LITERATURE REVIEW

No.	AUTHOR	TITLE/OBJECTIVE	APPROACH/METHODOLOGY	RESULT	CONCLUSION
No. 1	AUTHOR • Sakdirat Kaewunruen, • Julapot Chiravatchradej • Somchai Chucheepsakul	TITLE/OBJECTIVE Title: Nonlinear free vibrations of marine risers/pipes transporting fluid The objectives: 1) To determine the nonlinear natural frequencies and their corresponding mode shapes 2) To analyze the nonlinear free vibrational behaviors, 3) To know the nonlinear effects due to the flexural rigidity, top tensions, internal flow	 APPROACH/METHODOLOGY 1. Variational model and <u>formulation</u> ◆ Strain-curvature and displacement relations Euler–Bernoulli hypothesis, the plane sections normal to centroidal axis remain plane and are normal to deformed centroidal axis. When the effect of shear deformation is considered negligible, the nonlinear strain-curvature and displacement relations can be expressed ◆ Element strain energy It consists of the strain 	 RESULT ◆ Both the linear dynamic computational model and the nonlinear dynamic counterpart are verified with other investigations. ◆ Parametric effect of Δ Dimensionless parameter is taken parts in by a variety of variables: the moment of inertia I, the modulus of elasticity E, the top tension TH, and 	 ✓ The finite element model is verified with existing results in literature ✓ the numerical results are illustrated to demonstrate the parametric effects is obtained from the modified direct iteration incorporating with the inverse iteration ✓ The dynamic characteristics of the parametric studies indicate that
		flexural rigidity, top tensions, internal flow velocities, and static	 Element strain energy It consists of the strain energy due to axial 	elasticity E, the top tension TH, and the riser/pipe's	the parametric studies indicate that the flexural rigidity
		offsets.	deformation and strain energy due to bending	length L. • Case I: Role of top tensions	has a remarkable influence on the nonlinear traits by
			 Element kinetic energy 	• Role of the flexural	stiffening the
			\circ It consists of the kinetic	rigidity	degree of
			energy due to riser motion	• D () (C (C	vibrations:
			and internal fluid motion	• Parametric effect of μ	➤ softening to
			• X 7:	• Facilitating the	hardening
			✤ Virtual work done due to	study on the effects	➤ Hardening to
			external forces	of internal flow,	higher degree.

	• the virtual work done due	the internal flow	\checkmark Top tensions are in
	to external forces such as	parameter unites	the significant point
	the effective weight,	the internal flow	of view in
	hydrodynamic forces, and	velocity V, the	stretching the
	inertia forces	internal fluid	nonlinear mode
		density ri, the	shapes
		riser's internal	\checkmark The internal flows
	2. Finite element model	cross-section Ai,	clearly reduce the
	 Linear and nonlinear stiffness 	and the top tension	degree of hardening
	matrices	-	and tend to turn the
	\circ to achieve both linear and	• Parametric effect of Λ	vibration type from
	nonlinear stiffness matrices,	\circ An offset	hardening to
	the nonlinear strain-	percentage	softening one where
	curvature displacement	contains the static	it is exponentially
	relations are governed into	offset XH and sea	weakening the axial
	the matrix formulation.	depth H.	stretching
		1 I	\checkmark the static offsets
	✤ Mass matrix		conspicuously
	\circ the mass matrix comprises		stiffen the degree of
	of the riser mass matrix and		vibration since they
	the internal fluid density		perturb the top end
	matrix		and then contribute
			to the farther
	Equation of motion in matrix		locomotion at the
	form		upper part.
	\circ To investigate the nonlinear		\checkmark The key indication
	free vibrations of marine		of nonlinear
	risers/pipes the global		dynamic traits is the
	assembled have been		shift of mode
	applied to Lagrange's		shapes
	equation reforming the		\checkmark The softening
	system formulations to		characteristic tends
	eigenvalue problem as a		to arise when the
	ergenvalue problem as a		to arise when the

	nonlinear global governing	mode shapes shift
	matrix.	downward, and on
		the other hand, the
	 Linear free vibrations of 	hardening type
	marine risers/pipes	tends to be born
	\circ The orderly matrix equation	when the mode
	is imposed by the particular	shapes move
	boundary conditions.	upward.
	\circ the generic finite element	-
	method (FEM) is applied to	
	the recent matrix equation	
	of motion, to reap the linear	
	FEM solutions	

