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ABSTRACT 

 

 Image denoising is an essential preprocessing technique in image acquisition 

systems. For instance, in ultrasound (US) images, suppression of speckle noise while 

preserving the edges is highly preferred. Thus, in this paper denoising the speckle noise 

by using wavelet-based multiscale product thresholding approach is presented. The 

underlying principle of this technique is to apply dyadic wavelet transform and performs 

the multiscale products of the wavelet transform. Then, an adaptive threshold is 

calculated and applied to the multiscale products instead of applying it on wavelet 

coefficient. Thereafter, the performance of the proposed technique is compared with 

other denoising techniques such as Lee filter, boxcar filter, linear minimum mean square 

error (LMMSE) filter and median filter. The result shows that the proposed technique 

gives a better performance in terms of PNSR and ENL value by an average gain of 1.22 

and 1.8 times the noisy on, respectively and can better preserved image details. 
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CHAPTER 1 

INTRODUCTION 

 

In this chapter, the first section covered the background study of US images including the 

underlying principle of US imaging technique and the statistic of speckle noise. In the 

subsequent sections, the problem statement, objective and scope of the project are 

elaborated in detail. 

1.1 Background of Study 

 

 In medical image processing, Ultrasound (US) imaging is a technology that uses 

high-frequency of sound waves. In an ultrasound-based diagnostic technique or also 

known as ultrasonography, a hand-held transducer is used to visualize soft tissues such as 

muscles and internal organs in a real time imaging. The transducer which is placed 

against the patient’s skin will transmitted the sound waves into the body structures and 

the reflected waves or echoes are displayed as an image. Basically, US imaging are signal 

which are obtained by coherent summation of echo signals that scattered in the tissues 

[2]. This technology is easy, inexpensive and is a safe medical diagnostic technique.  Fig 

1 illustrated the application of ultrasonography in medical world. The physician is using 

US technology to examine the condition of the pregnant lady and her fetus. 

 

 

 

 

 

 

 

 

 

  
 Figure 1: Ultrasonography Examination [1] 
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The formation of US images by mean of coherent processing of the returned 

backscattered signals, introduces speckle effect in the images. Speckle noise is a 

multiplicative noise that appears in the form of a random granular pattern that delays the 

interpretation of the image contents [3]. Speckle effect lessens the resolution of the image 

generated and makes it blurred. Besides, it intricate the diagnosis of image edge detection 

and image segmentation [4]. Modeling of speckle noise in ultrasound images can be 

expressed as 

𝑓 = 𝑔𝜂 ,                                                                           (1) 

where 𝑓  is the speckle noise matrix, 𝑔 is the noise-free ideal image and 𝜂 is the unit of 

random variable speckle noise matrix that follows Rayleigh distribution. Assuming the 

speckle is fully formed, the probability density function (pdf) of the noise is given by  

𝑃𝑅 𝑟 =
𝑟

𝑣2  exp  −
r2

2v2  ,  𝑟 ≥ 0 ,                                             (2) 

where r is real. To convert the multiplication model of (1) to additive model, we apply 

logarithmic transform to (1) giving 

log( 𝑓) = log 𝑔 + log( 𝜂)  .                                                        (3) 

Expression (3) can be rewritten as  

𝑓𝑙 = 𝑔𝑙 + 𝜀𝑙   .                                                               (4) 

 Denoising the speckle by smoothing or averaging process is not the best option as 

it will destroy some important features of the image. Therefore, it is essential to choose 

the most effective technique to despeckle the noise while preserving the image details 

such as edges and texture. In this project, Adaptive Multiscale Product Thresholding 

technique [5] is proposed to reduce speckle noise in ultrasound images. The result from 

this technique will be compared with commonly adaptive filter, such as Lee filter, boxcar 

filter, linear minimum mean square error (LMMSE) filter and median filter. For the 

evaluation, peak signal-to-ratio (PSNR) will be used as the quantitative measure for the 

filters performance. 
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1.2 Problem Statement 

 

 Ultrasound (US) images suffer from speckle effect due to the coherent processing 

of the return backscattered signals. Although, noise can be reduced by improving the 

imaging acquisition hardware, in the case of US imagery, the speckle is the type of noise 

that forms during the image acquisition process. Therefore, US images need to be post-

processed by some noise removal technique before any subsequent image processing 

operations. In this project, speckle noise reduction using Adaptive Multiscale Products 

Thresholding is employed. The significant of this project is to enhance the reduction of 

speckle noise in US by suppressing the noise and preserving the image details. 

 

1.3 Objective 

 

Basically, the main objective of this project is to implement and evaluate the speckle 

reduction technique based on Adaptive Multiscale Product thresholding technique.  

 

The scope of this project includes: 

 Study and analysis of speckle formation and speckle statistic in US images 

 Study and analysis of common speckle filters such as Lee, Kuan, and Frost 

 Study and analysis of Adaptive Multiscale Product Thresholding filter which was 

originally developed for additive noise [5].  

 Develop a speckle filter based on Adaptive Multiscale Product Thresholding 

(AMPT) technique. 

 Evaluate and compare the performance of the speckle filter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

In this chapter, the first section covered the adaptive filters that are commonly used in 

despeckling the noise. In the subsequent sections, wavelet transform and proposed 

technique, adaptive multiscale product thresholding are discussed in detail. 

 

2.1 Adaptive Filter 

 

 Filtering is one of the methods used in reducing speckle noise. The adaptive filter 

designs itself within a window based on the statistical characteristic of the input signal 

inside the filter. The estimated statistical information is a local mean and local variance 

which resemble the average gray level of the pixel and the average contrast of the pixel 

respectively [6].  Adaptive filtering techniques that commonly used are Lee filter, Kuan 

filter, Frost filter, enhanced Lee and Frost filter, and median filter. Lee and Kuan filter 

use a linear combination of the center pixel intensity in a filter window with the average 

intensity of the window to generate an output image. Frost filter is an exponential shaped 

filter kernel that computes a set of weight value for each pixel within the filter [2]. 

