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ABSTRACT 

 

This work mainly focus on development of advanced process control on the 

continuous fermentation process using Saccharomyces cerevisiae. Today, a lot of 

research has been done on renewable energy and it has been found that ethanol is one 

of the best alternatives fuels to substitute petroleum fuels. However, all of this can 

only be achieved if the production of ethanol is efficient and economical enough. A 

lot of industry nowadays uses fermentation in batch mode due to the problems 

occurred in 1970s such as low productivity, low yield, and high level of 

contamination. Recently, continuous fermentation processes are optimized based on 

kinetic models to achieve high productivities, high process flexibility and stability 

and less expensive production cost compared to batch processes. In addition, process 

control development for continuous fermentation is much better since a lot of 

research on advanced process is in the continuous mode and almost all kinetic models 

currently available for continuous fermentation with Saccharomyces cerevisiae are in 

steady state. One of the disadvantages of standard feedback controller is that the 

action can only be taken after the system has been affected by the disturbance. Thus, 

an advanced process control (APC) strategy will be developed based on this process. 

The objective of this work is to optimize the performance of the fermentation process 

in terms of yield and productivity by using model predictive control (MPC). In this 

process, the manipulated variable that has been considered is inlet temperature and 

inlet substrate concentration and the control variable is temperature in the reactor and 

ethanol concentration. The successful implementation of the controller is greatly 

affected by the accuracy of the process model. 

 

 

 

 

 



iii 

 

ACKNOWLEDGMENT 

 

“Praise to Allah, the most Gracious and the most Merciful” 

First and foremost, our deepest gratitude goes for God, for He has guided and blessed us 

during the whole semester in order for us to complete the project. We would also like to 

take this chance to thank our family & friends, for their full support has kept us going 

from the start until the end comes.  

Our sincerest gratitude and special thanks towards my supervisor, Dr. Nooryusmiza 

Yusoff for the never ending patience you had to put up , and your determination to guide 

as much as you can throughout the whole journey to complete this project. With your 

cooperation and guidance, I have managed to successfully complete my project. Not to 

forget, FYP coordinator, Dr Khalik Mohamad Sabil for arranging presentation, poster and 

gave guidance in order to complete this project. Your cooperation is greatly appreciated. 

Also, to the postgraduate student who has thought me a lot especially on how to deal with 

Matlab, thank you very much for the time and guidance given. My appreciation also goes 

to the other lecturers and staff of UTP especially from chemical engineering department 

for rendering your support with an open hand.  

To all my friends especially in Chemical engineering students, thank you all for helping, 

sharing and learning beside, so that I can complete this project successfully. 

 

Thank you all. 

 



iv 

 



 

 

 

TABLE OF CONTENTS 

CERTIFICATION……………………………………………………………………….i 

ABSTRACT……………………………………………………………………………...ii 

ACKNOWLEDGMENT………………………………………………………………..iii 

CHAPTER 1: INTRODUCTION ............................................................................... 1 

1.1 Background Study ..................................................................................................... 1 

1.1.1 Fermentation Process ......................................................................................... 1 

1.1.2 Model Predictive Control Principles .................................................................. 2 

1.2 Problem Statement .................................................................................................... 4 

1.3 Objective and Scope of Study ................................................................................... 5 

CHAPTER 2: LITERATURE REVIEW ................................................................... 6 

2.1 Challenges of bioprocess control .............................................................................. 6 

2.1.1 Bioprocess control ............................................................................................. 6 

2.1.2 Process Dynamics .............................................................................................. 7 

2.2 Factorial design and simulation of alcoholic fermentation ....................................... 8 

2.2.1 Modelling of Fermentation Process ................................................................... 8 

2.2.2 Process description............................................................................................. 8 

2.3 Model Predictive Control ........................................................................................ 12 

2.3.1 Difference Between Conventional and MPC ................................................... 12 

2.3.2 Model Predictive Control Calculations ............................................................ 14 

2.3.3 MPC with constraints ....................................................................................... 15 

2.3.4 Set-point calculation ........................................................................................ 16 

2.3.5 Process model identification ............................................................................ 16 



 

 

2.3.6 Selection of Design and Tuning Parameters .................................................... 17 

CHAPTER 3: METHODOLOGY ............................................................................ 19 

3.1  Plant Testing .......................................................................................................... 19 

3.2 APC Design ............................................................................................................ 20 

3. 3 Implementation of APC and Comparison with Base Layer Control ..................... 21 