No.	AUTHOR	TITLE/OBJECTIVE	APPROACH/METHODOLOGY	RESULT	CONCLUSION
No. 2	AUTHOR • Yanfei Chen • Y.H. Chai • Xin Li • Jing Zhou	TITLE/OBJECTIVE Title: An extraction of the natural frequencies and mode shapes of marine risers by the method of differential transformation The objectives: 1) To know the vibration characteristics of marine risers 2) To know Natural frequencies and mode	 APPROACH/METHODOLOGY 1.Mathematical model ◆ Governing equation assumes, as commonly done, that the riser can be regarded as a long, continuous tubular member that is straight and vertical, and has known boundary conditions at the two ends The Cartesian coordinate system, defining the deformation of the riser with varying flexural 	RESULT	 ✓ An alternative procedure is proposed in this paper for determining the natural frequencies and mode shapes of the riser. The procedure uses the method of differential transformation, which lends itself to
		3) To compare the solutions	mass density, free vibration		eigenvalue

with numerical and	of the riser can be written in	problems.
experimental results	the form of partial	✓ Boundary
published in the	differential equation	conditions are first
literature where	\circ assumes that	formulated using
available	(i) the deformation of the	translational and
	riser due to current and	rotational springs,
	wave actions and	and then specialized
	internal fluid flow do not	to movable and
	affect the natural	non-movable
	frequencies, and	hinged or clamped
	(ii)No drag resistance can	conditions.
	be developed from the	\checkmark Since the proposed
	surrounding fluid.	method is in
	\circ Two of the boundary	essence a numerical
	conditions may be	procedure,
	prescribed at the bottom of	convergence of
	the riser while the	solutions, which is
	remaining two may be	important for
	prescribed at the top of the	practical
	riser	implementation, is
		examined. It is
	 Boundary conditions 	shown that the
	 General boundary 	number of terms
	conditions can be built into	needed for
	the model by incorporating	convergence can be
	a pair of rotational and	reduced by the
	translational springs at the	evaluating the
	top and bottom of the riser.	derivatives of the
		differential
	2. Frequencies and mode shapes	transformation near
	extraction by differential	mid-height of the
	transformation	riser.
	the differential equation is	✓ Using a numerical

	nonetheless amenable to	example, the paper
	various numerical techniques	shows that the
	which has been used quite	natural frequencies
	successfully for a number of	obtained by
	eigenvalue problems	differential
		transformation
	3.Numerical examples	agree well that
	✤ Risers with hinged—hinged	published in the
	boundary conditions	literature.
	\circ The analysis of this	\checkmark The versatility of
	example will permit the	the method is also
	solution from differential	demonstrated by
	transformation to be	computing the
	compared to previous	frequencies and
	solutions	mode shapes for a
	✤ Risers with different	set of idealized
	boundary conditions	boundary
	\circ As actual boundary	conditions.
	conditions for the riser may	\checkmark Finally, the
	deviate from the idealized	accuracy of the
	hinged-hinged conditions.	proposed technique
	it is instructive to examine	is verified by
	the dynamic characteristics	comparing the
	of the riser under different	predicted natural
	boundary conditions	frequencies and
	\circ These observations indicate	experimentally
	that the mode shape of the	measured results of
	riser is more sensitive to the	the marine model
	translational boundary	riser
	condition than the rotational	11501.
	boundary conditions	
	boundary conditions.	
	4 Comparison with model rison	
	+. Comparison with model riser	

