a5
3

.)5_

EDUCATIONAL PROCESSOR

By

HAFIZUL HASNI BIN MANAB

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements
for the Degree
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Universiti Teknologi Petronas
Bandar Seri Iskandar
31750 Tronoh
Perak Darul Ridzuan

© Copyright 2010
by
Hafizul Hasni Bin Manab, 2010

CERTIFICATION OF APPROVAL

EDUCATIONAL PROCESSOR

by

Hafizul Hasni Bin Manab

A project dissertation submitted to the
Electrical & Electronics Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

v
(Mr. Patrick Sebastian)
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK

June 2010

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

i

Hafizul Hasni Bin Manab

iii

ABSTRACT

This report discusses the overview of the chosen project, which is an
Educational Processor. The objective of this project is to develop a simple processor
with TTL logic for educational purpose. This processor will be used as a learning tool
for Computer System Architecture class. To complete this project, the scope of study
will cover the computer system architecture and Central Processing Unit (CPU). The
CPU datapath design and hardware circuit design is based on the MIPS single-cycle
processor. The methodologies that will be involved in this project are design and
validation phase, constructing the hardware and then interfacing phase through serial
communication between CPU and a graphic user interface using microcontroller. The
prototype would be used as a learning tool in Computer System Architecture class

and to assist student in understanding the computer architecture.

iv

ACKNOWLEDGEMENTS

Special thanks to project supervisor Mr. Patrick Sebastian, Lab Technicians
Ms. Siti Fatimah, Ms. Siti Hawa and Mr. Isnani who help me a lot in finishing this

project.

Not to forget, greatest appreciation to my family who have supported

throughout the development of this project as well as friends who have given a lot of

helps.

TABLE OF CONTENTS

ABSTRACT .. oiien usutininmansne tnbsdbns s inoasnssssns dxshsnssunsonsniinsndvmssnesassanssnes v
ACKNOWLEDGMENT ;. :...ccccicvessssmsnsvasnissorssnshosnsosasssnsnssssasossaiss isamsassss \

LISTOF TABLES ..oviisvavmnimnnnumrmsmssminiasmimmssmimamssimimmin viii

LIST OF FIGURES.........cccoccreronmsesacsnsonsasssusassossassmsnssonsssserassessmsornssasnsassasansassassnsnnsssnness ix

EISTOF ABBRENVIATIONS .« s et s gancetsnshavrr sevb o Seos S Sevavins X

CHAPTER I INTROBIUCTIOMN ovvoisanssavisssnsssvasssssssssissarissasssssinsssieristveeepspssssisssssosss 1

1.1 Background of SdY . ciaissinniimmintimsioiiiensimmsnramrammarssess 1

1.2 Problem Statement..........cceeeerreeerieeneeesieccsae e seeeeaessraessesessssessesesaes 1

1.3 Objective and Scope OF SUMIY ..c;csisssmsimmiminmeisinssisiiisisin 2

CHAPTER 2 LITERATURE REBVIEWccicimisnnssmnmmmmiissmnsissmsiniei 3

2.1 Procedure IdentliCatiOn ..o ivrasiissimnssiniserssirssssnmssssassasssassnsoonss 3

2.2 Instruction Sets ATChItECtUreccceiiveerirreieenereereeseerereraeseesseseeseenes 3

2.2.1 Complex Instruction Sets Computing...........ccesuesonsencsssssssssases 4

2.2.2 Reduced Instruction Sets Computing..........cceuvveeurerssrarasnsarsens 5

2103 TN O USBRC L - i s st resrsnernrasastanssssessmms s tassens sutseatesnssasnns 6

2.2.4 RISC instruction format........ccuceieverueceiseereesnssecreesesseseesessaenes 7

2:2.5 Ad0resSIMPRTNONCS ... i visisisimiscsisssiossismiostisssinssasessoiasmensesnmins 8

2.3 CPU Functonal VIDRS. - .cooc i insmsmmesssssssisssesiasesstrssasiasmisss 9

2:3:1 Program Counter{Pl) . . iversusnrsrersessmssernensressnsrasnsssersessanssissesans 9

2.3.2 Program/Instructions Memorycoceeevveireererecrnessesseenssnees 9

2.3 .3 ISt O RO ST ..o oot vrssuismesnssssianiani ssbatss basorsscomnsasoinss 10

2.3.4 Register File (General Purpose Registers)..........ccccceerernennnne. 10

2:3 5Anthmetic and L ORIC T oo e e s ereeassssassensnssmans 10

2 3.0 DBIR IMCITMOTY «vrs s iosrersoesussiionsenats csisnsribis settassovs i cavarattot dos s tess 10

B 1 T L e 10

2.3.8 Address Bus and Data Bus............cccoouoverneneeernreencsnenssnsssnnes 11

2.4 Brief introduction to MIPS processor........oeveeevveereeessessesrereeaenes 11

CHAPTER 3 METH O DO O Y . e S TN S s s e 14

3.1 Project FIOWCHATT .o .o ciinessoibuasesstossesssssssirasinsessinssnmsnmsssasssasissssnes 14

3l] R ESEAICH A L i iisseseanrisniarasbsasateonasssntarisesineeiss 15

3.1.2 Instruction Set deSigNceerererremerereereenesenerssenesesesesssennes 15

3,13 DAAPA ACSIEIL. .. oiseisisiiisrassssmtesssnsassiuessnmtontsaissssiesssssesnasniss 16

vi

3.1.4 Circuit schematic design.........cccovveeveeeerrereerieresneriecsessessenns 17

) BT L) e e e e I S U — 17

3.1.6 Prototype construction and module/unit test..............cc.......... 18

3.1.7 Combine modules (CPU functional units) and test................ 18

CHAPTER 4 RESULT AND DISCUSSIONccvcvnierirnreinessisnssesesssssessssesssaesenees 19
4.1 Design phase TESUMS viiesseisieninsimsasovessssssstsissvsivsesrssaiasasssss 19

#41.1 Instructions designedo imsassiissisissesssssssssiasin 19

4.1.2 Instroction Set TOIMALS. ... iciissmsisissasssssirssisessssssnenssenersyss 20

4.1.3 Datapath design result..........ccocoevrevcrenninececcnncsieenessannnne. 22

4.1:4 Circuit SChematiC ABBIGN ..c.viissssssssssivsasissisesissmansissiiisssssissns 26

4. 1.5 CPU/CharacteriStiCc:ivisaesricisassnssssussicsssidisnginsesserininrssssisns 26

4.1.5.1 Programming the PrOCESSOL wsissssisssississssnsissssassssronsassasances 26

4.1.5.2 Processor CONMTOLcceverriereererseniereieneneensssessesessesaeseseenns 26

4.1.5.3 Arithmetic and Logic TINit., .uasisessesssaassmssssssssssisons 27

4.1.5.4 Registers and data RAM.......cciiicciininsmsosissmrsmsmsssisss 27

4:1:5.5 Summary OF CPL) ODeration c.vivsinasnissssisssiirsrsesnnsnnmssnns 27

4.1.5.6 PCB Implementationcoceeueuirmrecsunissnesesisisusassesnessasans 27

4.2 CPU Functional Unit Control Signals...........ccceciesssisssssssssssossanss 28

4.3 CPU. Hardware FabriCatON ...i...ccossisssinssisssecsssnissassssnassassrasssitnosines 30

4.4/ Graphic TSeC.INKETIACE . .. ornarerrmrrisrmerissr it srsmrssmaserestemmrssoasesss 31

4.5 CPU-GUI INterfacingccoceeetremsessnssssissssssssessasssssssssssasssssnssanes 32

4.6 Testing Procedure and Validation Result............cccoeereenecnrninrncnans 33

CHAPTER 5 CONCLUSION AND RECOMMENDATION........cccccocenesimnensineneranns 50
o L o [T T Vb i At s s e e o e e 50

510 R ecoMMIENATION s ferrrsisesiborinitsrsrsiaserssranstersiseimiseaasssgsos Sasoumasiasrins 50
REFERENGES tororvsis st s tosiassstaioneatonsasiatrissensmsisonseisessinssnsssserssas i nsase b ensessssoptssncatss 51
V0L L T | B) [S ok s e e S e e O e e e 52
Appendix A PROJECT GANTT'ICHART:.......cousssemessuseecsrmsrsrensassssnaes 53

