

EDUCATIONAL PROCESSOR

By

HAFIZUL HASNI BIN MANAB

FINAL PROJECT REPORT

Submitted to the Electrical & Electronics Engineering Programme
in Partial Fulfillment of the Requirements

for the Degree
Bachelor of Engineering (Hons)

(Electrical & Electronics Engineering)

Universiti Teknologi Petronas

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2010

by
Hafizul Hasni Bin Manab, 2010

1

CERTIFICATION OF APPROVAL

EDUCATIONAL PROCESSOR

by

Hafizul Hasni Bin Manab

A project dissertation submitted to the
Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)
(Electrical & Electronics Engineering)

Approved:

(Mr. Patrick Sebastian)
Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

June 2010

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Hafizul Hasni Bin Manab

111

ABSTRACT

This report discusses the overview of the chosen project, which is an

Educational Processor. The objective of this project is to develop a simple processor

with TTL logic for educational purpose. This processor will be used as a learning tool

for Computer System Architecture class. To complete this project, the scope of study

will cover the computer system architecture and Central Processing Unit (CPU). The

CPU datapath design and hardware circuit design is based on the MIPS single-cycle

processor. The methodologies that will be involved in this project are design and

validation phase, constructing the hardware and then interfacing phase through serial

communication between CPU and a graphic user interface using microcontroller. The

prototype would be used as a learning tool in Computer System Architecture class

and to assist student in understanding the computer architecture.

iv

ACKNOWLEDGEMENTS

Special thanks to project supervisor Mr. Patrick Sebastian, Lab Technicians

Ms. Siti Fatimah, Ms. Siti Hawa and Mr. Isnani who help me a lot in finishing this

project.

Not to forget, greatest appreciation to my family who have supported

throughout the development of this project as well as friends who have given a lot of
helps.

V

TABLE OF CONTENTS

ABSTRACT ... iv

ACKNOWLEDGMENT ... v

LIST OF TABLES iii

LIST OF FIGURES .. ix

LIST OF ABBREVIATIONS ... x
CHAPTER 1 INTRODUCTION

.. 1

1.1 Background of Study .. 1

1.2 Problem Statement .. l

1.3 Objective and Scope of Study .. 2

CHAPTER 2 LITERATURE REVIEW ... 3

2.1 Procedure Identification ... 3

2.2 Instruction Sets Architecture .. 3

2.2.1 Complex Instruction Sets Computing
...................................... 4

2.2.2 Reduced Instruction Sets Computing 5

2.2.3 Instruction usage .. 6

2.2.4 RISC instruction format ... 7

2.2.5 Addressing modes .. 8

2.3 CPU Functional Units ... 9

2.3.1 Program Counter (PC) ... 9

2.3.2 Program/Instructions Memory ... 9

2.3.3 Instruction Register .. 10

2.3.4 Register File (General Purpose Registers) 10

2.3.5 Arithmetic and Logic Unit ... 10

2.3.6 Data Memory ... 10

2.3.7 Control Logic ... 10

2.3.8 Address Bus and Data Bus ... 11

2.4 Brief introduction to MIPS processor ... 11

CHAPTER 3 METHODOLOGY .. 14

3.1 Project Flowchart .. 14

3.1.1 Research Study
... 15

3.1.2 Instruction set design ... 15

3.1.3 Datapath design .. 16

V1

3.1.4 Circuit schematic design .. 17

3.1.5 Simulation .. 17

3.1.6 Prototype construction and module/unit test 18

3.1.7 Combine modules (CPU functional units) and test 18

CHAPTER 4 RESULT AND DISCUSSION ... 19

4.1 Design phase results ... 19

4.1.1 Instructions designed ... 19

4.1.2 Instruction set formats .. 20

4.1.3 Datapath design result .. 22

4.1.4 Circuit schematic design .. 26

4.1.5 CPU characteristic ... 26

4.1.5.1 Programming the processor .. 26

4.1.5.2 Processor control .. 26

4.1.5.3 Arithmetic and Logic Unit .. 27

4.1.5.4 Registers and data RAM ... 27

4.1.5.5 Summary of CPU operation ... 27

4.1.5.6 PCB Implementation .. 27

4.2 CPU Functional Unit Control Signals .. 28

4.3 CPU Hardware Fabrication .. 30

4.4 Graphic User Interface ... 31

4.5 CPU-GUI Interfacing ... 32

4.6 Testing Procedure and Validation Result 33

CHAPTER 5 CONCLUSION AND RECOMMENDATION 50

5.1 Conclusion .. 50

5.2 Recommendation .. 50

REFERENCES ..
51

APPENDICES ...
52

Appendix A PROJECT GA NTT CHART ..
53

Appendix B CIRCUIT SCHEMATICS ... 55

Appendix C SIMULATION RESULTS ..
65

Appendix D PCB LAYOUTS ..
67

Appendix E SOURCE CODE FOR CONTROL LOGIC 76

vii

LIST OF TABLES

Table I Comparison between RISC and CISC processor ...
5

Table 2 Frequency of instruction usage ..
7

Table 3 MIPS pipeline architecture ...
12

Table 4 Control signal ...
28

Table 5 First Test program ..
33

Table 6 GUI's serial communication configuration .. 33

Table 7 First test program validation result .. 40

Table 8 Second test program ... 41

Table 9 Second test program validation result .. 42

Table 10 Third test program .. 43

Table 11 Third test program validation result ... 44

Table 12 Fourth program pseudo code .. 45

Table 13 Fourth test program instruction decode .. 46

Table 14 Fourth test program validation result ...
47

Table 15 Fifth test program ...
48

Table 16 Fifth test program validation result .. 48

viii

LIST OF FIGURES

Figure 1 RISC Berkeley's instruction format .. 7

Figure 2 MIPS instruction formats .. 13

Figure 3 Project flowchart ... 14

Figure 4 Instruction format design .. 15

Figure 5 Operand fields design for R-type instructions
.. 16

Figure 6 R-type instruction format .. 20

Figure 7 I-type instruction format ... 21

Figure 8 J-type instruction format ... 21

Figure 9 R-type instruction datapath
... 22

Figure 10 I-type instruction datapath .. 23

Figure 11 J-type instructions datapath .. 24

Figure 12 Combined datapath ... 25

Figure 13 CPU fabricated .. 30

Figure 14 CPU graphic user interface ... 31

Figure 15 Full system Educational Processor
... 32

Figure 16 GUI's serial communication configuration .. 34

Figure 17 Address switches and RD/WR switch .. 35

Figure 18 Writing a CPU Instruction .. 36

Figure 19 Sending a CPU Instruction ... 37

Figure 20 Requesting hardware result ... 39

Figure 21 First test program final result .. 40

Figure 22 Second test program final result ... 42

Figure 23 Third test program final result .. 44

Figure 24 Fourth test program final result .. 47

Figure 25 Fifth test program final result ... 49

ix

LIST OF ABBREVIATIONS

RISC Reduced Instruction Set Computing

CISC Complex instruction set computing

CPU Central Processing Unit

RAM Random access memory

EPROM Erasable Programmable Read-only memory

PC Program Counter

CSA Computer System Architecture

TTL Transistor-transistor Logic

OPCODE Operation Code

PCB Printed Circuit Board

ASM Assembly Code

GUI Graphic User Interface

X

CHAPTER 1

INTRODUCTION

This chapter discusses the introduction to this project. It covers the

background of study that discuss the background knowledge involve in this project.
The problem statement and objectives that lead to implementation of this project are

also discussed.

1.1 Background of Study

This project is about a development of a simple processor for learning

purpose, which will be used in Computer System Architecture class. The main

objective is to provide an opportunity for the student to examine at the gate level on
how a processor executes an instruction. This educational processor will be a great
learning tool for computer system student to learn computer system architecture.
Therefore, the knowledge required in this project is application knowledge of digital

electronics as well as computer system architecture. This project also required
knowledge in microcontroller since this processor would be interfaced to the

computer by using microcontroller via serial communication. After that, all the
information and operation involved during execution of an instruction by the

processor will be shown in a graphic user interface.

1.2 Problem Statement

The processor is an essential part of a computer system. The development of
the processor has involved over the years. In 1945, a mathematician John Von

Neumann outlined the design of most modern CPUs [3]. Most of the processor
designs now are very sophisticated and complex.

The Electrical and Electronics Engineering student in UTP who are majoring
in Computer System have the opportunity to learn about computer system through
Computer System Architecture course. The current Computer System Architecture

course exposes the student to the course with lecture as well as hands on lab

assignment.

Nevertheless, there is no main focus on any specific computer architecture.
Most of the time, the overall CPU datapath design that they are exposed to be just the
high-level functional unit block that explains the CPU datapath.

