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ABSTRACT 

 

High reliability users of microelectronic devices have been derating junction 

temperature and other critical stress parameters to improve device reliability and 

extend operating life. The junction temperature is what really matters for component 

functionality and reliability. This study presents a useful analysis on mathematical 

approach which can be implemented to predict thermal behavior in Integrated Circuit 

(IC). The problem could be modeled as heat conduction equation. In this study, 

numerical approaches based on implicit scheme and Arithmetic Mean (AM) iterative 

method will be applied to solve the governing heat conduction equation. From the 

numerical results obtained, it shows that AM method solves the governing heat 

conduction equation with minimum number of iterations and fastest computational 

time compared to the Gauss-Seidel (GS) method. It is in design phase when 

simulations and modeling are carried out to ensure high performance and reliability. 

The availability of thermal analysis tool for maximum temperature prediction would 

be of great value to designers of power device ICs.    
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background of Study 

 

In a power device application, high power is usually encountered. It is engineers’ job 

to make power devices reliable for their intended application. In order to achieve this 

goal, considerations have to be taken regarding reliability and performance. During 

the design phase, especially when a new platform for new technology is involved, 

thorough calculations and simulations are carried out to ensure the designed 

electrical parameters and other reliability characteristics are optimized. High 

reliability users of microelectronic devices have been derating junction temperature 

and other critical stress parameters for decades to improve device reliability and 

extend operating life [1]. It is in the first phase, i.e., design phase where 

semiconductor devices are stressed for reliability and performance [2]. It is of 

important concern to predict junction temperature at this phase.  

 

Generally, electronic systems are made of various components attached on Printed 

Circuit Board (PCB). PCB provides electrical connection and mechanical support for 

electronic components by means of pathways. Typical PCB assembly may be seen in 

Figure 1.1, including IC components with several resistors and capacitors. With the 

evolution of ICs, there have been many types of IC packages. In a standard 

construction (refer Figure 1.2), the IC die is attached to a metal support (die paddle) 

and wire bonded to a metal leadframe. In this structure, epoxy resin is used as a 

component body [3].  
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To improve thermal performance, packages might contain high-thermally conductive 

metal or heat slug, as shown in Figure 1.3, which will dissipate excessive thermal 

heat from IC. 

 

 

 

 

 

 

Figure 1.1 Printed Circuit Board 

Figure 1.3 Thermally enhanced with heat slug 

Figure 1.2 Standard design 
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Figure 1.4 provides basic illustration of IC die mounted on PCB, while Figures 1.5 

and 1.6 give detailed view of IC silicon die with its package. There is no heat slug as 

shown in Figure 1.5, where leadframe provides electrical connection to the external 

leads and PCB. The die paddle is not required when there is heat slug as illustrated in 

Figure 1.6, in that case, die can be directly attached to the heat slug. In Figure 1.6, 

heat slug is exposed at the base of package body. 

 

 

 

 

 

 

 

 

 

 

 

Designing good performance and reliable power electronic system requires careful 

consideration of the thermal and electrical domain. Over designing the system adds 

unnecessary cost and weight; under designing the system may lead to overheating 

and even system failure. Finding an optimized solution requires a good 

understanding to predict the operating temperatures of the system’s power 

components and heat generated by those components affects neighboring devices, 

Figure 1.4 PCB mounted silicon die 

Figure 1.5 Internal architecture of an IC Figure 1.6 IC view from package base 
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such as capacitors and microcontrollers. The generated heat from semiconductor 

device can affect nearby devices thus reducing overall performance of the system. 

The maximum allowable junction temperature is one of the key factors that limit the 

power dissipation capability of a device. It is defined by the manufacturer and 

usually depends on the reliability of the die used in the manufacturing process [4].  

 

To ensure that a device is operated within its defined temperature limits, power 

dissipation must be well understood. When a device is running, it consumes 

electrical energy that is transformed into heat. Thermal response curves were 

traditional methods used to calculate peak junction temperature of a device. The 

model is not suitable for large surges of short time duration, as they are faced in 

present day power electronic systems [5]. 

 

Design of a cooling system is highly dependent on junction temperature and its 

influence on neighboring devices [4]. In order to develop thermal control system, one 

needs to estimate temperature profile of a component, in our case semiconductor 

device. This in turn will improve system’s reliability and performance. As stated in 

[6], appropriate cooling strategy highly depends on prediction of component junction 

temperature. 

