

following tools are:

Table 1 Tools required in project development

MPLABIDE v8.33 An integrated toolset for the
development of Microchip's PICA' and
dsPiC' microcontroller applications.

Software Version 8.33 is used as it allows
PlCkit2 debugging feature.

Microchip C30 C C Compiler for microcontroller
Compiler PIC24FJ series.
Microchip PlCkit2 A development tool with user-friendly
Programmer/Debugger interface to program and debug

Microchip's Flash families
m icrocontrol lers.

Microchip Development A general microcontroller board
Board Explorer 16 consists of LCD, I/O ports for user to

understand and familiarize with the
features and application of Microchip's
microcontroller.

Micro ID MX 7 Board Controller board designed by Micro ID
that serves as central processing unit in

Hardware
an access control systems.

ZeroG Wireless Module It is a single-chip Wi-Fi transceiver,
which will be attached to access control
systems to transmit data via wireless
medium to communicate with PC.

EM Card Reader To serve as an input device to access
control systems that read the data on an
EM card and convert it into 26-bits
Wiegand format, a standard protocol
used in access control

Wireless Access Point Wireless router

27

3.3 Project Progress

3.3.1 Lab Activities

Several lab activities on MPLAB IDE were performed in order to understand

and familiarize with C30 C compiler and Microchip Development Board.

3.3.1.1 Working with C30 and MPLAB IDE

This lab exercise introduces C language in C30 and compiled the source file

and programmed Microchip Development Board using PICKIT2. This exercise

introduced the structure of a main program that comprises of Initialization, Main, and

Subroutines. The compiled program will turn on LED3 all the while.

3.3.1.2 Inlerrupl Handling

'ý. _ .ý....,. S. Y.. " "ý. Y

-. -' -. ý.. IWPI_- -
-/

Z_-::
2=--
a--

-- - ý...

^ _. ý __-ý" =- _- =ý--ý

. _.. _... __. Yý.
,.

.. ý ._.

Figure 14 Interrupt Handling

"-". --

Interrupt handling exercise shows how the user can set the level of priority on
interrupt functions based on value of input switch. The program can later assign
different output functions based on level of interrupt priority. This feature allows the

main program to be multitasking.

28

3.3.2 Project Development on Micro ID MX7 Board

After Micro ID MX7 hardware circuit board which is specifically designed for

wireless access control was ready, hardware debugging and firmware development

were conducted.

3.3.2.1 1'rolot l'pe hardware debugging

MX7 board was designed on printed circuit board (PCB) and soldered with

respective electronics components. "Then, it was verified using connectivity test based

on schematic design done by design engineers in Micro ID. Finally, the input output

ports were tested to check their functionality after microcontroller was programmed.

3.3.2.2 Firmware Development

Firmware development is generally referring to algorithm design that will

instruct what microcontroller need to do. For this project, MX7 hardware consists of

three input devices, two output indications, and an HTML format output on computer.

Table 2 shown below describes the role of devices attached to MX7 controller board.

Table 2 Input/output devices' functionality

Electromagnetic
(EM) Card Reader

To read the data stored in EM card and send out 26-bits
Wiegand format to controller board

Push Button An alternative for user to exit an enclosed area
Electromagnetic
(EM) Lock

A lock that is attached to door and will be released if

authorized personnel access the enclosed area
Buzzer An indication for user
PC Transaction data will be projected using HTML form

As described in Table 2, firmware needs to be capable of generating an
interrupt service routine when there is an EM card entry. Then, it needs to verify the

user and prompt the right decision. If it is a valid entry, EM lock will be released and

vice versa. Also, the results will be shown to PC, displaying the transaction occurs at

all time.

29

3.3.3 Product development on Microchip Explorer 16 Development Board

Project progress was decided to continue on developing Microchip Explorer

16 Development board as development on Micro ID MX7 controller board has

encountered few problems on hardware design:

" Faulty circuit design on voltage regulator to step down 12V from power

adaptor, causing voltage regulator failed to produce 3.3V. High voltage from

power source has resulted in a few electronics components failure, including

microcontroller

" Pin connections on Wiegand EM card reader to microcontroller were not

connected to interrupt pins thus cannot generate hardware interrupts

" EEPROM on MX7 board could not be accessed as Serial Peripheral Interface

(SPI) registers on microcontroller could not be declared resulting in data could

not be stored in EEPROM

" Hardware interface for ZeroG wireless module was not included on MX7

board

3.3.3.1 Hardware development

As Explorer 16 board is a general purpose development board, few

modifications were made to suit the features of MX7 board as an access control

controller board. Passive electronic components were added for as pull-up resistors

and connector were connected to interface with Wiegand EM card reader, push

buttons and electromagnetic (EM) lock.

Figure 15 Modification made on Explorer 16 board

30

3.3.3.2 Firmware Development

Firmware development on Explorer 16 development board board will include

interrupt functions on Wiegand EM reader when read in data, verifying input data

with data stored in EEPROM, transmit required data wirelessly to PC in HTML

format, and from PC transmit data back to controller board on users' identification

and details. The inputs for this access control systems are Wiegand EM card reader

and push button while the outputs are EM lock and html format on PC. On

developing firmware, usage of external interrupt was used in Wiegand EM card

reader to prompt microcontroller on getting ready to receive 26-bit Wiegand data.

Also, paging method is used on EEPROM to store users' wiegand data on EEPROM.

3.3.3.3 Source Code Elms' Chart

Flow chart of firmware development was prepared to display step-by-step

logical approach to the given problem.

Initialization

i
110 Initialization

It
Tick Initialization

i
MPFS Initialization

I
Application Configuration Initialization

i
Stack Initialization

Figure 16 Flow chart for board initialization

Figure 16 shows the algorithm flow for board initialization. I/O initialization

will configure certain microcontroller pins into digital input output ports. Tick

initialization is a tick manager that uses TimerO interrupt to update the task part by

31

part. MPFS initialization is the configuration process of extracting data stored in

EEPROM and convert into I ITML format on PC. MAC address of the board was

configured during application configuration initialization. Then, modules in TCP/IP

stack will be configured in stack initialization.

Main Program

ýýý ID regiaer VIII°_y

NO

sack Tuk

1"Es Compue ID to dua
uoted in EEPROM

YES
C

ý@ýºd,
uý. ý2

1

NO

Stack Application

V

ties
Add uses from PC'

11euSK from TC^"~``1-
l"GS

ý

Duptay Resdt at
RTNII.

store input into register

Stote input into register

Compare register with
data stored in

EEPROM

Delete entry

Figure 17 Flow chart for main program

Unlock EM lock
& Display Rexilt

Stove in EEPRO`i

From the main program flow chart, main program will keep looping to check

on user ID register. If the register is filled with 26 bit of data, main program will

compare ID to the data stored in EEPROM. Authorized user will be allowed to enter

in and transaction data will be displayed on PC and vice versa. Stack Task will check
for incoming packets, types of packets and calling for appropriate stack entity to

process it. Stack Application is the core functions of each stack, defining its objective,
flags and its features to process packets. Development board will process data when

user ID is either being add or delete from PC, whether to store input into EEPROM or

to delete the data entry from EEPROM. Via this method, EM card being fed from

card reader can be verified as there is user database stored in development board's

memory.