Median filter is a best non-linear filter which replaces each point in the window with the 

median value of the corresponding neighborhood. In adaptive median filter, it works by 

increasing the rectangular window area until maximum window size is achieved [6]. 

Linear minimum mean square (LMMSE) and boxcar filter are another example of 

commonly used filter. Boxcar filter is a low pass filter and it works by moving an average 

of some number of time sample, where each sample are equally affect the output 

produced. In [7], LMMSE technique used by Zhang to estimate the missing sample for 

denoising while performing interpolation shows an impressive  result. Table 1 below 

shows the summary of each adaptive filters performance. 
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Table 1 : Summary of Adaptive Filter 

No Type of Filter Features 

1. Lee Filter  Smoothens  the background noise effectively but tend to 

ignore the speckle noise in the area closest to edges and lines 

and causes blurring effect 

2. Enhanced Lee 

Filter 

 Smoothens the background noise more effectively compared to 

Lee filter 

 Retains edges and sharp features in the image but some point 

targets are not detected and usually get blurred 

3. Frost Filter  Filtering technique based on pixel distances to correct 

multiplicative noise while retaining  edges and other object 

 Act as a mean filter for uniform regions and high pass filter for 

high contrast regions 

 Produces outputs approximately similar to Lee and Kuan filter 

4. Enhanced Frost 

Filter 

 Filtering based on neighboring distances of the centre pixels 

 and be able to preserve edges better compared to others 

 If the kernel size is small, the filtering is not effective whereas 

if the kernel size is too large, subtle details of the image are 

lost 

5. Kuan Filter  Smoothens  the background noise effectively and better 

preservation of edges and sharp features compared to Lee filter 

6. Boxcar Filter  Simple to apply and reduce speckle noise in homogeneous 

areas effectively while preserving the mean value but tend to 

degrade the spatial resolution and causes blurring effect 

7. Median Filter  Moderately effective in reducing speckle effect but tend to 

cause distortion and fail to preserve the mean value 

8. Linear Minimum 

Mean Square 

(LMMSE) 

 Moderately effective in reducing speckle effect but the speckle 

noise is not adequately filter near strong edges of the image 
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2.2 Wavelet Transform 

 

 Denoising technique based on wavelet transform continue to receive great 

attention among the image processing community. Features of wavelet transform such as 

multiresolution, sparsity, edge detection and edge clustering make the application of 

wavelet transform as a speckle noise reduction technique to be more appealing compared 

to the common adaptive filters. In the conventional approach of speckle filter, a large size 

of window is used and this will reduce the resolution of the algorithm [3]. On the other 

hand, in wavelet transform, signal is analyzed with a short window at high frequency and 

long window at low frequency. Thus, the noise and actual image can be distinguished 

easily at different multiresolution. 

 Discrete wavelet transform is an expansion of wavelet series that has been 

discretely sampled. Discrete wavelet transform is an expansion of wavelet series that has 

been discretely sampled. The discrete wavelet transform consists of high pass and low 

pass filter which provide details information and coarse scale approximation, 

respectively. The decomposition of these two filters is based on Mallat algorithm. At 

each level, the half band filter produces signals within half of the frequency band. Thus, it 

doubled the frequency resolution as the frequency is reduced by half. Output of the low 

pass filter will produced approximation coefficient whereas output of high pass filter will 

produced details coefficient, followed in both cases with decimation by 2. This 

decimation by 2 reduced the time resolution by half [8]. With the existence of these two 

filters, the time resolution increase at high frequency while frequency resolution increase 

at low frequency. In Fig.2 shows the two-level of decomposition that has been replaced 

with four blocks which correspond to the low pass and high pass subbands.  
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Figure 2: Two-level image decomposition by using discrete wavelet transform [3] 

 

 Dyadic Wavelet Transform (DWT) is a scale sample of wavelet transforms that 

follow geometric sequence of ratio 2. The DWT is a redundant wavelet transforms which 

provide a longer length of transform coefficients compared to the original signal. Thus, it 

increases the sampling for the time frequency plane and gives good shift invariance [9]. 

The characteristics of DWT will enhance the quality of image during reconstruction and 

give better performance compared to discrete wavelet transform. Fig. 3 shows the 

decomposition and reconstruction algorithm of dyadic wavelet transform. 

 

 

Figure 3 : Fast algorithm of dyadic wavelet transform. a) Decomposition  

b) Reconstruction [10] 
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2.3 Adaptive Multiscale Products Thresholding 

 

  Wavelet based thresholding scheme for speckle reduction have been proposed and 

proved to be effective by a number of authors [5, 11-14]. The basic idea of threshold is to 

set or shrink the input wavelet coefficient. This is known as soft thresholding technique. 

Universal threshold [15] and BayeShrink threshold [12] are example of soft threshold 

scheme which is based on orthogonal wavelets . In contrary, hard thresholding technique 

will retain the input wavelet coefficient if it is greater than the threshold. In [16], Pan et 

al. used this technique and applied it to nonorthogonal wavelet transform. Typically, all 

proposed wavelet threshold schemes implemented the threshold technique directly to the 

wavelet coefficient.  