 

 

1.2 Problem Statement 

 

Using the concept of junction temperature, it is assumed that the die's temperature is 

uniform across its top surface, i.e., uniform power dissipation [7]. Most of the die's 

thickness is to provide mechanical support for the very thin layer of active 

components on its surface. For many thermal analyses, electrical components on the 

die lay at the chip's surface. Therefore, junction temperature is actual die or device 

temperature. Study presented in [8] gives important ideas of IC die temperature 

distribution, which can be seen from Figure 1.7. Note that the hottest temperature is 

actual die or junction temperature. 
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In this study one-dimensional heat conduction equation will be used as a basis for 

junction temperature prediction. One-dimensional heat conduction equation in itself 

is second-order linear parabolic partial differential equation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The heat conduction equation models the flow of heat in a rod that is insulated 

everywhere except at the two ends [9]. Solutions of this equation are functions of two 

variables, i.e., one spatial variable (position along the rod) and time. The one-

dimensional in the description of the differential equation refers to the fact that we 

are considering only one spatial dimension. Imagine a thin rod that is given an initial 

temperature distribution, and then insulated on the sides, as shown in Figure 1.8. 

 

 

 

 

 

 

The temperature variation with time along the rod can be investigated. Suppose that 

the rod has a length L, and we establish a coordinate system along the rod as 

illustrated in Figure 1.8. This modeling is basis for heat conduction equation along 

silicon die. 

Figure 1.7 IC die temperature 

Figure 1.8 Thin rod 

0 x L
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The one-dimensional heat conduction equation that represents the problem is written 

as follows 

 

t

T
c

x

T
K











2

2

)(
            (1) 

 

with boundary conditions [11] 

 

inx P
x

T
SK 




0

         (2)
 

inTtLT ),(
    

0t  

 

The equation holds for domain 0<x<L and time t≥0 where L and T are the thickness 

of device and temperature of semiconductor device (IC die) respectively. Meanwhile 

K, 𝜌, c are silicon’s thermal conductivity, mass density, specific heat capacity and S, 

Pin, Tin represent the area of semiconductor, input dissipated power and input 

temperature respectively. The equation (1) is derived from Fourier’s Law of Heat 

Conductivity and conservation of energy [10].  

 

Throughout this study, convection and radiation will be assumed negligible. Thermal 

properties of silicon die will be assumed to be constant and not depend on junction 

temperature. In this study, the performance of AM iterative method with implicit 

discretization scheme will be investigated in determining the peak junction 

temperature of semiconductor device.  

 

1.3 Objective of Study 

The main objectives are: 

 To formulate and implement the AM method with implicit scheme for 

solving the governing heat conduction equation. 

 To develop the algorithm for AM method with implicit scheme for solving 

the governing heat conduction equation. 

 To determine the peak junction temperature of semiconductor device  
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1.4 Significance and Feasibility of Study 

 

The delivered results of the study, i.e. peak junction temperature of the 

semiconductor device may be used in design phase of a semiconductor device. The 

prediction can be very useful in calculating the junction temperature, especially to 

identify if IC die temperature exceeds predefined limits. It is of important issue as 

performance and reliability depends on temperature prediction. Thermal engineers 

and/or researchers may benefit from the produced deliverables.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Traditional Methods 

 

The following traditional method is used to calculate the junction temperature, TJ  

 

D

AJ
JA

P

TT 
           (3) 

 

where θJA, TA and PD represent thermal resistance, ambient temperature and power 

dissipation respectively [4]. 

 

However, there are drawbacks using traditional method. First of all as mentioned by 

Clemente [5] the model developed many years ago, is inappropriate for large surges 

of short time duration, as they are encountered in present day power conditioning 

systems. It normally does not include pulse widths in the order of few microseconds, 

as required by the reaction times of modern power conditioning systems. The 

difficulty of using peak temperature measurements for pulse widths of this duration 

further compounds the problem. This is an important issue in the design of power 

electronic equipment. Attempts to calculate the junction temperature using traditional 

θJA calculations are not recommended. Traditional method can produce large errors 

because important parameters are not always acknowledged for, like airflow, 

proximity of other components, and PCB thickness and layers [13]. 