No.	AUTHOR	TITLE/OBJECTIVE	APPROACH/METHODOLOGY	RESULT	CONCLUSION
No. 3.	AUTHOR Ioannis K. Chatjigeorgiou	TITLE/OBJECTIVE Title: A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers The objectives: 1) To use finite differences (FD) solution method for the numerical treatment of the dynamic equilibrium problem of 2D catenary risers 2) To describe the dynamic behavior of the structure and evaluate the amplification in loading due to the dynamic components 3) To asses the effect of the geometric nonlinearities through comparative calculations that concern both mathematical formulations examined in the present, i.e. the complete nonlinear, and the reduced linearized	 APPROACH/METHODOLOGY 1.Mathematical model Governing equation The riser is modelled as a hinged-hinged slender structure The governing system that describes the 2D dynamic behaviour of a catenary riser is composed by the following six nonlinear partial differential equations (Trianrafyllou, 1994) assumes a linear stress-strain relation In most of the cases, catenary risers are made from steel. Although a nonlinear stress-strain relation has no physical essence for steel catenary risers, the above formulation can be easily extended in order to incorporate relevant contributions. 2.Nonlinear problem—solution 	 RESULT Validation of the solution method Discussion on the dynamic behaviour of catenary risers Vertical excitation Horizontal excitation Effect of geometric nonlinearities Nonlinear contributions for small depths 	 ✓ The method was based on a FD scheme that was applied to both the nonlinear and the simplified linear model ✓ It does not require the application of a special numerical integration method in the time domain as the equivalent algebraic system is solved simultaneously in terms of the two independent variables of the partial differential equations. ✓ The numerical predictions concerned the location of the maximum static bending moment which was found
		model	 ★ This system is solved by 		that the heave

	employing the Keller Box	excitations lead to
	FD method	an incremental
	The Box approximation is	amplification of the
	implicit, two level, single	loading components
	step, unconditionally stable	for increased
	and convergent.	excitation
	The major advantage of this	frequencies while
	method is that the physical	the motions in surge
	grid spacing can be non-	direction cause the
	uniform.	strong variation of
	The boundary conditions	the same
	associated with riser's	components along
	operation should guarantee	the whole frequency
	that the bending moments, or	range.
	alternatively the curvatures,	\checkmark The nonlinear terms
	at both ends are zero.	appears to be very
	it is considered that the	important for fast
	lower attachment point is	displacements in
	fixed while the velocities at	heave direction
	the top are expressed as	where the structure
	predefined functions of time	is subjected to
		compression
	3. <u>Linear system—solution in</u>	loading due to the
	the frequency domain	fact that the
	 Although the solution of the 	dynamic part of the
	equivalent linearized	tension exceeds the
	problem seems easier, it	static counterpart
	involves several practical	and there are
	difficulties as the employed	instances where the
	numerical methodology	total tension
	should be applied to 12	becomes negative.
	differential equations instead	\checkmark This action is
	of the six equations of the	subsequently

	complete nonlinear system.	reflected on the
	The vector of the unknowns	total bending
	is composed of a static and a	moment, which
	dynamic part.	exhibits a strong
		variation along the
		upper half of the
		structure and an
		excessive increase
		at the location of
		the maximum static
		bending moment in
		the vicinity of the
		touch-down point.

No.	AUTHOR	TITLE/OBJECTIVE	APPROACH/METHODOLOGY	RESULT	CONCLUSION
4.	Sakdirat Kaewunruen, J. Leklong, Somchai Chucheepsakul	Title: Dynamic Responses of Marine Risers/Pipes Transporting Fluid Subject to Top End Excitations	 1. Environmental Conditions and External Forces ☆ To estimate the total external forces acting on the riser, the environmental conditions are considered, including the 	 Dynamic Top Tensions The dynamic top tensions are determined from the dynamic strains at the top of the right 	 The dynamic responses of marine risers/pipes transporting fluid subjected to harmonic
		 The objectives: 1) To determine the nonlinear natural frequencies and their corresponding mode shapes 2) To analyze the nonlinear free vibrational behaviors, 3) To know the nonlinear 	 current velocity, density of sea water, temperature, sea water viscosity, surface wind speed, and so on. 2.Deformed Configuration ♦ the riser deforms to a new position when subjected to a perturbation. In this study, the coordinate system is 	 the top of the riser Effect of Bending Rigidity To identify the effect of bending rigidity on the dynamic responses of the marine risers, the internal flow speed 	 excitation at top end are presented in this paper. ✓ The dynamic analyses focus on both elastic and bending effects ✓ Based on the virtual work- energy functional