Appendix B CIRCUIT SCHEMATICSccconsusssassessumsasessasesesasessassses 55

Appendix C SIMULATION RESULTScocoocossesssssenssosesasssasasssssasss 65

A ppendix D) P CB A Y O ety ont resintzsatnth ek yaten 67

Appendix E SOURCE CODE FOR CONTROL LOGIC 76

vii

LIST OF TABLES

Table 1 Comparison between RISC and CISC processor..........uouiuieuinesassssssassssssasanenss 5
Table 2 Frequency of INSWUCHON USHDE .couicsisosisssisssisisssosssssssspressisssissrssasssmsassesssnss 7
Table 3 MIPS pipeline architeCiine .ccisisscvssirsississasssasivssssossronsesssssssnsassnassssvssnss 12
Table 4 Control SIgNEL......cccucercrisseresessssssessssnnssssnsassasssssssasesssonsassssassesasssssssssassasisrssiss 28
Table 5 Firat TeSt DIOZTAIN i cuessuisivimssismon arrsensstesminssirnsessensmmvensonaersrnes 33
Table 6 GUI’s serial communication configuration..........c.evveiinnenesisessiesseensessessnnnns 33
Table 7 First test program validation resultccococivnncniiiininnininenccnineienennns 40
Table:8 Secomd TEst PrOBIBINc.coiccmsssssesssnsonsissasrersananssassasnsnsscsnsnsnssasmsssaserssssss ovs 41
Table 9 Second test program validation resultccovcevcniniennniincniccnseninsresenes 42
Table 10 Thind Test PrOBTAIN.uiv i imnissssisiionsisssistsimamrismsssssiissesssheimsiossiaserssios 43
Table 11 Third test program validation reSultccceverereerennrresveseseesereernsersesassnsasseane e
Table 12 Fourth program pseudo COde.........ccvvmrerrerenmrinrunnnninicisnsssisiessssssssiesesseses 45
Table 13 Fourth test program instruction decode.........cccniiisinicescensccsesasasiosesaones 46
Table 14 Fourth test program validation result..........cecueveesiennsierssennsisissnsnsseeseesceses 47
W) R 285 1 080 7107 v Bt g e e B R e e et o e e 48
Table 16 Fifth test program validation result ... 48

viii

LIST OF FIGURES

Figure 1 RISC Berkeley’s instruction fOrmatc.ceeesenesssesssnsserssnnsssansssssneesenesenns 7
Figure 2 MIPS instruction fOrmats.............oocerriiniiininicnnsisssessnen. 13
Figure 3 Project Homhamt. o o I e, Jsesnms et 14
Figure 4 Instruction fOrmat deSIZI ... u.scesusnenssususssomsissassnssssassisssnsasssisspsnssssissssssomsnsoss 19
Figure 5 Operand fields design for R-type instructionsc.cccceeeeuevieeneneririnenaee 16
Figure 6 R-type instruction format.............coouveieimiiiiiiiniescse e saeseaens 20
Figure 7 1-type instrction SOIMNBEiiceiereissssisisssmnssnssnssninssiisssisessiiosinsssmsisssinisosssen 21
Figure 8 J-type Instruction fOrmBtcusisssmsinssivsiissssaseissinsssssssisomsmresmeemmanssss 21
Figure 9 R-type instruction datapath............cecoveriiinieiiniiciiicccresessese e 22
Figure 10 T-type instruCtiON AAtADALHovmsersusssnesenessusisnsissosirmasssizmpensisnsbopmssssissesis 23
Figure 11 J-type instructions datapathc.asscammmnissisissmsmssassisssmssiesssmsinnns 24
Figure 12 Combined datapathh s scniimimmsisississinsimsmisinisnsmssmmsensrsnstisestrstaisdss 25
e O D T o S e e e e s e B 30
Figure 14 CPU graphic USEr IMETTACEccccvsesriucuspscusssssssasssrsossssssssnsasssssssonssassnsanassnss 31
Figure 15 Full system Educational PTOCESSOTcovuecuimiiinrminiernesessesensesensesnnnns 32
Figure 16 GUI’s serial communication configurationcc.ceovuueueieiessinesensenenes 34
Figure 17 Address switches and RD/WR sWitCh..........cooucvvininicicsiscnsiinnnneennsnsennan, 35
Figure 18 Writing/a CPII INSrUCHON ivov.sesrentesssossssinssonssssssssssisasisrsiossirasssssssrsssstsoriss 36
Figure 19 Sending 8 CPU INSIUCHON v.covnsermresssssusssissmmsmmsessoniorssssinsssssssisassnsessonssssenns 37
Figure 20 Requesting hardware result..........ccoouvueuninremeieensecieecscesicssececsnensaens 39
Figure 21 First test program Final TeStlto uircsisassioissenssossreresssorsesnsssassassasesss 40
Figure 22 Second test program final 1esultcoueueereieriinernirerinciissiessssnnsaeens 42
Figure 23 Third test program final resultc.oeemvveeerererereccicisieanes 44
Figure 24 Fourth test program final 1€Sltccecerreecreceunmmeniscemsssnmsassosssssensosssssasesss 47
Figure 25 Fifth testprogram fnal Tesult.........o i sinsnaissassssamessinsesssieissmsiins 49

ix

RISC

CISC

CPU

EPROM

PC

CSA

TTL

OPCODE

PCB

ASM

GUI

LIST OF ABBREVIATIONS

Reduced Instruction Set Computing

Complex instruction set computing

Central Processing Unit

Random access memory

Erasable Programmable Read-only memory

Program Counter

Computer System Architecture

Transistor-transistor Logic

Operation Code

Printed Circuit Board

Assembly Code

Graphic User Interface

CHAPTER 1
INTRODUCTION

This chapter discusses the introduction to this project. It covers the
background of study that discuss the background knowledge involve in this project.
The problem statement and objectives that lead to implementation of this project are

also discussed.

1.1 Background of Study

This project is about a development of a simple processor for learning
purpose, which will be used in Computer System Architecture class. The main
objective is to provide an opportunity for the student to examine at the gate level on
how a processor executes an instruction. This educational processor will be a great
learning tool for computer system student to learn computer system architecture.
Therefore, the knowledge required in this project is application knowledge of digital
electronics as well as computer system architecture. This project also required
knowledge in microcontroller since this processor would be interfaced to the
computer by using microcontroller via serial communication. After that, all the
information and operation involved during execution of an instruction by the

processor will be shown in a graphic user interface.

1.2 Problem Statement

The processor is an essential part of a computer system. The development of
the processor has involved over the years. In 1945, a mathematician John Von
Neumann outlined the design of most modern CPUs [3]. Most of the processor
designs now are very sophisticated and complex.

The Electrical and Electronics Engineering student in UTP who are majoring
in Computer System have the opportunity to learn about computer system through
Computer System Architecture course. The current Computer System Architecture
course exposes the student to the course with lecture as well as hands on lab

assignment.

Nevertheless, there is no main focus on any specific computer architecture.
Most of the time, the overall CPU datapath design that they are exposed to be just the
high-level functional unit block that explains the CPU datapath.

Therefore, this project would give an opportunity the Computer System
Architecture student to explore and examine at the gate level of CPU datapath, which
means the student can observe how each logic device interact with each other to

complete a CPU instruction.

1.3 Objective and Scope of Study

The main objectives of this project are:

e To develop a simple processor as a learning tool in computer system class

¢ To construct the PCB and validate the prototype
e To develop a graphic user interface to program the designed CPU

The scope of work for this project covers the planning and design phase, developing
the prototype phase, validating phase and the last is future improvement phase. In the
planning and design phase, the scope of work will be focus on processor instruction
set architecture and datapath. After that, it will followed by prototype developing
phase where the data path hardware is implemented using the TTL logic implemented
on PCB. In the validating phase, the datapath hardware will be interfaced to the

computer with a graphic user interface by using microcontroller.

CHAPTER 2
LITERATURE REVIEW

This chapter discusses the theory and paperwork review related to this project.
Details on the CPU architecture and datapath design would also be discussed here.

2.1 Procedure Identification

There are two ways of introducing the processor. One is to explain how a
computer works of its internal information flow by describing the way in which
information is transmitted between registers and the internal units and showing how
an instruction is decoded and interpreted. The other approach is to introduce the
native language, or machine code, of a computer and demonstrate what computer

instructions can do [1].

2.2 Instruction Sets Architecture

Beginning with the hardware and looking at very primitive operations hides
the “big picture”. So, beginning with the explanation of an instruction set architecture
would give reader the whole picture of a processor and therefore the detail hardware
level of how an instruction is translated and executed could be easily understand.

An instruction set architecture (ISA) is an abstract model of a computer that
describes what it does, rather than how it does it (functional definition). So, it can be
said that the instruction set architecture and the instructions available in the processor

determine the processor capabilities and performance [1].

The instruction set architecture varies from machine to machine. Instructions
are classified by format and the number of operands they take. The three basics
instruction types are data movement which copies data from one location to another,
data processing which operates on data, and flow control which modifies the order in

which instructions are executed.

Instruction formats can take zero, one, two or three operands. It depends on
how much bit is used to represent the whole instructions. The instruction sets
architecture can be distinguished by two classes which are the Complex Instruction
Set Computing (CISC) and the Reduced Instruction Set Computing (RISC).

2.2.1 Complex Instruction Sets Computing

The CISC employs complex instruction which usually their instruction width
(in bits) could vary depending on the type of instruction (data movement, data
processing and flow control). For example there would be an instruction that consists
of only the opcode (instruction identifier in bits) where it does not require any
operation on the operand e.g.: Return from Subroutine (RTS).

Beside the variety of instruction width, each instruction could possibly be very
complex in a way that it could perform operation with complex addressing. Complex
addressing requires extra decoding and operation cycle. This is achieved usually

through the usage of microcoding.

With variety of instruction width and complexity, it would take variable total
of clock cycles to execute each instruction. It is because each instruction’s opcode
would be decoded firstly in the earlier cycle. The rest of the cycle would depend on

the type of the instruction, which would make each instruction take at least two clock
cycles to be executed.

2.2.2 Reduced Instruction Sets Computing

One of the important characteristic of a RISC is that having the single-
instruction format in contrast to the variable-width (length) instruction of CISC. This
reduces the complexity of the decoding logic itself and thus could be used to easily

educate new student in learning computer architecture.