CHAPTER 4: RESULTS AND DISCUSSION ........................................................ 23 

4.1 Dynamic Behavior of the Process ...................................................................... 23 

4.2 Model Predictive Control ................................................................................... 26 

CHAPTER 5: CONCLUSION AND RECOMMENDATION ............................... 27 

REFERENCES ................................................................................................................ 28 

 



 

 

 

LIST OF FIGURES 

 

Figure 1:  The continuous fermentor ( Z. K. Nagy, 2007) .................................................. 9 

Figure 2:  Hierarchy of control system functions in a typical processing plant (Qin and 

Badgwell, 2003). ............................................................................................................... 13 

Figure 3:  Flow chart for MPC calculation (Qin and Badgwell, 2003) ............................ 14 

Figure 4:  Flow of project activities .................................................................................. 19 

Figure 5:  Gantt chart for FYP .......................................................................................... 22 

Figure 6: Dynamic behavior of the process with temperature change from 25
o
C to 27

o
C24 

Figure 7: Cp change with changes on Cs,in from 25g/L to 20g/L .................................... 24 

Figure 8: Dynamic behavior of the process with changes in the Fag from 18
o
C to 13

o
C 25 

Figure 9: MPC of the reactor temperature (Tr) ................................................................. 26 

Figure 10: PID control of reactor temperature (Tr) .......................................................... 26 

 

 

 



 

 

 

Nomenclature 

Cheat,ag heat capacity of cooling agent (Jg
-1

 K
-1

) 

Cheat, r heat capacity of mass reaction (Jg
-1

 K
-1

) 

cj concentration of ion j (j=Na, Ca, Mg, CI, CO3, etc) 

cO2 oxygen concentration in the liquid phase (mg/l) 

cO*2 equilibrium concentration of oxygen in the liquid phase (mg/l) 

cO*2, 0 equilibrium concentration of oxygen in distilled water (mg/l) 

cp product concentration, ethanol (g/l) 

cs substrate concentration, glucose (g/l) 

cs, in glucose concentration in the feed flow (g/l) 

cx biomass, yeast concentration (g/l) 

Ea1, Ea2 apparent activation energy for the growth, respectively, denaturation reaction 

Fag flow of cooling agent (1 h
-1

) 

Fe outlet flow from the reactor (1 h
-1

) 

Fi flow of substrate entering the reactor (1 h
-1

) 

Hi specific ionic constant of ion i (i = Na, Ca, Mg, Cl, CO3, etc) 

Ii ionic strength of ion i (i = Na, Ca, Mg, Cl, CO3, etc) 

(k1a) product of mass transfer coefficient for oxygen and gas phase specific area (h
-1

) 

(k1a)o product of mass transfer coefficient at 20
o
C for O2 and gas phase specific area (h

-1
) 

KO2 constant of oxygen consumption (g/l) 

KP constant of growth inhibition by ethanol (g/l) 

KP1 constant of fermentation inhibition by ethanol (g/l) 

KS constant in the substrate term for growth (g/l) 

KS1 constant in the substrate term for ethanol production (g/l) 

KT heat transfer coefficient (Jh
-1

m
-2

K
-1

) 

mi quantity of inorganic salt i (i = NaCl, CaCO3, MgCl2) (g) 

rO2 rate of oxygen consumption (mgl
-1

h
-1

) 

R universal gas constant (8.31Jmol
-1

K
-1

) 

RSP ratio of ethanol produced per glucose consumed for fermentation 



 

 

RSX ratio of cell produced per glucose consumed for growth 

Tag temperature of cooling agent in the jacket (
o
C) 

Tin temperature of the substrate low entering to the reactor (
o
C) 

Tin, ag temperature of cooling agent entering to the jacket (
o
C) 

 Tr temperature in the reactor (
o
C) 

V volume of the mass reaction (l) 

Vj volume of the jacket (l) 

YO2 yield factor for biomass on oxygen (mg/mg), defined as the amount of oxygen 

consumed per unit biomass produced 

z ionic charge of ion i 

 Hr reaction heat of fermentation (kJ/mol O2 consumed) 

µO2 maximum specific oxygen consumption rate  

(h
-1

) 

µP maximum specific fermentation rate (h
-1

) 

µx maximum specific growth rate (h
-1

) 

 ag density of cooling agent (g/l) 

 r density of the mass reaction (g/l) 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Background Study 

1.1.1 Fermentation Process 

 Recently, the fermentation industry has lagged behind other process industries in 

implementing control and optimization technology. There are many reasons for the 

delay. Fermentation processes are much more complex than other industrial processes, 

involving a large number of complex and dynamic biochemical reactions and transport 

phenomena, many of which are not well understood. The growing economic pressure to 

improve the yield, productivity, and quality control of bioreactors to fermentation 

processes. The primary objectives of control systems are to provide quality assurance 

and economic incentives.  