Therefore, this project would give an opportunity the Computer System

Architecture student to explore and examine at the gate level of CPU datapath, which

means the student can observe how each logic device interact with each other to

complete a CPU instruction.

1.3 Objective and Scope of Study

The main objectives of this project are:

" To develop a simple processor as a learning tool in computer system class

" To construct the PCB and validate the prototype

" To develop a graphic user interface to program the designed CPU

The scope of work for this project covers the planning and design phase, developing

the prototype phase, validating phase and the last is future improvement phase. In the

planning and design phase, the scope of work will be focus on processor instruction

set architecture and datapath. After that, it will followed by prototype developing

phase where the data path hardware is implemented using the TTL logic implemented

on PCB. In the validating phase, the datapath hardware will be interfaced to the

computer with a graphic user interface by using microcontroller.

2

CHAPTER 2

LITERATURE REVIEW

This chapter discusses the theory and paperwork review related to this project.
Details on the CPU architecture and datapath design would also be discussed here.

2.1 Procedure Identification

There are two ways of introducing the processor. One is to explain how a

computer works of its internal information flow by describing the way in which
information is transmitted between registers and the internal units and showing how

an instruction is decoded and interpreted. The other approach is to introduce the

native language, or machine code, of a computer and demonstrate what computer
instructions can do [1].

2.2 Instruction Sets Architecture

Beginning with the hardware and looking at very primitive operations hides

the "big picture". So, beginning with the explanation of an instruction set architecture

would give reader the whole picture of a processor and therefore the detail hardware

level of how an instruction is translated and executed could be easily understand.

An instruction set architecture (ISA) is an abstract model of a computer that
describes what it does, rather than how it does it (functional definition). So, it can be

said that the instruction set architecture and the instructions available in the processor
determine the processor capabilities and performance [1].

3

The instruction set architecture varies from machine to machine. Instructions

are classified by format and the number of operands they take. The three basics

instruction types are data movement which copies data from one location to another,

data processing which operates on data, and flow control which modifies the order in

which instructions are executed.

Instruction formats can take zero, one, two or three operands. It depends on

how much bit is used to represent the whole instructions. The instruction sets

architecture can be distinguished by two classes which are the Complex Instruction

Set Computing (CISC) and the Reduced Instruction Set Computing (RISC).

2.2.1 Complex Instruction Sets Computing

The CISC employs complex instruction which usually their instruction width
(in bits) could vary depending on the type of instruction (data movement, data

processing and flow control). For example there would be an instruction that consists

of only the opcode (instruction identifier in bits) where it does not require any

operation on the operand e. g.: Return from Subroutine (RTS).

Beside the variety of instruction width, each instruction could possibly be very

complex in a way that it could perform operation with complex addressing. Complex

addressing requires extra decoding and operation cycle. This is achieved usually

through the usage of microcoding.

With variety of instruction width and complexity, it would take variable total

of clock cycles to execute each instruction. It is because each instruction's opcode

would be decoded firstly in the earlier cycle. The rest of the cycle would depend on

the type of the instruction, which would make each instruction take at least two clock

cycles to be executed.

4

2 2.2 Reduced Instruction Sets Computing

One of the important characteristic of a RISC is that having the single-
instruction format in contrast to the variable-width (length) instruction of CISC. This

reduces the complexity of the decoding logic itself and thus could be used to easily

educate new student in learning computer architecture.

Typically a RISC instruction format would consist of Opcode + Registers

addresses. RISC is designed to contain only the register-to-register operation while
for the memory access operation, RISC introduce a special instruction which is

Load/Store. Thus, addressing modes in RISC processor are not as sophisticated as
CISCs'.

RISC processors aim to execute on average one instruction per clock cycle.
This goal imposes a limit on the maximum complexity of instruction and so to the

hardware design of a RISC processor.

The table 1 below summarizes the differences between RISC and CISC

processor.

Table I Comparison between RISC and CISC processor

CISC RISC

Instruction width Variable instruction Fix instruction width
width

Instruction cycle Multiple clock-cycle Single clock-cycle

Register-to-register data

Addressing modes
Complex addressing transfer with special
mode for memory access instruction for memory

access

5

2.2.3 Instruction usage

From the introduction of the microprocessor in the mid 1970s to the mid
1980s there was an almost unbroken trend toward more and more complex

architectures [1]. With the advancement in the chip fabrication process, it allows
designers to add more to the microprocessor's central core, which leads to

cumbersome architectures and inefficient instruction sets but has tremendous

commercial advantage for the end user. Intel's 8086 illustrates this trend particularly

well, because Intel took their original 16-bit processor and added more features in

each successive generation [1].

Although processors were advancing in terms architectural sophistication in

the late 1970s, a high price was being paid for this progress in terms of efficiency [1].

Complex instructions required complex decoders and a lot of circuitry to implement

while there was no guarantee that these instructions would be used in actual

programs.

Computer scientist carried out extensive research over a decade or more in the
late 1970s into the way in which computers execute programs [1]. Theirs studies
demonstrated that there is no uniform frequency in which different type of
instructions are executed. Some types of instructions are executed far more frequently

than others.

Fairclough divided machine-level instructions into eight groups according to

type and compiled the statistics described by Table 2. The mean value represents the

result averaged over both program types and computer architecture.

6

Table 2 Frequency of instruction usage

Instruction Group Mean Value (%)

Data movement 45.28

Program modification (branch, call, return) 28.73

Arithmetic 10.75

Compare 5.92

Logical 3.91

Shift 2.93

Bit manipulation 2.05

Input/output and miscellaneous 0.44

2.2.4 RISC instruction format

One of the characteristics of RISC architectures is that it has a single
instruction format. By providing a single instruction format, the decoding of an
instruction into its component fields can be performed by a minimum level of
decoding logic. A RISC's instruction length should be sufficient to accommodate the

operation code field (opcode) and one or more operand fields [1]. Consequently, a
RISC processor may not utilize memory space as efficiently as a conventional CISC

microprocessor.

Figure 1 describes the format of a Berkeley RISC instruction, one of the first

RISC processor that came from the University of California at Berkeley.

4-

31 25 24 23 19 18

32 bits
14 13 12 54 0

Op-code Scc Destination Source 1I000000000
S4 S3 Sz S, so

1
111211101919176151 i4 i3 iz ü6 Op-code

IM

"--ý" -. ý--ý. --. 7 bits 1 bit 5 bits 5 bits

00000000
'12'11 '10 Ys'l Ys

9 bits

Figure 1 RISC Berkeley's instruction format

Scc Destination Source 1

Source 2

S bits

S4S35zSl 5p

'4 'j '2 '1 6

7

The op-code field is the Operation code field that indicates the code for each

instruction. Each instruction has its own unique Op-code. Scc field whether the

condition code bits are updated after the execution of an instruction. Destination and

Source I fields determine the address of register of which the result would be written
into and the first source for an instruction's operand, respectively. The IM field

determines the source for another instruction's operand. If it is 0, the source is the 5-

bit address of the registers while if it is 1, the source is the 13-bit immediate number.

Because of 5-bits are allocated to each operand field, it follows that this RISC

can access up to 25 = 32 internal registers at a time.

2.2.5 Addressing modes

Addressing mode is the method by which the location of an operand is specific within

an instruction. Some of addressing modes most commonly used are describe as
follows.

1. Immediate addressing. Operand is given in the instruction itself. Usually the

second source of instruction's operand is supplied as part of the instruction.

2. Address registers indirect addressing. Operand is taken from, or result placed
in, a pointer register. RISC processors allow any registers to act as a pointer.

3. Base addressing. Operand is in memory and its location is computed by

adding of offset to the content of a specified base register. In RISC processor,

this type of addressing mode is used by the Load and Store instruction to

access RAM. The computed result would be asserted to the address of the

RAM, and then the data would be stored into that location or the data is

loaded into the destination register from that location.

4. PC-relative addressing. Same as base addressing, but with the register always
being the program counter.

8

2.3 CPU Functional Units

Before looking into the details of how a CPU works, it is important to

understand the relationship between the CPU, the memory and the program. The

program contains list of instructions to be executed by the processor, for example the

applications and software that available nowadays. The memory temporarily stores
the list of instruction of the program and also the data of the program during CPU

execution. The CPU read one-by-one list of instruction of program from the memory

and perform the required execution on the data and probably store back the data in the

memory.

In this project, the focus is on how this list of instructions in fetched from the

memory, decoding the instructions producing the appropriate control signal, perform
instruction-specific execution on the data and probably store the result of execution
back into the memory. This process is shown in the project by the combinational
logic circuits that make up CPU internal units which do specific job to complete one
instruction. CPU internal units include are as follows:

2.3.1 Program Counter (PC)

Program counter contain the next instruction address to be executed. This address will
be input the program RAM to access a specific line of instructions. Normally, PC

would be increased after every instruction executed to point to the next address

except if flow control instructions is executed which modify the bits contain in the
PC.