Typically a RISC instruction format would consist of Opcode + Registers
addresses. RISC is designed to contain only the register-to-register operation while
for the memory access operation, RISC introduce a special instruction which is
Load/Store. Thus, addressing modes in RISC processor are not as sophisticated as
CISCs’.

RISC processors aim to execute on average one instruction per clock cycle.
This goal imposes a limit on the maximum complexity of instruction and so to the

hardware design of a RISC processor.

The table 1 below summarizes the differences between RISC and CISC

processor.

Table 1 Comparison between RISC and CISC processor

CISC RISC
Instruction width | Variable instruction Fix instruction width
width
Instruction eycle | npyigiple clock-cycle Single clock-cycle
Register-to-register data
Addressing modes Complex addressing transfer with special
mode for memory access | instruction for memory
access

2.2.3 Instruction usage

From the introduction of the microprocessor in the mid 1970s to the mid
1980s there was an almost unbroken trend toward more and more complex
architectures [1]. With the advancement in the chip fabrication process, it allows
designers to add more to the microprocessor’s central core, which leads to
cumbersome architectures and inefficient instruction sets but has tremendous
commercial advantage for the end user. Intel’s 8086 illustrates this trend particularly
well, because Intel took their original 16-bit processor and added more features in

each successive generation [1].

Although processors were advancing in terms architectural sophistication in
the late 1970s, a high price was being paid for this progress in terms of efficiency [1].
Complex instructions required complex decoders and a lot of circuitry to implement

while there was no guarantee that these instructions would be used in actual
programs.

Computer scientist carried out extensive research over a decade or more in the
late 1970s into the way in which computers execute programs [1]. Theirs studies
demonstrated that there is no uniform frequency in which different type of
instructions are executed. Some types of instructions are executed far more frequently

than others.

Fairclough divided machine-level instructions into eight groups according to
type and compiled the statistics described by Table 2. The mean value represents the
result averaged over both program types and computer architecture.

Table 2 Frequency of instruction usage

Instruction Group Mean Value (%)
Data movement 45.28
Program modification (branch, call, return) 28.73
Arithmetic 10.75
Compare 5.92
Logical 3.91
Shift 2.93
Bit manipulation 2.05
Input/output and miscellaneous 0.44

2.2.4 RISC instruction format

One of the characteristics of RISC architectures is that it has a single

instruction format. By providing a single instruction format, the decoding of an
instruction into its component fields can be performed by a minimum level of
decoding logic. A RISC’s instruction length should be sufficient to accommodate the
operation code field (opcode) and one or more operand fields [1]. Consequently, a

RISC processor may not utilize memory space as efficiently as a conventional CISC

microprocessor.

Figure 1 describes the format of a Berkeley RISC instruction, one of the first

RISC processor that came from the University of California at Berkeley.

32 bits
31 25 24 23 1918 14 13 12 54
SN _ 0 |00000000 545355, 5
Op-code |Scc | Destination | Source 1 e e
pExi 1 |igininlslgizigis] iiisiz iyl
M Source 2
7 bits 1 bit 5 bits S bits 9 bits 5 bits

Figure 1

RISC Berkeley’s instruction format

The op-code field is the Operation code field that indicates the code for each
instruction. Each instruction has its own unique Op-code. Scc field whether the
condition code bits are updated after the execution of an instruction. Destination and
Source 1 fields determine the address of register of which the result would be written
into and the first source for an instruction’s operand, respectively. The IM field
determines the source for another instruction’s operand. If it is 0, the source is the 5-

bit address of the registers while if it is 1, the source is the 13-bit immediate number.

Because of 5-bits are allocated to each operand field, it follows that this RISC

can access up to 2° = 32 internal registers at a time.

2.2.5 Addressing modes

Addressing mode is the method by which the location of an operand is specific within

an instruction. Some of addressing modes most commonly used are describe as

follows.

1. Immediate addressing. Operand is given in the instruction itself. Usually the

second source of instruction’s operand is supplied as part of the instruction.

2. Address registers indirect addressing. Operand is taken from, or result placed

in, a pointer register. RISC processors allow any registers to act as a pointer.

3. Base addressing. Operand is in memory and its location is computed by
adding of offset to the content of a specified base register. In RISC processor,
this type of addressing mode is used by the Load and Store instruction to
access RAM. The computed result would be asserted to the address of the
RAM, and then the data would be stored into that location or the data is
loaded into the destination register from that location.

4. PCe-relative addressing. Same as base addressing, but with the register always

being the program counter.

2.3 CPU Functional Units

Before looking into the details of how a CPU works, it is important to
understand the relationship between the CPU, the memory and the program. The
program contains list of instructions to be executed by the processor, for example the
applications and software that available nowadays. The memory temporarily stores
the list of instruction of the program and also the data of the program during CPU
execution. The CPU read one-by-one list of instruction of program from the memory
and perform the required execution on the data and probably store back the data in the

memory.

In this project, the focus is on how this list of instructions in fetched from the
memory, decoding the instructions producing the appropriate control signal, perform
instruction-specific execution on the data and probably store the result of execution
back into the memory. This process is shown in the project by the combinational
logic circuits that make up CPU internal units which do specific job to complete one

instruction. CPU internal units include are as follows:

2.3.1 Program Counter (PC)

Program counter contain the next instruction address to be executed. This address will
be input the program RAM to access a specific line of instructions. Normally, PC
would be increased after every instruction executed to point to the next address

except if flow control instructions is executed which modify the bits contain in the
PC.

2.3.2 Program/Instructions Memory

Program memory contains the list of instruction to be executed. In Von Neumann
architecture machine, program memory and data memory use the common RAM,
while in Harvard architecture machine, program memory and data memory use
separate RAMs.

2.3.3 Instruction Register

Instruction register contains the current instruction. It stores the current register
temporarily and connects to various other logic devices such as control logic, and
register files. When the next instruction is executed, it will overwrite the content of

this instruction register.

2.3.4 Register File (General Purpose Registers)

In RISC machine, register files are the important characteristic. It serves as the
general purpose register to store temporary data that is executed by specific
instruction. Register files are pretty similar to the RAM except that it doesn’t have as
much capacity as RAM and thus reduce the cost. Typically, registers are faster than
RAM that makes execution of register-register instruction could be faster.

2.3.5 Arithmetic and Logic Unit

ALU is the unit that does the manipulation to the data such as addition, subtraction,
logical AND, logical OR and many more.

2.3.6 Data Memory

Data memory is the storage device that store data from the program executed. It could
be the constants, variables, address etc. Normally, data that are stores here are not a

frequently used data as accessing the memory is slow thus make the program

execution slower.

2.3.7 Control Logic

Control logic is among most important modules that make up a processor. It controls
the sequence and datapath flow of an instruction. When an instruction is executed, it
fetch and decode the opcode of that instruction and output the control logic signals to

the appropriate modules such as register files, ALU and memory.

10

2.3.8 Address Bus and Data Bus

Bus is used to simplify the movement of data from point to point in a computer. Bus
is analogous to a highway and the devices are analogous to junctions that connect to
this highway. By having both address bus and data bus, it is possible to reduce the
number of wires that interconnect within a computer but, it introduces a complexity.
In a bused system, only one communication from point to point could happen at a
time. Thus a careful synchronization needs to be taken care of and each bus access

time has to be long enough for the safe reception in a communication.

2.4 Brief introduction to MIPS processor

MIPS processor is designed in 1984 by researchers at Stanford University.
MIPS is part of RISC processor family.

Like the other processor in RISC family, MIPS employs load-store
architecture. This means that there are two instructions for accessing memory, a Load
instruction to load data from memory, and a Store instruction to write data into
memory. It also means that none of the instruction can access memory directly. To do
operation on data, the data has to be loaded into registers and the operation is
performed on the data in the register. As most of the instruction operations are

between registers, they allows faster execution and simpler circuit design.

MIPS processor executes instruction in a single clock cycle because of the
nature of a RISC processor which is single instruction format. This fact allows the
MIPS instructions to be split into stages for implementing pipelining. The stages are:

1. IF — Instruction fetch. Fetch the next instruction from memory using

the address in Program Counter register and stores the instruction in
Instruction Register.

2. ID — Instruction decode. Decode the instruction in the Instruction

Register, calculate the next Program Counter, and read any operand
required from the register files.

11

3. EX - Execution stage. Perform arithmetic and logic operation.

4. MA - Memory access. Perform any memory access required by the

current instruction.

5. WB - Register write back. For any instruction with destination register

specified, it writes back the result into the destination register.

By splitting instructions into different stages, it results in 5-clock cycle
execution. But, with pipeline implementation, this technique would attempt to
execute instructions approximately in one clock-cycle. Table 3 below shows the
pipeline implementation in MIPS processor.

Table 3 MIPS pipeline architecture

CYCLE IF ID EX MA WB
1 i
2 i+1 i
3 it2 i+l i
E i+3 i+2 i+1 i
5 it4 i+3 i+2 i+1 i
6 i+5 i+4 i+3 it2 i+l
7 i+6 i+5 i+4 i+3 i+2

Examining the table above, it can be clearly seen that from the fifth cycle, the
first instruction is completed. Then, at the next cycle, the i+1 instruction (next
instruction) is completed. This goes on the same towards further cycle. Although it
takes five cycles to complete an instruction, but approximately the instructions are

executed in one cycle. This is explained before, from the fifth cycle onwards, each

instruction execution is completed.

