TABLE OF CONTENTS

CERTIFICATION		•	•	•	•	•	•	•	ii
ABSTRACT		•	•	•	•	•	•	•	iv
ACKNOWLEDGE	MENT	•	•	•	•	•	•	•	V
CHAPTER 1:	INTR	ODU	CTION	1.		•			1
	1.1 Ba	ckgro	und of S	Study	•	•	•	•	1
	1.2 Pro	blem	Statem	ent	•	•	•	•	2
	1.3 Ob	jectiv	es and S	Scope of	f Study	•	•	•	3
CHAPTER 2:	LITE	RATU	RE RI	EVIEW		•			4
	2.1 Ste	eam C	racking	Furnac	e .	•	•	•	4
	2.2 Etl	nylene	Cracki	ng	•	•	•	•	5
	2.3 Ra	diant (Coil Ma	aterial	•	•	•	•	6
	2.4 Mo	odel E	quation		•	•	•	•	7
	2.5 He	at Tra	nsfer in	Firebo	х.	•	•	•	8
	2.6 AF	PI 573	•	•	•	•	•	•	8
	2.7 As	ymme	tric Flo	w and 7	Гетрега	ature F	ield	•	9
	2.8 CF	D Mo	del	•	•	•	•	•	10
	2.9 Re	mark	on Sym	metry C	Conditio	n	•	•	11
	2.10 G	rid In	depende	ence	•	•	•	•	11
CHAPTER 3:	MET	HOD	OLOG	Υ.	•	•	•		12
	3.1 Ex	ecutio	n Chart		•	•	•	•	12
	3.2 Mi	leston	e and P	roject P	lanning	, •	•	•	13
	3.3 Te	mpera	ture Da	ıta Gath	ering	•		•	14
	3.4 Fu	rnace !	Modeli	ng and S	Simulat	ion	•	•	15
	3.5 Ca	lculati	ion	•	•	•	•	•	17
	3.6 Bo	undar	v Cond	ition Se	ttings		•		18

CHAPTER 4:	RESU	LTS A	ND DIS	CUSSI	ON	•	•	•	19
	4.1 Fu	rnace Da	ita at No	ormal O	peration	1	•	•	19
	4.2 Fu	rnace De	etail Din	nension			•	•	19
	4.3 Sin	nulation	Results		•	•	•	•	20
	4.4 Te	mperatu	re Data	Gatheri	ng (Plar	nt Oper	ation)		24
	4.8 Err	or Analy	ysis	•	•	•	•	•	24
CHAPTER 5: CON	CLUSIO	ONS AN	ID REC	COMM	ENDA	ΓIONS	•	•	27
	5.1 Co	nclusion	ıs	•	•	•	•	•	27
	5.2 Re	commen	dations	•	•	•	•	•	28
REFERENCES	•	•	•	•	•	•	•	•	29
APPENDICES		•	•	•	•			•	31

LIST OF FIGURES

Figure 1 Schematic Diagram of Bent Tube Co	oil		•	•		2
Figure 2 Schematic Diagram of an Industrial	Process	s Furna	ce	•	•	5
Figure 3 Ethane Cracking Reactions	•	•	•	•	•	5
Figure 4 Model Equations	•	•	•	•	•	7
Figure 5 Peep Hole for Temperature Data Ga	athering	5.	•	•	•	14
Figure 6 Infrared Pyrometer .	•	•	•	•	•	15
Figure 7 Furnace (1/8) 3D Model in Gambit		•	•	•	•	15
Figure 8 Meshing with size function	•	•	•	•	•	16
Figure 9 Furnace Full Dimensions .	•	•	•	•		19
Figure 10 Steady-State Iteration (3500)	•	•	•	•		20
Figure 11 Steady-State Iteration (8000)		•	•	•	•	20
Figure 12 Heat Distributions from Side View		•	•	•		21
Figure 13 Heat Distributions from Front View	v	•	•	•		22
Figure 14 Residuals Unsteady-State		•	•	•		23
Figure 15 Mass Flow Rate Unsteady-State		•	•	•		23
Figure 16 Plot X-Y Graph	•	•	•	•		25
Figure 17 Plot Z-Y Graph		•	•	•		25
Figure 18 Flue Gas Velocity (Vertical Cross S	Section).	•	•		32
Figure 19 Flue Gas Velocity (Horizontal Cros	ss Secti	ion).	•	•		33
Figure 20 Radiant Coil Section (4/2/1 Split)	•	•	•	•		34
Figure 21 Temperature Point Location (Comp	parison).	•	•		29
Figure 22 Sidewall Burner Thermography		•	•	•		36
Figure 23 Floor Burner Thermography	•	•	•	•		37
Figure 24 Normal Data Operations (Ethane C	racking	g)	•	•		38
Figure 25 Furance Process Operation Compu	ter Syst	tem	•	•		39
Figure 26 Radiant Coil Position .	•	•	•	•		40
Figure 27 Radiant Coil Bending Position	•	•	•	•	•	40
Figure 28 Tubing Alignment (Shutdown)						4 1

Figure 29 Tubing Alignment (Operating)	•	•	•		•	41
Figure 30 Tubing Support System	•	•	•	•	•	42
Figure 31 Root Cause Investigation (RCI)		•	•	•	•	43

LIST OF TABLES

Table 1 Material Properties Nickel-Chromius	m Alloy Steels	•	•	•	6
Table 2 Tensile and Ductility for NiCr Alloy	•	•	•	•	6
Table 3 NiCr Specific Resistance and Maxin	num Operating	Temper	rature.	•	6
Table 4 Project Planning and Milestone FYP	1 .	•	•	•	13
Table 5 Project Planning and Milestone FYP	2 .	•	•	•	13
Table 6 Mass Flow Rate Convergence		•	•	•	21
Table 7 Simulation Results		•	•	•	33
Table 8 Temperature Data Gathering		•	•		34

NOMENCLATURE

m: Mass Flow Rate

ρ: density

 Δ : differences/ changes

D_{H:} Hydraulic Diameter

A: Cross sectional Area

P: Perimeter of the Area

k: Kinetic Reaction constant

E: Activation Energy

BF: Boiler Feedwater

HP: High Pressure