TWO PHASE FLOW BY USING ELECTRICAL TOMOGRAPHY

By

Faizatul Khasanah Sugeng

Dissertation submitted in partial fulfillment of the requirements for the Bachelor of Engineering (Hons) (Electrical and Electronics Engineering)

JUNE 2010

Universiti Teknologi PETRONAS Bandar Sri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

TWO PHASE FLOW USING ELECTRICAL TOMOGRAPHY

By

Faizatul Khasanah Sugeng

A project dissertation submitted to the Electrical and Electronics Engineering Programme Universiti Teknologi PETRONAS in partial fulfillment of the requirement for the BACHELOR OF ENGINEERING (Hons) (ELECTRICAL AND ELECTRONICS ENGINEERING)

Approved by:

(Ir. Dr. Idris Ismail)

.....

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK JUNE 2010

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

.....

(FAIZATUL KHASANAH SUGENG)

ABSTRACT

Electrical Tomography has been widely used in the industry to obtain the cross sectional images. Three types of electrical tomography are being applied; Electrical Resistance Tomography (ERT), Electrical Capacitance Tomography (ECT) and Electrical Impedance Tomography (EIT). The aim of this project is to improve the performance of current flow rigs to enable bubble flow regime, to fabricate new sensor of ERT for data acquisition and to calculate the void fraction using the image processing techniques. ECT sensor is calibrated and studied but it is not fabricated for this project. Dual ERT sensor is designed and tested using data acquisition unit and software available in the laboratory. The ITS M3000 dual-modality provides information on the multiphase flow pattern, flow regime, composition and velocity. It produces conductivity and permittivity maps from multi-electrode sensors arranged around the pipe. Aside from using the Multi-Modal Tomography (MMTC) software, LCR meter can also be used to obtain data measurement result. However, this project only covers a part of ERT which are designing and fabricating the ERT prototype.

ACKNOWLEDGEMENT

First and foremost, I would like to express my utmost gratitude and praise to God for His guidance and blessings upon completion of the Final Year Project. Special thanks to my supervisor, Ir. Dr. Idris Ismail for guiding, teaching and monitoring me from the very beginning to the end of the project. He provided me with knowledge and advices in order for me to complete the project also fully supported me with patience throughout the whole process.

I would like to extend a special and heartfelt thank you to my family and friends for supporting and helping me all the way through till the end. Thank you to all technicians especially to Mr. Azhar, Ms. Siti Hawa and Ms. Siti Hajar for helping me a lot during the fabrication phase.

Last but not least, I would like to thank the Electrical and Electronics Department, lecturers and everyone involved, directly or indirectly for supporting and helping me upon my completion of the Final Year Project.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL					
CERTIFICATION OF ORIGINALITYIII					
ABSTRACTIV					
ACKNOWLEDGEMENTv					
TABLE OF CONTENTS					
					LIST OF TABLES
CHAPTER 1: INTRODUCTION 1					
1.1 Background of Study1					
1.2 Problem Statement					
1.3 Objectives					
1.4 Scope of Study5					
CHAPTER 2: LIETRATURE REVIEW 6					
2.1 Electrical Tomography					
2.1.1 Electrical Capacitance Tomography (ECT)					
2.1.2 Electrical Resistance Tomography (ERT)7					
2.2 Flow Regime					
2.3 Superficial Velocity10					
2.3.1 Superficial Gas Velocity10					
2.3.2 Superficial Liquid Velocity10					
2.4 ECT Sensor Characteristics					
2.5 ECT Sensor Design12					
2.6 ERT Measurement Strategies15					
2.6.1 Normal Adjacent15					

2.6.2 Others	16
2.7 ERT Sensor Characteristics	18
2.8 Flow Parameter	19
2.9 ERT Sensor Design	19
2.10 Image Reconstruction and Analysis	21
2.10.1 Forward Problem	22
2.10.2 Inverse Problem	23
CHAPTER 3: METHODOLOGY	24
3.1 Procedure Identification	24
3.2 Project Activities	25
3.3 Tools and Equipments	27
3.3.1 Hardware	27
3.3.2 Software	30
3.3.3 Test Rig Design using Microsoft Visio	31
3.4 Sensor Design Specification	32
3.5 Data Measurement using LCR Meter	34
CHAPTER 4: RESULTS AND DISCUSSIONS	36
4.1 Void Fraction Calibration for m30000 ECT Sensor	36
4.2 Void Fraction Calibration for m3000 ERT Sensor	40
4.3 Performance of Fabricated ERT Sensor	42
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS	43
5.1 Conclusion	43
5.2 Recommendations	44
REFERENCES	45
REFERENCES	45 48
REFERENCES APPENDICES APPENDIX A: Gantt Chart And Key Milestones For FYP 1 And FYP 2	45 48 49
REFERENCES APPENDICES APPENDIX A: Gantt Chart And Key Milestones For FYP 1 And FYP 2 APPENDIX B: Measurement Guide For ECT Sensor Using MMTC Software	45 48 49 52
REFERENCES. APPENDICES APPENDIX A: Gantt Chart And Key Milestones For FYP 1 And FYP 2 APPENDIX B: Measurement Guide For ECT Sensor Using MMTC Software APPENDIX C: Measurement Guide For ERT Sensor Using MMTC Software	45 48 49 52 54
REFERENCES. APPENDICES APPENDIX A: Gantt Chart And Key Milestones For FYP 1 And FYP 2 APPENDIX B: Measurement Guide For ECT Sensor Using MMTC Software APPENDIX C: Measurement Guide For ERT Sensor Using MMTC Software APPENDIX D: Measurement Data For ECT M3000 Sensor (Air And Rice)	45 48 49 52 54 56
REFERENCES APPENDICES APPENDIX A: Gantt Chart And Key Milestones For FYP 1 And FYP 2 APPENDIX B: Measurement Guide For ECT Sensor Using MMTC Software APPENDIX C: Measurement Guide For ERT Sensor Using MMTC Software APPENDIX D: Measurement Data For ECT M3000 Sensor (Air And Rice) APPENDIX E: Measurement Data For ECT M3000 Sensor (Air And Water).	45 48 52 52 54 56 61

APPENDIX G: Datasheet Coaxial Cable RG174A/U	67
APPENDIX H: Datasheet AT525 35 Micron Copper Foil Shielding Type	69
APPENDIX I: Datasheet SMB Connector	71
APPENDIX J: Datasheet 36-Way Centronic Plug	74
APPENDIX K: Datasheet 36-Way Centronic Socket	78

LIST OF FIGURES

Figure 1: Multiphase Meter	2
Figure 2: Conventional Test Separator	2
Figure 3: Basic Tomography Configuration	3
Figure 4: ECT Sensor	7
Figure 5: ERT Sensor	7
Figure 6: Flow Regime Map	8
Figure 7: Flow Regime in Multiphase Flow	9
Figure 8: Measurement for Capacitance Mode	11
Figure 9: ECT Sensor Arrangement	15
Figure 10: Adjacent Measurement	16
Figure 11: Linear Measurement Strategy	17
Figure 12: Conducting Boundary Measurement	17
Figure 13: Measurement for Resistance Mode	18
Figure 14: ERT Sensor Design of Dual Planes	20
Figure 15: Electrodes Configuration	20
Figure 16: Image Reconstruction Grid	21
Figure 17: Tomogram image	23
Figure 18: Project Flow Chart	24
Figure 19: Data Measurement Process	26
Figure 20: General Measurement Guide in MMTC	30
Figure 21: P&ID Diagram for Test Rig Design	31
Figure 22: Fabricated ERT Sensor of 1 Plane 8 Electrodes	32
Figure 23: Fabricated ERT Sensor of 2 Planes 16 Electrodes	33
Figure 24: Switching Circuit	34
Figure 25: Equipment Setup for Data Measurement	35
Figure 26: Low Calibration Image using the M3000 ECT Sensor	36

Figure 27: High Calibration Image using the M3000 ECT Sensor	37
Figure 28: Calibration Graph for M3000 ECT Sensor	37
Figure 29: Voltage Measurement for 8 Electrodes ECT Sensor (Rice, ϵ =3.5)	38
Figure 30: Voltage Measurement for 8 Electrodes ECT Sensor (Water, ε =80)	39
Figure 31: Tomographic Image when 'ERT Cal' is None (2)	41
Figure 32: Measurement for m3000 ERT Sensor	42

LIST OF TABLES

Table 1: List of Hardware (ERT Sensor)	. 27
Table 2: List of Hardware (Switching Circuit)	. 28
Table 3: List of Equipments (Test Rig)	. 29
Table 4: 'ERT/ECT Cal' Options	. 31
Table 5: Voltage Measurement for Each Current Injection Pairs (Air and Rice).	. 39
Table 6: Voltage Measurement for Each Current Injection Pairs (Air and Water)40
Table 7: Voltage Measurement for Each Current Injection Pairs (Air and Water)41

CHAPTER 1

INTRODUCTION

This chapter will describe the background of study, problem statement of the project, objectives to be achieved and scopes of study involved in this project. It provides the overview of the project with details included in the next few chapters.

1.1 Background of Study

Two phase flow meter or commonly known as multiphase flow meter is being used in the oil and gas industry for measuring flow rates in a pipeline. Schlumberger Oilfield Glossary defines multiphase meter as a device that can be used to measure individual fluid flow rates of oil and gas when more than one fluid is flowing through a pipeline. It provides accurate readings even when different flow regimes are present in the multiphase flow. It gives real time information on well capabilities during production and it helps to increase the production. Multiphase meter has the advantages of continuous well monitoring, no separator needed, low cost, weigh less and it requires less space especially on platform with limited area.

The conventional test separator had been used before the multiphase meter is introduced in the industry. The test separator has more complex system as compared to the multiphase meter system which is much simpler. Figure 1 and Figure 2 shown are the conventional test separator system and multiphase meter system, respectively.

Figure 2: Conventional Test Separator (Roxar, 2009)

Figure 1: Multiphase Meter (Roxar, 2009)

Tomography has been widely used in medical and industry applications. It is used to obtain cross-sectional images of objects by non-destructive means. The general principle underpinning tomography technique is to enclose the objects to be studied by a number of non-intrusive sensors (transducer) and then acquire measurements from these sensors (Loh W.W. *et al.* 1999). Tomography involves projection data gathering from various directions and then will be fed into a tomographic reconstruction software algorithm processed by a computer. Typical configuration of electrical resistance tomography is shown in Figure 3.

Figure 3: Basic Tomography Configuration

This technique has the advantages of producing a cross sectional distribution information where the flow regime can be identified, the solids' fraction profile and the velocity profile can be derived and the volumetric flow rate can be measured (S. Liu *et al.* 2005). There are many types of tomography sensors had been introduced in the industry such as ionizing radiation, optical, positron emission (PET), nuclear magnetic resonance (NMR), acoustic and electrical. The most popular tomography sensors used in the oil and gas industry are the electrical type; Electrical Capacitance Tomography (ECT), Electrical Resistivity Tomography (ERT) and Electrical Magnetic Tomography (EMT).

1.2 Problem Statement

Multiphase meter concept was introduced in August 1984 and already in the industry since 1992 (Roxar, 2009). Previously in the oil and gas industry, the conventional way for well testing is using the test separator. It has the disadvantages of inaccurate readings, works independently by separating the elements and it is physically impossible to completely separate the phases for independent measurement (Jo Agar, 2001). Therefore, multiphase meter is introduced to replace the conventional test separator. No separation needed and hence the crude is measured continuously as it flows through the meter. The readings can be obtained instantaneously on the operator workstation.

Currently, PETRONAS Carigali Sdn. Bhd. (PCSB) has installed numbers of multiphase flow meter on the platforms from various manufacturers since 2002 (DFIC, 2009). ERT is known as the simplest technique to be used in obtaining a cross sectional image in a vessel. In order to get a better result, dual plane sensor is being used in this project where more area can be observed compared to only one plane. Therefore, this project will help to produce more accurate data by using dual plane sensor.

1.3 Objectives

This project is implemented to achieve its objectives. The objectives of this project are to improve the performance of current flow rigs in order to enable bubble flow regime. The current flow rig does not provide a sufficient air flow to allow the bubble flow in the column, therefore the flow rig need to be reconstructed. In order to suit the requirements, a new dual ERT sensor is to be fabricated for data acquisition analysis. Analysis need to be done which in this project, the void fraction is being calculated by applying the image processing technique and raw voltage data analysis.

1.4 Scope of Study

Various kinds of theory and knowledge need to be applied in order to complete the project. It includes the understanding of tomography system and the two phase flow behavior. The tomography system is an essential part in this project which it includes the data acquisition unit, image processing and to design the sensor. These will help to analyze the data obtained in the project. The sensor is designed for 16 electrodes in a plane and therefore, there are 32 electrodes for both dual planes. The raw data measurement is obtained using the data acquisition unit which is the Multimodal Tomography Configurator (MMTC). Another important aspect need to be understood is the behavior of two phase flow. This project is focusing on the bubble flow regime and therefore, a particular understanding on the bubble flow dynamic is necessary for this project. From the void fraction calculation, the right flow regime can be identified. A test rig is to be designed and constructed for dynamic flow test where it is built to meet the requirement of bubble flow regime.

CHAPTER 2

LITERATURE REVIEW

There are many types of tomography techniques used in the industry. The most common technique used is the Electrical Tomography. This chapter will describe on the Electrical Tomography in details.

2.1 Electrical Tomography

The Electrical Tomography is non-intrusive, of high temporal resolution (1 ms achievable), low cost, no radiation hazard and easy to implement (C.G. Xie *et al.* 1995). It is a popular measurement technique used in the oil and gas industry to measure the multiphase flow regimes. The information about the contents of process vessels and pipelines can be obtained by applying this technique. Multiple electrodes are arranged around the boundary of the vessel at fixed locations in such a way that they do not affect the flow or movement of materials.

2.1.1 Electrical Capacitance Tomography (ECT)

ECT has been developed for imaging the industrial processes containing dielectric permittivity (ϵ) of material. The flow regime of multiple fluids flowing through a pipe can be observed using ECT in multiphase flow meters. It is mostly suitable for process involving insulating mixtures of different permittivity. The advantages of using ECT sensors are it has no radiation, rapid response, relatively low cost, being non-intrusive and non-invasive and withstanding high temperature and pressure (I. Ismail *et al.* 2005). The ECT sensor is shown in Figure 4. It consists of one plane of capacitance layer where 12 electrodes are in fixed equidistance inside the pipe wall.

Figure 4: ECT Sensor

2.1.2 Electrical Resistance Tomography (ERT)

Electrical Resistance Tomography (ERT) is a measurement technique used to obtain a cross sectional images of the electrical conductivity (σ) in process vessels and pipeline (ITS, 2007). ERT sensor is a non-intrusive but invasive sensor. It is used to measure aqueous based processes which the measured materials are different in conductivity characteristics (Z. Cui *et. al*, 2009). The ERT system produces a cross-sectional image of the electrical conductivity (σ) distribution in pipelines or process vessel. It is emphasizing the quantity measured rather than the images. The ERT sensor is shown in Figure 5. It consists of single plane sensor with 16 electrodes are fixed around the vessel wall.

Figure 5: ERT Sensor 7

2.2 Flow Regime

Flow regime map provides the general illustration of the flow regime for vertical and horizontal flows. The descriptions and classifications of multiphase flow in a pipe and the flow regime map can be used to estimate the expected flow regimes under given circumstances are well-established (M. Brown, 2007). Multiphase flow regimes have no sharp boundaries and therefore it changes smoothly from one regime to another. The flow regime map is shown in Figure 6. Flow regime in vertical upward flow can be categorized into few profiles which are Bubbly flow regime, Taylor flow regime, Slug-bubbly flow regime, Churn flow regime and Annular flow regime.

Figure 6: Flow Regime Map (Sidsel et. al, 2005)

Bubbly flow regime occurs at very high liquid velocities and low gas velocities. It is observed by fast rising bubbles presence with a diameter equal to or less than the pipeline. It is the most ideal situation. The elements are floated separately and bubbles are located on top of the pipeline. A Wavy flow will occur due to higher velocity in gas as it has lower friction. Taylor flow regime or known as Slug flow regime consists of gas bubbles with lengths greater than the pipeline diameter that move along the pipeline separated from each other by liquid slugs.

The Churn flow regime occurs at very high gas velocities and wave or ripple motion is observed at the bubble tail. The increasing of gas flow rate with low liquid velocity in Churn flow will results in annular flow. A continuous gas phase is observed in the central core of the pipeline with the liquid phase is displaced to form an annulus between the pipeline wall and the gas. Annular flow will create a momentarily reverse flow or bi-directional flow. The difference in flow regime is illustrated in Figure 7.

Figure 7: Flow Regime in Multiphase Flow (A. Rashid et. al, 2001)

All flow regimes however, can be grouped into dispersed flow, separated flow, intermittent flow or a combination of these (Sidsel *et. al*, 2005).

- Dispersed flow is characterised by a uniform phase distribution in both the radial and axial directions. Examples of such flows are bubble flow and mist flow.
- Separated flow is characterised by a non-continuous phase distribution in the radial direction and a continuous phase distribution in the axial direction. Examples of such flows are stratified and annular.
- Intermittent flow is characterised by being non-continuous in the axial direction, and therefore exhibits locally unsteady behaviour. Examples of such flows are elongated bubble, churn and slug flow. The flow regimes are all hydrodynamic two-phase gas-liquid flow regimes.

2.3 Superficial Velocity

2.3.1 Superficial Gas Velocity

Superficial gas velocity, $V_{s, gas}$ is the gas velocity flowing through a pipe without liquids. The total output of gas provided that it operates within the operating temperature and pressure, divided by the cross sectional area of the pipe. It can be expressed in terms of equation (1). (Sidsel et. al, 2005)

$$v_{s,gas} = \frac{Q_{gas}}{A} \qquad \dots (1)$$

where,

 $v_{s,gas}$ = Superficial gas velocity, m/s Q_{gas} = Gas volume flow rate, m³/s A = cross-sectional area of pipe, m²

2.3.2 Superficial Liquid Velocity

Superficial liquid velocity, $V_{s, liquid}$ is the liquid velocity flowing through a pipe without gasses. It has a similar equation with the superficial gas velocity. It can be expressed in terms of equation (2). (Sidsel et. al, 2005)

$$v_{s,liquid} = \frac{Q_{liquid}}{A} \qquad \dots (2)$$

where, $v_{s,liquid}$ = Superficial gas velocity, m/s Q_{liquid} = Gas volume flow rate, m³/s A = cross-sectional area of pipe, m²

The multiphase mixture velocity can be expressed by summation of both superficial gas velocity and superficial liquid velocity, as shown in equation (3). (Sidsel et. al, 2005)

$$V_{m}=V_{s,gas}+V_{s,liquid} \qquad \dots (3)$$

where, V_m = Multiphase mixture velocity, m/s

2.4 ECT Sensor Characteristics

In most application, ECT electrode is mounted outside the ECT pipeline which is called external electrode ECT sensor (Yang *et al.* 1997). The external electrode can avoid polluting and eroding by inner media, and affecting from the inner media static, so that non-intrusive measurement is realized (D. Yang *et al.* 2009). Various design parameters of ECT sensor can affect the overall sensor performance. A very low noise level, a wide dynamic measurement range, high immunity to stray capacitance to earth and be able to measure at high speed are the characteristics of an ideal ECT sensor. ECT sensor of 8 electrodes is being used in this project. The electrodes are built from conductive plate which has direct contact to the measuring area. Figure 8 shown is the measurement for capacitance mode.

Figure 8: Measurement for Capacitance Mode (Z.Cui et. al 2009)

Capacitance is defined as measure of the ability of two conductors to store charge when a given potential difference is established between them (E. Brown, 2007). ECT has to be designed to meet certain criteria in order to get a good performance. The design criteria for ECT sensor are as follows (PTL, 2001):

- a. Internal or external electrodes
- b. Number of electrodes

- c. Capacitance value
- d. Total electrode length
- e. Length of measurement electrodes and guard electrodes
- f. Screening arrangement
- g. Connecting leads
- h. Electrostatic precautions

2.5 ECT Sensor Design

ECT has two types of fixing the electrodes; internal or external. In choosing the internal or external electrodes is depends on the vessel wall materials. An acrylic material is used for this project. Therefore, either internal or external electrodes can be applied. The external electrodes arrangement is selected for this project as it is much simpler and no rigid accuracy is needed compared to the internal electrodes. It has no direct contact with the fluid flow inside the pipe and thus, the measurement is non-invasive.

The number of electrodes will affect the sensitivity and image capture rates. The radial resolution can be improved by increasing the number of electrodes. In an ECT system, due to the overlapping capacitance, therefore the value of capacitance will be the same. The possible number of standalone independent capacitance measurements per image for a system can be calculated by:

$$M = \frac{N(N-1)}{2} \qquad \dots (4)$$

where,

M = Total capacitance measurements required for image Reconstruction N = Number of electrodes The capacitance value is calculated based on equation (5). The measurement of capacitance data is determined by:

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d_p} \qquad \dots (5)$$

where

C = capacitance (F) $\varepsilon_0 = \text{permittivity of free space, } 8.854 \times 10^{-12}$ $\varepsilon_r = \text{permittivity of the dielectric constant}$ A = area of the plate (m) $d_p = \text{distance between plates (m)}$

The sensor is to be designed to measure between a higher capacitance (C_{max}) value with a lower capacitance value (C_{min}) . It has to be able to image the materials with a high (E_2) and low (E_1) permittivity. The measured capacitance between adjacent electrodes (C_A) with lower permittivity (E_1) material value must follow the equation (6) in order to allow capacitance of higher permittivity material will be less than C_{max} . The capacitance for opposite electrodes (C_O) with lower permittivity material value must follow equation (7) in order to have a noise free measurement. The value of K is a constant which is typically 50.

$$C_A < C_{max} \frac{E_1}{E_2} \qquad \dots (6)$$

$$C_0 > KC_{min} \tag{7}$$

The total electrode length (L_t) including the measurement and driven guard electrodes must be at least equal to the diameter of the pipe. The sensitivity of the sensor is depends on the length of electrode. The maximum (L_{max}) and minimum (L_{min}) length of measurement electrode is shown in equation (8) and equation (9), respectively. The length of driven guard electrodes can be calculated using equation (10).

$$L_{min} = \frac{C_{min}}{K_2} \qquad \dots (8)$$

$$L_{max} = \frac{C_{max}}{K_1} \qquad \dots (9)$$

$$L_t = L_m + 2L_a \qquad \dots (10)$$

where,

 L_t = Total electrode length L_m = Length of measurement electrodes L_g = Length of drive guard electrodes

The measuring electrodes must be surrounded by earthed, as shown in Figure 9. The measuring and guard electrodes must be connected to the measuring unit by screened coaxial connecting leads. The electrodes are usually made of copper (refer Appendix H). The measurement and guard electrodes are to be connected to the capacitance measuring unit by screened coaxial cables and terminated un SMB coaxial connectors (refer Appendix I). The connecting leads must be less than 1.5 meters. All measurement and guard electrodes have to be earthed in order to avoid the electrostatic from occur. These earthed areas are attached to the sensor by an individual discharge resistor.

Figure 9: ECT Sensor Arrangement

2.6 ERT Measurement Strategies

There are few types of measurement strategies involved in order to obtain the measurement data which re normal adjacent, fast adjacent, linear adjacent and conducting boundary. In this project, the normal adjacent measurement strategy is being used.

2.6.1 Normal Adjacent

The adjacent protocol is the most common measurement strategy used (H.S Tapp *et. al*, 2003). Electrical current flow is induced between a pair of adjacent electrodes, and the differential potential (voltage) of the remaining pairs of adjacent electrodes are measured. This process is repeated all independent measurements are taken as shown in Figure 10.

This method produces N^2 measurements where N is the number of electrodes. Therefore, the total independent measurements, M is shown as equation (11).

Figure 10: Adjacent Measurement (Z. Cui et. al, 2009)

$$M = \frac{N(N-1)}{2}$$
...(11)

However, the voltage is not measured at the current injecting electrode in order to avoid the electrode contact impedance problems. Thus, equation (2) is reduced to equation (12).

$$M = \frac{N(N-3)}{2} \dots (12)$$

2.6.2 **Others**

Another method used is the fast adjacent technique. This method is suitable for fast data collection which the measurement does not requires any on-line image processing. It has the same process as the normal adjacent method. Linear measurement strategy applies to a vertical series of electrodes mounted on a linear rod or in a vessel. It uses the same process as the adjacent method. The setting is shown as in Figure 11.