12

The words “approximately” from the second last statement do carry an
important meaning. Theoretically, the single-cycle approximation could be achieved
based on the explanation before. But in reality, there are some dependencies of an
instruction to another instruction. It means that some instruction stage could not be
executed before it gets the valid data from instruction before. This hazard introduces

“waiting delay”, which makes the single-cycle approximation could not be achieved.

The MIPS instruction has three basic formats. Figure 2 below illustrates the of
the MIPS instructions.

32 bits
31 26 25 2120 1615 1110 65 0
e e trer | Source S SourceT |Destination | Shiftamount | Function
e ERE maaT 5 bits s oo
1 Op-code Source S Source T Immediate value
ljomes to target, | P e Torget

Figure 2 MIPS instruction formats

R-type instruction is a register-to-register format for all data processing
instructions. I-type instruction is immediate format for either data processing
instructions with a literal or load/store instructions with an offset. While J-type
instruction is the format for branch/jump instruction with a 26-bit literal that is
concatenated with the six most-significant bits of the program counter to create 32-bit
address.

13

CHAPTER 3
METHODOLOGY

This chapter discusses how the project is carried out. It includes the method of

research, tools and software involved.

3.1 Project Flowchart

/ \ / PCB falﬁcaﬁon \

Research study Prototype Construction
1) Fail
Instruction set design Functional
Iy i unit test
Doty gn ["1/> Pass
i Combine all units
Circuit schematics design
Fail
Simulation in
Quartus
Pass

)\ —

Figure 3 Project flowchart

14

3.1.1 Research Study

In research study phase, the theory behind the CPU design and CPU
architecture is studied. This includes the study on the CISC and RISC architecture
design of a CPU. The research mainly focuses on the decision between these
architectures that would best educate student.

After decision is made, the research continues on the details of RISC
architecture. To understand the CPU architecture, the knowledge on these theories is
important, which include instruction set architecture, CPU functional units and CPU
data path. These theories are explained in the Literature Review chapter before.

The sources of research include from the books, websites, and journals. The

author’s participation in Computer System Architecture classes has also contributed
to the research study.

3.1.2 Instruction set design

In this stage, instruction sets architecture is designed. This defines the whole
identity of the processor itself. Since the processor would have a very limited
instruction set, thus the choice of instructions have been made according to research

that shows the most commonly used instruction in a program.

Design starts with the format of the instruction design. The instruction format
defines the width of the instruction, op-code field and operand fields. Figure 4 below
illustrates how the instructions format is design.

_ How many bits? . How many operands? How many bits? -
Opcode field Operand field(s)
h How many bits? >

Figure 4 Instruction format design

15

Concurrently, the selection of instructions to be included in the CPU is done.
As explained before, the selection is done based on the most commonly used
instructions in a program. Each of the selected instruction is then assigned with
specific operation code (opcode). Their operands are then fitted accordingly. This
means that each instruction would have different operands type as well as number of
operands to be fitted with the designed instruction format. Figure below illustrates
how the operand field for R-type instruction is fitted.

Source? Source?
Opcode Destination? Destination?
Immediate? Immediate?
h Opcode Field s Operand fields il

Figure 5 Operand fields design for R-type instructions

3.1.3 Datapath design

In this stage, the datapath of each chosen instructions are design. This is the
last stage of CPU design. Datapath determines the connectivity between each CPU’s
functional units with each other. It translates an instruction into the hardware that
does the execution to complete the instruction. The path for data movement from the
start at the instruction fetch from memory towards the end, data write back into

memory, is constructed. Hence, it is called “datapath”.

To design a datapath, the formats of instructions are examined. For this
project, there are 3 types of instruction formats that categorized all the instructions.
This is discussed later in the next chapter. The purpose of identifying the formats of
instructions is because instructions with the same format would have the same
datapath.

Next is examining CPU functional units operations during the execution of a
certain instruction format. For example, what does the Program Counter do? Does it
increment to next instruction or it fetch address for branch instruction? Does register
files do read operation only or both read and write operation? Does ALU is executing
on the data or it does nothing? Does data memory access is needed or not? All of

these factors determine the datapath of an instruction.

16

Knowing the operation of each CPU functional units, datapath for each
instruction format is then designed. The final step would be combining those datapath
for each format together to form the whole CPU datapath. The datapath designed for
this project would be discussed in the next chapter, which is result and discussion

chapter.

3.1.4 Circuit schematic design

In this stage, the datapath designed earlier is translated into combinational
logics circuit. Each CPU functional unit logic circuit is constructed.

The schematic is designed using the Quartus software. Verilog HDL codes are
written to simulate TTL devices such as registers, multiplexers and so on. Then, the
CPU datapath logic circuit is constructed from these block diagrams of TTL devices

emulations.

The purpose of designing the schematic using the Quartus is to allow
simulation of the CPU. In fact, this schematic could be directly downloaded into an
FPGA.

3.1.5 Simulation

In this stage, simulation of the designed schematic is done. The purpose of

simulation is as the first stage of error debugging.

Using this simulation, it provides the timing waveform of signals. These
signals are examined whether it behaves as it should be in the datapath designed
earlier. This fact prevents major debugging to the circuit later, because if there is any

modification to the datapath required, it could be done in software rather than
hardware which are tedious and costly.

17

3.1.6 Prototype construction and module/unit test

In this stage, the prototype is developed according to the schematic designed
before. Development are done phase by phase according to CPU functional unit (PC,

register files, etc).

After developing each CPU functional unit, it is put into a test. The test is
done by invoking all possible inputs to the unit and verifies the output signals
produce. The error is expected to be just the wrong connections, pins not connected or

the TTL devices not functioning, if any.

3.1.7 Combine modules (CPU functional units) and test

After completing the entire module, the modules are combined together
producing the whole processor. It is then put into a test again. The test procedure is

done by loading a program into the processor and then executes.

In the design, the clock circuit is built in such a way that it can produce a

single clock-cycle at a time. Thus, the program could be executed instruction by

instruction.
For each instruction, the signals from each device each checked to ensure that

all are functioning accordingly. After completing a program, the test is repeated again

by loading the same program. This is to ensure the consistency of the circuit behavior.

18

CHAPTER 4
RESULT AND DISCUSSION

This chapter discusses the result from the design phase and the simulation

phase as well as the construction phase. The problem arise along those phases would

also be discussed here.

4.1 Design phase results

4.1.1 Instructions designed

Instruction sets that are designed are as follows:

Data movement instruction:

LDR rd, rs

STR rd,rs

MOV rd,rs
MOVI rd,Imm

- load data from memory location pointed by register s into

register rd.

store data from register »d to memory location pointed by
register rs.

move (copy) data from register rs into register rd.

move immediate (literal) value data into register rd.

Data processing instruction:

ADD rd,rs

ADDI rd,Imm

SUB rd,rs

SUBI rd,Imm

CMP rd,rs

Add content of register rs to content of register rd and store the
result into register rd.

Add immediate (literal) value data to content of register rd and
store result into register rd.

Subtract content of register rs from content of register rd and
store result into register rd.

Subtract immediate value data from content of register rd and
store result into register rd.

Compare content of register rd and content of register rs and set
the condition code register (status register)

19

CMPI rd,IMM

Compare content of register rd with immediate value and set the
condition code register (status register).

Flow control instruction:

BNE rt,Imm

BLT rt,Imm

JMP rt,Imm

RTS

END

Check the CCR for zero flag, if not set, change PC to point next
address pointed by content of register rf + immediate data.

Check the CCR for negative flag, if set change PC to point next
address pointed by content of register rf + immediate data.

Unconditional jump (subroutine/function call) to address pointed
by content of register 77 + immediate data.

Return from subroutine. Restore the pc with next address from
stack pointer.

Halt or stop the cpu operation. Terminate the program/end of
line.

4.1.2 Instruction set formats

Instruction set architecture designed is using 8-bit word. Four most significant bits are
the Operation code (opcode) field while the rest four-bits are the Operand field. The
instructions could be divided into three formats according to MIPS processor which

include:

1. R-type instructions (register-to-register instruction)

7

OPCODE

Source 1 register Source 2 register
Destination register

Figure 6 R-type instruction format

20

2. I-type instructions (immediate operand)

7 4 3 2 1

OPCODE Source 1 register immediate data
Destination register

Figure 7 I-type instruction format

3. J-type instructions (branch/jump instruction)

7 4 3 2 1

OPCODE target/pointer immediate offset
register

Figure 8 J-type instruction format

21

4.1.3 Datapath design result

Datapath is designed based on the three formats above explained in the
chapter 3. The first datapath is for the R-type instructions. The result is as follows:

L 1

Memivirte

Fagiime
Addiass = I
Inslustic (3-2] Read Faad
[8-0] [1-0] |®osst dean ALU
Instrustian Faad Faad Zaro
temary ROEMZ dala2
[3-2] winte Result
regrbe Mers
MemPsad [7. v Fegiswis Msrytifvite
[7-4] o P
v Paad Rzad 1
opcode Addwrss Cota
Wirite
Ak
Control Logic T o
circuit] Ve Mamory
) Ciala |
=
oo ’ : MemRead
RegData

Figure 9 R-type instruction datapath

This datapath is the same for all instructions as follows:

e ADD
e SUB
e MOV
e CMP
e LDR
e STR

As shown in figure 9, the PC is incremented by 1 only. This is because these
instructions do not affect the program sequence. Bit 7-4 is asserted to the control
logic opcode address to produce appropriate control signals. Bits 3-2 is asserted for
address Read register 1 and also address write register. This provides the first operand

22

for the instruction as well as the destination register to be written into. Bit 1-0 is
asserted for Read register 2 providing the second operand for the instruction. The
multiplexer is there to select source for data to be written into destination register.
This is because instruction like MOV instruction does not require ALU operation,
instruction like ADD instruction requires ALU operation and LDR instruction that
take the data from the data memory.