2.3.2 Program/Instructions Memory

Program memory contains the list of instruction to be executed. In Von Neumann

architecture machine, program memory and data memory use the common RAM,

while in Harvard architecture machine, program memory and data memory use
separate RAMs.

9

2.3.3 Instruction Register

Instruction register contains the current instruction. It stores the current register

temporarily and connects to various other logic devices such as control logic, and

register files. When the next instruction is executed, it will overwrite the content of

this instruction register.

2.3.4 Register File (General Purpose Registers)

In RISC machine, register files are the important characteristic. It serves as the

general purpose register to store temporary data that is executed by specific
instruction. Register files are pretty similar to the RAM except that it doesn't have as

much capacity as RAM and thus reduce the cost. Typically, registers are faster than

RAM that makes execution of register-register instruction could be faster.

2.3.5 Arithmetic and Logic Unit

ALU is the unit that does the manipulation to the data such as addition, subtraction,
logical AND, logical OR and many more.

2.3.6 Data Memory

Data memory is the storage device that store data from the program executed. It could
be the constants, variables, address etc. Normally, data that are stores here are not a
frequently used data as accessing the memory is slow thus make the program

execution slower.

2.3.7 Control Logic

Control logic is among most important modules that make up a processor. It controls

the sequence and datapath flow of an instruction. When an instruction is executed, it

fetch and decode the opcode of that instruction and output the control logic signals to

the appropriate modules such as register files, ALU and memory.

10

2.3.8 Address Bus and Data Bus

Bus is used to simplify the movement of data from point to point in a computer. Bus

is analogous to a highway and the devices are analogous to junctions that connect to

this highway. By having both address bus and data bus, it is possible to reduce the

number of wires that interconnect within a computer but, it introduces a complexity.
In a bused system, only one communication from point to point could happen at a

time. Thus a careful synchronization needs to be taken care of and each bus access

time has to be long enough for the safe reception in a communication.

2.4 Brief introduction to MIPS processor

MIPS processor is designed in 1984 by researchers at Stanford University.

MIPS is part of RISC processor family.

Like the other processor in RISC family, MIPS employs load-store

architecture. This means that there are two instructions for accessing memory, a Load

instruction to load data from memory, and a Store instruction to write data into

memory. It also means that none of the instruction can access memory directly. To do

operation on data, the data has to be loaded into registers and the operation is

performed on the data in the register. As most of the instruction operations are
between registers, they allows faster execution and simpler circuit design.

MIPS processor executes instruction in a single clock cycle because of the

nature of a RISC processor which is single instruction format. This fact allows the

MIPS instructions to be split into stages for implementing pipelining. The stages are:

1. IF - Instruction fetch. Fetch the next instruction from memory using
the address in Program Counter register and stores the instruction in

Instruction Register.

2. ID - Instruction decode. Decode the instruction in the Instruction

Register, calculate the next Program Counter, and read any operand

required from the register files.

11

3. EX - Execution stage. Perform arithmetic and logic operation.

4. MA - Memory access. Perform any memory access required by the

current instruction.

5. WB - Register write back. For any instruction with destination register

specified, it writes back the result into the destination register.

By splitting instructions into different stages, it results in 5-clock cycle

execution. But, with pipeline implementation, this technique would attempt to

execute instructions approximately in one clock-cycle. Table 3 below shows the

pipeline implementation in MIPS processor.

Table 3 MIPS pipeline architecture

CYCLE IF ID EX MA WB

I i

2 i+l i

3 i+2 i+l i

4 i+3 i+2 i+l i

5 i+4 i+3 i+2 i+ l i

6 i+5 i+4 i+3 i+2 i+l

7 i+6 i+5 i+4 i+3 i+2

Examining the table above, it can be clearly seen that from the fifth cycle, the

first instruction is completed. Then, at the next cycle, the i+1 instruction (next

instruction) is completed. This goes on the same towards further cycle. Although it

takes five cycles to complete an instruction, but approximately the instructions are

executed in one cycle. This is explained before, from the fifth cycle onwards, each
instruction execution is completed.

12

The words "approximately" from the second last statement do carry an
important meaning. Theoretically, the single-cycle approximation could be achieved
based on the explanation before. But in reality, there are some dependencies of an
instruction to another instruction. It means that some instruction stage could not be

executed before it gets the valid data from instruction before. This hazard introduces

"waiting delay", which makes the single-cycle approximation could not be achieved.

The MIPS instruction has three basic formats. Figure 2 below illustrates the of

the MIPS instructions.

32 bits

/. ýý! F'Iý. ýil'.... .

Figure 2 MIPS instruction formats

S bits 5 bits

Target

Immediate value

6 bits

0

R-type instruction is a register-to-register format for all data processing

instructions. I-type instruction is immediate format for either data processing
instructions with a literal or load/store instructions with an offset. While J-type

instruction is the format for branch/jump instruction with a 26-bit literal that is

concatenated with the six most-significant bits of the program counter to create 32-bit

address.

31 26 25

ý'_`
F Source S

6 bits

21 20 16 15 1110 65

Source T Destination Shift amount Function

. 0.4 ý

S bits 5 bits

1 Op-code Source S Source T

13

CHAPTER 3

METHODOLOGY

This chapter discusses how the project is carried out. It includes the method of

research, tools and software involved.

3.1 Project Flowchart

Research study

Circuit schematics design

Simulation in
Quartus

Design completed

Figure 3 Project flowchart

PCB fabrication

Prototype Construction

Functional
unit test

Combine all units

Project completed

14

3.1.1 Research Study

In research study phase, the theory behind the CPU design and CPU

architecture is studied. This includes the study on the CISC and RISC architecture
design of a CPU. The research mainly focuses on the decision between these

architectures that would best educate student.

After decision is made, the research continues on the details of RISC

architecture. To understand the CPU architecture, the knowledge on these theories is

important, which include instruction set architecture, CPU functional units and CPU

data path. These theories are explained in the Literature Review chapter before.

The sources of research include from the books, websites, and journals. The

author's participation in Computer System Architecture classes has also contributed
to the research study.

3.1.2 Instruction set design

In this stage, instruction sets architecture is designed. This defines the whole
identity of the processor itself. Since the processor would have a very limited

instruction set, thus the choice of instructions have been made according to research

that shows the most commonly used instruction in a program.

Design starts with the format of the instruction design. The instruction format

defines the width of the instruction, op-code field and operand fields. Figure 4 below

illustrates how the instructions format is design.

How many bits?
14 f> -4

Opcode field

A

How many operands? How many bits?

Operand field(s)

How many bits?

Figure 4 Instruction format design

15

Concurrently, the selection of instructions to be included in the CPU is done.

As explained before, the selection is done based on the most commonly used
instructions in a program. Each of the selected instruction is then assigned with

specific operation code (opcode). Their operands are then fitted accordingly. This

means that each instruction would have different operands type as well as number of

operands to be fitted with the designed instruction format. Figure below illustrates

how the operand field for R-type instruction is fitted.

.4

Opcode

Opcode Field .4

Source?
Destination?
Immediate?

Operand fields

Figure 5 Operand fields design for R-type instructions

3.1.3 Datapath design

In this stage, the datapath of each chosen instructions are design. This is the
last stage of CPU design. Datapath determines the connectivity between each CPU's

functional units with each other. It translates an instruction into the hardware that

does the execution to complete the instruction. The path for data movement from the

start at the instruction fetch from memory towards the end, data write back into

memory, is constructed. Hence, it is called "datapath".

To design a datapath, the formats of instructions are examined. For this

project, there are 3 types of instruction formats that categorized all the instructions.

This is discussed later in the next chapter. The purpose of identifying the formats of
instructions is because instructions with the same format would have the same
datapath.

Next is examining CPU functional units operations during the execution of a
certain instruction format. For example, what does the Program Counter do? Does it

increment to next instruction or it fetch address for branch instruction? Does register
files do read operation only or both read and write operation? Does ALU is executing

on the data or it does nothing? Does data memory access is needed or not? All of
these factors determine the datapath of an instruction.

Source?
Destination?
Immediate?

16

Knowing the operation of each CPU functional units, datapath for each
instruction format is then designed. The final step would be combining those datapath

for each format together to form the whole CPU datapath. The datapath designed for

this project would be discussed in the next chapter, which is result and discussion

chapter.

3.1.4 Circuit schematic design

In this stage, the datapath designed earlier is translated into combinational
logics circuit. Each CPU functional unit logic circuit is constructed.

