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ABSTRACT 

This paper intended to discuss in depth the provision of the groundwork for the 

development of bond-slip relationship of carbon fiber reinforced polymer (CFRP) 

plated steel member under fatigue loading. The bond-slip characteristics of the 

adhesive joint between the CFRP and steel have been studied under monotonic load 

so that debonding does not occur whilst the members are in service. A typical bond-

slip relationship is assumed to be bilinear consisting of an elastic branch which peaks 

at τmax and the softening branch up to δmax. However there are relatively few studies 

on the bond-slip relationship due to fatigue loading. Thus this research focuses to 

study the behavior of this composite system by thoroughly examining the shear stress 

distribution along the bonded length. Experimental program using single lap pull test 

subjected to monotonic loading is carried out using CFRP plated steel block. Later, 

fatigue life prediction of the composite system is done using stress-life approach in 

order to come up with a suitable fatigue loading program. The output of this research 

will be a firm base for a good formulation of the bond-slip relationship under fatigue 

loading and therefore will enhance the knowledge of time-dependant behavior for 

steel bridges, steel jetty and offshore platforms retrofitting as well as the 

development of design standard for fatigue conditions. 
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CHAPTER 1 

INTRODUCTION 

1.1 PROJECT BACKGROUND 

Whether it is concrete, masonry or steel structures, all of them need proper 

maintenance in order to prolong the serviceability life. Many factors can be 

associated when it comes to structures aging and deterioration. Concerning steel 

structures, the factors include typical corrosion and fatigue. 

One of the common approaches adopted to tackle fatigue issue is using steel plates 

either bolted or welded to the damaged steel structures. However, this approach is 

seemingly to be causing another problem due to the additional dead load imposed as 

well as the cost and time consideration. In addition, fatigue problem in welding 

connection makes both of these options not favorable. 

A considerable interest has been given to the use of Fiber Reinforced Polymer (FRP) 

in strengthening existing structures including concrete and steel in recent years. FRP 

is a polymer matrix resin reinforced with fibers and has a lower modulus of elasticity 

compared to steel. The polymer can be epoxy, vinylester or phenol formaldehyde 

resins while glass, carbon, basalt or aramide make up the fibers component of FRP 

[1]. 

Some of the characteristics of the FRP that makes it preferred for structure 

strengthening including high strength, non-corrosive nature, light weight, fatigue 

resistant and linear elastic tensile stress-strain behavior. However, from recent 

studies, Carbon Fiber Reinforced Polymer (CFRP) is found to be the most suitable 

type for steel structures strengthening [2, 3]. Steel structures retrofitting using 

adhesively-bonded CFRP is one of the research areas that receive enormous attention 

in recent years. 
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It is proven from previous researches carried out that the bonding between the CFRP 

and steel members plays a vital role in ensuring successful forces transfer and hence 

causes lower stress concentrations. Most of the studies done before reported the 

failures to be likely occurring in the adhesive; hence it is very important to study the 

bond behavior between the CFRP and steel, especially under fatigue loading [3, 4]. 

1.2 PROBLEM STATEMENT 

Steel bridges, steel jetties and offshore platforms are the typical structures subjected 

to fatigue loading. The steel members used in the construction of these structures can 

experience millions of variable amplitude load cycles during their service life. Such 

fatigue loading represents a main cause of degradation in these structures. As a result, 

fatigue is an important consideration in their design criteria and should be given 

special attention. CFRP is identified as a potential remedy in steel structures 

retrofitting when subjected to such loading. 

As observed throughout the years, in previous studies made by other researches, 

most of them solely focus on the bond characteristics between CFRP and steel when 

subjected to static tensile loading [2], pull-off test [4] and impact loading [5]. Less 

attention had been given to the effect of fatigue loading as well as the development 

of the bond-slip relationship in CFRP plated steel members subjected to such loading 

[6]. 

This report presents a systematic study to provide groundwork for the establishment 

of bond-slip relationship of CFRP plated steel member when it is subjected to fatigue 

loading. The groundwork hopefully will be useful for the formulation of the bond-

slip relationship which is crucial for steel structures retrofitting particularly those 

subjected to fatigue loading; steel bridges, steel jetty and offshore platforms.  

1.3 OBJECTIVES AND SCOPE OF STUDY 

With the fact that there is no established bond-slip relationship of CFRP plated steel 

member under fatigue loading, it is important to have solid and firm groundwork for 

the research project. The groundwork includes the identification of the composite 

system behavior as well as controlling parameters that might affect the fatigue study 

later. 
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Hence, the objectives of this paper are to: 

1. establish the behavior and shear stress distribution along the bonded length of 

CFRP plated steel member; and 

2. predict the fatigue behavior and fatigue life using stress-life approach. 

A control specimen; adhesively bonded CFRP steel member will be first subjected to 

tensile loading until failure occurs. From this experiment, failure mechanisms and the 

behavior of the system will be thoroughly examined and analyzed in the form of 

graphs and discussions. From the data, the fatigue life of this composite system will 

be predicted using the stress life approach. All in all, this research will provide 

groundwork for the determination of the testing regime and later, the development of 

bond-slip relationship of CFRP plated steel member when subjected to fatigue 

loading. 

1.4 RELEVANCY OF THE PROJECT 

In view of the fact that less attention has been given to the bond-slip relationship 

analysis of CFRP plated steel member under fatigue loading, Zhao & Zhang [7] has 

suggested that researches on this area of study should be carried out to represent an 

initial step to fill the gap. Hence this research is important to provide groundwork for 

the formulation of the bond-slip relationship which will be a highly potential 

knowledge in the field of fatigue-damaged steel structures retrofitting. 

1.5 FEASIBILITY OF THE PROJECT 

Experimentally, the single strap pull test will be carried out using Universal Testing 

Machine (UTM) which is available at Universiti Teknologi PETRONAS Concrete 

Technology Laboratory located at Block 13. From the time frame point of view, 

within eight months of the Final Year Project I and II courses, the planned scope of 

study is hopefully manage to be achieved. 
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CHAPTER 2 

LITERATURE REVIEW 

Issues and topics concerning fatigue concept, CFRP-to-steel bond behavior and 

bond-slip relationship will be discussed accordingly in each section. Findings from 

several related journals, proceedings, books, and reports reviewed by the author are 

presented in this chapter. 

2.1 FATIGUE 

 2.1.1 Basic concept 

Fatigue concept in simple language, is when a motion is repeated, the object that is 

doing the work becomes weak and eventually fails at a stress level below the 

nominal strength of the material. It is the progressive, localized and permanent 

structural change that may occur in materials or structures when subjected to 

repeated stresses over a long period of time. When this occurs, it can lead to cracks 

and later cause fracture after sufficient fluctuations are achieved [8].  

Failure by fatigue is a fairly common occurrence, as many components are subjected 

to alternating or fluctuating loads during their service life. Fatigue has been estimated 

to be the prominent cause of all mechanical service failures [9] and structural 

degradation of existing bridges and infrastructures in Europe, North America and 

Japan [6]. 

Campbell [9] discusses the three fundamental factors that must exist concurrently in 

order to cause fatigue: 

1. maximum tensile stress of sufficiently high value; 

2. sufficient fluctuation of applied stress; and 

3. sufficient large number of cycles of the applied stress. 
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However, different approach was adapted by Boardman [8] to explain the necessary 

simultaneous action needed to cause fatigue namely cyclic stress, tensile stress and 

plastic strain.  Without these three components, fatigue crack will not initiate and 

propagate due to the fact that the plastic strain caused by the cyclic stress will initiate 

the cracks and the propagation of the cracks is induced by the tensile stress. 

 2.1.2 Stress cycles 

In order to cause fatigue, there are many types of fluctuating stresses that can be 

applied. A typical stress cycle is characterized by maximum (σmax), minimum (σmin)  

and mean stress (σm), range of stress (σr), the stress amplitude (σa) and the stress ratio 

R = σmin/σmax as shown in Figure 2.1.  

 

 

 

According to Kelly [10], the simplest is the fully reversed stress cycle or alternating  

as shown in Figure 2.2 which is commonly used in testing. Figure 2.2 shows a sine 

wave where the negative sign differentiate the maximum and minimum stress applied. 

