
i

DESIGN OF IMPROVED GRID FOR TURTLE ROBOT

by

Muhammad Zulhilmi Bin Adnan

(Supervisor: Abu Bakar Sayuti Bin Hj Mohd Saman)

Dissertation submitted impartial fulfillment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronic Engineering)

SEPTEMBER 2013

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

ii

CERTIFICATION OF APPROVAL

DESIGN OF IMPROVED GRID FOR TURTLE ROBOT

by

Muhammad Zulhilmi Bin Adnan

A project dissertation submitted to the

Department of Electrical and Electronic Engineering

in Partial Fulfillment of the Requirement

for the Degree Bachelor of Engineering (Hons)

Electrical and Electronic Engineering

Approved by

(Abu Bakar Sayuti Bin Haji Mohd Saman)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

September 2013

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own concept as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

(MUHAMMAD ZULHILMI BIN ADNAN)

iv

ABSTRACT

Turtle robot is known as a two-wheel mobile robot which can be programmed to

do various task such as line following, grid following, wall or obstacle detection and the

list goes on. Common turtle robot has the capability of performing line following

function only. Another turtle robot’s capability is to do grid following, but this function is

limited to the designed grid which is 90 degree grid. The objectives of this project are to

design an improved grid including new algorithm that suitable for the use with a turtle

robot which allows more than straight line and 90 degree grid. The method used in this

project is by exploring several implementation of turtle robot with its grid design. This is

the followed by developing improved grid design with new algorithm which is then

tested continuously to ensure its functionality working flawlessly. As the result, turtle

robot now has the capability to follow 45 and 135 as well as 90 degree grid following. In

order to follow the grid designed, it must be preprogrammed with only its orientation and

the coordinate. It is recommended to improve the algorithm of this turtle robot so that in

can follow grid with less mistakes and to achieve its ultimate goal which is for learning

purposes.

v

ACKNOWLEDGEMENT

 First and foremost I would like to express my humble gratitude to Allah SWT for

His blessings and guidance; I am able to finish my Final Year Project. I would like to

sincerely thank to Universiti Teknologi PETRONAS (UTP) especially Electrical and

Electronic Engineering Department for the best services, essential support and facilities

in completing the project

 Special thanks to my Final Year Project supervisor, Mr. Abu Bakar Sayuti Bin Hj

Mohd Saman for his best and sincere guidance, ideas and teaching to make it possible for

to finish the project accordingly. His support, motivation and willingness to share his

knowledge and expertise have given a very important experience during the development

of this project.

 I would also like to thank UTP staff and Lab Assistants that helped me to

complete the project especially in providing tools and equipment as well as the

component needed to build the project. I really appreciate their great help and

information sharing for me to obtain best solution possible for small problems happened.

There is no other staff that has their fondness.

 Last but not least, deepest gratitude to my beloved family and friends in UTP for

their continuous support and encouragement which enabled me to do my best for this

project. I hope after the completion of this project, all the findings and knowledge that I

shared through this report can be useful for everyone for study and personal research

work. Thank you and May Allah bless all of you.

vi

NO TABLE OF CONTENT PAGE

 CERTIFICATION OF APPROVAL ii

 CERTIFICATION OF ORIGINALITY iii

 ABSTRACT iv

 ACKNOWLEDGEMENT v

 Table of Content vi

 List of Figures vii

 List of Tables viii

1 INTRODUCTION

1.1 Project Background 1

1.2 Problem Statement 2

1.3 Problem Identification 3

1.4 Significant of the Project 3

1.5 Objectives and Scope of Study 3

1.6 The Relevancy of the Project 4

1.7 Feasibility of the Project within the Scope and Time Frame 4

2 LITERATURE REVIEW

2.1 PIC Microcontroller variation and functionality 5

2.2 Finite State Machine 6

2.3 Algorithmic State Machine Chart 7

2.4 Pseudo Code and C code programming structure 7

2.5 Turtle Robot components and diagram 8

2.6 Grid solution 9

3 METHODOLOGY

3.1 Research Method 11

3.2 Project Activities 12

3.3 Tools and Equipment 19

3.4 Key Milestone 20

3.5 Gantt chart 20

4 RESULT AND DISCUSSION

4.1 Data Gathering and Analysis 21

 - Pseudo Code and Finite State Machine

 - Algorithmic State Machine Chart and Calculation

4.2 Experimentation and Modeling 28

 Demonstration on YouTube

4.3 Prototype 30

 - Several route test on grid

5 CONCLUSION & RECOMMENDATION 35

6 REFERENCES 37

7 APPENDICES 38

vii

List of Figures

Figure 1: Some of PIC Microcontroller Chip Configuration 5

Figure 2: Example of Simple Finite State Machine Task Flow Chart 6

Figure 3: Some of the example of Pseudo code 7

Figure 4: PR23-R2 - Multifunction Mobile Robot Component 8

Figure 5: Ring structure of grid solving solution 10

Figure 6: Research method integrated with project activities flow chart 11

Figure 7: Project activities flow chart 12

Figure 8: Algorithmic State Machine chart for the Line-Following code 14

Figure 9: First solution adding 45 degree grid to 90 degree grid 15

Figure 10: Second solution adding 45 degree grid to 90 degree grid 16

Figure 11: Algorithmic State Machine chart for 90 degree turn 18

Figure 12: Line and Grid design stages 21

Figure 13: Line width according to the sensors position 21

Figure 14: 90 degree grid design with coordinate 22

Figure 15: Currently confirmed grid design 23

Figure 16: Program code/Algorithm development flowchart 24

Figure 17: Experimenting line-following function 29

Figure 18: Experimenting grid following function 29

Figure 19: Line-following Mat 30

Figure 20: 45, 90 and 135 degree Grid Design 30

Figure 21: The 1
st
 tested pattern/route 32

Figure 22: The 2
nd

 tested pattern/route 34

viii

List of Tables

Table 1: Basic State table of the Sensors detection 17

Table 2: List of Tools and Equipment used 19

Table 3: Delay allocation for each sub-function 27

Table 4: Delay calculation 28

1

INTRODUCTION

1.1 Project Background

Robotics is a branch of technology world. It deals with almost the entire things

related to design, construction, operation and application of robots. These also include

computer systems for their control, sensory feedback, and information processing. Since

robotics has become main part in our daily life, it is now expanding quickly as the

research goes on. The goes the same for the community that is now trying to make

robotics as a hobby to invent new things and simplify their everyday lives.

There are several main component of robotics which is power source, actuation,

sensing, manipulation, locomotion and environmental interaction and navigation. This

project is more related to these main components which are sensing, locomotion and

navigation. After all it is a turtle robot which is moving (locomotion) by following line

(sensing) and navigate itself throughout the line or grid given (navigation). Thus, these

main parts need to be developed accordingly achieve certain functionality.

These three main parts are very much related to the mobile robot. On the other

hand, mobile robot now is in deep research for its autonomous function used in order to

move from a place to another place. This interesting part of robotics attracts hobbyist to

try and develop several mobile robot that function according to several environment in a

small size or scale. As time goes by, this type of robot had attracted teachers and

academician to teach and make programming become more interesting.

Turtle robot or on the other name is mobile robot is a two-wheel mobile robot

which can be programmed to drive its movement on a plane. Normally, this mobile robot

is pre-programmed by using specific tools and devices so that the robot will move

according the desired direction and movement. On the other hand, there are several

purposes of this mobile robot. First, it is indeed a fun activity for any hobbyists whom are

interested to the things related to robot.

2

Second, this mobile robot can be used as educational tool to teach programming

to young children. There are other purposes such as this robot is being used as the

simulation of a space-vehicle on a conditional space and many more. In this project, we

are more focus on the use of this mobile robot as educational tool in teaching

programming. We are going to improvise the capability of the normal mobile (turtle)

robot that are usually used in educational program

This project will improvised the grid used by the turtle robot with some added

capability that will be explained afterwards. Since this mobile robot will be used as an

educational tool for teaching, algorithm of this robot will be enhanced because new

ability has been added to the mobile robot. Both improvised grid and programming will

produced better toolkit for teaching young children about programming.

Kids nowadays are exposed to the advance technology around them, and soon

things that was previously complicated such as programming will have easier approach,

for example in this case is to teach the young children. Furthermore, with the existent of

mobile robot as their toys will attract them to learn more about programming. This

learning experience is a much better because it has hands-on practical as well as training

the logic behind the programming.

1.2 Problem Statement

The movement‟s accuracy of the robot can be increase in moving from certain

direction to another direction. Grid is chosen in order to improve the accuracy of the

movements. On the other hand, we have only 90 degree grid and line following

capability. There are some parts of the turtle robot need to be modified in order to change

the 90 degree limit. These modifications include the design of the grid that will be used

for the movement and navigation of the turtle robot.

3

1.3 Problem Identification

In this project, we are going to change the turtle robot limit which is 90 degree

only turn on a designed grid by adding capability to perform 45 degree turn. Therefore,

there are few things related to the turtle robot that need to be modified. The grid requires

improvement in order to perform 45 degree turn as well as the programming part of the

turtle robot. Somehow, other physical parts of the turtle robot such as line sensors need

also significant modification.

1.4 Significant of the Project

This project has at least some significant benefit to the young children and the

researcher. The main purpose of the turtle robot in this project is for educational toolkit.

Improvising the turtle robot will stimulate young children to learn new logic behind of

each operation of the turtle robot. This will then attract the interest of the young children

to learn how to program and try a lot more combination of movement of the turtle robot.

Turtle robot usually can be used as simulation for researcher. For example,

simulation of new road system which is the grid simulated as the road and the turtle robot

as the road user‟s vehicle. Provided with sufficient technology, user‟s vehicle may be

automatically driven using artificial intelligent and Global Positioning System (GPS).

Another example is that mobile robot can be used to access any unachievable space or

condition by normal human being such as outer space or deep-sea.

1.5 Objectives and Scope of Study

The objectives of this project are as stated below:

1. To design an improved grid suitable for use with a turtle robot that allows more

than straight line and 90 degree turn.

2. To develop a new algorithm for a turtle robot to use on the new grid

4

1.6 The Relevancy of the Project

This project is relevant in mostly in term of advanced learning and research.

Nowadays, complicated things can be simplified and explained in many ways with the

help of a lot of learning tools such as presentation slide, model or prototype, thinking

skill tools and the list goes on. Turtle robot project is by right may attract and help young

children to learn programming and the logic behind it. Improvising the turtle robot may

enhanced the children learning in which they can learn more about programming and not

just as previously which is limited with simple programming instruction.

On the other hand, there is much to research in term of preprogrammed or

autonomous robot. It is believe that the percentage of human physical work regarding

heavy or repetitive works which is being handled by the robot is increasing. Thus, a

significant advance in robot research may in several ways improvise the life and

productivity of human being.

1.7 Feasibility of the Project within the Scope and Time Frame

From the scope and time frame given, this project is feasible to be finished within

the range given. It will be two semesters which are equivalent to 28 weeks to do the

entire necessary thing related to the project. This project is actually an ongoing project.

Thus, it has many source and material available whether in the internet or information

resource center.

5

LITERATURE REVIEW

In our project, we would like to use PIC Microcontroller because of its price,

function and user-friendly type. There are several PICs family which is PIC10FXXX,

PIC12CXXX/PIC12FXXX, PIC16C5X, PIC16CXXX, PIC17CXXX and PIC18CXXX.

These PICs family has their own special function and capabilities. Those numbers

represent bits used in each microcontroller. Some characters in their name explain it

specific function and revision (Dogan, 2006).