 

The purpose of control is to manipulate the control variables to:  

i. Maintain the desired outputs at a constant desired value by suppressing the 

influence of external disturbances or forcing the outputs to follow a desired 

profile. 

ii. Stabilize unstable or potentially unstable processes such as continuous 

cultures 

iii. Optimize the performance as defined by measures such as yield, productivity, 

or profit. 

 

These objectives are to be achieved under various constraints such as safety, 

environmental regulations, limited resources, and operational constraints. All of this 

objective under various constraints can be achieved through advanced process control. 
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1.1.2 Model Predictive Control Principles 

Model Predictive Control (MPC) is a type of an advanced process control. In MPC, the 

dynamic model and the recent values measurement are used to predict future values of 

the outputs. By using the input-output relationship, the changes in the individual input 

variables can be maked. The changes of the input variables can be calculated based on 

predictions and measurements. In the traditional control loop, the controller input come 

from the difference between the set point and the recent values. For predictive 

controller, the input is the difference between future trajectory of the set point and the 

predicted trajectory of the output. 

 

Model predictive control was developed in 1970s by engineers at Shell Oil to meet 

control challenges of refineries. Since then, MPC has been a popular controller 

especially for difficult multivariable control. Early MPC such DMC only provided good 

control of unconstrained multivariable process. Since then, a lot of improvements have 

been made to overcome the weakness of the early MPC. By now, a lot of weakness of 

MPC has been addressed and MPC has become alternative controller for difficult 

multivariable control problems that include inequality constraints.  

 

The general objectives of MPC in order of importance are (Qin and Badgwell, 2003): 

1. Prevent violations of input and output constraints 

2. Bring certain output variables to their optimum set point while keep the other 

output in the specified ranges 

3. Bring input variables to their optimum set point 

4. Prevent aggressive movement of the input variables 

5. Control as many process variables as possible when signal and actuators fail 

 

Set points for the control calculations are calculated from optimization objectives such 

as maximizing profit function, minimizing cost function, or maximizing production rate. 

In MPC, the set points are changed frequently and the set points typically calculated at 
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each control calculations are performed. The MPC control calculations are performed to 

determine a sequence of manipulated input changes so that the predicted response moves 

in an optimal manner to the set point. 

 

The major differences between feedback controller and MPC controller are (Wojsznis, 

2005): 

 In feedback controller, the recent error are in the scalar values while MPC 

predicted error is in the vector form 

 The error in a feedback controller is the measurement substracted from the set 

point value while MPC controller error vector is computed as the corrected 

model prediction substracted from the future set-point values 

 In the MPC, the process output trajectory is bring as near as possible to the set 

point trajectory and this movement are spread over several moves into the future 

over the control horizon. 

 Disturbances are included in the MPC with proper dynamics based on the 

identified models from process step response in the prediction of the process 

output. 

 

 MPC controller is suitable for multivariable process since it consider the process 

interactions. In addition, MPC controller handles constraints for the input and output 

variables (Wojsznis, 2005). Practical disadvantage of the MPC is the computational cost 

which tends to limit MPC to linear processes with relatively slow dynamics (Rao et al., 

2000) 
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1.2 Problem Statement  

Ethanol is believed to be one of the best alternatives fuels to substitute petroleum fuels. This 

has led to dramatic increase in its production capacity. However, the ethanol will only 

substitute petroleum fuels if its production is economically attractive. Thus, it is necessary to 

make the process of ethanol production more efficient and economical. 

 

By using the standard feedback control on the process, it can show the following 

disadvantages in the presence of input disturbances or uncertainties (Luyben, 1990; 

Sthephanopoulos, 1984):  

(a) waits until the effect of the disturbance has been felt by the system, before control 

action is taken 

(b) can suffer degradation of the closed-loop performance for slow systems or with 

significant dead time 

(c) can create instability in the closed loop performance.  

 

So, MPC is one of the best methods to control the process in order to achieve the objective 

function. A lot of research has been done in the implementation of MPC in variety 

processes. However, most of the research has been done on the batch process, but not on the 

continuous process. 