In this condition, the mean stress which is the algebraic average of the maximum 

stress and minimum stress in once cycle is equal to zero [8]. The simplest example 

where this type of stress cycle occurs is in an axle; at every half turn or half period as 

in the case of the sine wave, the stress on a point would be reversed. 

 

Figure 2.1: Cyclic stresses.  
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Figure 2.2: Alternating stress cycle. [9] 

Figure 2.3 on the other hand shows the condition of pulsating tensile stress in which 

both the cyclic and applied stresses are positive stresses, but it is also possible to 

have stresses in compression; negative stresses. This type of stress cycle is also 

called repeated stress cycle [10]. 

 

Figure 2.3: Tension/Tension loading. [9] 

The final type of stress cycle will be the random or irregular stress cycle, in which 

the stress and frequency vary randomly as shown in Figure 2.4. 

 

Figure 2.4: Random loading. [9] 
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According to Jackson & Dhir [11], much fatigue testing is carried out using 

alternating stress cycles and the results of many tests are expressed in the form of an 

S-N plot, where S is the maximum stress in a cycle and N is the number of cycles to 

failure. Further discussion on the S-N curve is clarified in Section 2.1.5. 

 2.1.3 Forms of failure 

Failure by fatigue takes two forms; low-cycle fatigue and high-cycle fatigue [9, 11].  

The former type is when the maximum stress in any cycle is larger than the yield 

stress, although less than the static tensile strength and failure occur at a low number 

of cycles, generally less than 1000. The latter type obviously is the contradiction of 

the former where the maximum stress is lesser than the yield stress and 10
5
 to 10

6
 

cycles may be required to cause the failure. Plastic and elastic deformation takes 

place in low-cycle fatigue while only elastic deformation occurs in high-cycle fatigue. 

 2.1.4 Process of fatigue failure 

In general, there are three stages of fatigue fracture process as shown in Figure 2.5 [8, 

9, and 12]: 

1. crack initiation; 

2. crack propagation or growth; and 

3. ultimate failure (fracture). 

 

 

Figure 2.5: Stages of fatigue crack. [9] 

Campbell [9] proposed that the crack initiation often starts at a notch or surface 

irregularity. However, this is not true all the time such that crack initiation will 

eventually occur due to the formation of persistent slip bands (PSBs) even with the 

absence of surface defects. PSBs are formed when dislocations accumulate near 

Failure Crack Propagation Crack Initiation 
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surface stress concentrations and can be either extrusion (rise above) or intrusion 

(fall below) as shown in Figure 2.6. Continuous back-and-forth movement of these 

band slips will eventually cause the cracks formation. 

 

Figure 2.6: Development of extrusions and intrusions during fatigue. [9] 

When enough crack length is achieved, the stress field at the tip becomes dominant 

and will change the overall crack plane to the direction normal to the principal stress 

and the crack enters the next stage; crack propagation or growth. 

During crack growth, continuous crack sharpening takes place proceeds by blunting 

as illustrated in Figure 2.7. A pattern of crack striations are produced during the 

crack growth and each of these striations corresponds to one fatigue cycle as shown 

in Figure 2.8. Nevertheless, fatigue failure can still occur without the formation of 

these striations which can only be identified using scanning electron microscope 

(SEM). Through visual examination, beach marks are easier to be identified as 

shown in Figure 2.9. 

 

Figure 2.7: Crack propagation. [9] 
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Figure 2.8: SEM image of fatigue striations. [9] 

 

Figure 2.9: Beach marks. [9] 

The next stage is when the cracks are long enough and the material or structure could 

no longer support the applied load, ultimate fatigue failure will occur. 

 2.1.5 S-N curve 

An S-N curve is used to characterize the material performance subjected to fatigue 

loading and usually adopted in presenting high-cycle fatigue data [9]. For the 

designer, it is critical that this relationship be characterized so that fatigue life can be 

predicted. It is a plot of the stress, S, which can be the maximum stress (σmax), 

minimum stress (σmin) or the stress amplitude (σa) versus N, the number of cycles to 

failure. Most often the values of N are plotted on a logarithmic scale since they are 

generally quite large. Typical S-N curve is shown in Figure 2.10.  
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Figure 2.10: Typical S-N curve. 

It is important to identify the characterization of the S-N curve in fatigue analysis 

study. Plotting the S-N curve is based on the fatigue life, which is the number of 

cycles required to cause failure at specified stress level. The fatigue life reduces with 

respect to the increase in applied stress and at a limiting value of stress, the curve 

flattens off and it is identified as the endurance limit or fatigue limit for the specific 

material [12]. Under this limit, the applied stress will not induce any failure. For any 

structural design, the members should be designed to resist fatigue by ensuring that 

the stress in the member does not exceed its endurance limit [13]. 

Both Campbell [9] and Hibbeler [13] demonstrate the apparent comparison of the 

fatigue behavior in steel and aluminum as shown in Figure 2.11. Steel not only have 

higher fatigue strength than aluminum, but it also have endurance limit. Aluminum 

will always fail if tested to a sufficient number of cycles and hence it is normally 

specified as the stress having a limit of 500 million cycles. Typical values of 

endurance limits for various engineering materials are usually reported in handbooks. 
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Figure 2.11: Comparison of steel and aluminum fatigue behavior. [9] 

2.2 CARBON FIBRE REINFORCED POLYMER (CFRP) 

Fiber reinforced polymer (FRP) is a polymer matrix resin reinforced with fibers and 

has a lower modulus of elasticity compared to steel. There is nowadays a wide range 

of available types of FRP composites (with polyester, epoxy or vinyl-ester matrices) 

reinforced with glass, carbon and aramid fibers with suitable properties for different 

applications in civil and structural engineering [14]. 

Besides the distinctive features of FRP (light weight, high strength, non-corrosive 

and high resistance to fatigue) that make it preferred for structures strengthening, 

Nicolae et al. [14] have also identified some drawbacks of using FRP in structures 

reinforcement: 

1. FRP composites are typically brittle materials. 

2. Ultimate tensile strength of FRP reinforcing bars decreases with the bar 

diameter. 

3. The compressive behavior of FRP bars has not been studied adequately and a 

tendency to buckle sooner than the steel bars has been noticed. 

4. Entrapped air due to uncontrollable adhesive layer quality can affect the bond 

between FRP and the bonded structures. 
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Despite the reported disadvantages of using FRP in structures, recent researches 

findings are seemingly to come into a consensus that the use of FRP specifically 

carbon FRP (CFRP) is beneficial to steel structures retrofitting after subjected to 

fatigue loading. These structures include bridges, towers, and platforms. 

In the last decade, CFRP composite materials have been increasingly employed in 

the construction industry, mainly in applications dealing with structural 

strengthening and repair. They are ideally suited for this purpose, due to a 

combination of the very high stiffness-to-weight and strength-to-weight ratios and an 

excellent durability in aggressive environments. 

Apart from reported studies on the effectiveness of CFRP in concrete structures 

strengthening [15], advance CFRP composites have been proposed as excellent 

reinforcement materials for the fatigue strengthening of steel structures [4, 7, 16, 17]. 

CFRP plates on cracked steel sections may produce retardation or complete stop of 

the crack propagation by acting in three ways [18]: 

1. reducing crack opening displacement at and behind crack front and therefore 

reducing stress intensity factors at the crack tip; 

2. producing crack closure effect; and 

3. increasing the stiffness of the cracked steel sections. 

2.3 TEST METHODS 

As discussed by Zhao & Zhang [7], different testing methods were adopted by 

various researches to test the bond for different purposes of study. Namely there are 

four types: 

Type 1: The loading is indirectly applied to the FRP and steel plate in a beam 

(see Figure 2.12 (a)); 

Type 2: The loading is directly applied to the steel element without any gap 

(see Figure 2.12 (b)); 

Type 3: The loading is directly applied to the steel element with a gap (see 

Figure 2.12 (c)); and 

Type 4: The loading is directly applied to the CFRP (see Figure 2.12 (d)). 
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(a) Type 1: Loading is indirectly applied to the FRP and steel plate in a beam [19]. 

 

(b) Type 2: Loading is directly applied to the steel element without any gap. 

