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ABSTRACT 
 
 

Normally, tourist will experience dilemma in planning their tour route especially 

when they visited foreign country for the first time. Manually mapping the cities and 

searching the information on the Internet can be very exhaustive. Besides these, 

tourist also faced a dilemma on how to travel across different cities efficiently and at 

shortest distance. This can also be known as Tourist Routing Problem (TRP). TRP is 

a variance of Travelling Salesman Problem (TSP) which can defined by finding the 

optimal path to travel from point A to point B by going through the same place not 

more than twice at a shortest distance. After completing a thorough comparative 

study, the author decided to apply Genetic Algorithm (GA), which is one of the best 

heuristic solutions to date in solving TRP. A rapid-prototyping methodology had 

been chosen because the author can immediately alter the prototype if there are any 

changes in the requirements. An Android mobile application will be utilized as a 

platform to test the effectiveness of GA in solving TRP.  To support this, simulation 

and experiments will be conducted to evaluate the performance and speedup of the 

algorithm. Besides focusing on finding the best shortest distance route to travel, this 

application will enable tourist to select places to visit according to their preferences 

and activities that will be happening at that particular place.  
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background of The Study  
 
 
Hwang et. al. (2008) reported that millions of tourist utilized information provided 

by  more than 70 thousands travel-related website when the search “Travel” keyword 

in Google to plan for their holiday. Most of the tourist faced problem on how to 

maximized number of tourist attractions that they can visit in their itinerary. They 

need to consider many factors such as time, cost, interest and mode of transportation 

before deciding which places to visit. 

 

When tourist faced dilemma on which place to travel during their visit, they 

prioritize on how to minimize the total distance that need to be travel based on their 

interest. This dilemma is known as Tourist Routing Problem (TRP). It is a variance 

of Travelling Salesman Problem (TSP). This problem can be defined by, given N set 

of cities or places to be visited, how to travel from point A to point B by going 

through various cities with the best shortest distance possible. In this research, the 

author will be focusing on suggesting the best route to travel based on shortest 

distance by applying Genetic Algorithm (GA).  

 

To test the effectiveness of GA in solving TRP, an Android application will be 

utilized as a platform. In order to proof the concept, the author will also evaluate the 

performance and speedup of the algorithm in solving TRP.  This application target 

user will be foreign tourist that is visiting Malaysia for the first time. The application 

will also function as information center where tourist can get information about the 

places to visit such as the location, opening hours, and ongoing activities at that 

particular place. Tourist can also choose places that they would like to visit based on 

their preferences in the mobile application. 
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1.2 Problem Statement  
 

1.2.1 Problem Identification  
 

Given a scenario, Mr. Steve is an American tourist who comes to Malaysia 

for his summer holiday. This is his first visit to Malaysia and he is travelling 

alone for 4 days and 3 nights. Mr. Steve is a person who is very passionate 

about history and he would love to learn about the history of our unique 

multi- cultural country.  

 

 
Figure 1.1 Mr. Steve’s scenario 

 

He did his own research on best places or tourist attractions to visit that suit 

his preference and he try to manually plan his itinerary. However, due to 

certain limitations, he cannot find the best route planning application on the 

Internet that can help him to arrange his tour based on his preference and at 

shortest travel distance possible.  

 

Realistically, a normal tourist would like to travel through various places in 

Malaysia efficiently, the distance between each location will be random; 

therefore the time and cost taken to travel through each location will be 

different as well. Therefore, by applying TRP, tourist will be able to find the 

best route to travel from initial location A to location B through various 
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locations, shortest distance to travel will be able to help tourist to travel 

throughout Malaysia at their own leisure time. 

 
Figure 1.2 Example of travel destination planning using TRP 

 

Even though this problem can be solved with a map, pencil and ruler, it can 

be very exhaustive if there is more than 6 cities or locations that the tourist 

would like to visit. Besides, some tourist would also like to travel through 

various locations according to their preference and interest during their stay 

in Malaysia. Providing a selection of attractions segregated based categories 

such as shopping malls, museums, national parks, beaches and historical 

sites, these can assist tourist in making a better decision during their visit.  