 

Fermentation process is greatly get affected by the influence of temperature in the kinetic 

parameters since it is difficult to maintain a constant temperature in this process. In alcoholic 

fermentation, a small deviation of temperature can dislocate the process from optimal 

operating conditions (Costa et al., 2001). In order to obtain optimal process, an efficient 

control strategy is needed.  
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1.3 Objective and Scope of Study 

This work will mainly focus on the continuous fermentation process using Saccharomyces 

cerevisiae. Ethanol yield and productivity, based on Zymomonas mobilis are higher 

compared to Saccharomyces cerevisiae because less biomass is produces and a higher 

metabolic rate of glucose is maintained through its special Entner–Doudoroff pathway. 

However, due to Zymomonas mobilis specific substrate spectrum as well as the 

undesirability of its biomass to be used as animal feed, this species cannot readily replace 

Saccharomyces cerevisiae in ethanol production (Bai et al., 2008) 

 

The objective of this work is to study the dynamic behavior of this process. By 

understanding the dynamic behavior of the process, a more accurate controller can be 

developed. Advanced process control of the fermentation process is based on the model 

develop by Z.K Nagy, 2007. There are quite a number of research has been done on this area 

particularly on linear control. So, this project will used constraint linear model predictive 

control for an extractive alcoholic fermentation. By using this methodology, dynamic 

optimization problem is solved online at each control execution in order to optimized yield 

and productivity of the ethanol. 

 

In this paper, the first section will elaborate on background study, problem statement and 

objective of this work. In the second section, half of the second section will review on the 

designing of the fermentation process and half of this section will review on the model 

predictive control. Section three will discuss briefly on methodology of this project and 

followed by results and discussion. Last part of this work will be conclusion of this project. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 Challenges of bioprocess control 

2.1.1 Bioprocess control 

Bioprocess control is defined as providing a conducive environment for microorganisms 

to grow, multiply, and produce a desired product. This includes providing the right 

concentration of nutrients to the culture, removing any toxic metabolic products, and 

controlling important internal cellular parameters such as temperature and pressure. 

 

Fermentation process begin with an inoculation step in which a relatively small number 

of pure culture cells are transferred to the bioreactor. The cells then grow exponentially 

until such time there are something limiting or inhibiting the growth. Most bioprocesses 

become more complicated if an induction or product formation de-repression activity 

occurs part way through the bioprocess in which the culture is change from „growth‟ 

mode to „product synthesis‟ mode. This induction is often triggered by a programmed 

shift in temperature or by a chemical addition. In designing of the bioreactor itself, 

agitator is useful to sparging gas bubbles and to provide homogeneous mixture. 

However, agitator RPM and types of agitator need to be considered to avoid harmful to 

the cells (Alford, 2006).   

 

Most bioprocess employs same types of control as in other chemical industries. Over 

half of most bioprocess control loops can be handled by traditional single input single 

output feedback PI (proportional + integral) controllers. PID is a controller for linear 

processes. Microorganism cultures are non-linear in many respects. For example in 

Bakers Yeast that use Saccharomyces cerevisiae, there is an additional non-linear 

complication in that glucose concentrations that are too high will cause the culture to 

shift from metabolism of making yeast to making ethanol (Alford, 2006). One of the 

ways to optimize the process is through minimizing the energy cost. Often, fermentor 
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has the highest energy consumption in a plant due to the high volumes of compressed 

air and high agitation power required.  

 

2.1.2 Process Dynamics 

The first continuous fermentation was invented by Melle-Boinot in the 1970s. However, 

there are several problems occurred such as high level of contamination, low 

productivity, low yields, and problems with solid flows. Today‟s continuous 

fermentation processes are optimized based on the kinetic models to achieve high 

productivities, high process flexibility and stability, and low consumption of chemicals 

and are considered to be less expensive for ethanol production compared to batch 

processes (Zanin et al., 2000). 

 

There are also critical opinions about continuous process. It is said that batch processes 

with yeast recycle were shown to be less susceptible to bacterial contamination and 

corresponding loss in productivity (Godoy et al., 2008). In continuous, the process 

particularly contaminate by Lactobacilus, which are the major factor that can reduce 

ethanol yield and also impair yeast centrifugation, and greater quantities of antibiotics 

are needed to address this issue. However, continuous fermentation have the advantages 

of lower installation cost due to smaller fermentor volumes, less heat exchanger 

demands, and lower costs due to greater automation (Godoy et al., 2008). 

 

Most industry preferred to do fermentation process in the batch or fed batch mode. 

However, for this kind of mode, the process never in steady state and the model must 

consider the process dynamics, at least for the fermentation part. The optimum control 

strategy is a compromise between the high productivity and yield of the fermentation 

part and good product quality after down-stream processing. 