 

In [8], some methods of IC die temperature prediction are provided. It states that the 

most accurate way to determine junction temperature is to measure IC die 

temperature itself while component operates. This can only be done by component 
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supplier. It can be achieved by installing temperature sensors and integrating them 

with IC die. Although, the method is most accurate it is very costly for both supplier 

and user. Another method subject to discussion is to measure case temperature. Case 

temperature or top package temperature is the closest to the IC die. Thus, by 

measuring case temperature and knowing heat flow profile junction temperature can 

be predicted. One of the ways to measure case temperature is to use an Infrared (IR) 

camera or IR gun. Figure 2.1 shows case temperature measured by IR camera. 

 

 

 

 

 

 

 

 

 

 

 

2.2 Numerical Approaches 

 

Large extent of works was done on determination of junction temperature of 

semiconductor devices. Literatures used different kinds of mathematical modeling 

for solving heat conduction equation of thermal control system on PCB. All of the 

studies use heat conduction equation as stated in [10]. Ammous et al. [12] proposed 

thermal models needed for the electrothermal simulation of power electronic 

systems. It gives a useful analysis about the choice the thermal model circuit 

networks, equivalent to a discretization of heat conduction equation by the finite-

difference method (FDM). In [12], it gives ideas about boundary conditions 

representations. FDM and Finite Element Method (FEM) were used to discretize heat 

conduction equation. It also assumes convection and radiation as negligible. 

Clemente [5] supports these ideas in a case of vertical power transistor (silicon die). 

Figure 2.1 Case temperature measured by an IR camera 

Case Temperature 
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Many numerical approaches were implemented for solving heat conduction 

equations of thermal control systems on printed circuit board. In [14], multigrid 

method was implemented as a mathematical approach to solve problem (1). It is 

relevant to mention that Zarith et al. [14] used FDM to transform equation (1) into a 

system of linear equations. It states that iterative method is suitable to implement 

compared to direct method. It also mentions that multigrid method is able to solve 

system of linear equations faster. In [11], sequential algorithm of parabolic equation 

is used in solving thermal control process on PCB. The aim is to simulate parabolic 

equation by implementing sequential algorithm in solving thermal control systems. 

Numerical results obtained have proved that it is available to predict the thermal 

behavior using numerical approaches. 

 

Many studies involving AM and its variants have been conducted in solving various 

scientific problems. In [15], AM method has been applied in solving large sparse 

system of linear equations. It states that, the AM method converges for systems with 

coefficient matrices that are symmetric positive definite or positive real or irreducible 

L-matrices with a strong diagonal dominance. It clearly mentioned that, the method 

is very suitable for parallel implementation on a multiprocessor system. It also states 

that the conditions which guarantee the convergence of AM iterative method. In [15], 

some numerical examples, where AM method is applied for solving an elliptic 

boundary value problem and initial-boundary value problem for the diffusion-

convection equation are presented. In [18], new variant of AM method for solving 

large block tridiagonal linear systems have been introduced. The main concern of 

this study is to derive new variant of AM method that having a higher degree of 

parallelism within its structure. The performance of AM method was studied by 

solving algebraic systems which arise from the discretization of elliptic boundary 

value problems.  
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CHAPTER 3 

METHODOLOGY 

 

 

3.1 Research Methodology 

 

First phase of the study is to understand the concept of heat conduction equation and 

derivation of it. Applying initial and boundary conditions are necessary in this phase. 

The next phase is to integrate heat conduction equation into silicon die. Here basic 

model of silicon die on PBC is needed to analyze. The next steps are to formulate 

and implement the AM method in solving finite-difference approximation equation 

generated from the heat conduction equation. After possessing working algorithm, 

final task will be to determine peak junction temperature of semiconductor device 

(IC die). Throughout this study, MatLab programming software will be used for the 

development of numerical algorithm and computer simulations. Overall it can be 

summarized briefly as in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1 Methodology chart 
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3.2 Implicit Method (Backward Time Central Difference Space) 

 

FDM proceeds by replacing derivatives in the differential equations by finite 

difference approximations. FDM is easy and efficient for implementation for lower 

orders and faster compared to FEM. It is suitable for analysis framework for this 

study. FDM can be extended to arbitrarily high order of accuracy. There are two 

sources of error in FDM i.e. round-off error (computer rounding of decimal 

quantities) and truncation error (difference between approximation and exact 

analytical solution). FDM can be used to discretize in space and/or in time.  