Figure 11: Linear Measurement Strategy (ITS, 2007)

The conducting boundary measurement technique is applied to pipelines and vessels with conducting boundaries. The conducting boundaries act as current sink in order to reduce the common-mode voltage across the measurement electrodes (H.S Tapp *et. al*, 2003). The effects of electromagnetic interference is reduced when the earthed conducting boundary act as a shield as shown in Figure 12. The voltages are measured at the electrodes while the conducting vessels are grounded.

Figure 12: Conducting Boundary Measurement (ITS, 2007)

2.7 ERT Sensor Characteristics

In Electrical Resistance Tomography (ERT) sensor, the electrodes must be in direct contact with the material inside the vessels or pipeline. The electrodes also should be non-invasive as possible while being invasive at the same time. In order to obtain a reliable measurement, the process fluid inside the vessels should be continuous and less conductive than the electrodes (Z. Cui *et. al*, 2009). Typical types of electrodes used in the industry are made of metallic. The electrodes positioning is another important factor need to be considered in designing the ERT sensor. Electrodes are located at equal distance around the periphery of the vessels at fixed locations in order to map the electrical conductivity across plane.

Figure 13: Measurement for Resistance Mode (Z.Cui et. al 2009)

The size of electrodes is an important factor and the optimal size is dependent on number of parameters. Ideally, the current injecting electrodes should have a large surface area to ensure that even current density is generated while the voltage measuring electrodes should have a small surface area in order to avoid averaging across several equipotentials (M. Akrama *et. al*, 2008). The number of electrodes is selected based on the time taken to acquire data and reconstruct the images. Another element need to be considered in constructing an ERT sensor is the length of the signal carrying cable which is connected between

the electrodes and data acquisition. It is important in order to reduce the effect of environmental noise and interference. Figure 13 shown is the measurement for resistance mode.

2.8 Flow Parameter

The local volume fraction distribution can be determined from the conductivity distribution. Maxwell equation is used to determine the local volume fraction, α_c as shown in equation (13). It calculates the concentration of the dispersed phase in a continuous background. (Loh W.W. *et al.* 1999, ITS 2007)

$$\alpha_c = \frac{2\sigma_1 + \sigma_2 - 2\sigma_{mc} + \frac{\sigma_{mc}\sigma_2}{\sigma_1}}{\sigma_{mc} - \frac{\sigma_2}{\sigma_1} + 2(\sigma_1 - \sigma_2)} \qquad \dots (13)$$

where,

α_c	= Local volume fraction distribution of dispersed material
σ_1	= Conductivity of continuous phase, mS/cm
σ_2	= Conductivity of dispersed phase, mS/cm
σ_{mc}	= Local mixture conductivity distribution, mS/cm

2.9 ERT Sensor Design

Typical Electrical Resistance Tomography (ERT) sensor consists of 16 electrodes separated at equal distance which are mounted in vessels. The number of electrodes can vary depending on requirements. The configuration is either in a single plane or up to eight planes. Shape of the electrodes is designed based on few factors including the measurement protocols. The simplest is to use the same electrodes as both source and detection (H.S Tapp *et. al*, 2003). Figure 14 shows the ERT sensor design of two planes in a vessel.

Figure 14: ERT Sensor Design of Dual Planes

The optimum electrodes shape for normal adjacent is rectangular where the angular thickness of the electrode is twice the separation as shown in Figure 15(a), with the same electrodes used as both source and detector (H.S Tapp *et. al*, 2003). Separate electrodes configuration are used for more complex sensor design with either nested or interleaved as shown in Figure 15(b) and Figure 15(c), respectively. In nested configuration, the rectangular is used as source and the circular as the detector. Meanwhile in interleaved electrode configuration, the circular is the source and rectangular acting as the detector. (H.S Tapp *et. al*, 2003)

Figure 15: Electrodes Configuration

- (a) Electrode is twice the separation
- (b) Nested electrodes
- (c) Interleaved electrodes

2.10 Image Reconstruction and Analysis

The main idea of ERT technique is to determine the unknown conductivity distribution in the system using the voltage data measured at the boundary by applying a proper image reconstruction algorithm. There are two types of typical problems involved in image reconstruction for ERT sensor; forward problem and inverse problem. ERT is non-linear, thus the image reconstruction is also ill-posed and ill-conditioned (H.S Tapp *et. al* 2003, M. Akrama *et. al* 2008).

The image reconstruction grid represents the interior cross section of the vessel consists of a square grid of 20×20 which equivalents to 400 pixels (ITS, 2007). Only 316 pixels are used for the reconstruction image as some of the pixels are located outside the vessel circumference as shown in Figure 16.

Figure 16: Image Reconstruction Grid (Q.F. Lee, 2006)

2.10.1 Forward Problem

V

The forward problem needs to be solved before the inverse problem can be solved. In forward problem, the objective is to obtain the boundary voltage measurement with known electrical conductivity distribution (ITS, 2007). The voltage distribution, V can be determined by applying the Laplace equation in equation (14) since the conductivity distribution, σ and current injection, I₀ are known (M. Akrama et. al 2008).

$$\nabla .(\sigma . \nabla V) = 0 \qquad \dots (14)$$

where

= Conductivity distribution σ = Voltage distribution

The boundary conditions are given as in equation (15) and (16) where n is the unit normal vector and assume that no current source inside the system (M. Akrama et. al 2008).

$$V = V_0 \qquad \dots (15)$$

$$\sigma \frac{\partial V}{\partial n} = I_0 \qquad \dots (16)$$

where	I_0	= Current injection
	V_0	= Conductivity of second phase

= Unit normal vector п

2.10.2 Inverse Problem

The inverse problem is to determine the unknown conductivity distribution from a finite number of boundary voltage measurements. The image is reconstructed via matrix or vector multiplication. It shows the mixture for low to high colour range conductivity and the scale below the image represents the conductivity of the flow inside the vessel. The sensitivity matrix needs to be calculated in order to solve the inverse problem as shown in equation (8) (Z. Cui *et. al* 2009).

$$S_{i,j}(x, y) = \int_{s} \frac{\nabla \varphi_i}{I_i} \cdot \frac{\nabla \varphi_j}{I_j} ds \qquad \dots (8)$$

where

 $S_{i,j}$ = Sensitivity matrix φ = Electric potential I = Current injected

Figure 17: Tomogram image (ITS, 2007)

CHAPTER 3

METHODOLOGY

3.1 Procedure Identification

Figure 18: Project Flow Chart

3.2 **Project Activities**

Gantt chart is attached in Appendix A for reference. The literature review is the main activity during the first semester followed by designing the sensor. The rest of activities are conducted during the second semester of the final year project. During Final Year Project I is focused more on the literature review and designing the sensor. Materials are procured at this stage to avoid any late delivery matter. Final Year Project II is focused more on fabricating the ERT sensor, installation and testing the sensor performances. Softwares used in this project are the Multi-modal Tomography System (MMTS) and ITS Tomography Toolsuite which are available in the laboratory.

In order to get the measurement of the sensor performance, both Multimodal Tomography System (MMTS) and ITS Tomography Toolsuite are being used in this project. The voltage measurement produced in the software is used to reconstruct the graph profile using Microsoft Excel. The performances of both ITS M300 sensors and fabricated sensors are analyzed based on the results produced from ITS Tomography Toolsuite.

The experiments for the sensor are conducted in the laboratory. This project is to observe the performance using air in water mixture for bubble flow regime. ERT sensor has no calibration as the high and low reference data are not required. Thus, it only takes the measurement data of the water filled in the ERT sensor. After each experiment is conducted, the result will be compared to the reference measurement result. If the result is not satisfied, the experiment has to be conducted again until the desired results are obtained. ERT sensor will be installed together with the test rig to observe the performance. Steps taken in order to obtain the data are shown in Figure 19.

Figure 19: Data Measurement Process

Figure 19 above shown is about the process to obtain the data measurement of sensor. Sensor is first designed and fabricated during the first stage. It is fabricated using few main components and equipments which are the pipe wall, electrodes, coaxial cable and 36-way centronic plug. Later, the sensor is tested and the accuracy is measured by connecting the sensor with the data acquisition unit. The sensor is well functioning if the output graph is similar in the figure and it has to be checked if the graph is not as expected. Later in the project, the sensor is tested using the LCR meter instead of data acquisition unit available in the laboratory. There are problems in acquiring data from the data acquisition unit and therefore the LCR meter is being used. Details will be discussed more in the next sections.

3.3 Tools and Equipments

3.3.1 Hardware

No.	Equipment/Item	Description
1	PVC 3" cylinder pipe	It is used as the column of the ERT sensor where the liquid will flow through the pipe in order for the ERT sensor to measure.
2	RG174/AU Coaxial Cable	It is connected to the data acquisition unit for measurement purposes. Refer to Appendix G.
3	Aluminum Plate	The aluminum plate act as part of the electrodes where it will be the base of the electrodes
4	Screw and nut	These will be the main electrodes inside the PVC wall pipe and it will be attached to the aluminum plate.
5	Crimping tool	It is used to crimp the coaxial cable with the eyelet to ensure the connection is tight enough.
6	Eyelet	Eyelet is used as termination for the coaxial cable and will be connected to the electrodes.
7	36-way Centronic Plug	It will be connected to the data acquisition unit for data measurement and analysis. Refer to Appendix J.

Table	1: List	of Hardv	vare (ER	T Sensor)

No.	Equipment/Item	Description
1	Breadboard	It is used to place all components for connection.
2	Single Core Wire	It is used to connect all components in order to conduct.
3	DIP Switch	Switch with two positions of ON and OFF.
4	36-way Centronic Socket	Connected with the 36-way centronic plug. Refer to Appendix K.
5	Solder Kit	Equipments used to solder electronic components.
6	LCR meter	A programmable instrument for measuring impedance parameters.

Table 2: List of Hardware (Switching Circuit)

No.	Equipment	Description
1	Water Tank	Water tank is used to store the water for the dynamic test and it is located before the water pump.
2	Water Pump	The water pump is used to pump the water from the tank to the pipeline and to give enough pressure for water to flow in the riser.
3	Hand Valve	It is functions to control and regulate the amount of water or air go through the pipeline.
4	Flowmeter	It acts as indicator of gas or liquid flow in a pipeline. It measures the flow rate or quantity of a moving fluid or gas.
6	PVC pipe	It is used as a pipeline for liquid and gas flow in the test rig. It allows the liquid and gas to flow through the PVC pipe.

Table 3: List of Equipments (Test Rig)

3.3.2 Software

3.3.2.1 Multi-Modal Tomography System v2.9 (MMTS)

The Multi-Modal Tomography System (MMTS) software is provided to observe the characteristics and behavior of liquid flow inside the pipelines. General steps taken to get the measurement data is shown in Figure 20.

Figure 20: General Measurement Guide in MMTC

Basically, both ERT and ECT measurements are similar with the only difference is, ERT do not has to be calibrated as it only has one measurement (on-line) as compared to ECT. Measurement guide for ECT and ERT sensor using MMTC are attached in Appendix B and Appendix C, respectively. Both sensors are tested using water and air. Details of 'ERT/ECT Cal' are as follows:

Table 4: 'ERT/ECT Cal' Options

	ERT Sensor	ECT Sensor
Low (0)	Filled with water	Filled with air
High (1)	Filled with water	Filled with water
None (2)	Filled with air and water	Filled with air and water

3.3.3 Test Rig Design using Microsoft Visio

The test rig is designed using the Microsoft Visio where it creates the Piping and Instrumentation diagram (P&ID). It is designed to suit the requirements of the flow rate and specifications. The P&ID diagram is shown in Figure 21.

Figure 21: P&ID Diagram for Test Rig Design

3.4 Sensor Design Specification

The Electrical Resistance Tomography (ERT) specifications are obtained as follows:

i. The total independent measurement, M as shown in Equation (12) can be calculated as shown below, with N = 16 electrodes.

$$M = \frac{N(N-3)}{2}$$
$$= \frac{8(8-3)}{2}$$
$$= 20$$

Therefore, the total independent measurement, M is 20.

ii. Pipe diameter, d : 8.5cm iii. Pipe length, l : 32cm No. of electrodes, N : 8 electrodes iv. No. of planes : 1 plane v. Cable type : 9 core cable vi. vii. Cable length : 100cm viii. Termination : 36-way Centronics

(a) Side view

Figure 22: Fabricated ERT Sensor of 1 Plane 8 Electrodes

Another ERT sensor has been fabricated to improve the current sensor performance. The specifications are obtained as follows:

i. The total independent measurement, M as shown in Equation (12) can be calculated as shown below, with N = 16 electrodes.

$$M = \frac{N(N-3)}{2} = \frac{16(16-3)}{2} = 104$$

Therefore, the total independent measurement, M is 104.

- ii. Pipe diameter, d : 8.5cm
- iii. Pipe length, 1 : 32cm
- iv. No. of electrodes, N : 16 electrodes
- v. No. of planes : 2 planes
- vi. Cable type : Coaxial Cable (RG174A/U)
- vii. Cable length : 100cm
- viii. Termination : 36-way Centronics

(a) Side view

(b) Top view

Figure 23: Fabricated ERT Sensor of 2 Planes 16 Electrodes

3.5 Data Measurement using LCR Meter

The sensor is tested using the LCR Meter (Figure 25) instead of Multimodal Tomography Software due to problem with the data acquisition unit. Therefore, a switching circuit is designed to ease the measurement process (Figure 24). All 16 electrodes are to be tested via coaxial cable and it uses the adjacent measurement technique.

Figure 24: Switching Circuit

The measurement circuit consists of DIP switches and wires which the ERT sensor is connected via 36-way centronic plug. Two electrodes are to be measured, and the other electrodes need to be grounded. Therefore, using the circuit, it is can be easily switched the electrodes that are need to be grounded.

Figure 25: Equipment Setup for Data Measurement

CHAPTER 4

RESULTS AND DISCUSSIONS

Fabrication, experiments and testing have been conducted in order to achieve the objectives of this project. Results for all experiments conducted are being discussed clearly in this chapter.

4.1 Void Fraction Calibration for m30000 ECT Sensor

ECT sensor is calibrated using the Multi-modal Tomography System (MMTS) and ITS Tomography Toolsuite available in the laboratory. The calibration need to be performed before every experiment is conducted. A good graph is when the graph produced is symmetrical as discussed in Chapter 2. The ITS M3000 ECT sensor produces results shown for Low and High calibration in Figure 26 and Figure 27, respectively.

Figure 26: Low Calibration Image using the M3000 ECT Sensor

Figure 27: High Calibration Image using the M3000 ECT Sensor

Figure **26** above shows a tomogram image of low calibration where the ECT sensor is filled with air. The permittivity of air is 1. For high calibration, higher permittivity materials are being used which is shown in Figure 27. The ECT sensor is tested with rice and water. Rice has permittivity of 3.5 meanwhile water has permittivity of 80. The image for high permittivity are the same color because both have higher permittivity as compared to air (ϵ =1).

Figure 28: Calibration Graph for M3000 ECT Sensor

Figure 28 shows the calibration graph for both low and high permittivity materials. The low calibration gives a higher voltage compared to the high calibration. This is due to less permittivity will gives higher voltage measurement. Air, water and rice has permittivity of 1 (low calibration), 80 (high calibration) and 3.5 (high calibration), respectively. The graph shown are said to be symmetrical where the peaks are measured at the nearest adjacent electrode pairs. The further the adjacent pairs the lower the voltage will be.

Figure 29 and Table 5 show the voltage measurement graph and individual voltage measurement obtained from MMTC for air (ϵ =1) and rice (ϵ =3.5), respectively. The results shown are measured using one plane of 8 electrodes ECT sensor. From equation (4) discussed in Chapter 2, an ECT sensor of 8 electrodes will gives 28 measurement data per plane. This sensor has a minimum voltage value of 683.7mV, maximum of 1360.17mV and mean voltage of 870.215mV. Multiple frames of 220 frames are taken to get this data measurement. Refer to Appendix D for each data measurement taken.

Figure 29: Voltage Measurement for 8 Electrodes ECT Sensor (Rice, ε =3.5)

	Voltage Measurement Points									
		2	3	4	5	6	7	8		
oints	1	1354.326	788.8514	722.378	696.2067	684.7116	683.4873	683.6609		
on P	2		1330.792	794.0522	723.282	697.6014	689.5086	684.4636		
ijecti	3			1353.858	785.1527	718.2443	698.3567	687.4035		
ent In	4				1315.644	774.9019	718.0834	695.083		
Curre	5					1296.335	791.4908	725.0529		
	6						1145.264	765.6937		
	7							1360.904		

Table 5: Voltage Measurement for Each Current Injection Pairs (Air and Rice)

Another measurement is taken for air and water mixture where the results are shown in Figure 30 and Table 6. The voltage measurement graph and individual voltage measurement obtained from MMTC for air (ϵ =1) and water (ϵ =3.5) are illustrated, respectively. An ECT sensor of one plane of 8 electrodes is being used in this measurement. Therefore, it also produces 28 data measurement, similar with previous measurement. This sensor has a minimum voltage value of 745.467mV, maximum of 1106.59mV and mean voltage of 839.14mV. Multiple frames of 108 frames are taken to get this data measurement. Refer to Appendix E for each data measurement taken.

Figure 30: Voltage Measurement for 8 Electrodes ECT Sensor (Water, ε =80)

	Voltage Measurement Points								
		2	3	4	5	6	7	8	
oints	1	1112.008	774.2812	761.0253	752.7339	743.4769	750.4481	751.8244	
ion P	2		1080.98	779.1392	762.2509	750.5285	756.0181	755.9519	
ıjecti	3			1106.291	774.6734	757.3204	760.9642	759.4411	
ent Ir	4				1067.331	767.7897	766.7993	763.1108	
Curre	5					1064.256	792.3793	777.596	
	6						935.0162	766.6624	
	7							1103.274	

Table 6: Voltage Measurement for Each Current Injection Pairs (Air and Water)

4.2 Void Fraction Calibration for m3000 ERT Sensor

The ERT sensor is tested using the Multi-modal Tomography System (MMTS) and ITS Tomography Toolsuite available in the laboratory. The testing is performed by applying 8 electrodes. This is the online measurement since ERT does not require any calibration and therefore, liquid is filled in the sensor. The measurement is taken using the ITS m3000 ERT sensor and the ITS data acquisition unit. It is expected to get similar result with the ITS M300 ECT sensor. A good graph is when the graph produced is symmetrical as discussed in Chapter 2.

There are three conditions in 'ERT Cal' need to be done before the on-line measurement is taken; Low (0), High (1) and None (2). It produces tomographic images similar with ECT sensor. The on-line tomographic image is shown in Figure 31. Since this testing used 8 electrodes, therefore it gives 20 data measurement per plane, based on equation (12). This sensor has a minimum voltage value of 0.0240588mV, maximum of 0.399377mV and mean voltage of 0.183406mV. Total numbers of 68 frames are taken to get this data measurement. Refer to Appendix F for each data measurement taken.

Figure 31: Tomographic Image when 'ERT Cal' is None (2)

Table 7: Voltage Measurement for Each Current Injection Pairs (Air and Water)

	Voltage Measurement Pairs								
rs		02-03	03-04	04-05	05-06	06-07	07-08		
n Pai	08-01	0.1737	0.02406	0.2019	0.1446	0.3637			
ctio	01-02		0.1474	0.3109	0.03159	0.3709	0.274		
t Inje	02-03			0.3265	0.09651	0.1653	0.04272		
Irren	03-04				0.0678	0.1888	0.07347		
Cu	04-05					0.3993	0.08661		
	05-06						0.151		

The measurement graph is redrawn using Microsoft Excel by using the data obtained in ITS Toolsuite. The result shown in Figure 32 is not as expected as it has a non-symmetrical graph. It should have the similar symmetrical shape with ECT sensor due to the adjancent measurement method used as discussed in Chapter 2. Further testing is not applicable since there are problems in acquiring data from the data acquisition unit for ERT sensor.

Figure 32: Measurement for m3000 ERT Sensor

4.3 Performance of Fabricated ERT Sensor

The performances of fabricated sensor for both single and dual plane are supposed to be tested using the data acquisition unit of ITS Toolsuite software. Due to problems with the data acquisition unit, the measurement is not possible and therefore, LCR meter is being used instead of ITS Toolsuite software. The setup for measuring the performance of the sensors is shown in Figure 25. The result of sensor should be better with the sensor using the coaxial cable. The initial sensor of 8 electrodes of 1 plane is using the 8 core cable and has no grounding cable. Then the design is improved by using the RG174/AU coaxial cable with grounding cable connected to the system and it should produce a good result compared to the initial sensor.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

Conclusion has been made for this project and recommendations are proposed to further improve this project in the future. The conclusion is based on the results and discussions of experiments conducted and recommendations are made to enhance the project in the next stage.

5.1 Conclusion

In designing the ERT sensor, the requirements should be met to ensure a good data measurement can be obtained. In this project, an ERT has been designed based on the specifications discussed in Chapter 5. It is fabricated to suit the requirement of Multi-Modal Tomography (MMTC) software. The ECT sensor is not fabricated and only calibrated during the first phase.

Data acquisition unit is used to obtain the data from both ERT and ECT sensors. It gives a good visualization on multiphase flow inside the vessels. It has been shown in the tomographic images discussed in Chapter 4. During the second phase of this project, the data acquisition unit is no longer been used as it has problem in acquiring the data from ERT sensor. The data acquisition unit is not able to communicate with the MMTC software.

As conclusion, from the experiment that has been conducted, the result for m3000 ECT sensor is having a good. Meanwhile for m3000 ERT sensor, a better result can be obtained after the problem discussed above has been solved. The tomography system is suitable to obtain the cross sectional images for the air in water flow inside the pipeline. The fluid mechanics knowledge is applied in this project to determine the void fraction and behaviour of the two phase flow in a

pipe. ERT sensor prototypes of single and dual planes have been fabricated and the performance tests should be tested using the LCR meter if data acquisition is not applicable. ERT of dual plane sensor using the coaxial cable and proper grounding should provide a better result compared the single plane sensor.

5.2 **Recommendations**

As for recommendation for this project, the ERT sensor can be designed better in order to get more accurate data. The data acquisition unit is very useful in providing the data measurement. Due to limited time, the data measurement using LCR meter is not available. Therefore, all the equipments that have been setup can be used for future improvement. Due to limited time, only static experiment is done throughout this project. Thus, a dynamic analysis test can be done using a test rig proposed. The test rig is to be fabricated in the next project phase where all the details had been obtained. Thus, all data obtained need to be analyzed after all measurement are gathered.

Construction of the sensor should be more careful because the distance between electrodes and the soldering technique would highly affect the performance of the sensor. Therefore, the design can be improved and simulated using COMSOL Multiphysics software. It is useful to obtain a simulation of electromagnetic module if this software is fully utilized. It is highly recommended to fully understand the multiphase flow in a pipeline in order to get better results in the future.

