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ABSTRACT 

This report discusses the overview of the chosen project, which is an 

Educational Processor. The objective of this project is to develop a simple processor 

with TTL logic for educational purpose. This processor will be used as a learning tool 

for Computer System Architecture class. To complete this project, the scope of study 

will cover the computer system architecture and Central Processing Unit (CPU). The 

CPU datapath design and hardware circuit design is based on the MIPS single-cycle 

processor. The methodologies that will be involved in this project are design and 

validation phase, constructing the hardware and then interfacing phase through serial 

communication between CPU and a graphic user interface using microcontroller. The 

prototype would be used as a learning tool in Computer System Architecture class 

and to assist student in understanding the computer architecture. 
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CHAPTER 1 

INTRODUCTION 

This chapter discusses the introduction to this project. It covers the 

background of study that discuss the background knowledge involve in this project. 
The problem statement and objectives that lead to implementation of this project are 

also discussed. 

1.1 Background of Study 

This project is about a development of a simple processor for learning 

purpose, which will be used in Computer System Architecture class. The main 

objective is to provide an opportunity for the student to examine at the gate level on 
how a processor executes an instruction. This educational processor will be a great 
learning tool for computer system student to learn computer system architecture. 
Therefore, the knowledge required in this project is application knowledge of digital 

electronics as well as computer system architecture. This project also required 
knowledge in microcontroller since this processor would be interfaced to the 

computer by using microcontroller via serial communication. After that, all the 
information and operation involved during execution of an instruction by the 

processor will be shown in a graphic user interface. 

1.2 Problem Statement 

The processor is an essential part of a computer system. The development of 
the processor has involved over the years. In 1945, a mathematician John Von 

Neumann outlined the design of most modern CPUs [3]. Most of the processor 
designs now are very sophisticated and complex. 



The Electrical and Electronics Engineering student in UTP who are majoring 
in Computer System have the opportunity to learn about computer system through 
Computer System Architecture course. The current Computer System Architecture 

course exposes the student to the course with lecture as well as hands on lab 

assignment. 

Nevertheless, there is no main focus on any specific computer architecture. 
Most of the time, the overall CPU datapath design that they are exposed to be just the 
high-level functional unit block that explains the CPU datapath. 

Therefore, this project would give an opportunity the Computer System 

Architecture student to explore and examine at the gate level of CPU datapath, which 

means the student can observe how each logic device interact with each other to 

complete a CPU instruction. 

1.3 Objective and Scope of Study 

The main objectives of this project are: 

" To develop a simple processor as a learning tool in computer system class 

" To construct the PCB and validate the prototype 

" To develop a graphic user interface to program the designed CPU 

The scope of work for this project covers the planning and design phase, developing 

the prototype phase, validating phase and the last is future improvement phase. In the 

planning and design phase, the scope of work will be focus on processor instruction 

set architecture and datapath. After that, it will followed by prototype developing 

phase where the data path hardware is implemented using the TTL logic implemented 

on PCB. In the validating phase, the datapath hardware will be interfaced to the 

computer with a graphic user interface by using microcontroller. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter discusses the theory and paperwork review related to this project. 
Details on the CPU architecture and datapath design would also be discussed here. 

2.1 Procedure Identification 

There are two ways of introducing the processor. One is to explain how a 

computer works of its internal information flow by describing the way in which 
information is transmitted between registers and the internal units and showing how 

an instruction is decoded and interpreted. The other approach is to introduce the 

native language, or machine code, of a computer and demonstrate what computer 
instructions can do [1]. 

2.2 Instruction Sets Architecture 

Beginning with the hardware and looking at very primitive operations hides 

the "big picture". So, beginning with the explanation of an instruction set architecture 

would give reader the whole picture of a processor and therefore the detail hardware 

level of how an instruction is translated and executed could be easily understand. 

An instruction set architecture (ISA) is an abstract model of a computer that 
describes what it does, rather than how it does it (functional definition). So, it can be 

said that the instruction set architecture and the instructions available in the processor 
determine the processor capabilities and performance [1]. 
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The instruction set architecture varies from machine to machine. Instructions 

are classified by format and the number of operands they take. The three basics 

instruction types are data movement which copies data from one location to another, 

data processing which operates on data, and flow control which modifies the order in 

which instructions are executed. 

Instruction formats can take zero, one, two or three operands. It depends on 

how much bit is used to represent the whole instructions. The instruction sets 

architecture can be distinguished by two classes which are the Complex Instruction 

Set Computing (CISC) and the Reduced Instruction Set Computing (RISC). 

2.2.1 Complex Instruction Sets Computing 

The CISC employs complex instruction which usually their instruction width 
(in bits) could vary depending on the type of instruction (data movement, data 

processing and flow control). For example there would be an instruction that consists 

of only the opcode (instruction identifier in bits) where it does not require any 

operation on the operand e. g.: Return from Subroutine (RTS). 

Beside the variety of instruction width, each instruction could possibly be very 

complex in a way that it could perform operation with complex addressing. Complex 

addressing requires extra decoding and operation cycle. This is achieved usually 

through the usage of microcoding. 

With variety of instruction width and complexity, it would take variable total 

of clock cycles to execute each instruction. It is because each instruction's opcode 

would be decoded firstly in the earlier cycle. The rest of the cycle would depend on 

the type of the instruction, which would make each instruction take at least two clock 

cycles to be executed. 
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2 2.2 Reduced Instruction Sets Computing 

One of the important characteristic of a RISC is that having the single- 
instruction format in contrast to the variable-width (length) instruction of CISC. This 

reduces the complexity of the decoding logic itself and thus could be used to easily 

educate new student in learning computer architecture. 

Typically a RISC instruction format would consist of Opcode + Registers 

addresses. RISC is designed to contain only the register-to-register operation while 
for the memory access operation, RISC introduce a special instruction which is 

Load/Store. Thus, addressing modes in RISC processor are not as sophisticated as 
CISCs'. 

RISC processors aim to execute on average one instruction per clock cycle. 
This goal imposes a limit on the maximum complexity of instruction and so to the 

hardware design of a RISC processor. 