Figure 1: Some of PIC Microcontroller Chip Configuration

Single-board computer is much more complex in which it has its own operating

system that can be used as a programming platform to control the turtle robot

accordingly. Basically, this type of pre-programming feature is based on the fixed event

that we want the turtle robot to operate accordingly. It is called an event-based

programming which is basically pre-programming the turtle robot based on the feedback

event that happened currently and next event which will be done by the robot.

6

This flow of programming is further explained in term of microcontroller tasking

and operations. Basically there are several concept used by microcontroller in

implementing the control algorithm which are state machine and real time operating

system (RTOS). Simple constructs used to perform several activities in sequence is called

state machine. Real time operating system is multi-tasking kernel which controls the

allocation of period of time for each task before it stopped and replaced by another task

(Dogan, 2008). In this project we would like to use state machine which simpler than

RTOS.

Figure 2 Example of Simple Finite State Machine Task Flow Chart

7

As we relate to the programming, turtle robot required stimuli or an event that can

bring feedback so that next operation can be conducted. Our turtle robot will need a

designed grid as a guided path to done any operation. This design has its own

specification in which calibrated with the feedback devices that will be used in deciding

the next event of the turtle robot

Finite State Machine (FSM) is then converted into C programming language by

applying certain method which by using Algorithmic State Machine (ASM) flow chart.

ASM flow chart uses more detail and complex approach than FSM. However, ASM chart

states clearly all the logic or algorithm of the functionality of the turtle robot. Then the C

source code is coded accordingly to the logic of the flow chart.

This C source code is the main thing that will programmed to turtle robot to

function as its capability. There is the other type of language which purposely used for

human reading without understanding the lower level of the C codes. This is called as

pseudo code. This is a structural notation for programming that uses verbal description

and informal programming structure to explain the codes.

Figure 3: Some of the example of Pseudo code

 Figure above shows clearly how C codes in its early of programming it. The same

structure of C programming is used, verbal syntax is put first to explain the logic

operation while we are reading and programming it simultaneously. This process is

followed by putting the actual definition by the hardware in each part of the pseudo code

8

is presented. The hardware part is also a main important part of this project. We use PR23

DIY Mobile Robot manufactured by Cytron Technology. The mobile robot is controlled

by using microcontroller with some feedback by the Infrared sensors. Below is the detail

description of the turtle robot:

Figure 4: PR23-R2 - Multifunction Mobile Robot Component

 Each number represents the components that are listed in the list of components

below. The main parts of this Multifunction Mobile Robot are the microcontroller,

electric motor, motor driver, batteries, infrared sensors and tires. This robot is powered

using two 18650 size 3.7 volt batteries.

9

Component list:

1. Programmable Push Button (SW1 and SW2).

2. Reset button.

3. PICkit2/3 ICSP header pin (For loading program).

4. UIC00A/B box header (For loading program).

5. Buzzer, sharing same pin with LED, enable using JP12 jumper.

6. Programmable LED (Red), sharing pin with Buzzer.

7. Mini Wheel, 1 pair, left and right.

8. Micro Gear Motor Bracket, 1 pair, left and right.

9. SPG10 Micro Metal Gear Motor, Gear Ratio = 150:1.

10. 16-pin IC socket for L293D, motor driver IC.

11. Pads for IR01A, left and right, optional item.

12. 18650 rechargeable Li-ion, 2 cell battery holder.

13. 16-ways header socket for 2x16 character parallel LCD.

14. potentiometer/preset to calibrate or teach the infrared sensor.

15. 7-ways header socket for EZ1 Ultrasonic Range sensor, optional.

16. 14-pin IC socket for LM324, comparator.

17. 2510-04 connector, for UC00A connection, optional.

18. 3-way header pin, jumper to select RX connection to EZ1 ultrasonic, or to SK and

UC00A.

19. A pair of LED indicator, to indicate the status of Micro Metal Gear Motor, left and

right.

20. Potentiometer/preset to adjust LCD contrast.

21. 40-pin IC socket for PIC16F877A.

22. Green 3mm LED to indicator 5V power.

23. Main power switch

24. 20MHz Crystal for PIC16F887A

25. A pair of 5-way header socket for Cytron‟s SK series of board.

10

 Most of grid following robot are in early phase of development. It has several

solution to implement the functionality of the grid following. Even, most available grid

following robot are for 90 degree grid following. Thus, the movement of robot from a

position to another position is still limited to the design of the grid. Some of the

researchers believe if grid following robot is further studied, it will give a lot of benefit

especially in industries.

 Work in iterative manner will make worker feel bored after some time but with

the existence of grid solver robot, the work will be more interesting. This will also make

the work process faster in term of shifting load properly and worker can do another task

simultaneously (Saxena, 2012). This paper proposed a technique to solve the grid

following algorithm, the method called ring structure. Below is the representation of the

grid in term of grid structure.

Figure 5: Ring structure of grid solving solution

As shown in the figure above, each intersection of the grid is numbered from 1

until 25 to allow the grid solver robot to go to each of position defined by using number.

The grid numbering forms a continuous connection between each of the intersection.

11

METHODOLOGY

3.1 Research Method

There are a few research methodologies that will be used to conduct the

experiment in order to add 45 degree turn to the turtle robot. Here are the project

activities as the method of research that will be used to solve this problem.

Figure 6: Research method integrated with project activities flow chart

Exploring the implementation

of Turtle Robot

Exploring the implementation

of grid design

Analysis on the Turtle Robot

mechanism and its response to

the designed grid

Designing improved turtle robot

with calibrated improved grid

Testing the implementation of

both improved turtle robot and

grid

12

3.2 Project Activities

Some of the specific project activities that are on-going task are represented in the

flow chart below. This flow chart rather a specific physical tasks to implement each

capability of the turtle robot together with the design improved grid.

Figure 7: Project activities flow chart

 Briefly, first few activities need to be done after buying the robot is to assemble

all the part because the DIY came in loose components/parts. Then, line following

function is tested on the circuit to check whether the components are functioning properly

or not. Next, a new design grid is built as well as developing the 90 degree grid following

function. Coordinate and direction function is then added to enable robot navigation on

the grid.

Buy all the required component

and tools to build the robot

Build a basic line following robot together

with the single line grid/circuit

Build a another line following

robot with programming

implemented to the robot

Build a 90 degree grid

following robot with improved

grid

Build a 45 degree grid

following robot with improved

grid

13

 Reset

 Idle

SPEEDL=0, SPEEDR=255/turn left

Memory=1
1000

SPEEDL=180, SPEEDR=255/turn slight left

Memory=1

1100

SPEEDL=200, SPEEDR=255/turn slight left

Memory=1

0100

SPEEDL=200, SPEEDR=255/turn slight left

Memory=1

1110

SPEEDL=255, SPEEDR=255/forward

Memory=2

0110

SPEEDL=255, SPEEDR=200/ turn slight right

Memory=3

0010

SPEEDL=255, SPEEDR=200/turn slight right

Memory=3

0111

SPEEDL=255, SPEEDR=180/ turn slight right

Memory=3
0011

0

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

14

Figure 8: Algorithmic State Machine chart for the Line-Following program code

 Basically the algorithm for the line-following functionality is as follow. Details of

the flowchart/ (Algorithmic State Machine, ASM) chart:

a. Sensors are represented as S1, S2, S3, S4 = Sensor_Left, Sensor_MiddleLeft,

Sensor_MiddleRight, Sensor_Right arrangement are used in the diamond box

(condition box) represented by bitwise for example S1S2S3S4 = 0101 which is

Sensor_Left = 0, Sensor_MiddleLeft = 1, Sensor_MiddleRight = 0, Sensor_Right

= 1

b. SPEEDL and SPEEDR mean the speed of the L, Left motor and R, Right motor.

c. „Memory‟ functions as to remember last condition of line detected and is given

value as follow: left = 1, middle = 2, right = 3 where if the sensors lost the line,

the robot will follow the last condition of the sensors.

After that, the testing process/project activities become faster as we just have to

simply modify the 90 degree grid following code to enable the 45 and 135 degree grid

following. The main program is developed to test is functionality to perform grid

following. Several problems are faced during the development of the code. These

problems are further discussed in the result and discussion part.

SPEEDL=255, SPEEDR=0/turn right

Memory=3
0001

SPEEDL=0, SPEEDR=255/Turn Left 0000

SPEEDL=255, SPEEDR=0/Turn Right

Memory=3

Memory=1

1

0

15

 There are several 45 degree grid solutions. The 45 degree grid is also exist in a

form of junction, therefore the design and algorithm must be different or the robot must

be able to determine which one is the 45 degree or 90 degree junction. Here are some of

the solution available for the 45 degree grid design

Figure 9: First solution adding 45 degree grid to 90 degree grid

 On the other hand, implementation of grid following has to apply pointer and

reference to the main program. The problem occurs when the value is not passing

properly which has caused some garbage value inside the variable. The problem is then

overcome by simulating the code using GNU C compiler and Terminal Desktop

Environment in Ubuntu Linux.

 These two designs of grid are further tested to see if there is sensors fluctuation or

any mistake/fail that will happen during the turn of the mobile robot. The first design of

grid causes the sensors to move forward using delay because no line is detected for

certain short of period. This had caused the turtle robot orientation diverted out of the

black line. The disorientation of turtle robot will cause failure in turning function and

other next function to be done.

16

Figure 10: Second solution adding 45 degree grid to 90 degree grid

 On the other hand, the second solution of grid following design allows the turtle

robot to follow the line accordingly but with certain condition. A delay need to be put

when moving forward after the sensors detect a junction. This is to prevent sensors

fluctuation so that the robot will turn to certain degree properly and the coordinate

counting is increasing accordingly.

 These results are further discussed in the results and discussion part. There are

many factors that affect the process of turning the robot to a certain degree which are the

speed of the robot before, during and after the degree turning, the delay needed for the

turtle robot to properly turning and the sensors detection after performing the turn. The

sensitivity of the sensors is affected by the speed of the motor and will be further

discussed in the next chapter.

17

Current State Next State Description

Sensors detect junction, robot

adding coordinate (e.g. coordinate

y: 0,0  0,1)

Sensor middle left and middle

right keep the robot follow the line

- Line

following

- Function

step()

- Current state

is either

detecting

junction, of

any of these

90 , 45 and

135 degree

turns

Sensors detect junction as above,

delay for 400 milliseconds before

rotate to right

Sensor middle left will stop the

(650ms) rotation to 90 turn

- Turn 90 , to

the right

- Function

right_ninety()

- Sensor

middle Left

will stop the

turn and

continue with

line following

(step ())

function.

Sensors detect junction as above,

delay for 400 milliseconds before

rotate to right

Sensor middle left will stop the

(325ms) rotation to 45 turn

- Turn 45 to

the right

- Function

right_fortyfive

()

- Sensor

middle Left

will stop the

turn and

continue with

line following

(step ())

function.

Table 1: Basic State table of the Sensors detection

18

 Table above basically explains the major Finite State that will be used to decide

the orientation of the robot itself. This table includes the delay, sensors detection,

function call and the orientation performed by the turtle robot after the function is called.

The turn to certain degree is further added with turning 45, 90 and 135 degree left, turn

135 and 180 degree right. The function call explanation will be discussed in the result

chapter.

 Last but not least, the positioning method of the turtle robot. In this case we are

using coordinate and direction variables which are 4 cardinal directions and 4 ordinal

directions. The 4 cardinal directions are north, south, west, east and the 4 ordinal

directions are northwest, northeast, southwest, southeast. These directions will limit and

determine the position of the turtle robot in term of coordination.

 Below is the flow chart of turning to certain degree process. These are step by

step condition and switch box that will happen during the process. This basic flow chart

will also be used for the development of 45, 135 and 180 degree grid design.