effects due to the	referenced to the centerline	is kept at zero. The	of the marine
flexural rigidity, top	of the riser at static	dynamic behaviours	risers/pipes, the
tensions, internal flow	equilibrium position	of the riser taking	structural model
velocities, and static		into account the	developed consists
offsets.	3. Strain and Displacement	bending stiffness and	of the strain
	Relationships	without such	energy die to axial
	 Using Euler-Bernoulli beam 	stiffness are	and bending
	theory	considered	deformations
		\circ The results show	✓ Virtual work
	4. Energy Method	that the maximum	created by
	Total strain energy consists	displacements of the	effective tension,
	of the strain energy due to	risers with bending	and inertial and
	axial and flexural	rigidity are slightly	hydrodynamic
	deformation	lower than those	drag forces is
	Virtual axial strain energy	without the bending	presented as well
	is the strain energy due to	rigidity. However,	as the kinetic
	axial deformation	the resonant	energy due to both
	Virtual bending strain	behaviours of the	the riser and
	energy is formulated from	risers taken into	internal fluid
	the bending curvature of	account the bending	motions
	riser	rigidity tend to be	✓ Nonlinear
	Virtual work done due to	higher than those	equations of
	external forces is due to	without the bending	motion due to the
	effective weight of risers,	rigidity	effect of a
	hydrodynamic drag force,		nonlinear Morison
	and inertial force	Effect of Internal	type term coupled
	Total kinetic energy	Flow	in axial and
	consists of the kinetic energy	◦ Losses due to	transverse
	due to riser and internal flow	internal flow	displacements are
	movements	frictions in the pipe	derived through
		system clearly deter	the Hamilton's
	5. Work-Energy Functional	the internal flow	principle.
	 The total work energy 	speed and are not	\checkmark To determine the

functional includes the total	considered in this	dynamic responses
strain energy, virtual work	investigation.	of the marine
done, and total kinetic	\circ The results clearly	risers, the finite
energy (Langhaar, 1962).	exhibit that the	element method is
By applying the Hamilton's	displacement	implemented for
principle, the equations of	responses of the	which the
motion can be achieved	risers with bending	Newmark Average
✤ FINITE ELEMENTS	rigidity tend to	Acceleration
✤ NEWMARK	converge onto steady	method is used for
INTEGRATION	state response	direct numerical
✤ MODEL VALIDATIONS	amplitudes.	integration.
	\circ It is noticeable that	\checkmark Beating and
	when the internal	resonant
	flow speeds	phenomena are
	increase, the steady-	observed via the
	state convergence	dynamic responses
	time durations	of the risers.
	decrease.	\checkmark The effects of
		internal flow, top
	* Effect of Elastic	tensions,
	Modulus and Top	hydrodynamic
	Tension	forces, and
	\circ The dynamic	modulus of
	responses of the	elasticity are
	marine risers	investigated and
	transporting the	found to influence
	internal fluids are	marine riser
	used for the	dynamic
	determination of the	behaviours
	resonant frequencies.	\checkmark The internal flow
	Effect of External	rate and the
	Hydrodynamic Drag	hydrodynamic
	Force	drag force have a

		 The hydrodynamic drag forces are computed from the Morrison wave theory, which involves two key factors: drag force and inertial mass coefficients. The drag force coefficients describe the risers' surface roughness, which are affected by Reynolds Number. In this study, only the steady flow is taken into consideration and the drag force coefficients (<i>CDn</i>) vary from 0 to 1.4 It is found that the drag forces play a significant role in reducing the maximum amplitudes of dwnemic roomand the drag force 	 major impact on the amplitude of dynamic displacements as to remain in the steady state condition ✓ The top tension and modulus of elasticity play a key role in the increment of natural frequencies of the marine risers.
		reducing the maximum amplitudes of dynamic responses over a time, converging onto a steady state	