32

Interrupt Service Routine
ý

Clear interrupt fla

Counter-+

Pin DO - LOW?

No

Pm DI -LOtt"'

No

YES

YES

ID Register =

ID Register =

ý10 '

ýol

ID Register «1

ID Register «1

F-º

' ý-O-

fo

Figure 18 Flow chart for interrupt service routine

Figure 18 shows the algorithm flow of interrupt service routine. When data

signal at EM reader goes LOW, interrupt service routine will occur. Increment

counter is added that when the counts reach 25, main program will verify the input

from EM card reader. When interrupt occurs, value `1' or '0' will be assigned into

register and shift to left side by a bit. This will result in an ID register which consist

of 26 bits.

3.4 Key Milestones/Project Activities

Table 3 Planned task for Final Year Project II

m3w.
ý

Table 3 displayed above describes the tasks that need to be completed during

this fourteen academic weeks.

33

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

4.1.1 Lab Activities

A working sample program code was tested on development board to test

LED's blinking. This exercise is to provide better understanding on the usage of C

language on Microchip C30 C compiler and the configuration of I/O (Input/ Output)

ports on PIC24F microcontroller.

Figure 19 LEDs blinking on development board

Figure 19 shows LED being turned on which is prompted by Switch I using

polling-system approach. The program will check on input from Switch I all the time

and if Switch I is pressed, LED will turn on. Another approach to blink LEDs is to

use interrupt function. Hardware interrupt will process the high priority interrupt task

which is to blink LED for a while then continue the uncompleted task in main

program with the aid of program counter register in microcontroller.

34

, -7- ý- -1 1-

Figure 20 Lab session on PIC24FJ 128

Figure 20 shows the lab sessions conducted on PIC24FJ 128 controller that

introduces the usage of C language on C30 C compiler using interrupt functions that

will turn on LEDs. The following lab sessions were conducted on interrupt functions

handling, attributes, PSV handling, ADC usage and 32-bits timer utilization. TimerO

interrupt was developed and tested on Development Board. Every occurrence of

interrupt will count down a decrement counter value which its value was declared

during initialization fraction. As counter value has not approach the value zero, LEDs

will remain ON. This approach is known as system tick that allows a few tasks to be

performed at the same time.

4.1.2 Project Development on Micro ID MX7 controller board

4.1.2.1 Hardware Debugging

MX7 controller board was soldered and verified using connectivity test and

input/output test. The controller board was short-circuited after power-up as there was

a few of errors being made including wrong configuration of voltage regulator

resulting voltage supplied to the whole circuit exceeded the limiting level. Also, pull-

up resistors were added to programming pin as microcontroller can differentiate

between programming mode and normal-operating mode. Normal-operating mode

runs at circuit's voltage level at programming pin while at programming mode

PicKit2 will flush programming pin at higher voltage than circuit's voltage. An LED

was added to MX7 board as indication purposes.

35

Figure 21 Modified MX7 controller board

4.1.2.2 Firmware Development

Firmware development is started with read and writes SPI EEPROM function.

SPI protocol was used because it provides faster speed on data transmission. As the

EEPROM was not connected to physical SPI pins on microcontroller, reassignment

on SPI pins is required using software declaration. Read and write tasks using dummy

value were tested on EEPROM. To verify source code, debugger mode was chosen to

monitor desired registers stored. During debugger mode, registers that stored

correspondence dummy value showed no response and hence confirming that source

code was not functioning.

Figure 22 Debugging controller board using PlCkit2

36

4.1.3 Project Development on Microchip Explorer 16 Development Board

4.1.3.1 Hardware Debugging

Since a few modifications made on Explorer 16 board, connectivity test were

conducted to ensure added components were not short-circuited and damage the

development board. Connectors were added to interlace development board with EM

card reader, EM lock and push button.

Figure 23 Explorer 16 board with EM card reader and ZeroG wireless module

As shown in Figure 23, ZeroG wireless module and EM card reader were

attached to Explorer 16 development board. LCD display on board showed an IP

address, which indicates that PC could communicate with development board by

using that address shown.

4.1.3.2 Firmware Development

4.1.3.2.1 Wiegand EM Card Reader
In order to prompt development board to feed in data from EM card reader,

the reader device's connections are connected to external interrupt pins of

microcontroller. When there is a change of logic level from high to low, interrupt

service routine will be generated to receive 26-bit Wiegand data from two signal
lines, DataO and Datal. An increment counter was used to ensure 26-bit signals

generated and to differentiate MSB and LSB parity bit.

37

Figure 24 EM card being read by card reader

Figure 23 displayed the process of EM card being read by card reader. EM

card is a LC circuit fabricated between PVC sheets. Red LED indication shows

Wiegand 26-bit data was being fed into input port of development board.

Figure 25 User ID showed on LCD display

After EM card was being read, main program will process user ID from input

port and compare it with the data stored in EEPROM. Once the data matches, it is

known that ID is from authorized user and LCD display will show the user ID.

38

4.1.3.2.2 1 Ii'M L Format

ý

HOM!
Mal YýtYS A lY
WOýrYtnlat. tlll

ýýss

.. ý.. ý AAAA
n.. ru .ýa.,.... vr.. "q.... lr. r: "

:. Afa... ar.. wrurrws"nP.
... Il.. n. I 6Wrr16 0..... Nr. f. 1- ..
" K-N -... MMHr IICl�1UY/O4J ... P T: IiY fla

ýy. wy M IX N ear[. l win.
n. ý. n... ý ruo. .rw.. r. w n. µ;.. w n. « w.. d.. .

Wer
. err wr
. .. <.. r.... r..

Figure 26 Default HTML website during start-up

Access control system is displayed on computer using internet browser in

HTML format provides convenience on data accessibility. Data shown on internet

browser includes of build version of firmware, build date of firmware, eight LEDs

indication, four buttons indication, potentiometer indicator, add and user ID features

and transaction display. Potential meter indicator obtained from ADC functions,

while LEDs blinking indication is obtained from TimerO interrupt, showing tick

features. When ZeroG wireless module is attached on development board, and

connected to a LAN network through a wireless access point, a PC can access its data

through the same network. IP address will be displayed on LCD display on

development board. By accessing the IP address using web browser, the result will be

shown in following figure.

39

«cA0

Ni
ý
em

rtý=

HOME

.... ý. .. - . y... w :. <. o ýu..
.::...:. <:: '..

