ABSTRACT

This dissertation presents the finding on the project "The Effect of Trim and Form Process on the Plated Leads of IC Packages". This work was done in collaboration with IDS Electronics Sdn Bhd which is a semiconductor assembly house. One of the highest volume product in IDS is the SOT-23-3L EIAJ IC package. It is of great interest for IDS to study the effect of the trim and form process on the plated lead frame of this package type. The trim and form process is carried out after the electroplating process, thus there is a possibility of the tin plating being compromised by the trim and form steps. The methods of metallography are used extensively in this project from preparation of all the samples until observations and analyses by optical and scanning electron microscopy. Thickness of electroplating at various locations along the plated leads will be made on images obtained via optical microscopy. Chemical composition of the plating will also be made using energy dispersive spectroscopy (EDS). It is found that there are variations of thickness of the plated leads especially at the bend locations of the leads. Some defects were also discovered such as plating peeloff and zero plating thickness. This project lays the groundwork for future work in order to improve the integrity of the plated leads of SOT-23-3L EIAJ package.

ACKNOWLEDGEMENT

Firstly, the author would like to express his utmost gratitude to Allah SWT, the most gracious and merciful for giving him strength to complete this project and thesis, titled "The Effect of Trim and Form Process on the Plated Leads of IC Packages" in Universiti Teknologi PETRONAS successfully.

He would like to express his deepest gratitude to his supervisor, Dr. Azmi bin Abdul Wahab for his patience, constant guidance and supervision.

In addition, his appreciation goes to IDS Electronics Sdn Bhd staffs, Mr. Ahmad Sultan and Mr W.K. Phan for providing information and samples of IC packages. His tasks would not have been easier to be accomplished without the information provided by them and he is indeed very thankful. He is very much indebted to them for the knowledge and experience gained.

Special thanks are extended to the mechanical lab technicians; Faisal, Anuar and Irwan for their endless assistance and support throughout the lab work. The author would also like to express his heartfelt thanks to his family and friends that have been very concerned throughout the whole project.

Finally, to those whose names the author had not mentioned, thank you very much for making this project run smoothly.

TABLE (OF (CONT	ENT
---------	------	------	-----

ABSTRACTi		
CHAPTER	1 PROJECT BACKGROUND	
1.1	Introduction	1
1.2	Problem Statement	1
1.3	Objectives	1
1.4	Scope	2
1.5	The Significance of the Project	2
CHAPTER	2 LITERATURE REVIEW	
2.1	The IC Package	3
2.2	How IC Are Made	4
2.2	SOT-23-3L EIAJ	7
2.3	Trim and Form Process	9
2.4	Metallography	11
CHAPTER	3 METHODOLOGY	
3.1	Project Flow and Methodology	17
	3.1.1 First Phase	17
	3.1.2 Second Phase	19
	3.1.3 Third Phase	22
	3.1.4 Final Phase	24
3.2	Test Specimens	24
3.3	Trim and Form Machine	24
3.4	Tool/Equipment Required	25
4.3	Gantt Chart	
CHAPTER	4 RESULTS AND DISCUSSION	28
CHAPTER	5 CONCLUSION AND RECOMMENDATION	39
REFERENC	CES	41
APPENDIX	ES	

LIST OF FIGURE

FIGURE 1: IC PACKAGE (NEC ELECTRONIC, 2007)	3
Figure 2: Dicing (NEC Electronics, 2007)	5
Figure 3: Mounting Process (NEC Electronics, 2007)	5
Figure 4: Bonding Process (NEC Electronics, 2007)	6
Figure 5: Encapsulation and Decoupling (NEC Electronics, 2007)	6
Figure 6: Printing (NEC Electronics, 2007)	7
Figure 7: Packing and Shipment (NEC Electronics, 2007)	8
Figure 8: SOT23-3L EIAJ	8
Figure 9: Specification of SOT-23-3L EIAJ	9
Figure 10: Comparison of inclines solid and swing cam roller forming mechanism	(Kai &
Chi, 2003)	10
Figure 11: Project Flow	17
Figure 12: IC Leads Zones for Analysis	18
Figure 13:Sample Size	19
Figure 14: METASERV 2000 Grinder	21
Figure 15: Abrasive Grinding Papers	21
Figure 16: IMPTECH 302 DVT Polisher Machine	22
Figure 17: Leads Positions	23
Figure 18: DinoCapture Software	23
Figure 19: Hanmi Form Machine	25
Figure 20: Epo-Kwick [®] Fast Cure epoxy kit	25
Figure 21: Optical Microscope	36
Figure 22: Scanning Electron Microscope	27
Figure 23: Leads Positions	28
Figure 24: Selected Points for Thickness Measurement	28
Figure 25: Thickness Variation of L1	29
Figure 26: Box and Whisker Plot of L1	30
Figure 27: Thickness Variation of L2	31
Figure 28: Box and Whisker Plot of L2	32

Figure 29: Thickness Variation of L3	
Figure 30: Box and Whisker Plot of L3	34
Figure 31: Forming Effect	35
Figure 32: Materials Composition of Plating	
Figure 33: Materials Composition of Interface	
Figure 34: Materials Composition of Base Metal	
Figure 35: Leads L3.1	37
Figure 36: Leads L2.4	37
Figure 37: Leads L3.6	

LIST OF TABLE

Table 1: The Specification of the Package	9
Table 2: Difference Type of Lead Skew and Their Related Causes	10
Table 3: Recommended Grinding/Polishing Speeds	13
Table 4: Polishing cloth selection guideline	15
Table 5: Common Chemical Etchants	16
Table 6: Specifications of Epo-Kwick® Fast Cure Epoxy Kit	
Table 7: Thickness Measurement of L1	29
Table 8: Data for L1	30
Table 9: Thickness Measurement of L2	34
Table 10: Data for L2	32
Table 11: Thickness Measurement of L3	33
Table 12: Data for L3	34

ABBREVIATIONS

IC	-	Integrated Circuits
----	---	---------------------

- SM Surface Mounted
- SEM Scanning Electron Microscope
- SiC Silica Carbide