The schematic is designed using the Quartus software. Verilog HDL codes are

written to simulate TTL devices such as registers, multiplexers and so on. Then, the

CPU datapath logic circuit is constructed from these block diagrams of TTL devices

emulations.

The purpose of designing the schematic using the Quartus is to allow

simulation of the CPU. In fact, this schematic could be directly downloaded into an
FPGA.

3.1.5 Simulation

In this stage, simulation of the designed schematic is done. The purpose of

simulation is as the first stage of error debugging.

Using this simulation, it provides the timing waveform of signals. These

signals are examined whether it behaves as it should be in the datapath designed

earlier. This fact prevents major debugging to the circuit later, because if there is any

modification to the datapath required, it could be done in software rather than
hardware which are tedious and costly.

17

3.1.6 Prototype construction and module/unit test

In this stage, the prototype is developed according to the schematic designed

before. Development are done phase by phase according to CPU functional unit (PC,

register files, etc).

After developing each CPU functional unit, it is put into a test. The test is

done by invoking all possible inputs to the unit and verifies the output signals

produce. The error is expected to be just the wrong connections, pins not connected or

the TTL devices not functioning, if any.

3.1.7 Combine modules (CPUfunctional units) and test

After completing the entire module, the modules are combined together

producing the whole processor. It is then put into a test again. The test procedure is

done by loading a program into the processor and then executes.

In the design, the clock circuit is built in such a way that it can produce a

single clock-cycle at a time. Thus, the program could be executed instruction by

instruction.

For each instruction, the signals from each device each checked to ensure that

all are functioning accordingly. After completing a program, the test is repeated again
by loading the same program. This is to ensure the consistency of the circuit behavior.

18

CHAPTER 4

RESULT AND DISCUSSION

This chapter discusses the result from the design phase and the simulation

phase as well as the construction phase. The problem arise along those phases would

also be discussed here.

4.1 Design phase results

4.1.1 Instructions designed

Instruction sets that are designed are as follows:

Data movement instruction:

LDR rd, rs - load data from memory location pointed by register rs into

register rd.

STR rd, rs - store data from register rd to memory location pointed by

register rs.

MOV rd, rs - move (copy) data from register rs into register rd.

MOVI rd, Imm - move immediate (literal) value data into register rd.

Data processing instruction:

ADD rd, rs - Add content of register rs to content of register rd and store the
result into register rd.

ADDI rd, Imm - Add immediate (literal) value data to content of register rd and
store result into register rd.

SUB rd, rs - Subtract content of register rs from content of register rd and
store result into register rd.

SUBI rd, lmm - Subtract immediate value data from content of register rd and
store result into register rd.

CMP rd, rs - Compare content of register rd and content of register rs and set
the condition code register (status register)

19

CMPI rd, IMM - Compare content of register rd with immediate value and set the
condition code register (status register).

Flow control instruction:

BNE rt, Imm - Check the CCR for zero flag, if not set, change PC to point next
address pointed by content of register rt + immediate data.

BLT rt, Imm - Check the CCR for negative flag, if set change PC to point next
address pointed by content of register rt + immediate data.

JMP rt, lmm - Unconditional jump (subroutine/function call) to address pointed
by content of register rt + immediate data.

RTS - Return from subroutine. Restore the pc with next address from
stack pointer.

END - Halt or stop the cpu operation. Terminate the program/end of
line.

4.1.2 Instruction set formats

Instruction set architecture designed is using 8-bit word. Four most significant bits are

the Operation code (opcode) field while the rest four-bits are the Operand field. The

instructions could be divided into three formats according to MIPS processor which

include:

1. R-type instructions (register-to-register instruction)

7

OPCODE

43

Source 1 register
Destination register

Source 2 register

Figure 6 R-type instruction format

21 0

20

2. I-type instructions (immediate operand)

7

OPCODE

43 21

Source 1 register
Destination register

immediate data

Figure 7 I-type instruction format

0

3. J-type instructions (branch/jump instruction)

7

OPCODE

43 21

target/pointer

register

immediate offset

Figure 8 J-type instruction format

0

21

4.1.3 Datapath design result

Datapath is designed based on the three formats above explained in the

chapter 3. The first datapath is for the R-type instructions. The result is as follows:

F+ý

s-'1.44frtss

1.1rný: ýiA>

N"r: lici
[8-0]

hsb w: tia n
tW na ry

ý

t. tý4, F. r tt
I

[7-4]

Control Logic
circuit

drl s7gtih

111111111

[3-2]

[1-0]

[3-2]

Fýr.)r. in"

RIM Pead
r? gl£62/ 1 daw 1

F++f Feud
legla«= daia:
tld.
tvgnbs
Wi*, Frgiskss
Cat*

I
Rc; Dat.

Figure 9 R-type instruction datapath

This datapath is the same for all instructions as follows:

" ADD

" SUB

" MOV

" CMP

" LDR

0 STR

Faed RxW
Addiacc CvG

tYie
MiLefs

'Cilila MmypY
[4Ws

As shown in figure 9, the PC is incremented by 1 only. This is because these

instructions do not affect the program sequence. Bit 7-4 is asserted to the control

logic opcode address to produce appropriate control signals. Bits 3-2 is asserted for

address Read register I and also address write register. This provides the first operand

ALU \
Zar.:.

R-; 4:. W

22

for the instruction as well as the destination register to be written into. Bit 1-0 is

asserted for Read register 2 providing the second operand for the instruction. The

multiplexer is there to select source for data to be written into destination register.
This is because instruction like MOV instruction does not require ALU operation,
instruction like ADD instruction requires ALU operation and LDR instruction that

take the data from the data memory.

The second datapath is for the I-type instruction. The result is as follows:

RCgDafa

Figure 10 1-type instruction datapath

This datapath is the same for all instructions as follows:

" ADDi

" SUBi

" MOVi

" CMPi

23

As shown in figure 10, the PC is also incremented by 1 only. This is because

these instructions do not affect the program sequence. Bit 7-4 is asserted to the

control logic opcode address to produce appropriate control signals. Bits 3-2 is

asserted for address Read register I and also address write register. This provides the

first operand for the instruction as well as the destination register to be written into.

The difference between R-type datapath and I-type datapath is the bit 1-0 the two bits

source for second operand of the instruction. The multiplexer is there to select source

for data to be written into destination register. This is because instruction like MOV

instruction does not require ALU operation while instruction like ADD instruction

requires ALU operation. Another difference from the R-type instruction is that these

instructions do not involve data memory access.

c

F-M ýsaýsz

The third datapath is for the J-type instruction. The result is as follows:

L

II16ätlý: YC

[8-O]

Inst wtian
örnanr

I t. 1amF :a1 7-4]

3-2]

F.,. 3: ýiiW
I

Fra. f FtAd
I+gict, n + dem i

FK+a"1 Fead
F', ý- deql-

Yi IMt
legito&m

"PiI112
KlgKkl9

(gIp

Hbý Z' os '-
Yi rk
I e2itoem
"4I112

r. lgKkl9

Ca to

stack pointer

ptf- 1--

"-vt

Control logic
circuit

drl sip Mht

11t
"

(1-0

Figure 11 J-type instructions datapath

24

This datapath is the same for all instructions as follows:

" BNE

" BLT

" JMP

" RTS

This format of instruction differs from the two formats before because it

modifies the program sequence. PC is updated with either from three sources which

are increment by 1, stack pointer data, or ALU results. PC updates from source
increment by I if the branch condition is not met, thus resulting no branch operation
is executed. PC updates from source stack pointer data for RTS instruction. This

instruction restores PC with the content of the return address when the JMP

instruction is executed before. PC updates from source ALU results if the branch

conditions is met, thus resulting in branch operation. The address for the branch

subroutine is given by the operand 1 plus with the two bits immediate data.

The combined datapath is then constructed. The result is as follows:

fl,

Id. u i. nk

[3-2]
k [6-0]

[I_0 «rýýý dFirý
Yx0 F: 4a n
tip rna iy

--v

t ko, F, .. 1

I
ReyO.! >

Figure 12 Combined datapath

25

(7-4]

[3-2)

[1-0]

FwN Fusd
1+P"= dole

1SsN

ýii0# Fryistrýs

CrM

i"

.'

k

stack pointer

ý. i-l lii ý 1"1C

ý

P44d Rood
Addiea EWA
WOW
, L: iLets

I. 'liM
Cwa u«r"

M-n, Fi- I

As shown in the figure 12, all the datapath designed are then combined together. To

execute certain instruction in a certain instruction format group, control signals would
have to play this role. It controls the CPU functional units so that only the affected
functional units are "activated".