ý
YNNwNwýYýyrýN

. +' "w" ýYýIýGwb" Iýýwý

aýrry - IH w" wlllwr

ti wjI yuy, wM IýN NMn ýI lo r.. w1 I

ý'ý'111 (S I ti II[n e1 I_flIr+"i'11 ý M1 Fr1 Ar M yN"

... .. _. "_.. ».. ». ý.. _ ý.. e.... .. ý . w. _: w_, r..... "....... &y.. r. +..... I.
wº..

,.... ý. . '.,.......,... ý . ý. _.
. ., -... ..,... . r,.. ý .,... ». I.. ýw....... ... ý....,.. «. p. ,...
. ý.. ý »,..... ý.... ý.. «.. I

m.,

TL-FSt-ac. k v5.26
:: 'a. 'ý54.241.5?

ýülli ý'1ý, 1ýý. '..
fl; Lý

ý"_"ýý.: ýý

Figure 27 HTML format displaying access control systems

The html coding that is designed to display graphical interface for user was

studied and modified to suit the data projection and data entry, which accommodate

the features of wireless access control. Figure 27 portrayed that LEDO blinking, at

one second period, showing that data from the board could be sent to PC

instantaneously.

The POST method submits the data after the request headers are sent.

As an example, this POST form sets the text shown on the LCD display:

ADD USER: Save

Copyright y 2009 Microchip Technology, Inc.

Figure 28 Add function for user ID to be stored in database

Figure 28 displays add function for user to store identification number in the

access control system, specifically EEPROM on development board. When user key

in 6-digit identification number on electromagnetic card, for example: 14568, and

click save, the string of data will be sent through TCP/IP protocol and is received by

development board. The string of data will be converted into integers and stored in

two register, IDHigh and IDLow, then stored into EEPROM using paging method.

40

Vice versa, to delete a user, instead of storing IDHigh and IDLow into memory, these

two registers will compare the data stored in memory and delete the entry.

UýA ýý

.... ý

C"ýL'ý

7. ý

HOME
Stack Version: v5.20
°""'lA D''aL Aar 26 2010 07: 35: 31
Added User, User

LEDs: , cammp: r

.

..

ý�
ý..

ý

I

i

Buttons:
AAAA

ruacnuunacacr. vvc This site will demonstrates simple interface
between microcontroller-based access
controller and the World Wide Web on the
platform of Explorer16 Demo board. It runs on a 16-bit microcontroller
PIC24FJ128GA010 with TCP/IP Stack.

Operating on 32K on-board EEPROM.

This page will enable you to perform the following three operations

" Add User
" Delete User
" Lock Release Time

Copyright .* 2009 Microchip 'echnclc; Inc.

I

Figure 29 Display user when transaction occurs
0

Transaction occurs when user came across flashing their user ID to card

reader. Wiegand input received will be processed and microcontroller will determine

whether the user is authorized user or not. Valid transaction will display user ID at

'Added User' column showed in Figure 29.

41

4.2 Discussion

4.2.1 Lab Activities and development on Micro ID MX7 Controller Board

Through the sample code demonstration on Microchip Development Board,

the C language portrayed using C30 compiler is more complicated than CCS C

compiler as it has more built in functions. However, with these attributes and built in

functions, the programming code can be utilized in a more efficient way.

Based on the lab activities performed, TimerO interrupt and Interrupt functions

play an important role in wireless access control systems. System tick approach was

implemented using TimerO interrupt as this method will replace the conventional

delay function. For example, push button, an input in access control systems, is

pressed to unlock a door for 10 seconds. Using system tick approach, a counter is

declared with a certain value, then every occurrence of TimerO interrupt will

countdown the counter till it reaches zero. Door is remained unlock when value of

counter has not reach zero and vice versa. At the same time, the main program in

microcontroller will be able to process other data allowing the systems to be

multitasking as compared to delay function that spend 10 seconds waiting for the

door to remain unlock. Interrupt function is important in wireless access control

systems as occurrence of emergency access requires the systems to service the highest

priority of interrupt and halt the other tasks handled in access control systems. Lab

sessions conducted on PIC24FJ 128 microcontroller has given a deeper understanding

on utilizing microcontroller using C30 C compiler.

The lab activities performed previously has provided a foundation in

developing wireless access control systems on MX7 controller board. As MX7

controller board is the first version of circuit hardware, prototype debugging process
is required to ensure the board will run smoothly. Few corrections and modifications

were made for friendlier user interface and to fully utilize the board. LED indication

was provided to monitor results and to verify MX7 controller board's functionality.

Throughout this debugging process, it is known that user has to ensure the stability of

voltage supply in circuit hardware design as it may cause damage to electronics

circuit hardware.

42

4.2.2 Project Development on Explorer 16 Development Board

In the course of doing this project, the main challenge is to overcome

algorithm design on user interface application along with wireless communication

protocol. This project design was referring as much as possible to Microchip Wi-Fi

solutions using ZeroG technology. However, few changes were made to

accommodate the features of an access control system. The changes are:

" Additional devices/changes on hardware

" Access control application on firmware algorithm design

" HTML user interface customized for access control

4.2.2.1 Additional device., v/changes orr harchrare

This project which is designed on Microchip development board requires

additional and modification on hardware. Additional input output components such as

push buttons, alarm, electromagnetic lock, card reader were added to function as a
basic access control unit that is installed at a physical barrier. Also, a few additional

and changes on pins assignment were made to accommodate the practice of
EEPROM and external interrupt functions for card reader.

4.2.2.2 Access control application ontirºmvare algorithm design

To prompt development board to read Wiegand input from card reader,
interrupt service routine was developed. Negative pulses at Wiegand signaling wire

will generate interrupt. When the user ID data from EM reader is received through

wireless transmission, data received will be checked on LSB and MSB parity bit, to

ensure error free input data. Then, checked data will be compared to EEPROM using
SPI protocol. SPI protocol is chosen over 12C on addressing EEPROM because it

provides faster data rate up to I OOM/bit which 12C is limited to I OM/bit.

Firmware development on EEPROM was important as access control system
accommodates thousands of users and transactions, which requires large permanent

memory system. Verification process on user ID occurs after interrupt service routine
filled up user ID register and compare it with the data stored in EEPROM using

paging method. Paging method is a virtual tables labeled by value from 0 to 9. MSB

43

of user ID will be stored according to the label of virtual tables in EEPROM. Similar

process occurs on add or delete user function. Authorized staff can perform such

operation via computer, entering string of integer on the form prepared in HTML

display. String of data will be converted into integer value and stored in register.
Through stack application, the data will be transmitted to development board.

Depending on the requested operation:

" Add function - user ID register will be stored in the assigned location

" Delete function - user ID register will be compare to data stored in memory
location, then clear stored data once it has the same data as user ID register.

