Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

HEP-2 CELL FEATURE EXTRACTION USING WAVELET AND INDEPENDENT COMPONENT ANALYSIS

NUR THANIA AWATIF BINTI MOHAMAD ROSDI, NUR THANIA AWATIF BINTI MOHAMAD ROSDI (2013) HEP-2 CELL FEATURE EXTRACTION USING WAVELET AND INDEPENDENT COMPONENT ANALYSIS. Universiti Teknologi Petronas. (Unpublished)

[img]
Preview
PDF
Download (2717Kb) | Preview

Abstract

Human antibodies work to attack any diseases or bacteria that presented inside the body. However, there is an act when human antibodies tend to attack own body cells or tissues which is called as Anti-nuclear Antibodies (ANA). ANA consist of many different types that can be recognized by its nucleus size and shape. Common method of classifying ANA is by performing Indirect Immunofluorescences (IIF) with HEp-2 cell and observed the pattern under the microscope by naked eye which said to be inaccurate, takes time and subjective. Thus, this project will study on the technique to identify and classify the pattern of ANA automatically. Algorithms are created using MATLAB software and a Graphical User Interface (GUI) is generated for the algorithm to be easily used. This work will focus more on feature extraction using Wavelet and Independent Component Analysis (ICA). The type of Wavelet Transform that will be used is the 2D Discrete Wavelet Transform (2D DWT) and Fast ICA for Independent Component Analysis. Then Support Vector Machine (SVM) is used to perform the classifications parts using the features extracted from both methods. Different features obtained are tested in SVM and the performance of both methods is compared. From the result, it shows that by using the same classifier, Wavelet can provide better features for classification compared to ICA.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Microelectronics - Sensor Development
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Users 2053 not found.
Date Deposited: 20 Feb 2014 11:23
Last Modified: 25 Jan 2017 09:38
URI: http://utpedia.utp.edu.my/id/eprint/13441

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...