(i) Uniform width [1] (ii) Coupon shape [20] (iii) Dogbone shape [21] 

Figure 2.12: Bond testing methods. 
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(c) Type 3: Loading is directly applied to the steel element with a gap. 

(i) Double strap joints [20, 22, 23] (ii) Single lap joint with circular hollow section 

[24, 25] 

 

(d) Type 4: Loading is directly applied to the CFRP. 

(i) Shear lap tests [26]. 

Figure 2.12: Bond testing methods (continued) 
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(d) Type 4: Loading is directly applied to the CFRP. 

(ii) Single lap shear joint [4]. 

Figure 2.12: Bond testing methods (continued) 

Each of the methods are designed for different testing objective and Zhao & Zhang 

[2] recommended to use the test set up shown in Figure 2.12 (d)(ii) to establish the 

bond-slip relationship between CFRP and steel in tension. 

2.4 PREVIOUS STUDIES ON FATIGUE 

2.4.1 Fatigue bond characteristic and behavior 

While extensive research has been done to study the effectiveness of CFRP 

strengthened steel members, only recently research works had been performed to 

investigate the effects of fatigue loading on the CFRP plated steel members when 

different parameter are varied. The CFRP is commonly bonded to the existing 

structures with the use of adhesive such as epoxy. Based on previous studies, it has 

been identified that the critical difference between CFRP-to-concrete and CFRP-to-

steel bonded interfaces is that concrete being the weak link in the former but in the 

latter, the weak link is the adhesive [3, 4]. 

When it comes to CFRP-strengthened steel, typical modes of failure are either the 

CFRP rupture or debonding of the FRP laminate along the CFRP-to-steel interface 

[4]. Hence it is very important to first understand the bond behavior of the CFRP-to-

steel bonded interfaces before going deeper into the effects of different loading 

applied on the bond.  
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There are several controlling factors that may affect the bond behavior of the 

adhesively bonded CFRP-to-steel. Xia & Teng [4] conducted a single pull-off 

experiment to investigate the effects of adhesive properties and adhesive thickness on 

bond behavior. Three types of adhesive with different tensile strength were used with 

properties shown in Table 2.1 and the thickness of the adhesive layer was varied to 

achieve a wide range of values of the adhesive stiffness. From the study, it can be 

deduced that practical adhesive thickness (<2mm) will cause adhesive failure while 

thickness greater than that will lead to debonding by plate delamination. The test 

results are as shown in Table 2.2. 

Table 2.1: Material properties of adhesives [4] 

Adhesive 
Tensile strength 

ft,a (MPa) 

Young’s Modulus 

Ea (MPa) 

A 22.53 4013 

B 20.48 10793 

C 13.89 5426 

Table 2.2: Specimen details and test results [4] 

Specimen 

Intended/ measured 

adhesive thickness 

(mm) 

Ultimate Load 

Pult (kN) 

Debonding 

failure mode 

A-1 1/1.07 60.5 Adhesive 

A-2a 2/1.98 61.7 Adhesive 

A-2b 2/1.84 55.6 Delamination 

A-4 4/3.88 50.7 Delamination 

A-6 6/6.12 53.2 Delamination 

B-1 1/0.825 39.4 Adhesive 

B-2a 2/1.90 42.4 Adhesive 

B-2b 2/1.76 38.8 Adhesive 

B-4 4/3.98 47.5 Adhesive /Delamination 

B-6 6/6/05 55.9 Delamination 

C-1 1/0.875 38.0 Adhesive /Delamination 

C-2a 2/1.58 46.8 Adhesive /Delamination 

C-2b 2/1.82 46.4 Adhesive /Delamination 
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Yu et al. [3] presented an experimental study on the CFRP-to-steel bonded interfaces 

behavior where several variables were considered including the material properties, 

adhesive thickness and the axial rigidity of the CFRP plate. The study demonstrated 

that the bond strength which is the ultimate tensile force that can be resisted by the 

CFRP plate before debonding depends strongly on the interfacial fracture energy; the 

area under the bond-slip curve as shown in Table 2.4. Apart from that, there exists 

the practical thickness of the adhesive with range of 1-2 mm. Thicker adhesive layer 

appears to increase the bond strength of the joint but further researches is needed to 

thoroughly clarify the effect. 

Table 2.3: Material properties of adhesives [3] 

Adhesive 
Tensile strength 

σmax (MPa) 

Young’s Modulus 

Ea (GPa) 

A (Sika 30) 22.34 11.25 

B (Sika 330) 31.28 4.82 

C (Araldite 2015) 14.73 1.75 

D (Araldite 420) 21.46 1.83 

Table 2.4: Bond strengths for cohesion failure [3] 

Series Specimen 

Adhesive 

thickness 

(mm) 

Interfacial 

Fracture Energy, 

Gf  (N/mm) 

Bond 

Strength, Pult 

(kN) 

I A-NM-T1-I 1.07 1.06 30.75 

 A-NM-T1-II 1.03 1.11 31.21 

 C-NM-T1-I 0.99 12.34 112.87 

 C-NM-T1-II 1.02 12.78 113.81 

II A-NM-T1.5 1.53 1.27 35.20 

 A-NM-T2 2.06 1.54 40.00 

 A-NM-T3 3.04 1.11 33.80 

III A-MM-T1 1.01 1.06 46.90 

 A-HM-T1 1.20 1.31 63.80 

 C-MM-T1 1.04 12.52 130.50 
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Different approach was used by Wu et al. [2] where they carried out experiment to 

study the bond characteristic of the CFRP-to-steel joints using two different types of 

adhesives and CFRP elastic modulus. Thirteen double straps joints as shown in Table 

2.6, the failure modes and bond strengths were dependent on the adhesive properties 

whose properties are tabulated in Table 2.5. CFRP rupture or delamination was 

observed taken place in specimens using the Araldite 420 which apparently have 

higher tensile strength. While for specimens using Sikadur 30, cohesive failure 

occurred. This is due to the fact that this adhesive has much lower tensile strength. 

Table 2.5: Material properties of adhesives [2] 

Adhesive 
Tensile strength 

σmax (MPa) 

Young’s Modulus 

Ea (MPa) 

Araldite 420 28.6 1901 

Sikadur 30 24.0 9282 

Table 2.6: Test results [2] 

Specimen 
Adhesive 

Thickness 

Bond 

Strength, Pult 

(kN) 

Failure Mode 

A260 0.39 274.95 CFRP rupture 

A250 0.38 267.34 CFRP rupture 

A120 0.36 271.18 CFRP delamination 

A100 0.31 250.63 CFRP delamination 

A70 0.34 178.88 CFRP delamination 

A50 0.36 137.23 CFRP delamination 

A30 0.35 72.97 CFRP delamination 

S250 0.43 151.33 Cohesive failure 

S100 0.40 148.42 
CFRP delamination and 

cohesive failure 

S80 0.35 158.07 Cohesive failure 

S70 0.40 126.44 Cohesive failure 

S50 0.43 136.35 Cohesive failure 

S30 0.34 58.51 Cohesive failure 
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In different experiment, Wu et al. [27] carried out a series of static and fatigue tests 

using double strap joints of UHM CFRP plates and steel plate to study the effect on 

bond strength. Five specimens were tensioned to failure under static loading of 90 

kN as control specimens while the other twelve specimens were tested under fatigue 

loading with load ratios ranging from 0.2 to 0.6. From this study, a clearer 

comparison and investigation were made with respect to the control specimen 

regarding the effect of fatigue loading. The test results for those specimens that 

survived fatigue loading and subsequently subjected under static loading are 

tabulated in Table 2.7. It appeared that the residual bond strength decreased when 

higher fatigue load ratio is applied. However, the maximum reduction in the residual 

bond strength was only 4.27%, indicating that the fatigue load ratio had a very 

limited effect on the bond strength. 

Table 2.7: Test results of specimens survived fatigue loading. [27] 

Specimen 
Fatigue load range 

∆P (kN) 

Load ratio 

Pmax/ Fs, max 

Residue 

strength 

Ff, max (kN) 

A260 0.39 274.95 165.35 

A250 0.38 267.34 147.42 

A120 0.36 271.18 152.62 

A100 0.31 250.63 149.56 

A70 0.34 178.88 141.76 

A50 0.36 137.23 139.01 

A30 0.35 72.97 138.43 

However, since the study is performed using UHM CFRP plates, little fatigue effect 

can be observed using visual inspection and hence microscopic investigation is used 

to explain the effect of fatigue loading on residual bond strength. 