REFERENCES

- [1] A. Rashid Hasan and C. Shah Kabir; A Study of Multiphase Flow Behavior in Vertical Wells, 2005
- [2] Akrama Mahmoud, Aurora Fernandez, Patricia Arlabosse; Analysis of Electrical Phenomena Occuring in Thermally Assisted Mechanical Dewatering Processes (TAMD), 2008
- [3] C.G. Xie, N. Reinecke, M.S. Beck, D. Mewes, R.A. Williams; Electrical Tomography Techniques for Process Engineering Applications, The Chemical Engineering Journal, 56 (1995), 127-133
- [4] Cor neliussen, Sidsel(BP Norway), Couput, Jean-Paul (TOTAL), Dahl, Eivind(Christian Michelsen Research), Dykesteen, Eivind (Roxar Flow Measurement), Frøysa, Kjell-Eivind (Christian Michelsen Research), Malde, Erik (ConocoPhillips), Moestue, Håkon (Norsk Hydro), Moksnes, Paul Ove (Framo and Schlumberger), Scheers, Lex (Shell GS International) and Tunheim, Hallvard (Norsk Hydro); Handbook of Multiphase Metering, Rev. 2 (2005)
- [5] D. Yang, B. Zhou, C. Xu, G. Tang, S. Wang; Effect of Pipeline Thickness on Electrical Capacitance Tomography, Journal of Physics: Conference Series 147 (2009), 012030
- [6] Facility Department of Instrumentation and Control, PETRONAS CarigaliSdn. Bhd., 2009
- [7] GU Jun, YIN Wuliang, WANG Chao, WANG Huaxiang; Modeling of the

Conductive Ring Electrical Impedance Tomography Sensor, 496-499, 2009

- [8] H.S Tapp, A.J Peyton, E.K Kemsley, R.H Wilson; Chemical Engineering Applications of Electrical Process Tomography, Sensors and Actuators B 92 (2003) 17-24, 2002
- [9] http://ctcr4.chem.uva.nl/SingleCapillary/sample_videos_flow_regime.html
- [10] http://en.wikipedia.org/wiki/Tomography
- [11] http://www.cheresources.com/tomography.shtml
- [12] http://www.glossary.oilfield.slb.com
- [13] http://www.prager-elektronik.at/datenblaetter/ITS/ITSm3000Dual.pdf
- [14] I. Ismail, J.C. Gamio, S.F.A Bukhari, W.Q. Yang; Tomography for Multiphase Flow Measurement in the Oil Industry, Flow Measurement and Instrumentation 16 (2005) 145 155
- [15] ITS M3000 Dual-Modality Electrical Resistance Tomography (ERT) and Electrical Capacitance Tomography (ECT) System Manual, 2007
- [16] Jo Agar, Agar Corporation Inc., Optimization of High-Gas, 2001
- [17] Loh W. W., Waterfall R. C., Cory J., Lucas G. P. (1999). Using ERT for Multiphase Flow Monitoring
- [18] Michael E. Browne, author of Physics for Engineering and Science, Schaum's Outline of Theory and Problems, Physics of Engineering and Science, 2007
- [19] Process Tomography LTD (PTL), Engineering Design Rules for ECT Sensors, Issue 4, March 2001

- [20] Quak Foo Lee; Electrical Resistance Tomography, 2006
- [21] Roxar Multiphase Meter 2600 Slides Presentation, 2009
- [22] S. Liu, Q. Chen, H.G Wang, F. Jiang, I. Ismail, W.Q. Yang, Electrical Capacitance Tomography for Gas-Solids Flow Measurement for Circulating Fluidized Beds, Flow Measurement and Instrumentation 16 (2005) 135 144, 2005
- [23] Ziqiang Ciu, Huaxiang Wang, Yanbin Xu, Lifeng Zhang; An Integrated ECT/ERT Dual Modality Sensor, International Instrumentation and Measurement Technology Conference, May 2009

APPENDICES

APPENDIX A

GANTT CHART AND KEY MILESTONES FOR FYP 1 AND FYP 2

GANTT CHART AND KEY MILESTONES FOR FYP 1

NO	DETAILS / WEEK	1	2	3	4	5	6	7	8	9		10	11	12	13	14
1	Selection of Project Topic															
2	Preliminary Research Work				•											
3	Submission of Preliminary Report				•						Y					
	Project Work										3real					
4	i. Sensor Design										ster I					
	ii. Test Rig Design								<u> </u>	<u> </u>	semes					
5	Submission of Progress Report								•		/id-s					
6	Seminar								•		Ν					
7	Project Work Continuation															
8	Submission of Interim Report Final Draft														•	
9	Oral Presentation															•

GANTT CHART AND KEY MILESTONES FOR FYP 2

NO	DETAILS / WEEK	1	2	3	4	5	6	7	8	9		10	11	12	13	14
1	Literature Review for ERT															
2	Fabrication of ERT Sensor															
3	Submission of Progress Report				•						.					
	Project Work										3real					
4	i. Test Rig Design and Fabrication										ter I					
	ii. Sensor Installation										semes					
5	Submission of Progress Report								•		1id-9					
6	Testing and Commissioning								•		N					
7	Project Work Continuation															
8	Submission of Interim Report Final Draft														•	
9	Oral Presentation															•

APPENDIX B

MEASUREMENT GUIDE FOR ECT SENSOR USING MMTC SOFTWARE

STEP 1
Connect ECT to Data Acquisition Unit via SMB connector
STEP 2
Connect adapter power lead to the system
STEP 3
Switch the front panel 'Grey' button (red light)
STEP 4
Switch the ECT power on (back panel)-blinking light at front panel
STEP 5
Open Multi-Modal Tomography Configurator (MMTC)
STEP 6
Open file 'ECT-onep-1'
STEP 7
Change 'ECT Cal' in the flow chart window to low (0)
STEP 8
Change 'Write ECT' in the flow chart window to multiple frame '0'
STEP 9
Click 'RUN' to get the measurement data
STEP 10
Repeat from STEP 5 for 'ERT Cal' in high (1) then change to None (2)

APPENDIX C

MEASUREMENT GUIDE FOR ERT SENSOR USING MMTC SOFTWARE

STEP 1
ERT sensor is filled with water
STEP 2
Connect ERT to Data Acquisition Unit via 36 way connector
STEP 3
Connect adapter power lead to the system
STEP 4
Switch the front panel 'Grey' button (red light)
STEP 5
Switch the ERT power on (back panel)-blinking light at front panel
STEP 6
Open Multi-Modal Tomography Configurator (MMTC)
STEP 7
Open file 'ERT-onep-1'
STEP 8
Change 'ERT Cal' in the flow chart window to low (0)
STEP 9
Change 'Write ERT' in the flow chart window to multiple frame '0'
SIEP 10
Click KUN to get the measurement data
CTED 11
SIEP II Depend from STED 5 for 'EDT Cal' in high (1) then always to None (2)

APPENDIX D

MEASUREMENT DATA FOR ECT M3000 SENSOR (AIR AND RICE)

Voltage Mit 1 plane(x) 220 frame for bestil-ectp1-Be Walkobck ' DAD Time Frame 28 Voltage Data																														
Wallclock' D	AS Time	Frame Plane	26 Voltage	e Data																										
12:32:10	0	Reference	1 1423.55	728.572	009.979	054.472	051.099	650.244	650.321	1393.07	731.075	009.902	059.203	050.100	054.67	1415.32	723.291	670.588	661.167	657.418	1377.24	717.934	670.606	660.241	1350.59	733.929	676.297	1202.32	709.264	1419.67
12:30:09	٥	1	1 1423.55	728.572	669.979	054.472	051.099	650.244	650.321	1393.07	731.075	669.902	059.203	058.100	054.67	1415.32	723.291	670.589	661.167	657.418	1377.24	717.934	670.606	660.241	1350.59	733.929	676.297	1202.32	709.254	1419.67
12:30:09	8	2	1 1352.92	788.904	722.402	696.23	664.014	603.379	603.547	1329.50	764,155	723.489	097.095	689.454	664.358	1352.00	785.302	718.468	698.367	667.303	1314.30	775.031	718.056	005.101	1295.13	791.59	725.076	1144.14	705.040	1359.62
12:30:09	0	3	1 1353.54	789.532	722.648	090.501	665.012	603.009	664.035	1330.24	794,500	723.01	097.955	609.005	664.676	1353.22	705.669	718.006	696.011	667.729	1315.00	775.397	718.513	06.345	1295.54	791.004	725,427	1144.0	766.067	1300.21
12:30:10	8	4	1 1354.15	789.003	722.663	090.000	685.272	603.690	664.02	1330.53	794,057	723.666	090.100	609.900	664.905	1353.58	785.943	718.66	666.718	667.775	1315.67	775.50	718.651	095.452	1290.05	792.003	725.565	1144.92	760.27	1300.30
12:30:11	0	5	1 1354.08	789.007	722.955	696.76	665.302	664.02	664.097	1330.63	794,910	723.947	690.002	000.079	654.935	1353.57	785.852	718.005	696.000	667.036	1315.52	775.011	718.605	095,589	1298.2	792.17	725,656	1144.93	700.430	1300.57
12:30:11	0	6	1 1353.3	788.998	722.509	090.201	664.722	603.502	603.007	1330.02	794.007	723.642	097.005	609.464	664.480	1352.81	785.531	718.422	666.474	667.515	1314.71	775.244	718.376	095.200	1295.45	791.095	725.397	1144.35	765.90	1300.00
12:30:12	8	7	1 1353.42	789.255	722.695	090.444	665.026	603.715	603.745	1329.90	764,475	723.626	697.802	609,663	664.631	1352.99	785.516	718.051	698.535	667.576	1315.05	775.330	718.376	065.345	1295.64	791.005	725,300	1144.52	700.117	1300.17
12:30:13	٥	8	1 1353.65	789.515	723.046	696.76	665.10	603.974	603.944	1330.30	794,704	723,932	097.97	609.000	664.905	1353.37	785.714	718.034	090.704	667.775	1315.23	775.595	718.000	005.543	1290.05	792.094	725.011	1145.1	766.224	1300.7
12:30:13	٥		1 1353.51	789.24	722.665	090.459	664.921	603.639	603.791	1329.01	794.307	723.581	097.955	609,600	664.367	1353.14	785.363	718.483	698.657	667.47	1314.79	775.015	718.3	095.296	1295.5	791.00	725.321	1144.45	765.995	1300.07
12:30:14	٥	10	1 1353.14	789.042	722.512	090.291	664.753	683.44	603.502	1329.40	794,216	723.23	097.634	609.409	664.432	1352.43	785.256	718.391	696.352	667.302	1314.59	775.031	718.117	094.994	1295.07	791.036	725.015	1146.15	705.782	1359.62
12:30:14	٥	11	1 1354.11	789.037	723.046	090.041	005.105	603.913	664.142	1330.0	794,902	723.982	090.23	090.018	664.00	1353.71	785.76	718.049	696.791	667.005	1315.54	775.534	718.656	095.520	1290.12	792.094	725.55	1145.22	766.331	1300.50
12:30:15	0	12	1 1353.85	788.515	722.679	696.52	665.256	603.690	664.051	1330.39	794,902	723.794	090.23	609.912	664.905	1353.39	785.791	718.019	696.667	667.775	1315.34	775,475	718.605	095.490	1290.00	792.247	725,565	1145.02	766.255	1300.67
12:30:15	٥	13	1 1353.65	789.225	722.756	696.49	664.997	683.75	603.776	1329.90	794.536	723.642	097.010	609.713	664.585	1352.93	785.664	718.051	698.535	667.653	1315.14	775.305	718.3	095.192	1295.59	791.004	725.300	1144.09	700.117	1300.00
12:30:16	8	14	1 1354.2	789.003	723.077	090.719	665.302	603.913	664.234	1330.95	795.07	723.947	690.002	090.14	685.058	1353.71	786.035	718.911	060.01	667.908	1315.72	775,702	718.001	095.05	1290.50	792.338	725,748	1145.31	700.545	1300.85
12:30:17	٥	15	1 1354.14	789.003	722.955	090.719	665.009	603.959	663,690	1330.50	794,011	723.01	097.924	669.927	664.89	1353.42	785.862	710.095	696.749	667.000	1315.42	775.565	718.651	095,550	1290.23	792.216	725.55	1145.02	766.362	1300.50
12:30:17	٥	16	1 1353.79	789.408	722.633	696.52	665.15	683.75	603.603	1330.31	794.78	723.667	097.909	609.942	664.936	1353.37	785.791	718.019	696.025	667.603	1315.34	775.504	718.529	095.467	1295.09	791.972	725,488	1144.78	700.545	1300.3
12:30:18	٥	17	1 1353.28	788.901	722.604	696.352	664.753	603.604	663.607	1329.75	794.322	723.535	097.05	669.53	664.539	1352.76	705.394	718.498	666.275	667.439	1314.59	775.190	718.102	095.177	1295.30	791.05	725,092	1144.38	705.797	1300.04
12:30:19	0	18	1 1353.66	788.404	722.679	090.501	664.997	603.037	603.944	1330.00	794,735	723.982	097.924	609.774	664.730	1353.14	705.636	718.758	090.01	667.729	1315.2	775,475	718.452	095.33	1295.03	792.079	725.397	1144.00	700.178	1300.30
12:30:20	8	18	1 1353.57	789.072	722.74	090.413	664.00	603.455	663.622	1330.00	794,338	723.55	097.894	689.667	664.534	1352.7	785.577	718.558	666.52	667.637	1314.73	775.229	718.301	095.204	1295.64	791.00	725,300	1144.45	765.995	1300.1
12:30:20	0	20	1 1353.8	789.347	722.726	090.551	004.997	603.664	603.944	1330.3	794,643	723.590	097.924	609.912	664.707	1353.13	705.76	710.097	696.057	667.501	1315.29	775,427	718.407	095.421	1295.65	791.090	725.305	1144.90	700.072	1300.2
12:30:21	٥	21	1 1353.90	789.003	723.123	090.007	005,250	603.944	604.219	1330.57	794,057	724.039	090.109	090.004	004.951	1353.66	785.836	718.956	696.977	667.79	1315.49	775,702	718.727	095.004	1290.12	792.293	725.626	1145.02	700.499	1300.75
12:30:21	0	22	1 1353.91	789.501	723.034	090.795	005.241	603.944	604.112	1330.62	794.582	724.023	090.123	609.973	664.829	1353.71	785.913	718.019	696.962	667.036	1315.4	775.55	718.097	095.574	1290.12	792.14	725.717	1144.99	700.400	1300.00
12:30:22	0	23	1 1363.24	788.301	722.767	090.352	064.900	603.009	603.929	1330.04	794,399	723.007	097.94	669.726	004.082	1352.98	785.608	718.422	666.501	667.515	1314.90	775.229	718.400	095.33	1295.74	791.709	725,473	1144.43	765.90	1300.23
12:30:22	0	24	1 1363.72	789.332	722.772	090.027	005.009	603.776	003.913	1330.25	794.40	723.764	097.909	009.025	004.783	1353.13	785.928	710.036	696.703	667.000	1315.11	775.534	718.437	095.299	1295.08	791.972	725.519	1144.75	700.170	1300.39
12:30:23	0	25	1 1363.24	789.007	722.019	090.307	664.760	603.532	603.037	1329.62	794,429	723.585	097.707	669.50	004.417	1352.98	705.44	718.422	696.413	667.376	1314.65	775.076	718.437	095.102	1295.33	791.035	725.321	1144.40	705.858	1300
12:30:24	0	26	1 1353.45	789.255	722.909	090.303	665.026	603.715	603.022	1330.07	794.567	723.825	097.909	609.591	664.753	1353.11	705.577	710.097	696.672	667.454	1314.71	775.427	718.3	095.209	1295.0	791.972	725.336	1144.35	700.3	1300.30
12:30:24	0	27	1 1363.03	708.400	722.924	090.027	005.020	003.090	003.859	1330.19	794,502	723.01	097.003	009.005	004.753	1353.37	785.852	710.712	090.025	667.729	1314.90	775.450	710.544	095.437	1295.98	792.14	725,534	1144.72	700.224	1300.50
12:30:25	0	28	1 1353.43	788.271	722.602	696.52	665.043	603.000	604.005	1330.05	794.40	723.626	097.003	689.713	004.540	1353.05	785.485	718.513	090.011	667.053	1314.90	775.305	718.301	095.314	1295.65	791.907	725.450	1144.43	766.067	1300.23
12:30:20		28	1 1354.5	788.001	723.153	090.071	005.310	004.112	004.350	1330.05	785.101	724.054	050.397	090.232	004.930	1354.09	700.090	710.911	090.977	000.000	1315.92	775,702	718.950	095.049	1290.4	782.309	725,005	1145.45	700.545	1301.04
12:30:27		30	1 1353.30	708.140	722.004	090.459	004.044	000.400	003.701	1329.00	794.292	723.011	087.079	008.570	004.440	1352.8	785.485	710.391	090.413	667.363	1214.71	775.244	710.102	085.131	1295.02	101.713	725.399	1144.57	705.804	1358.85
12:30:27		21	1 1363.31	788.316	722.720	090.303	004.905	003.593	003.000	1330.02	794.330	723.535	097.002	009.713	004.432	1352.90	785.501	718.346	090.590	667.576	1314.71	775.244	718.370	095.400	1295.47	791.00	725.330	1144.04	700.01	1300.15
12:30:20		22	1 1303.50	708.110	722.000	090.409	004.821	003.039	003.770	1329.90	104.309	723.00	067.707	008.50	004.4/0	1352.82	785.808	710.044	000.52	007.5	1214.94	775.190	710.340	090.192	1290.00	701.743	720.198	1144.02	700.900	1300.0
12.30.20		33	1 1303.43	/08.220	722.01	040.340	004.014	003.302	003.003	1300.1	194.301	123.001	087.804	008.708	004.001	1303.18	703.202	710.000	000.00	00r.a	1214.02	772,214	710.301	090.340	1285.00	191.004	720,400	1199,49	799.01	1300.0
12:30:29		24	1 1202.78	780.919	722.465	000.2	004.004	003.425	003.349	1329.32	704,231	723.104	047.402	008.380	004.204	1302.47	785.185	710.224	696.153	007.21	1214.4/	774,047	718,132	004.379	1204.0	791.08	726,304	1143.00	700.700	1308.40
12:30:30		30	1 1303.00	708.383	722.808	090.000	004./30	003.037	003.974	1330.07	101.110	123.007	007.000	008.007	004.707	1353.42	/03.008	/10.001	090./30	007.007	1212.1/	119.381	/10.008	090.370	1200.00	791.3911	725.339	1100.73	700.100	1300.41
12:30:30		20	1 1353.51	788.316	722.00	090.474	004.029	003.580	003.770	1330.13	794,500	723.504	087.741	008.720	004.0	1353.08	785.501	710.403	090.474	007.5	1314.85	775.25	718.301	095.230	1295.07	791.820	725.351	1144.55	700.102	1300.0
12:30:31		37	1 1202.14	788.00/	722.741	000.002	004.028	003.380	003.570	1308.79	704,231	723.387	607.870	600.00	004.440	1302.07	705.424	710.008	600.307	667 600	1314.08	775,545	718,190	000.220	1205.41	701.070	725,300	1100.01	700.900	1300.1
12-20-21			1 1202.02	700.001	722.090	000.040	001.000	000.008	000.000	1000.00	704 704	700 740	007.005	440.40	001000	1000.00	700.70	715.04	404 755	447 454	1212.20	778 646	748,630	000.400	1200.00	700.000	720.011	1111111	700.170	1200.00
12:30:32			1 1203.77	780,001	722.772	000.012	005.020	000.740	004.001	1300.00	704 999	723,710	607 870	660,622	004.900	1353.58	703.830	748.576	600.735	687 430	1313.34	775,000	748,407	005.354	1200.00	201.003	725.534	1101.80	700.27	1000.00
12-30-34	Ă		1 1353.46	789.24	732.05	000.310	014 010	603.007	003.090	1330.01	794 506	723,626	607.04	652 667	654 631	1353.04	785 714	718 544	666.52	647.503	1314.04	775,975	718 391	695,255	1205.0	792,003	705 382	1144.40	766.117	1300 1
12-30-34		10	1 1223.04	780 53	733 600	006 507	004 007	003 003	603.00	1330.3	704 635	735.635	607 004	650 851	654 733	1353.4	785 600	748 743	606 7.40	647 744	4345.47	775,415	718 544	105.407	1005.05	702 100	735.641	1144.05	700.304	1300.64
12-30-35	ă	-	1 1303.30	789,516	722.05	000.300	04730	603 576	663,837	1329.70	794 429	723.474	697 741	669 545	654 509	1352.00	785 592	718.513	695.640	687.47	1314.67	775.954	718.054	695,055	1295.44	791.65	705 075	1144.51	706.055	1353.01
12:30:35	ă	44	1 1352.95	788.640	722.604	096,201	664.57	003.44	663,623	1329.7	794,201	723.474	697.65	609.53	004 440	1352.61	705.394	718.254	666.306	667,303	1314.45	774,905	718.3	095.177	1295.35	791,575	725,244	1144.20	705.827	1359.9
12:30:36	Ā	45	1 1354.4	789.005	723.106	095719	005 303	004 175	004 100	1330.00	794 994	723,993	090.104	000.049	605.050	1053.6	706.061	719.048	696.671	665.004	1315.00	775 735	718.649	005.000	1290.45	792.43	725 778	1145.39	766.682	1301
12:30:36	ā	46	1 1353.79	789.003	723.034	096.642	665.10	663,622	664.001	1330.54	794 597	723,000	090,040	090.000	604.M	1353.50	785.896	718.036	696,718	647 MD	1315.31	775.672	718.544	005 550	1295.99	792 188	725,595	1144.78	766 255	1300.71
12:30:37	ā	47	1 1354.06	789.404	722.955	696.70	005,220	603,929	664,142	1330.40	794,673	723,794	090.001	659.62	654,765	1353.56	705.890	710.000	696,779	667,006	1315.11	775.565	718.005	095,513	1296.00	792,109	725.667	1144.90	700.340	1300.00
12:30:38	Ā	48	1 1354.41	789.759	723.000	090.041	005.340	604,173	604 350	1330.00	795.025	724.101	090.302	090.095	605.000	1354.12	700.157	719.000	099.145	667.006	1315.07	775,794	718.649	095,004	1290.49	792,415	725.824	1145.28	700.067	1201.00
12:30:38	ă	49	1 1354.26	789.095	723.138	090.749	665,226	664.097	604.173	1330.70	794,705	723,932	090.23	090.11	664.997	1353.77	705.862	718.019	696.902	667.036	1315.50	775.007	718,727	095.001	1290.30	792.300	725,855	1145.24	700.575	130
12:30:39		50	1 1353.66	789.409	722.767	090.505	664.921	603.039	003.959	1330.19	794.521	723.642	097.750	609.622	604.601	1353.00	705.592	718.001	090.501	667.546	1314.99	775.351	718.391	095.30	1295.79	791.713	725.300	1144.7	700.133	1300.24
12:30:39		51	1 1353.71	789.200	722.741	090.535	004.044	603.022	663,913	1330.22	794,597	723.718	097.679	609.713	654.692	1353.33	705.714	718.575	696.703	667.653	1315.10	775.244	718.62	095.33	1295.05	791.907	725,443	1144.09	700.310	1300 52
12:30:40	ā	52	1 1353.72	789.301	722.002	090.551	004,900	603.791	663.913	1330.14	794.551	723.667	097.94	609.652	664.676	1353.13	705.623	718.513	696.626	667.663	1314.97	775.321	718.391	095.345	1295.77	791.957	725.58	1144.0	700.117	1300.25
12:30:41	0	53	1 1353.53	769.377	722.772	090.734	665.056	663.690	663.913	1330.19	794,582	723.01	097.924	609.000	654.692	1353.39	705.714	718.097	696.764	667.003	1315.10	775.450	718.513	095.391	1298.00	792.033	725.717	1144.75	700.27	1300.67
12:30:41		54	1 1353.66	789.423	722.679	096.073	665.026	663.652	603.974	1330.34	794.673	723.794	090.040	609.05	664,760	1353.46	705.638	718.036	696.718	667.576	1315.31	775.534	718.513	095,513	1295.09	792.17	725.55	1144.0	700.239	1300.00
12:30:42	٥	55	1 1353.82	769.591	723.001	090.025	665.211	603.037	604.173	1330.39	794,704	723.871	090.001	609.801	654.905	1353.59	785.852	718.712	696.764	667.775	1315.32	775.011	718.513	695.520	1290.11	792.262	725.717	1144.93	708.331	1300.7