The table 1 below summarizes the differences between RISC and CISC 

processor. 

Table I Comparison between RISC and CISC processor 

CISC RISC 

Instruction width Variable instruction Fix instruction width 
width 

Instruction cycle Multiple clock-cycle Single clock-cycle 

Register-to-register data 

Addressing modes 
Complex addressing transfer with special 
mode for memory access instruction for memory 

access 
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2.2.3 Instruction usage 

From the introduction of the microprocessor in the mid 1970s to the mid 
1980s there was an almost unbroken trend toward more and more complex 

architectures [1]. With the advancement in the chip fabrication process, it allows 
designers to add more to the microprocessor's central core, which leads to 

cumbersome architectures and inefficient instruction sets but has tremendous 

commercial advantage for the end user. Intel's 8086 illustrates this trend particularly 

well, because Intel took their original 16-bit processor and added more features in 

each successive generation [1]. 

Although processors were advancing in terms architectural sophistication in 

the late 1970s, a high price was being paid for this progress in terms of efficiency [1]. 

Complex instructions required complex decoders and a lot of circuitry to implement 

while there was no guarantee that these instructions would be used in actual 

programs. 

Computer scientist carried out extensive research over a decade or more in the 
late 1970s into the way in which computers execute programs [1]. Theirs studies 
demonstrated that there is no uniform frequency in which different type of 
instructions are executed. Some types of instructions are executed far more frequently 

than others. 

Fairclough divided machine-level instructions into eight groups according to 

type and compiled the statistics described by Table 2. The mean value represents the 

result averaged over both program types and computer architecture. 
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Table 2 Frequency of instruction usage 

Instruction Group Mean Value (%) 

Data movement 45.28 

Program modification (branch, call, return) 28.73 

Arithmetic 10.75 

Compare 5.92 

Logical 3.91 

Shift 2.93 

Bit manipulation 2.05 

Input/output and miscellaneous 0.44 

2.2.4 RISC instruction format 

One of the characteristics of RISC architectures is that it has a single 
instruction format. By providing a single instruction format, the decoding of an 
instruction into its component fields can be performed by a minimum level of 
decoding logic. A RISC's instruction length should be sufficient to accommodate the 

operation code field (opcode) and one or more operand fields [1]. Consequently, a 
RISC processor may not utilize memory space as efficiently as a conventional CISC 

microprocessor. 

Figure 1 describes the format of a Berkeley RISC instruction, one of the first 

RISC processor that came from the University of California at Berkeley. 

4- 

31 25 24 23 19 18 

32 bits 
14 13 12 54 0 

Op-code Scc Destination Source 1I000000000 
S4 S3 Sz S, so 

1 
111211101919176151 i4 i3 iz ü6 Op-code 

IM 

"--ý" -. ý--ý. --. 7 bits 1 bit 5 bits 5 bits 

00000000 
'12'11 '10 Ys'l Ys 

9 bits 

Figure 1 RISC Berkeley's instruction format 

Scc Destination Source 1 

Source 2 

S bits 

S4S35zSl 5p 

'4 'j '2 '1 6 
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The op-code field is the Operation code field that indicates the code for each 

instruction. Each instruction has its own unique Op-code. Scc field whether the 

condition code bits are updated after the execution of an instruction. Destination and 

Source I fields determine the address of register of which the result would be written 
into and the first source for an instruction's operand, respectively. The IM field 

determines the source for another instruction's operand. If it is 0, the source is the 5- 

bit address of the registers while if it is 1, the source is the 13-bit immediate number. 

Because of 5-bits are allocated to each operand field, it follows that this RISC 

can access up to 25 = 32 internal registers at a time. 

2.2.5 Addressing modes 

Addressing mode is the method by which the location of an operand is specific within 

an instruction. Some of addressing modes most commonly used are describe as 
follows. 

1. Immediate addressing. Operand is given in the instruction itself. Usually the 

second source of instruction's operand is supplied as part of the instruction. 

2. Address registers indirect addressing. Operand is taken from, or result placed 
in, a pointer register. RISC processors allow any registers to act as a pointer. 

3. Base addressing. Operand is in memory and its location is computed by 

adding of offset to the content of a specified base register. In RISC processor, 

this type of addressing mode is used by the Load and Store instruction to 

access RAM. The computed result would be asserted to the address of the 

RAM, and then the data would be stored into that location or the data is 

loaded into the destination register from that location. 

4. PC-relative addressing. Same as base addressing, but with the register always 
being the program counter. 
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2.3 CPU Functional Units 

Before looking into the details of how a CPU works, it is important to 

understand the relationship between the CPU, the memory and the program. The 

program contains list of instructions to be executed by the processor, for example the 

applications and software that available nowadays. The memory temporarily stores 
the list of instruction of the program and also the data of the program during CPU 

execution. The CPU read one-by-one list of instruction of program from the memory 

and perform the required execution on the data and probably store back the data in the 

memory. 

In this project, the focus is on how this list of instructions in fetched from the 

memory, decoding the instructions producing the appropriate control signal, perform 
instruction-specific execution on the data and probably store the result of execution 
back into the memory. This process is shown in the project by the combinational 
logic circuits that make up CPU internal units which do specific job to complete one 
instruction. CPU internal units include are as follows: 

2.3.1 Program Counter (PC) 

Program counter contain the next instruction address to be executed. This address will 
be input the program RAM to access a specific line of instructions. Normally, PC 

would be increased after every instruction executed to point to the next address 

except if flow control instructions is executed which modify the bits contain in the 
PC. 

2.3.2 Program/Instructions Memory 

Program memory contains the list of instruction to be executed. In Von Neumann 

architecture machine, program memory and data memory use the common RAM, 

while in Harvard architecture machine, program memory and data memory use 
separate RAMs. 
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2.3.3 Instruction Register 

Instruction register contains the current instruction. It stores the current register 

temporarily and connects to various other logic devices such as control logic, and 

register files. When the next instruction is executed, it will overwrite the content of 

this instruction register. 