Liu, Zhao, & Al-Mahaidi [28] on the other hand carried out a series of fatigue test 

with the use of both normal modulus and HM CFRP. Different level of constant 

amplitude stress ranges were adopted for the fatigue loading testing. The specimens 

were eventually tested in tension and the effect of fatigue loading on the failure 

modes, bond slip and bond strength was observed. It is found that the applied fatigue 

loading plays a vital role; when the maximum applied load is less than 40% of the 

ultimate static strength there was no fatigue failure in the specimens; and no 
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significant influence on the bond strength when the maximum applied load is less 

than 35% of the ultimate static strength. Also, it was concluded that normal modulus 

CFRP bonded specimens are more sensitive to fatigue cycles, whereas high modulus 

CFRP bonded specimens are more sensitive to the applied load ranges. 

 2.4.2 Fatigue life improvement 

Apart from that, CFRP patches were also proven to be able to extend the fatigue 

lifetime of the material [29, 30]. However, it is important to note the influence of 

some parameters on the effectiveness of this method such as the CFRP stiffness, 

adhesive thickness and size of debonded region [18]. 

Tavakkolizadeh & Saadatmanesh [30] carried out a series of tests to study the fatigue 

life improvement of damaged steel girders when repaired with pultruded carbon fiber 

sheets. Different stress ranges of 69 to 379 MPa were considered in the study using 

four-point bending test. In order to establish a reliable set of control data, seven pairs 

of unretrofitted beams were subjected to constant stress range cycles of 138, 172, 207, 

241, 276, 310 and 345 MPa. As for the retrofitted specimens, a total of six retrofitted 

beams were subjected to constant stress range cycles of 207, 241, 276, 310, 345, and 

379 MPa.  

Table 2.8: Test results for unretrofitted beams. [30] 

Stress Range 

(MPa) 

Number of Cycles 

Crack Initiation Failure 

207 69,760 119,140 

241 32,495 71,278 

276 14,511 35,710 

310 10,019 30,216 

345 7,606 19,068 

From Table 2.9, it can be seen clearly that the use of CFRP sheet can prolong the 

fatigue life of damaged specimens. Retrofitted specimens experienced longer fatigue 

lives of between 2.6 to 3.4 times the unretrofitted specimens for stress ranges of 345 

to 207 MPa, respectively. This improvement is equivalent to upgrading the detail 

from the AASHTO category D to category C. 
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Table 2.9: Test results for retrofitted beams. [30] 

Stress Range 

(MPa) 

Number of Cycles 

Crack Initiation Failure 

207 152,414 379,824 

241 92,687 241,965 

276 35,966 105,345 

310 21,655 75,910 

345 16,786 54,300 

379 7,146 35,356 

Schnerch et al. [31] demonstrated the increment in ultimate strength of the 

strengthened bridge girders as well as a better fatigue performance when the beam is 

strenghtened with CFRP if compared to conventional steel details in steel highway 

bridge construction. In their experiment, two different reinforcing systems were 

adopted where strengthened specimen is compared to the unstrengthened ones. The 

result showed an increment in allowable live load when the strengthened specimens 

were tested with a 20% increment of the applied load range. 

A comparative study was carried out by Jiao, Mashiri & Zhao [32] where three 

methods of damaged steel beam retrofitting were used; welding, welding and 

bonding with CFRP plates or CFRP woven sheets laminated via a wet lay-up process. 

A 4 point bending test upon a beam that has initial cut was carried out for the 

purpose of this study as shown in Figure 2.13. 

 

Figure 2.13: Schematic diagram of 4-point bending test configuration. [32] 
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From the study, it was found that one layer of CFRP plates can extend the fatigue life 

about 7 times compared to the beam retrofitted with solely welding method. 4 layers 

of CFRP woven sheets on the other hand can extend the fatigue life up to 3 times.  

This proved that beam strengthened with CFRP plates have better performance than 

those retrofitted with CFRP woven sheets. Mean S-N curves were obtained and can 

be used to predict the fatigue life of steel beams retrofitted with similar CFRP 

materials as shown in Figure 2.14. However, they reported that no significant 

difference in fatigue life could be observed when different adhesive were used. 

 

Figure 2.14: S-N plot of fatigue test data. [32] 

As suggested by Jiao, Mashiri & Zhao [32], there is a need to study the influence of 

damage degree to the efficiency of using CFRP strengthening system. Hence, Yu et 

al. [33] performed an experimental and analytical study to deliver this need. In the 

series of tests, different lengths of artificial cracks were used to represent different 

degrees of fatigue damage, defined by β, which are 2%, 10% and 20% corresponding 

to initial crack length of 1mm, 5mm and 10mm. The technique of “beach marking” 

was adopted to trace the crack propagation and was proven to be a reliable method of 

recording crack shapes during fatigue testing for later measurement as concluded by 

Liu, Zhao, & Al-Mahaidi [28]. From the study, it was found that all the strengthened 

specimens had their fatigue lives prolonged by 97% to 186% compared to the 

unstrengthened specimens as tabulated in Table 2.10. A more significant extension of 

fatigue life was observed at a large damage level with late strengthening. However, 

early repair is suggested. 
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Table 2.10: Fatigue test results [33] 

Specimen 
Number of fatigue 

cycles 

Improvement 

(%) 

Unstrengthened specimen with a 

damage degree of 2% 
234533 - 

Strengthened specimen with a 

damage degree of 2% 
462679 97% 

Unstrengthened specimen with a 

damage degree of 10% 
123738 - 

Strengthened specimen with a 

damage degree of 10% 
234710 90% 

Unstrengthened specimen with a 

damage degree of 20% 
65625 - 

Strengthened specimen with a 

damage degree of 20% 
187856 186% 

Liu, Zhao, & Al-Mahaidi [28] carried out a series of experiments to investigate the 

effectiveness of CFRP on preventing fatigue crack propagation and extending the 

fatigue life of steel plates. Using single-sided and double-sided repairs with normal 

modulus or high modulus CFRP, the results showed that the application of the CFRP 

significantly reduced crack growth and extended the fatigue life. However, high 

modulus CFRP was found to be much more efficient when it can prolong the fatigue 

life up to 4.7-7.9 times while the normal modulus CFRP can only extend up to 2.2-

2.7 times. Besides, they also varied the parameters of patch thickness, patch length 

and patch configuration to further study the governing factors. While the patch 

thickness and patch length influenced fatigue life of over 20% increment, patch 

configuration had only 6% influence on fatigue life increment. 

 2.4.3 Stiffness reduction due to fatigue loading 

In a series of fatigue tests conducted by Matta et al [34], a double sided 

reinforcement and double-sided shear lap joints were subjected to fatigue loading. 

The results showed that the member stiffness gradually decreased throughout the 

fatigue loading. Liu, Zhao, & Al-Mahaidi [28] on the other hand carried out a series 

of fatigue test with the use of both normal modulus and HM CFRP. Different level of 

constant amplitude stress range was adopted for the fatigue loading testing. The 

specimens were eventually tested in tension. A good agreement on a reduction on 

bond slip stiffness was found due to the damage accumulated during the fatigue 
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loading. However, the reduction in bond strength is not significant as it was only 

about 7%. 

Bocciarelli et al. [6] performed preliminary tests at different loading conditions under 

constant stress range cycles of 83, 100, 120 and 160 MPa. From the tests, significant 

stiffness reduction is observed due to progressive debonding of the adhesive as 

shown in Figure 2.15. During the crack initiation, the stiffness reduced to 98% and 

reached 95% stiffness reduction when the delamination started to advance rapidly. 

When the CFRP debonding reached the midspan of the specimens, the stiffness 

dropped to 85% of the original value. From the experiments, it is concluded that 

fatigue performance could be improved by optimizing the joint design other than 

selecting suitable CFRP plate thickness and elastic modulus as well as adhesive 

thickness. 