No.	AUTHOR	TITLE/OBJECTIVE	APPROACH/METHODOLOGY	RESULT	CONCLUSION
<u>No.</u> 5.	AUTHOR A. S. Atadan*, S. M. Calisal#, V. J. Modit and Y. Guot	TITLE/OBJECTIVE Title: Analytical and numerical analysis of the dynamics of a marine riser connected to a floating platform The objectives: 1) To know the vibration characteristics of marine risers 2) To know Natural frequencies and mode chapes of marine risers	 APPROACH/METHODOLOGY Marine Riser Dynamics 	RESULT * Effects of the flexural rigidity. It is observed that the large flexural rigidity <i>EJ</i> increases the stiffness of the riser system, which significantly decreases the displacement of the tip mass in the first and second resonance cases. * Effects of the riser	 ✓ The equations of motion for a marine riser undergoing large three-dimensional deflections rotations are derived using a modal discretization approach. Specifically, the three dimensional
		 marine risers 2) To know Natural frequencies and mode shapes of marine risers 3) To compare the solutions with numerical and experimental results published in the literature where available. 	 connection with the theory of nonlinear elasticity The total potential energy of the system consists of the bending strain energy U1, the torsion strain energy U2, the shear strain energy U3, the tension strain energy U4 and the potential energy U5 caused by the internal pressure, The in-line wave force on a slender offshore structure is usually computed using the Marisan arguments. 	 tip mass in the first and second resonance cases. Effects of the riser length. In the case of a short riser length, the amplitude of the displacement of the platform grows in the beginning and then declines. With the length of the riser increasing, the amplitude of the displacement becomes 	 discretization approach. Specifically, the three-dimensional shear effects are addressed. ✓ In order to understand the underlying principles of the motion of a marine-riser, a simple model based on a two- dimensional
			 Morison equation. The Morison equation for a structure free to oscillate in presence of waves and current When the length of the 	the length of the riser, the stronger the stiffness of the system. This causes a	dimensional motion is studied to investigate the effects of certain parameters. In this study, excitations

	structure is of the same	significant reduction	resulting from
	magnitude as the wave	of the displacement	ocean waves as
	length, the Froude-Kryloy	and the velocity of the	well as currents
	theory can be used to	system as the	are studied.
	evaluate the wave force on	hydrodynamic	\checkmark In the case of
	the structure such as the	damping plays a more	marine-risers with
	platform	significant role. The	short length, the
	-	nonlinear	amplitude of the
	2. Butenin's Approach	hydrodynamic drag	displacement of
	✤ in order to capture the	term contains a variety	the platform grows
	essence of the problem in a	of frequency	at the beginning
	simple form, the dimensions	components. The	and then declines.
	of the equations of motion is	slowly changing lower	However, if the
	reduced to two dimensions	frequency components	riser length is long,
	by only keeping two modes.	combined with the first	the amplitude of
	The resulting equations are	natural frequency	the displacement
	then expanded using the	component exhibit the	becomes very
	Binomial theorem.	'beat' phenomenon.	large.
	✤ In the generic case, a first	$\mathbf{\mathbf{\dot{\ast}}}$ Effects of the tip mass.	\checkmark In such cases.
	order approximation of the	the heavier the mass,	measures for
	Binomial expansion is	the larger the	enhancing the
	obtained by only keeping up	displacement of the tip	flexural rigidity
	to and including the third	mass in the first	should be
	order terms.	resonance case, but the	considered in order
	the analytical procedure is	influence of the tip	to reduce the
	able to predict the maximum	mass on the first	deflection of the
	amplitude as well as the	resonance of the	riser system This
	phase of the oscillations with	system is relatively	is because as the
	an acceptable degree of	small compared to that	flexural rigidity
	accuracy	of the length and the	increases the
	• When the analytical and the	flexural rigidity of the	displacement of
	numerical results for the	riser system	the nlatform
	maximum amplitude and	• Effects of the ocean	decreases
	maximum ampituue allu	• Effects of the oceall	uccicases