4.2.2.3 HTML user interface customised for access control

HTML on computer browser is generated from MPFS binary image files

stored in EEPROM on board. When hardware board is start up, the binary image file

will be fetched from memory location and then posted up to PC. Then input and

output parameters such as LED indications, user transaction and user ID add or delete

functions will be updated every millisecond. HTML on PC will be responsible on

user data entry, which will store details of user on EEPROM and project the

transaction time on PC. A blank row was made for user to key in user ID on EM card.
Then the string of data is converted into integer value and stored in two register, user
ID Low and user ID High, as a register can only store 16 bits of data. Through stack

application, the data will be transmitted to development board and store in EEPROM

using paging method. Vice versa, to delete a user entry, string of data from

computer's HTML input will be converted into integer value, stored into a register

and then locates the same data register in EEPROM and clear the value.

44

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In conclusion, wireless access control system provides flexibility to users for

its data retrieval with Wi-Fi services at any corner around the world and for its larger

coverage area for access control system installation. Microchip TCP/IP Stack module

and wireless module are the main components in this system as the stack module

involves in transmission protocol and wireless module is to transmit data wirelessly to

data terminal. During the progress of this project, a few problems had been

encountered such as electronics components shortage and failure, firmware algorithm

design had met bottleneck, designed hardware did not fit the features and applications

require. However, these problems had been overcome and this project has completed

and the objectives were fully archived. An operational access control system based on

Microchip Explore 16 development board has been designed, modified, tested,

debugged and verified, with the maximum distance of 25m of it from access point. It

is hoped that this project will bring forth notable resource to the future.

5.2 Recommendation

This project can be enhanced in the future based on the following suggestion:
i. Additional features on access control such as:

a. Real-time clock operation
b. Authorized user ID at specific time slot

ii. Increase the distance limit from controller hardware to computer by

adding a few more access points in between

45

REFERENCES

[1J II-Kyu Hwang, Jin-Wook Back. (2007, November). Wireless Access
Monitoring and Control based on Digital Door Lock. IEEE Transactions on
Consumer Electronics, Vol. 53, No. 4.

121 Douglas E. Comer. (2000). Internetworking with TCP/IP Principles, Protocols,
und Architectures. Prentice Hall International, 4 ̀h Edition.

(3] Liu, K. T.; Yang, C. H. (2008). Design and Implementation of Campus Gate
Control System Based on RFID. IEEE Asia Pacific Conference. National Kaoshiung
Normal University.

[4] Chang, F. C.; Huang, H. C; Hang, H. M. (2007). Layered Access Control
Scheme on Watermarked Scalable Media. Dept. of Electronics Engineering, National
Chiao Tung University.

[5] Kou, C. Y.; Springsteel, F,; (1999). The Security Mechanism in the World
Wide Web (WWW) and the Common Gateway Interface (CGI) Example of Central
Police University Entrance Examination System. Central Police University.

[6] Lester LaPierre. (2009, June 2). Wireless Access Control and Security
Demystified. Retrived August 10,2009, from Security Info Watch:
httQ//www. securityinfowatch. com/root+Ieve1/ 1279325? pageNum=3

[7] Lionel Silverman. (2009, April 2). Where is Wireless Access Control?
Retrieved August 10,2009, from Security Info Watch:
http: //www. securityinfowatch. com/root+level/i 295745

[8] Laura Taylor. (2003, October 1 1). Access Control 101. Retrieved August 10,
2009, from Intranet Journal:
http: //www. intranetiournal. com/articles/200311/ij il 10 03a. htmI

[9] Andy Geremia. (2008, June I). Wireless Access Control Design 101.
Retrieved August 10,2009, from Article Archive:
http: //www. articlearchives. com/media-
telecommunications/telecommunications/959972-1. html

[10] Mark Lesswing. (2006, July 13). Access Control - You Practice It Everyday.
Retrieved August 10,2009 from Realtor Secure:

46

http: //www. realtor. oriz/wps/wcm/connect/5d8 1 b80048a28cafacdcfe0c8be I f2ed/SOS_
Wk4 Access. pdf? MOD=AJPERES&CACHEID=5d81 b80048a28cafacdcfeOc8bc I f2
ed

[I I] Wi-Fi and Wireless Network. Retrieved August 11,2009 from Wifinotes:
http: //www. wifinotes. com/

[12] Wi-Fi. Retrieved August 11,2009 from Wikipedia:
http: //en. wikipedia. org/wiki/Wi-Fi
[10] Douglas E. Comer. (2000). Internehs'orking with TCP/IP Principles.
Protocols, and Architectures. Prentice Hall International, 4th Edition.

1131 H. Gilbert. (1995). Introduction to TCP/IP. Retrieved August 12,2009 from
PC and Lube: htte//www. yale. edu/pElt/COMM/TCPIP. HTM

[I4] TCP/IP. Retrieved August 12.2009 from SearchNetworking:
http: //searchnetworking. teehtareet. com/sDefinition/0.. sid7 gci2]4I 73,00. htm

[14] ZeroG Wireless Technolok '. Retrieved August 12,2009 from ZeroG wireless
technology: http: //www. zerogwireless. com/technology/techchips. htmi

[15] Wi-Fi. Retrieved September 10.2009 from webopedia:
http: //www. webopedia. com/TERM/W/Wi Fi. html

47

APPENDICES

48

No.

1

1

Selection of Project Topic

i 11 12 13 14 SW

2 Preliminary Research Work

3 Submission ofPreli Preliminary Report

S ProjectWork

5 Submission of Progress Report

6 Seminar

7 Project work- continues

8 Submission of Interim Report Final Draft

9 Submission of Interim Report

10 Oral Presentation

Suggested milestone
Process

a ro o ý z v ý x
a

1
Detail/

P: o; ect Work Cor. tmu!

i 11 12 13 14 SW

SabaLssion cfhcgcess Repoct 1

P ojýct R'ad; Cort>suý

= Sabmssion cfhcgress ILepoct'_

S Sýinirsar "'_

6 P o'ectwod: continue

Pore: Eihsbiticn

S S-ibm. ssion cfDissettation (s) 8 bound)

9 Oral Presentation

1) Slbausion cfhcject Dissertitior. (Hard) -
tt

3ug*ralrd AG1raWtx
t[ccesl

v

Z

00

APPENDIX C

ZEROG WI-Fl MODULE

zero(D
ýr Mti

M. 1UIAIIi. 1l'1

V*..... ý...
O... «
NY. M/fYY. y

1{7... Easy-F° 0

wv, Noa w. -Awrnw. ý
Ilwllrw4u WI

Yýy/yY/Y)N 34v

/yuaýIrýrlir frra/ý AY

)hýr /111w

ze roo Lloszmýý

. ý_ý... r
,.,...... _ w. rw+rýr

..
ýwr. ý. ýw. ý.... ý. ý.. ý.. e...