 

1.2.2 Significance of the Project  
 
 

Researchers have been conducting many studies on the application of TSP in 

daily life. Many studies had been conducted in various areas such as 

detection of cancerous cells, computation of DNA, and vehicle-routing 

problem.  In this project, the author will focus on solving TRP, on the scope 

of tourism and tourist routing problem. First, the significance of this project 

is to prevent redundancy in path planning by eliminating the possibility of 

travelling across same city twice. Known as one of heuristic algorithm, the 

author will also evaluate the performance of GA in solving TRP by 
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conducting experiments and simulations as number of cities increases. With 

the results projected by the testing conducted, the author will also be able to 

measure the speedup of the application in suggesting the best shortest 

distance route for tourist to travel.  

 

1.3 Objectives and Scope of Study  

 1.3.1 Objective 
  

• To study the effectiveness of Genetic Algorithm in solving TRP  

A study will be conducted on the Genetic Algorithm in order to proof the 

concept that this algorithm is effective in solving TRP even though is it’s a 

heuristic algorithm. In this project, we will focus on the scope of tourism. 

Simulations and experiments will be conducted to measure the performance 

and speedup of the algorithm. 

 

• To implement GA in finding the shortest distance to travel across 

different cities without going through same city twice.  

The algorithm will be tested on an Android mobile application that will act as 

a platform to suggest the best shortest distance route for tourist to travel 

across different cities or places without going through the same place twice. 

The application will also enable tourist to select places that they would like to 

travel based on their preferences. 

 

1.3.2 Scopes of Study  
 

The scope of this research is to focus on finding the shortest distance route 

travel destination planning by applying TRP. It is assume that location 

choices for the destination are already pre-defined and the distance of the city 

is calculated based on the coordinate between the cities. Termination criteria 

will also need to be defined by tourist, which in this case, maximum distance 

that the tourist would like to travel in a day/period since Genetic Algorithm is 

a heuristic algorithm that will require a parameter to terminate the algorithm 

once the criteria has been met. 
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1.4 Feasibilities of the Project   
 

1.4.1 Technical feasibility  
 

This project requires knowledge and skills in programming in Java in which 

the algorithm will be developed and building a mobile application using 

Android platform. The content can be extracted from any third-party website 

that is available on the Internet regarding tourism.  

1.4.2 Economic Feasibility  
 

 Currently, there is no extra cost that needs to fund the project because the 

algorithm and mobile application is developed using a personal computer 

workstation and simple mobile application developer that is free of charge.  

1.4.3 Operational Feasibility  
 

This project will be able to meet the objective since the authors have 

narrowed the scope. Once it is completed, it will be able to assist foreign and 

local tourist to plan their tour when they visited Malaysia. 

 

1.4.4 Schedule Feasibility  
 

The limitation of the project will be its tight schedule since the duration is 

only limited to 28 weeks (FYP1 and FYP2 together). Below are the 

timeframes, which can be considered as timely feasible:  

FYP1  

• Data gathering  

• Development of the algorithm  

• Interface development  

FYP2  

• Development of the prototype  

• User and functionality testing  

• Final documentation  
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 What is Travelling Salesman Problem (TSP)?  

 

TSP is a very famous mathematical problem has been firstly introduced in the 18th  

 Century. Sir William Rowam Hamilton, an Irish Mathematician and Thomas 

Penyngton, a British mathematician introduced it in the early stage and further 

developed by Hassler, Whitney & Merill in Princeton in a more normal form.(Matai, 

Mittal&Singh,2011). Yong (2009) also mentioned that TSP is one of the benchmark 

for optimization problem. Gupta and Khurana (2012) believed that TSP has been 

proven that it is an NP-complete problem that has no definite optimal solution or 

efficient way to solve if there is a large size problem. It is as defined finding the 

optimum path to visit all cities starting from the initial point and returned back at the 

same point with the consideration to minimize the travel cost at shortest distance.  