2.3.4 Register File (General Purpose Registers) 

In RISC machine, register files are the important characteristic. It serves as the 

general purpose register to store temporary data that is executed by specific 
instruction. Register files are pretty similar to the RAM except that it doesn't have as 

much capacity as RAM and thus reduce the cost. Typically, registers are faster than 

RAM that makes execution of register-register instruction could be faster. 

2.3.5 Arithmetic and Logic Unit 

ALU is the unit that does the manipulation to the data such as addition, subtraction, 
logical AND, logical OR and many more. 

2.3.6 Data Memory 

Data memory is the storage device that store data from the program executed. It could 
be the constants, variables, address etc. Normally, data that are stores here are not a 
frequently used data as accessing the memory is slow thus make the program 

execution slower. 

2.3.7 Control Logic 

Control logic is among most important modules that make up a processor. It controls 

the sequence and datapath flow of an instruction. When an instruction is executed, it 

fetch and decode the opcode of that instruction and output the control logic signals to 

the appropriate modules such as register files, ALU and memory. 
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2.3.8 Address Bus and Data Bus 

Bus is used to simplify the movement of data from point to point in a computer. Bus 

is analogous to a highway and the devices are analogous to junctions that connect to 

this highway. By having both address bus and data bus, it is possible to reduce the 

number of wires that interconnect within a computer but, it introduces a complexity. 
In a bused system, only one communication from point to point could happen at a 

time. Thus a careful synchronization needs to be taken care of and each bus access 

time has to be long enough for the safe reception in a communication. 

2.4 Brief introduction to MIPS processor 

MIPS processor is designed in 1984 by researchers at Stanford University. 

MIPS is part of RISC processor family. 

Like the other processor in RISC family, MIPS employs load-store 

architecture. This means that there are two instructions for accessing memory, a Load 

instruction to load data from memory, and a Store instruction to write data into 

memory. It also means that none of the instruction can access memory directly. To do 

operation on data, the data has to be loaded into registers and the operation is 

performed on the data in the register. As most of the instruction operations are 
between registers, they allows faster execution and simpler circuit design. 

MIPS processor executes instruction in a single clock cycle because of the 

nature of a RISC processor which is single instruction format. This fact allows the 

MIPS instructions to be split into stages for implementing pipelining. The stages are: 

1. IF - Instruction fetch. Fetch the next instruction from memory using 
the address in Program Counter register and stores the instruction in 

Instruction Register. 

2. ID - Instruction decode. Decode the instruction in the Instruction 

Register, calculate the next Program Counter, and read any operand 

required from the register files. 
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3. EX - Execution stage. Perform arithmetic and logic operation. 

4. MA - Memory access. Perform any memory access required by the 

current instruction. 

5. WB - Register write back. For any instruction with destination register 

specified, it writes back the result into the destination register. 

By splitting instructions into different stages, it results in 5-clock cycle 

execution. But, with pipeline implementation, this technique would attempt to 

execute instructions approximately in one clock-cycle. Table 3 below shows the 

pipeline implementation in MIPS processor. 

Table 3 MIPS pipeline architecture 

CYCLE IF ID EX MA WB 

I i 

2 i+l i 

3 i+2 i+l i 

4 i+3 i+2 i+l i 

5 i+4 i+3 i+2 i+ l i 

6 i+5 i+4 i+3 i+2 i+l 

7 i+6 i+5 i+4 i+3 i+2 

Examining the table above, it can be clearly seen that from the fifth cycle, the 

first instruction is completed. Then, at the next cycle, the i+1 instruction (next 

instruction) is completed. This goes on the same towards further cycle. Although it 

takes five cycles to complete an instruction, but approximately the instructions are 

executed in one cycle. This is explained before, from the fifth cycle onwards, each 
instruction execution is completed. 

12 



The words "approximately" from the second last statement do carry an 
important meaning. Theoretically, the single-cycle approximation could be achieved 
based on the explanation before. But in reality, there are some dependencies of an 
instruction to another instruction. It means that some instruction stage could not be 

executed before it gets the valid data from instruction before. This hazard introduces 

"waiting delay", which makes the single-cycle approximation could not be achieved. 

The MIPS instruction has three basic formats. Figure 2 below illustrates the of 

the MIPS instructions. 

32 bits 

/. ýý! F'Iý. ýil'.... . 

Figure 2 MIPS instruction formats 

S bits 5 bits 

Target 

Immediate value 

6 bits 

0 

R-type instruction is a register-to-register format for all data processing 

instructions. I-type instruction is immediate format for either data processing 
instructions with a literal or load/store instructions with an offset. While J-type 

instruction is the format for branch/jump instruction with a 26-bit literal that is 

concatenated with the six most-significant bits of the program counter to create 32-bit 

address. 

31 26 25 

ý'_` 
F Source S 

6 bits 

21 20 16 15 1110 65 

Source T Destination Shift amount Function 

. 0.4 ý 

S bits 5 bits 

1 Op-code Source S Source T 
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CHAPTER 3 

METHODOLOGY 

This chapter discusses how the project is carried out. It includes the method of 

research, tools and software involved. 

3.1 Project Flowchart 

Research study 

Circuit schematics design 

Simulation in 
Quartus 

Design completed 

Figure 3 Project flowchart 

PCB fabrication 

Prototype Construction 

Functional 
unit test 

Combine all units 

Project completed 
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3.1.1 Research Study 

In research study phase, the theory behind the CPU design and CPU 

architecture is studied. This includes the study on the CISC and RISC architecture 
design of a CPU. The research mainly focuses on the decision between these 

architectures that would best educate student. 

After decision is made, the research continues on the details of RISC 

architecture. To understand the CPU architecture, the knowledge on these theories is 

important, which include instruction set architecture, CPU functional units and CPU 

data path. These theories are explained in the Literature Review chapter before. 

The sources of research include from the books, websites, and journals. The 

author's participation in Computer System Architecture classes has also contributed 
to the research study. 

3.1.2 Instruction set design 

In this stage, instruction sets architecture is designed. This defines the whole 
identity of the processor itself. Since the processor would have a very limited 

instruction set, thus the choice of instructions have been made according to research 

that shows the most commonly used instruction in a program. 