(i L-14- w/ir"m- I(. [. K, 1lu iw. Ml. tü. MMK

Law Low

... a

ZO_100MZ1221O1M abcM Olapfill

a

hWJMrorrrsropMkMpLtorN vurmanmawcwmwiuwrior. r hopJMwwzroynlrMsa. caM

zero's
r-

`.

Lcnv

0

Low

Low

d
ýý

Law

" YrYva"qliLradiNMifW"LItMIU"%
" 7ys1rHY/w! ""11ra. IwrwKrlMabliwMnar4 M"V4"

r", f M14" w. r ý Vrn.
rry I/a V4w1" r/a liv1YrL1la! " a"WM N'"IV""" MM
.. w Yw

" LalrYartwl"a1fMrMiFMFfwAaM�/'"wY1M1"tv"b

""a!! Ili ý: YN7Y wolit ; Yrs

. II Wrr uý ueuf ry ng 11YSlY'Ma. 1ý' w1w ý

ý. ti. ký"r"wrY. ýv"ýrwM'n`ww. ýmrn7"Yr... "
r"rMrrYýh4rWs

'vt {nMp rir. s N r. Nrr. lrir la ri/ bn ý ZiitW

" Y.
" Nön-/"g'Myi7-7M

. 'a.. r J.. a r�u,. y nr. w w, ermýl. "o ý�

GpVYtl Na br-11 MiY4 MIf! YN Ylml
!. n i'ýi w711 Mr; rr! nevwl+/IM1+/ fsl. w Y iýlYYpý

r ý, r. Mtl i1lMY^/l/.. 1r Yeaýyv IFIn

" IýiIiVY"ryI"Iý"ýýIliILH/FY

" Grrrwlnnk%r, Yý1ý. ulrM/wilfprYMAbYMin"IrY

rrnrvYn. Yw. i. lº%'Iy1 'ý1Y"f�'nl

.1 T1 wY'11L. n wn " T.. , ry. r mY, MJN, MY. vr ty Luf a
'N II M r'pIlr'NrA/.

. rhINfllnwMM'N"wºMNt. IYrrIMII

: M/! t NI np. nLH "4 fMh IM'Mwý d MfOM. TA 17

hltp'JMww: ooqWMapioonr

M

Low

i. u,. n Wo il wrý. YY. w,
ýrnww. nt

l. ývta/ý 11 . ISM. MIDI YIIIF

ýruCM

Low

O Cnn 1M 7001"e0 N1'~ AIR" R11AM

ONARC-Im

ý mý
X80

VOYy anr S. Mf rwly

ze ro(D
A Wurld of

Mini Wtbservers

n. 292MMhm4km. ti
Pfd1klMlwarwbrnMfb
eHw wry g MAMIkd kNa

C-{NSbMYq

r"VI"Nrcrý: i""vný1. '. r r't4yYlYfpmnYrt

"Yrm'IYrl: 46"ttr"V"'MUr. " tI"nrfrrti""naVýfYiYy. rLrilOM

" Fn"wýY ýýýOMýI eý+v va+ o-A. r ""n rý r wýreW

" [4ggrrýSy2. Wk. nýlri"
.

. Yanay1. ww.
»nur

--. e -: :ýb r. '. ý1 IVA . ,. ý.,.. , .,. d.....
"M ý1/ arMw

n.. +n ,,, ýU�ý
.w

ý
.:

ý ý.. ý
,..,,,

RM Qý

N.. IOI. r. s..
FL+...

"
. M. Ma., < ,

%e+.

" COIwi M4 WOw
ýn n-

,. ýý. ti,...,
RMOa OMe*IanaMww

" Wry bw<. pgl. n. e... w.. err.. o . Uwv. n. n-. r. rnnr.. nw
rSaJr n. ̂ s r. r. YpMq ý^ r. N rIr .? p.. r. V ; yr!... W. t.. rrS br nro..

" Var. rCd .. n"Ir4urwnarc Va. a. K. . lr... Crnwr»r... lr

. 1rqýlbýwrý "oýgýriw! t«ýo. w. rºý

51

APPENDIX D

MICROCHIP DEVELOPMENT BOARD

EXPLORER 16 DEVELOPMENT BOARD FUNCTIONALITY AND FEATURES

A Layout of the Explorer 16 Devebpmerrl Board is shown in Figure 1-1. The board
includes those key features, as indicated in the diagram
1 1oo-pin PIM riser, compalibb with the PIM versions of all Microctrp

PIC24F124H/dsPIC33F devices
2. Direct 9 VDC power input that provides f3.3V and +5V (regulated) to the mile

board
3. Power indicator LED
4 RS-232 sepal port and associated hardware
5. On-board analog thermal sensor
8 USB connectivity for communications and device programmngkiebuggirg
7. Standard a-wie In-Circuit Debugger (ICD) connector br connections to an

MPLAB ICD 2 programmerkiebugger module
8. Hardware selection of PIM or soldered on-board microcontroller

(in future versions)
9 2-tine by 16-character LCD
10. Provlsiorrtg on PCB for add on graphic LCD
11 Push bunion switches for device Reset and user-defined inputs
12. Potentiometer for analog input

13 Eight indicator LEDs
14.74HCT4063 multiplexers for selectable crossover configuration on serial com-

munication lines

15. Serial EE PROM
18. Indeparxim crystals for precision microconlloller cbdu g (8 MHz) and RTCC

operation (32 788 Id-lz)
17. Prolotypo area for developing custom appicaeons
18 Socket and edge connector for P1Ctail' Pins card compatibility
19. Sic-pin Interface for PlCtot 2 Programmer
20 JIAG co nodor pad for optional boundary scan functionally

Bath picture and descriptions are taLen from Microchip Explorer 16 Development Board User's Guide page 12 and page 13.

52

APPENDIX E

FIRMWARE SOURCE CODE

0 (I, ! i- ,IIh; I. ' ýi.. _
f'i . i'! il: (; N

// Include all headers for any enabled TCPIP Stack functions

#include "TCPIP Stack/TCPIP. h"

// Include functions specific to this stack application

Ninclude "MainDemo. h"

// Declare AppConfig structure and some other supporting stack variables

APP CONFIG AppConfig;

BYTE ANOString[B];

// Use UART2 instead of UART1 for stdout (printf functions). Explorer 16

serial port hardware is on PIC UART2 module.

lif defined(EXPLORER 16)

int -C30-DART - 2;

Nendif

static void InitAppConlig(void);

static void Init. iali°elloard(void);

static void Prccessl0(void);

void Change(void)

defined(-C30-)

#define UART2PrintString putrsUART

void attribute ((interrupt, auto psv)) DefaultInterrupt(void)

{

UART2PrintString("!!! Default interrupt handler !!! \r\n"

while (1)

{

HOP

Nop();

NopU;