4.1.4 Circuit schematic design

The designed schematics are provided in the appendix. Those schematics include:

" Program Counter circuit schematic

" Instruction RAM and programming circuit schematic

" Control Logic circuit schematic

" Registers file circuit schematic

" ALU unit circuit schematic

" Clock circuit schematic

" Data RAM and busses circuit schematic

" LED driver circuit schematic

" Input output circuit schematic

4.1.5 CPU characteristic

4.1. S. 1 Programming the processor

As the Instruction sets include the jump (JMP) instruction, two separate RAM

is used; one for the instruction memory and the other one for data memory. To

program the processor, the program will be written into the instruction memory

manually by using the switch to write data into the memory.

4.1.5.2 Processor control

To allow the greater flexibility of the processor, microcontroller is used to

store control signals instead of using control matrix to drive the control signal to each
functional units. This also can reduce defect probability as using lots of gate in the

control matrix.

26

4.1.5.3 Arithmetic and Logic Unit

Based on the reference book [1], there is only ADDER IC that is used in the

processor. This adder can be modified to perform subtraction too. But then, this limit

the capability of the whole processor. Thus, the author has used 74181 chip to replace
the former one. This allows the greater option of instructions to be included in the

processor. The appropriate flag generation has also been designed for the instruction

that require the comparison between two operands.

4.1.5.4 Registers and data RAM

Four general purpose registers is used in the processor. This allows the
flexibility of such instruction as ADD and SUBTRACT. 2Kx8 RAM has been

selected to be used for storing the data of the instruction's result.

4.1.5.5 Summary of CPU operation

All of the instruction will be executed in single-cycle. Half cycle of the

operation is used to decode the instruction and send the control signal, data

processing would also happen during this time. Another half cycle is for register
writeback operation.

4.1.5.6 PCB Implementation

After the design of the CPU is simulated using the quartus software, the next

step is to implement it into PCB. To design the PCB, the schematics for all CPU's

functional units is drew using EagleCAD software. After that, the schematics are

netlisted to board files. Here the actual PCB board layout is designed before it will be

printed as shown in Appendix D.

27

4.2 CPU Functional Unit Control Signals

The control logic signal is configured to all CPU functional units for each
instruction. The control signal will control what action the CPU functional units

should takes. Table below describe the control signal of the respective CPU

functional units.

Table 4 Control signal

A OpCode Program ALU Data RAM I M Mu

s Counter u x

m O x 2

1
7 6 5 4 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2

0 1 2 3 4 5 6 7 8 9 0 1 2 3

C C C C B B B B B B B B C C C C D D D D D D D D E E E

3 2 1 0 0 1 2 3 4 5 6 7 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2

L 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 1

D

R

S 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0

T

R

M 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 1 0 0

0
V

M 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0

0

VI

A 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0

D
D

A 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0

D

DI

S 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0

U
B

S 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0
U

BI

C 1 0 0 0 1 0 0 1 0 0 0 1 0 1 I 0 1 I I I I 1 1 0 1 0 o
M

P

28

C 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0

M
PI

B 1 0 1 0 0 1 0 I 0 0 0 0 1 0 0 1 1 1 1 I 1 1 1 0 0 1 I

N

E

B 1 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 I I

L

T
] I 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 I 1 0 0 I I

M
P

R 1 t 0 1 0 1 1 1 0 0 0 0 1 0 0 1 1 I 1 1 1 1 1 0 0 1 0

T
S

E I l 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 0 1 1 1

N

D

29

4.3 CPU Hardware Fabrication

The results of the CPU fabrication phase are the overall circuit built using the

TTL logic on Printed Circuit Board (PCB). Figure below illustrates the fabrication

phase.

Control
logic

Register
file

Data RAM

Instruction
RAM

ALU

Program
Counter

Mux 1 Input/Output

Figure 13 CPU fabricated

30

Mux 2

4.4 Graphic User Interface

The result of the graphic user interface is a Windows application that was

programmed using Visual Basic to send 8-bit instruction one by one to the CPU. User

needs to program the CPU by writing the instructions from this GUI and then the

instructions will be written to the CPU's instruction RAM. Figure below shows the

programmed graphic user interface.

Edxrotil Crocenor

COUt Pat

Part/

Bt Rde t)t a; Lda ab

SdtAse Rox Cortol

O "Ode - =1 Al
.
a: kebu[bm Decode

Viae Read

:; *OEWO

CCR A. Q««
zao Rey

tbpdrve Rog

Cariol 5qieb

PC " ALU F Fku 1

PC_1
.
ALU_E A1n_2=.

PC_2 ALU-7

PC_3 DR-,

PC? DR_t

.
4L' J_- DR

-2
; LU1 DR3

? LU 2 DR
-5

. -1U 3 DR
-E

ALU-,: to

fbtmrsd Traantled

UDdale oaff saw Send 6eak

OSR CTS DIR RTS

Figure 14 CPU graphic user interface

i

31

4.5 CPU-GUI Interfacing

The result for processor and computer interfacing is the serial communication

between microcontroller and serial port of the computer. All instructions are sent

from the GUI to the CPU through this serial communication. Figure below illustrates

the full system of the designed educational processor.

Power
Supply

ý

Graphic User
Interface

9
. 0., J

4k
ýý y_ý

ýý

r-
_ý

9

Microcontroller-PC Serial
Communication Terminal

Figure 15 Full system Educational Processor

I
Educational
Processor

44-jopk

32

4.6 Testing Procedure and Validation Result

For validation of the designed processor, the hardware is tested by running

some test programs and the results are observed by comparing the outputs with the

expected result.

Five simple test programs are used to test all the instruction including data

movement, data processing (ADDi, SUBi) and flow control (BRANCH).

Table 5 First Test program

Address Instruction Op-code Operandi Operand2

0001 ADDi A, #3 0101 00 11

0010 SUBi A, #1 0111 00 01

0011 CMPi A, #0 1001 00 00

0100 BNE B, #2 1010 01 10

0101 END 1111

This program will test the BNE instruction that does the looping until Register A

content is subtracted until 0. To run the test program, below are the testing

procedures.

1. The Educational Processor GUI application is opened and the GUI's serial

communication setting are configured set as below:

Table 6 GUI's serial communication configuration

COM Port COM4

Bit Rate (bit/s) 9600
Data Bit 8

Parity None

Software Flow Control None

33

COM Port Parity Bit Rate
(bit/s)

_ : c.. cr. v Drp: r. w

COU Pr: & Pate tt ý. Cwta Bu

SoRxes Rr+Caed - ý

rirta Read

tidelila

CCR Reyebr

Zao Rep

tbpeyro Rep

-. 1 ii'. Al n: FntvCO: Cbcods

CoK4 Sq'eY

PC__ : +LU c lin_I

PC
-1

=1V E IAa . -.

PC-2 _ýJ " llx_28

PC 2 C"''
_

PC c DP.
_I

ALU ' Cx'i 2

; UJ1 DP.?

-1U2 DR-!

? Ui_? DR E

xv_< to

iieCKAd Tmanoed

'-Wait Our sm Ss 4 Beak

om CTS am Hrs

Software
Control
Flow

Data Bit

Figure 16 GUI's serial communication configuration

2. To write the first instruction in the instruction RAM, the first address is

assigned manually from the hardware by changing the state of address

switches as below.

34

Address Switches RD/WR Switch

Figure 17 Address switches and RDIWR switch

3. After the address of the first instruction is ready, which is equal to 0001, the

first op-code and the respective operands are selected as shown below. The

35

instruction that is to be written is shown in the Instruction textbox which is

equal to 01010011. Now the first instruction is ready to be sent.

PC' : IV-5 Ma 1

PC_7 . 1V_E Mai;

K-2 : LU_7 Mn-i8

PC
_3

DR_'

PC
_4

DR-1

DR
-2

? lU 1 DR
_3

.
=1V 2 DR !

: LU : DR E

ALU-.; 10

Figure 18 Writing a CPU Instruction

4. To send the first instruction, the "Write" button is clicked and the instruction

is transferred to the "Transmitted textbox". Here the instruction is prepared in

order to be transmitted to the CPU hardware through microcontroller via 8-bit

serial communication. Figure below illustrates this step. To transmit the

content in the "Transmitted textbox", "Send" button is clicked. The instruction

is framed with 6F and OD which is refer to character "o" as output and

carriage return respectively. The microcontroller will receive three characters

which are 6F, instruction and also OD, and then the microcontroller will give

36

an 8-bit output as instruction to the hardware. At the same time, the

appropriate control signals are shown to ensure that the op-code of the

instruction will decoded to the right control signal.

Write button

: c. cvroro' Prcce; wr s-ý * -'.