 

 The thresholding technique was later improved by a comparative study and 

analysis of multiscale product of wavelet subbands and it results in a more 

distinguishable structure between edges and noise [17, 18]. By exploiting the singularities 

of signal and dependency between the wavelet subband, the original signal and noise can 

be distinguished easily. This is because, in the wavelet transform, signal and noise appear 

and behave differently. Fig 4 shows the sequence of signal and noise in wavelet 

transform domain. Here, singularity of a signal refers to a point at which a function has 

an interrupted point and possesses a zero-derivative almost everywhere. Singularity of a 

function is discontinuous at its singular points. Conversely, a function which has an 

infinite-order derivative and it is continuous are known as smooth function or not 

singular. The singularity of a signal can be analyzed by mathematical concept of the 

Lipschitz regularity. White noise has singular properties everywhere and has a uniform 

negative Lipschitz regularity that is equivalent to -1/2. Based on Lipschitz regularity 

concept, magnitude of wavelet transform increase for positive Lipschitz regularity with 

increasing scales. Conversely, magnitude wavelet transforms decrease for negative 

Lipschitz regularity with increasing scales.  
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Figure 4: (a) DWT of test signal, g at the first four scale (b) DWT of Gaussian white 

noise, 𝜺 at the first four scales [5] 

 As illustrated in Fig 4, the singularities of signal increase across the scale while 

the magnitudes of noise start to decay along scales. Prior to this knowledge, multiplying 

the DWT at adjacent scale will enhance the structure of the signal while diluting the 

noise. In [5], Zhang proved that even though the original signal are immersed into the 

noise at fine scale but the original signal is enhanced by multiplying the DWT at adjacent 

scales. Fig 5 illustrated the DWT and multiscale products of a noisy test signal. In Fig 5, f  

is the noisy signal and Wif corresponds to the i th-wavelet level. The Pif is the product 

between i th wavelet level and Wif. 

 

Figure 5: The DWT and multiscale products of noisy test signal at the first three 

scales [5]  
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 Fig 6, 7, 8 and 9 shows the decomposition of a test image which has been 

corrupted with a noise variance of 40 with increasing wavelet scales from scale one up to 

scale four. From these figure, one can clearly observed that along the scales, the noise are 

reduced and the image are smoothened. The degree of smoothness increase rapidly with 

increasing scales but the images become too smooth and cause blurring effect. The 

smoothed image resulted from decomposition of DWT. Besides, the performance metric, 

PSNR values tend to reduce as the scale increases. The average PSNR value of noisy 

image is 16.07 and the PSNR values of smoothed image at the first four wavelet scale are 

24.68, 23.89, 21.22 and 19.25, respectively. Notice that the PNSR values obtained are 

inversely proportional to the wavelet scales. With this observation, the property of noise 

with respects to Lipschitz regularities is proven. 

 

 

Figure 6: The DWT of noisy House image at scale one. 

 (a) Noise-free image. (b) Noisy image (PNSR=16.06). (c) Smoothed image 

(PNSR=24.68).  
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Figure 7: The DWT of noisy House image at scale two. 

 (a) Noise-free image. (b) Noisy image (PNSR=16.07). (c) Smoothed image 

(PNSR=23.89). 

 

Figure 8: The DWT of noisy House image at scale three. 

 (a) Noise-free image. (b) Noisy image (PNSR=16.08). (c) Smoothed image 

(PNSR=21.22). 

 

Figure 9:  The DWT of noisy House image at scale four. 

 (a) Noise-free image. (b) Noisy image (PNSR=16.10). (c) Smoothed image 

(PNSR=19.25). 
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 Thus, in this work we favor multiscale product thresholding scheme to reduce 

speckle noise in ultrasound images. Assuming speckle noise in log-domain to be 

approximately Gaussian white noise, the Gaussian additive model (𝑓 = 𝑔 + 𝜀) is adopted 

 and the DWT of the noise, can be expressed as [5] 

        𝑊𝑗
𝑑𝑓 = 𝑊𝑗

𝑑𝑔 + 𝑊𝑗
𝑑𝜀  ,     𝑑 = 𝑥, 𝑦 ,                                             (5) 

where 𝑊𝑗
𝑑𝑔 is the DWT of the original image g and 𝑊𝑗

𝑑𝜀  is the DWT of additive noise 

𝜀. The notation d = x, y indicates x or y dimension. The multiscale product,  𝑃𝑗
𝑑𝑓 is the 

product between two adjacent wavelet scales. 𝑍𝑗
𝑑  is a simple expression for the multiscale 

product of noise given as 

𝑍𝑗
𝑑 = 𝑃𝑗

𝑑𝑓 = 𝑊𝑗
𝑑𝑓.𝑊𝑗+1

𝑑 𝑓  .                                                        (6) 

Here, high dependencies exists between 𝑊𝑗
𝑑𝑓  and 𝑊𝑗+1

𝑑 𝑓  . The standard deviation of 

multi-scale product of noise can be denoted as [14] 

𝑘𝑗
𝑑 =  𝐸   𝑊𝑗

𝑑𝜀 
2
 𝑊𝑗+1

𝑑 𝜀 
2
  = 1 + 2 𝑝𝑗+1 

2
 .𝜎𝑗𝜎𝑗+1  ,                               (7) 

where  𝑝𝑗+1 is the correlation coefficient and 𝜎𝑗  is the standard deviation of Gaussian 

white noise. The adaptive threshold can be calculated by using the expression  

𝑡𝑗
𝑑 = 5𝑘𝑗

𝑑  1 +
𝜇 𝑗
𝑑𝜀

𝜇 𝑗
𝑑𝑔
   ,                                                                 (8) 

where  𝜇𝑗
𝑑𝜀 is the mean value of multiscale product of  Gaussian noise and  𝜇𝑗

𝑑𝑔 is the 

mean value of multiscale product of the original image. Based on calculated value in 

equation (8), multiscale products is thresholded by  

 𝑊 𝑗
𝑑𝑓 =  

𝑊𝑗
𝑑𝑓        𝑃𝑗

𝑑𝑓 ≥  𝑡𝑗
𝑑(𝑗) 

0            𝑃𝑗
𝑑𝑓 < 𝑡𝑗

𝑑(𝑗)
, 𝑗 = 1,… 𝐽; 𝑑 = 𝑥, 𝑦.                        (9) 

Significant wavelet coefficients which are greater than the preset threshold are preserved 

and the image will be reconstructed from this thresholded wavelet coefficients, 𝑊 𝑗
𝑑𝑓. 