 

According to Matai, Mittal and Singh, (2011): 

“ The complexity of the TSP is defined as given n is the number of cities to be visited, 

the total number of possible routes covering all cities can be given as a set of 

feasible solutions of the TSP and is given as (n-1)! /2.”  

 

It is clearly explained, given a set 6 cities to be visited, there will be 6! Sets of 

possible routes that equals to 720 possible routes that we can derive from this travel. 

However, in TSP, we need to focus on finding the best possible path that can 

minimized the distance that we need to travel between the cities without going 

through the same point twice. An exact TSP can also be classified into three types, 

which are symmetric travelling salesman problem (sTSP), asymmetric travelling 

salesman problem (aTSP), and multi travelling salesman problem (mTSP). TSP has 
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many applications in our real life that will be further explained in the next part of the 

literature review.  

 

2.2 What is Tourist Routing Problem (TRP)? 

 

According to Yong (2009), manual path planning can be very exhaustive and time 

consuming. He believed that this is due to the fact that we need to use brute-force to 

find all the best route possibilities.  It will take a lot of time to simply find the best 

route to travel across different places at the same time. The dilemma has been 

described as Tourist Routing Problem (TRP). TRP is a variance of Travelling 

Salesman Problem (Hashimoto et al., 2006). It is similar to the Vehicle Routing 

Problem (VRP), which has been introduced by Danziq and Ramser in 1960.  

 

VRP can be defined by delivering a set of customers with known demands or time –

window (Chang &Chen, 2007). The cost constraints of the problem are limited to 

soft time window and time to travel (Hashimoto et. al, 2006). They also stated that 

VRP use local search to determine the possible route. Both constraints in VRP and 

TRP have the same objectives, which is to visit the same place once besides finding 

the minimum distance for them to travel.  Since TRP and VRP are both derivative of 

TSP, it is still considered as NP- complete problem (Non-deterministic polynomial-

time complete) because when we put the constraints normally, it can be solve by 

using a simple dynamic programming and vice versa.  

 

2.3 Malaysia as a Tourist Destination Place  

 

Malaysia, ranked as 9th most visited place in the world are apparent to the tourist due 

to their rich in culture heritage, multi-cultural community, various annual festivities, 

wonderful cuisines and traditional crafts (Ledesma et al, 2012). Boasting beautiful 

sandy beaches and oldest tropical rainforest in the world as the main attraction for 

tourist to flood in every year.  They also believed that the national parks are perfect 

for water rafting, cave exploration and wildlife watching that will provide challenge 

for tourist who loves adventures. According to Home Minister Ng Yen Yen (2013), 

Malaysian’s tourism will boost up due to our rich culture and nature heritage which 
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can be clearly seen in famous cities such as in Penang and Malacca which has been 

certified as UNESCO’S World Historical Sites.  

 

It was estimated that over 25.03 millions of visitors flood in Malaysia in 2012, which 

is an increase of 1.3% compared to 2011. (UNWTO, 2013). Malaysia is an all- year 

round humid weather country are suitable to visit anytime and the peak season is 

during the summer holiday season with visitors from Middle East, Singapore, and 

Australia. Table below shows the 10 highest tourist nationalities that visited 

Malaysia in 2012.  

 

 
Table 2.1 10 highest tourist nationalities that visited Malaysia in 2012 

(Source: Tourism Malaysia) 
 

Besides, Malaysia is estimated to gain a net profit of RM 60.3 billion due to tourism 

each year and will be the third largest foreign earning section for the country’s 

economy. Tourism also flourishes the country’s related tourism occupational 

opportunity for the locals. The country not only boost their culture and natural 

heritage as the main attraction, but local foods, shopping heavens, homestay, theme 

parks , fine arts and creativity and other parts of truly Asian tourism. Malaysia aimed 
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to be the best place to visit in the world that with the help of regional and 

international collaboration that can lead to development of tourism in Malaysia.  

 

2.4 Famous local attractions in Malaysia  
 

Below is the list of famous local attractions in Malaysia that has been frequently by 

foreign and local tourist each year.   