COM Port ./ Ba Pale bt e; 1 Clara Eke

Pa&j

Yrotru

Sdth: am Flor. Cortd I .

op-code .
=IýC+ . .

=. 1 -_ . . =. 1 -. _ on Lbcnde : 1: 1;; t1

L'rl!! Read CarbtA ýi°b

i; RSData

CCR Repater

%so Rep

11r2atr, ro Raq

Transmitted textbox

PC 'I : LU !: FAx 1

PC-1 ? lU_E 1 Lkx 21

PC-2 . ; 1U_7 1 lduc_28

PC_? I DR :1

PC : DR
-1

I

Alu-- DR
-2

1

Alu-1 DR
-2

1

ALU
-2

DR' 1

=1ý! ?1 DR E1

=1U 4 L0

Send button Instruction

Figure 19 Sending a CPU Instruction

5. Now the hardware is received the instruction and is ready to store the
instruction into instruction RAM. Since this CPU architecture is following

Harvard architecture, the instruction and data is stored into separate memory.
To write the received instruction, RD/WR switch is turned to the WR state.
Now the first instruction, 01010011 is already stored in memory location 0001

of instruction RAM.

Control signals

37

6. For the next instructions, the same step 2 to step 6 are repeated where the next
instructions are stored into memory location 0010,0011 and so on.

7. After all instructions of the test program are written, the CPU is ready to run

all the instructions. To execute the all instructions, clock signal will be

supplied in single step operation manually from the hardware itself. Figure

below shows the clock switch. To generate to first clock signal, the clock

switch is turned to HIGH state. Once the clock signal is changing its state for

the first time, the program counter will start fetching the first instruction that

was stored in memory location 0001. The CPU will execute the first

instruction when the second clock signals is positive edged and this step will

continue for the next instructions. When the CPU executes an instruction,

appropriate control signal is generated by the microcontroller which is acting

as ROM. The microcontroller is programmed to decode each op-code to its

appropriate control signal. The control signals will control all the CPU

functional units to what action they should take to execute an instruction.

8. After the CPU finished executing all the instructions, the hardware result can
be observed through graphic user interface. Now, the expected result and the

actual hardware result are validated by comparing the content of register files,

ALU outputs and the flags. To read the output of the hardware, "Read" button

is clicked to request the data from the hardware. The microcontroller again is

used the collect the required data which are data sum as well as the flags from

the condition code register.

9. As shown the figure below, after the "Read" button is clicked, then "Send"

button is clicked for the GUI to transmit 69 OD to microcontroller to request
the output data from the hardware. Character "69" (char "i" in ASCII) will ask
the microcontroller the read input and send to the GUI while "OD" is referred
as carriage return.

38

Read button

- Ea.. cr. o^a Prccrsor

coN Pce

PYF, +

M , rson

& PLe kt eUA Bb

Sch., Ie Gb. c Cor1r, A

ODcrx . .
=. 1 / -. ;]-: educDUi Decode

wit.

CCP Pptw

Z ro Flee

Poew. od

4bdels Cker Savo

ýSR CTS

caa, ý sJ, da

PC : -1U ! I. Yoc 1

PC_1 rLU_f I. iac-z=.

PC_2 ? lU_7 G4ic_G

PC_? DR ;

PCc DR-1

.
ALL L- DR

-2
-11J 1 DR ?

; LU_i DR-!

. 1q_! DR E

ALU
-4

L0

ad E"

Received data will be here Send button Read data

Figure 20 Requesting hardware result

10. The received 8-bit data from microcontroller to the GUI is located in the

"Received" textbox. From here, the received data is analyzed to the respective
fields which are data sum and flags. The other fields of the GUI are analyzed

automatically by the GUI itself. The final output is shown below.

39

Write Data

: e, catvro Drace

COM Put

Pally

krzbucri

Opcc4e EI1D

:; ReLkta

CCR Prs ter

Zero Rep

Ibpr; rre Rep

Bl Pale bt ', Cua Bt+ .. ___ "

soft, -we
Ro.. COIDI -F=

3: c 3, '.
=-'i

=1 ., _:,
1/ -; Iratrucöýtuccde 11111111

Ccorcl sow*$
PC_: I =1U_ 1 hluc_I I

PC J1= LU £1 hkx j=

PC
-2

1 ALU
-7

I Lktt 28

PC-2 1 DP.
_

1

PC_c 1 DR 11

. =1U :1 DR i1

=LU_1 1 DR
-3

1

-LU i1 DR '_ 1

=1U_3 1 DR E1

=LU_4 1L01

P&cermd Trammed

69 ?D

Beak Update
-

Cl" Save Seid

DTR RTS

Update Button

Figure 21 First test program final result

"ý> -

For the above first test program, the validation result is shown in the table below.

Table 7 First test program validation result

Address Instruction PCcount Instruction

Decode

RegA RegB Data

Sum

Zero

Flag

0000 0000 00000000 0000 0000 0000 0
0001 ADDi A, #3 0001 01010011 0000 0000 0011 0

Zero flag

40

0010 SUBi A, #1 0010 01110001 0011 0000 0011 0

0011 CMPi A, #0 0011 10010000 0010 0000 0010 0

0100 BNE B, #2 0100 10100110 0010 0010 0010 0

0010 SUBi A, #1 0010 01110001 0010 0000 0010 0

0011 CMPi A, #0 0011 10010000 0001 0000 0001 0

0100 BNE B, #2 0100 10100110 0010 0010 0010 0

0010 SUBi A, #1 0010 01110001 0001 0000 0001 0

0011 CMPi A, #0 0011 10010000 0000 0000 0000 1

0100 BNE B, #2 0100 10100110 0010 0010 0010 1

0101 END 0101 11111111 0000 0000 0000 1

Second test program is also executed to test the BLT instruction where the
flow of program will be changed if A is less than B. Here, for CMP instruction, the
ALU is always doing subtraction operation to check the negative flag by BLT

instruction and there is no write back operation of ALU result for CMP operation.

Table 8 Second test program

Address Instruction Op-code Operandi Operand2

0001 ADDi A, #3 0101 00 10

0010 ADDi B, #2 0101 01 11

0011 CMP A, B 1000 00 01

0100 BLT D, #1 1011 11 01

0101 END 1111

41

Write Data Negative flag

EC. xa'O^aý Prrc or
-- _-

-ýý

COM Pon . Be . CVta Bts

.. _L_ 9, s2

Psri "

tubl¢fan

Cbude E11D haWCa+ Cecode 11111111

1Srte Res

? LU_5 I MA-1 1

Y1aeDafe ::: 1 -1U E1 mg 21 1

=1U_+ 1 bkoý, 28 I
CCR Pep[ter

DR 1

Zem Flep DR_1 I

tkpetrve Rep _I
DR_2 1

r1U 1I DR' 1

nLU 21 DR '. 1

? 11J' I DR
-E

1

.. LV< 1 t0 1

Recm+ed Trarrsntled

lbdate Oeer Seve Send Breek

DSR CTS DTR RTS

Figure 22 Second test program final result

Table 9 Second test program validation result

Address Instruction PCcount Instruction

Decode

RegA RegB Data

Sum

N

Flag

0000 0000 00000000 0000 0000 0000 0

0001 ADDi A, #3 0001 01010011 0000 0000 0011 0

0010 ADDiB, #2 0010 01010110 0011 0000 0010 0

0011 CMP A, B 0011 10000001 0011 0010 0001 0

0100 BLT D, #1 0100 10111101 0011 0010 0001 0

0101 END 0101 1111111 0011 0010 0001 0

42

For the third test program, JMP instruction will be tested. It calls the

subroutine and return back to the main after finish executing the subroutine
instructions.

Table 10 Third test program

Address Instruction Op-code Operand 1 Operand2

0000 0000 00 00

0001 ADDI D, # I 0101 11 01

0010 ADDI, A, # 1 0101 00 01

0011 JMP D, #2 1100 11 10

0100 ADDI A, # 1 0101 00 01

0101 END 1111

0110 ADDI, A, # 1 0101 00 01

0111 RTS 1101

43

Write Data

EOxt: av Oncbso.