 phase of oscillations are compared, the error is found to be within 15%. This may be due to the simplification of equations in the analytical procedure. 3. Parametric analysis ♦ Computational considerations ♦ Effects of system parameters ▷ The mass of the platform has an influence on the direction of the system. The displacement of the system. The displacement of the system are not sensitive to platform gets much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position. ♦ The effects of the occan waves. An increase in the amplitude of wave height results in a large displacement of the system are not sensitive to platform gets much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position. ♦ The effects of the occan waves. An influence on the amplitude of wave height results in a large displacement of the sith active scritter which the amplitude of wave height results in a large displacement of the structure increase in the amplitude of wave height results in a large displacement of the structure increase in the amplitude of wave height results in a large displacement of the structure increase in the amplitude of wave height results in a large displacement of the structure increase in the amplitude of wave height results in a large displacement of the structure increase is negligible. ♦ The effects of the occan waves. An infine frequency component, the system is increased and the displacements of the system is increased and the displacement of the system is increased and the system is increased and the displacement of the system is increased in the system is increased and the system is increased and the displacement of the system is increased and				
compared, the error is four two kinds of ✓ The mass of the to be within 15%. This may be due to the simplification of equations in the analytical procedure. two kinds of ✓ The mass of the 3. Parametric analysis on the direction of the in the same or in the opposite direction of the wave propagation. The mass of the S. Parametric analysis Seffects of system parameters Seffects of system parameters The analytical increases in the anguitue of meases. An increase in the amplitude of wave beight results in a large displacement of tip mass. The results This is because heavier mass has a * The effects of the corean waves. An increase in the amplitude of wave beight results in a large displacement of tip mass. The results The singligible. This is because the system.		phase of oscillations are	current. There exist	significantly.
to be within 15%. This may be due to the simplification of equations in the analytical procedure.interactions of wave and current, depending on the direction of the current which can be in the same or in the opposite direction of the system. The displacement of the current velocity is much larger than that of the wave, the displacement of the structure increases in the negative position.platform has an influence on the displacement of the system. The displacement of the current velocity is much larger than that of the wave, the displacement of the structure increases in the negative position.platform has an influence on the displacement of the current velocity is much larger than that of the wave, the displacement of the structure increases in the negative position.platform mass. This is because heavier mass has a large displacement of tip mass. The results also show that the hight requency response is negligible.varing lower frequency component, the stystem is increased and the the system of tip mass. The results also show that the hight requency response is negligible.varing lower frequency component, the stystem is increased and the the system is increased and the system is increased and the system is increased and the		compared, the error is found	two kinds of	\checkmark The mass of the
be due to the simplification of equations in the analytical procedure. Parametric analysis ◆ Computational considerations ◆ Effects of system parameters ◆ Effects of system parameters ↓ Effects of the occurrent which is hardly excited ↓ System is narealized increases in the angulive position. ↓ The effects of the occurrent wave has a high frequency component sare combined with the first natural frequency component, the stiffness of the system is increased and the disblacements of		to be within 15%. This may	interactions of wave	platform has an
of equations in the analytical procedure.on the direction of the current which can be in the same or in the opposite direction of the wave propagation. When the amplitude of the current velocity is much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position.first resonance of the system. The displacement of the platform gets heavier. Other oplatform gets heavier mass has a larger inertia which is hardly excited warying lower frequency response is negligible.first resonance of the system. The displacement of the platform gets heavier. Other oplatform gets heavier mass has a large inertia which is hardly excited warying lower frequency component, the stytem is increased and the displacement of tip mass. The results also show that the high requency response is negligible.first resonance of the platform gets heavier. Other oplatform gets heavier. This is because the negative direction with small oscillations around a negative position.first resonance of the platform gets heavier. Other oplatform gets heavier mass has a large inertia which is hardly excited ocean waves. An increase in the algad splacement of tip mass. The results also show that the higher frequency response is negligible.first resonance of the system is increased and the displacements of		be due to the simplification	and current, depending	influence on the