Table 2.11: Specimen loading [6] 

Specimen ∆σ (MPa) 

FT1 83 

FT2 100 

FT3 120 

FT4 160 

 

Figure 2.15: Reduction in stiffness of retrofitted specimens during fatigue tests. [6] 
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Colombi & Fava [35] prepared a series of steel/CFRP double shear lap joints using 

two steel plates and two CFRP strips and tested at different loading conditions 

defined as a function of stress range of 60, 75, 90 and 100 MPa, and of the stress 

ratio R (0.1 and 0.4).  Significant stiffness reduction of the joints was first observed 

due to progressive debonding of CFRP strips. Similar to Bocciarelli et al. [6], crack 

initiation is associated to 2% stiffness reduction and 5% reduction when the 

debonding propagates more rapidly. When it reached 10% stiffness reduction, it is 

when the final failure took place. They suggested considering the stiffness reduction 

to 98%, 95% and 90% when developing the S-N curves from the test results to assess 

the fatigue behavior of the bond between the steel plates and the CFRP strips. The 

tests evidenced a marginal influence of the fatigue ratio R on the fatigue performance. 

 2.4.4 Stress range effect 

Deng & Lee [36] carried out a series of small-scale steel beams bonded with CFRP 

plate. Using backface-strain technique to detect crack initiation and monitor crack 

growth, it is proven that the crack nucleation and growth rate increased rapidly with 

the increment in applied stress range. In addition, the spew fillet is observed to be 

beneficial to the fatigue performance of the adhesively bonded joints but not 

significant. An S-N curve was developed from the test results and the fatigue limit 

was found to be about 30% of the ultimate static failure stress, which validates the 

fatigue limit suggested by CIRIA Design Guidance [37]. Also, the fatigue load range 

will affect the fatigue life, but its significance is much less than the magnitude of the 

maximum load in the load range. 

Kim & Harries [38] on the other hand, intentionally created damage by notching the 

tension flange of the six beams to evaluate the static and fatigue performance when 

the specimens are repaired with CFRP strips. From the tests, recovery of the static 

load-carrying capacity of the damaged beam to the undamaged beam is observed 

with the use of CFRP strips. In addition, the stress range applied was found to be the 

governing factor for fatigue life of the repaired beam with results as shown in Table 

2.12 where higher stress range yield lower fatigue life of the flange. A bilinear 

fatigue response is observed at the CFRP-steel interface, whose magnitudes are 

dependent upon the number of fatigue cycles and the applied stress range. An 

empirical model was also proposed to predict the fatigue behavior of the interface. 
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Table 2.12: Beam details and test results [38] 

Specimen Method 
∆σ  

(MPa) 
Fatigue life 

Beam D Experimental 274 20000 

 Finite Element Analysis 274 15000 

Beam E Experimental 158 152380 

 Finite Element Analysis 158 150000 

Beam F Experimental 81 1703020 

 Finite Element Analysis 81 2100000 

Different approach was used by Imanaka et al. [39] to study the key parameter 

governing the fatigue strength of adhesive-bonded CFRP pipe/steel rod joints. A 

series of rotating bending fatigue tests was carried out with different bond length and 

pipe thicknesses. From the experiments, it was found that the rotating bending 

fatigue strength increases with lap length as shown in Figure 2.16. Also, the fatigue 

strength increase consistently with the pipe thickness but only in low stress cycle 

range. The results indicated that the fatigue strength of the joint mainly depended on 

the maximum tensile stress normal to the adhesive interface at the lap end. 

 

Figure 2.16: Results of fatigue test (P-N curves) [39] 
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2.5 EFFECTIVE BOND LENGTH 

The bond is crucial in order to successfully transfer the load between the CFRP and 

steel interfaces. However, an appropriate bond length is needed; too short bond 

length will not be able to cater the load transfer while longer bond does not ensure 

more significant load transfer. Hence, here comes the need to determine the effective 

bond length that produces the maximum possible stress in the CFRP [19]. Effective 

bond length simply means the shortest bond length that maximizes the load 

transferred into the CFRP plate. 

Few researches have been carried out in order to determine the effective bond length 

of CFRP plated steel member. Anyfantis & Tsouvalis [40] in their study, focused on 

the effect of adhesive thickness, stiffness ratio and overlap length to the stiffness and 

strength of the joint. From the result, the failure loads are not that sensitive with 

regards to the adhesive thickness and load ratio. 70% increase in adhesive thickness 

lead to 5% or 13% increase in strength with 25mm and 75mm overlap length 

respectively. Whereas, 100% increase in load ratio only resulted in 5% maximum 

increase in strength. However, the joints with three times longer overlap (200% 

increases) yielded a 100% maximum increase in their strength, compared to the 

joints with short overlap lengths. 

Table 2.13: Geometry and dimensions of the fabricated coupons [40] 

Specimen 

Overlap 

Length, Lo 

(mm) 

(75/25) 

Adhesive 

Thickness, ta 

(mm) 

(0.5/0.85) 

Average Shear 

Strength, τs 

(MPa) 

Failure Load, 

Pmax (kN) 

SLJ-1 75 0.52 10.7 19.1 

SLJ-2 75 0.89 12.2 22.0 

SLJ-3 75 0.51 10.7 19.2 

SLJ-4 75 0.84 12.2 21.9 

SLJ-5 25 0.51 13.4 8.0 

SLJ-6 25 0.85 13.5 8.1 

SLJ-7 25 0.50 14.1 8.5 

SLJ refers to Single Lap Joint. Adhesive: Araldite 2015 
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Figure 2.17: Experimental failure loads of all seven SLJ cases tested. [40] 

Wu et al. [2] on the other hand compare the experimental results with previous 

researches. Two different adhesive were used, Araldite 420 (tensile strength 28.6 

MPa) and Sikadur 30 (tensile strength 24 MPa). Both adhesive shows that the bond 

strength increase with the bond length. From the plotted bond strength and bond 

length relationship, it can be seen that the effective bond lengths for Araldite 420 and 

Sikadur 30 are about 110mm and 85mm respectively. This is most likely because 

Araldite is more ductile than Sikadur, leading to a longer shear stress distribution 

within the bond length. 
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Table 2.14: Results of double strap joints [2] 

Specimen Bond Length 

(mm) 

Adhesive Thickness, ta 

(mm) 

Ultimate Load Pult 

(kN) 

A260 260 0.39 274.95 

A250 250 0.38 267.34 

A120 120 0.36 271.18 

A100 100 0.31 250.63 

A70 70 0.34 178.88 

A50 50 0.36 137.23 

A30 30 0.35 72.97 

S250 250 0.43 151.33 

S100 100 0.40 148.42 

S80 80 0.35 158.07 

S70 70 0.40 126.44 

S50 50 0.43 136.35 

S30 30 0.34 58.51 

‘A/S’ refer to adhesive type (Araldite/Sikadur) 

Also, they presented the comparison of effective bond lengths of steel joints with 

CFRP sheets, normal modulus CFRP and UHM CFRP laminates as tabulated in 

Table 2.15. 

Table 2.15: Effective bond lengths of different CFRP-steel systems [2] 

System CFRP Modulus 
Effective Bond Length 

(mm) 

CFRP sheet-steel 

(Fawzia, S.) [41] 

240 GPa (Normal Modulus) 75 

640 GPa (High Modulus) 40 

CFRP laminate-steel 

(Xia & Teng) [4] 

165 GPa 104mm similar to Araldite 

 82mm similar to Sikadur 

UHM CFRP 

laminate-steel 

460 (GPa) 110mm for Araldite 

 85mm for Sikadur 
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Clearly from the comparison, the effective bond length for CFRP sheet steel system 

is relatively shorter than of high modulus CFRP sheet. 

Fawzia, Al-Mahaidi & Zhao [41] used 4 normal modulus CFRPs in their study with 

Araldite 420 (tensile strength of 32 MPa) as the adhesive. 

Table 2.16: Results of specimen testing [41] 

Specimen 
Bond Length 

(mm) 

Ultimate Load Pult 

(kN) 

SN40 40 49.9 

SN50 50 69.8 

SN70 70 80.8 

SN80 80 81.3 

The ultimate load carrying capacity against the bond length is plotted and it can be 

seen that the load carrying capacity reaches a plateau after the bond length exceeds a 

certain value as shown in Figure 2.18. In this case, a bond length above 72mm will 

not result in any increment in the load carrying capacity. Hence, the effective bond 

length of 75mm is adopted in the experiment. 