12:30:42		50	1	1354.15	708.000	723,082	090,795	005,250	003.99	604,142	1330.05	794,735	724,084	090,100	090,000	985,194	1353.71	705,959	710,049	090.071	666.005	1215.42	775,703	718,799	095,742	1296.31	792,399	725,005	1145,24	793.489	1391.05
12:30:43	6	57	1	1354.00	789,728	723,123	066.673	005.207	664.000	604.150	1530.09	794,007	723.947	020,153	090.14	005.104	1353.74	700.05	710.006	098.671	667.940	1315.74	775,776	718,773	665.65	1298.4	792,293	725,055	1145.35	700.52	1001.14
12:30:43	6	58	1	1354.01	789,576	722.94	099.071	005.134	603.929	664.097	1000.27	794,057	724.023	020.010	009.973	004.703	1353.77	705,898	710.049	098,902	667.79	1315.40	775.55	718.91	065.02	1290	792,009	725,595	1145.13	700.301	1000.50
12:30:44	6	59	1	1353.66	789.454	722.094	090,719	664,936	603,791	664.142	1000.04	794,719	723,671	097,925	609.65	004,900	1053.59	705,791	710,773	666.746	667.651	1315.10	775.565	718.559	665,402	1296.17	792.155	725,400	1144.93	700.340	1000.75
12:30:45	8	60	1	1353.66	788.316	722.728	098.627	684.69	603.65	663,929	1330.13	794,429	723,733	697,679	669.713	654,646	1053.34	785,546	718.608	698,718	667.775	1314.94	775.336	718.513	665.376	1295.76	792.003	725.585	1144.72	766.133	1303.29
12:30:45	6	01	1	1354.09	789.037	732.97	096.01	005.012	664.001	664,249	1330.39	794,011	723,655	020.001	009.942	004789	1053.54	705,745	710.049	090.01	667.775	1315.49	775.473	718.529	695.490	1290	792.094	725.007	1145.07	766.423	1000.62
12:30:46	6	62	1	1354.41	788,774	723.397	096,749	665,302	663.99	664.226	1530.65	795,000	724,101	090,109	090.171	605.272	1053-63	708,142	719.003	099,009	667.940	1015.71	775.665	718,003	695,601	1296.47	792,020	725,901	1145.45	700.404	1000.9
12:30:46	à l	63	÷.	1954.18	719 (65)	733 123	666 764	665 344	084.02	664 197	1990.74	794 658	725.005	696.001	690.000	654 976	1953.54	785,050	718.005	100.000	647 977	1315.03	775.58	718 515	695.691	1006.00	792 998	725,785	100515	788.484	1000.05
12:30:47	ă.	64	- i	1954.04	710 454	733.965	666.642	665 110	603.044	664 (61	1220.27	764 75	725.042	606.36	649.65	654 605	1953.62	285,264	748 749	654.677	647.76	1345.4	775.675	718 654	665.452	1006.05	702.14	706.66	1144.03	786 377	1000.05
12-32-48	i.	65		4953.74	710.454	733.004	000.073	005.075	683.00	601.00	1200.00	704 765	795,748	600.001	000 640	654 765	4959.64	755.647	748,749	698.977	647.636	1945.00	775,611	718,056	105.101	1005.00	700 (05)	706.66	1144.04	766,950	(100.00
12-20-43	Ă	66	- 1	1003.00	710 100	733.648	000.040	005.012	601.715	604.095	1200.17	704 849	725.64	607 00.4	450 710	444,835	4953.54	795,600	748,005	608,748	607.608	1315.00	775,456	718,400	695,400	1005.00	700.048	705,458	11.0.0	700.404	1200.00
12-20-40	Ă	10	- 1	1003.04	710 1.0	732.605	606.40	NUA 010	600.054	665 776	1220.04	704.40	225 205	607 504	440.045	654 634	4963.95	705,405	748,636	100.000	647 534	1314.00	775.944	748,457	105.145	1005.57	704 079	705,994	1144.04	766.004	1000.04
10.00.00			- ÷	1993.04	755.000	755 245	200 100	2012 202	200.007	445.45.4	10000.001	101110	100.000	1000.000	444.977	882.55	1000.00	700 100	745.554	202.00	447 576	10110-000	110.010	718.525	200 202	10000.00	101.014	100.000	1111111	100.001	1555.55
12:30:50		00	1	1303.00	700.000	722.012	000.109	504.722 604.004	003.002	000.004	1328.70	704.138	723,392	00/ 00	008.377	004.20	1302.00	705.303	719.209	000.240	007.270	1214.20	775,079	710.399	696.1V1	1209.21	701,009	rap.197	1144.2	199-016	1306.00
12.30.00		-		1303.30	708.007	722.000	000.000	004.301	003.517	445,455	1009100	794,307	720,408	007.04	008.00	004.0	1002.04	700.47	710.010	000.400	007.404	1214.0	779,100	710.1/0	090.102	1200.41	704,460	100.001	1100.35	100.000	1000.10
12.30.01				1302.72	700.919	722.400	090.120	004.040	665.305	000.020	1309.23	194,249	120.367	067.30	008.423	004.204	1302.34	789.10	/10.2/0	000.000	007.271	1214.41	119.30	710.117	094.900	12040.00	AN 1992	r.e.tur	1166.00	100.700	1308.70
12:30:51		71	1	1353.59	709,393	722.772	096.535	664,905	663.791	664.025	1339.13	794,799	723,749	097.003	008.827	004.554	1353.34	705.630	710.020	696.025	667.576	1315.13	775.29	718,391	695.421	1295.47	791.05	725.519	1144.77	766.224	1300.49
12:30:52		72	1	1353.63	769.24	722.767	090.49	664,900	663.745	663.622	1220.10	794.49	723,764	097,805	009.022	004.57	1353.33	705.600	710.097	696.025	667,000	1315.10	775.275	718.407	025.30	1295.65	791,997	725,443	1144.73	700.27	1300.39
17:30:52		13	1	1,03,65	709.404	122.070	090.719	605-020	603.000	664.005	1330.30	794,040	723.01	097.002	009.001	004.722	1353.3	/05.564	/10.06/	090.007	007.501	1315.17	175,400	/10.400	090.402	1290.03	791,991	10.000	1144.05	/00.310	1300.35
12:30:53	0	74	1	1354	789.454	722,965	066,734	665,15	663,622	604,112	1000.54	794,029	723,000	090,002	009.973	004.014	1353.77	705,943	710.019	696,770	667.76	1315.34	775,443	718,000	695,513	1296.00	702.277	725,702	1145.1	703.310	1000.01
12:30:54	0	75	1	1353.72	789,404	722.909	060.501	605.104	663.776	603,603	1000.25	794,539	723,764	007.97	000.957	004.001	1353.25	705.806	710.051	098.072	667.744	1315.11	775.336	718,529	695,391	1295.00	791,997	725,595	1144,72	703.265	1000.50
12:30:54	0	78	1	1253.05	788,301	722.558	096.322	664,736	603,039	663.622	1229.01	794,238	723,591	697,772	609,605	004,440	1352.76	705.47	710.3	698,505	667.424	1314.64	775,108	718,315	695.162	1295.38	791,740	725.244	1144.38	785,919	1359.94
12:30:55		77	1	1353.46	788.377	722.695	098,413	664,644	603,593	663,776	1220.02	794,353	723,581	697,648	608,62	664,539	1353.05	705,099	718,391	696,011	667.668	1314.73	775.20	718,422	695,223	1295.67	791,926	725,458	1144,40	766.672	1393.17
12:30:56	6	78	1	1223.84	789.057	722.94	666.76	665.16	603,607	(03.959	1330.50	794,735	723,794	628,138	669,699	654,682	1353.51	705.852	718.528	698,638	667.775	1315.11	775,445	718,636	695,223	1295.94	782,399	725,412	1144.93	788.499	1200.67
12:30:56	6	78	1	1223.39	788,194	mam	040.500	684,753	603,745	663,657	1329,95	794,591	723,667	697,649	609.489	654,463	1353.22	705.638	710.407	698,011	667.424	1314.8	775.305	718.452	665.142	1225.64	791,997	725,351	1144.58	766.209	1260.17
12:30:57	8	60	1	1353.19	788,104	732.512	696.23	684,753	603.018	663.639	1339.65	794,277	723.397	667.65	009.499	664.325	1052.04	705,405	710.205	698,357	667.5	1014.41	775,103	718.239	665.162	1295.3	791.00	725,198	1144.15	766.067	1360.13
12:30:57		01	1	1254.47	788,652	723.164	098,993	685,195	664,001	664.402	1339.85	794,948	724,222	098,199	090,14	695.134	1354.17	705,095	719,093	699,000	667.868	1315.76	775,902	718,712	665,765	1296.64	702.478	725,794	1145.42	700.52	1301.1
12:22:58	6	62	1	1354.01	788.637	722.955	096.01	665.165	603,829	663,929	1320.6	794,072	723,901	038,104	669.977	664.905	1353.72	785.775	710.097	696.749	667.912	1315.32	775.55	718,007	(66.02	1296.23	782.415	725.011	1144.92	766.423	1001.04
12:30:59	8	63	1	1354.12	788,515	722,905	000.734	665.012	603.008	604,158	1333.45	794,704	723,055	030,130	008.090	664.66	1053.54	705.001	710,743	060.01	667.621	1315.20	775.475	718.051	665,559	1296.25	762.231	725,595	1144.90	766.301	1000.5
12:30:59		04	1	1354.12	708.003	723.046	090.719	665.15	603.974	664.02	1000.50	794.78	723.04	090.104	090.049	004,901	1053-62	708.02	710.019	090,910	667,912	1315.4	775.55	718,727	095,090	1295.09	702.415	725.717	1145.01	760.430	1000.67
12:01:00		85	1	1353.97	788.037	723.108	000.704	665.272	664.005	664.051	1000.00	794,072	724.039	090.040	090.079	604,900	1353.39	708.004	718.68	098,000	667.621	1315.40	775.746	718.000	665,635	1290.12	792.277	725,740	1145.1	766,539	1000.67
12:01:00	6	66	1	1352.67	788,935	722.711	098.078	664.0	603.547	663 562	1329.4	794,000	723,338	097,497	009.409	664,355	1052.41	705.405	718.33	698.245	667,503	1314.45	774,954	718,193	094,994	1295.10	791,400	725,214	1144.12	705.675	1000.01
12:01:01	6	67	1	1353.09	709.400	723.100	098,535	005,119	664.001	664.005	1000.42	794,704	723,901	090.077	009.942	004,753	1053-42	705,775	710,742	098,794	667,714	1315.20	775.504	718.59	005.00	1295.99	792,201	725.58	1144.00	700.27	1000.04
12:01:02	6	66	1	1354.00	709.090	722.08	096.70	005.119	003,701	664.001	1000.02	794,719	723,000	090.092	009.02	004,044	1053-06	705.002	710.097	090.04	667.739	1315.09	775.400	718.051	695.407	1296.00	792,354	725.534	1145.02	700.404	1000.47
10-01-02		89		1354.01	719 100	772.004	000 501	005 110	603 701	664 097	1220.34	704 765	725 794	000.001	669.713	654 765	1053-02	705.684	718.62	606 7.40	647.76	1345.00	775,497	718,403	605 353	1005.00	700 (00)	725,488	1144.77	788.348	1200.02
12-21-23	ă.	- 6 0	- i	1953.54	789 515	773.046	096.642	665 119	003.090	664.001	1000.00	794 673	725.675	090.001	659 789	654 879	1953-19	785.76	718 719	696 505	647.739	1315.16	775.466	718,403	695 526	1295.96	792.018	725.673	1144.55	766 (78	10005
12-21-04	ă.	91	- i	1254.41	789 744	773 158	096.067	665 516	663.666	654 249	1000.97	794 765	734 191	666.25	090.000	654 951	1054.03	705 142	718 758	696.912	667 912	1315.46	775,901	718 706	665.574	1296.49	792.45	725 785	1145.15	705 539	1000.99
12-21-24	Ā	60		1003.04	710.000	723.048	000.073	005.005	603.606	663 000	1200.21	704 740	725.004	400.425	600 640	454 624	1003.48	705.043	748.040	100.001	647 775	1115.05	775,747	748 749	695,407	1006.05	700 047	205,299	0.05.05	766,639	1000.00
10-01-05	Ă	65	- 1	1003.00	710.050	723.408	000.073	605,105	601 701	654.001	1200.0	704 048	705 704	100.040	400.000	44.4 644	4953.48	755,856	748,788	101.0.7	647.6%	4345.30	775,466	748,656	605.545	1005.01	700.046	205,662	100504	764,564	(160.76
10.000			- ÷	1.000 1.000	750.000	700.000	000.074	000 000	000.00	46.4 567	1000.00	704.004	754.4	606.000	000.44	654.007	4525.65	752.020	746.074	000.004	444.02	10.00.07	110.000	748.805	000.000	1000.01	200.40	100.000	1000	700.000	1000 00
12:31:05				1304.40	700.000	722.199	000.071	005.207	003.99	004.307	1000.80	704.004	700.04	000.000	000.14	004.397	1000.09	700.000	710.001	000 7 00	000.00	1315.57	775.000	710.000	000.000	12040.01	100.077	720,740	1140.41	700.000	1001.04
12-21-20			- A.	1000.00	700.004	722.040	000.000	004.007	663.7	660.000	1000.04	704.000	700.044	007,000	650,750	001.000	1000 14	704 000	746 775	000 000	007.034	1212.11	778.440	748.00	000.000	1000.00	704.044	707.000	1000.00	700.040	1000.00
10.01.000			- ÷	1000.000	70.0.000	933,053	222.222	AND ALL	200.000	2012/2017	10000.001	101.000	100.000	2002.000	202.000	353.533	1000.00	100.000	908.848	2012/2012	ANY 222	10120-002	100.000	710.00	2020.000	1000000	101.011	100.000	110000	1000.070	10000.000
12,31,317			1	1304.00	788,297	722,809	000.000	999-211 697-040	003.040	994,112	1330.50	704.029	723,000	969.23	003.030	004.014	1353.09	703.029	710.059	000.002	007.000	1212.19	775,000	710.02	600.437	1209.12	705.199	120,00	1140.01	799.377	1303.00
12:31300				1303.00	708.360	722.060	000.074	000.012	003.004	000.002	1000.19	794,062	720.010	007.000	444,090	004.040	1353.17	700.740	710,499	000.001	007.010	1314.00	775,305	710,400	000.00	1205.0	700.004	100,400	1100.01	700.200	1000.02
12.31300				1303.80	708.022	122.30	099.718	000.211	001.005	004.127	1330.30	104.020	rabatir	000.275	006.973	004.04	1303.07	100.010	/10.000	090.020	007.744	1212.49	779,911	/10.402	090.437	1290.90	192,394	rairai	1140.02	100.200	1300.78
12:31:39		100	1	1204.40	708,000	/22.101	040.917	665.302	001.001	004,249	1220.71	100.000	728,191	040.200	090,040	000.073	1394.11	/00.004	716,070	666,205	007.040	1212.07	115.000	/10.024	000.000	12049.00	06.40	100.001	1140.39	/00.000	1291
12301110		191	1	1203.43	708,104	722.000	040,200	004.09	603.000	663.60/	1229.96	04.20	70.70	007.002	008.713	994,422	1353.01	/05.3/19	/10.512	040.505	997.997	1214.02	110,121	/18.49/	190.24	1200.02	102,010	100,339	1144.00	199.991	1300.23
12:01:10		102	1	1303.00	/00.000	722.401	090.20	004.070	603.344	003.023	130.5	794.398	723,428	067.019	009.409	004.341	1302.5	/03.250	/10.200	090.412	007.370	1314.47	775.107	/10.224	090.024	1205.0	791.09	725,082	1166.22	705.043	1308.63
12:31:11		103	1	1353.37	789.028	722.665	066.307	664.789	603.503	003.037	1329.62	794,399	723.565	667.726	009.515	004.480	1352.01	705.405	710.407	696.367	667.408	1314.67	775,153	710.370	095.345	1225.23	791,972	725,351	1144.44	705.005	1000.04
12:31:33		104	1	1352.62	789.209	722.728	090.104	004.014	603.455	663.562	1329.50	794,124	723.23	007.005	009.454	001.417	1352.53	785.47	710.315	696.321	667.408	1314.20	775.092	718.200	094,940	1294.9	791,529	725.092	1144.11	705.040	1059.52
12:31:34	4	105	1	1352.88	708.042	722.42	000.300	004,730	603.525	663.517	1228.40	794.17	720,413	097.509	669.53	004.341	1352.47	705.272	710.402	696.335	667.18	1214.04	775.076	718,101	695.200	1295.00	781,514	725.229	1144.00	785.040	1059.74
12:31:34		106	1	1353.66	788,389	732,728	090.012	665.040	603.607	663,674	1330.33	794,539	723,749	097,824	603,090	664.6	1353.33	705.853	718.62	696,901	667.722	1315.19	775.244	718,201	695,253	1285.04	791,829	725,499	1144.04	766.102	1000.10
12:31:34	6	107	1	1353.82	708.400	722.602	000.000	685.009	663,791	663,629	1330.22	794,689	723,794	007,010	609.726	664,753	1353.21	785.73	710.000	098.474	667.637	1315.08	775.336	718,601	666.30	1285.7	782,064	725,582	1144.72	788.194	1360.29
12:31:35	8	108	1	1253.51	788,347	722.678	099.012	684,997	603,625	663,629	1220.11	794,591	723,057	097,909	000.774	004.001	1353.21	705,099	710.001	098.011	667.728	1214.9	175,627	718.465	085.20	1295.59	791.00	725.275	1144.8	766.102	1300.28
12:31:35	8	109	1	1353.95	788.316	722,600	000.000	685.009	603.000	663,696	1330.45	794,719	723,910	090.100	009,713	664,753	1353.51	785.73	710.708	698.628	667.79	1315.22	775.534	718.403	065.345	1295.65	792,003	725,458	1144.72	700.301	1000.00
12:31:35	8	110	1	1353.25	708,179	722.558	096.352	664,736	663,502	663,776	1329.67	794,008	723.52	097.002	609,000	004.57	1352.67	785.44	710.376	660.55	667,578	1314.50	775.20	718.376	695,101	1295.35	791,035	725,122	1144.23	705.934	1059,09
12:31:36	8	111	1	1203.51	789.409	722.772	666,535	664,936	603,715	663,929	1329,90	794.49	723,657	667,767	669,62	654.676	1353.39	705.546	718.513	666.501	667.637	1314.91	775.320	718,498	66.36	1295.5	701.002	725,397	1144.38	766.655	1352,85