Image: space of the system is increased in the system is increased in the system parameters current which can be in the same or in the in the same or in the in the same or in the oposite direction of the wave propagation. When the amplitude of the wave propagation. When the amplitude of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position. the system. The displacement of the system. The system. The system. The system of the system parameters is the platform gets heavier. Other resonance cases in the negative direction with small oscillations around a negative position. the system. The system. The system. The system. The system. The system. The system is increases of the system is increases of the platform gets heavier. Other resonance cases is the solwly with small oscillations around a negative position. the system. The		of equations in the analytical	on the direction of the	first resonance of
3. Parametric analysis ◆ Computational considerations ◆ Effects of system parametersin the same or in the opposite direction of the wave propagation. When the amplitude of the current velocity is much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position.displacement of the platform mass of the platform gets heavier. Other resonance cases are not sensitive to platform mass. The resonance cases with a heavier mass has a around a negative increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible.displacement of the system is increased are of the system is increased and the displacement of the system is increased and the		procedure.	current which can be	the system. The
3. Parametric analysis opposite direction of the wave propagation. Considerations the platform increases as the mass of the platform gets much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position. the negative direction with small oscillations around a negative position. This is because ♦ The effects of the negative of the structure increases in the negative direction with small oscillations around a negative position. Y as the slowly varying lower frequency response is negligible. Y as the slowly varying lower frequency response is negligible.		_	in the same or in the	displacement of
 Computational considerations Effects of system parameters Effects of system parameters the wave propagation. When the amplitude of the current velocity is much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position. The effects of the ocean waves. An increase in the amplitude of wave height results in a large intria which is hardly excited by forces with a ling frequency. This is alowly warying lower frequency response is negligible. 		3. Parametric analysis	opposite direction of	the platform
considerationsWhen the amplitude of the current velocity is much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position.mass of the platform gets heavier. Other resonance cases are not sensitive to platform mass. This is because with small oscillations around a negative position.mass of the platform gets heavier. Other resonance cases are not sensitive to platform mass. The selfects of the ocean waves. An high frequency.◆ The effects of the ocean waves. An increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible.✓ as the slowly varying lower frequency components are component, the stiffness of the system is increased and the		✤ Computational	the wave propagation.	increases as the
 ♦ Effects of system parameters the current velocity is much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position. ♦ The effects of the ocean waves. An increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible. ♦ Effects of system parameters ♦ The effects of the ocean waves. An increase in the stricture of the stricture increases in the negative direction with small oscillations around a negative position. ♦ The effects of the ocean waves. An increase in the strip mass. The results also show that the higher frequency response is negligible. 		considerations	When the amplitude of	mass of the
much larger than that of the wave, the displacement of the structure increases in the negative direction with small oscillations around a negative position. heavier. Other resonance cases are not sensitive to platform mass. This is because * The effects of the ocean waves. An increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible. increase frequency components are combined with the first natural displacements of		 Effects of system parameters 	the current velocity is	platform gets
of the wave, the resonance cases displacement of the are not sensitive to structure increases in the negative direction with small oscillations around a negative around a negative large inertia which position. is hardly excited by forces with a ocean waves. An nincrease in the v as the slowly amplitude of wave height results in a large displacement of tip mass. The results displacement of tips mass. The results also show that the high frequency requency response is negligible. component, the stiffness of the system is increased and the			much larger than that	heavier. Other
displacement of the structure increases in the negative direction with small oscillations around a negative around a negative around a negative by forces with a ocean waves. An increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible. are not sensitive to platform mass. This is because heavier mass has a large inertia which by forces with a ocean waves. An high frequency. increase in the also show that the higher frequency response is negligible. are not sensitive to platform mass. This is because heavier mass has a large inertia which frequency. is a the slowly varying lower frequency response is negligible.			of the wave, the	resonance cases