Otherwise, anything below the threshold value are set to zero and discarded as noise. 
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CHAPTER 3 

METHODOLOGY 

 

In this section, the algorithm of AMPT technique and noise level estimator used in this 

technique is further elaborated. The experiments is carried out in MATLAB in order to 

investigate the performance of proposed technique using synthetically speckled test 

images and real US images. The wavelet transform used in this technique is based on 

Dyadic Wavelet Transform (DWT). The dyadic wavelet constructed by Mallat and 

Zhong [19] is employed in the AMPT technique. This wavelet is basically originated 

from the mother wavelet of a quadratic spline wavelet. 

3.1 Adaptive Multiscale Product Thresholding Image Denoising Technique 

 

 

Figure 10: Adaptive Multiscale Product Thresholding (AMPT) Scheme 

Original Image

Logarithmic Transform

Perform DWT

Calculate the Multiscale 
Product

Apply Threshold to 
Multiscale Product

Perform inverse DWT

Anti-logarithmic Transform

Denoising Image
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 Figure 10 shows the methodology of the proposed technique. Firstly, logarithmic 

transform is applied to speckle model in order to convert from multiplication model to 

additive model. After that, the DWT is computed on the original image up to a few 

scales. Then, multiscale products of DWT is calculated by multiplying two adjacent of 

wavelet subbands to preserve edge structures while diluting the noise. An adaptive 

threshold is calculated and applied to the multiscale products instead of applying it on 

wavelet coefficient. This is because the multiscale thresholding products can distinguish 

edge structures from noise better compared to threshold wavelet coefficient. Lastly, 

inverse DWT is performed to reconstruct the denoised image and anti-logarithmic 

transform is applied. 

 

3.2 Estimation of Noise Variance 

 

 The term noise variance is referring to the noisy level of the image. In order to 

execute denoising scheme, it is essential to have the accurate information regarding the 

noise level present in the image. The noise level can be estimated based on information 

other than the corrupted image. By using robust median estimator proposed by Donoho 

[15], the noise level is measured in the highest subband of wavelet transform, HH1. 

Robust median estimator is a common noise estimation used in the wavelet domain by 

computing the noise standard deviation as the median absolute deviation (MAD) of the 

wavelet coefficient. The estimation of variance is given by 

 

𝜗𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛  
 𝑌 𝑖,𝑗   

0.6745
 , 𝑌 𝑖, 𝑗 ∈ 𝑠𝑢𝑏𝑏𝑎𝑛𝑑 𝐻𝐻1.                           (9). 

 

 For AMPT technique, the calculated variance in equation (9) is estimated as 

standard deviation of additive Gaussian white noise, 𝜎𝑗  and used in equation (7). The 

standard deviation is denoted by 

      𝜎𝑗 = 𝜗𝑛  .   (10). 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

The results presented in this section are divided into two major sections, firstly using 

simulated data and secondly using real US images.  The performance metric used in the 

simulated data is peak-signal-to-noise ratio (PSNR) whereas in the real US images, the 

equivalent number of look (ENL) is used to measure the amount of noise reduction in the 

filtered image. The PSNR is defined as  equation [3] 

𝑃𝑁𝑆𝑅 = 10 log10
255

𝑀𝑆𝐸
  ,                                                    (9) 

𝑀𝑆𝐸 =
1

𝑀𝑁
   𝑋 𝑖, 𝑗 − 𝑌 𝑖, 𝑗  

2𝑁
𝑗=1   ,                                     𝑀

𝑖=1  (10) 

where X represents the original image and Y is the denoised image. The ENL is defined 

as [20] 

𝐸𝑁𝐿(𝐼) =
1

𝛽2 ,                                                           (11) 

 where 𝛽 represents the standard deviation to mean ratio for correlated pixel. Specifically, 

the first experiment on simulated data is to determine the optimum wavelet scale for the 

technique. The experiment is run under the additive white Gaussian noise set up. 

Secondly, using the optimum wavelet scale, the performance of AMPT filter in reducing 

speckle noise is compared with other filters namely, Lee, boxcar, median and LMMSE. 

Finally, using real US images, the performance of AMPT is evaluated and compared in 

terms of ENL values. Fig 11 shows the three test images used for quantitative and 

qualitative comparison of different filters performance. 

 

  

 

 

 

Figure 11: (a) Barbara Image. (b) Lena Image. (c) Sailboat Image. 
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4.1 Evaluation of AMPT Filter at Different Wavelet Scale 

 

 In this experiment, the test images, Barbara, Lena and sailboat are corrupted with 

additive white noise at different level of noise variance, ranging from 10 to 50. The size 

of test images used is 512 by 512. The PNSR values at different wavelet scale are 

tabulated in Table 2 which indicates wavelet of scale one as the best parameter for the 

AMPT filter to denoise the corrupted images and obtain the highest value of PNSR. The 

PNSR values obtained from each simulated images vary depending on the noise level and 

the wavelet scale. From this experiment, higher wavelet scale will caused the PNSR 

values to drop. Thus, the most optimum wavelet scale for AMPT technique is when the 

scale is equal to one. 

 

Table 2 : Wavelet threshold scheme with different noise variance and scale 

 

 

 

 

 Scale 

 

Scale=1 Scale=2 Scale=3 Scale=4 

PNSR  PN PNW PNW PNW PNW 

Barbara image 

σ=10 28.12 29.65 27.98 27.88 27.86 

σ=20 22.12 25.68 24.88 24.85 24.83 

σ=30 18.57 24.03 23.84 23.80 23.74 

σ=40 16.08 22.98 23.26 23.24 23.21 

σ=50 14.16 22.15 22.92 22.87 22.83 

Lena image 

σ=10 28.13 32.87 32.84 32.84 32.82 

σ=20 22.11 28.14 28.14 28.16 28.20 

σ=30 18.60 27.82 27.79 27.82 27.83 

σ=40 16.08 26.08 26.15 26.13 26.11 

σ=50 14.14 24.68 24.62 24.74 24.62 

Sailboat image 

σ=10 28.14 31.21 31.19 31.19 31.20 

σ=20 22.11 28.14 28.14 28.16 28.20 

σ=30 18.58 26.35 26.37 26.37 26.39 

σ=40 16.10 25.03 24.96 24.96 25.01 

σ=50 14.14 23.73 23.76 23.76 23.76 
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4.2 Evaluation of AMPT Filter with Simulated Speckle Noise 