Figure 11: Algorithmic State Machine chart for 90 degree turn

Next function

Forward delay 550ms Rotate right 650ms Turn right 50ms

Junction

detected
90 line

detected

T F

T

F

Change

direction/coordinate

19

3.3 Tools and Equipment

Category Hardware Software

Turtle Robot

Electronic components

Soldering kit & lead

18650 battery Charger

UIC00B Programmer PICkit 2 v2.61

Grid/Line Mat

Vinyl banner

Black Insulating Tape

White Foam Board

Environment

Personal Computer Windows 7 / Ubuntu 12.04

Digital Multi meter MPLAB X v1.95

Stationaries XC8/ GNU C Compiler

Table 2: List of Tools and Equipment used

3.4 Key Milestone

Based on the objective with related to the methodology suggested, there are some

explanation regarding the key milestone that we are going to achieve.

1. To design an improved grid suitable for use with a turtle robot that allows more

than straight line and 90 degree turn.

In this objective, we will implement 45 degree grid to allow turtle robot to turn 45 degree

on the new improved grid. Thus, to design a project, we need to study the function of the

project thoroughly because the principle behind a functional thing is; it is shaped

according to its function.

2. To develop a new algorithm for a turtle robot to use on the new grid

On the other hand, the algorithm needs to be enhanced so that it can correlate with the 45

degree turn implementation. This needs a very careful observation on how the turtle robot

responds to the environment of the grid and to configure its specific algorithm according

to each event.

20

3.5 Final Year Project Gantt chart

No Activities
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14
F

in
a
l

Y
ea

r
P

ro
je

ct
 I

Selection of Project Topic

M
id

-S
em

es
te

r
B

re
a
k

Preliminary Research Work
-Exploring the implementation of Turtle Robot & grid design

Submission of Extended Proposal Defense

Proposal Defense

Project Work Continues
-Analysis on the Turtle Robot mechanism and its response to the

designed grid

-Designing improved turtle robot with calibrated improved grid

Submission of Interim Draft Report

Submission of Interim Report

F
in

a
l

Y
ea

r
P

ro
je

ct
 I

I

Project Work Continues

-Assembling DIY Mobile Robot

-Building 90 degree grid mat

Submission of Progress Report

Project Work Continues

-Building 45 and 135 degree grid mat

-Developing new algorithm and code for new grid design

Pre-SEDEX / Electrex

SEDEX

Submission of Draft Report

Submission of Dissertation (soft bound)

Submission of Technical Report

Viva/Oral Presentation

 Submission of Dissertation (hard bound) Week 15

21

RESULT AND DISCUSSION

4.1 Data Gathering and Analysis

 Basically, there are three main components in this project. Those components are

grid, algorithm or program code and prototype of the robot. The grid is used as the guide

for the robot to move from a position to another position. Based on the project activities

previously in Interim Report, below are the stages of designing the grid:

Figure 12: Line and Grid design stages

The details of the grid design are as follow:

a. The surface is made of vinyl. This material can be obtained from any unused

vinyl banner. Vinyl banner has white surface at the back side of it.

b. The line is made of black insulating tape. The specification is determined as

described in the manual of the robot prototype. Below is the explanation n:

Figure 13: Line width according to the sensors position

Basic single line circuit design

90 degree grid design

Adding 45 degree grid into 90

degree grid design

18mm

22

The width of the line is equal to the maximum length two sensors. According to

the sensors installed on the robot as shown in figure above, the width of the line should

be 18mm. In this project, we use black insulating tape with the specification of 6.4m x

18mm x 0.12mm (Length x Width x Height (thickness)) with length is as long as

possible.

There is problem with the uneven surface of the vinyl banner. This problem had

caused the insulating tape does not stick properly. Furthermore, this will cause the

movement of the robot is stopped or diverted when following the line. Thus, below is the

solution to make the surface of the vinyl banner become even:

1. Put the vinyl banner on top of ironing board/even surface.

2. Put a wet cloth on top of the banner

3. Start ironing the wet cloth on a small area of the vinyl banner to see the effect

Below is the design for 90 degree grid. The number put in each boxes is the

coordinate which will synchronized with the algorithm in term of detecting the number of

junction passed by the robot.

Figure 14: 90 degree grid design with coordinate

23

 The grid design has been decided and tested. Basically this grid can be improved

so that turtle robot can do a lot more movement with a lot more junction:

Figure 15: Currently confirmed grid design

 Next is the basic state table used to determine the condition of the sensors when

doing grid following function. These table and grid map above are used to pre-program

the turtle robot according to the coordinate and orientation of the robot that we want.

Below is the state table that show the orientation of the turtle robot based on the sensors

detection on the grid.

24

Next part is the program code or the algorithm. According to the project activities,

the following flowchart explains the stage of developing the program code:

Figure 16: Program code/Algorithm development flowchart

 The progress now is on the developing the 90 degree program code. Another

important part of the project is the robot itself. Below are the basic parts of the robot that

needed to perform the line-following, 90 degree and 45 degree function.

1. Sensors, in this project we used 4 sensors to detect the line

2. Motors, 2 motors which in the left and right is used to move the robot

3. Microcontroller, to run the program code loaded from the computer

4. Battery, usually rechargeable battery with total output around below 12volts

5. Programmer used to program the microcontroller using MPLAB software

Flow chart of the 90 degree turn process is further detail into pseudo code before

it is programmed into C language. Below is the pseudo code i.e. the C code structure and

verbal explanation of each process:

1. Turtle robot do line following

2. If junction is detected (and next instruction is turn 90 degree right)

2.1 Change coordinate

2.2 Move forward with delay 550 milliseconds

2.3 Rotate to the right with delay of 650 milliseconds

2.4 If middle left sensor detects the 90 degree grid

90 & 180 degree grid following

program code/algorithm

Adding 45 & 135 degree grid

following program

code/algorithm

Line-following program

code/algorithm

25

2.5 Stop rotating

2.6 Change direction (North to East)

2.7 Do next instruction (line following)

3. Else (while loop)

3.1 Line following

3.2 If junction detected

3.3 Change coordinate

3.4 Do next instruction

Next is the pseudo code in the form of C code structure, this is when junction is

detected and the next instruction is to turn 90 degree right:

Task right_ninety ()

{

 Robot run forward 550ms after junction detected

 Robot stop

 Robot rotate to the right 650ms

 Robot turn to the right 50ms to align the sensor to the 90 line

 While (sensor middle right does not detect line) //do function above

 Sensor detect line

 Robot stop

 If (previous direction is north)

 Then change to East

 Display „E‟ on the LCD

 If (previous direction is east)

 Then change to South

 Display „S‟ on the LCD

 If (previous direction is south)

 Then change to West

 Display „W‟ on the LCD

 If (previous direction is west)

 Then change to West

 Display „N‟ on the LCD

 Return

}

 The delay is specifically calculated for each turn. The calculations include the

speed of the rotation, moving forward and turn. Next is another important function in the

program which is step function. This function is to move turtle robot from a junction to

another junction and at the same time change coordinate of the turtle robot. Coordinate is

used to determine the position of the turtle robot on the grid.

26

 The following is a brief pseudo code for step function, followed by the pseudo

code in the C code structure.

1. Turtle robot do line following

2. While (sensor left and right do not detect perpendicular line)

3. Do function above

4. If (junction is detected)

4.1 Robot stop

4.2 Change coordinate (either x or y coordinate +/- by 1)

4.3 Move forward with delay 550ms

5. Do line following

 Next is the pseudo code in the C code structure:

Task step (passing value x and y)

{

 Move forward for about 400ms

 While 1

 {

 Do line following

 If (left sensor and right sensor detect black line)

 Break the loop

 }

 Robot stop

 If (direction is north)

 {

 Increase y-coordinate by 2

 }

 If (direction is south)

 {

 Decrease y-coordinate by 2

 }

 If (direction is east)

 {

 Increase x-coordinate by 2

 }

 If (direction is west)

 {

 Decrease x-coordinate by 2

 }

27

 If (direction is northeast)

 {

 Increase x-coordinate by 1

 Increase y-coordinate by 1

 }

 If (direction is southeast)

 {

 Increase x-coordinate by 1

 Decrease y-coordinate by 1

 }

 If (direction is southwest)

 {

 Decrease x-coordinate by 1

 Decrease y-coordinate by 1

 }

 If (direction is northwest)

 {

 Decrease x-coordinate by 1

 Increase y-coordinate by 1

 }

}

 The calculation/specification for the delays is as follow:

Function
Speed of motor (PWM)

Delay (ms)
Right Left

Forward 255 255 *depend

Backward 255 255 *depend

Turn Right 0 255 *depend

Turn Left 255 0 *depend

Rotate 90 Right 230 230 650

Rotate 90 Left 230 230 650

Rotate 45 Right 230 230 325

Rotate 45 Left 230 230 325

Rotate 135 Right 230 230 975

Rotate 135 Left 230 230 975

Rotate 180 Right 230 230 1400

*forward delay in step function is 400ms/550ms while turn right/left function is 50ms

Table 3: Delay allocation for each sub-function

28

 The calculation of the delay is basically important for rotation delay and forward

delay after meeting the junction. The calculation of the forward delay is as procedure

below:

1. Set the speed of rotation to 255

2. Put rotate right into while 1 loop

3. While turtle robot is rotating at 255 speed, take the time measurement for about

10 readings

4. Find the average time reading

5. Calculate the speed /average time

6. Repeat step for 230 speed of rotation

 The speed is then used to calculate the delay for both forward after junction

detected and rotation delay for each degree of rotation. The calculation is as follow:

a. Speed of rotation (PWM = 230) =

b. Speed of moving forward (PWM = 255) =

These two speeds are then used to calculate the delay as follow:

Sub-Function In-Function Delay needed (approx)

Ahead (move forward) Step 550ms (distance = 10.3cm)

Rotate (right/left)

Turn 45 degree 325ms (distance = 5.88cm)

Turn 90 degree 650ms (distance = 11.75cm)

Turn 135 degree 975ms (distance = 17.63cm)

Table 4: Delay calculation

4.2 Experimentation and Modeling

 The first stage of program code development and line-following circuit has been

done. Both of this line circuit and programmed robot with line following program is then

experimented to see if it is working accordingly or not. The experiment results a

successful output. The robot is able to follow the line perfectly as shown in picture

below.

29

Figure 17: Experimenting line-following function

Figure 18: Experimenting grid following function

30

4.3 Prototype

Here is the line circuit design for the robot. This line circuit will utilize the line-

following program code run by the microcontroller.

Figure 19: Line-following Mat

Figure 20: 45, 90 and 135 degree Grid Design

4 by 4 uniform boxes

Vinyl Banner

Insulating Tape

31

 The grid design has about 4 by 4 uniform boxes. Each boxes has the same length

and width which is equal to 22cm. Initially, most of the grid solution for mat is only for

90 degree grid. The solution is only suitable with the algorithm used to detect 90 degree

junction and to turn 90 degree right or left. Thus, 45 degree junction is added and this

directly cause the grid to have 135 degree junction. The grid is now suitable for testing

and the effectiveness of the grid as well as the accuracy of the robot being tested.