 

Figure 2.18: Effective bond length for normal modulus CFRP joint. [41] 
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In his analysis, Majid [42] studied the effect of different parameters on the effective 

bond length. These parameters include CFRP sheet thickness, adhesive layer 

thickness, steel plate thickness and number of CFRP layers. Using finite element 

analysis, the effect of two different CFRP sheet thicknesses was found to exhibit 

similar behavior on the effective bond length. Hence, the CFRP sheet thicknesses 

have no significant impact on the critical bond length. The same observation was 

made to the effect of steel plate thickness. Results show that no significant effect on 

the effective bond length when two thicknesses of steel plate were used, 5mm and 

10mm. Contrary to adhesive thickness, it has a significant effect, where the slip is 

found to be directly proportional to adhesive thickness.   

 

Figure 2.19: Effective bond length for CFRP joint. [42] 

When different numbers of CFRP sheets used with same tensile strength and the 

sheet thickness, it shows a little effect on the effective bond length as shown in 

Figure 2.20. When one or two layers of CFRP sheets are used, the effective length 

increase to 80mm; and decreases to 75mm when 3 layers are used. The using of more 

than three layers reduces the effective length to 70mm. 
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Figure 2.20: Effect of CFRP sheet layers number on effective bond length [42] 

Fawzia & Karim [16] on another study, predict the bonding strength by plotting the 

experimental results with comparison to the imperial model developed using stress 

based approach: 

 

where τ is the shear stress of 28MPa and w is the width of the bonding area.  

Table 2.17: Test results [43] 

Specimen Bond Length 

(mm) 

Ultimate Load 

Pu (kN) 

NA20 20 33.7 

NA40 40 49.9 

NA50 50 69.8 

NA60 60 58.8 

NA70 70 80.8 

NA80 80 81.3 

NA90 90 69.8 

NA150 150 91.0 

NA200 200 92.6 
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NA250 250 97.2 

 

Figure 2.21 shows quite a good agreement of the imperial model with the 

experimental results. From the plotted graph, similar trend is observed, where after a 

certain bond length is reached, a plateau is produced and in this case, the plateau is 

observed to form after 70mm of bond length is exceeded. Further increase in the 

bond length does not bring any significant to the load carrying capacity. 

 

Figure 2.21: Comparison of experimental and imperial model result [43] 

Nozaka, Shield & Hajjar [19] used fatigued steel bridge I-girders with five different 

configuration of test set up to achieve wide range of result as well as to modify and 

relieve the stress concentration in the adhesive when sharp corners exist in the 

adhesive layers. 27 specimens were tested; 23 were of one layer CFRP, three 

specimens were two layers and one specimen was three layers. 

Table 2.18: Material properties [19] 

Strip/Adhesive 
Modulus of 

Elasticity (GPa) 

Tensile Strength 

(GPa) 

CFRP 

Strip 

1.Carbodur 157 2.6 

2. Tyfo UC 114 0.79 

Adhesive 

A. Sikadur 330 4.6 41 

B. Sikadur 30 - 25 

C. Plus 25 - 17 



34 
 

D. DP-460 NS 1.8 35 

E. Tyfo TC - 47 

 

From Table 2.19, for the specimen 1-3 and 1-4 which have the very same test 

arrangement except for the bond length, it shows no variation in the peak moment as 

well as the strain at failure when the bond length increased 170%. When much lower 

bond length of 203mm is used for specimen 1-7a, 1-7b, 1-7c, 1-8a, 1-8b, 1-8c and 1-

9, the peak moment increase as well as the strain at failure. Also, from specimen 1-

14 and 1-15, increasing the bond length to about 100% does not increase the strength. 

Hence the value of 203 mm bond length is adopted as the maximum bound for 

effective bond length. However, the exact effective bond length is to be determined 

based on the measured tensile strain distribution, which is 178mm. 

Table 2.19: Effective bond length specimen matrix and summary of test results [19] 
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2.6 MODES OF FAILURE 

Most of recent previous researches carried out reported typical modes of failure 

expected in CFRP-to-steel adhesively bonded joints to be either adhesive failure or 

delamination and some reported CFRP rupture when UHM CFRP is used [2]. Zhao 

& Zhang [7] classified up to six failure modes for CFRP bonded steel joints namely: 

(1) steel and adhesive interface failure, (2) cohesive failure (adhesive layer failure), 

(3) CFRP and adhesive interface failure, (4) CFRP delamination (separation of some 

carbon fibers from the resin matrix), (5) CFRP rupture and (6) steel yielding. 

 

Figure 2.22: Schematic view of failure modes [7]. 

These modes of failure are well correlated with varying parameters adopted in each 

study such as modulus of elasticity of the CFRP, adhesive thickness and type of 

adhesive used. Thin application of adhesive usually results in adhesive failure and 

tends to shift towards CFRP delamination when higher thickness of adhesive is used 

[3]. CFRP rupture is most likely to occur when UHM CFRP is used [2, 3]. Steel 

yielding on the other hand, will occur when insufficient plate thickness is used in the 

testing [7]. 
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2.7 BOND-SLIP RELATIONSHIP 

Limited research has been conducted to study the bond-slip relationship of 

adhesively bonded CFRP-to-steel when subjected to fatigue loading. In contrast, 

much attention has been given to the bond-slip relationship analysis on concrete 

structures [1, 7]. 

Bond-slip relationship is a crucial characteristic to be analyzed when it comes to 

CFRP bonded steel or concrete systems. It is used to derive the effective bond length, 

bond strength and slip [44, 7]. Strain gauges installed at predetermined distances 

along the bond length are used to measure the axial strains and this parameter is used 

to derive the bond-slip relationship. 

Using a single shear pull-off test in Figure 2.23, Xia & Teng [4] proposed a simple 

bilinear bond-slip model based on the shear bond stress-slip plot from the 

experiments conducted as shown in Figure 2.24. Strain gauges were installed on the 

CFRP plates to monitor and measure the instantaneous slip and to deduce the 

interfacial shear stresses. 

 

Figure 2.23: Pull-off test set up [4]. 
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Figure 2.24: Bilinear bond-slip model [4]. 

Nevertheless, a new bond-slip model was proposed by Dehghani et al. [45] where the 

addition of plastic part to the conventional bilinear model is done as shown in Figure 

2.25. Previous bond-slip models portray non-conformities with experimental results, 

particularly in elastic part and elastic properties of the adhesive. This is due to the 

fact that the strain gauges are installed on CFRP surface instead of adhesive surface 

hence interfacial stresses and strains showed some errors [4]. 

From the new model, the maximum shear stress in the adhesive (τf) is estimated to be 

about 80% of maximum tensile strength (ft, a). The slope of ascending part of the 

proposed bond-slip curve is calculated based on elastic properties of the adhesive. 

Also, it is important to note that there is not clear relationship between the interfacial 

fracture energy, Gf and other adhesive properties such as thickness. This new 

proposed model is able to consider the initial stiffness of the joints, and to estimate 

the ultimate debonding load and effective bond length with good accuracy. 
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Figure 2.25: New proposed bond-slip model by Dehghani et al. [45]. 

2.8 CONCLUSION 

Considering all the studies carried out by most of the researches, it is deducible that 

most of them solely focus on the bond behavior of the CFRP/steel joints subjected to 

static tensile loading, impact loading or fatigue loading. Nevertheless, none of the 

researches have reported the establishment of bond-slip relationship in CFRP plated 

steel members subjected to fatigue loading, which is the main focus of this research. 

In addition, there is no established fatigue loading testing regime for CFRP plate 

steel member. A good fatigue loading range is crucial to see the full range behavior 

of this composite system and to produce the intended S-N curve and bond-slip 

relationship. 

A single strap pull test will be used in this research since it is the best testing 

configuration to see the bond behavior of this composite system as suggested by 

Zhao & Zhang [2]. 
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CHAPTER 3 

METHODOLOGY 

 

A number of methods and procedure should be taken into consideration to reassure 

the intended objectives of this study will be accomplished. All the data obtained will 

be gathered and analyzed in detailed to obtain the expected end result. The 

methodology approach used in this study is presented in this chapter. 