The second datapath is for the I-type instruction. The result is as follows:

sum
PC
Mamairite
Regiints
Addrss X1
e Ll B e —
[8-0] ROt data
Instrustian Read Fead
e mary] RYISENZ dala s
4 1321 Ll
register
MemRead . wiike Pegswis
Lzt g I
[1-0]
r
oprose
Control Logic
circuit
o
i sgnels 4[_' 1}
IHRRR R o’

Figure 10 I-type instruction datapath

This datapath is the same for all instructions as follows:

e ADDi
e SUBI

e MOVi
e CMPi

23

As shown in figure 10, the PC is also incremented by 1 only. This is because
these instructions do not affect the program sequence. Bit 7-4 is asserted to the
control logic opcode address to produce appropriate control signals. Bits 3-2 is
asserted for address Read register 1 and also address write register. This provides the
first operand for the instruction as well as the destination register to be written into.
The difference between R-type datapath and I-type datapath is the bit 1-0 the two bits
source for second operand of the instruction. The multiplexer is there to select source
for data to be written into destination register. This is because instruction like MOV
instruction does not require ALU operation while instruction like ADD instruction
requires ALU operation. Another difference from the R-type instruction is that these

instructions do not involve data memory access.
The third datapath is for the J-type instruction. The result is as follows:

IS

sum

—Tm,
N

stack pointer j

L%
Memiirite i
e ;‘1:52‘.5-"_‘:
Pagiiite
Addiess 3-2
m;_:ﬂgf 82 Read Faad .
[] Rgistert data ALU
Instyustion Raad Paad Zaroj——
Hemory ROIEHZ dalaz >
Wiike Rasult
reqter .
MemFead [7-4] viie Feghtes
[1-0] [ota
tpcide
Control Legic
circuit
ctri signals -
il

Figure 11 J-type instructions datapath

24

This datapath is the same for all instructions as follows:

modifies the program sequence. PC is updated with either from three sources which
are increment by 1, stack pointer data, or ALU results. PC updates from source
increment by 1 if the branch condition is not met, thus resulting no branch operation
is executed. PC updates from source stack pointer data for RTS instruction. This
instruction restores PC with the content of the return address when the JMP
instruction is executed before. PC updates from source ALU results if the branch

conditions is met, thus resulting in branch operation. The address for the branch

BNE
BLT
JMP
RTS

This format of instruction differs from the two formats before because it

subroutine is given by the operand 1 plus with the two bits immediate data.

The combined datapath is then constructed. The result is as follows:

stack pointer ﬁ g

\
" 1
Mewniene s
Fagiie
Ajderss o [3-2]
. Read Faad
[s-0] [1-0] |*ow duan ALD
Instrustion Faad Faad Zarol——
Hemary ROEHT dalaZ >
[3-2] | e Racult
1egshes . -
MemFirad [7-4] S Registrs BAanit rite
| [ota
tpazze { 5 Addiaes [ata
[1-0] | virke
Contreol Legic -~ Adlress o
dircuit “y i wite Pemory
sluSRC2) F—— _(H_r_
tirl signals I
lll!!llll KemBead

Figure 12 Combined datapath

25

As shown in the figure 12, all the datapath designed are then combined together. To
execute certain instruction in a certain instruction format group, control signals would
have to play this role. It controls the CPU functional units so that only the affected

functional units are “activated”.

4.1.4 Circuit schematic design

The designed schematics are provided in the appendix. Those schematics include:
e Program Counter circuit schematic
e Instruction RAM and programming circuit schematic
e Control Logic circuit schematic
e Registers file circuit schematic
e ALU unit circuit schematic
e Clock circuit schematic
e Data RAM and busses circuit schematic
e LED driver circuit schematic

e Input output circuit schematic

4.1.5 CPU characteristic

4.1.5.1 Programming the processor

As the Instruction sets include the jump (JMP) instruction, two separate RAM
is used; one for the instruction memory and the other one for data memory. To
program the processor, the program will be written into the instruction memory
manually by using the switch to write data into the memory.

4.1.5.2 Processor control

To allow the greater flexibility of the processor, microcontroller is used to
store control signals instead of using control matrix to drive the control signal to each
functional units. This also can reduce defect probability as using lots of gate in the

control matrix.

26

4.1.5.3 Arithmetic and Logic Unit

Based on the reference book [1], there is only ADDER IC that is used in the
processor. This adder can be modified to perform subtraction too. But then, this limit
the capability of the whole processor. Thus, the author has used 74181 chip to replace
the former one. This allows the greater option of instructions to be included in the
processor. The appropriate flag generation has also been designed for the instruction

that require the comparison between two operands.

4.1.5.4 Registers and data RAM

Four general purpose registers is used in the processor. This allows the
flexibility of such instruction as ADD and SUBTRACT. 2Kx8 RAM has been
selected to be used for storing the data of the instruction’s result.

4.1.5.5 Summary of CPU operation

All of the instruction will be executed in single-cycle. Half cycle of the
operation is used to decode the instruction and send the control signal, data

processing would also happen during this time. Another half cycle is for register
writeback operation.

4.1.5.6 PCB Implementation

After the design of the CPU is simulated using the quartus software, the next
step is to implement it into PCB. To design the PCB, the schematics for all CPU’s
functional units is drew using EagleCAD software. After that, the schematics are
netlisted to board files. Here the actual PCB board layout is designed before it will be
printed as shown in Appendix D.

27

4.2 CPU Functional Unit Control Signals

The control logic signal is configured to all CPU functional units for each
instruction. The control signal will control what action the CPU functional units
should takes. Table below describe the control signal of the respective CPU

functional units.

Table 4 Control signal

A | OpCode Program ALU Data RAM I | M| Mu
S Counter %
m O] x
1
I R ED ES B D N B A A A A A B B BT W R R R B S S
olrl21ala|slelzlslslol 1 12]3
C c B|B B B B c|c|c|p|p|p[D|[D|D|D|D| E [E|E
1{o]o 3{a]s5]e6 afs|elajofrlz2lalalslsalz]o]1]2
L|lojofoJofr|ofof[1[ofo0 oftfofofr |t [o[t[ofof 1 J1][1
D
R
Slofofoft]rJolo[1|ojofo[of[t[ofo[1[1ft|o[1loflolofol T [1]o0
T
R
Mlojo[t|oftjolo[t[ofof[ofo{Tlofof[T|tltltltl1]oflolol T [ofo
o
\
MlojoftLtjtrfjlrjojof(t{ofojojof{r{ojoftr{tfjoftftf1{t1l1Jof] o ({1]o0O
0
VI
Alo|t|ofofi|ofof[r[ofofofoft]jofoftfrfr ittt lilol 1 1[0
D
D
Alofrfolrfifofof[r|ofofofo[tf[ofolt(tfrla|t|r|t|ilofo1i]o
D
DI
slolt[rf{olrJolor|ofof[o[t[o[afrlojrft|t|tliltlTlol 1 [1]0
U
B
Slojr[r{rfrfJolo|r|ofof[o[ofjofxjtlojoftftlililtltlol o 1lo0
U
BI
clrfojofolrololilolo ool rlolalialiiliotirlliolol 1 lolo
M
P

28

0

0

0

0

0

0

0

1

1

0jofo0j0j0

0jo0joj|o0

0jojofo

ojojojo

ojojojo

1

0

0

0

010

1

1

1

010}0

010

1

Pl

—

29

4.3 CPU Hardware Fabrication

The results of the CPU fabrication phase are the overall circuit built using the

TTL logic on Printed Circuit Board (PCB). Figure below illustrates the fabrication

phase.
Control Register Instruction Program Clock
logic file RAM Counter circuit

' o ;
=4 lyﬁ-.\ L = - \ -.
£ "ﬁ e c'; -
, 3 Y
(s
: g
‘ 5. - ‘

T v '3 } % p S
2
Input/Output Data RAM ALU Mux_2 Mux 1

Figure 13 CPU fabricated

30

4.4 Graphic User Interface

The result of the graphic user interface is a Windows application that was
programmed using Visual Basic to send 8-bit instruction one by one to the CPU. User
needs to program the CPU by writing the instructions from this GUI and then the
instructions will be written to the CPU’s instruction RAM. Figure below shows the
programmed graphic user interface.

7
s EcucatioralProcessor ok ‘ - (BN
COM Pot - Bt Rate bt s) - Deta Bis =]
Party - Scit=vare Flow Contol -
Instruction
Op-code - Al A0 A1 AJ instucton Decode
Virte Read Control Signals
PC_D AUS 1
VitteData PC_1 AUE Mux_2A
PC_2 AT Mux_2B
OB Hacket: PC_3 DR_O
Zemo Flag PC_& DR_1
AU D DR_2
Hegative Flag = =
ALU1 DR_3
AU 2 DRS
A2 DR_E
AU (]
Recerved Traremtted
Update Cloar Save Send Ereak
DSR| €15 DIR RTS

Figure 14 CPU graphic user interface

31

4.5 CPU-GUI Interfacing

The result for processor and computer interfacing is the serial communication

between microcontroller and serial port of the computer. All instructions are sent

from the GUI to the CPU through this serial communication. Figure below illustrates

the full system of the designed educational processor.