I
F

void
-attribute-

((interrupt, auto_psv))
_OscillatorFail(void)

{

UART2PrintString("!!! Oscillator Fail interrupt handler !!! \r\n"

while (1)

(); Hop

Nopf);

Nop();

voici tt. ribut e. (interrupt, auto psv); AddressE'. rror(void)

53

UART2PrintStriny("!!! Address Error interrupt handler !!! \r\n"

while (1)

(); NDP

NopO;

Nopl):

void
attribute((interrupt,

auto_psv))
_StackError(void)

{
UART2PrintString("!!! Stack Error interrupt handler !!! \r\n"

while (1)

Nop(1;

Nop(>;

Nop(l;

I

void
attribute((interrupt,

auto_psv))
_MathError(void)

1

Ul1RT2PrintString("!!! Math Error interrupt handler !!! \r\n"

while (1)

I
Nopl):

NopU:

Nopý):

ý
I

Melif defined(C32)

void
_general_exception_handler(unsigned

cause, unsigned status)

Nopf);

Nop();

Nendlf

}

// Main application entry point.

Nif defined(18CXX)

void main(void)

Nelse

int main(void)

Nendit

static DWORD t=0;

static DWORD dwLastlP - 0;

// Initialize application specific hardware

InitializeBoard();

#if defined(USE LCD)

// Initiali. c and disp:. iy the s. a:: version on 'he LCD

LCCInit(;

DelayMS(](I)

strcpypgm%ram(Ichar")LCU1'cv. t, "zerge ['en, o vý,. l

LCDUpda[cO;

"TCPStack " VERSION " ");

ui: ,ý fin, ýýl; ! I.,., n:: ['I, H'f ,

54

putrsUART((ROM char*)"\r\n\r\n");

putsUART((char *)LCDText);

putrsUART((ROM char')"\r\n");

#endif

Nendif

Initialize stack-related hardware components that may be

// required by the UART configuration routines
Tick. Init () ;

#if defined (STACK USE MPFS) II defined(STACK t]SE MPFS2)

MPFSInit I);

Mendif

// Initialize Stack and application related NV variables into AppConfig.

InitAppConfig();

// Initiates board setup process if button is depressed

// on startup
if(BUTTONO IO == Ou)

{
if defined(EEPROM CS TRIS) II detined(SPIFLASH_CS_TRIS)

// Invalidate the EEPROM contents if BUTTONO is held down for more than 4 seconds

DWORD StartTime = TickGetO;

LED PUT(OxOO);

uhile(BUTTONO IO -- Ou)

if(TickGet() - StartTime > 4`TICK SECOND)

kif defined (EEPROM CS TRIS)

XEEBeginWrite(Ox0000);

XEEWrite(OxFF);

XEEEndWrite();

Xelif defined(SPIFLASH CS TRIS)

SPIF1ashBeginWrite(Ox0000);

SPIF1ashWrite(OxFF);

Aendif

Rif defined(STACK USE UART)

putrsUART("\r\n\r\nBUTTONO held for more than 4 seconds.

Default settings restored. \r\n\r\n");

Rendif

LED PUT(OxOF);

while I(LONG)(TickGet() - Start Time) <- (LONG) (9"T ICK SECOND/2)I;

LED PUT(OxOO);

while(BUTTONO IO -- Ou);

Reset O;

break;

I

kendif

Nif defined (STACK USE UART)

DOUARTCOnf1g Ut

Nendif

Initialize core stack layers (MAC, ARP, TCP, UDP) and

// application modules (HTTP, SUMP, etc.)

55

St-ncklnit() :

// Blink LEDO (right most one) every second.

it(TickGetl) -t >- TICK SECOND/2u1)

t= TickGet(1;

LEDO IO ^= 1;

i

This task performs normal stack task including checking

// for incoming packet, type of packet and calling

appropriate stack entity to process it.

StackTask0;

// This tasks invokes each of the core stack application tasks

StackApplicationsD);

// Process application specific tasks horn.

#if defined(STACK USE GENERIC TCP CLIENT E:: AMU'LE)

GenericTCPClient();

$endif

Rif defined(STACK USE GENERIC TCP SERVER EXAMPLE)

GeneriCTCPServer();

Rendif

#if defined(STACK USE SMTP CLIENT)

SMTPDemoO;

8endif

if defined (STACK USE ICMP CLIENT)

PingnemoO ;

hendif

#if defined(STACK USE SNMP SERVER) S& ! defined(SNMP_TRAP_DISABLED)

SNMPTrapDemoO;

if(gSendTrapFlag)

SNMPSendTrap():

0 endif

if defined (STACK USE BERKELEY API)

Berke leyTCPClientDemoOI

BerkeleyTCPServerDemo(;

BerkeleyUDPClientDemo() ;

lendif

ProcessIOO ;

ý
}

// Writes an IP address to the LCD display and the UART as available

void DisplaylPValue(IP ADDR IPVal)

(
printf("%u. %u. %u. %u", IPVal. vt01, IPVa1. vt11, IPVal. vt2], IPVa1. vt31);

BYTE IPDigit[4];

BYTE i;

#ifdef USE LCD

BYTE j;

56

kendif

k: Y: F: :. CLI'c::; 1 6;

Eor(i - 0; i< sizcot(IP ADDR); iýr)

{

uitoa((WORD)IPVal. v(ij, IPDigic);

Nit det ined(STACK USE UART)

putsUART(IPDigit);

Nendif

Nifdef USE 16D

for(j = 0; j< strlen((char`)IPDigit); j++)

1

LCDTex[1LCDPos++1 - IPDigi[[]]c

if(i -= sizeof(IP ADDR)-1)

break;

LCDTextiLCDPos++I

I

Mel se

Mendif

sizeof(lfý

break;

Mif defined (STACK USE UART)

while(HusyUART());

WriteUART('. ');

Mendif

I

Mifdef USE LCD

if(LCDPOS < 32u)

LCDText(LCDPosj C;

LCDUpdate O;

Nendif

// Processes A/D data from the potentiometer

static void ProcesslO(void)

{

if defined(C30) II defined(-C32_

// Convert potentiometer result into ASCII string

uitoa((WORD)ADCIBUFO, ANOString);

#else

// ANO should already be set up as an analog input

ADCONObits. GO - 1;

// Wait until A/D conversion is done

while(ADCONObits. GO);

// AD converter errata work around (ex: PIC18F87J10 A2)

#if ! defined(18F87J50) 66 ! defined(18F87J50) 66 ! defined(18F87J11)

66 ! defined(18F87J11)

PRODL - ADCON2;

ADCON2 I- 0x7; // Select Frc mode by setting ADCSO/ADCSl/ADCS2

ADCON2 - PRODL;

tendif

// Convert 10-bit value into ASCII string

uitoa(`((WOR) (&ADRESL)), ANOStrinn);

57

Hendif

1

/ ..

