CERTIFICATION OF APPROVAL

Management, Selection, Design and Installation of the running chassis (steering system) and accessories of a simple vehicle for competition in Shell Eco- Marathon 2010 - 1

by

Mohamad Suhaimi Bin Yahaya

A Dissertation submitted to the Mechanical Engineering Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

(Ir. Dr. Masri Bin Baharom)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK JUNE 2010

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

MOHAMAD SUHAIMI BIN YAHAYA

ABSTRACT

The Shell Eco-Marathon is an educational project that challenges the student teams to design and build the most energy-efficient vehicle to compete against other teams' vehicles. The principle of the Shell Eco-marathon is to design and build a vehicle that uses the least amount of fuel to travel to the farthest distance. Running chassis system is one of the important parts in a vehicle to control the movement and provide ride comfort of the vehicle on the road. The parts include in this system are steering, brake, wheel and suspension. The objective of this project is to design and fabricate the lightest and simplest steering system in order to reduce the weight of the vehicle and meet the sufficient turning radius to be participated in Shell Eco-marathon 2010. The requirement of the Shell Eco-Marathon states that the turning radius must be sufficient to enable safe overtaking as well as negotiating the curvature of the track. The project focuses on one part of running chassis which is the steering system. The steering system has to be designed as light and simple as possible. The design should meet the competition rule. The methodology of this project includes problem definition, conceptual design development, embodiment design development, detail design development, design fabrication, design analyzing and testing and lastly design communication. The steering system that was fabricated has been installed to on complete vehicle. Finally some analysis and testing will be done to ensure the car meet the requirement for entering Shell Eco-Marathon 2010.

ACKNOWLEDGEMENT

First and foremost, I would like to praise God the Almighty for His guidance. Although difficulties occurred, His guidance has given me the chance to still accomplish a challenging Final Year Project (FYP) successfully.

My deepest appreciation goes to my supervisor, Ir. Dr. Masri Bin Baharom who has given me endless guidance and advice in order to complete the project. Certainly this project wouldn't be a success without his priceless advices and sincere attention.

Apart from that, I would like to thank the technician and lab instructor in Mechanical Engineering Department, for their assistance. Without all the supports and contributions from all the parties mentioned, it is impossible for me to successfully meet the objective of the project.

Last but not least, I would like to thank my parents and family for their continuous love and support.

Thank you.

TABLE OF CONTENTS

CERTIFICATION	NOF AP	PROVAL.	•	•	•	•	i
CERTIFICATION	N OF OF	RIGINALITY	•	•	•	•	ii
ABSTRACT .	•		•	•	•	•	iii
ACKNOWLEDG	MENT		•	•	•	•	iv
CHAPTER 1:	INTF	RODUCTION	•	•	•	•	1
	1.1	Background	of Study	•	•	•	1
	1.2	Problem Stat	ement	•	•	•	2
	1.3	Objectives		•	•	•	3
	1.4	Scope of Stu	dy	•	•	•	3
CHAPTER 2:	LITE	RATURE RE	VIEW	•	•	•	4
CHAPTER 3:	THE	ORY .	•		•	•	7
	3.1	Ackermann S	Steering	Geomet	ry	•	7
	3.2	Steering Beh	aviour	•	•	•	10
	3.3	Self-Centerin	ıg.	•	•	•	12
	3.4	Mechanical I	Linkage .	••	•	•	13
CHAPTER 4:	MET	HODOLOGY	•	•	•	•	15
	4.1	Overview	•	•	•	•	15
	4.2	Problem Ider	tificatio	n.	•	•	17
	4.3	Conceptual I	Design	•	•	•	19
	4.4	Embodiment	Design	Develop	oment	•	21
	4.5	Detail Design	n Develo	pment	•	•	22
	4.6	Design Fabri	cation	•	•	•	22
	4.7	Design Analy	sis and	Testing	•	•	22
CHAPTER 5:	RESU	ULTS AND DI	SCUSS	ION	•	•	23
	5.1	Design Deve	lopment	•	•	•	23
	5.2	Simulation	•	•	•	•	26
	5.	2.1 Simulati	on Resul	lt.	•	•	26
	5.	2.2 Selection	n of The	Steering	g Syste	em.	29
	5.3	Material Sele	ection	•	•	•	30
	5.	3.1 Weighte	d Decisi	on Matr	ix for	steering	
		column a	and tie ro	od	•	•	32
	5.	3.2 Weighte	d Decisi	on Matr	ix for	spindle	33
	5.4	Optimization	•	•	•	•	34
	5.5	Design Analy	ysis	•	•	•	37
CHAPTER 6:	CON	CLUSION AN	D REC	OMMI	ENDA	TION	40

REFERENCES	•	•	•	•	•	•	•	42
APPENDICES	•	•		•				44

LIST OF FIGURES

Figure 1.1	Sepang International Circuit where the race will take place	1
Figure 2.1	Rack and pinion system by Norten Arizona University	5
Figure 2.2	Simple link and joint mechanism by Cal Poly Supermileage	5
Figure 3.1	Ackermann steering geometry	7
Figure 3.2	Slip angle	8
Figure 3.3	Variations of the Ackermann steering geometry	8
Figure 3.4	Effect of slip angle on vehicle handling	10
Figure 3.5	Toe-out angle as a function of the mean steering angle for static and real steering element layout	11
Figure 3.6	Caster angle	12
Figure 3.7	Camber angle and kingpin inclination	11
Figure 4.1	Flow chart of methodology FYP I	14
Figure 4.2	Flow chart of methodology FYP II	15
Figure 4.3	Measuring radius of turn in Sepang circuit	18
Figure 4.4	CAD model for Design 1	21
Figure 4.5	CAD model for Design 2	21
Figure 4.6	CAD model for Design 3	21
Figure 4.7	CAD model for Design 4	21
Figure 5.1	Basic steering system	23
Figure 5.2	Simulation of the design steering system in ADAMS view	26
Figure 5.3	Graph of the front steer wheel angle versus steering wheel angle for design 1	26
Figure 5.4	Graph of the front steer wheel angle versus steering wheel angle for design 2	27
Figure 5.5	Graph of the front steer wheel angle versus steering wheel angle for design 3	27
Figure 5.6	Graph of the front steer wheel angle versus steering wheel angle for design 4	28
Figure 5.7	Optimization of the design	34
Figure 5.8	Graph of the front steer wheel angle versus steering wheel angle for design 1 with k=55mm and L=30mm	36

Figure 5.9	Graph for the actual result of the front steer wheel angle versus steering wheel angle	37
Figure 5.10	Toe-out angle as a function of the mean steering angle based on simulation resultand actual result	38

LIST OF TABLES

Table 4.1	Expected output for each design phase	17
Table 4.2	Detail of turn in Sepang circuit	18
Table 4.3	Morphological chart for design concept generation	20
Table 5.1	Design was proposed in the beginning for steering system	24
Table 5.2	Result of ADAMS simulation for all design	28
Table 5.3	Weight factor for steering design selection	29
Table 5.4	Weight property index for steering design selection	29
Table 5.5	Properties for all steering system parts must have	30
Table 5.6	Essential mechanical properties that the materials must have	31
Table 5.7	Mechanical properties for carbon fiber, aluminium alloy and stainless steel	32
Table 5.8	Weight property index for material selection for steering column and tie rod	32
Table 5.9	Weight property index for material selection for spindle	33
Table 5.10	Result of ADAMS simulation for various value of k and L	35
Table 5.11	Result simulation for design 1 with k=55mm and L=30mm	36
Table 5.12	Actual result	37
Table 5.13	Comparison between the simulation result with the actual result	38