12:31:38	٥	112	1	1353.79	789.438	722.94	096.027	084.997	603.852	664.005	1330.4	794.058	723.855	007.94	669.895	654.544	1353.37	705.099	718.006	008.704	667.76	1315.22	775.504	718.58	695.421	1295.97	792.100	725.626	1144.78	766.163	1300.42
12-31-38	8	113		1353.57	789.409	722.904	096.000	005.000	663,822	664.097	1330.31	794,689	723,749	090.155	669.912	654.829	1053.36	785,913	718.636	660.01	667,714	1315.13	775.595	718.59	695.421	1295.0	792,033	725.534	1144.03	766.067	1300.42
12-31-34	ă.	114		1353.54	789 347	722 756	006.027	005.000	003 745	003.000	1330.04	794 582	723 642	607 004	600.82	664 753	1353.11	785 577	710.000	695.025	687 607	1314 77	775 340	718 301	695 353	1005.55	701.005	725,427	1144 53	766 117	1300.04
42-34-37				1354.40	780 758	755.55	006.032	005 310	604 100	604 344	1330.00	705 () (734 306	606 306	000 105	654 007	1555.8	786.00	718.04	600.004	687 013	4345.67	775 700	748.005	605 755	1006.05	700 488	206 228	1145.07	700 514	1000.0
10.01.01				10010		100.00		000.010	0075.1000		1000.00	2010.000	100.000		1000 100		1000.0				1007 1010	10100			000.000	1000.00	104.100	100.110	11100.01		
12:31:37	0	110	1	1363.30	708.104	722.508	040.390	004.09	003.532	003.7	1329.01	794.445	723.535	087.772	008.545	004.554	1352.70	705.379	710.50	060.52	667.40D	1314.73	775,214	718.3	095.102	1290.44	001.774	725.107	1144.43	705.919	1358.0
12:31:37	0	117	1	1353.43	789.24	722.005	090.390	005.043	603.007	663,663	1330.2	794.020	723.703	090.010	009.774	004.015	1353.02	705.745	710.000	090.057	667.546	1314.0	775.330	718.422	095.370	1295.53	791.035	725,427	1144.43	705.995	1300.00
12:31:38	٥	118	1	1363.59	789.302	722.033	096,300	005.104	603.604	603.99	1330.10	794,597	723.025	097.94	609,660	004.875	1353.11	705.745	710.544	698.535	667.729	1314.74	775.244	718.301	695,192	1295.07	791.035	725,412	1144.0	700.01	1300.21
12:31:38	٥	119	1	1353.74	789.423	722.040	090.042	005.043	603.037	663.913	1330.00	794.673	723,779	090.092	669.744	654.544	1353.36	705.099	718.758	696.703	667.037	1315.17	775.443	718.498	695.437	1295.0	791.941	725.458	1144.0	766.239	1300.20
12:31:38	٥	120	1	1353.75	789.301	722.033	090.501	084,900	603.576	663.622	1330.24	794,643	723,749	097.97	009,005	664.585	1353.16	705.714	718.62	696.718	667.405	1314.93	775.443	718.452	695.437	1295.77	791.004	725,427	1144.67	766.067	1300.1
12-31-38		424		1954.14	789.53	723.092	696.75	005 104	004.001	664 203	1330.03	794 795	723,904	000 345	000.004	654.89	1053.80	705.043	715.055	100 100	667 927	1315.45	775.54	718.051	005.00	1296.05	700 (05	705.55	1145.07	700.346	1000.05
12-31-30		433		1951.60	780 177	733.034	606.55	ALL 010	645.465	663 050	1330.10	704 655	203 604	607 870	650 774	654 660	1353.34	755 775	748.036	664 647	687 634	1345.00	775 345	748,457	005.314	1005.05	201 005	205.054	1144.8	704.047	1340.30
43-34-33		433		1303.00	780.307	722 766	000.074	005.000	663 776	663.043	1330.07	704 547	205 245	007 848	650 774	004 554	1003.07	755 745	715.000	404 515	687 564	1314.04	776.564	748,457	005.000	1005 75	200.045	735.455	1100.04	700 140	1300.00
12.31.38		144		1202.28	108.383	144.100	000.474	000.020	000.770	003.813	1200.07	199,201	144.110	087.010	008.774	004.004	1333.37	103.743	710.000	090.000	007.001	1214.84	112.301	110,407	000.200	1280.12	184.040	120,400	1144.04	100.140	1300.01
12:31:39	0	124	1	1363.53	789.255	722.772	090.444	004.900	003.701	003.000	1329.90	794.530	723.590	097.040	008.591	004.707	1353.14	705.823	710.097	090.440	667.531	1314.91	775.302	718.391	095.391	1295.59	791.750	725.351	1144.03	798.072	1300.04
12:31:40	٥	125	1	1363.07	788.072	722.512	090.291	004.799	603.501	603.75	1329.53	794.277	723.420	097.019	009.499	004.417	1352.67	705.47	718.376	696.321	667.393	1314.55	775.103	718.193	095.04	1294.99	791.051	725.190	1144.14	705.919	1358.71
12:31:40	٥	126	1	1363.36	788.179	722.68	090.444	004.044	603.715	603.054	1329.01	794.49	723.501	097.726	009.052	004.524	1353.16	705.409	718.529	696.501	667.007	1314.00	775.214	718.400	695.223	1295.40	791.05	725.302	1144,49	705.904	1359.00
12:31:40	٥	127	1	1354.15	789.591	723.153	090.007	005.195	083.99	664.203	1330.40	794.057	723.84	090.123	090.018	654.544	1353.72	705.958	710.049	696.902	667.940	1315.71	775,755	718.007	095.580	1298.02	792.262	725.056	1145.1	766.600	1300.60
12:31:40	۵	128	1	1354.01	789.545	722.94	096.007	005.119	663.696	664.158	1330.57	794,719	723,993	090.100	669.973	664.962	1353.54	785.943	718.049	696.625	667.714	1315.43	775.504	718.575	095.543	1295.99	792.17	725.011	1144.90	708.331	1300.41
12:31:41	8	129	1	1353.48	789.404	722.602	090.444	664.997	663.696	663,696	1330.17	794.704	723.733	090.001	669.65	664.707	1353.43	705.714	718.651	696.764	667.007	1315.09	775.475	718.544	695.574	1295.73	791.972	725.427	1144.09	766.239	1300.33
12-31-41		130		1354.23	789.545	723.23	096.071	005,207	004.001	664 219	1330.45	794.811	724,039	690.455	690.11	654 995	1053.95	786.035	719.000	695,995	687 667	1315.01	775,703	718,895	695,757	1290.15	792 293	725 745	1144.95	700.484	1000.05
42-54-44		434		1953.17	780.04	710.00	000 504	NU4 005	603 502	663.663	1330.1	704 999	725 554	607 787	650 672	654 661	1953.00	755 534	710.054	605.400	647 500	4344.0	775, 904	748.407	605 354	1005.50	701.004	705,410	1144.45	705 005	1300.04
42-34-45		433		1354.35	780.000	723.000	006 704	445.354	664.00	664 310	1330.50	704 75	724 008	000 145	000.004	444 875	4953 75	755 883	745.055	605 704	687 664	1145.4	775.050	718.65	605.485	1000.00	700 100	705 404	1145.07	200.02	1303.00
14.01.04		144		1401.40	108.000	1221082	000.704	000.200	004.04	001.218	1000.00	100.10	124,000	000.240	000.004	004.070	1000.70	100.002	10.000		007.001	1414.4	112,000	110.04	000.000	1280.00	184.194	1 407.0410	11960.01	190.41	1000.00
12:31:42	0	133	1	1353.94	789.53	723.130	090.703	005.195	004.000	004.005	1330.50	794.70	723.947	090.245	090.000	004.921	1353.79	705.007	710.085	090.000	667.775	1315.42	775.534	710.097	095.421	1290.23	792.14	725.007	1144.90	700.3	1300.55
12:31:42	0	134	1	1354.21	789.744	722.924	090.090	665.15	603.974	664.127	1330.62	794.902	723.993	090.002	090.11	664.544	1353.65	785.913	710.048	690.779	667.002	1315.4	775.504	718.051	095.513	1295.94	792.277	725.55	1144.99	708.239	1300.60
12:31:42	٥	135	1	1354.26	789.037	722.909	096,703	665.195	603.944	004.150	1330.49	794,940	723.855	090.100	609.973	664,783	1353.68	705.067	718.86	696.071	667.036	1315.30	775.595	718.727	695,520	1290.00	792.338	725,641	1145.00	700.407	1300.64
12:31:43	٥	136	1	1354.21	789.035	723.002	096.025	005.211	664.02	664.158	1330.59	794.902	724.004	090.291	090.064	654.544	1353.72	708.081	718.88	696.962	667.973	1315.71	775,717	718,758	665.635	1290.29	792.100	725.824	1145.28	700.400	1300.91
12:31:43	٥	137	1	1363.66	789.501	722.905	096.673	005.195	603.974	664,100	1330.40	794.78	723.888	090.002	669.661	605.043	1353.62	705.898	718.906	696.625	667.653	1315.40	775.050	718.59	095.452	1295.00	792.100	725.717	1144.04	708.348	1300.67
12:31:43	۵	138	1	1353.05	788.905	722.405	096.322	664.692	603.501	663.576	1329.64	794,201	723.338	097.509	669.393	604.31	1352.7	705.272	718.391	696.425	667.503	1314.20	775.001	718.147	694.903	1295.04	791.051	725.122	1144.15	765.705	1359.75
12-31-44	A .	130		1953-13	780 170	732.00	006.337	004 730	603 502	603.745	1309.72	794.45	723.642	607 605	689 672	654 579	1952 88	785 534	718.051	695.474	647.504	1314.01	775 (55	718.5	695,299	1205.05	791 728	725 (85	1144.00	766.005	1353-05
42-34-44	ă.	140		1953.82	780.408	223.004	006.012	NU 900	603 776	004.001	1330.40	704 735	723,825	000 123	000 000	604 M	1053.30	705.000	710.051	600 M	647 775	1315.00	775.445	718.000	665.467	1005.00	702 033	705.540	1144.05	766 100	1000.5
42-34-44		141		1354.11	780.000	723.004	004.050	005 110	603 000	664 210	1330.50	795,000	724 008	000.000	600 115	444 0 10	1353.62	755 016	710.034	654.000	647 617	1315.34	775 755	748.054	605.000	1006.00	700 (55	705 534	1144.05	766 160	1300.55
12.21.00		141		1404.11	708.080	722001	000.000	000.118	000.808	001.218	1000.00	180.008	126,000	000.002	080.120	004.800	1333.92	100.000	710.004	000.000	007.007	1212.24	112.122	710,001	000.000	1290.22	184.100	120.004	1199.80	100.382	1300.30
12:31:44	0	142	1	1363.02	709.400	722.040	090.500	005.020	003.745	003.944	1330.27	794.507	723.779	090.010	009.090	004.00	1353.37	705.791	710.712	090.749	007.714	1315.32	775,450	718.030	095.452	1295.00	792.040	725,443	1144.7	700.194	1300.40
12:31:47	٥	143	1	1363.97	789.545	723.002	090.041	665.15	664.035	004.204	1330.62	794.902	724.039	090.20	009.957	664.921	1353.77	708.05	710.907	090.794	667.927	1315.4	775.020	718.742	095,000	1290.02	792.247	725,626	1145.04	700.362	1300.62
12:31:47	٥	144	1	1363.91	789.499	722.905	000.000	005.009	003.791	664.142	1330.39	794.072	723.071	090.001	669.65	664.814	1353.45	705.775	710.727	090.01	667.729	1315.17	775.595	718.000	095.437	1290.03	792.17	725,443	1145.01	700.301	1300.33
12:31:47	٥	145	1	1354.08	789,759	723.016	000.703	665.256	664.001	664.234	1330.51	794,872	723.982	090.104	090.155	664.875	1353.66	788.004	718.003	099.039	667.051	1315.32	775,753	718,727	095.513	1298.02	792.247	725.534	1145.12	708.301	1300.73
12:31:47	۵	146	1	1354.12	789.591	722.955	696.70	664.997	603.944	664.203	1330.54	794.872	723.977	090.135	669.927	664.905	1353.6	785.821	718.88	696.794	667.000	1315.37	775.011	718,712	095.543	1295.09	792.201	725.011	1145.04	708.423	1300.55
12:31:40	۵	147	1	1353.66	789.454	722.905	090.734	005.105	603.600	664,100	1330.42	794,719	723.982	090.010	669.890	664.921	1353.4	705.745	710.049	696.794	667.79	1315.32	775.400	718.656	095.513	1295.90	792.247	725.534	1144.95	708.453	1300.44
12-31-45		148		1354.01	789 622	723 108	096 764	005,207	664.051	664.097	1330.71	794 902	724.023	690 123	690,045	664 905	1053.82	786.02	718.003	695.005	667 973	1315.45	775,702	718,819	695,711	1296.92	792 954	725 778	1145.12	766 377	1000.07
12-31-45	ă.	140		1954.36	780.017	723.23	001 001	005 303	004 395	004.417	1330.45	795,009	724,000	000 100	690 347	654 995	1054.03	704.065	719.078	100 004	666.005	1315.03	775,000	718 773	005.000	1200.40	792 204	725 824	1145.56	766 575	1301.00
10.01.00				4585.6	700.00		404 554	000 434	445 457	445,050	1222 24	204.040	100.000	407 250	440.85	454 50	12022.04	757 655	748 797	000.007	447 444	1212 33	110 01.0	748.455	000 407	1000.0	704.007	100.001		700.074	1202.00
12:31:40		120		1353.0	/86.50	122.112	090.001	000.134	003.03/	003.829	1330.31	101.012	723.825	087.079	008.62	004.00	1353.34	703.000	110.121	090.00V	007.000	1315.23	112.004	/10.403	090.40/	1290.0	net and	120.301	1144.8	100.224	1300.32
12:31:49		191	1	1303.06	/08.5/0	722,905	040./24	005.310	000.000	004.218	1330.45	net.ra	723,992	090.130	CIAC DAR	004.900	1353.54	/05./101	/10.001	090.910	007.001	1315.20	115,100	/10./50	060.540	1200.01	1962.100	10.000	1144.03	/00.3	1300.5
12031048	0	152	1	1363.71	788.347	722.84	090.474	004.044	663.7	003.052	1328.02	794,521	723.020	097.040	008 022	004.707	1352.99	705.823	710.529	060.55	007.515	1314.04	775.153	718.2	095.200	1200.35	791.035	120.441	1144,43	798.058	1300.10
12:31:49	٥	153	1	1353.24	789.316	722.68	696.52	664.997	663.791	663.944	1330.05	794,475	723.626	090.001	609,660	664.722	1353.25	785.653	718.62	695.011	667.405	1314.97	775.244	718.452	695.376	1295.44	791.926	725.229	1144.01	766.072	1300.01
12:31:50	٥	154	1	1363.65	789.408	722.003	696.76	005.134	603.913	603.959	1330.25	794.521	723.055	097.094	009.035	664.799	1353.3	785.852	718.773	696.626	667.744	1314.97	775.400	718.001	095.391	1295.79	792.109	725.58	1144.90	766.407	1300.36
12:31:50	٥	155	1	1363.92	789.501	722.905	090.902	005.009	663.696	664.158	1330.19	794.057	723.901	097.955	669.912	664.921	1353.74	785.821	710.097	698.025	667.912	1315.31	775.504	718.575	005.543	1295.93	792.000	725,672	1145.01	766.255	1300.53
12:01:50	8	158	1	1353.63	789.007	723.092	096.025	005.424	603.913	664,100	1330.77	794,825	724,009	090.20	090,064	605.000	1353.91	788.05	718,906	696,993	667.000	1315.55	775.007	718,742	695.742	1290.10	792,188	725,733	1144.98	708.499	1300.78
12:31:50	8	157	1	1354.27	789,744	723.092	096,041	665.026	664,142	664,249	1330.6	794,979	723,982	090,199	090.125	664.951	1353.62	788,004	710.095	695.947	666.095	1315.40	775.050	718.005	695.62	1290.14	792 231	725,400	1145.10	705.499	1300.50
12-31-51	ā	158	- i	1353.54	789.454	722.679	096.012	005.073	603.807	603.99	1330.3	794 582	723,764	090,199	609.000	654.829	1353.42	785,806	710.097	660.01	667.653	1315.13	775.443	718,000	695,452	1295.0	791,835	725 595	1144.01	766 209	1300.39
12-21-21		150		1303.04	780.000	733 463	006 754	100 134	654 445	004.004	1330.45	704 004	205 077	000.004	650 075	654 765	1353.60	755 444	748 758	605.016	687.654	1315.14	775 504	748 754	000.040	1005.00	200.004	205.425	11.00.1	700.453	1300.07
12.01.01		100		1303.84	700.000	723.100	000.000	000.104	009.112	004.001	1330.40	704 657	703,040	000.001	450.055	001.700	1333.00	705.111	710.700	000.010	447 70	1212.14	175.004	710,700	000.040	1200.00	700.001	120,413	11100.1	700.400	1200.47
12.31.31		100		1303.74	708.50	723.001	000.000	000.000	003.913	004.000	1330.37	101.007	724.054	000.001	008.900	004.700	1303.72	703.002	710.018	000.0/1	007.78	1313.34	175.020	710.001	000.000	1200.12	700.47	120.000	1140.02	700.280	1300.42
14:31:31	0	101	1	1304.00	108.002	723.002	090./0	000.104	004.005	004.001	1330.49	1941.000	124.004	090.123	DON NOO	002 040	1303.42	100.308	/10.81	090.0/1	000.00	1315.37	1/2.011	110.727	080.00	1290.00	/166.17	ra.ni	1144.90	100.36	1,300,67
12:31:52	٥	162	1	1364.36	789.759	723.321	090.071	005.424	004.204	004.341	1330.92	795.147	724.009	090.425	090.278	005.105	1354.04	788.218	710.91	699.206	666.141	1315.71	775.901	719.002	095.001	1290.72	792.445	725,733	1145.02	700.545	1301.07
12:31:52	٥	163	1	1354	789.501	722.001	098.671	005.104	603.652	004.112	1330.31	794.673	723,993	090.001	669.861	605.073	1353.45	785.791	718.906	698.622	667.79	1315.31	775.597	718,712	095.490	1295.94	792.108	725,475	1144.0	766.407	1300.44
12:31:52	٥	164	1	1363.57	789.438	723.016	090.501	685.058	603.022	663,929	1330.40	794.597	723.764	097.905	669.977	654.661	1353.42	785.714	718.006	698.718	667.714	1314.99	775,427	718.529	095.407	1295.00	792.109	725.55	1144.78	768.239	1300.29
12:01:53	۵	165	1	1353.39	789.347	722.512	090.444	664.692	603.024	663.974	1329.01	794.567	723.718	097.756	609.591	664.554	1352.85	705.405	718.005	696.336	667.576	1314.79	775.153	718.301	095.33	1295.24	791.035	725.427	1144.31	766.055	1359.94
12:01:53	۵	166	1	1353.4	789.007	723.031	096.429	004,900	603.007	663,791	1329.99	794.012	723.52	097.772	609.660	004.490	1353.05	785.501	718.437	696,501	667.515	1314.04	775.26	718.407	695 253	1295.53	791.095	725,229	1144.49	705.050	1300.01
12:01:53	٥	167	1	1352.92	700.95	722 569	096,109	064.031	003.400	603 593	1329 52	794.2	723,443	097.00	009.454	004 219	1352.69	785 302	710.301	696,295	667.503	1314.47	775	718,200	094,994	1295.01	791,575	725,076	1144.34	705,730	1359.62
	-		1																												

12:31:53		168	1	1363.65	788,133	722.68	000,474	004,799	603,054	663,974	1330.01	794,000	723,710	097,679	009,759	604.707	1352.9	705.000	710.003	660.52	667.000	1314,93	775,103	718.02	005,014	1225.45	791,035	725,300	1144,52	700.140	1000.1
12:01:54	0	109	1	1353.01	788,999	722.728	099,109	664.722	603.671	663.593	1329.76	794,292	723,474	667,68	009.404	604,440	1352.7	705.501	710.205	668,520	667.332	1314.30	775,190	718.224	666,253	1236.44	701,021	725,214	1144.2	705,919	1359.77
12:01:54	8	170	1	1353.04	789,103	722.728	060.322	664.763	663,502	663,607	1329.04	794,353	723.565	097.040	009.591	664,539	1352.78	705.592	710.544	696.443	667.302	1314.50	775.163	718.239	665.314	1295.44	701.007	725.321	1144.2	765.637	1380.01
12:31:54	8	171	1	1353.33	788.194	722.648	098.551	664,936	683.7	663,866	1329.95	794,399	723,703	097,848	689.774	664.676	1353.02	705.653	718.559	698,764	667.008	1314.62	775.306	718.468	695.421	1295.59	791.00	725,302	1144.51	766.067	1303.03
12-01-55	A.	172	- A.	1953.14	780.996	799 744	666 955	104.044	665 555	665.765	1529.76	794.45	725.555	607 787	649.685	654 600	1952.0	785.400	748-578	698.011	667-578	1314.05	775 157	718-991	605 100	1205.95	791.004	725.26	1144.95	785.645	(155)-07
10-01-05	ă.	175	- i -	1953.10	788 004	799.407	100.000	104.445	663 503	003.054	1000.07	704 946	723.336	607 604	600.400	AM 107	1950.50	705.455	710.904	608 154	617.430	1314 32	774 000	748,499	005,000	1004.00	704 780	735.407	1144 14	785,004	1950.40
10-04-55	Ă	674	- ÷	1000.00	78.6 004	710 10	606.976	MA 001	603,540	663 523	1000.00	704 078	725 582	607,407	640.454	AMA 410	4952.44	705 405	744,453	626 275	617.547	1211.5	775,004	748,459	004 0.45	1005.04	701.55	705,028	1000010	205.025	(150.00
10.01.00		103		1 dee nor	100.001	1.00.00	Sec.are	1001000	1004-200	10000-0000	1000.00	resorte	T BALANDA	201,507	100.101	100	1446.77	194.184	r reinen	100.000	1007-017	Larne .	100000	2 10.144	10010-010	1 altra off	101.00	1 address	1000.00	reative	1.446.96
14:31:30		1/2	- 1	1353.5	708.271	122.000	099,409	004.799	000.007	004.005	1229.02	OH SHI	10.04	987.729	008.713	994.57	1353.00	/05.620	/10.005	696,565	997.052	1214.78	119.20	/18.45/	00.340	1200.42	002,004	10.29	1144.0	/00.020	1356.90
14:31:39	9	1/8	1	120400	/08.249	122.88	000.000	000,119	041) E.V	004.0V/	1220.20	04,539	100.000	097 M.M	000 / 20	004.0.0	1353.37	/05-808	119.112	000.708	99Y-79	1212-11	112412	/18.559	500 JHD	1200.08	1951003	(20.024	1144.73	/00.3	12014/
12:31:58	8	177	1	1353.31	788,423	mm	666.52	684,921	663,533	663,657	1329,99	794,502	723,749	697,885	663,652	604,539	1053.31	785,714	710.400	666.025	667.515	1315.00	775,300	718,391	665,314	1225.04	762,018	725,440	1144.7	768,133	1000.1
12:31:58	8	178	1	1353.45	788.271	722.741	04.505	684.629	663.852	663,622	1329.79	794,009	723,011	697,603	633,630	604.509	1353.08	785,608	718.59	698.6-0	667.501	1314.64	775,362	718,463	665.147	1285.55	791,05	72,275	1144,67	768.067	1303.07
12:31:58	8	178	1	1363.65	788,393	722.767	091.459	684,966	663.776	663,622	1339.1	794,640	723,011	697,663	609.62	664.601	1353.24	705.623	718.651	698.028	667.637	1314.80	775,366	718.285	695,314	1285.59	781,872	72,336	1144,01	768.072	1300.30
12:21:57		100	1	1353.3	789,200	722.018	094,383	664.09	603.406	663,776	1329.66	794,338	723.667	097.741	603,652	604.585	1053.02	705.534	718.59	060.52	667.592	1314.79	775.198	718.407	022.23	1285.47	791,435	72,300	1144.41	768,123	1300.21
12:01:57	8	181	1	1353.17	789.148	722.634	099,415	684,799	663.576	663,637	1329.79	794,475	723,642	097,019	689,622	664.57	1352.66	705.405	718.559	698,504	667.465	1314.5	775.229	718.208	025.07	1295.19	791,713	725.244	1144.35	766.041	1359.75
12:01:57	6	102	1	1353.63	789.423	722.004	099.042	685.073	663,607	664.02	1330.11	794,050	723,671	030.010	609.65	004.029	1053.19	705.714	710.742	696,704	667.003	1315.10	775,011	718,400	665.437	1295.0	792,079	725.50	1144.92	708.255	1300.44
12-01-58	à.	503	- A.	1953-02	789 103	700.004	000.001	664.020	603,039	663,637	1000.0	704.642	723.642	607 787	689 774	654 739	(153.00	705 504	758.005	600.52	667.000	1314.07	775,500	748 976	605 236	1005.47	701.011	735,458	1144.35	766.058	1940
10-01-58	Ă	104	- ÷	1003.04	780 100	700.000	606.507	MA MA	600.054	603 MIN	1100.00	704 699	725 7.40	607 787	AAO AAO	ALL DO:	4953-60	705,600	748,497	100.000	617 515	1314 73	776,976	748.55	005.1.0	1005.44	701.00	705.404	1100.00	766,675	040.01
12-51-55	Ă	448	- 1	1954.14	786 786	723.004	666.674	MA 105	ANA (MA)	664 546	1555 22	205 (5)	725,040	606.077	A40 644	A45.625	4555.75	755,666	718.646	608.010	655.004	4545.57	775,606	748,678	405 574	4556	205.547	755,545	1100.01	744,455	1940.05
12.21.20		100		1.469.11	100.000	122.001	000.001	000.100	10071-0000	50071-0788	1000.10	100.101	100.000	000.017	008.890	999.973	1444.79	100.000	1 10.010	100.0.0	1000.000	1010.00	100.000	1 10.41	000.011	1400	104.491	120.000	11994/01	1992,9922	1.200.00
12:31:39		100	- 1	1353.1	708.072	122,549	000.2	004.070	000,000	000.715	12,01,00	04.249	(23.30	987.759	008.404	994,949	1352.63	/03.250	/19.244	696,412	007.015	1214.00	115,001	/18.14/	999.177	1200.33	mare	745.199	1144.14	/99.049	1356.97
12:31:59		107	1	1353.36	788.325	722.402	090.337	004.09	603.623	000.000	1329,79	794.40	723.501	097,711	009.037	004.082	1352.90	705.394	710.544	696.459	667.356	1314.07	775.190	718,205	095.192	1295.3	791,004	725,244	1144.38	705,934	1300.00
12:01:59	8	168	1	1353.6	789,400	mm	000.474	664,936	603.006	663,913	1330.00	794.012	723.672	097,000	609.603	604,640	1353.13	705.516	710.559	698.020	667.531	1314.93	775.229	718.539	665.376	1295.39	791,005	725.351	1144.04	768.265	1360.39
12:32:00	8	109	1	1353.54	789,255	mm	001.505	665.012	683,73	663,663	1330.01	794,597	723,596	097,924	669.637	664.57	1053,19	705,099	710.528	666.501	667.546	1314.79	775,302	716.33	665.452	1285.57	791,826	725,412	1144,72	766,041	1300
12:32:00	0	190	1	1203.66	788.301	722.048	664.505	064,930	663,791	603.99	1000.14	794,502	723.667	697,663	609.62	604.60	1353.21	705.70	710.777	666.027	667.744	1314.99	775.443	718.02	66.36	1285.79	782,079	725,504	1144,09	700.100	1300.24
12:32:00	0	191	1	1203.60	709.53	723.031	669.027	665.075	663,623	663,974	1330.39	794,043	723,000	697,995	003,090	604.829	1353.42	705,009	710.001	696.022	667.775	1315.19	775,595	718,460	66.36	1290.02	701,005	725,519	1144,00	766.209	1000.50
12:32:00	8	192	1	133354	789.301	722.741	060.444	664.675	603.024	663,776	1329.79	794,506	723,710	097,707	609.713	604.707	1052.93	785.548	719.402	664.505	667.653	1014.94	775.305	718.452	665.407	1286.57	791,911	725,336	1144.0	766.005	1300.15
12:32:01	- 6	190	1	1203.04	786.901	722.526	094,276	664,765	603.547	663.639	1329.52	794,445	723.397	097.004	609.576	604.367	1352.63	765.372	719.407	666.397	667.560	1314.42	775.001	718.224	665,024	1295.1	791,651	725.137	1144.09	765.765	1359.09
12:32:02	8	194	1	1353.53	789.271	722.002	098.505	685.058	683.7	663,696	1330.13	794,582	723,718	697,603	689.728	664.554	1353.02	705.714	718,712	698,703	667.5	1315.02	775.214	718.463	695,223	1295.54	791.05	725,412	1144.01	766.01	1303.21
12-32-02	Δ.	105		(155.5	786 995	722.648	666 555	ANJ NO	665 576	665.75	1959 76	754 555	725 545	697 895	649.695	664 499	1952-02	785.485	718.539	698.445	687.5	1354.6	775,566	718 195	605 354	1005.00	791 774	795,944	1144.41	705.005	1960.01
12-32-03	ă	100	- i	1953.00	780 501	723,002	100.000	005.104	663,020	664 667	1330.40	704 808	724 115	600.046	640 040	ALL BAL	4953.54	785 745	718.019	698,671	667.624	4345.47	775,456	718,005	605,452	1005.76	702.004	725.667	1144.00	768,477	1960.67
12-32-03	Ă	407	- ÷	1053.5	710 1.0	700 7.0	101.111	ALL 700	663,245	663,652	4 100 70	704 101	229,299	607 726	640 774	AM 17	4953-68	700.010	710.407	600.000	617 564	1214.0	775,954	748.465	605,010	1005.01	701.015	705.954	11000	766.447	(100.00
La castra d		107		1000.00	100.000	200.000	5000 Miles	100 C 000	AND AND	And a second	10000-000	Constants of	100.100	2007-010	000.000	10070-007 200-0-7700	1000.00	100.007	C 100-000	200 2.00	1000 ACC	10110	2 C (C (2 10.1000	ACCESSION OF A DESCRIPTION	Lateral L	101.000	T debuild T	1100.00	1996-111	A SALA PA
12:32:03		199	- 1	1203.03	708.010	122,989	040.724	005.009	003,000	004.000	1220.57	08,09	raune	der ar	003.000	994.722	1353.53	105.72	/10.016	96.74	007.000	1212.22	119,449	/10.5/5	000.010	1299.00	/02.100	100.000	1144,04	100.220	1393.52
12:32:03		199	- 1	1204.21	706.000	123.23	090,8/0	005,409	004,204	004.3/1	1220.94	AH.833	724,435	969.29	090.247	985.073	1353.92	/00.090	718.002	000.007	997.000	1215.02	775,819	/10./99	000.0494	12940.20	ou an	100.00	1140.22	799,499	1300.05
14134134		200	1.1	1254.09	/09.50	124.58	090.002	0051070	003,000	004.1/3	1220.08	1040.007	723.991	040,042	090,010	504.00	1353.54	/05-856	/10./20	000.025	007.728	1315.37	115,702	/10.000	000.000	1290.00	192,309	(25.879	1145,04	100.011	13007
12:32:04	8	201	1	1354	788,515	723.004	011703	685,104	603,828	664.127	1330.59	794,643	723,671	020,002	603,857	664,905	1020.00	786,635	718.034	698,733	667.854	1315.37	775,595	718,034	02.05	1290.22	782.231	72.641	1145,18	768,651	1300.73
12:32:05	8	202	1	1223.69	789,409	722.005	000.500	684,936	603,622	603,603	1220.07	794,597	723,703	697,603	663,666	664,707	1053.21	705,053	710,742	698,028	667.576	1314.97	775,427	718,403	665.437	1285.5	781,811	725,342	1144,41	768,148	1300.13
12:32:05	8	203	1	1353,16	769,103	722.421	001.352	684,753	603,208	603,73	1339.5	794,292	723,474	097,512	669.55	604.585	1352.58	705.44	710.301	698.321	667.241	1314.5	774,854	718.147	665.04	1295.12	791,545	725,199	1144.29	765,904	1358.05
12:32:05	8	204	1	1253.34	789.271	722.711	001.505	684,936	683.73	663,622	1329.90	794,509	723.52	697,683	669.62	664.509	1352.92	705.516	718.036	691.429	667.531	1314.74	775.163	718.224	695,192	1295.39	791,682	725.338	1144.49	768.058	1000.09
12:32:00	0	205	1	1354.00	789.000	723.040	001.703	005.195	003.99	664,234	1330.36	794,765	723,910	030.010	009.000	604.69	1353.51	705.800	719.017	696,704	667.912	1315.20	775.534	718,750	005,004	1290.09	792.17	725,011	1145.01	708.239	1000.00
12:32:08	8	206	1	1353.63	789,310	722.602	060.521	685,056	663,622	663,663	1330.2	794,538	723.657	097,924	669.65	664,951	1053.11	705.638	710.742	698.057	667.70	1014.90	775.137	718.62	665.014	1295.00	792,003	725,000	1144.51	766.209	1360.23
12:32:00	ā	207	- i	1354.15	789.022	772.904	661749	005 250	663,696	664,000	1330.37	794,007	723,932	090,100	669,912	604,783	1053.54	705.021	710.019	696,916	667,912	1015.17	775,519	718,019	665.407	1296.05	792.17	725 534	1144.95	766.37	1000.50
12-32-08	6	208	1	1353.37	789.347	722.095	696.49	664.951	603,609	663,663	1330.16	794.45	723,705	097,040	669,759	664.601	1053.14	785.577	718,773	698,504	667.008	1315.11	775,275	718.529	662.56	1295.44	791.00	725,412	1144.55	766,178	1300.77
12-22-07		000	1	1000.00	700.047	700.040	000.000	00.4 007	663.7	000.000	1000.00	104 606	100.140	007.000	000.007	004 700	1000.04	755.004	746 775	606 700	007.003	1047.0	112 144	740.004	000.000	1000.00	104.007	100.400		100.000	1000.00
12-32-07	ă.	240		4303.07	780.000	755 775	606.40	665.045	603,754	445.425	1200.10	704.40	225.246	607 504	445 578	AA4 288	4953.07	755,665	710.004	604 755	447 657	1215.00	775.00	248,457	625,526	1005.54	701.004	755,544	1100.00	244,435	1000.00
12.20.07		2.00	- 1 C	1003.00	786.500	755.648	404.457	000.040	845,455	445,555	100001	201.00	222.00	407,000	445.855	444 785	1000.07	702 74 4	710.001	404.00	487,656	1010100	100.00	210.000	452,556	1000.00	201204	120.000	1000.000	700.125	1000.0
12.20.01		411		1303.00	100.000	122.010	000.000	004.001	000,000	000.008	1000.00	100,000	120,000	000.002	008.080	001.730	1202.27	1997.14	1 10.211	000.00	007.000	1219100	110,000	10.20	000.370	1280.00	101.011	120,200	1144.0	1992.110	1000.10
12:32:00	0	212	1	1354.12	788.744	723.199	090,795	005.211	004.000	004.219	1000.02	794,790	724.115	090,130	090,049	005.009	1353.09	700.035	710.800	090,932	667.097	1315.01	775.041	718,712	095,090	1290.15	792.231	725.04	1145.15	700.430	1300.70
13:32:08	0	213	1	1354.3	786.756	723.100	000.025	085.404	664.112	004.341	1000.00	794,903	724.101	090.20	090.11	005.009	1353.90	700.120	710.91	099.009	666.005	1315.0	775.024	718,941	065.000	1290.25	792,309	725,946	1145.24	700.575	1300.67
12:22:08		214	1	1354.03	769.50	722.97	099,734	085.302	663.974	004,100	1330.56	794,719	723.84	090,104	008.912	004.80	1353.71	708.02	710.000	696,993	667.030	1315.17	775.011	718.636	065.025	1290.05	792.14	725.641	1144.92	708.382	1360.73
12:32:09	8	215	1	1354.03	789.053	723.001	001705	685,195	603,829	664,173	1330.59	794,057	724.023	090,109	090.049	664.997	1353.00	700.090	710.91	698,703	667.030	1315.34	775,041	718,773	665,559	1290.02	792.17	725.740	1145,33	700.514	1300.70
12:32:09		216	1	1223.66	786.496	722.033	004.501	684,962	603,684	664,005	1220.34	794,012	723.01	667.97	603.600	664.753	1353.22	785.836	718.826	060.01	667.79	1315.15	775.456	718,651	662.430	1296.02	792.17	725,026	1144.73	766.346	1360.35
12:32:09	8	217	1	1254.38	789.051	723.321	097.009	685,333	664.112	664.31	1330.75	795.04	724,208	090.221	690.11	605.185	1354,08	708.05	710.997	699.023	687.000	1315.61	775,794	718.956	665.727	1298.4	792,399	725,931	1145.19	766,608	1391.11
12:22:10	8	218	1	1353.75	709.439	723-034	060.050	005.009	600.000	664.021	1220.07	794,050	723.671	097-094	009.000	004.00	1353.33	705-000	710.004	696.703	667.70	1015.10	775.450	718,636	6636	1295.0	792,033	725,455	1166.01	700.407	1300.32
12:32:10	8	219	1	1354	789.499	722.955	090.050	085.104	603,909	603.99	1330.05	794,902	723,671	090,104	009.005	664.799	1353.62	705.836	710.004	098,901	667,662	1315.23	775.626	718,727	665.574	1290.14	792.201	725,595	1144.9	708.285	1300.79
12:32:10	6	220	1	1353.57	789.225	722,772	099.474	084,014	663.7	663,666	1330.01	794,506	723,703	097.94	689,759	604,640	1353.07	705.592	710.59	098.040	667.515	1214.7	775.26	718.499	695,299	1295.59	791.00	725,427	1144.03	700.194	1360.17
			1												_	~															