 

 In this experiment, the multiplicative speckle noise is added to the test images and 

the PNSR value of the denoised images by different filters are evaluated and tabulated in 

Table 3. The experiment is run for 100 trials in order to obtain the average PNSR values 

of each filter. The result in Table 3 clearly shows that AMPT filter outperformed Lee, 

median, boxcar and LMMSE filters. Specifically, for Barbara image, AMPT filter gave 

the highest value of average PNSR gain which is 10 percent. While for Lena image and 

sailboat image, the average PNSR gain is 25 percent and 19 percent, respectively. For 

Lena image, improvement of PNSR recorded in each filters are slightly better. For visual 

interpretation of data obtained in Table 3, Graph 1, 2 and 3 are plotted. Generally, in 

terms of PNSR, AMPT filter demonstrated the highest performance, followed by median 

filter, boxcar filter, Lee filter and lastly LMMSE filter. 

 

Table 3 : Comparison of PNSR of different denosing method corrupted by speckle 

noise 

 

Noisy 

Image 

LMMSE 

Filter 

Lee 

Filter 

Boxcar 

Filter 

Median 

Filter 

AMPT 

Filter 

Barbara Image 

σ =0.1 21.91 21.33 22.39 22.89 23.83 24.73 

σ =0.05 24.92 24.50 22.48 23.90 24.49 27.47 

σ =0.03 27.14 25.55 22.52 24.39 24.81 29.55 

σ =0.02 28.90 27.00 22.54 24.65 24.99 30.81 

Lena Image 

σ =0.1 21.68 23.85 25.85 24.77 28.13 29.75 

σ =0.05 24.69 25.07 26.07 26.57 30.26 31.59 

σ =0.03 26.91 25.13 26.17 27.57 31.59 32.27 

σ =0.02 28.67 26.00 26.22 28.17 32.41 32.45 

Sailboat Image 

σ =0.1 21.36 23.44 24.23 23.76 26.59 27.77 

σ =0.05 24.37 24.41 24.41 25.23 28.14 29.61 

σ =0.03 26.59 25.48 24.48 26.00 28.99 30.56 

σ =0.02 28.35 25.51 24.51 26.45 29.52 31.07 
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Graph 1: PNSR values of Barbara image 

 

 

Graph 2: PNSR values of Lena image 
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Graph 3: PNSR values of Sailboat image 

 

 On average, the PNSR performance of each filter can be summarized and plotted 

as shown in Graph 4. AMPT filter shows the highest gain value which is 1.22 times the 

noisy one, whereas the median, boxcar, Lee and LMMSE filter gave an average gain of 

1.17, 1.04, 1.01 and 0.99, respectively. 

 

Graph 4 : Average gain of PNSR values in each filter 
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 For visual inspection, Figs. 12, 13 and 14 illustrated zoom-in-images performance 

of the adaptive filters and the proposed technique on the employed simulation images. 

Fig. 12 shows the despeckling result of Barbara image that has been corrupted with 

speckle noise at noise variance of 0.1. In Fig. 12(c) and 12(d), zoom-in-image presented 

by boxcar filter and median filter shows that these denoising techniques did not 

smoothens the background noise effectively and retains much noise compared to other 

filters. In Fig 12(f), the image is denoised by using Lee filter with a size window of 5 by 

5. Lee filter give good speckle suppression performance and almost 80 percent of the 

speckle noise is removed. However, the image is over smoothed and gives blurring effect. 

Some subtle details of the image are lost during the filtering process and the edge features 

are not effectively preserved. For instance, the plaid pattern of the table cloth and the 

scarf wrapped around Barbara appeared to be blurred and unclear. Besides, Lee filter 5 by 

5 also causes the image to form a solid line surrounded the image. Fig. 12(g) shows the 

result of using AMPT technique with the same values of corrupted noise added. AMPT 

technique shows a good job in suppressing the effect of the speckle noise. Some of the 

noise are still retains in the image but the images are closely resemble the original image 

and less blurring compared to the Lee and LMMSE filter.  

 

 

 

 

 

 

 

 

 

 

. 
Figure 12: Zoom in of Barbara test image at noise level of 0.1. 

(a) Noise-free image. (b) Noisy image (PNSR=21.91). (c) Boxcar Filter 

(PNSR=22.89). (d) Median Filter (PNSR=23.83). (e) LMMSE Filter (PNSR=21.33). 

(f) Lee Filter (PNSR=22.39).  (g) AMPT Filter (PNSR=24.73) 
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 Similar to Barbara test image, despeckling the noisy image of Lena shows almost 

the same quality of result and is illustrated in Fig. 13. In this Fig.13, the zoom-in-image 

of Lena is focused at the fur on her hat. The AMPT technique presented the best visual 

performance by removing the speckle noise while maintaining the texture of the image. 

The qualitative comparison of each denoising scheme can be seen clearly in the Fig. 13 

below.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Zoom in of Lena test image at noise level of 0.1.  

(a) Noise-free image. (b) Noisy image (PNSR=21.68).  (c) Boxcar Filter 

(PNSR=24.77).  (d) Median Filter (PNSR=28.13).  (e) LMMSE Filter (PNSR=23.85).  

(f) Lee Filter (PNSR=25.85).  (g) AMPT Filter (PNSR=29.75). 
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 From this experiment, the performance of AMPT technique is better and gives a 

significant difference in terms of preserving the features of the images compared to 

others. The image denoised with AMPT is sharper and the recognition is better defined. 

As example, Fig. 14(g) shows the image of sailboat that has been denoised with AMPT. 