 Some pattern or types of route has been tested, below is the pseudo code of the

main program and the figure of the routes:

1
st
 test pattern/route for turtle robot:

1. Turtle robot at coodinate (0,0)

2. Increase in y-coordinate

3. Move to coordinate (0,4) //while (x,y) less than (0,4)

3.1 Change coordinate variable

3.2 If junction detected //at (0,4)

3.3 Turn 90 degree right

3.4 Change direction and variable

4. Move to coordinate (4,4) //while (x,y) less than (4,4)

4.1 Change coordinate variable

4.2 If junction detected //at (4,4)

4.3 Turn 45 degree left

4.4 Change direction variable

5. Move to coordinate (8,8) //while (x,y) less than (8,8)

5.1 Change coordinate variable

5.2 If junction detected //at (8,8)

5.3 Turn 135 degree right

5.4 Change direction variable

6. Move to coordinate (8,0) //while (x,y) not equal (8,0)

6.1 Change coordinate variable

6.2 If junction detected //at (8,0)

6.3 Turn 90 degree right

32

6.4 Change direction variable

7. Move to coordinate (0,0) //while (x,y) not equal (0,0)

7.1 Change coordinate variable

7.2 If junction detected //at (0,0)

7.3 Turn 90 degree right

7.4 Change direction variable

8. While loop //do the main program again

Figure 21: The 1
st
 tested pattern/route

2
nd

 test pattern/route for turtle robot:

1. Turtle robot at coodinate (0,0)

2. Increase in y-coordinate

3. Move to coordinate (0,6) //while (x,y) less than (0,6)

3.1 Change coordinate variable

3.2 If junction detected //at (0,6)

3.3 Turn 45 degree right

3.4 Change direction and variable

4. Move to coordinate (2,8) //while (x,y) less than (2,8)

4.1 Change coordinate variable

(0,0)

(0,4)

(8,0)

(4,4)

(8,8)

33

4.2 If junction detected //at (2,8)

4.3 Turn 45 degree right

4.4 Change direction variable

5. Move to coordinate (4,8) //while (x,y) less than (4,8)

5.1 Change coordinate variable

5.2 If junction detected //at (4,8)

5.3 Turn 90 degree right

5.4 Change direction variable

6. Move to coordinate (4,4) //while (x,y) not equal (4,4)

6.1 Change coordinate variable

6.2 If junction detected //at (4,4)

6.3 Turn 90 degree left

6.4 Change direction variable

7. Move to coordinate (8,4) //while (x,y) not equal (8,4)

7.1 Change coordinate variable

7.2 If junction detected //at (8,4)

7.3 Turn 90 degree right

7.4 Change direction variable

8. Move to coordinate (8,2) //while (x,y) not equal (8,2)

8.1 Change coordinate variable

8.2 If junction detected //at (8,2)

8.3 Turn 45 degree right

8.4 Change direction variable

9. Move to coordinate (6,0) //while (x,y) not equal (6,0)

9.1 Change coordinate variable

9.2 If junction detected //at (6,0)

9.3 Turn 45 degree right

9.4 Change direction variable

10. Move to coordinate (0,0) //while (x,y) not equal (0,0)

10.1 Change coordinate variable

10.2 If junction detected //at (0,0)

34

10.3 Turn 90 degree right

10.4 Change direction variable

11. While loop //do the main program again

Figure 22: The 2
nd

 tested pattern/route

 From these two tested pattern, there are several things that need to be considered

when the turtle robot is performing the main function/program which is following the

preprogrammed route.

1. The accuracy of the turtle robot on the designated grid

The accuracy is very much depend on the grid design. In this case, our vinyl mat

has uneven surface, causing a little bit disorentation of the turtle robot. This had

also caused a little bit more time for the turtle robot to re-aligned its sensor to the

line but the straight line is only 22cm long, with the speed; it is not enough for the

robot to do that.

2. The effectiveness of the grid design

The problem above has come to the questioning of the effcetiveness of the grid

design. Thus, new grid design need to be developed solving on 2 main problem

which is the surface and increasing straight line.

(0,0)

(0,6)

(4,8)

(4,4)

(2,8)

(8,4)

(8,2)

(6,0)

35

CONCLUSION & RECOMMENDATION

 Relevancy of the objectives is again evaluated after doing several project

activities. The relevancy is confirmed when the project has the possibility to be solved

according to the Gantt chart planned. Therefore, the project activities will be proceeding

as usual according to the planner. It is can be said that this project had achieved 90

percent of the objective in term of early development stage/phase.

 However there are a lot of recommendations for this project. First, the uneven

surface of the vinyl mat. Although vinyl mat can be rolled and portable, but the surface

will remain uneven because of the heat and anything that had pressed accidentally in any

condition. This will decrease the accuracy of the turtle robot‟s sensors to detect line as

well as may cause a little bit disorientation while turtle robot is performing the main

program/function.

 It is recommended to build the grid on the white foam/polystyrene board to

preserve the evenness of the surface. Another recommendation is to put another black

line in between each junction of x (from west to east) and y (from north to south)

coordinates. Our algorithm is to increase or decrease of x-coordinate (from west to east)

and y-coordinate (from north to south) by 2 in each detected junction. Putting another

black line in between will decrease the limitation of turtle robot movement and position.

 Another recommendation is to include fail-safe program in the main program.

This will be useful if there is event of power failure of disorientation/miss position of the

turtle robot. It is suggested that if there is failure event (interruption), the robot may able

to detect it and do the next instruction to save it from any fatal or damage. For example,

turtle may stop and display „start again‟ on the LCD if any of the failure happens.

 The ultimate purpose of this project is for educational approach in teaching

programming. Thus, it is recommended to add some physical interface on the turtle robot

i.e. switch or push button to indicate the orientation and coordinate that can be directly

programmed to the robot. This is called as block programming which uses simple

interface to program a robot. Other suggestion is to make turtle robot more flexible by

adding the turtle robot capability to move from any position on the grid.

36

REFERENCE

[1] L. M. Surhone, et al., Turtle (Robot), Saarbrücken, Germany, VDM Publishing, 2010

[2] R. Goldman, et al., “Turtle Geometry in Computer Graphics and Computer Aided

Design,” Dept. of Computer Science, Rice University, Houston, Texas

[3] R. Goldman, “Pyramid Algorithms: A Dynamic Programming Approach to Curves

and Surfaces for Geometric Modeling,” Morgan Kaufmann, San Francisco, 2002

[4] H. Abelson, Apple Logo, McGraw-Hill, 1892

[5] T. Carroll, “ROS Meets Kinect Meets Create” in Servo Magazine, 2012

[6] I. Dogan, “Microcontroller based applied digital control,” Hoboken, NJ, John Wiley,

2006

[7] I. Dogan, “PIC Basic: Programming and Projects,” Oxford, Newenes, 2001

[8] I. Dogan, “Advanced PIC microcontroller projects in C: from USB to ZIGBEE with

18F Series,” Amsterdam; Boston, Newnes/Elsevier, 2008

[9] Carnegie Mellon Robotics Academy, “ROBOTC, Pseudo code & Flow Charts

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 1/25

C:\Users\mza\Desktop\project\fulldegrid.X\fulldegrid.c

//==
// Author :MZA & CYTRON Tech
// Project :PR23 Rev2.0
// Project description :DIY Project 23, Multifunction Mobile Robot
// Version :v2.3
// IDE :MPLAB X IDE v1.95
// Compiler :HI-TECH PICC v9.83 or XC8 Compiler v1.21 (default XC)
// Date :25 Nov 2013
// Example code is provided as "it is", Cytron Technologies do not take responsibility to
// verify, improve or explain the working of the code.
// If you have any inquiry, welcome to discuss in our technical forum:
// http://forum.cytron.com.my
// The other author, MZA will take full resposibility to the code.
//==

// include library files
//==
#if (__XC8)
#include <xc.h> //header file for hitech mid-range pic
#elif (HI_TECH_C)
#include <htc.h> //header file for hitech mid-range pic
#endif
// configuration
//==
#if (__XC) //if XC Compiler is use to compile this code
/*
 *if PIC18F452 is use as microcontroller
#pragma config OSC = HS // Oscillator Selection bits (HS oscillator)
#pragma config WDT = OFF // Watchdog Timer Enable bit (WDT disabled)
#pragma config PWRT = ON // Power-up Timer Enable bit (PWRT enabled)
#pragma config BOR = OFF // Brown-out Reset Enable bit (BOR disabled)
#pragma config LVP = OFF // Low-Voltage (Single-Supply) In-Circuit Serial Programming Enable bit (RB3 is digital I/O, HV on MCLR must be used for programming)
#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit (Data EEPROM code protection off)
#pragma config WRTD = OFF // Flash Program Memory Write Enable bits (Write protection off; all program memory may be written to by EECON control)
#pragma config CPD = OFF // Flash Program Memory Code Protection bit (Code protection off)
*/

/*if PIC16F877/A, use below configuration word*/
#pragma config FOSC = HS // Oscillator Selection bits (HS oscillator)
#pragma config WDTE = OFF // Watchdog Timer Enable bit (WDT disabled)
#pragma config PWRTE = ON // Power-up Timer Enable bit (PWRT enabled)
#pragma config BOREN = OFF // Brown-out Reset Enable bit (BOR disabled)
#pragma config LVP = OFF // Low-Voltage (Single-Supply) In-Circuit Serial Programming Enable bit (RB3 is digital I/O, HV on MCLR must be used for programming)
#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit (Data EEPROM code protection off)
#pragma config WRT = OFF // Flash Program Memory Write Enable bits (Write protection off; all program memory may be written to by EECON control)
#pragma config CP = OFF // Flash Program Memory Code Protection bit (Code protection off)

#elif (HI_TECH_C) //if HI-TECH C Compiler is use to compile this code
__CONFIG (0x3F32); //configuration bits value for
 //High Speed oscillato
 //Watchdog timer disable
 //Power up Timer enable
 //Low voltage programming disable

#endif
// define labels or constants
//==
#define _XTAL_FREQ 20000000 //Frequancy of crystal oscillator, for delay, 20MHz
#define SW1 RE0 //SW1 push button is connected to RE0 of PIC
#define SW2 RE1 //SW2 push button is connected to RE1 of PIC
#define IR_L RA4 //IR01A medium range sensor for left side is connected to RA4 of PIC
#define IR_R RA5 //IR01A medium range sensor for right side is connected to RA5 of PIC

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 2/25

#define MOTOR_R1 RC0 //Control pin for motor, going through motor driver L293D, right motor
#define MOTOR_R2 RC3 //Control pin for motor, going through motor driver L293D, right motor
#define MOTOR_L1 RC4 //Control pin for motor, going through motor driver L293D, left motor
#define MOTOR_L2 RC5 //Control pin for motor, going through motor driver L293D, left motor

#define SEN_L RB0 //Line Sensor, Left. Going through comparator. Dark high
#define SEN_ML RB1 //Line Sensor, Middle Left. Going through comparator. Dark high
#define SEN_MR RB2 //Line Sensor, Middle Right. Going through comparator. Dark high
#define SEN_R RB3 //Line Sensor, Right. Going through comparator. Dark high

#define BUZZER RE2 //BUZZER is connected to RE2 of PIC, active high. Is actually being share with
 //LED
//2x16 character LCD
#define LCD_RS RB7 //2x16 parallel LCD RS pin is connected to RB7 of PIC
#define LCD_E RB6 //2x16 parallel LCD E pin is connected to RB6 of PIC
#define LCD_DATA PORTD //2x16 parallel LCD Data pins are connected to PORTD of PIC
#define LCD_BLIGHT RB5 //2x16 parallel LCD back light is connected to RB5 of PIC, active high
#define LINE1 0
#define LINE2 1

#define SPEEDL CCPR1L //PWM register for left motor, to control speed
#define SPEEDR CCPR2L //PWM register for right motor, to control speed

//label for Analog channel
#define CH0 0 // AN0 (Ultrasonic LVEZ1)
#define CH1 1 // AN1 (Sharp Infrared Distance Sensor)

//direction for 90 degree capabilities mobile robot
#define N 1 //north direction
#define E 2 //east direction
#define S 3 //south direction
#define W 4 //west direction
#define NE 5 //northeast direction
#define SE 6 //southeast direction
#define SW 7 //southwest direction
#define NW 8 //northwest direction