Power Educational

Supply Processor

T_\ r—.
(S

Graphic User
Interface

Microcontroller-PC Serial
Communication Terminal

Figure 15 Full system Educational Processor

32

4.6 Testing Procedure and Validation Result

For validation of the designed processor, the hardware is tested by running
some test programs and the results are observed by comparing the outputs with the

expected result.

Five simple test programs are used to test all the instruction including data
movement, data processing (ADDi,SUBI) and flow control (BRANCH).

Table 5 First Test program

Address Instruction Op-code Operand1 Operand2
0001 ADDi A #3 0101 00 11
0010 SUBI A,#1 0111 00 01
0011 CMPi A#0 1001 00 00
0100 BNE B,#2 1010 01 10
0101 END 1111

This program will test the BNE instruction that does the looping until Register A
content is subtracted until 0. To run the test program, below are the testing

procedures.

1. The Educational Processor GUI application is opened and the GUI’s serial

communication setting are configured set as below:

Table 6 GUI’s serial communication configuration

COM Port COM4
Bit Rate (bit/s) 9600
Data Bit 8
Parity None
Software Flow Control None

33

COM Port Parity Bit Rate Software Data Bit

(bit/s) Control
Flow
[o Ecucatiyral Pmrn4 I / / !E_‘_g
COMPos X j . B2 Pate B3] v /u Bs ‘ﬁ
Part; - Software Rox Control -
atrustion
Cpcode - M A Al Al lnstucton Decode
Virte Read Cortrol Signals
PC_C ALUE B _1
Vintaliata PC_1 ALUE Mo 24
PC2 MY 28
i PC2 DR |
Zem Fiag PC.e DR_1
Megative Flag AU DR_2
ALY DR_3
AU 2 RS
AU 2 DR_E
AU & 1o
Racetved Trarsmitied
Update Claar Save Send Break

Figure 16 GUTI’s serial communication configuration

2. To write the first instruction in the instruction RAM, the first address is

assigned manually from the hardware by changing the state of address
switches as below.

34

i =

Address Switches RD/WR Switch

Figure 17 Address switches and RD/WR switch

3. After the address of the first instruction is ready, which is equal to 0001, the
first op-code and the respective operands are selected as shown below. The

35

instruction that is to be written is shown in the Instruction textbox which is

equal to 01010011. Now the first instruction is ready to be sent.

Op-code field

First operand

Second operand

Instruction
Decode

-
. *.u‘.'-oml Processor

VitteData

CCR Register

Hegative Flag

Controi Signals
PC_ ALU_S W1
PC_1 ALUE Bl_24
PC_2 A7 W _28
PC2 DR_D
PC_2 DR_1
ALUD DR_2
ALUT DR_3
ALU_Z DR_S
A3 DR_6
ALU_S 10

Transmated

Save Send Bresk
o | ATS

Figure 18 Writing a CPU Instruction

4. To send the first instruction, the “Write” button is clicked and the instruction

is transferred to the “Transmitted textbox”. Here the instruction is prepared in

order to be transmitted to the CPU hardware through microcontroller via 8-bit

serial communication. Figure below illustrates this step. To transmit the

content in the “Transmitted textbox™, “Send” button is clicked. The instruction

is framed with 6F and OD which is refer to character “0” as output and

carriage return respectively. The microcontroller will receive three characters

which are 6F, instruction and also 0D, and then the microcontroller will give

36

an 8-bit output as instruction to the hardware. At the same time, the
appropriate control signals are shown to ensure that the op-code of the

instruction will decoded to the right control signal.

Write button Control signals
; W W)
¢ Educatiora! Processor ’ 7 - L:.___.L'S_"_"!l
COM Port - Bt Rate bi's] - Data Bis -
Podty Scitwrare Flox Cortrol -
Instruction
Opcoda ~DDN - A1 AD VI Al (v AD Decode b ol et b |
Vite Read Cortrol Signals
PC_O 1 ALLE T M _1
PC1 0 ALUE Mo 24 1
PC 2 o AlUT Mx 8 ©

PC3 1 DR_O
PCe: O DA_1
Alvg DR_2Z
Ay C DR

AluZz 0 DR_S

AU 3 1 DR_E

I I T L L ™ S R

AU4 0 O

Transmitted textbox Send button Instruction

Figure 19 Sending a CPU Instruction

5. Now the hardware is received the instruction and is ready to store the
instruction into instruction RAM. Since this CPU architecture is following
Harvard architecture, the instruction and data is stored into separate memory.
To write the received instruction, RD/WR switch is turned to the WR state.

Now the first instruction, 01010011 is already stored in memory location 0001
of instruction RAM.

37

6. For the next instructions, the same step 2 to step 6 are repeated where the next

instructions are stored into memory location 0010, 0011 and so on.

7. After all instructions of the test program are written, the CPU is ready to run
all the instructions. To execute the all instructions, clock signal will be
supplied in single step operation manually from the hardware itself. Figure
below shows the clock switch. To generate to first clock signal, the clock
switch is turned to HIGH state. Once the clock signal is changing its state for
the first time, the program counter will start fetching the first instruction that
was stored in memory location 0001. The CPU will execute the first
instruction when the second clock signals is positive edged and this step will
continue for the next instructions. When the CPU executes an instruction,
appropriate control signal is generated by the microcontroller which is acting
as ROM. The microcontroller is programmed to decode each op-code to its
appropriate control signal. The control signals will control all the CPU

functional units to what action they should take to execute an instruction.

8. After the CPU finished executing all the instructions, the hardware result can
be observed through graphic user interface. Now, the expected result and the
actual hardware result are validated by comparing the content of register files,
ALU outputs and the flags. To read the output of the hardware, “Read” button
is clicked to request the data from the hardware. The microcontroller again is
used the collect the required data which are data sum as well as the flags from

the condition code register.

9. As shown the figure below, after the “Read” button is clicked, then “Send”
button is clicked for the GUI to transmit 69 0D to microcontroller to request
the output data from the hardware. Character “69” (char “i” in ASCII) will ask
the microcontroller the read input and send to the GUI while “0D” is referred

as carriage return.

38

Read button

&, Educatons! Precessor

COM Pet
Pat; Scftxgre Fiow Control
Instruction
Op-code
Vide Control Sgnais
pco
ineliata PC_1
PC_2
CCR Papster PC 2
Zow Flag PC_¢
AlUD
Nagate Fiag =

AU
A2
A2

AL 2

A0S Fax_1
A€ P_z3
YT T 2B
DR_O

DAl

DR_Z

DR_3

DR.S

DRE

o

Received data will be here

Send button

Read data

Figure 20 Requesting hardware result

10. The received 8-bit data from microcontroller to the GUI is located in the

“Received” textbox. From here, the received data is analyzed to the respective
fields which are data sum and flags. The other fields of the GUI are analyzed
automatically by the GUI itself. The final output is shown below.

39

Write Data Zero flag
- — —— - ~ - _
%, Educational Procejsor / " = :
COM Pott [Diata Bts v ADDi R,%5
SU32 A, 31
- HE= R, 30
i BSNE 3,32
EX
Instruction
Opcocde END AD Instruction Deccde 1mmnm
Virte
ir 1 1 M 1
VirmeData 0000 i T A
1 1 Mo B 1
CCR Fagster : 1
Zero Flag 1 PCE 1 DA_1 1
N ve Flag ALV D 1 DR2Z2 1
Al 1 DRI 1
AUZ 1 DRS 1
AMU2 1 DRE 1
AUG 1 W 1
Recerved Tranemited
6% 0D
Update Clear Save Send Ereae
0SR. cR OTR | ATS
= \
Update Button

Figure 21 First test program final result

For the above first test program, the validation result is shown in the table below.

Table 7 First test program validation result

Address | Instruction | PCcount | Instruction | RegA | RegB | Data | Zero

Decode Sum | Flag
0000 0000 | 00000000 | 0000 | 0000 |0000| O

0001 ADDi A #3 0001 01010011 | 0000 0000 | 0011 | O

40

0010 SUBI A,#1 0010 | 01110001 | 0011 0000 |[0011| O

0011 CMPi A#0 0011 10010000 | 0010 0000 joO0010| O

0100 BNE B,#2 0100 | 10100110 | 0010 | 0010 |0010| O

0010 SUBI A,#1 0010 | 01110001 | 0010 | 0000 |OO10| O

0011 CMPi A#0 0011 10010000 | 0001 0000 [0001| O

0100 BNE B.#2 0100 | 10100110 | 0010 | 0010 |0010| ©

0010 SUBI A,#1 0010 | 01110001 | 0001 0000 | 0001 | O

0011 CMPi A#0 0011 10010000 | 0000 | 0000 |0000 | 1

0100 BNE B,#2 0100 10100110 | 0010 | 0010 (0010 1

0101 END 0101 11111111 | 0000 | 0000 | 0000 | 1

Second test program is also executed to test the BLT instruction where the
flow of program will be changed if A is less than B. Here, for CMP instruction, the
ALU is always doing subtraction operation to check the negative flag by BLT

instruction and there is no write back operation of ALU result for CMP operation.