The image has many solid lines representing ropes and poles on the sail boat which are 

still clearer even after the despeckling process. The letters at the wall of the sailboat 

image can be clearly seen compared to the letters at the wall of the sailboat image filtered 

by median, Lee and LMMSE filter in Fig. 14(d-f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Zoom in of sailboat test image at noise level of 0.1.  

(a) Noise-free image. (b) Noisy image (PNSR=21.36).  (c) Boxcar Filter 

(PNSR=23.76).  (d) Median Filter (PNSR=26.59).  (e) LMMSE Filter (PNSR=23.44).  

(f) Lee Filter (PNSR=24.23).  (g) AMPT Filter (PNSR=27.77). 
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4.2 Evaluation of AMPT Filter using Real US Images 

 

 In this experiment, the real US images of fetus, breast, vena cava and liver images 

are been used to observe the performance of different filters on medical images. The size 

of US images used is 512 by 512 for fetus image, 412 by 412 for breast image, 328 by 

328 for vena cava image and 250 by 250 for liver image. The desired regions of interest 

for calculating ENL value are highlighted in Fig. 15. The results obtained for each region 

are tabulated in Table 4.  

 

Figure 15: The desired regions of interest for calculating ENL value.  

(a) Vena cava Image (b) Liver Image (c) Breast Image (d) Fetus Image 
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Table 4 : The ENL values of different US images.  

(a) Vena cava image. (b) Liver image. (c) Breast image. (d) Fetus image 

 

Technique 
Vena cava 

 Technique 
Liver 

Region 

A 

Region 

B 

 

Region 

A 

Region 

B 

Original 4.25 20.51 

 
Original 8.30 16.14 

Median 6.71 24.87 

 
Median 9.68 24.52 

Boxcar 7.39 24.02 

 
Boxcar 9.57 32.40 

LMMSE 4.96 21.27 

 
LMMSE 8.57 17.16 

Lee 16.16 29.48 

 
Lee 11.97 70.64 

AMPT 7.59 27.89 

 
AMPT 11.97 48.04 

 
  (a) 

   

    (b) 

 
Technique 

Breast 

 
Technique 

Fetus 

Region A 

 
Region A 

Original 0.07 

 
Original 73.18 

Median 0.06 

 
Median 85.16 

Boxcar 0.13 

 
Boxcar 83.87 

LMMSE 0.09 

 
LMMSE 74.09 

Lee 0.24 

 
Lee 120.00 

AMPT 1.53 

 
AMPT 105.80 

 (c)                                                                 (d) 

 

 From the Table 4, the performance of each filter in term of ENL values which 

indicates the ability of each filter to suppress the speckle noise in the desired region can 

be observed. In vena cava and liver image, two homogeneous regions are used to 

calculate the ENL while for breast and fetus image only one homogeneous region is used. 

On average, the performance gain of AMPT, Lee, median, boxcar and LMMSE filter is 

around 1.8, 2.67, 1.25, 1.5 and 0.97 times the noisy one, respectively. Graph 5 illustrated 

the average performance gain of each filter. In term of quantity measurement, Lee filter 

shows the highest performance and followed by AMPT filter. Though Lee filter 

outperformed AMPT filter in term of ENL values, the robustness of Lee technique still 

need to be inspect in other point of view. 
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Graph 5: Average gain of ENL values in each filter 

 

 As mention previously, the performance of each filter is not only evaluate in term 

of quantity measurement but are evaluated and compared from a qualitative aspect as 

well. For this purpose, the visual performances of each filter on real US images are 

illustrated in Figs 16, 17, 18 and 19. Fig 16 shows the image of noisy vena cava and 

denoised version of vena cava image by using different type of filters. From this figure, it 

can be clearly seen that, the proposed technique, AMPT reduced the noise effectively and 

retained the important details of the image. Besides, AMPT filter preserved the contrast 

of the image very well compared to the other filters. In term of suppression of noise, 

LMMSE and Lee filter also show a good performance but the noise is overly smoothed 

out resulting in blurred image. On the other hand, the image obtained by using median 

and boxcar filter is still noisy 
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Figure 16 : Denoised image of vena cava. 

(a) Noisy image (ENL Region A =4.25, ENL Region B= 20.51). (b) Boxcar 

Filter (ENL Region A =7.39, ENL Region B =24.02). 

(c) Median Filter (ENL Region A =6.71, Region B =24.87). (d) LMMSE 

Filter (ENL Region A =4.96, Region B =21.27). (e) Lee Filter (ENL Region 

A =16.16, Region B =29.48). (f) AMPT Filter (ENL Region A =7.59, Region 

B =27.89). 
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 The effectiveness of AMPT filter is further demonstrated in Fig 17, which also 

shows the despeckling of noise by the boxcar, median, LMMSE and Lee filter for fetus 

image. 

 

Figure 17: Denoised image of fetus. 

(a) Noisy image (ENL =73.18). (b) Boxcar Filter (ENL =83.87). 

(c) Median Filter (ENL =85.16). (d) LMMSE Filter (ENL =74.09). (e) Lee 

Filter (ENL =120). (f) AMPT Filter (ENL =105.8). 
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 In Fig 18, the denoised image of a breast tissue is shown as below. From this 

figure, the preservation of the image contrast can be clearly observed. Here, boxcar and 

AMPT filter still maintained the contrast of the original image whereas the contrast in 

denoised image of median, LMMSE and Lee started to lessen. 

 

Figure 18: Denoised image of breast tissue. 

(a) Noisy image (ENL =0.07). (b) Boxcar Filter (ENL =0.13). 

(c) Median Filter (ENL =0.06). (d) LMMSE Filter (ENL =0.09). (e) Lee 

Filter (ENL =0.24). (f) AMPT Filter (ENL =1.53). 
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 In Fig 19, the denoised image of US liver image is illustrated as below. In this 

figure, the blurring effect caused by the denoising process can be observed. Denoised 

image obtained from LMMSE and Lee filter are smoothed but it gave some blurring 

effect. Similarly, the image produced by the AMPT filter also shows some blurring effect 

but less blurred compared to LMMSE and Lee filter. Whereas for boxcar and median 

image, the image are noisy but less blurred.  