 

All kinetic models currently available for the ethanol fermentations with 

Saccharomyces cerevisiae are steady state for continuous fermentations or 

instantaneous for batch processes. There are only a few reports on the oscillations of 

sugar, ethanol and biomass in the continuous ethanol fermentations with 
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Saccharomyces cerevisiae (Borzani, 2001; Bai et al., 2004). For fermentation system 

composed of 4-6 fermentors, concentrations in the front fermentors do oscillate around 

the average level but completely attenuated within the last fermentors. (Bai et al., 2008). 

One of the best ways to minimize product inhibition, increase the fermentation rate and 

productivity is by in-situ removal of ethanol (Roffler et al., 1984). 

2.2 Factorial design and simulation of alcoholic fermentation 

 

2.2.1 Modelling of Fermentation Process 

Process modeling of fermentation relies heavily on the kinetics of the reactions involved 

in the process and simulations experiments would have to be carried out in order to 

develop a model which accurately describes the dynamics of the fermentation process 

under consideration. A number of models have been develop for the measurement of 

microbial growth during fermentation, though the model develop by Monod  is the most 

widely used. 

In the fermentation process, different control configurations based on a linear or a non-

linear adaptive approach gave satisfactory performances for the required control 

specifications. In the non-linear multivariable case, the performance and decoupling can 

be improved by the introduction of a penalty on the input and output control. 

 

2.2.2 Process description 

This process involves equation which express heat transfer, the dependence of kinetic 

parameters on temperature, the mass transfer of oxygen, as well as the influence of 

temperature and ionic strength on the mass transfer coefficient.  

 

The continuous model of the fermentor is shown in figure below. The fermentor is 

modeled with continuous stirred tank with constant volumetric mass reaction.  In order 

to get quasi steady-state with regards to biomass, low dilution rate (Fe/V) is necessary, 

which means that the dilution rate must not exceed the biomass production rate. Thus, 

the process has a very slow dynamics. 
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Figure 1:  The continuous fermentor ( Z. K. Nagy, 2007) 

 

 

In the feed, yeast is added with inorganic salts to form coenzymes. The inorganic salts 

have strong influence upon the equilibrium concentration of oxygen in the liquid phase. 

 

The mathematical model of the system is presented below: 

Initial data: 

mNaCl = 500g 

mCaCO3 = 100g 

mMgCl2 = 100g 

pH = 6 

Fi = Fe = 511h
-1

 

Tin = Fe = 25
o
C 

CSin = 60g/l 

Tin,ag = 15
o
C 

 

The balance for the total volume of the reaction medium is: 
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       (1) 

 

 

The mass balances for the biomass and product is: 

     (2) 

 

    (3) 

 

The first term in Eqs. (2) and (3) represent the quantity of biomass and product, 

respectively, produce in the fermentor. The last term in the equation represent the 

amount removal of yeast and ethanol leaving the fermentor. 

 

The mass balance for the substrate is: 

 

                  (4) 

 

The first and second term in Eqs.(4) represent the amount of substrate consumed by the 

biomass for growth and ethanol production. The third term is the quantity of glucose 

entering the fermentor while the last term represent the quantity of glucose leaving the 

fermentor. 

 

The first term in equation (5) represent the quantity of oxygen entering in the reaction 

medium due to the mass transfer and the last term represent the amount of oxygen 

consumed in the fermentation reaction. The concentration of the dissolved oxygen in the 

reaction medium is: 

       (5) 
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The energy balances for the reactor is :  

 

         (6)  

 

The energy balance for the jacket is: 

     (7) 
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2.3 Model Predictive Control 

 

Recently, Model Predictive Control (MPC) has been widely used in industry. This algorithm 

gives several advantages since it consider constraints on input and output in systematic 

manner and the process model consider dynamic and static interactions between input, 

output, and disturbance variables. 

 

2.3.1 Difference Between Conventional and MPC 

A successful industrial controller for process industries must maintain the system as 

close as possible to constraints without violating them. Furthermore, process units are 

typically complex, nonlinear, constrained multivariable systems whose dynamic 

behavior change with time due to the changes in operating conditions and catalyst 

aging. This environment has led to the development of a more general model based 

control methodology in which the dynamic optimization problem is solved online at 

each control execution.  

 

Process inputs are computed so as to optimize future plant behavior over a time interval 

known as prediction horizon. Process input and output constraint are included directly 

in the problem formulation so that future constraint violations are anticipated and 

prevented. The first input of the optimal input sequence is injected into the plant and the 

problem is solved again at the next time interval using updated process measurements.  