CON Pod

Paify

Yrtncfon

Clccoba El*

CCR Rogow

zm %

Iftow" Fog

6a Rac. be a, CVta Be. - ,. ___ :_

Sdr, aro Fbn Corte ý =: F L. a2

:,
_ n1 = YgtnALGi6eccOe 11111111

conbd syrb

PC_ 1 =1V_! 1 Fka_i

PC_I I , LV 61 F4a_ ý

PC_2 I : 1V_- I Fkx_B

PC
-3 I DR :1

PC_ I DR-1 I

ALV I DR 2I

, ALV 11 DA
-3

1

; dU_2 I DiLS I

. 'LV-? I DR_k I

ALV_t I t0 1

Ts wr4od

£9 _2

Updela dw S» Sro Brk

o5R CTS DIR Ri5

Figure 23 Third test program final result

--- , +_

_. 7ý
^

. r_ . s-

Table 11 Third test program validation result

Address Instruction PCcount Instruction

Decode

RegA RegD Data Sum

0000 0000 00000000 0000 0000 0000

0001 ADDI 13,41 0001 01011101 0000 0000 0001

0010 ADDI, A, #1 0010 01010001 0000 0001 0001

0011 JMP D, #2 0011 11001110 0001 0001 0011

0100 ADDI A, #1 0100 01010001 0010 0001 0011

0101 END 0101 11111111 0011 0001 0011

0110 ADDI, A, #1 0110 01010001 0001 0001 0010

0111 RTS 0111 1101

44

For the fourth test program, load and store instruction will be tested by writing
data into the data RAM and load it back for the next instruction. The pseudo code of
this test program is as below:

Table 12 Fourth program pseudo code

Instruction Pseudo code Description

ADDi A, #3 A=3 Add immediate value 3 to register A.

PC = PC +1 PC increments by 1.

ADDi B, #3 B=3 Add immediate value 3 to register'B.
PC = PC +1 PC increments by 1.

ADD A, B A=A+B Add content of register B to the

PC = PC +1 content of register A; write back the
ALU result into register A.

PC increments by 1.

ADDi C, #1 C=I Add immediate value I to register C.

PC = PC +I Preparing the address to for STR.

PC increments by 1.

STR A, C A --> Mem[C] Store content of register A to memory
PC = PC +1 location 0001.

PC increments by 1.

LDR D, C D <-- Mem[C] Load data from memory location 0001

PC = PC +1 and write back the data into register D.
PC increments by 1.

CMP A, D A-D Compare content of register A and the

content of register D

BNE B, #0 If A-D=0 If A=D, PC increments by 1, else, if

PC = PC +1 content of register A is not equal to
Else the content of register D, PC = 3.

PC = B[]

END End of CPU execution.

45

Table 13 Fourth test program instruction decode

Address Instruction Op-code Operandi Operand2

0000 0000 00 00

0001 ADDi A, #3 0101 00 10

0010 ADDi B, #3 0101 01 11

0011 ADD A, B 0100 00 01

0100 ADDi C, #1 0101 11 01

0101 STR A, C 0001 00 10

0110 LDR D, C 0000 11 10

0111 CMP A, D 1000 00 11

1000 BLT B, #0 1011 01 00

1001 END 1111

46

Write Data Zero flag

ý- ýý

Wie

:; meilela

CCR M, 7ater

Zeo Rep

tbprtrre Rap 1

Daca Ou

P" 'I %LV °IM.
-I

1

V_1 I .; L1J_E I Mu_2= I

K-2 1 ? LV _1 Mx i8 1

PC
-2

I DR-' I

PC :I DR 1I

4C L- 1 DR
-2

1

ALV-1 I DR! 1

AV-2 I DR-! 1

ALU-1 I DRE 1

=LV: 1 to 1

Recarved TranmCed

6B SL

Update Clear Saw Send Bsak

DSR CTS DTR RiS

Figure 24 Fourth test program final result

:. 2:: _ -, _1 :..,..
_

3, mg

5=n
,

=: T_

Table 14 Fourth test program validation result

Addr Instr. PC

Cnt.

Instruction

Decode

Reg

A

Reg

B

Reg

C

Reg

D

Data

Sum

N

flag

0000 0000 00000000 0000 0000 0000 0000 0000 0

0001 ADDi A, #3 0001 01010011 0000 0000 0000 0000 0000 0

0010 ADDiB, #3 0010 01010100 0011 0000 0000 0000 0000 0

0011 ADD A, B 0011 01001101 0011 0011 0000 0000 0110 0

0100 ADDiC, #1 0100 01011001 0110 0011 0000 000 0001 0

0101 STR A, C 0101 00010010 0110 0011 0001 0000 0001 0

0110 LDRD, C 0110 00001110 0110 0011 0001 0000 0110 0

47

0111 CMP A, D 0111 10000011 0110 0011 0001 0110 0000 1

1000 BNE B, #0 1000 10110100 0110 0011 0001 0110 0000 1

1001 END 1001 11111111 0110 0011 0001 0110 0000 1

For the fifth test program, the arithmetic operation will be tested. The CPU
will execute the addition operation to add two numbers from the registers.

Table 15 Fifth test program

Address Instruction Op-code Operandi Operand2

0000 0000 00 00

0001 ADDI A, 43 0101 00 11

0010 ADDI B, #3 0101 00 11

0011 ADD A, B 0100 00 01

0100 END 1111

Table 16 Fifth test program validation result

PCcount Address Instruction Instruction

Decode

RegA RegB Write

Data

Data

Sum

0000 0000 00000000 0000 0000 0011 0000

0001 0001 ADDI A, #3 01010011 0011 0000 0011 0000

0010 0010 ADDI B, #3 01010111 0011 0011 0011 0000

0011 0011 ADD A, B 01000001 0011 0011 0011 0000

0100 0100 END 11111111 0110 0011 0110 0110

48

Write Data

Ee. ceto^a Prpce

COU Pon

Party

FmNxbcn

op-code EtJýý

". 'Ile

WdeDMte

CCR Repaer

Zero Rep

Ie we Rap

ýý ý=

BtiPate tte:

I Sck;: m. Lk,: Car. d

Data Bu

_. r
ý_

. =. 1 hat*, xa+an eeae 11111111

Cored Sgnaic

: n:

PC '1 =1U `_ I MU1 I

K-1 1 ? LU EI Fku 2z 1

PC
_Z

I -, LV
_7

I ºka 28 1

PC? 1 DR 1

PC :I DR 11

AL J_: 1 DR-2 1

. =1U 11 DR j1

.
=1U 21 DR '1

F11J ?I DR
-6

1

ALU-4 1 LO I

Recercsd TrarwnCed

26 64 ...

Update Clear Save Send Break

DSR CTS DTR FITS

Figure 25 Fifth test program final result

49

CHAPTER 5

CONCLUSION AND RECOMMENDATION

This chapter discuss the conclusion arrive after completing this project and

recommendation or the future work that can be done to improve the project.

5.1 Conclusion

As mentioned in the chapter one, the objective of this project is to provide a

new learning environment for Computer System Architecture class for student to

learn computer system architecture at gate level on how a CPU execute an instruction.

The CPU functional unit is designed and fabricated part by part and then they are

combined together to get a completed full run working CPU with interfacing to a
Graphic User Interface via serial communication between computer and

microcontroller.

5.2 Recommendation

For future work, there are a lot of improvements that can be done to improve this

project. Such improvements include but not limited to:

" Full working CPU with capability of handling an Operating System. With a

complete working CPU, there would be much more areas that this project can

educate student when such areas like Operating System, assembler and

compiler design are included.

50

REFERENCES

[1] Alan Clements, 2006 fourth edition, "Principle of Computer Hardware"

[2] Behrooz Pahrami, 2005, "Computer Architecture "

[3] Albert P. Malvino & Jerald A Brown, 3`d edition, "Digital Computer
Electronics", "SAP Processor"

[4] David A. Patterson & John L. Hennessy, 3`d edition, "Computer organization
and Design"

[5] 4bit CISC CPU constructed with TTL logics,
http: //www. galacticelectronics. com/4BitCPU-ALU. HTML

[6] MIPS Processor architecture,
https: //www. cs. tcd. ie/Jeremy. Jones/vivio/dlx/dlxtutorial. htm

51

APPENDICES

52

APPENDIX A

PROJECT GA NTT CHART

53

Semester July 2009
1c. De! criOtien
I Selection of topic
2 areliminary Researcn Work
3 Submission of prel m nary Report
4 iri! truc,,! c-) Set Design
5 instruction Set Design
6 Dataaath Design
7 path Design
8 Datapath Design
9 Circuit Schematics Design
IC Circuit Schematics Design
11 Circuit Schematics Design
12 Circuit Schematics Design

13 Simulation and Debugging
14 Submission of interim Report and Oral Presentation

Semester Jan 2010

1 PCB layout Design
2 : CB Layout Design
3 DCB Layout Design
4 PC6 Layout Design
5 PCB Layout Desigr
6 Assembling and Validation
7 Assembling and Validation
8 Assembling and Validation
9 Assembling and Validation
10 Assembling and Validation
11 Assembling and Validation
12 Assembling and Validation
13 Interfacing
14 Interfac g

Wee! 3 \': f< 4 VJff+ 5 :: 'ff _0 ' : 'ff! 7 1"/fel S Wee! S 'i. ffý_. C

APPENDIX B

CIRCUIT SCHEMATICS

55

4mC? ü

yý

(D ýrIUm c-I

iL\ Em -i ý.
L\.
Q' {"j G1

--- ". ýO\N S. - m C-
a uý

. ----'

,I .