 

Figure 19: Denoised image of liver. 

(a) Noisy image (ENL Region A =8.30, Region B = 16.14). (b) Boxcar Filter 

(ENL Region A =9.57, Region B = 32.40). 

(c) Median Filter (ENL Region A =9.68, Region B = 24.52). (d) LMMSE 

Filter (ENL Region A =8.57, Region B = 17.16). (e) Lee Filter (ENL Region 

A =11.97, Region B = 70.64). (f) AMPT Filter (ENL Region A =11.97, 

Region B = 48.04). 
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 From the denoised US image of vena cava, breast tissue, fetus and liver, the 

robustness of each filter are further verified. Even though AMPT filter shows slightly 

lower performance in term of ENL metric, but in term qualitative aspect, AMPT 

surpassed other filters in suppressing the speckle noise, preserving the contrast and image 

details. Whereas, Lee filter obtained high value of ENL but the quality of denoised image 

are defeated by AMPT as the image produced are over smoothed and blurred. In addition, 

the results obtained from simulation test images proved the ability of AMPT technique as 

a good despeckling filter. The selection of noise removal filter need to be used, varies 

depending on the type application. For US application, some denoising techniques are not 

preferable because these filters are too sophisticated and may destroy some useful and 

relevant information of the image. Therefore, it is important to choose denoising tool 

which can secure the conservation of image details while smoothing out the speckle 

noise. Preferring to the US application, AMPT technique can be used and stand as a 

dominant denoising tool. 

 The proposed technique is also computationally fast compared to Lee and 

LMMSE technique. On average, it takes less than 4 seconds to process the image 

depending on the size of image. This experiment is carried out on a 2.4 GHz Intel (R) 

Core ™ i3 CPU computer with 2.00 GB RAM, and 64-bit operating system. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

 In this paper, speckle noise denoising scheme using adaptive multiscale product 

thresholding (AMPT) is introduced and implemented in the simulation and real US 

image. From the simulation results, AMPT shows better performance in term of PNSR 

values and visual quality while removing a substantial amount of noise, the details and 

sharpness of the original image is maintained. The evaluation of AMPT filter using real 

US images shows proved that AMPT technique is capable of reducing speckle noise in 

homogeneous region of US image with less blurring effect while preserving contrast and 

image details such as edges and subtle features. On average, the performance gain of 

AMPT in terms of PNSR and ENL is around 1.22 times and 1.8 times the noisy one, 

respectively. Thus, it is believed that the implementation of this technique in medical 

ultrasound imaging will enhance the quality of US images produced.  

 

 In the AMPT filter, the wavelet thresholding discard the small value of wavelet 

product coefficient because it is treated as noise. This process however, may results in 

removal of some important tissue detail in ultrasound images. As future work, further 

investigation should be conducted on the statistical property of the US images and how to 

incorporate this information into the AMPT filtering process. It is expected that with 

additional statistical information, the filtering performance will be further improved. 
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APPENDIX  

A: MATLAB Code  

a) MATLAB code (main part) used for simulation of test images 

clc;clear all; close all 
x     = double(imread('lena.png')); 
x     = x(:,:,1); 
[K,L] = size(x); 
%%%%%%%%%%%%%%%---- Adding speckle noise ----%%%%%%%%%%%%% 
v    = 0.1; 
n1   = specklegengam(K,L,1/v); 
n2   = specklegengam(K,L,1/v);%n10   = specklegengam(K,L,1/v); 
n3   = specklegengam(K,L,1/v);%n11   = specklegengam(K,L,1/v); 
n4   = specklegengam(K,L,1/v);%n12   = specklegengam(K,L,1/v); 
n    = (n1+n2+n3+n4)/4; % 4-look data 
y    = x.*n; 
yy   = relog(y); 
ly   = log10(yy);  
PN   = PSNR(x,y); 

 
%%%%%%%%%%%%%%%---- Variance estimation ----%%%%%%%%%%%%% 
wv    ='db4' ;  
level = 1; % db1, db4, sym4, bior6.8 
ftype = wv; 
[C,S] = wavedec2(ly,level,ftype); 
var   = length(C)-S(size(S,1)-1,1)^2+1; 
ve   = median(abs(C(var:length(C))))/0.6745; 

%%%%%%%%%%%%%%---- Boxcar ----%%%%%%%%%%%%% 
 N = 3; 
 B = filter(boxcar(N)/N,1,y); 
 PB = PSNR(B,x); 
%%%%%%%%%%%%%%%---- Median filter ----%%%%%%%%%%%%% 
M = medfilt2(y); 
PNM  = PSNR(M,x); %  PNSR of median  
%%%%%%%%%%%%%%%---- LMMSE filter ----%%%%%%%%%%%%% 
lmmse = Lmmse_US(x); 
PLMMSE   = PSNR(lmmse,y)%  PNSR of LMMSE  
%%%%%%%%%%%%%%%---- Lee filter ----%%%%%%%%%%%%% 
Le5 = lee5by5(y); 
PL   = PSNR(Le5,x); %  PNSR of Lee 
%%%%%%%%%%%%%%---- AMPT ----%%%%%%%%%%%%% 
Wlt = ZhangW(ly,v); 
Wlt = 10.^Wlt; 
PNW  = PSNR(Wlt,x); %  PNSR of AMPT  

out = [PN,PB,PNM,PLMMSE,PL,PNW] 

%%%%%%%%%%%%%%%---- Test images ----%%%%%%%%%%%%% 
figure; imshow(x,[]);xlabel('Noise-free') 
figure; imshow(y,[]);xlabel('Noisy') 
figure;imshow(B,[ ]);xlabel('Boxcar') 
figure; imshow(M,[]);xlabel('Median') 
figure;imshow(lmmse,[ ]);xlabel('LMMSE') 
figure;imshow(Le5,[ ]);xlabel('Lee5by5') 
figure; imshow(Wlt,[]);xlabel('AMPT') 
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b) MATLAB code for AMPT Technique 