 

In this study, FDM based on implicit scheme will be used to discretize the domain of 

problem (1). The domain in space is partitioned using a mesh xi=i∆x and domain in 

time tj=j∆t. Uniform partition is considered both in space and time. ∆x, ∆t are the 

size of space and time subintervals, and xi, tj mesh points (endpoints) of the 

subintervals. The values of i and j are 0≤i≤n and 0≤j≤m respectively. The values of n 

and m will define the solution matrix. The following notation is used for simplicity: 

j
iji TtxT ),(           (4) 

The grid spacing is: 

;
n

L
x   

m

t
t          (5) 

where t is final elapsed time.         

 

In implicit method for space derivative at position xi second-order central difference 

is used. When at time tj+1 backward difference is used. The scheme is always 

convergent and stable [19]. The expected equation after discretizing problem (1) is: 

 

)
)(
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where 
c

K


  (thermal diffusivity) and 2)( x

t
s




  

Applying forward finite difference for the LHS of temperature gradient in Eq. (2) we 

get 

x

TT

x

T
jjj








 010
         (8) 

This yields to: 

xaTT
jj

 01               (9)   

where SK
P

a in                                                                    

By using Equations (7) and (9) we get a system of linear equations which can be 

represented in matrix form as follows: 
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or 

bAT                                         (11) 

where A is a tridiagonal matrix, b is a given vector, and T denotes the unknown 

vector which needs to be determined.       

One can use direct methods like explicit forward Euler method, implicit backward 

Euler method to solve Eq. (10). But there are drawbacks in terms of accuracy and 

computational time. Iterative methods improve the solution of Eq. (10) and are very 

useful for solving large and sparse systems. Iterative methods begin with an initial 

guess for the solution to the matrix equation. Each iteration updates the new k
th

 

estimate T
k
 which converges on the exact solution T. 
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3.3 Arithmetic Mean method 

 

To obtain accurate results, numerical methods have to use finest mesh grid. Hence, it 

will lead to large linear systems and can be problematic to solve as n, the order of 

linear systems increases. Thus, iterative AM method is one of the options for 

efficient solutions. This method has been proposed widely to be one of the feasible 

and successful types of numerical algorithms for solving any linear systems [15], 

[16]. The rate of convergence of AM method is relatively insensitive to the exact 

choice of the parameter ω [17]. The value of ω will be determined by implementing 

computer program (source code) and then choose one value of ω, where it's number 

of iterations is the smallest. 

In this study, one of the two-stage methods, i.e., AM will be applied to solve the 

generated linear system (11). This will give a solution to problem (1). Essentially, 

each iteration of the AM method consists of solving two independent systems T
(1)

and 

T
(2)

. Now, let us consider matrix A that split into the form: 

ULDA                    (12) 

where D, L and U are diagonal, strictly lower triangular and strictly upper triangular 

matrices. Thus, the general scheme for AM method to solve linear system (11) is 

defined as [15], [16], [17]: 

bTUDTLD k   )()1( ))1(()(  

bTLDTUD k   )()2( ))1(()(                (13) 

)(
2

1 )2()1()1( TTT k 
     

where k (k=0,1,2,…,) is the number of iterations,  T
(0) 

is an initial vector 

approximation to T, ω is an acceleration (relaxation) parameter, which is used to 

increase the convergence rate. Equation (13) is characterized by having within its 

overall mathematical structure certain well-defined substructures that can be 

executed simultaneously. This feature makes it ideally suited for implementation on 

a multiprocessor system with two or more vector processors; the lower triangular 

system and the upper triangular system in Equation (13) can be solved 

simultaneously on two different processors. The conditions for convergence of AM 

method are clearly stated in [15], [18].  
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CHAPTER 4 

RESULTS & DISCUSSION 

 

 

In this chapter, comparison between iterative methods, i.e., GS and AM is presented. 

Performance criteria such as computational time (CPU time), number of iterations 

and maximum junction temperature will be analyzed in both methods. MatLab 

R2012b has a built-in function 'pdepe' which can be used to solve initial-boundary 

value problems for parabolic-elliptic partial differential equations in one dimension. 

Both GS method and 'pdepe' function will act as control methods.  