 

In MPC controller, it has a multi-level hierarchy of control functions as shown in Figure 

2.3 (Qin and Badgwell, 2003). Plant-wide optimizer determines optimal steady-state 

settings for each unit in the plant. The unit optimizer computes an optimal economic 

steady state and passes this to the dynamic constraint control system for 

implementation. The dynamic constraint control must move the plant from one 

constrained steady state to another while minimizing constraint violations along the 

way. In the conventional controller, this process is achieved by using a combination of 
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PID algorithms, lead-lag (L/L) blocks and high/low select logic. In the MPC, this 

combination is replaced by a single MPC controller (Qin and Badgwell, 2003). 

 

 

 

Figure 2:  Hierarchy of control system functions in a typical processing plant (Qin and Badgwell, 2003). 
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2.3.2 Model Predictive Control Calculations 

Flowchart in Fig. 2.4 below shows an overview of MPC calculations. This process flow 

is performed at each control execution time. To simplify the process, we assume that 

control execution times occur at the same time with the measurement sampling instants. 

In MPC, the calculated input moves usually implemented as set points for regulatory 

control loops at the Distribution Control System (DCS) level. If DCS control loop has 

been disabled or placed in manual, the input variable is no longer available for control.  

 

Before each control execution, it is important to determine relevant output (CVs), input 

(MVs), and disturbance variables (DVs) based on the control objectives. Variables 

available for this control calculation can change from one execution time to the next 

execution due to many reasons and one of the reason probably because failure of the 

sensor. 

 

Figure 3:  Flow chart for MPC calculation (Qin and Badgwell, 2003) 
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Output variables can be categorized into critical or noncritical output. If sensor for 

critical output is not available, the MPC calculations can be stop immediately or after 

several number of control execution steps. However, for noncritical output, the 

unavailability of the data can be replaced by model predictions or the output can be 

removed from the control structure 

. 

Ill-conditioned occur when inputs have same effect on two or more outputs. Three 

effective strategies are available to remove the ill-condition (Qin and Badgwell, 2003, 

Maciejowski, 2002).If ill-conditioning is detected, low priority outputs are sequentially 

removed from the control structure until ill-conditioning is eliminated. Another solution 

is based on the singular value analysis (SVA) by removing small singular values. The 

good side of this approach is that none of the output variables is removed but it depends 

on how the inputs and outputs are scaled. Ill-condition also can be removed by adjusting 

MPC design parameter, the move suppression matrix R.  

 

2.3.3 MPC with constraints 

There are three types of constraints that are commonly used which are hard, soft, and 

setpoint approximation (Qin and Badgwell, 2003). Hard constraint should not be 

violated at any time. Soft constraints can be violated but the violation is penalized by 

modification in the objective function. Setpoint approximation constraint penalizes 

deviations above and below the constraints. 

 

Setpoints are defined for each soft constraint which will result penalties on both sides of 

the constraint in the objective function. The output weight is adjusted dynamically so 

that the weight become significant when the output close to the constraints. Hard output 

constraints must be used carefully because it can result in infeasible solutions for the 

optimization problem, especially for large disturbances. 
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In MPC, the control objective is to keep output variables within upper and lower limit 

instead forcing them to the set points. This approach is called range control (zone 

control) and the limits are referred to range limits (zone limits). The limits can be varied 

with time.  

 

2.3.4 Set-point calculation 

In MPC calculation, there are two steps performed at each control execution. Firstly, the 

optimum set points or targets are determined and then, a set of M control moves are 

generated by the control calculations. The first move is implemented in the control 

calculations. The MPC set points are calculated according to the objective function.  

 

Objective function can be defined in three categories which are maximize operating 

profits, minimize deviations from the reference values and maximize the production rate. 

The set-point calculations are repeated at each sampling instant because the active 

constraints can change frequently. 

 

2.3.5 Process model identification 

The equations used for process modeling is based on the identification modeling 

technique. The most common identification technique are Finite Impulse Response and 

Auto Regressive with eXternal inputs (ARX) (Wojsznis, 2005). The advantage of FIR is 

that it does not require any preliminary knowledge of the process. However, a shorter 

horizon with about 60 points is more suitable for FIR since it will results in low 

confidence levels of identified coefficients value for a large number of coefficients.  