Fundion:

st., it i.. ý; ýýid lnit i, ý:: cc13o. ýrý:; ooidl

....................................... ý

sLaLiiý výýid arsi; vci-: i

// LEDs

LEDO TRIS = 0;

LED1 TRIS 0;

LED2 TRIS - 0;

LED3 TRIS - 0;

LED4 TRIS 0;

LEDS TRIS = 0;

LED6 TRIS = 0;

#if ! dotined(EXPLORER 16) // Pin multiplexed with a button on EXPLORER 16

LED7 TRIS = 0;

8endif

LF. D PUT (UxUU)

Nit defined(16CXX)

// Enable 4x/5x/96MIIz PLL on PIC16F67JIO, PIC16F97J6O, FIC18F87J50, etc.

OSCTUNE - 0x40;

// Set up analog features of PORTA

digital

// PICDEM. neL 2 board has POT on AN2, Temp Sensor on AN3

if defined(PICDEMNET2)

ADCONO = 0x09; ADON, Channel 2

ADCONI - OxOD; // Vdd/Vss is +/-REF, ANO, AN1, AN2, AN3 are analog

#elif defined(PICDEMZ)

ADCONO = 0x81; ADON, Channel 0, Fosc/32

ADCONI - OxOF; // Vdd/Vss is r/-REF, ANO, AN1, AN2, AN3 are all

$elif defined(18F87J11) II defined(18F87J11) II defined(18F87J50) II

defined(18F87J501

ADCONO - OxOl; ADON, Channel 0, Vdd/Vss is +/-REF

WDTCONbits. ADSHR - 1;

ANCONO = OxFC; ANO (P(YT) and AN1 (temp sensor) are anlog

ANCON1 = OxFF;

WDTCONbits. ADSHR = 0;

Nelse

Nendif

ADCONO = OxOl; // ADON, Channel 0

ADCON1 OxOE; // Vdd/Vss is +/-REF, AND is analog

ADCON2 = OxBE; // Right justify, 20TAD ACQ time, Fosc/64 (-21. OkHz)

// Enable internal PORTB pull-ups

INTCON2bits. RBPU - 0;

// Configure USART

TXSTA = 0x20;

RCSTA = 0x90;

// See if we can use the high baud rate setting
#if ((GetPeripheralClock. O+2"BAUD_RATE)/BAUD RATE/4 - 1) <= 255

3FkikG - (r; ot PCr if) hr. rnlC lor, L: (2 'L TJ D RATE)/1v; VT RATE/4 - 1;

58

TXSTAbits. BRGO - 1;

Nelse // Use the low baud rate setting

SPBRG = (GetPeripheralClock()+8"BAUD RATE)/BAUD RATE/16 - 1;

Mendif

// Enable Interrupts

RCONbits. IPEN 1;

INTCONbitS. GIEH - 1;

INTCONbits. GIEI. = 1;

#else // 16-bit C30 and and 32-bit C32

// Enable interrupt priorities

if defined(_dsPIC33F_) 11 defined(_PIC24H_)

// Crank up the core frequency

PLLFBD - 38; Multiply by 40 for 160MIrz VCO

output (BMHz XT oscillator)

CLKDIV = 0x0000; FRC: divide by 2, PLLPOST: divide by 2,

PLLPRE: divide by 2

// Port I/O

AD1('CFGHbits_PC'r'G23 1; Make RA7 (BUTTONI) a digital input

AUIPCFGHbits. PCFG20 1; Make RA12 (INT1) a digital input for ZeroG ZG2100M

PICtail Plus interrupt

sensor)

sensor)

// ADC

ADICHSO - 0; Input to ANO (potentiometer)

ADIPCFGLbits. PCFG5 - 0; Disable digital input on AN5 (potentiometer)

ADIPCFGLbits. PCFG4 = 0; // Disable digital input on AN4 (TC1047A temp

$else 1/defined(PIC24F) II defined(PIC32MX)

#if defined(PIC24F)

CLKDIVbits. RCDIV = 0; // Set 1: 1 8MHz FRC postscalar
Rendif

// ADC

ADICHS = 0;

ADIPCFGbits. PCFG4 = 0;

// Input to ANO (potentiometer)

// Disable digital input on AN4 (TC1047A temp

#if defined(32MX460F512L) II defined(32MX795F512L_) II PIC32MX46OF512L

and PIC32MX795F512L PIMs has different pinout to accomodate USB module
ADIPCFGbits. PCFG2 - 0; // Disable digital input on AN2

(potentiometer)

(potentiometer)

#endif

// ADC

Nelse

Nendif

ADIPCFGbits. PCFG5 = 0; // Disable digital input on AN5

ADICONI = Ox84E4; Turn on, auto sample start, auto-convert, 12 bit

mode (on parts with a 12bit A/D)

ADICON2 - 0x0404; // AVdd, AVss, int every 2 conversions, MUXA only, scan
ADICON3 - OxlOO3; 16 Tad auto-sample, Tad = 3'Tcy
*if defined(_32MX460F512L_) II defined(_32MX795F512L_) // PIC32MX460F512L and

PIC32MX795F512L PIMS has different pinout to accomodate USB module
ADICSSL z 1<<2; // Scan pot

Nc1se

59

#endif

AD1CSSL - 1«5; // Scan pot

// UART

#if defined lSTACK USE UART)

UARTTX TRIS = 0;

UARTRX TRIS = 1;

UMODE - 0x8000;

setting UTXEN

// Set UARTEN. Note: this must be done before

if defined(_C30)

USTA = 0x0400; UTXF. N set

*define

((GDtPeriphcralClockO +8u1`BAUD_RATE)/16/BAUD_RATE-1)

CLOSEST_U9RG_VALUE

define BAUD ACTUAL (GetPeripheralClock() /16/ (CLOSEST_UBRGVALUE+1))

Relse //defined(-C32-)

USTA = 0x00001400; RXEN set, TXEN set

define CLOSEST_UBRG_VALUE

((GetPeripheralClockO +8u1'BAUD_RATE)/16/BAUD_RATE-1)

Rdefine BAUD ACTUAL (GetPeripheralClock(}/16/(CLOSF. ST_UBRG_VALUE+1))

Bendif

Mdetine BAUD_ERROR ((BAUD_ACTUAL > BAUD PATE) BAUDACTUAL-BAUD_RATE

RADD_RATE-RAUD ACTUAL)

#define BAUD ERROR PRECENT ((BAUD_ERROR"100+BAUD RATE/2)/BAUD_RATE)

#if (BAUD_ERROR_PRECENT > 3)

Mwarning DART frequency error is worse than 3%

Motif (BAUD_ERROR_PRECENT > 2)

#warning UART frequency error is worse than 2%

Mendif

Nendif

Nendif

UBRG - CLOSEST UBRG VALUE;

Xif defined(SPIRAM CS TRIS)

SPIRAMInitOt

#endif

#if defined)REPROM CS TRIS)

XEEInit(1;

Mendif

#if defined)SPIFLASH CS THIS)

SPIF1ashIni t0;

Hendif

}

...