It is important to define initial-boundary conditions properly, as they affect the 

outcomes significantly. Initial condition corresponds to the case at time t=0. It is 

assumed to be 294K, which is just room temperature. It is the temperature before 

component starts operating. Boundary conditions define the values of the problem at 

x=0 and x=L. Boundary conditions were defined in Eq. (2). T(L,t)=Tin corresponds to 

the case at x=L, which is upper boundary of semiconductor device. The upper 

surface is considered to be the cooling boundary, where input temperature is assumed 

to be constant, Tin=300.15K. In this study, upper surface has Dirichlet boundary 

conditions. Power dissipation starts from the active IC die layer and flows up linearly 

along the x axes perpendicular to the silicon surface S. The lower boundary at x=0 is 

considered to be Neumann boundary conditions, where temperature gradient exists. 

Therefore, this study presents mixed boundary conditions. 

The value of initial datum, T
(0)

 is set to be zero for both GS and AM methods and 

experimental values of ω for AM method are chosen within ±0.1 to be an optimal 

value by a trial and error process. All simulations described in this study are 

performed using on a PC with Intel(R) Core(TM) i3-2328M CPU @ (2.20 GHz 2.20 

GHz.) and with a system type of 32-bit, 2.60GB RAM.  



18 
 

Input parameters L=550e-4cm, S=0.1cm
2
, pc=1.63J/(Kcm

3
), K(thermal 

conductivity)=1.54 W/(cm K) and Pin=200 W respectively. To get a better idea of 

temperature prediction, several values for elapsed time were used, t=2e-3, t=6e-3 

and t=10e-3 seconds. 

Results of numerical simulations, which were obtained from implementations of 

iterative methods, have been recorded in Tables 1, 2 and 3 respectively. Each table is 

recorded for each value of elapsed time. The stopping criterion used for GS and AM 

methods was ε, such that 

 )()1( kk TT                   (14) 

where ε=1.0e-10. 

 

Table 1a. Number of iterations for t=2ms 

Number of iterations 

Method 
  n   

30 60 90 120 150 

GS 12155 45725 99891 173960 211122 

AM 4322 10462 18881 27746 36920 

(ω=1.6) (ω=1.8) (ω=1.8) (ω=1.9) (ω=1.9) 

 

Table 1b. Computational time for t=2ms 

CPU time (seconds) 

Method 
  n   

30 60 90 120 150 

GS 0.873 1.848 4.676 10.138 12.376 

AM 0.493 1.293 2.334 3.587 4.848 

 

 

 



19 
 

Table 1c. Maximum temperature at t=2ms 

Maximum temperature (K) 

Method 
  n   

30 60 90 120 150 

GS 355.7851 356.5180 356.7612 356.8826 356.9554 

AM 355.7851 356.5180 356.7612 356.8826 356.9554 

'pdepe' 357.5525 357.5523 357.5435 357.5460 357.5539 

 

Table 2a. Number of iterations for t=6ms 

Number of iterations 

Method 
  n   

30 60 90 120 150 

GS 31506 120789 264487 388332 573252 

AM 8915 22635 37943 55476 75428 

(ω=1.7) (ω=1.9) (ω=1.9) (ω=1.9) (ω=1.9) 

 

Table 2b. Computational time for t=6ms 

CPU time (seconds) 

Method 
  n   

30 60 90 120 150 

GS 1.103 4.642 12.875 21.242 27.356 

AM 1.094 2.564 4.636 6.740 9.767 
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Table 2c. Maximum temperature at t=6ms 

Maximum temperature (K) 

Method 
  n   

30 60 90 120 150 

GS 368.5538 369.6896 370.0674 370.2562 370.3694 

AM 368.5538 369.6896 370.0674 370.2562 370.3694 

'pdepe' 370.9317 370.9455 370.9221 370.9241 370.9451 

 

Table 3a. Number of iterations for t=10ms 

Number of iterations 

Method 
  n   

30 60 90 120 150 

GS 46424 178336 329889 450078 506660 

AM 11457 29839 50575 75013 103400 

(ω=1.8) (ω=1.9) (ω=1.9) (ω=1.9) (ω=1.9) 

 

Table  3b. Computational time for t=10ms 

CPU time (seconds) 

Method 
  n   

30 60 90 120 150 

GS 1.545 6.948 18.318 22.347 27.012 

AM 1.271 3.328 6.147 9.164 13.342 
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Table 3c. Maximum temperature at t=10ms 

Maximum temperature (K) 