3.1 RESEARCH METHODOLOGY 

 3.1.1 Literature review 

In every study carried out by most of researchers, this is the early and crucial stage 

that should be given special attention such that from this stage, overall overview of 

the proposed topic of study is formed. At this stage, documentation research is 

implemented where relevant references such as books, journals, conference 

proceedings, articles and sources from internet are to be sought. This stage is very 

important in order to help the author to find related resources that will assist to cover 

the planned research scope. 

3.1.2 Experimental program 

In this study, experiment is carried out in order to obtain data and subsequently 

deliver the intended objectives of the study. For the purpose of this research, a single 

strap pull test will be carried out to study the behavior of the composite system. The 

obtained data will also be used in the fatigue life prediction. Basic properties of the 

adhesive and CFRP plate are tabulated in Table 3.1. 

Table 3.1: Material properties. 

Material Su (MPa) Ea (GPa) Strain at Break (%) 

Adhesive Sikadur 30 24.8 4.482 1.1 

CFRP Sika Carbodur S 3100 165 1.7 
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Preparation of the steel block 

1. The steel block is formed by welding two 12 mm thick steel plates to two 70 

mm by 50 mm rectangular hollow sections of 3 mm in thickness. 

2. To enhance the bonding capability, the two test surfaces (top and bottom) will 

be sandblasted and cleaned with acetone to remove any dirt, rust and 

residues as shown in Figure 3.1. 

 

Figure 3.1: Steel blocks after being sandblasted. 

 

3. Ball bearings of 1 mm diameter will be glued to the steel surface with a tiny 

drop of adhesive to keep them in place. (Figure 3.2) 

 

Figure 3.2: Ball bearing glued to the steel surface. 
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4. The adhesive is then prepared by using Sikadur 30 by mixing the Part A and 

Part B. A ratio of 3:1 is used respectively. 

 

 

Figure 3.3: Sikadur 30 Part A and Part B. 

 

 

Figure 3.4: Mixing the adhesive. 
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5. After the adhesive had been laid out, the CFRP plate will be pressed down, 

squeezing out excessive adhesive out, to provide both an even surface and 

adhesive thickness of 1 mm. A weight will then be placed on top of the 

CFRP plate for seven days whilst curing. 

 

Figure 3.5: Placing weight on top of the CFRP plate. 

 

6. A series of 15 strain gauges are installed along the centre line of the CFRP 

plate using adhesive. 

 

Figure 3.6: Installation of strain gauges along the CFRP plate. 
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Single Strap Pull Test 

The cured specimen will then be mounted to the Universal Testing Machine (UTM) 

for testing. A loading rate of 0.005 kN/s is used throughout the testing. The CFRP 

plate will be pulled upwards and the strains and slips will be recorded at the 

frequency of 1 Hz. The elastic modulus will be measured directly from the strain 

gauges on the unbounded part of the CFRP plate in the pull tests, as shown in the 

Figure 3.7. 

 

Figure 3.7: Single strap pull test specimen setup. 

3.1.3 Data collection and analysis 

Raw data from the UTM after the testing are carried out will be extracted and 

analyzed with respect to the scope of study; behavior and shear stress distribution 

along the bonded length. In this stage, the data will be processed one by one and will 

be prepared to be presented in simpler manner such as charts and tables. The results 

will be compared to the theoretical and established bond-slip model and stress 

distribution along the bonded length by Xia & Teng [4]. 
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 3.1.4 Fatigue life prediction using Stress-Life approach 

Using the data from the experiment, a suitable load range for the fatigue loading 

program will be determined. This is to ensure the provision of good groundwork for 

the fatigue study of this composite system in the later stage. The load range 

determination was calculated by predicting the fatigue life using the stress-life 

approach [46]. Using this approach, the S-N curve can be predicted for this 

composite system. Further calculations and discussions are presented in Chapter 4: 

Result and Discussion 
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3.2 PROJECT ACTIVITIES 

In order to achieve the intended objective of the research and to ensure good progress 

and correct path of the study, the following research methodology flow chart is 

produced (Figure 3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Planned project activities. 
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3.3 KEY MILESTONE AND GANTT CHART 

Table 3.2: Gantt Chart of the research project. 
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3.4 TOOLS AND EQUIPMENTS 

In order to facilitate this study, few tools and equipments are to be used throughout 

the research program. 

1. Microsoft Office 2007 

2. Carbon Fiber Reinforced Polymer (CFRP) 

3. Steel blocks 

4. Universal Testing Machine (UTM) 

5. Adhesive (Araldite and Sikadur 30) 

6. Cutting tools and machine 

7. Personal Laptop and Compact Digital Camera 

Suggested milestone 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

In this chapter, results from the experimental program on specimen as well as fatigue 

life prediction are presented in relevant tables and graphs. Discussions on the 

analyzed results are further elaborated in depth with comparisons to relevant findings 

by other researches. 

4.1 BEHAVIOUR OF CFRP PLATED STEEL MEMBER AND SHEAR 

STRESS DISTRIBUTION ALONG THE BONDED LENGTH 

 4.1.1 Failure mode 

The failure mechanism was observed to initiate with CFRP debonding at the loaded 

end and propagate along the interfaces until failure completely occur as shown in 

Figure 4.1. The specimen failed along the CFRP-to-steel interface with a wedge of 

adhesive on the CFRP plate near the loaded end. Also, cracks were observed to 

propagate along the CFRP plate which strongly portrayed that the adhesive interfaces 

might be stronger than interfaces between the resin matrix within the CFRP plate 

(Figure 4.2).  

 

Figure 4.1: Debonding first occurred near the loaded end. 
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(a) Overall failed specimen. 

 

 

 

 

 

 

 

 

 

   (b)      (c) 

(b) Wedge of adhesive observed near the loaded end. (c) Cracks of CFRP in 

longitudinal direction and some CFRP fiber delamination. 

 

Figure 4.2: Failure mechanism of the control specimen. 

Wedge of adhesive Cracks of CFRP 

CFRP delamination 
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 4.1.2 Bond-slip Relationship 

The bond-slip relationship is determined from axial strains measured with strain 

gauges along the bond length. The raw data; strain, applied load and stroke were first 

processed in a spreadsheet in order to come up with a meaningful result presentation. 

The example of the calculation using the spreadsheet is shown in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

Load 

(kN) 

Strain 1 

(μm/m) 

Strain 2 

(μm/m) 

Strain 3 

(μm/m) 

Average 

Stress 

(MPa) 

Bond Force 

(kN) 

Slip 

mm 

Average bond 

stress 

MPa 

1-2 2-3 1 2 1 2 

20.58 322 186 123 343.133 5264.3 1392.8 2.399 2.394 2.632 0.696 

20.59 322 186 123 343.250 5264.3 1392.8 2.398 2.393 2.632 0.696 

20.60 322 186 123 343.361 5264.3 1392.8 2.399 2.394 2.632 0.696 

20.61 323 186 123 343.542 5264.3 1403.1 2.393 2.388 2.632 0.701 

20.62 325 187 124 343.725 5305.2 1413.3 2.564 2.559 2.652 0.706 

20.63 325 188 124 343.944 5305.2 1403.1 2.566 2.561 2.652 0.701 

20.64 326 188 124 344.108 5305.2 1413.3 2.568 2.563 2.652 0.706 

20.65 326 188 124 344.267 5315.5 1413.3 2.569 2.564 2.657 0.706 

20.66 326 188 124 344.456 5315.5 1413.3 2.571 2.566 2.657 0.706 

20.67 326 188 124 344.583 5315.5 1413.3 2.572 2.566 2.657 0.706 

20.68 326 188 124 344.700 5325.7 1413.3 2.572 2.567 2.662 0.706 

20.68 327 188 124 344.800 5325.7 1423.6 2.573 2.568 2.662 0.711 

 

Figure 4.3: Sample spreadsheet calculation to process the raw data. 

Raw data from strain gauge reading 

Raw data from UTM 

Average stress = Load x 1000 / CFRP cross sectional area 

Bond Force (1-2) = (Strain 1- Strain 2) x Young’s Modulus   

                                 x CFRP Cross sectional area / 1000000 

Slip (1) = Stroke – (0.5 x Distance between strain gauge x   

                 (Strain 1 + Strain 2)/1000000) 

Average bond stress = Bond force x Area between strain gauges 
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After all the data have been processed accordingly, the bond-slip relationship is 

plotted for each strain gauge distance, using the value of slip and average bond stress. 