 

For ARX model, it has fewer coefficients, which are defined for higher confidence, 

provided the process dead are known. So, applying the FIR to define the dead time and 

then followed by ARX by applying the dead times will give the best identification 

results (Wojsznis, 2005). 
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Researcher and USA has put more emphasis on state-space models. This type of model 

gives an advantage as they extend easily to the multivariable case and there is huge 

quantity of theoretical results which can be applied to produce controllers/observers and 

to analyse the models and resulting control laws. In abbreviated form, the model is 

 

xk+1 = Axk + Buk + Cwk;   yk = Dxk + Euk + dk 

 

x denotes the state vector, y  denotes the process outputs (or measurements) to be 

controlled, d denotes disturbance and u  denotes the process inputs (or controller output), 

w denotes state disturbance and A, B, C, D are the matrices defining the state-space 

model. Ordinarily for real processes E = 0.  

 

State-space models are used so that the full range such as stable, unstable, and 

integrating of linear dynamics can be represented. Auto-regressive parametric model 

form such as a state-space or ARX model is used to overcome problems from the 

impulse and step response model. Both models can be problematic when controlling a 

process with widely varying time constant; for this case it is typical to sacrifice dynamic 

control of the fast process modes in order to keep the model length reasonable. Other 

significant problem with the impulse and step response models is that they are limited to 

strictly stable processes. While it is certainly possible to modify the algorithms to 

accommodate a pure integrator, these modifications may lead to other problems, such as 

adding the derivative of a noisy output signal into the feedback path. It is not possible, in 

general, to represent an unstable process using an impulse response model. All of these 

problems can be solved by using state-space or ARX model (Qin and Badgwell, 2003). 

 

2.3.6 Selection of Design and Tuning Parameters 

In order to design MPC, a number of parameter must be specified which are: 

 Sampling period  t and model horizon N 

The sampling period  t and model horizon N should be chosen so that N t = ts, 

where ts is the settling time for the open-loop response. This choice ensures that 
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the model reflects the full effect of a change in an input variable over time 

required to reach steady state. A different value of N can be used for each output 

and also, different model horizons can be used for the inputs and disturbances. 

 Control M and prediction P horizons 

MPC controller become aggressive when the value of M increases and the 

required computational effort increases. However, the computational effort can 

be reduced by input blocking. A different value of M can be specified for each 

input. The prediction horizon P is often selected to be P = N + M so that full 

effect of the last move is taken into account. Decreasing value of P tend to make 

the controller become more aggressive. A different value of P can be selected 

for each output if their settling times are different. 

 Weighting matrices 

The output weighting matrix allows the output variables to be weighted 

according to their relative importance. It allows the output variables to be 

weighted individually, with the most important variables having the largest 

weights. It can be advantageous to adjust the output weighting over the 

prediction horizon. 

 Reference trajectory, αi 

In MPC, the desired future output behavior can be specified in several different 

ways: as a set point, high and low limits, a reference trajectory, or a funnel. Both 

the reference trajectory and the funnel approaches have a tuning factor that can 

be used to adjust the desired speed of response for each output. 
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CHAPTER 3:  METHODOLOGY 

 

This work consist of four phases which are Plant testing, Design of an APC, Implementation 

of APC and finally Comparison with the base layer control. All of this phases shown below, 

in Figure 4. 

 

Figure 4:  Flow of project activities 

  

The model of this process is based on the Z.K Nagy, 2007. This fermentation process which 

has been develop using Matlab and Simulink are going to be used as the model to develop 

the APC. 

 

3.1  Plant Testing 

  

The plant test usually consists of changing an input variable or a disturbance variable from 

one value to another. The objective is to determine how the output variables change with 

time influenced by changes in the inputs.  
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Before doing a formal plant test, a pre-test is needed for three reasons (Qin and Badgwell, 

2003). Firstly, step each manipulated variables and adjust existing instruments and PID 

controllers. Second, obtain time for steady state for each output variables and lastly, obtain 

data for initial identification.  

 

In the plant tests, the magnitudes of the moves should be carefully chosen because 

movements which are too small may result in the step responses being obscures by normal 

process fluctuations and measurement noise. However, if the change is too large, it may 

result in an output constraint violation or nonlinear process behavior that cannot be 

accurately described by a linear model.  

 

Each manipulated variables is stepped eight to fifteen times, with the output variables signal 

to noise ratio at least six. During the test, no tuning changes and synchronizing or correlated 

moves are allowed. If the lower level PID control tuning changes significantly, it shows the 

inaccuracy of the process model. It may be necessary to construct a new process model (Qin 

and Badgwell, 2003). 

 

3.2 APC Design 

 

APC design is the main focus of this work. However, the success of APC depends on the 

accuracy of the process model. The APC design is based on the control and optimization 

objectives, process constraints, and the dynamic model of the process. This work will focus 

more on the linear process control with added constraints. 