Design starts with the format of the instruction design. The instruction format 

defines the width of the instruction, op-code field and operand fields. Figure 4 below 

illustrates how the instructions format is design. 

How many bits? 
14 f> -4 

Opcode field 

A 

How many operands? How many bits? 

Operand field(s) 

How many bits? 

Figure 4 Instruction format design 
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Concurrently, the selection of instructions to be included in the CPU is done. 

As explained before, the selection is done based on the most commonly used 
instructions in a program. Each of the selected instruction is then assigned with 

specific operation code (opcode). Their operands are then fitted accordingly. This 

means that each instruction would have different operands type as well as number of 

operands to be fitted with the designed instruction format. Figure below illustrates 

how the operand field for R-type instruction is fitted. 

.4 

Opcode 

Opcode Field .4 

Source? 
Destination? 
Immediate? 

Operand fields 

Figure 5 Operand fields design for R-type instructions 

3.1.3 Datapath design 

In this stage, the datapath of each chosen instructions are design. This is the 
last stage of CPU design. Datapath determines the connectivity between each CPU's 

functional units with each other. It translates an instruction into the hardware that 

does the execution to complete the instruction. The path for data movement from the 

start at the instruction fetch from memory towards the end, data write back into 

memory, is constructed. Hence, it is called "datapath". 

To design a datapath, the formats of instructions are examined. For this 

project, there are 3 types of instruction formats that categorized all the instructions. 

This is discussed later in the next chapter. The purpose of identifying the formats of 
instructions is because instructions with the same format would have the same 
datapath. 

Next is examining CPU functional units operations during the execution of a 
certain instruction format. For example, what does the Program Counter do? Does it 

increment to next instruction or it fetch address for branch instruction? Does register 
files do read operation only or both read and write operation? Does ALU is executing 

on the data or it does nothing? Does data memory access is needed or not? All of 
these factors determine the datapath of an instruction. 

Source? 
Destination? 
Immediate? 
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Knowing the operation of each CPU functional units, datapath for each 
instruction format is then designed. The final step would be combining those datapath 

for each format together to form the whole CPU datapath. The datapath designed for 

this project would be discussed in the next chapter, which is result and discussion 

chapter. 

3.1.4 Circuit schematic design 

In this stage, the datapath designed earlier is translated into combinational 
logics circuit. Each CPU functional unit logic circuit is constructed. 

The schematic is designed using the Quartus software. Verilog HDL codes are 

written to simulate TTL devices such as registers, multiplexers and so on. Then, the 

CPU datapath logic circuit is constructed from these block diagrams of TTL devices 

emulations. 

The purpose of designing the schematic using the Quartus is to allow 

simulation of the CPU. In fact, this schematic could be directly downloaded into an 
FPGA. 

3.1.5 Simulation 

In this stage, simulation of the designed schematic is done. The purpose of 

simulation is as the first stage of error debugging. 

Using this simulation, it provides the timing waveform of signals. These 

signals are examined whether it behaves as it should be in the datapath designed 

earlier. This fact prevents major debugging to the circuit later, because if there is any 

modification to the datapath required, it could be done in software rather than 
hardware which are tedious and costly. 
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3.1.6 Prototype construction and module/unit test 

In this stage, the prototype is developed according to the schematic designed 

before. Development are done phase by phase according to CPU functional unit (PC, 

register files, etc). 

After developing each CPU functional unit, it is put into a test. The test is 

done by invoking all possible inputs to the unit and verifies the output signals 

produce. The error is expected to be just the wrong connections, pins not connected or 

the TTL devices not functioning, if any. 

3.1.7 Combine modules (CPUfunctional units) and test 

After completing the entire module, the modules are combined together 

producing the whole processor. It is then put into a test again. The test procedure is 

done by loading a program into the processor and then executes. 

In the design, the clock circuit is built in such a way that it can produce a 

single clock-cycle at a time. Thus, the program could be executed instruction by 

instruction. 

For each instruction, the signals from each device each checked to ensure that 

all are functioning accordingly. After completing a program, the test is repeated again 
by loading the same program. This is to ensure the consistency of the circuit behavior. 
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CHAPTER 4 

RESULT AND DISCUSSION 

This chapter discusses the result from the design phase and the simulation 

phase as well as the construction phase. The problem arise along those phases would 

also be discussed here. 

4.1 Design phase results 

4.1.1 Instructions designed 

Instruction sets that are designed are as follows: 

Data movement instruction: 

LDR rd, rs - load data from memory location pointed by register rs into 

register rd. 

STR rd, rs - store data from register rd to memory location pointed by 

register rs. 

MOV rd, rs - move (copy) data from register rs into register rd. 

MOVI rd, Imm - move immediate (literal) value data into register rd. 

Data processing instruction: 

ADD rd, rs - Add content of register rs to content of register rd and store the 
result into register rd. 

ADDI rd, Imm - Add immediate (literal) value data to content of register rd and 
store result into register rd. 

SUB rd, rs - Subtract content of register rs from content of register rd and 
store result into register rd. 

SUBI rd, lmm - Subtract immediate value data from content of register rd and 
store result into register rd. 

CMP rd, rs - Compare content of register rd and content of register rs and set 
the condition code register (status register) 
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CMPI rd, IMM - Compare content of register rd with immediate value and set the 
condition code register (status register). 

Flow control instruction: 

BNE rt, Imm - Check the CCR for zero flag, if not set, change PC to point next 
address pointed by content of register rt + immediate data. 

BLT rt, Imm - Check the CCR for negative flag, if set change PC to point next 
address pointed by content of register rt + immediate data. 

JMP rt, lmm - Unconditional jump (subroutine/function call) to address pointed 
by content of register rt + immediate data. 

RTS - Return from subroutine. Restore the pc with next address from 
stack pointer. 

END - Halt or stop the cpu operation. Terminate the program/end of 
line. 