APPENDIX E

MEASUREMENT DATA FOR ECT M3000 SENSOR (AIR AND WATER)
124314	8 1	teference 1		1423.83	728.963	659.918 659.918	654.777 654.777	681.313 681.313	650.168 650.168	650.519 650.519	1393.19	731.334	670.162 670.162	659 325 659 325	656,349	654.823 654.823	1415.4 1415.4	723.595	670.833 670.833	661.447 661.447	657.83 657.83	1376.88 1376.88	718.162 718.162	670.788 670.788	660.531 660.531	1356.91	734.061 734.061	678.449 678.449	1202.5	709.707 709.707	1419.95
124241	8	2	1	1106.53	775.214	762.866	754,716	748.437	752.518	753.861	1075.37	780.037	754,209	752.32	758.12	758.059	1100.52	775.855	759.112	762.943	761.523	1061.69	758,758	768,712	765.156	1059.34	793.605	779.747	930.22	767.979	1097.71
124241	8	3	1	1105.8	774.847	762.47	754.319	744.887	752.105	753.556	1074.79	779.869	763.813	751.938	757.524	757.57	1100.18	775.26	758.761	762.607	761.065	1061.36	768.437	768.3	754.698	1058.61	793.224	779.138	929,701	767.399	1096.95
124241	8	4	1	1106.11	775.183	762.729	754.579	745.253	752.228	753.739	1075.46	780.037	763.919	752.259	757.738	757.647	1100.4	775.595	758.913	762.805	761.325	1061.69	768.773	768.636	765.064	1058.64	793.315	779.182	930.037	767.644	1097.22
124242	8	5	1	1105.92	775.092	762.561	754.503	748.068	752,259	753.633	1075.08	779.864	763.904	752.105	757.799	757.708	1100.49	775.534	758.913	762.548	761.218	1061.54	755.59	768.498	765.034	1058.73	793.33	779.243	929.945	767.567	1097.28
124242	8	6	1	1108.2	775.25	702.943	754.548	745.345	752.35	753,755	1075.18	780.128	754.011	752.167	757.957	757.799	1100.67	775.824	758,959	762.838	701.447	1061.45	768.712	755.501	765.079	1058.79	793,452	779.487	930.098	767.537	1097.44
124242	8	7	1	1105.8	774.893	762.424	754.38	744.918	752.045	753.358	1074.69	779.716	753.529	752.045	757.631	757.708	1100.09	775.321	758.745	762.515	761.004	1061.2	758.544	768.452	754.744	1058.3	793.315	779.014	929.701	767.476	1097.04
124242	2	8	1	1106.59	775.366	763.08	754.823	745.452	752.534	753,677	1075.55	780.464	764.103	752.427	758.211	758.059	1100.98	775.885	759.254	763.05	761.6	1061.81	769.002	768.926	765.306	1059.07	793.758	779.655	930.342	758.056	1097.59
124243	2		- 1	1105.71	774.71	702.001	754,213	744.007	751,083	753,250	1074.70	779.000	703.091	751.823	101.04/	757,524	1009.97	775.300	756.500	702.010	701.004	1001.23	700.437	700,205	704.000	1050.33	793.04	779.121	929.01	707.470	1090.00
124240	2	10	- 1	1105.85	774.000	762.5/6	704.101	740.14/	752.335	753,999	1074.70	770.009	763.000	701.309	101.09/	707.700	1100.09	775.397	756.000	752.714	701.001	1001.02	700.009	700.000	704.030	1050.40	793.315	779.319	828.752	707.470	1097.04
124240		12		1105.80	775.031	762.546	754.991	746.07	752,279	753,567	1075.08	770.076	763.091	752.100	757.005	707.100	1100.24	775,412	758.000	762.007	701.144	1001.30	700.490	768,477	704.000	1000.30	793 381	770.305	000 884	707,470	1090.00
124244		12		1100.17	775.001	762.040	754.000	746.223	783 33	763.846	1075.00	770 884	763.762	782.103	767.001	787 280	1100.27	778,697	753,852	762.002	761.210	1001.38	768,481	788.680	784.067	1008.76	703 360	770.478	030.008	767,620	1097.10
124244	ă	14		1106.32	775,214	762 744	754,579	745 205	752 228	753,724	1075.21	779,915	754.011	752 183	757.845	757,799	1100.52	775.565	759.02	762.805	761.371	1001.51	768.62	755.513	754.957	1058.58	793 422	779,518	929,884	767,689	1097.44
124248	8	15	- i	1105.95	774.68	762.485	754.441	744,872	751,938	753,159	1074.82	779,747	753.568	752.06	757,692	757.555	1099.94	775.412	758.684	762.485	761.004	1061.11	768.575	768,285	764 637	1058-46	793.066	778,999	929,732	767,582	1097.13
124248	8	16	- i	1105.74	774.817	762.21	754.108	744,933	752.06	753,282	1074.48	779.731	753.584	751.832	757.479	757.631	1100.05	775.153	758 562	762.683	761.142	1061.08	758.346	768.407	754.667	1058.06	793.117	779.09	929.518	767.17	1096.73
124248	8	17	1	1105.8	774.878	762.683	754.319	744.887	752.122	753.495	1074.94	779.731	763.813	752,122	757.662	757.54	1100.21	775.473	758.669	762.637	761.096	1061.17	768.575	768,239	754.774	1058.49	793,269	779.182	929,854	767.521	1097.04
12:42:48	8	18	1	1106.75	775.473	762.958	754.747	745.421	752.564	754.045	1075.31	780.296	764.209	752.412	758.211	758.15	1100.76	775.667	759.112	763.294	761.508	1001.91	769.017	768.956	765.339	1058.85	793.697	779.93	930.312	758.056	1097.65
124248	8	19	1	1106.14	775.001	762.663	754.548	745.004	752.289	753.846	1074.91	779.93	754.118	752.183	757.692	757.905	1100.76	775.534	758.837	762.637	761.325	1061.39	755,559	768.59	755.079	1058.61	793.376	779.472	930.068	767.659	1097.1
124248	8	20	1	1108.5	775.195	762.973	754.73	748.238	752.412	753.648	1075.12	780.266	754.087	752.228	757.952	757.982	1100.58	775.656	759.158	762.897	761.325	1061.63	768.773	768,712	765.125	1058.73	793.605	779.472	930.129	767.735	1097.53
124247	8	21	1	1106.62	775.504	763.004	754.854	745.406	752.763	753.923	1075.52	780.266	754.179	752.564	758.257	758.166	1100.95	775.962	759.173	763.172	761.6	1062.09	768.971	768.971	765.278	1059.22	793.804	779.808	930.312	755.147	1097.83
124247	8	22	1	1106.01	774.802	762.464	754.467	745.004	752.122	753.495	1075.15	780.037	753.545	751.923	757.876	757.725	1100.18	775.244	758.913	762.729	761.004	1001.39	755.755	768.407	764.82	1058.7	793.361	779.243	929.732	767.72	1097.34
124247	8	23	1	1106.53	775.302	762.912	754.625	745.467	752.518	753.953	1075.27	780.25	764.271	752.534	758.089	758.013	1101.04	775.87	759.173	762.968	761.523	1061.84	755.91	768.803	765.171	1059.01	793,566	779.564	930.098	767.689	1097.5
124240	2	24	- 1	1106.72	775.351	763.126	754.762	745.525	752.625	754.045	1075.52	780.386	764.24	752.518	758.135	750.135	1101.07	775.009	759.219	763.233	761.783	1062.03	769.017	766,956	700.339	1059.25	793.501	779.716	930.403	767.964	1097.83
124240	2	- 2		1105.35	775.305	762.775	754.57	740.400	752.301	753.077	1075.27	700.120	704.011	752.300	758.013	757.952	1100.82	775,733	758.127	702.900	701.447	1001.40	709.032	766.001	705.079	1009.04	703.62	779.472	9231340	767.766	1097.41
124240		20		1106.70	778 183	763.004	754 777	745.36	782.473	753,007	1075.64	780.235	754 118	782,412	758 135	758 138	1100.02	775.64	750 142	763.00	781.6	1002.00	768.01	788.988	268, 363	1050.18	703 804	770 564	030 381	767.005	1007.41
124249	ž	28		1106.23	775.076	782 688	754.64	745 235	752 398	753 724	1075.18	780 144	263,858	782.015	758.013	757.86	1100.57	775.58	758.00	782 775	761 264	1061.60	788 747	765.50	754 808	1055.76	703.452	779 319	930.007	767 78	1007.31
124249	ě.	29	- 4	1105.53	774 786	762 363	754 197	744 808	751,908	753 388	1074.48	779 533	783 721	751.905	757.448	757.357	1100.21	775.26	758.496	762.485	761.065	1060.87	768.346	768 315	754.82	1058.15	797 949	779.029	070 540	767,231	1096.78
124249	ā	30	- i	1105.86	775.092	762.378	754.396	745.066	752.091	753.465	1075	779.869	763,736	751.938	757.738	757.616	1100.21	775.412	758.898	762.607	761.004	1061.17	768.514	758,285	764.912	1058.36	793.101	779.259	929.762	767.445	1096.98
12:42:50	8	31	1	1106.59	775.195	762.958	754,609	748.314	752,503	753.831	1075.52	780.144	764.103	752.427	758.15	757.921	1100.76	775.626	759.005	763.004	761.569	1061.78	768.91	768.605	765.217	1058.88	793,544	779.609	930.098	767.934	1097.68
124250	8	32	1	1106.41	775.137	762.668	754.457	745.004	752.457	753,755	1075.21	780.006	753.935	752,259	757.937	757.784	1100.46	775.611	758.913	762.927	761.34	1061.51	768.651	768.529	755.049	1058.64	793.544	779.441	929,752	767.521	1097.13
124251	8	33	1	1106.07	775.092	762.622	754.579	745.162	752.244	753.663	1075.08	780.067	754.025	752.152	757.876	757.799	1100.46	775.641	759.035	762.668	761.233	1061.69	768.575	768.559	764.973	1058.79	793.346	779.503	929.854	767.705	1097.5
124251	8	34	1	1108.2	775.015	762.714	754.518	748.238	752.274	753,755	1075.21	779.976	764.042	752.213	757.998	757.905	1100.34	775.58	758,959	762.868	761.279	1061.57	758.834	768.544	765.11	1058.55	793,483	779.503	929.854	767.827	1097.28
124251	8	35	1	1105.01	775.107	762.622	754.701	745.115	752.167	753.617	1074.91	780.021	763.965	752.244	757.878	757.799	1100.31	775.58	758.883	762.622	761.34	1061.42	758,555	768.407	764.988	1055.88	793,498	779.395	930.007	767.644	1097.47
12:42:52	8	36	1	1106.01	775.305	762.927	754.457	745.147	752.289	753.831	1074.97	779.808	763.981	752.195	757.952	757.753	1100.37	775.702	758.776	762.861	761.279	1061.57	768.62	758.407	765.095	1058.79	793.3	779.38	930.129	767.766	1097.04
124252	2	37	- 1	1105.55	775.412	762.973	754,762	745.345	752.549	754.029	1075.49	780.296	764.271	752.335	757.952	758.009	1100.82	775,763	759.000	762.966	761.676	1001.91	756.005	755.555	765.276	1059.16	793.804	779.564	930.037	767.903	1097.62
124252	2	30	- 1	1100.00	775.018	762.912	704.80	740.013	752.525	759,100	10/5.01	700.357	709.271	702.009	750.227	750.013	1100.92	775,831	708.142	703.202	701.722	1001.07	700.090	700.773	700.037	1008.13	793.019	770.797	830.251	700.193	1097.00
124252		40		1106.70	778,778	763.004	704.940	740.040	752.04	753,823	1075.50	780.300	704.310	752.000	750.15	757,3990	1100.00	775.673	708.300	763.018	761.601	1002.00	768.083	768,070	700.203	1008.18	703.868	770 703	830.3r3	707.304	1097.82
1242-53				1105.41	778,412	787.068	784 688	748,458	752,625	753,031	1075.43	780.199	754 316	782.473	758.043	758.013	1100.02	778.048	788,403	763.111	761.52.5	1001.70	768.002	768.064	765.100	1050.01	703 636	770 854	030.251	767.004	1097.03
1242-53	ž	42		1106.72	778,278	782 088	754 696	745.36	752 64	753 017	1075.31	780 238	754 104	782 834	757 982	757 017	1100.05	775 778	750.081	792 088	781.63	1061.84	768.01	765,640	268,203	1050 16	703 550	779 734	030.473	787 887	1007 58
124254	ă	43	- 1	1106.29	775.107	762.698	754,752	745.314	752 32	753.617	1075.27	780.067	763.95	752 259	757.86	757.878	1100.4	775,778	759.127	762,882	761.355	1061.69	758,895	758.62	754,988	1058.94	793.59	779.472	930.068	767,857	1097.47
124254	8	44	- i	1106.81	775.641	763,248	755.021	745.757	752,732	754.38	1075.7	780.434	754.499	752.686	758.15	758.181	1101.19	776,297	759.448	763.158	761.644	1062.36	769.124	769.124	765.43	1059.46	793,941	779.975	930.678	768.224	1097.88
124254	8	45	1	1106.26	775.214	762.927	754.554	748.147	752,503	753.816	1075.34	779.945	754.118	752 289	757.957	757.906	1100.58	775,748	759.005	762.775	761.6	1061.6	768.697	768.62	765.079	1058.91	793.575	779.518	930.098	767.75	1097.5
124254	8	45	1	1106.62	775.382	762.927	T54.777	748.376	752,595	753.646	1075.46	780,235	754.164	752.427	758.135	758.104	1100.92	775,794	759 325	763.172	761.569	1001.94	768.68	768.971	765.217	1059.01	793.755	779.777	930.342	767.964	1097.8
124258	8	47	1	1106.14	775.001	762.607	754.38	745.314	752.259	753.663	1075	780.067	754.026	752.167	757.937	757.83	1100.46	775.626	758,929	762.79	761.187	1061.39	768.803	768.697	765.034	1058.76	793.361	779.428	929,793	767.659	1097.34
1242.55	8	48	1	1105.8	775	762.821	754.533	745.055	752.32	753.617	1074.97	779.899	754.057	752.183	757.891	757.799	1100.21	775.672	758.868	762.744	761.249	1061.33	768.62	755.555	765.049	1058.91	793.3	779.395	929.945	767.626	1097.44
124258	8	49	1	1106.17	774.954	762.683	754.701	748.314	752.457	753.678	1075.21	780.037	763.935	752.32	757.998	757.905	1100.49	775.595	758.929	762.698	761.401	1061.69	768.636	758.529	705.049	1058.85	793,529	779.503	930.037	767.796	1097.31
12-42-58	8	50	1	1106.38	775.165	762.836	754.823	748.376	752.579	753.861	1075.46	780.25	764.118	752.361	758.013	757.921	1100.85	775.748	759.035	762.836	701.447	1061.84	768.865	765.59	765.217	1059.13	793 529	779.503	930.342	767.867	1097.53
124256	0	51	1	1105.64	775.400	762.927	754.93	745.421	752.702	754.075	1075.76	760.357	764.316	752.625	758.242	755.195	1101.07	775.005	759.219	763.202	701.091	1062.06	769.093	766.695	765.300	1059.25	793.865	119.111	930.434	756.056	1098.05
124256	0	0.2	1	1106.17	774.97	102.003	154.407	745.009	/52.209	/53.633	1075.03	119.000	703.904	/52.122	107.040	/0/.700	1100.46	115,456	750.809	102.005	701.246	1001.04	700.750	700.403	100.034	1056.79	193.56	110.570	930.007	101.705	1097.31

Votage Me 1 plane(s) 100 frame for test5-ectp1-5e Walklock 1 DAS Time Frame Plane 26 Votage Data