.+

. ---ý .
ý

7
i , .. --"

-ý-^---- -----

1-01
I

Cl)

" -_. _.. _--____-__. _. _ --ý . . __" .I

. _" _______. .. -_. -. __ . _-
Cl)

I

.
ý,

d

". ,ý ,--ý;

ý -} - -=- . _ý ---ý ý-;

co

56

000Oß000

m

- -. --. f
FL

" ý, _. --, t
FL

ý+ sý
FL

1ý

ý -. ---

FL

" ýý ý

f ----.

I FL
ý

l

---- +
ý

-------- I

ý

_ ý- ". -- +
ý. Jw+r

t i` F-L

ii

I

ii

ITf171-f
' -;;;

1. ' l, 1

<im

"

57

OOpPOQOCýQ004'0040
ý ý, ý ýý

111I11I

FT-M
"4 f-H-41fy-. f f. f--...

f
I

1111

i
i

J

fill

1Ti1 TM

11,

FF--- I
, ý-

bbbýxSbbo

in I ()

Lfl

2
ý
äi

U
_,. O'
0

ýI

i

U

N

c-I
M
\
m

c1

---0
-d

v s N

58

m ý' Oa

-. ý, ýT, <ý-,, .4 444
ý

co " co
, ---ý im- Lm

+ý \
ý
Q

:U
+vOL ý cI Cn

., ý
, ý- -------- , ---- ý;

1 111 HIT 77 -- - i
74h till

c*7

i

CV

ý--ý-'--- ýý

-- ---- -ý
---..... .- ---"

..

++3

ý--

, ýý--ý -- - _-
Qmuý

59

Qm U p

1
ýý11

N

LpO

@

cc
YIITE

II'
ý:
I

'
J

ý

ý-i

mý

\
m
cI

N
Q!

L
fn

i
ý-

r

f
" i-, _

ji

Ln
f

ý --- ------- iI `n

YY
+ li ýl I Iý' i

-Ü
. ---. ý

, -- --
cr)

, ý__ ----- - -
-ý-

; . -- -.,

,

LJý
-- ----ýý

ý- "ý 'ý
Oo oYýýo Lo1 El

Qm U O

60

1

Co

LO

It

Cl)

N

44C'C F

Lf)

IT

c7

N

M I L

61

rl

P
c?
Cl
a-

o-
o-
o-
o-

III

t-7

0ý.; ýJG

62

vi
a
vi
vi
ý
m
c
E
ro

a
T
m
0

C9

0
.a

14

ý

ý c) N
0 ý

'F' 'H
n6

0

--0
-0 0

---0

cc

Qm(. ' oa
m ©
co

cc

ö
L

m Eli Q ý, W CD L
J rl Uý

Lo
-- ý-'--º---ý-----+

1

1-3

11
,1ýf ,1

11ý y

TT Ti T

+i++}+

(-ý]

ýý _ý
---------ý

Iý

N ýý 00ý000

-ý-

a CD Up

63

Q 0] UOa

ý

44O`? N

am c�

7 f`l

im

Lit

ý!
ý---"-- . ----ý-_-__i

', ýi -"

ý
-- ---0 o- ---ý ' ý-- ---ý --- ----- - c-- -ý°

;

+

ý

L-,
--4

Ii I\

ý-_ j -7 -
Cý-

o- - '-ý-.
ý c -__ ------- o-

1^

Q_ (T1 C) n

u-,

V

n7

CV

64

APPENDIX C

SIMULATION RESULTS

65

Mara Tme Bar.

1o
n+
C

, j11
. J16

F+
E1
ý

141

J31

J36

J41

. -/46
-.., 51

Ff
Ft
K

n

I

r

III I__i IIIII1IIII
PC 01; 23)0Y1
opcode ,

0000 0101 1000 ; 1011 0101 1000 1011 ; 0101
operard ,

0000
,
ý' 0111 iý 1r 10Ö

,
0' 010 ` 0111 01 1100 0010 ;

Dbus o000 0010
ý1-'00

0Ö11 0110 " 1111 ý 0000 ;ý 0ý10 0110 ýýi110 ý 0ý10 ' 1000
SP
REGA
REG B
REG C
REG D

0 ps Iº Poiter. 46Z6 ra Irtervät 4626 ns Start

p
PS

[III

w

0 I

0011

m

4

moo 0110
0110

f 011Öýý' 1ý Sun 0000 1111 ý, 0000 #; 000 11 11 ý 10ýý1 1110
OF

JJ[

J 53

C
N

End

MOM 1.28 us 1.92 us 256 ul 3.2 us 3.84 us 4.48 us 5.12 us 5.76 us E4 us 7.04 us 72 us 8.32 us 8.96 us 9.6 us 10,24 us IIIIIIIIIIIIII1I

SO

:, 54 1Z

APPENDIX D

PCB LAYOUTS

67

Program Counter

68

Instruction RAM

69

Control Logic

70

Register File

71

ALU

72

Clock

73

Data RAM and Busses

74

Input and Output

75

APPENDIX E

SOURCE CODE FOR CONTROL LOGIC

76

#use delay(clock=4000000)
#fuses XT, NOWDT, NOPROTECT, NOLVP

main()
{

: intl op_code_3, op_code_2, op_code_1, op_code_0;

set tris c(OxOf);

settrisb(OxOO);
settrisd(OxOO);
set tris e(OxOO);

-{

op_code_3 = input(PIN_C3);
op_code_2 = input(PIN_C2);
op_code_1 = input(PIN_C1);
op_code_0 = input(PIN_CO);

:, ((input(PIN C3) == 0) && (input(PIN C2) == 0) &&
(input(PIN_C1) == 0) && (input(PIN C0) == 0))

{
output b(0x09); 0000 1äG1
outputc(0x90); 1001 xxxx
output d(Ox2f);
output e(0x07);

ý
.

1` ((input(PIN_C3) == 0) && (input(PIN C2) == 0) &&
(input(PIN_C1) == 0) && (input(PIN C0) == 1))

{
output_b(0x09); 1001
outputc(Ox90); xxxx
outputd(Oxlb); 1011
output e(0x03);

}

((input(PIN C3) _= 0) && (input(PIN_C2) == 0) &&
(input(PIN_C1) _= 1) && (input(PIN_C0) _= 0))

{
output b(Ox09);
output C(OX90);
outputd(Ox9f); 1f! C1 1111
output_e(Ox01);

}

1' ((input(PIN C3) == 0) && (input(PIN_C2) == 0) &&
(input(PIN_C1) == 1) && (input(PIN_C0) == 1))

{
outputb(0x09); 0000 1001
output_c(0x90); : 111 xxxx
output d(Oxff);
output e(0x02);

}

77

((input (PIN
_C3)

== 0) && (input(PIN_C2) _= 1) &&
(input(PIN_C1) == 0) && (input(PIN_CO) == 0))

{
output_b(0x09); 06vv ýuui
outputc(0x90); -101 xxxx
output d(Oxff);
output e(0x03);

}

((input(PIN_C3) _= 0) && (input(PIN_C2) _= 1) &&
(input(PIN_C1) == 0) && (input(PIN_CO) == 1))

{
outputb(0x09); 0000 1001
outputc(0x90); 1001 xxxx
output_d(Oxff); .'
output e(0x02);

}

((input(PIN C3) _= 0) && (input(PIN C2) _= 1) &&
(input(PIN_C1) == 1) && (input(PIN C0) == 0))

{
output b(Ox89);
output_c(0x60); xxxx
output_d(Oxff); 1111
output_e(0x03); ý'

I

((input(PIN_C3) == 0) && (input(PIN C2) _= 1) &&
(input(PIN_C1) _= 1) && (input(PIN_CO) == 1))

{
output_b(0x09);
output_c(0x60);
output d(Oxfe); 1111 1
output e(0x02);

}

: ((input(PIN_C3) == 1) && (input(PINC2) == 0) &&
(input(PIN_C1) == 0) && (input(PIN_C0) == 0))

{
outputb(0x89); 1001
outputc(0x60); x:: xx
output d(Oxff);
output e(OxOl);

}

((input(PIN_C3) == 1) && (input(PIN C2) == 0) &&
(input(PIN_C1) == 0) && (input(PIN_C0) == 1))

{
output

_b(0x09); outputc(0x60); 10 xxxx
output d(Oxfe); 1111 1110
output e (OXOO) ; : ": xxx :: nnn

}

78