The bond-slip relationship for the control specimen is shown in Figure 4.4. 

 

Figure 4.4: Bond-slip relationship for control specimen. 

Figure 4.4 shows that the bond-slip relationship model for the control specimen does 

not conform to the bilinear model as suggested by Xia & Teng [4]. Only for the first 

point, 12.5 mm shows a good development of bilinear shape of the bond-slip 

relationship, however, there is a slight decline in the shear stress before sudden surge 

up to 21.6 MPa. This might be due to the micro cracking happening in the adhesive 

interface just before that specific point achieved the maximum stress. The bond-slip 

relationship should have similar shape for every location except near the loaded end, 

where the higher strain readings are expected to have been affected by local bending 

of the plate. 



52 
 

 

4.1.3 Load-Displacement behavior 

Figure 4.5 shows the load-displacement curve for the control specimen. From the 

experimental result as shown in blue line, it can be seen that there is some 

irregularity in the curve as it seems not be as linear as the theoretical shape shown in 

red line. This might be due to the micro-cracking that is taking place within the 

adhesive layer as suggested by Xia & Teng [4]. 

 

Figure 4.5: Load-displacement curve. 

 4.1.4 Shear stress distribution along CFRP-Steel interface 

Figure 4.6 shows the distribution of shear stress along the CFRP-steel interface at 

different load levels. These shear stresses were calculated from the readings of strain 

gauges installed along the CFRP plates. As discussed by Xia & Teng [4], these 

values represent the average shear stress over the strain gauge intervals and are thus 

smaller than the actual values in the specimen. 
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Figure 4.6: Shear stress distributions. 

The graph in Figure 4.6 explains that at lower load level, shear stress was found 

largest near the loaded end and gradually reduced to zero towards the unloaded end. 

As the load increased, the shear stress approached the local bond strength or the 

maximum interfacial shear stress. When the loaded end reached the local bond 

strength at 27.31 kN load level, the CFRP-steel interface entered its softening stage 

during which the shear stress at the loaded end gradually decreased afterwards. 

Subsequently, the shear stress at the loaded end reduced to zero where the ultimate 

load of the specimen is reached and debonding started to propagate along the 

interface. This happened when the load is slightly increased to 27.72 kN. From 

Figure 4.6, it can be seen that the peak shear stress moves away from the loaded end 

with only small increment in load level. The shear stress distribution of this specimen 

was found consistent as those described by Xia & Teng [4]. 

The peak shear stresses should not vary much along the bond length. However, the 

highest peak shear stress near the loaded end (21MPa) is believed to have been 

affected by the local bending of the CFRP plate. 
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4.2 FATIGUE LIFE PREDICTION USING STRESS-LIFE APPROACH 

In order to predict at which stress level and when the specimen will fail during the 

fatigue testing later, fatigue life prediction is done beforehand. In this approach, 

several parameters are found to have great impacts on the fatigue life of the specimen. 

Using stress-life approach, the number of cycles as well as fatigue strength at failure 

can be predicted beforehand. The experimental data obtained from the control 

specimen testing in the first stage is used for this calculation. 

Finite Life Modified Goodman:  

 

where 

Sa is alternating stress 

SNf  is fatigue strength at failure 

Sm is mean stress 

Su is ultimate tensile strength 

Basquin’s Equation: 

 

or 

 

 (Based on static tensile test) 

 

 

 

 

 

 

X is the coefficient of endurance limit, . The coefficient of most metals falls under 

the range 0.2-0.5. However, no established endurance limit for adhesive bonded 

composite. Hence, few graphs have been plotted using different value of this 

coefficient to see the effects on the S-N curve as shown in Figure 4.7. 
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Figure 4.7: Effect of using different Sf coefficient on fatigue cycles. 

From Figure 4.7, it can be seen that materials or composite system with lower value 

of Sf coefficient will tend to fail at much lower fatigue cycles. From this analysis, 

value of 0.1 is chosen to be this composite system parameter due to the fact that 

adhesively bonded composite system is much weaker than solid metals. 

 

 

 

Assuming no surface finish, the value of  is taken as it is. 

Hence; 

 

 



56 
 

 

Apart from that, it can be noted from Eq. 1 that alternating stress or loading range 

plays a vital role in determining the number of fatigue cycles. Using all the parameter 

values, the fatigue loading program is developed using trial and error approach. This 

is to ensure every loading range is considered to enable suitable selection of loading 

range at the end of the analysis. The result analysis is shown in Figure 4.8. 

 

Figure 4.8: Effect of using different loading amplitude on number of cycles. 

Figure 4.8 on the other hand shows that using higher amplitude of stress or loading 

range (12kN) will result in much lower fatigue cycles to cause the failure. However, 

the failure curve falls only in higher fatigue strength range, 125 MPa to 450 MPa. To 

achieve a well defined S-N curve that covers both low and high fatigue strength 

region, lower stress amplitude must be used, for instance 4kN as shown in Figure 4.8. 

From these two parameters; Sf coefficient and loading range, fatigue loading program 

for this composite system is drawn up. Selecting suitable loading range to produce a 

sound S-N curve is made to ensure the experiment can be done within the time frame. 

The loading range for this experiment is determined to be as in Table 4.1. 
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Table 4.1: Fatigue loading program for CFRP plated steel member. 

Loading Range 

(kN) 

Smin 

(MPa) 

Smax 

(MPa) 

Sa 

(MPa) 

Sm 

(MPa) 

SNf 

(MPa) 

Nf 

(Cycles) 

18 30 300.00 500.00 100.000 400.000 450.877 2 

20 28 333.33 466.67 66.667 400.000 300.585 25 

18 24 300.00 400.00 50.000 350.000 156.707 1228 

12 16 200.00 266.67 33.333 233.333 61.045 347369 

Using the data in Table 4.1, the S-N curve is plotted accordingly as shown in Figure 

4.9. 

 

Figure 4.9: S-N curve for the proposed experimental program. 

The analysis is important such that it provides the groundwork for this experiment 

since no experimental program is established to test the bond-slip relationship of 

CFRP plated steel member when subjected to fatigue loading. Also, it helps to 

predict the number of cycles required to cause failure in this composite system. By 

doing this, the experiment can be accomplished within the stipulated time frame and 

any deviation can be investigated and further reasoned.  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

The use of CFRP in steel strengthening offers great advantages; fatigue life 

improvement, fatigue crack arrest and increase in additional load carrying capacity. 

Many researchers have been carried out to study in detail how this system works and 

behave with respect to its application in the industry. These include the bond 

behavior, effective bond length, failure modes and bond-slip relationship under 

monotonic loading. Nevertheless, less attention has been given to the area of 

quantifying the bond-slip relationship of CFRP steel system under fatigue loading.  

Hence, this research has presented a groundwork that can be used as the basis for the 

establishment of bond-slip relationship of this composite system under fatigue 

loading. Results from the testing have been presented and discussed to fully 

understand the behavior of the CFRP plated steel member. Hence, following 

conclusion can be drawn up from this research: 

1. Shear stress distribution is likely to be at the same level along the bonded 

length. However, higher shear stress is to be expected near the loaded end 

due to local bending. 

2. The fatigue life can be predicted using stress-life approach and is very much 

depending on the stress amplitude applied. Higher stress amplitude will 

cause the specimen to fail at lower fatigue cycles. 

From the research, suitable testing regime and program can be properly chosen to 

ensure the development of a good bond-slip relationship. It is hoped that this 

research can help to further explore the potential of CFRP in steel structure 

retrofitting subjected to fatigue loading; steel bridges, jetty and platforms. Also, from 

this research, the CFRP to steel system behavior could be predicted hence allowing 

for development of design standards for fatigue conditions apart from filling in the 

gap where bond-slip relationship under fatigue loading is scarcely explored. 
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Further research can be done to study in detail the effective bond length under 

fatigue loading conditions in which has not been given attention. Having the system 

designed up to the optimal solution will reduce cost of structural retrofitting in the 

future.
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