12:42:57	8	53	1	1106.26	775.321	762.683	TATT	745.314	752.457	753,999	1075.21	780.083	764.057	752.366	757.891	758.104	1100.67	775.87	759.02	762.973	701.493	1061.81	769.002	768,559	765.14	1009.04	783.544	779.67	930.22	767.964	1097.53
12:42:57	8	54	1	1106.32	775.305	753.05	754,854	748.391	752.458	753.923	1075.58	780.021	764.133	752.442	758,059	758.059	1100.76	775,977	759.051	762.958	761.447	1001.94	755,555	758.665	765.202	1059.22	793 536	779.64	930.159	768.086	1097.74
12:42:57	8	55	1	1106.65	775.672	763.004	754,792	748.711	752,763	754.045	1075.67	780.403	754.454	752.503	758.104	758.303	1100.98	776.007	759.28	763.339	761.661	1061.81	769.17	769.093	765.476	1059.25	793.727	779.96	930.373	768.086	1098.05
124258	8	56	1	1106.72	775.519	763.004	754.777	745.437	752.61	754.045	1075.58	780.388	764.133	752.518	758.166	758.272	1100.64	775.977	759.158	762.958	761.462	1061.78	769.017	755,755	765.247	1059.13	793.819	779.716	930.434	767.979	1097.59
12:42:58	8	57	1	1106.14	775.001	762,729	754.625	745.162	752.213	753,755	1075.15	780.037	753.935	752.213	757.66	757.799	1100.52	775,702	758.883	762.661	761.167	1061.45	768.819	768.361	754.896	1058.7	793.452	779.365	930.068	767.537	1097.25
12:42:58	8	58	1	1106.04	775.122	762,714	754,518	744.918	752,274	753.571	1075.31	779.93	764.072	752,122	757,708	757.708	1100.49	775.595	758,913	762.637	761.371	1061.57	758.636	768.59	754,988	1058.73	793.483	779.335	930.068	767.781	1097.31
124259	8	50		1105.49	774 603	762 149	754 121	744 673	751.816	753 266	10743	779.428	763 386	751.74	757.463	757 234	1099.94	775.153	758 364	762 347	760 925	1060.93	758,208	768.071	764 652	1058.15	792 934	778,999	929.488	767.14	1096.64
12:42:59	8	60	1	1105.92	774.863	762.637	754.487	744.933	752.105	753.587	1075.03	779.869	763.691	752.045	757.677	757.662	1100.34	775.397	758.868	762.5	761.111	1061.33	758.463	768.315	764.881	1058.64	793.101	779.228	929.823	767.582	1097.16
124259	8	61	1	1105.74	774,832	762,266	754,213	745,009	751,908	753.358	1074.57	779.64	753.584	751.694	757.372	757,402	1099.85	775.168	758,578	762.47	760.974	1061.08	768,239	768,224	764.652	1058.27	793.117	779.009	929.455	767.231	1096.92
1243:00	8	62	- i	1105.83	774 954	762 622	754.35	744 933	752 091	753.449	1074.85	779 899	753,858	782.03	757 524	757,708	1100.05	775,412	758,715	762 775	761 233	1061.26	765 529	768.422	754 557	1058.48	793 162	779 213	929 671	787.48	1095.95
124300	ă.	63	- 4	1105.92	774 954	762 515	754.35	745,009	752 105	753.465	1074.76	779 838	783 797	751.954	757 652	757 601	1100.15	775,382	753,660	762 683	761 126	1061.26	788 680	755 345	754.05	1058.52	793 208	779 396	979 787	787 537	1007.16
1243:00	ā	64	- 4	1106.23	774.847	762 607	754.38	745 152	752 105	753.404	1075.09	779,808	763 797	752 157	757.845	757.784	1100.18	775.519	758,913	762,637	761.126	1061.33	755,631	768.482	754 744	1058.79	793 452	779,258	929,884	767.478	1097.44
1243:00	8	65	- i	1105.59	774 771	762 256	754 304	745.04	752.015	753 358	1074.76	779 762	753.675	751,905	757 555	757,723	1099 94	775 244	758 501	762 378	761.004	1060.81	768,315	768.3	754 667	1058.39	793 132	779 213	979 549	767.338	1095.75
124301	8	66	- i	1105.43	774 634	762 347	754 121	744 658	751,908	753.465	1074.45	779 701	763 305	751.847	757 357	757 433	1099 73	775.168	758.425	762 363	760 913	1060.87	788 224	768 193	754 454	1058.24	793 132	778.831	979.488	767 300	1096.83
124301		87	- 1	1106 23	774 030	782 807	784 487	744 033	782 122	753 617	1075.03	770 800	783.840	782 183	787 799	767 780	1100 12	778,473	753,630	782 683	781 187	1061.42	768, 607	788,482	784.08	1053.58	703 33	770 348	020.014	767 683	1007.1
124301		40	- 1	1106.01	778.183	747-017	754 518	7.48 238	783 344	783,877	1074 82	780 008	783 010	782 483	787 784	787 878	1100 37	778 473	758,822	762 807	761 340	1061 63	768 717	265 676	285.054	1053 73	703 676	770 472	070 078	767 738	1007.44
124302	ă.			1106.23	775	762 515	754 487	745.055	752 274	753 556	1074.82	779.854	753 705	752 091	757.647	757 588	1100.37	775,336	758 791	762.622	761.126	1061.51	755,605	755,550	754.85	1058.73	793 254	779 197	979 945	767.582	1097.22
124302	ă.	70	- 6	1106.32	775 198	782.76	754 782	745 254	752 395	753.8	1075.27	780 128	754.042	782 306	757 952	757 801	1100.82	775 763	758.00	782 943	761 523	1061.81	755,631	768,712	765 156	1053.94	703 544	779 579	930129	767 872	1007.56
124302	ž.	71	- 4	1105.77	774 71	762 332	754 075	744 78	751.801	753.51	1074 81	779 777	783,670	751 050	787 67	757 500	1000.82	775.20	758 379	782 531	760 050	1061.08	768, 328	768,260	784 637	1058-18	793 147	778 999	070 570	787 478	1005.00
1243-03		-	- 1	1106.01	774 088	762,622	784 441	748.07	783 423	783 417	1074 04	775 800	283 783	782.048	787 784	787 #31	1100.34	778,477	753 630	762 730	761.05	1061.06	765.676	768,422	784 774	1063.68	703 360	770 226	070 703	767 340	1007.01
124303	ă.	73		1105.89	775.092	762 698	754 487	745.005	752 289	753 556	1075.12	773.95	763.95	752 274	757.83	758.043	1100.67	775,565	759.005	762.805	761,233	1061.57	768,575	755,727	754,912	1058.79	793.62	779 564	930129	767.766	1007.58
124303	i.	74	- 4	1106.11	774 97	782 608	754 472	748 177	752 122	753 200	1075.03	780,006	783.048	751 054	757 602	757 708	1100.43	775,397	758.852	782 683	761 355	1061.36	788,680	788,437	754 898	1053.61	793 254	779 336	020,823	767 582	1007.31
124304	ž.	78		1106.04	775.081	782 822	754 518	748 088	752 (83	753 604	1075 18	780 037	283.06	782 182	787 799	757 814	1100.61	775,687	758 074	782.805	761.401	1061.48	768,813	768,408	285.018	1058.76	703 472	779 441	070 018	787 680	1007.41
124304		78		1108.44	778, 384	782.881	784 873	748 378	783 413	753.841	1075.00	780 327	254.008	782 427	758 104	767 024	1100.08	775 778	750 147	763.05	761 580	1081.84	768 840	768,804	266 334	1068 70	703 666	770 548	030 22	767 873	1007.47
124304	ă	77	- 4	1105.71	775.001	762 622	754.35	745 004	752 213	753.465	1074.79	779.849	763 767	751,999	757.54	757 682	1100.31	775.321	758,578	762 576	761.065	1061.05	758,437	758.422	754,898	1058.46	793 315	779 336	979 793	767.582	1097.13
124305		78	- 6	1105.8	774 985	782 714	754 269	744 979	752 228	753 663	1074.85	779.915	783,889	752 183	757 738	757 586	1100.48	775,498	758.883	762 653	761 142	1061.48	768,670	758,407	754.82	1058.58	793 391	779 197	929,823	787 587	1005.05
124305		79	- 6	1106.07	774 939	762 668	754 487	745.006	752 122	753 556	1075.12	779 823	783 767	752 105	757 891	757 586	1100.58	775,458	758,837	762,882	761,218	1061.45	755,636	765 529	754.85	1053.64	793 468	779.472	930.007	767 537	1097.07
124305	ă.	80	- 6	1105.01	774 998	782 714	754 579	748 177	752 228	753 663	1075.03	780 037	783,858	752 167	757 906	757 753	1100.34	775,641	758.852	782 658	761 218	1061.45	768,773	765,635	754 957	1058.67	793 472	779.35	979 793	787.78	1097.72
1243.08	ā	81	- i	1106.07	775.29	762.836	754,808	745,253	752.427	753,816	1075.43	780.098	753,995	752 396	758,043	757,952	1100.64	775,778	759.097	762.927	761.462	1061.81	758,834	758,758	765.14	1058.85	793.681	779,518	930.068	767,918	1097.47
1243.08	8	82	- i	1106.29	775.412	762 744	754.625	748 238	752 289	753,663	1075.03	780.052	753.981	752 259	757,876	757,891	1100.52	775.626	758,837	762.821	761,416	1061.45	758,742	768,544	765.034	1058.85	793 544	779 503	929,915	767.872	1097.38
124308	8	83	- i	1105.8	775.107	762 775	754.35	745.07	752 137	753,663	1075.06	779.869	753.919	752 167	757,799	757 692	1100.4	775.58	758,852	762,683	761,279	1061.29	768, 575	768.437	765,049	1058.73	793.3	779.38	930.037	767,798	1097.28
124308		84	- 6	1105.86	775	762 531	754 335	744 933	752 137	753.617	1074.76	779 793	783 797	752.015	757 631	757 647	1100.18	775 321	758.669	762 622	761 233	1081.2	755.407	758.437	754.85	1053.64	793 239	779,228	929,823	767.491	1098.98
12:43:07	ā	85	- i	1105.62	774,832	762 332	754,258	744.948	751,969	753.373	1074.63	779 594	763.583	751.908	757.555	757.387	1100.03	775.26	758.471	762.424	761.004	1061.11	758,259	768,224	754.667	1058.3	793,239	779.045	929,549	767.445	1096.73
124307	8	86	1	1105.89	774,832	762.484	754.35	748.147	752,183	753.48	1075.12	779,808	753.889	752,106	757,738	757,601	1100.15	775.519	758,715	762,714	761,203	1061.26	758.544	768.33	764,912	1058.58	793.437	779.335	929,762	767,598	1097.13
12:43:07	8	87	1	1106.62	775.488	763.095	754,915	748 528	752.61	754.075	1075.58	780.281	764.347	752 564	758,258	758.138	1100.89	775,931	759 203	763.06	761,589	1061.91	769,109	768.895	765.476	1059.19	793 849	779,701	930,251	768.071	1097.88
124308	8	88	- i	1106.01	774.985	762 668	754.441	745 152	752 183	753,877	1074.94	779 976	753.919	752 195	757.845	757.616	1100.4	775.505	758.807	762,683	761,294	1061.39	755,665	768.437	754.85	1058.73	793.33	779.35	929,823	767,738	1097.25
12:43:08	8	89	- i	1106.59	775.427	762.836	754.777	748.376	752.518	753.892	1075.64	780 372	764.24	752,549	758.135	758.166	1100.89	775.885	759 325	763.019	761.554	1052	769.017	768,712	765.186	1059.22	793.681	779.655	930.464	767.888	1097.96
12:43:08	8	90	1	1105.89	774.97	762.622	754.533	748.116	752.305	753.648	1075.09	780.052	763.965	752.183	757.66	757.876	1100.61	775.656	758.776	762.861	761.355	1061.45	758.529	758.495	764.973	1058.61	793.452	779.335	929,945	767.674	1097.16
1243.09	8	91	1	1106.47	775.305	762.866	754,838	748.513	752 595	753,953	1075.52	780,205	754.164	752,442	758,257	758.028	1100.73	775,672	759,142	763 126	761.539	1061.75	758.865	768,712	765,247	1059.13	793,758	779.67	930.434	767,888	1097.77
1243:09	8	92	1	1106.35	775.122	762 668	754 584	748 223	752.35	753,739	1075.15	779,991	753.858	752 368	757,878	757,848	1100.61	775.626	758,929	762,927	761.371	1061.63	758,758	768.62	765.064	1058.67	793.468	779.67	930 129	767,903	1097.41
12:43:09	8	93	1	1106.78	775.473	763.156	754,884	748.668	752,732	754.182	1075.7	780.418	764.347	752.686	758.089	758.318	1101.28	775.992	759.341	763.172	761.92	1062.12	755.971	769.002	765.446	1059.37	793.834	779.838	930,555	758.056	1097.92
12:43:10	8	94	1	1106.29	775.183	762.76	754.64	748.192	752.457	753.892	1075.21	780.144	764.103	752.244	758.013	757.891	1100.78	775,748	759.035	763.019	761.386	1061.72	755,549	768,758	765.14	1058.94	793.62	779.548	930.068	767.857	1097.55
12:43:10	8	95	1	1106.75	775.443	763.034	754,869	748.574	752,656	753.953	1075.49	780.403	764,225	752.61	758.181	758,272	1100.85	775,992	759.127	763.126	761,763	1062.06	769.002	758,955	765.43	1059.4	793,758	779,808	930.342	767.979	1097.89
12:43:10	8	96	1	1106.35	775.412	762.912	754,579	745.391	752,455	753.77	1075.4	780.174	764.103	752,412	757,952	757,952	1100.7	775,763	759,142	762,882	761.416	1061.84	768.88	768,803	765.049	1059.04	793 566	779.472	930,281	767,842	1097.53
124310	8	97	1	1105.74	774,924	762.439	754,258	744 994	752.167	753,434	1074.79	779,793	763,813	751,923	757.494	757.601	1100.31	775.382	758 623	762 546	761.126	1061.29	768.407	768.33	764 698	1058.27	793,269	778,964	929,915	767.567	1097.01
124311	8	98	- i	1105.62	774.893	762 546	754.304	744.979	751.954	753.602	1074.85	779.915	753.843	752.03	757.692	757.494	1100.24	775.534	758.73	762.683	761.061	1061.14	758.422	768.407	764.927	1058.27	793,254	779.197	929,793	767.521	1097.01
124311	8	99	1	1106.14	775.107	762.683	754.487	748.116	752.32	753.678	1075.15	779.948	763.965	752.35	757.63	757.83	1100.49	775.672	759.112	762.881	761.325	1061.51	755.531	755.665	764.973	1058.76	793.463	779.564	930.19	767.674	1097.31
124311	8	100	1	1106.62	775.321	762.912	754,792	745.495	752,534	753,999	1075.46	780.159	764,209	752,488	758.089	758.166	1100.79	775,931	759.158	762.968	761.584	1061.69	768.91	768,788	765,293	1059.07	793 697	779.67	930,555	767.918	1097.77
124312	8	101	1	1105.98	775,046	762.714	754,609	748.147	752,137	753,602	1075.06	779,991	753.889	752,105	757,814	757,769	1100.34	775.565	758.883	762,775	761,279	1061.54	755,559	768,529	764,912	1058.79	793.452	779.408	929,915	767.598	1097.19
12:43:12	8	102	1	1106.29	775.275	762.79	754.64	745.253	752.442	753,816	1075.31	780.174	753.995	752.366	757.891	757.952	1100.67	775,702	758.944	762.866	761.386	1061.75	755,895	768.788	765.171	1058.88	793 559	779.426	930,251	767.918	1097.34
12:43:12	8	103	1	1106.01	775.107	762.668	754.518	745.162	752 259	753,785	1074.91	779.976	753.965	752 152	757.738	757.647	1100.58	775.565	758.868	762.775	761.294	1061.39	755.531	768.559	765.11	1058.55	793.376	779.269	929.823	767.689	1097.16
12:43:12	8	104	1	1106.17	775.168	762.744	754.457	748.253	752.427	753.571	1075.21	780.006	763.935	752.195	757.814	757.845	1100.58	775.641	758.959	702.70	761.432	1061.51	755,605	768.544	764.927	1058.82	793.346	779.594	930.037	767.75	1097.38
12:43:13	8	105	- i	1105.98	775.183	762.561	754,503	745.192	752 228	753.663	1075.03	780.037	763.935	752 152	757.891	757.814	1100.37	775.611	758.944	762.897	761.218	1061.29	755.531	768.513	764.881	1058.7	793.575	779.38	929,884	767.705	1097.25
12:43:13	8	106	- í	1106.11	775.107	762.805	754,609	748.208	752.35	753.77	1075.18	780.083	763.965	752.259	757.891	757.799	1100.37	775.84	759.02	762,805	761.462	1061.45	768.62	758.605	765.11	1058.91	793.468	779.457	930.037	767.827	1097.38
12:43:13	8	107	1	1106.38	775.183	762.836	754,716	748.36	752.503	753.831	1075.43	780.281	764.103	752.32	758.013	758.013	1100.7	775.809	759.051	763.004	761.508	1061.72	768.925	768.727	765.308	1058.91	793.575	779.67	930.159	767.857	1097.44
1243:14	8	108	1	1106.59	775.427	762.943	754.976	748.467	752,686	753.954	1075.64	780 327	764.24	752.468	758.195	758.15	1100.79	776.084	759.341	763.065	761.584	1061.94	769.078	768.819	765.171	1059.31	793.712	779.747	930,251	768.071	1097.83

APPENDIX F

MEASUREMENT DATA FOR ERT M3000 SENSOR (WATER)

Walklock 1	DAS Time	Fieme	Plane	20 Voltage	Data																		
13:44:28	8	Reference	1	0.097179	0.062829	0.208325	0.094165	0.069276	0.08051	0.128174	0.040779	0.151848	0.149856	0.211864	0.131703	0.194846	0.021246	0.064349	0.140875	0.011444	0.038036	0.056522	0.083184
13/330	8	1	1	0.14624	0.104954	0.133109	0.088905	0.156478	0.048694	0.106002	0.13338	0.107138	0.086224	0.238509	0.110055	0.454199	0.095659	0.088181	0.30816	0.095816	0.287325	0.044518	0.104185
13:44:12	8	2	1	0.009915	0.090758	0.186093	0.08708	0.179174	0.057395	0.231616	0.118232	0.244624	0.051682	0.321028	0.095956	0.287517	11,7209	0.090251	0.273959	0.077453	0.281105	0.131738	0.142326
13:44:12	8	3	1	0.16745	0.142518	0.365787	0.086433	0.104919	0.072124	0.235198	0.005425	0.253587	0.05004	0.367591	0.106517	0.126479	0.100481	0.126837	0.249621	0.092129	0.303032	0.100289	0.031939
13:44:13	8	4	1	0.196602	0.042334	0.28798	0.025299	0.251892	0.103923	0.193597	0.124452	0.394899	0.155539	0.319945	0.093387	0.333521	0.130725	0.069765	0.268123	0.13359	0.191474	0.137224	0.118861
13:44:13	8	5	1	0.164891	0.118206	0.153307	0.079637	0.150042	0.099205	0.317158	0.141321	0.215026	0.079357	0.5204	0.013619	0.215708	0.065852	0.075575	0.215516	0.150887	0.151761	0.025649	0.064139
13:44:13	8	6	1	0.148747	0.03117	0.296017	0.077802	0.341051	0.082258	0.284547	0.064768	0.305461	0.557248	0.24824	0.119682	0.234315	0.149961	0.0953	0.194549	0.202307	0.402168	0.185254	0.117498
13:44:13	8	7	1	0.034558	0.073906	0.198585	0	0.159955	0.09088	0.229266	0.102376	0.338884	0.127021	0.13518	0.078073	0.271426	0.028235	0.020477	0.220076	0.087412	0.191614	0.046266	0.043068
13:44:14	8	8	1	0.10221	0.043916	0.244283	0.109173	0.11479	0.117725	0.211462	0.085429	0.195825	0.553055	0.219517	0.062916	0.203495	0.079654	0.086748	0.1395	0.088111	0.254653	0.014205	0
13:44:14	8	9	1	0.13027	0.055063	0.269128	0.095449	0.293335	0.147795	0.212161	0.053211	0.328751	0.117516	0.193221	0.049638	0.283289	0.175348	0.080895	0.247664	0.06089	0.337557	0.140055	0.171521
13:44:14	8	10	1	0.133852	0.049192	0.303172	0.03863	0.284949	0.076806	0.243383	0	0.278397	0.468858	0,454001	0.135442	0.169198	0.144527	0.032489	0.261868	0.182267	0.188085	0.258147	0.11811
13:44:14	8	11	1	0.172701	0.095178	0.457827	0.13566	0.098402	0.108203	0.431381	0.005303	0.190636	0.318355	0.343742	0.124408	0.154801	0.124854	0.03476	0.257081	0.134865	0.318268	0.090137	0.041653
13:44:15	8	12	1	0.158086	0.100227	0.337765	0.238054	0.163956	0.076806	0.252014	0.115673	0.143077	0.111907	0.430507	0.081594	0.274081	0.132856	0.118713	0.170962	0.052258	0.290505	0.020215	0.077173
13:44:15	8	13	1	0.100358	0.072351	0.119865	0.092715	0.088879	0.1508	0.221639	0.134822	0.308518	0	0.229126	0.09841	0.141243	0.116537	0.076308	0.131266	0.048764	0.263843	0.083341	0.064891
13:44:15	8	14	1	0.013156	0.058409	0.211357	0.150581	0.248537	0.136071	0.271906	0.194095	0.390898	0.219097	0.213611	0.078379	0.351377	0.134953	0.115935	0.345227	0.099118	0.354784	0.073661	0.08701
13:44:15	8	15	1	0.158155	0.060383	0254792	0.105801	0.088338	0.08514	0	0.043785	0.144335	0.026243	0.195362	0.044195	0.32302	0.052922	0.115384	0.365127	0.137923	0.277653	0.032113	0.059317
13:44:15	8	16	1	0.036892	0.082432	0.411847	0.209505	0.20678	0.126426	0.220381	0.031432	0.142378	0.081174	0.294576	0.091299	0.226653	0.115087	0.006657	0.117883	0.041583	0.226925	0.048013	0.079794
13:44:16	8	17	1	0.06192	0.073129	0.393405	0.099677	0.103783	0.041059	0.243305	0.128226	0.157474	0.186757	0.210475	0.081323	0.253053	0.150555	0.102298	0.405815	0.079654	0.376362	0.066393	0.053481
13:44:16	8	18	1	0.145252	0.04437	0.214.249	0.200533	0.357143	0.142588	0.193221	0.196532	0.29952	0.085595	0.252984	0.131083	0.22191	0.07277	0.020495	0.290977	0.110492	0.250407	0.147148	0.053521
13:44:16	8	19	1	0.112484	0.037643	0.251272	0.07664	0.344039	0.172762	0.112991	0.093326	0.311157	0.033861	0.173557	0.069014	0.319858	0.11002	0.090784	0.224112	0.140771	0.277576	0.099275	0.052119
13:44:16	8	20	1	0.099843	0.009924	0.259239	0.014554	0.395751	0.043391	0.366735	0.085149	0.281245	0.500325	0.361039	0.146397	0.315874	0.09185	0.09447	0.284495	0.114161	0.202464	0.087814	0.092077
13:44:17	8	21	1	0.033939	0.05197	0.264708	0.160829	0.136543	0.052148	0.319377	0.14036	0.123823	0.274937	0.483307	0.072089	0.348913	0.239662	0.03193	0.258287	0.108832	0.332385	0.207391	0.065223
13:44:17	8	22	1	0.155631	0.057081	0.202001	0.117944	0.206902	0.10691	0.124548	0.054049	0.275724	0.09323	0.190304	0.114109	0.319595	0.177025	0.146475	0.320137	0.342029	0.338605	0.0698	0.155639
13:44:17	8	23	1	0.137434	0.028139	0.326541	0.155613	0.187596	0.109444	0.342265	0.055962	0.280354	0.198778	0.327239	0.10318	0.205797	0.217839	0.358977	0.36062	0.259125	0.243575	0.101616	0.192103
13/44/17	8	24	1	0.042002	0.083219	0.158985	0.142055	0.243628	0.114799	0.103713	0.201888	0.273085	0.06227	0.101887	0.047375	0.257326	0.001118	0.113794	0.309095	0.101127	0.332612	0.021857	0.017332
1.044018	8		1	0.063/83	0.0550.95	0.302307	0.143018	0.151581	0.110125	0.357614	0.10/199	0.217.985	0.293/3/	0.306195	0.06075	0.225351	0.111803	0.073434	0.237633	0.032928	0.144135	0011234	0004875
13:44:18	8	26	1	0.104028	0.068437	0.129903	0	0.187561	0.090784	0.122452	0.131852	0.142081	0.206622	0.160907	0.153412	0.241391	0.035276	0.012746	0.187997	0	0.188242	0.089631	0.101442
13:44:18	8	27	1	0.036141	0.047821	0.256385	0.023385	0.169809	0.038683	0.060566	0.143095	0.217333	0.279095	0.103958	0.062427	0.350783	0.093824	0.146004	0.173495	0.153578	0.313218	0.024967	0.109426
1.044018	8	28		0.218514	0.0915	0.322.955	0.072762	0.1205/5	0.1555.55	0.520854	0.250514	0.1/48/4	0.516259	0.214616	0.10415	0.1849/5	0.048574	0.083664	0.128566	0.050383	0.157544	0.168848	0.00075741
1.044018	8	29	1	0.114484	0.0545.38	0.5440.39	00/1906	0.228759	0.008299	0.559/46	0.100699	0.183	0.353246	0.458916	0.088268	0.223273	0.093807	0.070578	0.10//18	0.173391	0.244135	U.144318	0.035625
1.094019	8	<u></u>		0.143253	0.018052	U.4168/	0.122216	0.402.405	0.142571	0.440.255	0.128226	0.25/154	0.234663	0.254523	0.118559	0.411183	0.250545	0.038083	0.291905	0.141208	0.242335	0.133555	0.005752
1.044(19)	8			0.034193	0.05073	0.201.201	0.051.585	0.190391	0.035816	0.274115	U. Alexandra	0.256305	0.512554	0.340754	0.102052	0.250851	0.253515	0.1129/3	0.216611	0.140561	0.221404	0.143368	0.000745
1.644(19)	8	<u>2</u>	1	0.052355	0.062852	0.131423	0.150302	0.223913	0.116/4/	0.254227	0.112/38	0.35352	0.150518	0.143418	0.10525	0.165233	0.000104	0.120233	0.200532	0.063143	0.503058	u.16165	0.060/15
1.044019	8		1	ULEUNUB	0.102473	1/2/2/152	0.17.9407	0.210851	0.204176	0.095187	0091614	0.18264	0.256208	0.070527	0.1.9/15	0.300149	0.021945	0.146615	UA1492	0.058042	0.1988	0	0