4.1.2 Instruction set formats 

Instruction set architecture designed is using 8-bit word. Four most significant bits are 

the Operation code (opcode) field while the rest four-bits are the Operand field. The 

instructions could be divided into three formats according to MIPS processor which 

include: 

1. R-type instructions (register-to-register instruction) 

7 

OPCODE 

43 

Source 1 register 
Destination register 

Source 2 register 

Figure 6 R-type instruction format 
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2. I-type instructions (immediate operand) 

7 

OPCODE 

43 21 

Source 1 register 
Destination register 

immediate data 

Figure 7 I-type instruction format 

0 

3. J-type instructions (branch/jump instruction) 

7 

OPCODE 

43 21 

target/pointer 

register 

immediate offset 

Figure 8 J-type instruction format 

0 

21 



4.1.3 Datapath design result 

Datapath is designed based on the three formats above explained in the 

chapter 3. The first datapath is for the R-type instructions. The result is as follows: 
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Figure 9 R-type instruction datapath 

This datapath is the same for all instructions as follows: 

" ADD 

" SUB 

" MOV 

" CMP 

" LDR 

0 STR 

Faed RxW 
Addiacc CvG 

tYie 
MiLefs 

'Cilila MmypY 
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As shown in figure 9, the PC is incremented by 1 only. This is because these 

instructions do not affect the program sequence. Bit 7-4 is asserted to the control 

logic opcode address to produce appropriate control signals. Bits 3-2 is asserted for 

address Read register I and also address write register. This provides the first operand 

ALU \ 
Zar.:. 

R-; 4:. W 
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for the instruction as well as the destination register to be written into. Bit 1-0 is 

asserted for Read register 2 providing the second operand for the instruction. The 

multiplexer is there to select source for data to be written into destination register. 
This is because instruction like MOV instruction does not require ALU operation, 
instruction like ADD instruction requires ALU operation and LDR instruction that 

take the data from the data memory. 

The second datapath is for the I-type instruction. The result is as follows: 

RCgDafa 

Figure 10 1-type instruction datapath 

This datapath is the same for all instructions as follows: 

" ADDi 

" SUBi 

" MOVi 

" CMPi 
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As shown in figure 10, the PC is also incremented by 1 only. This is because 

these instructions do not affect the program sequence. Bit 7-4 is asserted to the 

control logic opcode address to produce appropriate control signals. Bits 3-2 is 

asserted for address Read register I and also address write register. This provides the 

first operand for the instruction as well as the destination register to be written into. 

The difference between R-type datapath and I-type datapath is the bit 1-0 the two bits 

source for second operand of the instruction. The multiplexer is there to select source 

for data to be written into destination register. This is because instruction like MOV 

instruction does not require ALU operation while instruction like ADD instruction 

requires ALU operation. Another difference from the R-type instruction is that these 

instructions do not involve data memory access. 

c 

F-M ýsaýsz 

The third datapath is for the J-type instruction. The result is as follows: 
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This datapath is the same for all instructions as follows: 

" BNE 

" BLT 

" JMP 

" RTS 

This format of instruction differs from the two formats before because it 

modifies the program sequence. PC is updated with either from three sources which 

are increment by 1, stack pointer data, or ALU results. PC updates from source 
increment by I if the branch condition is not met, thus resulting no branch operation 
is executed. PC updates from source stack pointer data for RTS instruction. This 

instruction restores PC with the content of the return address when the JMP 

instruction is executed before. PC updates from source ALU results if the branch 

conditions is met, thus resulting in branch operation. The address for the branch 

subroutine is given by the operand 1 plus with the two bits immediate data. 

The combined datapath is then constructed. The result is as follows: 
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Figure 12 Combined datapath 
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As shown in the figure 12, all the datapath designed are then combined together. To 

execute certain instruction in a certain instruction format group, control signals would 
have to play this role. It controls the CPU functional units so that only the affected 
functional units are "activated". 

4.1.4 Circuit schematic design 

The designed schematics are provided in the appendix. Those schematics include: 

" Program Counter circuit schematic 

" Instruction RAM and programming circuit schematic 

" Control Logic circuit schematic 

" Registers file circuit schematic 

" ALU unit circuit schematic 

" Clock circuit schematic 

" Data RAM and busses circuit schematic 

" LED driver circuit schematic 

" Input output circuit schematic 

4.1.5 CPU characteristic 

4.1. S. 1 Programming the processor 

As the Instruction sets include the jump (JMP) instruction, two separate RAM 

is used; one for the instruction memory and the other one for data memory. To 

program the processor, the program will be written into the instruction memory 

manually by using the switch to write data into the memory. 

4.1.5.2 Processor control 

To allow the greater flexibility of the processor, microcontroller is used to 

store control signals instead of using control matrix to drive the control signal to each 
functional units. This also can reduce defect probability as using lots of gate in the 

control matrix. 
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4.1.5.3 Arithmetic and Logic Unit 

Based on the reference book [1], there is only ADDER IC that is used in the 

processor. This adder can be modified to perform subtraction too. But then, this limit 

the capability of the whole processor. Thus, the author has used 74181 chip to replace 
the former one. This allows the greater option of instructions to be included in the 

processor. The appropriate flag generation has also been designed for the instruction 

that require the comparison between two operands. 

4.1.5.4 Registers and data RAM 

Four general purpose registers is used in the processor. This allows the 
flexibility of such instruction as ADD and SUBTRACT. 2Kx8 RAM has been 

selected to be used for storing the data of the instruction's result. 

4.1.5.5 Summary of CPU operation 

All of the instruction will be executed in single-cycle. Half cycle of the 

operation is used to decode the instruction and send the control signal, data 

processing would also happen during this time. Another half cycle is for register 
writeback operation. 

4.1.5.6 PCB Implementation 

After the design of the CPU is simulated using the quartus software, the next 

step is to implement it into PCB. To design the PCB, the schematics for all CPU's 

functional units is drew using EagleCAD software. After that, the schematics are 

netlisted to board files. Here the actual PCB board layout is designed before it will be 

printed as shown in Appendix D. 
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4.2 CPU Functional Unit Control Signals 

The control logic signal is configured to all CPU functional units for each 
instruction. The control signal will control what action the CPU functional units 

should takes. Table below describe the control signal of the respective CPU 

functional units. 