Method 
  n   

30 60 90 120 150 

GS 369.1622 370.3479 370.7430 370.9406 371.0591 

AM 369.1622 370.3479 370.7430 370.9406 371.0591 

'pdepe' 371.5474 371.5452 371.5507 371.5497 371.5454 

 

Figures below show temperature profile for each value of elapsed time, with n=30; 

60; 90; 120; 150. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Temperature profile for n=30 and 60, at t=2ms 
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One can observe the thermal behavior within a semiconductor device (IC die). Note 

that the red region is the hottest temperature along a die. Temperature with respect to 

time graphs clearly shows that the temperature is still rising for t=2ms. These graphs 

follow parabolic pattern. Observe that for a case when x=L temperature is constant, 

whereas within semiconductor for specified distances temperature is rising.  

Figure 4.2 Temperature profile for n=90 and 120, at t=2ms 

Figure 4.3 Temperature profile for n=150, at t=2ms 
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Figure 4.4 Temperature profile for n=30 and 60, at t=6ms 

Figure 4.5 Temperature profile for n=90, at t=6ms 
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As an elapsed time increases (t=6ms) temperature within a semiconductor starts to be 

constant.  The value of maximum temperature and the area of hot region are bigger 

compared to the case at t=2ms.  

 

 

 

Figure 4.6 Temperature profile for n=120 and 150, at t=6ms 

Figure 4.7 Temperature profile for n=30, at t=10ms 
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Figure 4.8 Temperature profile for n=60 and 90, at t=10ms 

Figure 4.9 Temperature profile for n=120, at t=10ms 
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Figure 4.10 Temperature distribution for n=150, at t=10ms 

Figure 4.11 Temperature with respect to time for n=150,    

with defined distance along IC die, at t=10ms 
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By observing Figure 4.11, note that after elapsed time t=10ms the temperature 

remains constant; the maximum temperature has been achieved. Hence, computed 

maximum junction or IC die temperature is: 

Tmax=371.5454 Kelvin or Tmax=97.9091 Celsius  

From Tables 1, 2, 3 it is clear to see that as the size of mesh grid n increases we get 

closer values to the exact solution. Through the observation in Table 1, by using AM 

method number of iterations are decreased by 64.44-84.05% and computational time 

is decreased by 43.52-60.83% respectively compared to GS method. For the Table 2, 

number of iterations are decreased by 71.7-85.7% and computational time is 

decreased by 0.82-69%. Lastly for the Table 3, number of iterations and 

computational time are decreased by 75-84% and 17.7-66.4% respectively. The 

decrement percentages of the number of iterations and execution time for AM 

method compared with the GS method are summarized in Table 4. 

Table 4. Decrement percentages of the number of iterations and execution time for 

AM method compared with the GS method                                  

Elapsed time 

(milliseconds) 
Method Number of iterations (%) CPU time (%) 

t=2 
AM 

 
64.44-84.05 43.52-60.83 

t=6 
AM 

 
71.7-85.7 0.82-69 

t=10 
AM 

 
75-84 17.7-66.4 

 

To sum up AM method is more superior in terms of number of iterations and 

computational time compared to the GS method.  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

In this study numerical techniques were used to present temperature behavior of 

semiconductor device, more precisely temperature of IC die. Implicit method was 

used for discretization of heat conduction equation. Two iterative techniques, i.e., GS 

and AM were studied and implemented to get the solution of temperature profile 

arisen from system of linear equations. Numerical results of computational time, 

number of iterations and maximum junction temperature were recorded. The results 

are identified to be acceptable since average operating junction temperature of 

component IC die is between 80 and 120 Celsius. Through numerical results 

obtained from Tables 1, 2, 3 and 4, it clearly shows that by applying AM method can 

reduce number of iterations and execution time. Overall, AM method is more 

superior compared to GS method. The purpose of this study was to improve the 

confidence level of the design, and at the same time reduce time and energy 

consumed for real experimental procedures in actual process.  One dimensional 

parabolic partial heat conduction equation had been proved that it can be applied in 

predicting the temperature profile for electronic devices. 

For the future works, this study can be extended to investigate the actual IC die 

temperature of semiconductor device. This can be achieved by measuring case 

temperature of a component and get a close approximate value to the actual junction 

temperature. The actual die temperature can be compared with the results obtained 

from AM method, and maximum absolute error values can be presented.  
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