Function: void InitAppConfig(void)

static ROM BYTE SerializedMACAddress[6) _ {MY DEFAULT MAC BYTE1, MY DEFAULT MAC BYTE2,

MY_DEFAULT_MAC_BYTE3, MY_DEFAULT_MAC_BYTE4, MY_DEFAULT_MAC_BYTES, MY_DEFAULT_MAC_BYTE6);

//Npragma romdata

static void InitAppConfig(void)

{

AppConfig. Flags. bIsDHCPEnabled TRUE;

AppConfig. Flags. binConfigMode TRUE;

memcpypgm2ram((void")&AppConfiq. MyM_ACAddr, (ROM void*)SerializedMACAddress,

sizeof(AppConfi(i. MyMACAddr));

60

AppConfig. MyIPAddr. Val MY DEFAULT IP ADDR BYTE1 I MY DEFAULT_IP_ADDR_BYTE2«8u1 I
MY DEFAULT I? ADDR HYTE3«16u1 I MY_DEFAULT_IP_ADDR_BYTE4«24u1;

AppConfig. DefaultIPAddr. Va1 - AppConfig. MylPAddr. Val;
AppConfig. MyMask. Val MY_DEFAULT_MASK_DYTEI I MY_DEFAULT_MASK_BYTE2«8u1 I

MY DEFAULT MASK BYTES «16u1 I MY DEFAULT MASK BYTE4< 24u1;

AppConfig. DefaultMask. Val = AppConfig. MyMask. Val;
AppConfig. MyGateway. Val MY DEFAULT_GATE_BYTE1 I MY_DEFAULT_GATE_BYTE2« But I

MY DEFAULT GA'I'1: BY'PE3«16u1 I MY DEFAULT GATE BYTE4«24u1;

AppConfig. PrimaryDNSServer. Val

MY DEFAULT PRIMARY DNS BYTE2<<Bul

MY DEFAULT PRIMARY DNS BYTE4«24u1;

AppConfig. SecondaryDNSServer. Val

MY DEFAJI, T SECONDARY DNS BYTE2«8uI

MY DEFAULT SECONDARY DVS BYTE4«21ul;

// SNMP Community String configuration

#if defined(STACK USE SNMP SERVER)

{

MY DEFAULT PRIMARY DNS BYTE1 I

MY DEFAULT PRIMARY DNS BYTES«16ul I

MY_DEFAULT_SECONDARY_DNS_BYTE1

MY DEFAULT SECONDARY DNS BYTE3 «16u1

BYTE i;

static ROM char " ROM cReadCormnunitiesl] = SPMP READ COMMUNITIES;

Static ROM char " ROM cWriteCos unities[] = SUMP WRITE_ COMTIUNITIES;

ROM char " strCOMunity;

for(i e 0; i< SNMP MAX COMMUNITY SUPPORT; i+i)

1

// Get a pointer to the next community string

strCommunity = CReadCommunities[i];

ifli >- sizeof IcReadCum.:. unities) /sizeof[cReadCunm. uuit

strCommunity =;

es[01))

Ensure we don't buffer overflow. If your code gets stuck here,

it means your SNMP_COMMUNITY_MAX_ LEN definition in TCPIPConfig. h

is either too small or one of your community string lengths

// (SNMP_READ_COMMUNITIES) are too large. Fix either.

if(strlenpgn(strCOmmunity) >= sizeof(AppConfig. readCOmmunity(0]))

wt: i is i1);

// Copy string into A. ppConfig

strcpypgm2ram((char'). +ppConfig. readConrnunity(ij, strCo: mnunity);

// Get a pointer to the next community string

strCommunity = cWriteCommunities[i);

if(i >- sizeof[cWriteCommunlties) /sizeüf(cWr, teCcnanunities[O)

strCommunity =;

Ensure we don't buffer overflow. If your code gets stuck here,

it means your SNMP_COMMUNITY_MAX_LEN definition in TCPIPConfig. h

is either too small or one of your community string lengths

(SNMP_WRITE_COMMUNITIES) are too large. Fix either.
if(strlenpgm(strComnunity) >= sizeof(AppConfig. writeCommunity[0]))

while (1);

// Copy string into AppCon: ig

st rcpypgm2ram((char*)AppConfig. writeCo: nmunity(iI, strConnnunity);

Xendif

f

// Load the default NetBIOS Host Name

R, n mrnypgm2 ramiApýýC or tiq. Not BIO. ^, N to, (P')'i vnid')MY LIP V JLT BOOT NAME, 16);

61

FormatNetBIOSNar, e(AppConfiq. Ile tIIIOSName;;

Nit defined(ZG CS TRIS)

// Load the default SSID Name

if (sizeof(MY_DEFAULT_SSID_NA. ME) > sizeof(AppConfiq. MySSID))

1

ZGErrorHandler((ROM char ')"AppConfig. MySSID[] too small");

}

memcpypgm2ram(AppConfig, My SID, (ROM void")M°_DEFAULT_SSID_NAME,

sizeof(MY DEFAULT SSID NAME));

Nendif

Mif defined(EEPROM CS TRIS)

{

BYTE c:

}

When a record is saved, first byte is written as 0x61 to indicate

// that a valid record was saved.

XEEReadArray(Ox0000, dc, 1);

ific =- Ox6lu)

XEEReadArray(Ox0001, (BYTE")6AppConfig, sizeof(AppConfig));

else

SaveAppCOnfigO;

Me1if defined(SPIFLASH CS TRIS)

{

}

#endif

else

saveAppConfig();

Xif defined(EEPROM_CS_TRIS) 11 defined(SPIFLTiSH_CS_TRIS)

void SaveAppConfig(void)

(

// Ensure adequate space has been reserved in non-volatile storage to

// store the entire AppConfig structure.
#if defined(STACK USE MPFS) II defined(STACK USE MPFS2)

if(sizeof(AppConfig) > MPFS RESERVE BLOCK)

while (1);

Nendif

Mif defined(EEPROM CS TRIS)

XEEBeginWrite(Ox0000);

XEEWrite(0x61);

XEEWriteArray((BYTE")bAppConfig, sizeof(AppConfig));

Me1se

ý
aendif

BYTE c;

SPIF1ashReadArray(Ox0000, &c, 1);

if(c == Ox6lu)

SPIF1ashReadArray(Ox0001, (BYTE")6AppConfig, sizeof(AppConfig));

SPIF1ashBeginwrite(Ox0000);

SPIF1ashWrite(OxGl);

SPIFlashwriteArray((BYTE')6AppConfig, sizeof(AppConfig));

62