Table 4 Control signal 

A OpCode Program ALU Data RAM I M Mu 

s Counter u x 

m O x 2 

1 
7 6 5 4 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 

C C C C B B B B B B B B C C C C D D D D D D D D E E E 

3 2 1 0 0 1 2 3 4 5 6 7 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 

L 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1 

D 

R 

S 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 

T 

R 

M 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0 

0 
V 

M 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 

0 

VI 

A 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 

D 
D 

A 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 

D 

DI 

S 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 

U 
B 

S 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 
U 

BI 

C 1 0 0 0 1 0 0 1 0 0 0 1 0 1 I 0 1 I I I I 1 1 0 1 0 o 
M 

P 
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C 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 

M 
PI 

B 1 0 1 0 0 1 0 I 0 0 0 0 1 0 0 1 1 1 1 I 1 1 1 0 0 1 I 

N 

E 

B 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 I I 

L 

T 
] I 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 I 1 0 0 I I 

M 
P 

R 1 t 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 I 1 1 1 1 1 0 0 1 0 

T 
S 

E I l 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 0 1 1 1 

N 

D 

29 



4.3 CPU Hardware Fabrication 

The results of the CPU fabrication phase are the overall circuit built using the 

TTL logic on Printed Circuit Board (PCB). Figure below illustrates the fabrication 

phase. 
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Figure 13 CPU fabricated 
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4.4 Graphic User Interface 

The result of the graphic user interface is a Windows application that was 

programmed using Visual Basic to send 8-bit instruction one by one to the CPU. User 

needs to program the CPU by writing the instructions from this GUI and then the 

instructions will be written to the CPU's instruction RAM. Figure below shows the 

programmed graphic user interface. 
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4.5 CPU-GUI Interfacing 

The result for processor and computer interfacing is the serial communication 

between microcontroller and serial port of the computer. All instructions are sent 

from the GUI to the CPU through this serial communication. Figure below illustrates 

the full system of the designed educational processor. 
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4.6 Testing Procedure and Validation Result 

For validation of the designed processor, the hardware is tested by running 

some test programs and the results are observed by comparing the outputs with the 

expected result. 

Five simple test programs are used to test all the instruction including data 

movement, data processing (ADDi, SUBi) and flow control (BRANCH). 

Table 5 First Test program 

Address Instruction Op-code Operandi Operand2 

0001 ADDi A, #3 0101 00 11 

0010 SUBi A, #1 0111 00 01 

0011 CMPi A, #0 1001 00 00 

0100 BNE B, #2 1010 01 10 

0101 END 1111 

This program will test the BNE instruction that does the looping until Register A 

content is subtracted until 0. To run the test program, below are the testing 

procedures. 

1. The Educational Processor GUI application is opened and the GUI's serial 

communication setting are configured set as below: 

Table 6 GUI's serial communication configuration 

COM Port COM4 

Bit Rate (bit/s) 9600 
Data Bit 8 

Parity None 

Software Flow Control None 
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Figure 16 GUI's serial communication configuration 

2. To write the first instruction in the instruction RAM, the first address is 

assigned manually from the hardware by changing the state of address 

switches as below. 
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Address Switches RD/WR Switch 

Figure 17 Address switches and RDIWR switch 

3. After the address of the first instruction is ready, which is equal to 0001, the 

first op-code and the respective operands are selected as shown below. The 
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instruction that is to be written is shown in the Instruction textbox which is 

equal to 01010011. Now the first instruction is ready to be sent. 
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Figure 18 Writing a CPU Instruction 

4. To send the first instruction, the "Write" button is clicked and the instruction 

is transferred to the "Transmitted textbox". Here the instruction is prepared in 

order to be transmitted to the CPU hardware through microcontroller via 8-bit 

serial communication. Figure below illustrates this step. To transmit the 

content in the "Transmitted textbox", "Send" button is clicked. The instruction 

is framed with 6F and OD which is refer to character "o" as output and 

carriage return respectively. The microcontroller will receive three characters 

which are 6F, instruction and also OD, and then the microcontroller will give 
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an 8-bit output as instruction to the hardware. At the same time, the 

appropriate control signals are shown to ensure that the op-code of the 

instruction will decoded to the right control signal. 
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Figure 19 Sending a CPU Instruction 

5. Now the hardware is received the instruction and is ready to store the 
instruction into instruction RAM. Since this CPU architecture is following 

Harvard architecture, the instruction and data is stored into separate memory. 
To write the received instruction, RD/WR switch is turned to the WR state. 
Now the first instruction, 01010011 is already stored in memory location 0001 

of instruction RAM. 

Control signals 
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6. For the next instructions, the same step 2 to step 6 are repeated where the next 
instructions are stored into memory location 0010,0011 and so on. 

7. After all instructions of the test program are written, the CPU is ready to run 

all the instructions. To execute the all instructions, clock signal will be 

supplied in single step operation manually from the hardware itself. Figure 

below shows the clock switch. To generate to first clock signal, the clock 

switch is turned to HIGH state. Once the clock signal is changing its state for 

the first time, the program counter will start fetching the first instruction that 

was stored in memory location 0001. The CPU will execute the first 

instruction when the second clock signals is positive edged and this step will 

continue for the next instructions. When the CPU executes an instruction, 

appropriate control signal is generated by the microcontroller which is acting 

as ROM. The microcontroller is programmed to decode each op-code to its 

appropriate control signal. The control signals will control all the CPU 

functional units to what action they should take to execute an instruction. 

8. After the CPU finished executing all the instructions, the hardware result can 
be observed through graphic user interface. Now, the expected result and the 

actual hardware result are validated by comparing the content of register files, 

ALU outputs and the flags. To read the output of the hardware, "Read" button 

is clicked to request the data from the hardware. The microcontroller again is 

used the collect the required data which are data sum as well as the flags from 

the condition code register. 