// Global Variables
//==
unsigned char data[6] = {0}; //general purpose array
const char diy_project [] = " Do It Yourself";
const char multifunction_robot [] = "Line&GridFunc MR"; //Multifunction Mobile Robot
const char pr23_rev [] = " PR23 Rev2.0";
const char cytron_tech [] = " Cytron Tech";
const char cytron_website [] = " cytron.com.my";
const char code_version [] = "Sample Code v2.3";
const char line [] = "1.Line Following";
//const char NDG[] = "2.90 Degree Grid";
const char FDG[] = "2.Full DeGrid";
//const char *mode_string [3] = {&line[0],&NDG[0],&FDG[0]}; //array of pointer to strings
const char *mode_string [2] = {&line[0],&FDG[0]}; //array of pointer to strings

unsigned int pulse_width = 0; //variable to store pulse width value from timer 1
//unsigned char memory = 0; //variable to memorize previous condition if sensor is out of line

//90 degree variables
int bot_dir; //variable to store robot direction (initially) = 1 (north)
int bot_x; //variable to store robot x coordinate (initially) = 0
int bot_y; //variable to store robot y coordinate (initially) = 0
int grid_x; //variable to store size of grid x = 8
int grid_y; //variable to store size of grid y = 8

// function prototype
//===

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 3/25

void init(void);
void delay(unsigned long data);
void delay_ms(unsigned long data);
void beep(unsigned char count);

//LCD function prototype
void lcd_init(void); //initialize LCD
void lcd_config(unsigned char data); //lcd send config/command data
void lcd_char(unsigned char data); //lcd display single ASCII character
void e_pulse(void); //generate E pulse for lcd to read and process data
void lcd_goto(unsigned char data); //lcd, move cursor to lcd box, please refer to lcd address
void lcd_home(void); //lcd, move cursor to home (1st line, 1st column)
void lcd_2ndline(void); //lcd, move cursor to 2nd line
void lcd_clr(void); //clear lcd
void lcd_clr_line(unsigned char line); //clear single line on LCD
void lcd_string(const char* s); //lcd display string
void lcd_dis_num(unsigned char num_digit, unsigned int value); //lcd display number in decimal value

// modes
void display(void); //function for display direction and coordinate
void line_follow(void); //function for line following
//void ninety_degrid(void); //function for 90 degree grid function
void full_degrid(void); //function include 45, 90, 135 degree grid function

//mobile robot navigation control function
void forward(void);
void stop (void);
void backward (void);
void reverse (void);
void left(void);
void right(void);

//mobile robot movement function for 90 degree capabilities
void ahead(void); //function to move forward
void astern(void); //function to move backward
void starboard(void); //function to turn right
void port(void); //function to turn left
void halt(void); //function to stop
void rotate_right(void); //function to rotate right
void rotate_left(void); //function to rotate left
void overturn(void); //function to turn 180 degree to the right
void right_ninety(void); //function to turn 90 degree right
void left_ninety(void); //function to turn 90 degree left
void step(int *bot_x,int *bot_y); //function to move from/to each intersect
void right_45(void); //function to turn 45 degree right
void left_45(void); //function to turn 45 degree left
void right_135(void); //function to turn 135 degree right
void left_135(void); //function to turn 135 degree left
void follow_line(void); //function to follow any line existed

//ADC functions
void adc_init(void); //initialize ADC module
unsigned int read_adc(unsigned char channel); //read adc value and return

//timer1 functions
void timer1_init(void); //timer1 initialization
void interrupt_init(void); //interrupt initialization
void enable_global_int(void); //enable global interrupt
void disable_global_int(void); //disable global interrupt
unsigned int us_value (unsigned char mode); //function to read ultrasonic value from different input method
 //ADC, PWM or UART(ASCII)
// interrupt service routine definition
//==
void interrupt isr(void)

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 4/25

{
 static unsigned char i;
 unsigned char receive_data = 0;
 //RBIF set due to changes on RB4-RB7 pin, since only RB4 is input pin, RB4 changes
 //To measure the pulse width of ultrasonic LVEZ1 PWM output
 if(RBIF)
 {
 // ____
 if (RB4 == 1) // RB4 is 1 mean is rising form 0 __|
 {
 TMR1H = 0; // clear timer 1 high byte
 TMR1L = 0; // clear timer 1 low byte
 TMR1ON = 1; // active timer 1
 }
 else
 {
 TMR1ON = 0; //deactive timer 1
 pulse_width = TMR1H; // RB4 is 0 mean is falling edge, save the timer 1 register
 pulse_width = (pulse_width << 8) + TMR1L; //combine the High byte and low byte of timer1
 } // ____
 // |_____ //
 RBIF = 0; //reset the interrupt flag
 }

 if(RCIF) //for ultrasonic LVEZ1 UART output.
 {
 if(OERR == 1) //in case there is over run error
 {
 CREN = 0; //Reset the Receive engine
 CREN = 1;
 if(RCREG); //clear the RCREG
 }
 else
 {
 receive_data = RCREG; //store the received data
 if (receive_data == 'R') data[i=0] = receive_data;// check if start byte of ASCII 'R', store 'R' to 1st byte
 else if (data[0] == 'R') data [++i] = receive_data; // save the data in data array
 }
 }
}

// main function
//==
void main(void)
{
 unsigned char mode = 0, i = 0;
 init(); // initiate cnfiguration and initial condition
 lcd_init(); //initialize LCD
 beep(2); // inditcate the program is running
 LCD_BLIGHT = 1; //activate the LCD backlight
 lcd_clr(); // clear the LCD screen
 lcd_string(cytron_tech);
 lcd_2ndline();
 lcd_string(cytron_website);
 delay_ms(800);

 lcd_clr(); // clear the LCD screen
 lcd_string(diy_project);
 lcd_2ndline();
 lcd_string(multifunction_robot);
 delay_ms(800);

 lcd_clr(); // clear the LCD screen

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 5/25

 lcd_string(pr23_rev);
 lcd_2ndline();
 lcd_string(code_version);
 delay_ms(800);

 lcd_clr(); // clear the LCD screen
 lcd_string(mode_string[mode]); // display string according to the mode
 lcd_2ndline(); // move to 2nd line
 lcd_string("SW1++ SW2->Run"); // display "select mode"
 beep(1);

 while(1) // infinite loop
 {
 if(SW1 == 0) // if button SW1 is pressed
 {
 while(SW1 == 0); // wait for SW1 to be released
 beep(1);
 mode ++; //increase mode value
 if (mode > 1) mode = 0; // if mode increased is more than 4, reset to zero
 lcd_clr_line(LINE1); //clear 1st line of LCD
 lcd_home(); // move LCD cursor back to home
 lcd_string(mode_string[mode]); // display string base on mode selected
 }//if(SW1 == 0)

 if (SW2 == 0) // if button SW2 is pressed
 {
 while(SW2 == 0); // wait until button is released
 beep(1);

 switch(mode) // check what is the current mode, execute the mode
 {
 case 0 :
 line_follow(); // mode 1 : line follow
 break;

 case 1 :
 //ninety_degrid(); // mode 2 : 90 degree grid
 //break;

 //case 2 :
 full_degrid(); // mode 3 : full degree grid
 }//switch case
 }//if(SW2 == 0)
 }//while(1)
}//main()

/***/
//Delay function defination
void delay(unsigned long data) //delay function, the delay time
{
 for(;data>0;data-=1); //depend on the given value
}

//delay in millisecond
void delay_ms(unsigned long data) //delay function, the delay time
{
 while(data -- > 0) //depend on the given value
 __delay_ms(1);
}

void beep(unsigned char count) //to sound buzzer
{
 while(count-- > 0)
 {

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 6/25

 BUZZER = 1;
 delay_ms(45);
 BUZZER = 0;
 delay_ms(30);
 }
}
//===
// LCD functions Definations
//===
void lcd_init(void)
{
 LCD_E = 1;
 delay_ms(15); //delay 15ms for LCD to get ready
 lcd_config(0b00111000); //8-bit interface
 lcd_config(0b00000110); //entry mode-cursor increase 1
 lcd_config(0b00001100); //diplay on, cursor off and cursor blink off
 lcd_config(0b00000001); //clear display at lcd
 delay_ms(1);
}
void lcd_config(unsigned char data) //send lcd configuration
{
 LCD_RS = 0; //set lcd to config mode
 LCD_DATA = data; //lcd data port = data
 delay_ms(1);
 e_pulse(); //pulse e to confirm the data
}

void lcd_char(unsigned char data) //send lcd character
{
 LCD_RS = 1; //set lcd to display mode
 LCD_DATA = data; //lcd data port = data
 delay_ms(1);
 e_pulse(); //pulse e to confirm the data
}

void e_pulse(void) //pulse e to confirm the data
{
 LCD_E = 1;
 delay_ms(1);
 LCD_E = 0;
 delay_ms(1);
}

void lcd_goto(unsigned char data)//set the location of the lcd cursor
{
 lcd_config(0x80 + data);
 //address for LCD, in hexadecimal value
 // ---
 // | |00|01|02|03|04|05|06|07|08|09|0A|0B|0C|0D|0E|0F| |
 // | |40|41|42|43|44|45|46|47|48|49|4A|4B|4C|4D|4E|4F| |
 // ---
}
void lcd_home(void) //lcd, move cursor to home (1st line, 1st column)
{
 lcd_config(0x02);
}

void lcd_2ndline(void) //lcd, move cursor to 2nd line
{
 lcd_config(0x80 + 0x40);
}

void lcd_clr(void) //clear the lcd
{

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 7/25

 lcd_config(0x01);
 delay_ms(1);
}

void lcd_clr_line(unsigned char line) //clear single row on LCD
{
 unsigned char i = 0;
 if(line == LINE1)lcd_home(); //move cursor to 1st line, home
 else if(line == LINE2)lcd_2ndline(); //move cursor to 2nd line

 for(i = 16; i > 0; i--) lcd_char(' '); //display 16 x 'space' to clear single line on LCD
}
void lcd_string(const char* s) //send a string to display in the lcd
{
 while (s && *s)lcd_char (*s++);
}

void lcd_dis_num(unsigned char num_digit, unsigned int value)
{
 unsigned char digit[5] = {0}; //array to store digit value
 unsigned char i = 0, j = 0, non_zero = 0;
 unsigned int base = 10000;
 //loop to obtain 5 single digit from int value
 for(j = 4; j > 0; j--)
 {
 digit[j] = value / base;
 if(j == 1)
 {
 digit[0] = value % 10;
 continue;
 }
 value = value % base;
 base = base / 10;
 }

 //display the value on to LCD
 if(num_digit > 5) num_digit = 5;
 for(i = num_digit; i > 0; i--)
 {
 if(i == 1)
 {
 lcd_char(digit[i-1]+0x30);
 }
 else
 {
 if((digit[i-1] == 0) && (non_zero == 0))lcd_char(' '); //if zero display blank
 else
 {
 lcd_char(digit[i-1]+0x30);
 non_zero ++;
 }
 }
 }//for(i = num_digit; i > 0; i--)
}

// ADC functions definifation
void adc_init(void)//initialize ADC module
{
 // ADC configuration
 ADCON0 = 0b10000000; //conversion clock Fosc/32, channel 0, ADC is off
 ADCON1 = 0b10000100;//Configure RA0, RA1 and RA3 as Analog Input, right justified
 //The rest of AN pin is digital pin
}

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 8/25

//initialize timer1
void timer1_init(void)
{
 TMR1H = 0; //clear the timer 1 high byte value
 TMR1L = 0; //clear the timer 1 low byte value
 T1CON = 0b00100001; //prescaler of 1:4, internal clock source, timer 1 off
}