Voltage Mc 1 plane(s) 68 frames for test4

65

13:44:20	8	34	1	0.032917	0,05218	0.094887	0.031877	0.192662	0.115468	0.134551	0.124871	0.228794	0	0.133249	0.061457	0.160846	0	0.109164	0.303766	0.095711	0.425034	0.174719	0.055246
13:44:20	8	35	1	0.100621	0.025885	0.341802	0.132122	0.352996	0:168215	0.189369	0.097755	0.249533	0.458182	0.564272	0.119464	0.240797	0.315175	0.04534	0.22385	0.308082	0.236639	0.115122	0.08224
13/44/20	8	36	1	0.143287	0.16911	0.455955	0.072325	0.34797	0.161335	0.320408	0.082965	0.220927	0.202936	0.33795	0.111357	0.19282	0.250896	0.02129	0.29952	0.166664	0.162663	0.088722	0.092863
13/44/20	8	17	1	0.123937	0.076894	0.342274	0.144099	0.13041	0.098917	0.225562	0.086739	0.180065	0.169198	0.212947	0.088137	0.117009	0.047593	0.105513	0.107382	0.078501	0.232201	0.017839	0.051367
1344:21	8	38	1	0.127187	0.039766	0.253744	0.05757	0.378179	0.097546	0.430262	0.182782	0.268211	0.315088	0.162366	0.183271	0.295205	0.17558	0.039897	0.315717	0.181183	0.3309	0.066725	0.085944
1344:21	8	39	1	0.086442	0.055403	0.328524	0.231284	0.186093	0.19904	0.233616	0.09717	0.287465	0.085228	0.473383	0.165974	0.187823	0.120993	0.074963	0.14921	0.050127	0.174509	0.116922	0.070936
13/44/21	8	40	1	0.070052	0.057561	0.506466	0.077392	0.373636	0.09143	0.451089	0.011383	0.172203	0.279725	0.484932	0.199372	0.057659	0.113655	0.090583	0.275828	0.307977	0.192418	0.18038	0.050703
13/44/21	8	41	1	0.223605	0.016651	0.244465	0.191099	0.457076	0.060855	0.257508	0.062899	0.31846	0.317149	0.265267	0.205749	0.245323	0.085643	0.116529	0.287674	0.097091	0.399477	0.254588	0.057116
13:44:22	8	42	1	0.061274	0.06524	0.375261	0.121735	0.28909	0.123963	0.25875	0.054469	0.12136	0.184678	0.225405	0.111112	0.059072	0.03131	0.063598	0.154626	0.111155	0.115734	0.066935	0
13:44:22	8	43	1	0.04796	0.061711	0.247638	0.148249	0.340702	0.194977	0.174841	0.068507	0.246091	0.03746	0.434718	0.111139	0.312886	0.221945	0.056696	0.139845	0.098122	0.261135	0.052625	0.029929
13:44:22	8	44	1	0.176221	0.098908	0.090059	0.074133	0.119315	0.280441	0.102665	0.168735	0.215288	0.0282	0.379576	0.065083	0.318652	0.068455	0.108972	0.205857	0.004105	0.118145	0	0.01375
13/44/22	8	45	1	0.116389	0.058033	0.29765	0.107451	0.330673	0.121919	0.255919	0.054154	0.257535	0.222906	0.2405	0.030672	0.134953	0.102455	0.065161	0.247908	0.058793	0.36421	0.06849	0.03117
13:44:23	8	46	1	0.248398	0.096471	0.096934	0.083305	0.383997	0.103485	0	0.034027	0.334167	0.045514	0.152643	0.14451	0.431223	0.130882	0.05308	0.415866	0.149961	0.409506	0.13995	0.185827
13:44:23	8	47	1	0.078143	0.115017	0.497651	0.057832	0.220181	0.104115	0.591135	0.073627	0.090644	0.344091	0.33304	0.155893	0.222312	0.234455	0.073915	0.20947	0.176973	0.297808	0.128558	0.018346
13:44:23	8	48	1	0.068865	0.006814	0.14679	0.025222	0.194182	0.143566	0.25108	0.072473	0.331249	0.034926	0.203477	0.196628	0.308885	0.104167	0.155613	0.305967	0.019918	0.412389	0.079916	0.115419
13/44/23	8	49	1	0.046598	0.046414	0.246065	0.114336	0.097371	0.088408	0.087927	0.068953	0.092863	0.121639	0.215786	0.032638	0.332769	0.218119	0.068402	0.268228	0.056305	0.296637	0.053097	0.105041
13:44:23	8	50	1	0.093894	0.017856	0.233887	0.088032	0.162576	0.037215	0.451351	0.10125	0.359956	0.264559	0.187194	0.018721	0.227082	0.115821	0.043723	0.11313	0.235311	0.395913	0.1508	0.084721
13/44/24	8	51	1	0.114161	0.087333	0.208003	0.139548	0.235975	0.061912	0.281	0.069477	0.227257	0.088914	0.166752	0.0906	0.268176	0.154172	0.058024	0.128663	0.072683	0.35232	0.134097	0.088076
13/44/24	8	9	1	0.122434	0.075933	0.291247	0.064384	0.192488	0.111549	0.249018	0.071312	0.194969	0.040343	0.107129	0.099485	0.193169	0.146938	0.10781	0.125396	0.028916	0.263598	0.087534	0.116695
13:44:24	8	53	1	0.142204	0.085341	0.185275	0.194663	0.276021	0.32461	0.024574	0.15543	0.23428	0.066044	0.212205	0.005539	0.31673	0.108185	0.037853	0.193047	0.192068	0.272701	0.228445	0.208544
13:44:24	8	54	1	0.090068	0.07291	0.267888	0.136656	0.333241	0:186704	0.382608	0.033197	0.169931	0.431311	0.187831	0.180405	0.217979	0.080965	0.130052	0.381359	0.153281	0.360043	0.110842	0.035468
13/44/25	8	55	1	0.163397	0.080187	0.261563	0.091614	0.201206	0.107679	0.431835	0.045514	0.223535	0.085263	0.270264	0.053097	0.343934	0.180816	0.120879	0.341523	0.168691	0.101913	0.192418	0.120329
1344:25	8	55	1	0.053746	0.037259	0.300027	0.064113	0.433442	0.135468	0.151839	0.113987	0.455317	0.082467	0.137329	0.025002	0.334744	0.013943	0.104255	0.238771	0.036551	0.413367	0.025037	0.094139
13:44:25	8	7	1	0.137119	0.052197	0.385115	0.167782	0.315315	0.082293	0.448966	0.05467	0.348826	0.333416	0.411664	0.047017	0.360183	0.144195	0.000847	0.43318	0.272055	0.147934	0.160165	0.126968
13:44:25	8	58	1	0.05812	0.025676	0.352523	0.005005	0.520138	0.056836	0.311358	0.126828	0.281594	0.439592	0.379035	0	0.351255	0.174893	0.029213	0.22081	0.06524	0.40395	0.181271	0.085128
13:44:26	8	59	1	0.092199	0.078597	0.575969	0.173635	0.166734	0.057378	0.479035	0.098218	0.172727	0.361808	0.491493	0.078248	0.00643	0.061903	0.067398	0.001695	0.07008	0.203268	0.099572	0.070359
13/44/26	8	60	1	0.057465	0.122766	0.454426	0.245445	0.043191	0.07008	0.268464	0.058208	0.218905	0.230803	0.243278	0.09033	0.015725	0.060365	0.123884	0.220547	0.152739	0.178563	0.017105	0.070394
13:44:26	8	61	1	0.115079	0.029676	0.282538	0.117525	0.332123	0.093265	0.255614	0.030969	0.250896	0.185521	0.261231	0.046912	0.328803	0.070674	0.068717	0.408003	0.098454	0.37347	0.129012	0.124312
13:44:26	8	Ω.	1	0.127623	0.10318	0.245318	0.051743	0.227362	0.134271	0.324689	0.12758	0.258112	0.154347	0.454094	0.074203	0.257885	0.190391	0	0.236971	0.216634	0.279952	0.101913	0.128069
13:44:27	8	63	1	0.216267	0.087211	0.645289	0.02744	0.353718	0.06213	0.518128	0.12606	0.135879	0.18964	0.245812	0.100813	0.119001	0.125658	0.02592	0.162366	0.097476	0.256994	0.097825	0.068525
13:44:27	8	64	1	0.083035	0.043147	0.257579	0.115227	0.319351	0.120486	0.140124	0	0.208964	0.159431	0.262926	0.156897	0.25163	0.127842	0.123133	0.178825	0.085647	0.134586	0.078554	0.051035
13:44:27	8	65	1	0.031965	0.181105	0.297651	0.053901	0.23138	0.138901	0.29925	0.041015	0.228305	0.104517	0.302831	0.086145	0.252147	0.252399	0.020337	0.197013	0.20318	0.242859	0.083481	0.116572
13/44/27	8	66	1	0.134848	0.095536	0.442729	0.376475	0.218294	0.048904	0.37672	0	0.371522	0.111139	0.187194	0.170884	0.232219	0.08107	0.041146	0.134935	0.290907	0.380852	0.188539	0.072421
1344:27	8	97	1	0.088259	0.034839	0.532866	0.133022	0.38232	0.063143	0.523737	0.064812	0.344668	0.28121	0.466883	0.178903	0.328576	0.194619	0.051481	0.220128	0.136368	0.329869	0.116957	0.079724
13:44:28	8	68	1	0.17374	0.024059	0.201905	0.144632	0.363712	0.174701	0.310877	0.031589	0.370928	0.273959	0.326532	0.096515	0.165301	0.042719	0.0578	0.188784	0.073469	0.399337	0.086608	0.150957

APPENDIX G

DATASHEET COAXIAL CABLE RG174A/U

TECHNICAL DATA SHEET	code	MRG1740
	version	2
	date	2005-11-09
R.F. CABLE 50 OHM RG 174 U CCS	page	1/2

APPLICATION

Coaxial cable used for Radio-frequency, designed according MIL-C-17F/119F

CONSTRUCTION

1) Conductor Diameter

2) Dielectric Diameter

3) Screen Material Diameter

4) Sheath Diameter Color 7x0.16 mm copper clad steel wire 0.5 mm

Solid PE 1.50 mm ± 0.10 mm

braid 0.1 mm tinned copper wire $1.97 \text{ mm} \pm 0.11 \text{ mm}$

PVC 2.80 mm ± 0.10 mm black

REQUIREMENTS AND TEST METHODS Test methods generally in accordance with MIL-C-17F/119F

1) Conductor		
Elongation at break	<u>≥</u> 1%	
3) Screen		
Coverage	86 %	
Electrical characteristics		
Mean characteristic impedance	50 ± 2 Ohm	
DC resistance inner conductor	< 317 Ohm/km	
Capacitance at 1 kHz	$100 \pm 3 \text{ pF/m}$	
Velocity ratio	0.66 ± 0.02	
Insulation resistance	> 10 ⁴ MOhm.km	
Voltage test of dielectric	3 kV de	
Corona	> 1.5 kV ac	
Return loss at.	100 – 400 MHz	> 22.5 dB
	400 – 900 MHz	⊇ 19.2 dB

APPENDIX H

DATASHEET AT525 35 MICRON COPPER FOIL SHIELDING TYPE

Technical Data

Issue 2 / July 2006

General description

35 micron copper foil coated with a non-conductive acrylic adhesive supplied on a removable silicone release liner.

- Non-conductive acrylic adhesive
- Good high and low temperature resistance
- Can be easily soldered
- Easy unwind

Specification

- Tested in accordance with ASTM D-1000 latest issue, BS EN 60454 Part 2 test methods (formerly VDE 0340, BS 3924).
- Tested and meets Flame Retardancy requirements of UL 510 (UL guide OANZ 2, File number E 86214 (M)

Technical Details

Technical details	BS value	ASTM value
Typical values		
Foil thickness:	0.035mm	1.4 mil
Adhesive thickness:	0.030mm	1.2 mil
Total thickness:	0.065mm	2.6 mil
Adhesion to steel:	4.5 N/cm	41 oz/in.
Tensile strength:	40 N/cm	23 lbs/inch
Temperature resistance:	-20°C to +155°C	Up to +311°F

RoHS compliant Yes +12°C to +25°C Storage Temperature

AT525 35 Micron Copper Foil Shielding Tape

NOTE

NOTE Except where indicated otherwise, the figures stated are aver-age values and should not be regarded as MAXIMUM or MINI-MUM values for specification purposes. The Company reserves the right to improve products and any change in specification will result in a re-issue of the relevant "technical Data Sheet'. Customers should satisfy themselves that the tape is suitable for their requirements whether after such modifications or otherwise. Please check that you have the latest issue of the "Technical Data Sheet". All slitting and length tolerances are to British Standards. Before use the customer is advised to con-sult the Health & Safety Data Sheet produced by the company for this product, which is available on request.

STORAGE

Tapes stored below the minimum recommended temperature will require warming up to that level before use. Up to 24 hours may be required for this to take place

Advance Tapes International Limited, PO Box 122, Abbey Meadows, Leicester, LE4 5RA. Tel: 0116 251 0191. Fax: 0116 265 2046. www.advancetapes.com

govence adhesive tapes fera

AFERA Association des Fabricants Européens de Rubans Auto-Adhésifs.

APPENDIX I

DATASHEET SMB CONNECTOR

Attributes

Attribute Type	Attribute Value
Туре	SMA
Gender	Plug
Mounting	Cable Mount
Orientation	Straight
Termination Method	Crimp
Terminate To	RG174
Contact Termination Method	Solder
Cable Type	RG174

Over View

Cable plug - Crimp

Range Overview

Gold Plated - RS

SMA Connectors for semi-rigid and flexible cables.

SMA Solder (Semi-rigid cable)

For use with semi-rigid coaxial cable
 Designed to provide high frequency performance at high power ratings in small diameters
 Stud contact types are provided in both captive and non-captive forms
 Connectors available for the two most commonly used microwave cables, RG402/U and
 RG405/U

SMA Crimp (Flexible cable)

Used with a variety of flexible RF cables
 Suitable for design and development work and where large quantity usage requires repeatability in performance
 Available in non-captive contact form for optimum electrical performance
 Assembly is acheived by soldering the centre contact and crimping braid and outer sleeve

SMA Clamp (Flexible cable)

 Pressure sleeve clamp versions for use with flexible cables Captive contacts ensure correct positioning and mating Ideal for field service applications

Technical specif	ication		
Working voltage	450Vdc or ac (peak)	VSWR	1.07 + 0.07 x f(GHz)
Proof voltage	1500Vdc or ac (peak)	Insertion loss	0.04 x √f(GHz) dB

Frequency range	DC to 18GHz (semi-rigid cable) DC to 12.4GHz (braided cable and elbow connectors)	Phase repeatability	±3° after 1000 mating cycles
Crimp tooling			
Cable Type	Use crimp tool (s)		
RG58 RG174 RG223	<u>456-431</u> <u>456-778</u> <u>456-431</u>		

Group Overview

SMA series, connectors

SMA series connectors

Connect with connectors that comply with BS 9210 N0006 and MIL-C-39012 standards. These connectors are gold-plated and there are versions for a wide variety of cable sizes, with different types of fastenings and assembly configurations. Assembly instructions are included.

electrical specifications for SMA	
Operating voltage	450V DC or AC (peak)
Test voltage	1,500V DC or AC (peak)
Voltage standing wave ratio (VSWR) (f = freq. in GHz)	
(figures indicated for straight connectors)	1.07+0.008f (semi-rigid cable)
	1.20+0.03f (braided cable)
Frequency margin	from DC up to 18GHz (semi-rigid cable)
	from DC up to 1GHz (braided cable and elbow connectors)

APPENDIX J

DATASHEET 36-WAY CENTRONIC PLUG

	PART NO.			REVISIONS							
🐼 multicomp		ECN #	REV	DESCRIPTION		DRAWN	DATE	CHECKD	DATE	APPRVD	DATE
	5F30360M-10NN-XX	-	Α	RELEASED		Veena	11/4/08	Suresh	11/4/08	G.C	25/4/08
20.90 (0.830) Maximum After Crimping Position	E M M M M M M M M M M M M M	(†8600)	Spe Cum Insul Diele Cont Diele Cont Wire	ecifications: ent rating ation resistance extric with standing volatage rating temperature act resistance extric material act material act plating size	: 1A : AV : ≥1000, : 500V, : 20mΩ : Polyste : Polyste : Gold o : AWG2I center f	WG28/1 MΩ. at sea le to 105° 2. er resin hor bror ver nick 8 and A flat cabl	, 2A : A evel. C (limiti and gla ize. tel. WG28 s e.	WG28. ed by ca ss reinfo	ble). prced.	m condu	ctor
This data sheet and its contents (the "information") belong to the Phenier Far (the "Croup") or are isomed to I. No isome is granted for the use of it other information purposes in contraction with the products to which it makes. No is of any intellectual property rights is granted. The information is subject to data believed to be accurate both the "Croup searches" on seponsibility for its accura- completeness, any error in or omission form if or for any use make of it. Uses	TOLERANCES: DRAWN BY: Draw of the second DRAWN BY: Veena SPECIFIED, SPECIFIED, SPECIFIED, DIMENSIONS ARE Suresh		DATE 11/04/0 DATE 11/04/0	BRAWING TITLE:	IDC C	entro	nic Pl	ug - 3	6 Way	/ FILE	REV
critited. Likelity for lose or damage resulting from any veloces on the informa- use of it (including liability resulting from registerior or where the Group was a the possibility of such lose or damage series[is excluded. This will not operating or restrict the Group's lability for death or personal injury resulting from the re- SPC MUTCOM is the registered radiants of the Group. O Primire Trans-	dan or IOR REFERENCE APPROVED BY PURPOSES ONLY. G.Cook	ŕ:	DATE 25/04/0	SCALE: NTS	U.O.M	l.: mm (l	nches)	103520	SHEET	: 1 0	IF 3

multicomp	PART NO			REVISIONS										
	5F30360M-10NN-XX		ECN #	REV	DESCRIPTION			DRAWN	DATE	CHECKD	DATE	APPRVD	DATE	
			-	Α		RELEASED		Veena	11/4/08	Suresh	11/4/08	G. C	25/4/08	
Part Number Explanation:														
5F 30 Series Contact and Number Connecting Types	A Second	M ing Constructio Types	- n c	1 Color Co	- odes (0 Contact Finish	 Strain Relie	ef M		I	-	XX	er	
Series Number : Contact and Connecting type : Number of Contacts : Housing Construction Types : Color Codes : Contact Finish : Strain Relief : Mounting Types : Customer :	<pre>: 5F = I.D.C. ribbon connector. nnecting type : 30 = Plug, coble to panel connecting type. lacts : 380 = 38 Positions. uction Types : M = With metal front shell. : 1 = Blue. : 0 = Selectived gold flash over nickel. : N = Without strain relief. : N = Without mounting holes (Bail mounting type). : XX = Inland.</pre>													
				http://www.tarhei						w.farnell	.com			
				nep//www.newanc.com							k.com			
										http://ww	w.cpc.co	.uk		
This data sheet and its contents (the "information") belong to the Phenier II (the "Group") or an isomaed to it. No locatos is granized for the use of 6 other information purposes in connection with the products to which it relates. No of any infelencial property digits is granized. The information is adjust to other information is adjust to other information in adjust to other information in adjust to other information in the information in adjust to other information information in adjust to other information in adjust to other information in adjust to other information information in adjust to other information informati	TOLERANCES:	DRAWN BY: Veena		DATE: DRAWING TITLE: 11/04/08 IDC C					Centronic Plug - 36 Way					
our notes and repaires at data sheets previously supplied. The information believed to be accurate but the Group assumes no responsibility for the accu- completeness, any error in or oriestion from it or for any use make of it. Use data sheet should check for the treansives the information and the suitability or under for their purpose and not make any assumptions based on information oriented. Liability for lease or demans an adher form any orientee on the inter-	SPECIFIED, rs of the prod- holusted or FOR REFERENCE	CHECKED BY: Suresh		DATE 11/04/08	size	DWG NO.	M1000	0833	3	ELECT	RONIC F	ILE	REV A	
use of it (including lability resulting from negligence or where the Group was the possibility of such loss or damage satisfied is excluded. This will not open or restrict the Group's lability for deark or personal injury resulting from its in SPIC MULTICOMP is the registered trademark of the Group. O Premier Fam	PURPOSES ONLY.	APPROVED BY: G.Cook	:	DATE 25/04/08	SCA	LE: NTS	U.O.M.	: mm (li	nches)		SHEET:	3 0	F 3	

APPENDIX K

DATASHEET 36-WAY CENTRONIC SOCKET

	PART NO		REVISIONS												
	5F40360M-10NR-XX		ECN #	REV		DESCRIPTION			DATE	CHECKD	DATE	APPRVD	DATE		
			-	Α		RELEASED		Veena	11/4/08	Suresh	11/4/08	G. C	25/4/08		
Part Number Explanation:															
5F 40 Series Contact and Number Connecting Types	360 Number of Contacts Hous	M ing Constructio Types	- on c	 Color Co	des (0 Contact Finish	N Strain Rel	ief M	lounting	types	-	Custom	ber		
Series Number: 5F = 1.D.C. ribbon connector.Contact and Connecting type: 40 = Socket, cable to panel connecting type.Number of Contacts: 380 = 38 Positions.Housing Construction Types: M = With metal front shell.Color Codes: 1 = Blue.Contact Finish: 0 = Selectived gold flash over nickel.Strain Relief: N = Without strain relief.Mounting Types: R = Without rivet through holes.Customer: XX = Inland.															
										http://ww	vw.farnell	.com			
										http://ww	ww.newar	k.com			
										http://ww	ww.cpc.co	.uk			
This data sheet and its contents (the "information") beiong to the Premier Far (the "Group") or are licensed to it. No licence is granted for the use of it other information purposes in connection with the products to which it relates. No	real Group r tain tor loanse	DRAWN BY: Veena		DATE:	DRAW	ING TITLE:	IDC Ce	ntropi	c Soc	ket - :	36 Wa	v			
or any meetual properly rights is granted. The information is subject to the out notice and replaces all data sheets previously supplied. The information believed to be accurate but the Group assumes no responsibility for its accu-	targe with nappled is anary or series of the of the pros- included or FOB REFERENCE	CHECKED BY:		DATE	DATE: SIZE DWG M		0								
data sheet should need to ontotoon to not or or any dae made of it. Use data sheet should need to be adaptive the information and the substitity of unds for their purpose and not make any assumptions based on information contact. It is inform, the or demands or provide the substitution		Suresh		11/04/08	A	A	M1000	0828	828		3_DWG	ì	A		
transition of the provided of the second	waves of statio Int adjustos.	APPROVED BY G.Cook	5	DATE: 25/04/08	SCAL	E: NTS	ITS U.O.M		nches)		SHEET:	3 (OF 3		