9. As shown the figure below, after the "Read" button is clicked, then "Send" 

button is clicked for the GUI to transmit 69 OD to microcontroller to request 
the output data from the hardware. Character "69" (char "i" in ASCII) will ask 
the microcontroller the read input and send to the GUI while "OD" is referred 
as carriage return. 
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Figure 20 Requesting hardware result 

10. The received 8-bit data from microcontroller to the GUI is located in the 

"Received" textbox. From here, the received data is analyzed to the respective 
fields which are data sum and flags. The other fields of the GUI are analyzed 

automatically by the GUI itself. The final output is shown below. 
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For the above first test program, the validation result is shown in the table below. 

Table 7 First test program validation result 

Address Instruction PCcount Instruction 

Decode 

RegA RegB Data 

Sum 

Zero 

Flag 

0000 0000 00000000 0000 0000 0000 0 
0001 ADDi A, #3 0001 01010011 0000 0000 0011 0 

Zero flag 
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0010 SUBi A, #1 0010 01110001 0011 0000 0011 0 

0011 CMPi A, #0 0011 10010000 0010 0000 0010 0 

0100 BNE B, #2 0100 10100110 0010 0010 0010 0 

0010 SUBi A, #1 0010 01110001 0010 0000 0010 0 

0011 CMPi A, #0 0011 10010000 0001 0000 0001 0 

0100 BNE B, #2 0100 10100110 0010 0010 0010 0 

0010 SUBi A, #1 0010 01110001 0001 0000 0001 0 

0011 CMPi A, #0 0011 10010000 0000 0000 0000 1 

0100 BNE B, #2 0100 10100110 0010 0010 0010 1 

0101 END 0101 11111111 0000 0000 0000 1 

Second test program is also executed to test the BLT instruction where the 
flow of program will be changed if A is less than B. Here, for CMP instruction, the 
ALU is always doing subtraction operation to check the negative flag by BLT 

instruction and there is no write back operation of ALU result for CMP operation. 

Table 8 Second test program 

Address Instruction Op-code Operandi Operand2 

0001 ADDi A, #3 0101 00 10 

0010 ADDi B, #2 0101 01 11 

0011 CMP A, B 1000 00 01 

0100 BLT D, #1 1011 11 01 

0101 END 1111 
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Figure 22 Second test program final result 

Table 9 Second test program validation result 

Address Instruction PCcount Instruction 

Decode 

RegA RegB Data 

Sum 

N 

Flag 

0000 0000 00000000 0000 0000 0000 0 

0001 ADDi A, #3 0001 01010011 0000 0000 0011 0 

0010 ADDiB, #2 0010 01010110 0011 0000 0010 0 

0011 CMP A, B 0011 10000001 0011 0010 0001 0 

0100 BLT D, #1 0100 10111101 0011 0010 0001 0 

0101 END 0101 1111111 0011 0010 0001 0 
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For the third test program, JMP instruction will be tested. It calls the 

subroutine and return back to the main after finish executing the subroutine 
instructions. 

Table 10 Third test program 

Address Instruction Op-code Operand 1 Operand2 

0000 0000 00 00 

0001 ADDI D, # I 0101 11 01 

0010 ADDI, A, # 1 0101 00 01 

0011 JMP D, #2 1100 11 10 

0100 ADDI A, # 1 0101 00 01 

0101 END 1111 

0110 ADDI, A, # 1 0101 00 01 

0111 RTS 1101 
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Table 11 Third test program validation result 

Address Instruction PCcount Instruction 

Decode 

RegA RegD Data Sum 

0000 0000 00000000 0000 0000 0000 

0001 ADDI 13,41 0001 01011101 0000 0000 0001 

0010 ADDI, A, #1 0010 01010001 0000 0001 0001 

0011 JMP D, #2 0011 11001110 0001 0001 0011 

0100 ADDI A, #1 0100 01010001 0010 0001 0011 

0101 END 0101 11111111 0011 0001 0011 

0110 ADDI, A, #1 0110 01010001 0001 0001 0010 

0111 RTS 0111 1101 
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For the fourth test program, load and store instruction will be tested by writing 
data into the data RAM and load it back for the next instruction. The pseudo code of 
this test program is as below: 

Table 12 Fourth program pseudo code 

Instruction Pseudo code Description 

ADDi A, #3 A=3 Add immediate value 3 to register A. 

PC = PC +1 PC increments by 1. 

ADDi B, #3 B=3 Add immediate value 3 to register'B. 
PC = PC +1 PC increments by 1. 

ADD A, B A=A+B Add content of register B to the 

PC = PC +1 content of register A; write back the 
ALU result into register A. 

PC increments by 1. 

ADDi C, #1 C=I Add immediate value I to register C. 

PC = PC +I Preparing the address to for STR. 

PC increments by 1. 

STR A, C A --> Mem[C] Store content of register A to memory 
PC = PC +1 location 0001. 

PC increments by 1. 

LDR D, C D <-- Mem[C] Load data from memory location 0001 

PC = PC +1 and write back the data into register D. 
PC increments by 1. 

CMP A, D A-D Compare content of register A and the 

content of register D 

BNE B, #0 If A-D=0 If A=D, PC increments by 1, else, if 

PC = PC +1 content of register A is not equal to 
Else the content of register D, PC = 3. 

PC = B[] 

END End of CPU execution. 
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Table 13 Fourth test program instruction decode 

Address Instruction Op-code Operandi Operand2 

0000 0000 00 00 

0001 ADDi A, #3 0101 00 10 

0010 ADDi B, #3 0101 01 11 

0011 ADD A, B 0100 00 01 

0100 ADDi C, #1 0101 11 01 

0101 STR A, C 0001 00 10 

0110 LDR D, C 0000 11 10 

0111 CMP A, D 1000 00 11 

1000 BLT B, #0 1011 01 00 

1001 END 1111 
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Table 14 Fourth test program validation result 

Addr Instr. PC 

Cnt. 