  

It is important to verify acceptability of the performance and robustness of the control. Tests 

are performed to check the regulatory and servo response of each output variables, and 

system violations of major constraints is verified. Then, final tuning is tested for sensitivity 

and model mismatch by varying the gain and dynamics of key process models. 
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3. 3 Implementation of APC and Comparison with Base Layer Control 

 

After finish with the APC design, the next phase will implement the APC to the process 

model. In this phase, the performance of the process will be observed and compared with the 

base layer control. 
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Literature Review                                         

Dynamic Model                                         

Plant Testing                                         

APC Design                                          

Comparison with base 

layer                                          

 

Figure 5:  Gantt chart for FYP
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CHAPTER 4:  RESULTS AND DISCUSSION 

 

4.1 Dynamic Behavior of the Process 

 

To choose the best control structures for a given process, its open-loop dynamic behavior 

must be investigated. The objective is to determine how the output variables change with 

time get influenced by changes in the input (manipulated variables and possible 

disturbances). This can be done by changing the values of the various input variables, one by 

one and observing the change of the output variables with time. 

 

In this process, the volume of the reaction medium (V) is kept constant. Thus, flow of 

substrate entering the reactor (Fi) and outlet flow from the reactor (Fe) is not considered in 

this process. The input variables considered for manipulation are: flow of cooling agent 

(Fag), glucose concentration in the feed flow (Cs,in) and temperature of the substrate flow 

entering to the reactor (Tin). The output are: biomass concentration (Cx), product 

concentration (Cp), substrate concentration (Cs), oxygen concentration in the liquid phase 

(Co2), temperature in the reactor (T), and temperature of cooling agent in the jacket (Tr). 

 

The output variables are selected based on variable that seriously interact with other 

controlled variables and variable that represent a direct measure of the product quality. 

Based on these criteria, temperature in the reactor (Tr) and product concentration (Cp) are 

selected as the control variables. Temperature in the reactor is chosen since it effect other 

variables. Meanwhile, product concentration is chosen since it reflects the product yield. 
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Figure 6: Dynamic behavior of the process with temperature change from 25oC to 27oC 

 

From figure above, it shows that 2
o
C change in the input temperature affect most of the 

output especially product concentration (Cp), glucose concentration (Cs) and reactor 

temperature (Tr). 

 

Figure 7: Cp change with changes on Cs,in from 25g/L to 20g/L 
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From figure 7, it shows that changes from 25g/L to 20g/L concentration of the inlet substrate 

concentration (Cs,in) change the product concentration (Cp) from  9.4 g/L to 7.6g/L. 

 

 

Figure 8: Dynamic behavior of the process with changes in the Fag from 18oC to 13oC 

 

From figure 8, it shows that changing of flowrate of cooling agent (Fag)  does affect much 

on the output especially on the product concentration. Changes on the flowrate of cooling 

agent mostly affect the glucose concentration (Cs) and temperature in the reactor (Tr). 

Manipulated variables are chosen based on the variable that have large effects on controlled 

variables and variable that rapidly affect the outputs. From the figure shown above, 

temperature input (Tin) and glucose concentration in the feed flow (Cs,in) are selected. 

Changing the inlet temperature affect the temperature of the reactor and thus affect other 

variables. Meanwhile, product concentration mostly affected by inlet glucose concentration. 
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4.2 Model Predictive Control  

 

The Wood-Berry model is a well-known 2x2 transfer function model. In this process, Wood-

Berry model is used. The output variables are the concentration (Cs) and temperature in the 

reactor (Tr). They are controlled by manipulating the temperature input (Tin) and glucose 

concentration in the feed flow (Cs,in). The unmeasured disturbance variable is set to 0. 

The model is shown below. 

   (8) 

 

Figure 9: MPC of the reactor temperature (Tr) 

 

Figure 10: PID control of reactor temperature (Tr) 

Figure above shows that MPC give better result compared to the PID controller. MPC give 

faster control response and thus indicates that the control performance of MPC controller is 

better than that of the PID controller. 
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CHAPTER 5:  CONCLUSION AND RECOMMENDATION 

 

Ethanol is one of the best alternatives fuels to substitute petroleum fuels. However, all of 

this can only be achieved if the production of ethanol is efficient and economical 

enough. Thus, continuous fermentation process gives great advantage especially for high 

production rate. Process control of the fermentation process using Saccharomyces 

cerevisiae can be develop using advanced process control to improve the productivity of 

the process. The successful of the controller is greatly affected by the accuracy of the 

process model. 

 

This work can be improve by considering more disturbances and manipulated variable 

especially those that affect the reactor temperature  since fermentation process sensitive 

with the change in temperature.  
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