Table 8 Second test program

Address Instruction Op-code Operandl Operand?2
0001 ADDi A #3 0101 00 10
0010 ADDi B#2 0101 01 11
0011 CMP A,B 1000 00 01
0100 BLT D,#1 1011 11 01
0101 END 1111

41

Write Data Negative flag
. Educatioral Proce] / I‘L_lﬁ
COM Port - Data Bts v ADD:i X,%5
ADD: 3,42
- CME R,3
Perty 31T D, 4
=D
Instrucion
Opcode END 20 insinction Decode 11111111
Wite Control Signals |
Y 0 ALUE 1 Mz 1
VitteDeta 0o AUE 1 Mx A 1
AU7 1 Mux B 1
CCH faher DRC 1
Zero Flag DRI 1
' e Fiag DRZ 1
DR 1
DRE 1
DRE 1
w 1
Pacerved Traremited
21 €9 oD
Update Cear Save Send Break
DSR CTs DTR' |RTS

Figure 22 Second test program final result

Table 9 Second test program validation result

Address | Instruction | PCcount | Instruction RegA | RegB |Data| N

Decode Sum | Flag
0000 0000 00000000 0000 | 0000 [(0000| O
0001 | ADDi A#3 0001 01010011 0000 | 0000 |0011| O

0010 | ADDiB,#2 0010 01010110 0011 0000 [0010| O

0011 |CMPA,B 0011 10000001 0011 0010 |0001| O
0100 | BLT D,#1 0100 10111101 0011 0010 |0001| O
0101 | END 0101 1111111 0011 0010 |[0001| O

42

For the third test program, JMP instruction will be tested. It calls the
subroutine and return back to the main after finish executing the subroutine

instructions.

Table 10 Third test program

Address Instruction Op-code Operand1 Operand2
0000 0000 00 00
0001 ADDI D.#1 0101 11 01
0010 ADDI, A #1 0101 00 01
0011 JMP D #2 1100 11 10
0100 ADDI A #1 0101 00 01
0101 END 1111
0110 ADDI, A#1 0101 00 01
0111 RTS 1101

43

Write Data
o Educetona! Procd - '“ o - “_._E.ﬁ
COM Port - Bt Fate bi. v - Data Bes -
Paty - Scit=ere Flow Contol -
Inetruction
Op<code END - Al Al A2 Instruction Decode mnnm
[Virte Read Control Segnaly
Y PCS 1 AUS 1 Mt
WaeData wn PC1 1 AUE 1 MmZA
PCZ 1 AUT 1 Mx B 1
COR Paguter PC3 1 DRO 1
Zaro Flag PC:) DRIY 1
Hogativa Flag AUS 1 DR2 1
AU 1 DR 1
ALUZ 1 DRE 1
AU 1 DRE 1
AU 1 Lo 1
Facstved Trarsmtted
Update Claar Save Send Braax
L ps om | Rrs
Figure 23 Third test program final result
Table 11 Third test program validation result
Address | Instruction | PCcount | Instruction RegA | RegD | Data Sum
Decode
0000 0000 00000000 0000 0000 0000
0001 | ADDID.#1 0001 01011101 0000 0000 0001
0010 | ADDI, A#1 0010 01010001 0000 0001 0001
0011 | JMPD,#2 0011 11001110 0001 0001 0011
0100 | ADDI A #1 0100 01010001 0010 0001 0011
0101 | END 0101 11111111 0011 0001 0011
0110 | ADDI, A #1 0110 01010001 0001 0001 0010
0111 [RTS 0111 1101

For the fourth test program, load and store instruction will be tested by writing

data into the data RAM and load it back for the next instruction. The pseudo code of

this test program is as below:

Table 12 Fourth program pseudo code

Instruction Pseudo code Description
ADDi A #3 A=3 Add immediate value 3 to register A.
PC=PC*1 PC increments by 1.
ADDi B.#3 B=3 Add immediate value 3 to register B.
PC=PC+1 PC increments by 1.
ADD A,B A=A+B Add content of register B to the
PC=PC+1 content of register A; write back the
ALU result into register A.
PC increments by 1.
ADDi C.#1 C=1 Add immediate value 1 to register C.
PC=PC+1 Preparing the address to for STR.
PC increments by 1.
STR A,C A -->Mem|[C] Store content of register A to memory
PC=PC+1 location 0001.
PC increments by 1.
LDR D,C D <-- Mem|[C] Load data from memory location 0001
PC=PC+1 and write back the data into register D.
PC increments by 1.
CMP AD A-D Compare content of register A and the
content of register D
BNE B.#0 IfA-D=0 If A=D, PC increments by 1, else, if
PC=PC+1 content of register A is not equal to
Else the content of register D, PC = 3.
PC =B[]
END End of CPU execution.

45

Table 13 Fourth test program instruction decode

Address Instruction Op-code Operandl Operand?2
0000 0000 00 00
0001 ADDi A #3 0101 00 10
0010 ADDi B,#3 0101 01 11
0011 ADD A.B 0100 00 01
0100 ADDi C#1 0101 11 01
0101 STRA,C 0001 00 10
0110 LDR D,C 0000 11 10
0111 CMP AD 1000 00 11
1000 BLT B,#0 1011 01 00
1001 END 1111

46

Write Data

Zero flag

-
5. Educatioral Prod

COM Pent

Party

B 1l 1
Muax_z2 1
Mz _ZE 1

Figure 24 Fourth test program final result

Table 14 Fourth test program validation result

Addr Instr. PC | Instruction | Reg | Reg | Reg | Reg | Data | N
Cnt. | Decode A B C D Sum | flag
0000 0000 | 00000000 | 0000 | 0000 | 0000 | 0000 | 0000 | O
0001 | ADDi A#3 | 0001 | 01010011 | 0000 | 0000 | 0000 | 0000 { 0000 0
0010 | ADDi B,#3 | 0010 | 01010100 | 0011 | 0000 | 0000 | 0000 | 0000 | O
0011 | ADDA,B | 0011 | 01001101 | 0011 | 0011 | 0000 | 0000 | 0110 0
0100 | ADDi C,#1 | 0100 | 01011001 | 0110 | 0011 | 0000 | 000 | 0001 0
0101 | STRA,C 0101 | 00010010 | 0110 | 0011 | 0001 | 0000 | 0001 0
0110 | LDRD,C | 0110 | 00001110 | 0110 | 0011 | 0001 | 0000 | 0110 | O

47

0111 |[CMPAD | O111 | 10000011 | 0110 | 0011 | 0001 | 0110 | 0000 1
1000 | BNEB,#0 | 1000 | 10110100 | 0110 | 0011 | 0001 | 0110 | 0000 1
1001 | END 1001 | 11111111 | 0110 | 0011 | 0001 | 0110 | 0000 1

For the fifth test program, the arithmetic operation will be tested. The CPU
will execute the addition operation to add two numbers from the registers.

Table 15 Fifth test program

Address Instruction Op-code Operand1 Operand2
0000 0000 00 00
0001 ADDI A #3 0101 00 11
0010 ADDI B,#3 0101 00 11
0011 ADD A,B 0100 00 01
0100 END 1111
Table 16 Fifth test program validation result
PCcount | Address | Instruction | Instruction | RegA | RegB | Write | Data
Decode Data | Sum
0000 0000 00000000 0000 0000 | 0011 | 0000
0001 0001 | ADDIA#3 | 01010011 0011 0000 0011 | 0000
0010 0010 | ADDIB,#3 | 01010111 0011 0011 0011 | 0000
0011 0011 | ADD A,B 01000001 0011 0011 0011 | 0000
0100 0100 | END 11111111 0110 0011 0110 | 0110

48

Write Data

w, Ecucatioral Procefsor

— e

COM Pont - Be Pate bts) - Data Bes

Party - Scftware Flow Control -

Instruction

Op<code END - Al AD Al AD lnstruction Decode 11111111

Vinte Read
A 4
VitteDeta oo
CCR Pegister
Zero Flag ¢
Negative Fag ©
Raceived
26
_Updse | | Cew Sae
DsAI| eTsi

Control Sigrae

PCO 1 AUS 1 M 1 1

PC1 1 AUE 1 M _2A 1
PCZ 1 AUT 1 M 2B 1

AUD 1 DR2 1
AUl 1 DRA 1
AMUZ 1 DRS 1
AY3I 1 DRE 1
AU: 1 w0 1

Sed | B
DR ATS

ADDz X,33
ATD: 3,43
ADD &, 3

pare

i

Figure 25 Fifth test program final result

49

CHAPTER 5
CONCLUSION AND RECOMMENDATION

This chapter discuss the conclusion arrive after completing this project and

recommendation or the future work that can be done to improve the project.

5.1 Conclusion

As mentioned in the chapter one, the objective of this project is to provide a
new learning environment for Computer System Architecture class for student to
learn computer system architecture at gate level on how a CPU execute an instruction.
The CPU functional unit is designed and fabricated part by part and then they are
combined together to get a completed full run working CPU with interfacing to a
Graphic User Interface via serial communication between computer and

microcontroller.

5.2 Recommendation

For future work, there are a lot of improvements that can be done to improve this

project. Such improvements include but not limited to:

e Full working CPU with capability of handling an Operating System. With a
complete working CPU, there would be much more areas that this project can
educate student when such areas like Operating System, assembler and

compiler design are included.