Instruction 

Decode 

Reg 

A 

Reg 

B 

Reg 

C 

Reg 

D 

Data 

Sum 

N 

flag 

0000 0000 00000000 0000 0000 0000 0000 0000 0 

0001 ADDi A, #3 0001 01010011 0000 0000 0000 0000 0000 0 

0010 ADDiB, #3 0010 01010100 0011 0000 0000 0000 0000 0 

0011 ADD A, B 0011 01001101 0011 0011 0000 0000 0110 0 

0100 ADDiC, #1 0100 01011001 0110 0011 0000 000 0001 0 

0101 STR A, C 0101 00010010 0110 0011 0001 0000 0001 0 

0110 LDRD, C 0110 00001110 0110 0011 0001 0000 0110 0 
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0111 CMP A, D 0111 10000011 0110 0011 0001 0110 0000 1 

1000 BNE B, #0 1000 10110100 0110 0011 0001 0110 0000 1 

1001 END 1001 11111111 0110 0011 0001 0110 0000 1 

For the fifth test program, the arithmetic operation will be tested. The CPU 
will execute the addition operation to add two numbers from the registers. 

Table 15 Fifth test program 

Address Instruction Op-code Operandi Operand2 

0000 0000 00 00 

0001 ADDI A, 43 0101 00 11 

0010 ADDI B, #3 0101 00 11 

0011 ADD A, B 0100 00 01 

0100 END 1111 

Table 16 Fifth test program validation result 

PCcount Address Instruction Instruction 

Decode 

RegA RegB Write 

Data 

Data 

Sum 

0000 0000 00000000 0000 0000 0011 0000 

0001 0001 ADDI A, #3 01010011 0011 0000 0011 0000 

0010 0010 ADDI B, #3 01010111 0011 0011 0011 0000 

0011 0011 ADD A, B 01000001 0011 0011 0011 0000 

0100 0100 END 11111111 0110 0011 0110 0110 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

This chapter discuss the conclusion arrive after completing this project and 

recommendation or the future work that can be done to improve the project. 

5.1 Conclusion 

As mentioned in the chapter one, the objective of this project is to provide a 

new learning environment for Computer System Architecture class for student to 

learn computer system architecture at gate level on how a CPU execute an instruction. 

The CPU functional unit is designed and fabricated part by part and then they are 

combined together to get a completed full run working CPU with interfacing to a 
Graphic User Interface via serial communication between computer and 

microcontroller. 

5.2 Recommendation 

For future work, there are a lot of improvements that can be done to improve this 

project. Such improvements include but not limited to: 

" Full working CPU with capability of handling an Operating System. With a 

complete working CPU, there would be much more areas that this project can 

educate student when such areas like Operating System, assembler and 

compiler design are included. 
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APPENDIX E 

SOURCE CODE FOR CONTROL LOGIC 
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#use delay(clock=4000000) 
#fuses XT, NOWDT, NOPROTECT, NOLVP 

main() 
{ 

: intl op_code_3, op_code_2, op_code_1, op_code_0; 

set tris c(OxOf); 

settrisb(OxOO); 
settrisd(OxOO); 
set tris e(OxOO); 

-{ 

op_code_3 = input(PIN_C3); 
op_code_2 = input(PIN_C2); 
op_code_1 = input(PIN_C1); 
op_code_0 = input(PIN_CO); 

:, ((input(PIN C3) == 0) && (input(PIN C2) == 0) && 
(input(PIN_C1) == 0) && (input(PIN C0) == 0)) 

{ 
output b(0x09); 0000 1äG1 
outputc(0x90); 1001 xxxx 
output d(Ox2f); 
output e(0x07); 

ý 
. 

1` ((input(PIN_C3) == 0) && (input(PIN C2) == 0) && 
(input(PIN_C1) == 0) && (input(PIN C0) == 1)) 

{ 
output_b(0x09); 1001 
outputc(Ox90); xxxx 
outputd(Oxlb); 1011 
output e(0x03); 

} 

((input(PIN C3) _= 0) && (input(PIN_C2) == 0) && 
(input(PIN_C1) _= 1) && (input(PIN_C0) _= 0)) 

{ 
output b(Ox09); 
output C(OX90); 
outputd(Ox9f); 1f! C1 1111 
output_e(Ox01); 

} 

1' ((input(PIN C3) == 0) && (input(PIN_C2) == 0) && 
(input(PIN_C1) == 1) && (input(PIN_C0) == 1)) 

{ 
outputb(0x09); 0000 1001 
output_c(0x90); : 111 xxxx 
output d(Oxff); 
output e(0x02); 

} 

77 



((input (PIN 
_C3) 

== 0) && (input(PIN_C2) _= 1) && 
(input(PIN_C1) == 0) && (input(PIN_CO) == 0)) 

{ 
output_b(0x09); 06vv ýuui 
outputc(0x90); -101 xxxx 
output d(Oxff); 
output e(0x03); 

} 

((input(PIN_C3) _= 0) && (input(PIN_C2) _= 1) && 
(input(PIN_C1) == 0) && (input(PIN_CO) == 1)) 

{ 
outputb(0x09); 0000 1001 
outputc(0x90); 1001 xxxx 
output_d(Oxff); .' 
output e(0x02); 

} 

((input(PIN C3) _= 0) && (input(PIN C2) _= 1) && 
(input(PIN_C1) == 1) && (input(PIN C0) == 0)) 

{ 
output b(Ox89); 
output_c(0x60); xxxx 
output_d(Oxff); 1111 
output_e(0x03); ý' 

I 

((input(PIN_C3) == 0) && (input(PIN C2) _= 1) && 
(input(PIN_C1) _= 1) && (input(PIN_CO) == 1)) 

{ 
output_b(0x09); 
output_c(0x60); 
output d(Oxfe); 1111 1 
output e(0x02); 

} 

: ((input(PIN_C3) == 1) && (input(PINC2) == 0) && 
(input(PIN_C1) == 0) && (input(PIN_C0) == 0)) 

{ 
outputb(0x89); 1001 
outputc(0x60); x:: xx 
output d(Oxff); 
output e(OxOl); 

} 

((input(PIN_C3) == 1) && (input(PIN C2) == 0) && 
(input(PIN_C1) == 0) && (input(PIN_C0) == 1)) 

{ 
output 

_b(0x09); outputc(0x60); 10 xxxx 
output d(Oxfe); 1111 1110 
output e (OXOO) ; : ": xxx :: nnn 

} 
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