//function to initialize interrupt, basically to disable the interrupt used.
void interrupt_init(void)
{
 RCIE = 0; //disable UART receive interrupt
 RBIE = 0; //disable PORT B on change interrupt
 TMR1IE = 0; //disable Timer 1 overflow interrupt
}

//function to enable global and peripherral interrupt bits
void enable_global_int(void)
{
 GIE = 1; //enable global interrupt
 PEIE = 1; //enable peripheral interrupt
}

//function to disable global and peripheral interrupt bits
void disable_global_int(void)
{
 GIE = 0; //disable global interrupt
 PEIE = 0; //disable peripheral interrupt
}

//===
// Initailization
// Description : Initialize the microcontroller
//==
void init()
{
 PORTA = 0;
 PORTB = 0;
 PORTC = 0;
 PORTD = 0;
 PORTE = 0;

 // Tris configuration (input or output)
 TRISA = 0b00110011; //set RA0 and RA2 pin as input,other as output
 //PR23 Rev2.0 has RA4 and RA5 as input for IR01A
 TRISB = 0b00011111; //set RB0-RB4 pin as input, other as output
 TRISC = 0b10000000; //set PORTC pin as output, RC7 is UART Receive pin (input)
 TRISD = 0b00000000; //set all PORTD pin as output
 TRISE = 0b00000011; //RE0 and RE1 as input (Switches) RE2 as output (LED)

 // initialize ADC module
 adc_init();
 interrupt_init(); //initialize interrupt

 // motor PWM configuration
 PR2 = 255; // set period register for PWM
 T2CON = 0b00000100; // Timer Control register, timer 2 ON, prescaler = 1:1
 CCP1CON = 0b00001100; // config for RC1 to generate PWM(for more detail refer datasheet section 'capture/compare/pwm')
 CCP2CON = 0b00001100; // config for RC2 to generate PWM
 SPEEDL = 0; //initial PWM is zero
 SPEEDR = 0; //initial PWM is zero

 disable_global_int(); //disable global interrupt
 lcd_init(); //initialize LCD

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 9/25

 stop(); //motors are off
}

//==
// Mode subroutine
//===
// Mode 1 : line follow subroutine
// Description: Program for the mobile robot to follow line
// For more details about line follow concept please PR23 Detailed Description
//==
void line_follow()
{
 unsigned char memory = 0; //variable to memorize previous condition if sensor is out of line

 lcd_clr(); // clear lcd screen
 lcd_string(" Line Position"); // display "position" string

 //When sensor senses line (black) it will get logic 1 (5V or HIGH) at PIC pin.
 while(1) //infinite loop
 {
 forward(); //mobile robot will move forward
 if ((SEN_L==1)&&(SEN_ML==0)&&(SEN_MR==0)&&(SEN_R==0)) // if only sensor left detected black line
 {
 SPEEDL = 0; //left motor stop
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 1; //1 = line is at left of mobile robot
 lcd_2ndline(); // lcd go to 2nd line 1st character
 lcd_string ("right "); // display "right"mean the robot's position is on the right side of the line
 }
 else if ((SEN_L==1)&&(SEN_ML==1)&&(SEN_MR==0)&&(SEN_R==0)) // if only sensor left detected black line
 {
 SPEEDL = 180; // left motor speed is 180
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 1; //1 = line is at left of mobile robot
 lcd_2ndline();
 lcd_string ("m_right2");
 }
 else if ((SEN_L==0)&&(SEN_ML==1)&&(SEN_MR==0)&&(SEN_R==0)) // if only sensor middle left detected black line
 {
 SPEEDL = 200; // left motor speed is 200
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 1; //1 = line is at left of mobile robot
 lcd_2ndline();
 lcd_string ("m_right1 ");
 }
 else if ((SEN_L==1)&&(SEN_ML==1)&&(SEN_MR==1)&&(SEN_R==0)) // if sensor middle left, middle right
 //and sensor left detected black line
 {
 SPEEDL = 200; // left motor speed is 200
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 1; //1 = line is at left of mobile robot
 lcd_2ndline();
 lcd_string ("m_right1 ");
 }
 else if ((SEN_L==0)&&(SEN_ML==1)&&(SEN_MR==1)&&(SEN_R==0)) // if sensor middle left and sensor middle right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 2; //32 = line is at middle of mobile robot
 lcd_2ndline();
 lcd_string ("middle ");
 }
 else if ((SEN_L==0)&&(SEN_ML==0)&&(SEN_MR==1)&&(SEN_R==0)) // if only sensor middle right detected black line
 {

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 10/25

 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 200; // right motor speed is 200
 memory = 3; //3 = line is at right of mobile robot
 lcd_2ndline();
 lcd_string ("m_left1 ");
 }
 else if ((SEN_L==0)&&(SEN_ML==1)&&(SEN_MR==1)&&(SEN_R==1)) // if sensor middle left, sensor middle right and sensor right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 200; // right motor speed is 200
 memory = 3; //3 = line is at right of mobile robot
 lcd_2ndline();
 lcd_string ("m_left1 ");
 }
 else if ((SEN_L==0)&&(SEN_ML==0)&&(SEN_MR==1)&&(SEN_R==1)) // if sensor right and sensor middle right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 180; // right motor speed is 180
 memory = 3; //3 = line is at right of mobile robot
 lcd_2ndline();
 lcd_string ("m_left2 ");
 }
 else if ((SEN_L==0)&&(SEN_ML==0)&&(SEN_MR==0)&&(SEN_R==1)) // if only sensor right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 0; // right motor speed is 0
 memory = 3; //3 = line is at right of mobile robot
 lcd_2ndline();
 lcd_string ("left ");
 }
 else if ((SEN_L==0)&&(SEN_ML==0)&&(SEN_MR==0)&&(SEN_R==0)) // if all sensor coult not detected black line
 {
 if (memory == 1)
 {
 SPEEDL = 0; // left motor speed is 0
 SPEEDR = 255; // right motor speed is 255(full speed)
 }
 else if (memory == 3)
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 0; // right motor speed is 0
 }
 }
 }//while(1)
}

//===
// Motor control function
// Description : subroutine to set the robot moving direction
//==
void forward () //function to enable robot to move forward, do not change the speed
{
 MOTOR_R1 = 0;
 MOTOR_R2 = 1;
 MOTOR_L1 = 0;
 MOTOR_L2 = 1;
}

void backward () //function to enable robot to move backward, do not change the speed
{
 MOTOR_R1 = 1;
 MOTOR_R2 = 0;
 MOTOR_L1 = 1;
 MOTOR_L2 = 0;

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 11/25

}

void left() //function to enable robot to turn left, do not change the speed
{
 MOTOR_R1 = 0;
 MOTOR_R2 = 1;
 MOTOR_L1 = 1;
 MOTOR_L2 = 0;
}

void right() //function to enable robot to turn right, do not change the speed
{
 MOTOR_R1 = 1;
 MOTOR_R2 = 0;
 MOTOR_L1 = 0;
 MOTOR_L2 = 1;
}

void stop() //function to enable robot to stop, do not change the speed
{
 MOTOR_R1 = 0;
 MOTOR_R2 = 0;
 MOTOR_L1 = 0;
 MOTOR_L2 = 0;
}

//==
// Mode 2 : 90 degree grid following subroutine
// Description: Program for the mobile robot to follow 90 degree grid
//==

void full_degrid() //function to 'call' and perform 90 degree grid following ability
{
 lcd_clr();
 bot_dir=1;
 bot_y=0;
 bot_x=0;
 //grid_y=4; //90 degrid size
 //grid_x=4;
 grid_y=8; //full degrid size
 grid_x=8;

/***************************using below function to display LOVE symbol accordingly************************/
/*
 while(1)
 {
 while(bot_y < 6) //while Y-coordinate less than 6, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==0 && bot_y==6) //if X and Y coordinate = (0,6) then turn 45 degree right
 right_45();
 while(bot_x < 2 && bot_y < 8) //while X-coordinate less than 2, Y-coordinate less than 8
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==2 && bot_y==8) //if X and Y coordinate = (2,8) then turn 45 degree right
 right_45();
 while(bot_x < 4 && bot_y==8) //while X-coordinate less than 4, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 12/25

 }
 if(bot_x==4 && bot_y==8) //if X and Y coordinate = (4,8) then turn 90 degree right
 right_ninety();
 while(bot_x == 4 && bot_y > 4) //while Y-coordinate more than 4, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==4 && bot_y==4) //if X and Y coordinate = (4,4) then turn 90 degree left
 left_ninety();
 while(bot_x < 8 && bot_y==4) //while X-coordinate less than 8, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==8 && bot_y==4) //if X and Y coordinate = (8,4) then turn 90 degree right
 right_ninety();
 while(bot_x==8 && bot_y > 2) //while Y-coordinate less than 2, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==8 && bot_y==2) //if X and Y coordinate = (8,2) then turn 45 degree right
 right_45();
 while(bot_x > 6 && bot_y > 0) //while X-coordinate more than 6, Y-coordinate more than 0
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==6 && bot_y==0) //if X and Y coordinate = (6,0) then turn 45 degree right
 right_45();
 while(bot_x > 0 && bot_y==0) //while X-coordinate more than 0, Y-coordinate equal 0
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==0 && bot_y==0) //if X and Y coordinate = (0,0) then turn 90 degree right
 right_ninety();
 }
*/
/***/

/***************************using below function to test changing direction function************************/
/*
 while(1)
 {
 //right_45(); //test changing direction
 //left_45();
 //right_135();
 //left_135();
 //overturn();
 }
*/
/***/

/***************************using below function for 45/135 degree grid only function************************/
/*
 while(1)
 {
 while(bot_y < 4) //while Y-coordinate less than 4, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 13/25

 if(bot_x==0 && bot_y==4) //if X and Y coordinate = (0,4) then turn 90 degree right
 right_ninety();
 while(bot_x < 4) //while X-coordinate less than 4, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==4 && bot_y==4) //if X and Y coordinate = (4,4) then turn 45 degree left
 left_45();
 while(bot_x < 8 && bot_y < 8) //while X & Y-coordinate less than 8, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==grid_x && bot_y==grid_y) //if X and Y coordinate = (8,8) then turn 135 degree right
 right_135();
 while(bot_y > 0) //while Y-coordinate more than 0, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==grid_x && bot_y==0) //if X and Y coordinate = (8,0) then turn 90 degree right
 right_ninety();
 while(bot_x > 0) //while X-coordinate more than 0, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==0 && bot_y==0) //if X and Y coordinate = (0,0) then turn 90 degree right
 right_ninety();
 }//while(1) loop
*/
/***/

/***************************using below function for 90 degree grid only function************************/

 while(1)
 {
 while(bot_y < grid_y) //while Y-coordinate less than 4, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==0 && bot_y==grid_y) //if X and Y coordinate = (0,4) then turn 90 degree right
 right_ninety();
 while(bot_x < grid_x) //while X-coordinate less than 4, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==grid_x && bot_y==grid_y) //if X and Y coordinate = (4,4) then turn 90 degree right
 right_ninety();
 while(bot_y > 0) //while Y-coordinate more than 0, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }
 if(bot_x==grid_x && bot_y==0) //if X and Y coordinate = (4,0) then turn 90 degree right
 right_ninety();
 while(bot_x > 0) //while X-coordinate more than 0, goto intesection to intersection
 {
 step(&bot_x,&bot_y);
 display();
 }

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 14/25

 if(bot_x==0 && bot_y==0) //if X and Y coordinate = (0,0) then turn 90 degree right
 right_ninety();
 }//while(1) loop