50

(1]

(2]

(3]

[4]

(3]

[6]

REFERENCES

Alan Clements, 2006 fourth edition, “Principle of Computer Hardware”
Behrooz Pahrami, 2005, “Computer Architecture ”

Albert P. Malvino & Jerald A Brown, 3" edition, “Digital Computer
Electronics”, “SAP Processor”

David A. Patterson & John L. Hennessy, 3™ edition, “Computer organization
and Design”

4bit CISC CPU constructed with TTL logics,
http://www.galacticelectronics.com/4BitCPU_ALU.HTML

MIPS Processor architecture,
https://www.cs.tcd.ie/Jeremy.Jones/vivio/dIx/dIxtutorial.htm

51

APPENDICES

B2

APPENDIX A
PROJECT GA NTT CHART

53

143

Semester July 2008

No. Description

1 Selection of topic

Preliminary Research Work

Submission of Preliminary Report

Instruction Set Design

Instruction Set Design

Datapath Design

Datapath Design

Datapath Design

9 Circuit Schematics Design

10 Circuit Schematics Design

11 Circuit Schematics Design

12 Circuit Schematics Design

13 Simulation and Debugging

14 Submission of Interim Report and Oral Presentation
Semester Jan 2010

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week B Week 5 Week 10 Week 11 Week_12 Week_13 Week_14

0O ~J O W e o b

=z
[=]

O~ O N P W B s

PCB Layout Design

PCB Layout Design

PCB Layout Design

PCB Layout Design

PCB Layout Design
Assembling and Validation
Assembling and Validation
Assembling and Validation
Assembling and Validation
10 Assembling and Validation
11 Assernbling and Validation
12 Assembling and Validation
13 Interfacing

14 Interfacing

w

APPENDIX B
CIRCUIT SCHEMATICS

35

9 |

T/7 B1234s

HE +GiZBT BRBZ/TE/AT

raayuno] weaboud

o

i

T

i

ik

-4

|

56

P i

] I G 1 i

_ T/T $3234s

s e +
A i |
] - % o \||_.| J!IL./MH _.._fl
o T P == s
d WWW —————F—~ 1 = =E
| T i
1 _l\/ —,_/ C/ ; _:\ﬁ; ; Ve et Ao §d ;
J _ﬁLL%L L TL | - d
AR S A O A =

57

] 1

T/T 42945

H SO:9G:6 6ODZ/TE/OT

1601~ 1440

T

Sbbasbse|

il

ARSI e e

S
1

38

] |

_ T/T 1334s

Hd

FLITRIDT EBOAZ/TE/BDT

il

' i

sa[ly Aaysibay
lllll HHH
=l =
e
| S mx —
e _Tﬂ i § i
g =TT =
- BT T =
| =1 | 1] P
L E—— e i

T

29

E] G F [_ z R
,ra mmnm%“ﬁ mﬂm\@w\;ﬁmw_mm o 5 W ¥
Ay TET 7 {hid
a
|
=i .
2 o R =
== - =k 3
: L - |
\ -
g =8 R E— — 2
b coni i— = e iULNw
| WJ‘ ‘ - e - | <
1 = |
— ———r« -
d. R
: | T
v
g g b I z L

60

g

T/T f12a4g

i

TT:TT0T B@BZ/TE/QT

HDo[2

il

O

&0

g [- _ B _ E
_ T/T 81234s
d| TESET:BT 6BBZ/TE/BAT
sassng u c._m.w.“ ey o = AWOGO
— =
a .e
5
—AWA— 4
a1
. = E
B e
; = |« | ——F—
v _ . _ ‘_ 7
::::_ | 1 _:
E+— ¥ S [EAEEED Sbd

9 _] I 1% |

o

62

g G | tr | £ i 4
[T/T 1aays
ld| ER:ESTAT 6BZ/TE/OT
FEYSEENGER
a
m e \
I|\|E||I)% ,/
R 2 oY
2 — W —— |A|||I —————
-y
— O W—t |A| —
il -
ey i‘li@
A e v :
D3
—O
g » S|
Pep—— IE‘I;(S)\ /.-.
h oY
N S S5, ISR
—_————e— . i
| |
] G | v [E It 4

63

g _ g | 12 | i3 | 14 |

| T/T 934S

TG:AZ8T BBBZ/TE/BT

indynp 3ndug OOO%

ik
|

iu]
o
-
m
o™

APPENDIX C
SIMULATION RESULTS

65

99

Mastt Tine B Ops (| Ponte: 26m Iteva 26ns Stat Erd

Dps G400ne 120w 10w 2%u 32w 38w 44w ST2w 57w B 70w 7B BXw B%u 3B 10w

Name [y ps

2| ™ | rrp ARG R gy NER gy R Ny R g M e T e IH
o | @R HNEEEEE NEE R TNE TR (N I (NS N NN AR SRR LN (NN N
b |Bocoe | 00 (i Y Y o] D L
1 | @ operend 000 G N D G NN N O D D N
16 | @ Dbus 000 | CO070) 070 Oy G0 Y j G GO0 § 00y Oro ¥ 00y 0 o0 yomyim. 8
0| @ 0 Y i 2
% | [ReGA 000 Y 010 Y] i} "gﬁ
3 | @ REGS 00 Y (] Y 010 0
% | @ eee |] 8
o4 | B REGD 0
ST I G 0D 0B 0.0 0 GRS G DL LD 60 SR G S UL e
o5 | oF
oR| ¢
oR| N | I i
o] 2z

APPENDIX D
PCB LAYOUTS

67

Instruction RAM

69

70

Register File

000000 &

22 A
'?I_::._'.:. (2 Z;—If%\.‘:_
i ik
e s
B s
N AR
Gt
/ 5

71

It

Ny
\ 6
_I..
W0 W
e 0

+
000000

N

72

Clock

73

Data RAM and Busses

74

Input and Output

%
»
6600008, ?é:-

&
sc’",J |

0O

s

4
%)

—
v a s e

+
0060606000090

«s

&P,/

75

APPENDIX E
SOURCE CODE FOR CONTROL LOGIC

76

#include<18£452.h>

#use delay(clock=4000000)

#fuses XT, NOWDT,NOPROTECT, NOLVP

unsigned intl op_code_3, op_code 2, op_code 1, op code 0;

main()

set_tris_c(0x0f);
set_tris b(0x00);
set tris_d(0x00);
set tris e (0x00);

do({

op_code_3 = input (PIN_C3);
op_code_2 = input (PIN_C2);
op_code_1 = input (PIN_C1);
op_code 0 = input (PIN_CO);
1f ((input(PIN C3) == 0) && (input(PIN C2) == 0) &&
(input (PIN_C1) == 0) && (input (PIN_COQO) == 0))

{ .
output b (0x09);
output c(0x90);
output d(0x2f);
output_e(0x07);

}

else 1f ((input(PIN C3) == 0) && (input(PIN C2) == 0) &&

(input (PIN_C1) == 0) && (input (PIN CO) == 1))

{718
output_b(0x09);
output_ c(0x90);
output d(0x1b);
output_e (0x03) ;

else if ((input(PIN_C3) == 0) && (input(PIN_C2) == 0) &&
(input (PIN C1) == 1) && (input(PIN_CO0) == 0))]

(‘
output_b(0x09);
output_c (0x90) ;
output_d(0x9f);
output_e (0x01) ;
}
else if ((input(PIN C3) == 0) && (input(PIN _C2) == 0) &&
(input (PIN Cl1) == 1) && (input (PIN_C0) == 1)) i
{

output_ b (0x09) ;
output_c(0x90);
output_d(0xff);
output_e (0x02);

7

els if ((J.nput(PIN_CB) — 0} &&
(input (PIN_Cl) == 0) && (input(PIN_CO)

{
output_b(0x09);
output_c(0x90);

output d(0xff); e

output_e (0x03);
}

else if ((input(PIN _C3) == 0) &&
(input (PIN_C1l) == 0) && (input(PIN_CO)

{ 1
output b (0x09);
output_c(0x90);
output_d(0xff);
output_e(0x02);
}

1 a¢ 2 F

els : iy &

((input (PIN_C3) == 0) &&

(input (PIN Cl1) == 1) && (input (PIN_CO)

{
output b (0x89);
output_c(0x60) ;
output_d(0xff);
output_e (0x03);
}

else if ((input(PIN C3) == 0) &&
(input (PIN_C1) == 1) && (input (PIN_CO)

{ .
output_b(0x09);
output_c(0x60) ;
output_d(0Oxfe);
output_e (0x02);

else if ((input(PIN_C3) == 1) &&
(input (PIN C1l) == 0) && (input (PIN_CO0)

{
output_b(0x89);
output_c(0x60) ;
output d(0xff);
output_e(0x01);

if ((input (PIN_C3) == 1) &&
(input (PIN_C1) == 0) && (input(PIN_CO)

= e
cilioc

{//CMI

output_b(0x09);
output_c(0x60) ;
output _d(0Oxfe);
output e (0x00);

78

(input (PIN_C2)
==0))

(input (PIN_C2)
= DY)

(input (PIN C2)
== 0)

(input (PIN_C2)
1))

(input (PIN_C2)
e l1))

(input (PIN_C2)
== 1))

1) &&

1) &&

1) &&

== 1) &&

== 0) &&

== 0) &&