structure increases in the negative direction with small oscillations around a negative position. platform mass. This is because heavier mass has a large inertia which is hardly excited by forces with a occan waves. An increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible. ylatform mass. This is because heavier mass has a large inertia which is hardly excited by forces with a occan waves. An increase in the also show that the higher frequency response is negligible.			displacement of the	are not sensitive to
the negative direction with small oscillations around a negative position. ◆ The effects of the ocean waves. An increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible. ↓ This is because heavier mass has a large inertia which is hardly excited by forces with a ocean waves. An infight frequency. ↓ The effects of the ocean waves. An infight requency tip mass. The results also show that the higher frequency response is negligible. ↓ This is because heavier mass has a large inertia which is hardly excited by forces with a ocean waves. An is a she slowly components are combined with the stiffness of the system is increased and the displacements of			structure increases in	platform mass.
with small oscillations around a negative position. heavier mass has a large inertia which is hardly excited by forces with a high frequency. ◆ The effects of the ocean waves. An increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible. ✓ as the slowly varying lower frequency components are combined with the first natural frequency response is negligible.			the negative direction	This is because
around a negative position. large inertia which is hardly excited by forces with a high frequency. ◆ The effects of the ocean waves. An increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible. ✓ as the slowly varying lower frequency components are combined with the first natural frequency response is negligible. State Show that the higher frequency response is negligible. Increase of the stiffness of the			with small oscillations	heavier mass has a
position. is hardly excited ◆ The effects of the by forces with a ocean waves. An high frequency. increase in the ✓ as the slowly amplitude of wave height results in a large displacement of tip mass. The results also show that the first natural higher frequency response is negligible. component, the system is increased and the displacements of			around a negative	large inertia which
 ★ The effects of the ocean waves. An high frequency. increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency frequency response is negligible. Component, the stiffness of the stiffness of the system is increased and the displacements of 			position.	is hardly excited
Image: state sta			✤ The effects of the	by forces with a
increase in the amplitude of wave height results in a large displacement of tip mass. The results also show that the higher frequency response is negligible.			ocean waves. An	high frequency.
amplitude of wave varying lower height results in a frequency large displacement of components are tip mass. The results combined with the also show that the first natural higher frequency response is negligible. component, the stiffness of the system is increased and the displacements of displacements of			increase in the	\checkmark as the slowly
height results in a frequency large displacement of components are tip mass. The results combined with the also show that the higher frequency frequency response is negligible. component, the stiffness of the system is increased and the displacements of			amplitude of wave	varying lower
large displacement of components are tip mass. The results combined with the also show that the first natural higher frequency frequency response is negligible. component, the stiffness of the system is increased and the displacements of			height results in a	frequency
tip mass. The results also show that the higher frequency response is negligible. System is increased and the displacements of			large displacement of	components are
also show that the higher frequency response is negligible. First natural frequency component, the stiffness of the system is increased and the displacements of			tip mass. The results	combined with the
higher frequency response is negligible. frequency component, the stiffness of the system is increased and the displacements of			also show that the	first natural
response is negligible. component, the stiffness of the system is increased and the displacements of			higher frequency	frequency
stiffness of the system is increased and the displacements of			response is negligible.	component, the
system is increased and the displacements of			1 6 6 6	stiffness of the
and the displacements of				system is increased
displacements of				and the
				displacements of

			the system as well
			as the derivatives
			of the deflections
			are reduced
		\checkmark	Furthermore the
			wave and current
			velocity terms of
			the drag force
			containing various
			fraguancy
			acomponente play a
			relativaly more
			important role
		./	The summent
		v	Ine current
			forma When the
			force. when the
			amplitude of the
			current is much
			larger than that of
			the ocean waves
			and its direction is
			opposite the
			direction of the
			wave propagation
			the structure
			exhibits small
			oscillations around
			an equilibrium
			position in the
			negative direction
		\checkmark	The force of the
			ocean wave is the
			main external

		excitation of the marine-riser system. Waves with a large amplitude (height)
		amplitude (height) cause large displacements.