/***/

/******using below function for testing and demonstration purposes************/
/* while(1)
 {
 step(&bot_x, &bot_y); //move from intersection to intersection
 //left_ninety();
 right_ninety(); //turn 90 degree right
 lcd_2ndline(); //clear 2nd line of LCD
 lcd_dis_num(1, bot_x); //display X-coordinate on LCD
 lcd_dis_num(3, bot_y); //display X-coordinate on LCD
 lcd_char(' ');
 }
*/
/**/
}
//=======================
//Function and subroutine
//=======================

//function to display coodinate and direction
void display(void)
{
 lcd_2ndline();
 lcd_dis_num(1, bot_x); //display distance on LCD
 lcd_dis_num(3, bot_y);
 lcd_char(' ');
 return;
}

//functions to move the robot
void ahead() //function to move forward
{
 forward(); //mobile robot will move forward
 SPEEDR = 255; //right motor speed is 255
 SPEEDL = 255; //left motor speed is 255
}
void astern() //function to move backward
{
 backward(); //mobile robot will move backward
 SPEEDR = 255; //right motor speed is 255
 SPEEDL = 255; //left motor speed is 255
}
void starboard() //function to move right
{
 right(); //mobile robot will turn right
 SPEEDR = 0; //right motor speed is 0
 SPEEDL = 255; //left motor speed is 230
}
void port() //function to move left
{
 left(); //mobile robot will turn left
 SPEEDR = 255; //right motor speed is 230
 SPEEDL = 0; //left motor speed is 0
}
void rotate_right() //function to rotate 90 degree right
{
 right(); //mobile robot will rotate right
 SPEEDR = 230; //right motor speed is 230
 SPEEDL = 230; //left motor speed is 230

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 15/25

}
void rotate_left() //function to rotate 90 degree left
{
 left(); //mobile robot will rotate left
 SPEEDR = 230; //right motor speed is 230
 SPEEDL = 230; //left motor speed is 230
}
void halt()
{
 stop(); //mobile robot will stop
 SPEEDR = 0; //right motor speed is 0
 SPEEDL = 0; //left motor speed is 0
}
//function for overturn 180 degree to the right
void overturn(void)
{
 //ahead(); //forward delay 400ms
 //delay_ms(400); // 90 degrid delay - before rotate
 delay_ms(550); //full degrid delay - before rotate
 rotate_right(); //rotate to the right
 delay_ms(1400); //delay time for rotating
 while(SEN_R==0) //while most right sensor still not detect line, do function above
 right(); //turn to the right a bit to align sensors and tyre to the line
 delay_ms(50); //delay for turning right
 halt(); //stop after detect line
 if(bot_dir==N) //if initial direction is North
 {
 bot_dir = S; //then change to South
 lcd_clr();
 lcd_home();
 lcd_string ("S"); //display S
 return;
 }
 if(bot_dir==E) //if initial direction is East
 {
 bot_dir = W; //then change to West
 lcd_clr();
 lcd_home();
 lcd_string ("W"); //display W
 return;
 }
 if(bot_dir==S) //if initial direction is South
 {
 bot_dir = N; //then change to North
 lcd_clr();
 lcd_home();
 lcd_string ("N"); //display N
 return;
 }
 if(bot_dir==W) //if initial direction is West
 {
 bot_dir = E; //then change to East
 lcd_clr();
 lcd_home();
 lcd_string ("E"); //display E
 return;
 }
 if(bot_dir==NE) //if initial direction is NorthEast
 {
 bot_dir = SW; //then change to SouthWest
 lcd_clr();
 lcd_home();
 lcd_string ("SW"); //display SW
 return;

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 16/25

 }
 if(bot_dir==SE) //if initial direction is SouthEast
 {
 bot_dir = NW; //then change to NorthWest
 lcd_clr();
 lcd_home();
 lcd_string ("NW"); //display NW
 return;
 }
 if(bot_dir==SW) //if initial direction is SouthWest
 {
 bot_dir = NE; //then change to NorthEast
 lcd_clr();
 lcd_home();
 lcd_string ("NE"); //display NE
 return;
 }
 if(bot_dir==NW) //if initial direction is NorthWest
 {
 bot_dir = SE; //then change to SouthEast
 lcd_clr();
 lcd_home();
 lcd_string ("SE"); //display SE
 return;
 }
}

/*************These are subfunction for 90 degree turn right and left********************/
//function for turn 90 degree right

void right_ninety()
{
 ahead(); //move small forward before rotating
 //delay_ms(400); // 90 degrid delay - before rotate
 delay_ms(550); //full degrid delay - before rotate
 rotate_right(); //rotate the robot to the right
 delay_ms(650); //delay time for turning robot
 right(); //robot turn right abit to align sensor and tyres to the line
 delay_ms(50); //delay time for turning right
 while(SEN_MR==0) //while most right sensor still not detect line, do function above
 halt(); //stop after detect line
 if(bot_dir==N) //change robot's direction
 { //if initial direction is North
 bot_dir = E; //then change to East
 lcd_clr();
 lcd_home();
 lcd_string ("E"); //display E
 return; //return to main function
 }
 if(bot_dir==E) //if initial direction is East
 {
 bot_dir = S; //then change to South
 lcd_clr();
 lcd_home();
 lcd_string ("S"); //display S
 return;
 }
 if(bot_dir==S) //if initial direction is South
 {
 bot_dir = W; //then change to West
 lcd_clr();
 lcd_home();
 lcd_string ("W"); //display W
 return;

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 17/25

 }
 if(bot_dir==W) //if initial direction is West
 {
 bot_dir = N; //then change to North
 lcd_clr();
 lcd_home();
 lcd_string ("N"); //display N
 return;
 }
 if(bot_dir==NE) //change robot's direction
 { //if initial direction is NorthEast
 bot_dir = SE; //then change to SouthEast
 lcd_clr();
 lcd_home();
 lcd_string ("SE"); //display SE
 return; //return to main function
 }
 if(bot_dir==SE) //if initial direction is SouthEast
 {
 bot_dir = SW; //then change to SouthWest
 lcd_clr();
 lcd_home();
 lcd_string ("SW"); //display SW
 return;
 }
 if(bot_dir==SW) //if initial direction is SouthWest
 {
 bot_dir = NW; //then change to NorthWest
 lcd_clr();
 lcd_home();
 lcd_string ("NW"); //display NW
 return;
 }
 if(bot_dir==NW) //if initial direction is NorthWest
 {
 bot_dir = NE; //then change to NorthEast
 lcd_clr();
 lcd_home();
 lcd_string ("NE"); //display NE
 return;
 }
}

//function for turn 90 degree left
void left_ninety()
{
 ahead(); //move small forward before rotating
 //delay_ms(400); // 90 degrid delay - before rotate
 delay_ms(550); //full degrid delay - before rotate
 rotate_left(); //rotate the robot to the left
 delay_ms(650); //delay time for turning robot
 left(); //robot turn left abit to detect sensor
 delay_ms(50); //delay time for turning left
 while(SEN_ML==0) //while most left sensor still not detect line, do function above
 halt(); //stop after detect line
 if(bot_dir==N) //change robot's direction
 { //if initial direction is North
 bot_dir = W; //then change to West
 lcd_clr();
 lcd_home();
 lcd_string ("W"); //display W
 return; //return to main function
 }
 if(bot_dir==E) //if initial direction is East

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 18/25

 {
 bot_dir = N; //then change to North
 lcd_clr();
 lcd_home();
 lcd_string ("N"); //display N
 return;
 }
 if(bot_dir==S) //if initial direction is South
 {
 bot_dir = E; //then change to East
 lcd_clr();
 lcd_home();
 lcd_string ("E"); //display E
 return;
 }
 if(bot_dir==W) //if initial direction is West
 {
 bot_dir = S; //then change to South
 lcd_clr();
 lcd_home();
 lcd_string ("S"); //display S
 return;
 }
 if(bot_dir==NE) //change robot's direction
 { //if initial direction is NorthEast
 bot_dir = NW; //then change to NorthWest
 lcd_clr();
 lcd_home();
 lcd_string ("NW"); //display NW
 return; //return to main function
 }
 if(bot_dir==SE) //if initial direction is SouthEast
 {
 bot_dir = NE; //then change to NorthEast
 lcd_clr();
 lcd_home();
 lcd_string ("NE"); //display NE
 return;
 }
 if(bot_dir==SW) //if initial direction is SouthWest
 {
 bot_dir = SE; //then change to SouthEast
 lcd_clr();
 lcd_home();
 lcd_string ("SE"); //display SE
 return;
 }
 if(bot_dir==NW) //if initial direction is NorthWest
 {
 bot_dir = SW; //then change to SouthWest
 lcd_clr();
 lcd_home();
 lcd_string ("SW"); //display SW
 return;
 }
}
//function for movement from intersection to intersection
void step(int *bot_x,int *bot_y)
{
 ahead(); //move ahead to avoid sensors fluctuation
 //delay_ms(150); //90 degrid delay - step fluctuate
 delay_ms(400); //full degrid delay - step fluctuate
 while(1) //keep following line until condition below satisfied
 {

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 19/25

 follow_line(); //if detected either one, do the follow_line function
 if (SEN_L==1 && SEN_R==1) //if either sensor is detected, then junction detected
 break; //break the while(1) loop
 }
 halt(); //stop and increase robot coordinate accordingly as below
 if(bot_dir==N) //if the direction of movement is to the North
 {
 //++*bot_y; //then increase y coordinate by 1 (90degrid)
 *bot_y+=2; //then increase y by 2 (fulldegrid)
 }

 if(bot_dir==S) //if the direction of movement is to the South
 {
 //--*bot_y; //then decrease y coordinate by 1 (90degrid)
 *bot_y-=2; //then decrease y by 2 (fulldegrid)
 }
 if(bot_dir==E) //if the direction of movement is to the East
 {
 //++*bot_x; //then increase x coordinate by 1 (90degrid)
 *bot_x+=2; //then increase y by 2 (fulldegrid)
 }
 if(bot_dir==W) //if the direction of movement is to the West
 {
 //--*bot_x; //then decrease x coordinate by 1 (90degrid)
 *bot_x-=2; //then decrease y by 2 (fulldegrid)
 }
 if(bot_dir==NE) //if the direction of movement is to the NorthEast
 {
 ++*bot_x; //then increase x coordinate by 1 (45/135degrid)
 ++*bot_y; //then increase y coordinate by 1 (45/135degrid)
 //*bot_y+=2; //then increase y by 2 (fulldegrid)
 }

 if(bot_dir==SE) //if the direction of movement is to the SouthEast
 {
 ++*bot_x; //then increase x coordinate by 1 (45/135degrid)
 --*bot_y; //then decrease y coordinate by 1 (45/135degrid)
 //*bot_y-=2; //then decrease y by 2 (fulldegrid)
 }
 if(bot_dir==SW) //if the direction of movement is to the SouthWest
 {
 --*bot_x; //then increase x coordinate by 1 (45/135degrid)
 --*bot_y; //then increase y coordinate by 1 (45/135degrid)
 //*bot_x+=2; //then increase y by 2 (fulldegrid)
 }
 if(bot_dir==NW) //if the direction of movement is to the NorthWest
 {
 --*bot_x; //then decrease x coordinate by 1 (45/135degrid)
 ++*bot_y; //then increase y coordinate by 1 (45/135degrid)
 //*bot_x-=2; //then decrease y by 2 (fulldegrid)
 }
}

/*************These are subfunction for 45 degree turn right and left********************/
//function for turn 45 degree right
void right_45()
{
 ahead(); //move small forward before rotating
 //delay_ms(400); // 90 degrid delay - before rotate
 delay_ms(550); //full degrid delay - before rotate
 rotate_right(); //rotate the robot to the right
 delay_ms(325); //delay time for turning robot
 //right(); //robot turn right abit to align sensor and tyres to the line
 //delay_ms(50); //delay time for turning right