 

function out = ZhangW(imagn,v) 
sca=1;  
[wr,wc,ss,m]=wt2d(imagn,sca); 
[corr,corc]=compcor2d(wr,wc); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
rimat=th_w2d(wr,wc,ss,v,m);%%%do the traditional thresholding  

  
%%%% the scale correlation thresholding 
[sca,n,nn]=size(wr); 

  
th=getth2d(sca); 
c=15; 
for i=1:sca-1 
   wrt=reshape(wr(i,:,:),n,n); 
   corrt=reshape(corr(i,:,:),n,n); 
   mask=(corrt>c*v^2*th(i)); 
   iwr(i,:,:)=wrt.*mask; 

    
   wct=reshape(wc(i,:,:),n,n); 
   corct=reshape(corc(i,:,:),n,n); 
   mask=(corct>c*v^2*th(i)); 
   iwc(i,:,:)=wct.*mask; 
end 

  
nf=normf2d(sca); 
wrt=reshape(wr(sca,:,:),n,n); 
iwr(sca,:,:)=wrt.*(abs(wrt)>3.*v*nf(sca)); 
wct=reshape(wc(sca,:,:),n,n); 
iwc(sca,:,:)=wct.*(abs(wct)>3.*v*nf(sca)); 

  
out=iwt2d(iwr,iwc,ss,m); 
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function [wwr,wwc,ss,m]=wt2d(image,sca) 

  
%%%2D dyanic wavelet transform%%%%%%%%%%% 

  
%image------input image 
%sca--------transform scale number 

  
%wwr--------row output 
%wwc--------column output 
%ss---------smoothed image 
%m----------extended point number 

  
%!!! The image should be square 

  
J=sca; 
[n,m]=size(image); 
if m>64 
   m=64; 
end 

  
%%%%%%%%reform the image%%%%%%%%%%%%%%%%%%% 
ima=zeros(2*m+n,2*m+n); 
ima(m+1:m+n,:)=[image(:,m:-1:1) image image(:,n:-1:n-m+1)]; 
ima(1:m,m+1:m+n)=image(m:-1:1,:); 
ima(m+n+1:2*m+n,m+1:m+n)=image(n:-1:n-m+1,:); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear image; 

  
j=0; 
while j<J 
   rt=conv2(ima,getg(j)); 
   wwr(j+1,:,:)=rt(:,128:128+n+2*m-1); 
   ct=conv2(ima,getg(j)'); 
   wwc(j+1,:,:)=ct(128:128+n+2*m-1,:); 

  
   st=conv2(ima,geth(j)); 
   st=st(:,128:128+n+2*m-1); 
   ima=conv2(st,geth(j)'); 
   ima=ima(128:128+n+2*m-1,:); 
   j=j+1; 
end 

  
ss=ima; 

  
return; 
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function a=geth(i) 

  
%%%get the low pass filter%%%%% 

  
a=zeros(1,256); 
a(128)=0.375; 
a(128-2^i)=0.125; 
a(128+2^i)=0.375; 
a(128+2*2^i)=0.125; 

  
return; 

 

=============================================================== 

function a=getg(i) 

  
%%%get the high pass filter%%%%% 

  
a=zeros(1,256); 
a(128)=-2.0; 
a(128+2^i)=2.0; 

  

  
return; 

======================================================================= 

 
function tth=getth2d(sca) 

  
%%%%compute ||F1||||F2||sigma_z1^2%%%% 

  
%sca-----scale number 
%tth-----the output, a vector of length sca, consists of the threshold 

at scale i=1,2,...,sca 

  
nf=normf2d(sca+1); 
[sigma_z1,sigma_z2]=getsigma2d(sca); 

  
for i=1:sca 
   tth(i)=(nf(i)*nf(i+1)*sigma_z1(i)); 
end 

  
return; 

 

========================================================== 
 

 

function nf=normf2d(sca); 

  
%%%%compute ||H0*H0'*H1*H1'...*Grm||%%%%%%% 

  
%sca----scale number 
%nf-----the output in row or column direction, a vector of length sca 
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th=1; 

  
for i=0:sca-1 
  tg=conv(th,getg(i)); 
  nf(i+1)=norm(tg)*norm(th); 
  th=conv(th,geth(i)); 
end 

  

=========================================================== 

 

function rima=iwt2d(wwr,wwc,ss,m) 

  
%%%backward dyadic wavelet transform%%%%%% 
%wwr--------row part 
%wwc--------column part 
%ss---------smoothed image 
%m----------extended point number 

  
%rima-----reconstructed image 

  
[J,n,nn]=size(wwr); 

  
j=J; 
while j>0 
   twwr=reshape(wwr(j,:,:),n,n); 
   twwr=conv2(twwr,getk(j-1)); 
   twwr=twwr(:,128:128+n-1); 
   twwr=conv2(twwr,getl(j-1)'); 
   twwr=twwr(128:128+n-1,:); 

  
   twwc=reshape(wwc(j,:,:),n,n); 
   twwc=conv2(twwc,getl(j-1)); 
   twwc=twwc(:,128:128+n-1); 
   twwc=conv2(twwc,getk(j-1)'); 
   twwc=twwc(128:128+n-1,:); 

  
   ss=conv2(ss,getnh(j-1)); 
   ss=ss(:,128:128+n-1); 
   ss=conv2(ss,getnh(j-1)'); 
   ss=ss(128:128+n-1,:)+twwr+twwc; 

    
   j=j-1; 

    
end 

  
rima=ss(m+1:n-m,m+1:n-m); 
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B: Gantt Chart (with key milestones) 

 

 

 
 

 

         Milestones 1- Result with simulation data 

Milestones 2- Result with real data      

 