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 20/25

 while(SEN_MR==0) //while most right sensor still not detect line, do function above
 halt(); //stop after detect line
 if(bot_dir==N) //change robot's direction
 { //if initial direction is North
 bot_dir = NE; //then change to NorthEast
 lcd_clr();
 lcd_home();
 lcd_string ("NE"); //display NE
 return; //return to main function
 }
 if(bot_dir==E) //if initial direction is East
 {
 bot_dir = SE; //then change to SouthEast
 lcd_clr();
 lcd_home();
 lcd_string ("SE"); //display SE
 return;
 }
 if(bot_dir==S) //if initial direction is South
 {
 bot_dir = SW; //then change to SouthWest
 lcd_clr();
 lcd_home();
 lcd_string ("SW"); //display SW
 return;
 }
 if(bot_dir==W) //if initial direction is West
 {
 bot_dir = NW; //then change to NorthWest
 lcd_clr();
 lcd_home();
 lcd_string ("NW"); //display NW
 return;
 }
 if(bot_dir==NE) //if initial direction is NorthEast
 {
 bot_dir = E; //then change to East
 lcd_clr();
 lcd_home();
 lcd_string ("E"); //display E
 return; //return to main function
 }
 if(bot_dir==SE) //if initial direction is SouthEast
 {
 bot_dir = S; //then change to South
 lcd_clr();
 lcd_home();
 lcd_string ("S"); //display S
 return;
 }
 if(bot_dir==SW) //if initial direction is SouthWest
 {
 bot_dir = W; //then change to West
 lcd_clr();
 lcd_home();
 lcd_string ("W"); //display W
 return;
 }
 if(bot_dir==NW) //if initial direction is NorthWest
 {
 bot_dir = N; //then change to North
 lcd_clr();
 lcd_home();
 lcd_string ("N"); //display N

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 21/25

 return;
 }
}
//function for turn 45 degree left
void left_45()
{
 ahead(); //move small forward before rotating
 //delay_ms(400); // 90 degrid delay - before rotate
 delay_ms(550); //full degrid delay - before rotate
 rotate_left(); //rotate the robot to the left
 delay_ms(325); //delay time for turning robot
 //left(); //robot turn left abit to detect sensor
 //delay_ms(50); //delay time for turning left
 while(SEN_ML==0) //while most left sensor still not detect line, do function above
 halt(); //stop after detect line
 if(bot_dir==N) //change robot's direction
 { //if initial direction is North
 bot_dir = NW; //then change to NorthWest
 lcd_clr();
 lcd_home();
 lcd_string ("NW"); //display NW
 return; //return to main function
 }
 if(bot_dir==E) //if initial direction is East
 {
 bot_dir = NE; //then change to NorthEast
 lcd_clr();
 lcd_home();
 lcd_string ("NE"); //display NE
 return;
 }
 if(bot_dir==S) //if initial direction is South
 {
 bot_dir = SE; //then change to SouthEast
 lcd_clr();
 lcd_home();
 lcd_string ("SE"); //display SE
 return;
 }
 if(bot_dir==W) //if initial direction is West
 {
 bot_dir = SW; //then change to SouthWest
 lcd_clr();
 lcd_home();
 lcd_string ("SW"); //display SW
 return;
 }
 if(bot_dir==NE) //change robot's direction
 { //if initial direction is NorthEast
 bot_dir = N; //then change to North
 lcd_clr();
 lcd_home();
 lcd_string ("N"); //display N
 return; //return to main function
 }
 if(bot_dir==SE) //if initial direction is SouthEast
 {
 bot_dir = E; //then change to East
 lcd_clr();
 lcd_home();
 lcd_string ("E"); //display E
 return;
 }
 if(bot_dir==SW) //if initial direction is SouthWest

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 22/25

 {
 bot_dir = S; //then change to South
 lcd_clr();
 lcd_home();
 lcd_string ("S"); //display S
 return;
 }
 if(bot_dir==NW) //if initial direction is NorthWest
 {
 bot_dir = W; //then change to West
 lcd_clr();
 lcd_home();
 lcd_string ("W"); //display W
 return;
 }
}

/*************These are subfunction for 135 degree turn right and left********************/
//function for turn 135 degree right
void right_135()
{
 ahead(); //move small forward before rotating
 //delay_ms(400); // 90 degrid delay - before rotate
 delay_ms(550); //full degrid delay - before rotate
 rotate_right(); //rotate the robot to the right
 delay_ms(975); //delay time for turning robot
 right(); //robot turn right abit to align sensor and tyres to the line
 delay_ms(50); //delay time for turning right
 while(SEN_MR==0) //while most right sensor still not detect line, do function above
 halt(); //stop after detect line
 if(bot_dir==N) //change robot's direction
 { //if initial direction is North
 bot_dir = SE; //then change to SouthEast
 lcd_clr();
 lcd_home();
 lcd_string ("SE"); //display SE
 return; //return to main function
 }
 if(bot_dir==E) //if initial direction is East
 {
 bot_dir = SW; //then change to SouthWest
 lcd_clr();
 lcd_home();
 lcd_string ("SW"); //display SW
 return;
 }
 if(bot_dir==S) //if initial direction is South
 {
 bot_dir = NW; //then change to NorthWest
 lcd_clr();
 lcd_home();
 lcd_string ("NW"); //display NW
 return;
 }
 if(bot_dir==W) //if initial direction is West
 {
 bot_dir = NE; //then change to NorthEast
 lcd_clr();
 lcd_home();
 lcd_string ("NE"); //display NE
 return;
 }
 if(bot_dir==NE) //if initial direction is NorthEast
 {

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 23/25

 bot_dir = S; //then change to South
 lcd_clr();
 lcd_home();
 lcd_string ("S"); //display S
 return; //return to main function
 }
 if(bot_dir==SE) //if initial direction is SouthEast
 {
 bot_dir = W; //then change to West
 lcd_clr();
 lcd_home();
 lcd_string ("W"); //display W
 return;
 }
 if(bot_dir==SW) //if initial direction is SouthWest
 {
 bot_dir = N; //then change to North
 lcd_clr();
 lcd_home();
 lcd_string ("N"); //display N
 return;
 }
 if(bot_dir==NW) //if initial direction is NorthWest
 {
 bot_dir = E; //then change to East
 lcd_clr();
 lcd_home();
 lcd_string ("E"); //display E
 return;
 }
}
//function for turn 135 degree left
void left_135()
{
 ahead(); //move small forward before rotating
 //delay_ms(400); // 90 degrid delay - before rotate
 delay_ms(550); //full degrid delay - before rotate
 rotate_left(); //rotate the robot to the left
 delay_ms(975); //delay time for turning robot
 left(); //robot turn left abit to detect sensor
 delay_ms(50); //delay time for turning left
 while(SEN_ML==0) //while most left sensor still not detect line, do function above
 halt(); //stop after detect line
 if(bot_dir==N) //change robot's direction
 { //if initial direction is North
 bot_dir = SW; //then change to SouthWest
 lcd_clr();
 lcd_home();
 lcd_string ("SW"); //display SW
 return; //return to main function
 }
 if(bot_dir==E) //if initial direction is East
 {
 bot_dir = NW; //then change to NorthWest
 lcd_clr();
 lcd_home();
 lcd_string ("NW"); //display NW
 return;
 }
 if(bot_dir==S) //if initial direction is South
 {
 bot_dir = NE; //then change to NorthEast
 lcd_clr();
 lcd_home();

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 24/25

 lcd_string ("NE"); //display NE
 return;
 }
 if(bot_dir==W) //if initial direction is West
 {
 bot_dir = SE; //then change to SouthEast
 lcd_clr();
 lcd_home();
 lcd_string ("SE"); //display SE
 return;
 }
 if(bot_dir==NE) //change robot's direction
 { //if initial direction is NorthEast
 bot_dir = W; //then change to West
 lcd_clr();
 lcd_home();
 lcd_string ("W"); //display W
 return; //return to main function
 }
 if(bot_dir==SE) //if initial direction is SouthEast
 {
 bot_dir = N; //then change to North
 lcd_clr();
 lcd_home();
 lcd_string ("N"); //display N
 return;
 }
 if(bot_dir==SW) //if initial direction is SouthWest
 {
 bot_dir = E; //then change to East
 lcd_clr();
 lcd_home();
 lcd_string ("E"); //display E
 return;
 }
 if(bot_dir==NW) //if initial direction is NorthWest
 {
 bot_dir = S; //then change to South
 lcd_clr();
 lcd_home();
 lcd_string ("S"); //display S
 return;
 }
}

// function for follow any line detected
void follow_line()
 {
 unsigned char memory = 0; //variable to memorize previous condition if sensor is out of line
 {
 forward(); //mobile robot will move forward
 if ((SEN_L==1)&&(SEN_ML==0)&&(SEN_MR==0)&&(SEN_R==0)) // if only sensor left detected black line
 {
 SPEEDL = 0; //left motor stop
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 1; //1 = line is at left of mobile robot
 }
 else if ((SEN_L==1)&&(SEN_ML==1)&&(SEN_MR==0)&&(SEN_R==0)) // if only sensor left detected black line
 {
 SPEEDL = 180; // left motor speed is 180
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 1; //1 = line is at left of mobile robot
 }
 else if ((SEN_L==0)&&(SEN_ML==1)&&(SEN_MR==0)&&(SEN_R==0)) // if only sensor middle left detected black line

12/24/13 fulldegrid.c

file:///C:/Users/mza/fulldegrid.html 25/25

 {
 SPEEDL = 200; // left motor speed is 200
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 1; //1 = line is at left of mobile robot
 }
 else if ((SEN_L==1)&&(SEN_ML==1)&&(SEN_MR==1)&&(SEN_R==0)) // if sensor middle left, middle right and sensor left detected black line
 {
 SPEEDL = 200; // left motor speed is 200
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 1; //1 = line is at left of mobile robot
 }
 else if ((SEN_L==0)&&(SEN_ML==1)&&(SEN_MR==1)&&(SEN_R==0)) // if sensor middle left and sensor middle right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 255; // right motor speed is 255(full speed)
 memory = 2; //32 = line is at middle of mobile robot
 }
 else if ((SEN_L==0)&&(SEN_ML==0)&&(SEN_MR==1)&&(SEN_R==0)) // if only sensor middle right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 200; // right motor speed is 200
 memory = 3; //3 = line is at right of mobile robot
 }
 else if ((SEN_L==0)&&(SEN_ML==1)&&(SEN_MR==1)&&(SEN_R==1)) // if sensor middle left, sensor middle right and sensor right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 200; // right motor speed is 200
 memory = 3; //3 = line is at right of mobile robot
 }
 else if ((SEN_L==0)&&(SEN_ML==0)&&(SEN_MR==1)&&(SEN_R==1)) // if sensor right and sensor middle right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 180; // right motor speed is 180
 memory = 3; //3 = line is at right of mobile robot
 }
 else if ((SEN_L==0)&&(SEN_ML==0)&&(SEN_MR==0)&&(SEN_R==1)) // if only sensor right detected black line
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 0; // right motor speed is 0
 memory = 3; //3 = line is at right of mobile robot
 }
 else if ((SEN_L==0)&&(SEN_ML==0)&&(SEN_MR==0)&&(SEN_R==0)) // if all sensor coult not detected black line
 {
 if (memory == 1)
 {
 SPEEDL = 0; // left motor speed is 0
 SPEEDR = 255; // right motor speed is 255(full speed)
 }
 else if (memory == 3)
 {
 SPEEDL = 255; // left motor speed is 255(full speed)
 SPEEDR = 0; // right motor speed is 0
 }
 }
 }
}

	13271_preface_PS02.pdf
	13271_FinalReport_PS02.pdf
	fulldegrid.pdf