 
Islands and 
Beaches  

• Langkawi, Kedah 
• Pangkor,Perak 
• Penang Island 
• Redang Island 
• Tenggol Island, Terengganu  
• Tunku Abdul Rahman National Park 
• Perhentian Islands 
• Kapas Island 
• Lang Tengah Island 
• Rantau Abang Beach 
• Mabul 
• Tioman Island 
• Sipadan 

National Parks  • Bako National Park, Sarawak   
• Batang Ai National Park, Sarawak 
• Gunung Mulu National Park, Sarawak 
• Gunung Gading National Park, Sarawak 
• Lambir Hills National Park, Sarawak 
• Niah Caves National Park, Sarawak 
• Loagan Bunut National Park, Sarawak 
• Kinabalu National Park, Sabah  
• Taman Negara National Park – spanning from 

Kelantan, Pahang and Terengganu (World Oldest 
Rainforest) 

• Endau Rompin National Park, Johor 
Shopping Malls 
and Centers  

• Berjaya Times Square KL, KL 
• Bukit Bintangwalk, KL 
• Suria KLCC,KL 
• Pavillion, KL  
• Midvalley Megamall, KL 
• Queensbay Mall, Penang  
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• Johor Premium Outlets, Johor 
Theme Parks  • A' Famosa Resort, Malacca 

• Sunway Lagoon, Selangor 
• LEGOLAND, Johor Bahru 
• Hello Kitty Land, Johor Bahru 
• Lost World of Tambun,Perak  
• Genting Highlands, Pahang 
•  Bukit Merah Laketown Resort, Perak  

Zoo and Animal 
Protection Park 

• National Zoo of Malaysia (Zoo Negara), KL 
• Kuala Gandah Elephant Sanctuary 
• Kuala Lumpur Bird Park, KL 
• Kuala Lumpur Butterfly Park, KL 
• Sepilok Orang Utan Sanctuary  

High Hills  • Masjid Negara 
• Merdeka Square 
• Cameron Highlands 

• Bukit Larut  
• Bukit Fraser  
• Genting Highlands 

Historical Sites 
or Monuments  

• Masjid Negara 
• Merdeka Square 
• Tugu Negara 
• Stadium Negara  
• Malacca  
• Georgetown  

   

Table 2.2: Tourist attractions in Malaysia according to categories 

 

2.5 Travel Destination Decision Making  
 

According to Hwang et al. (2008), complicated, multifaceted decision process is 

required to make a decision in travelling.  It is defined that in tourist decides which 

location to visit according to their place of interest and also any tourism services 

available at the location. Considering the place’s attractions, timing, transportation, 

activities, accommodation and other facilities are also important.  They conclude that 

destination choice is selecting a focal place to visit among numerous alternative 

places in order to satisfy the tour goals.  
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Many studies assume that tourist decides the best place to visit by assessing the cost, 

maximizing their utility and benefits that they will get from selecting specific 

location as their tour destination. According Hewitt (2012), tourist need to be able to 

carefully arranging their stay due to their first time experience visiting a foreign 

country. They need to carefully “map out” their travel itinerary either through they 

decision whether to visit the nearest location possible, undertook a cheaper cost 

travel tour or visiting places that they might find interesting activities conducted 

there.   

 

Hewitt also suggested that tourist should also plan on how many cash that they 

would like to carry throughout their tour in case of emergency and it sometimes can 

be too dangerous to carry a lot of cash in hand. Hwang (2012) stated that socio 

demographic factors could also influence travel decision-making process such as 

their age, marital status, education and also level of income.  In conclusion, selecting 

and planning travel destinations while travelling is not solely depend on utility 

maximization but also situational factors.  

2.6 Main application of TRP & TSP 
 

In real life, there were abundance of problems that can be modeled using TSP. Yong 

(2009) in his paper mentioned that there were varieties of TSP application such as 

planning, logistics, and manufacturing of micro-chip. He also stated that there are 

abundant sub-derivative of TSP such as DNA sequencing and also routing problem.   

Since TRP is a variance of TSP, it can be seen from the main application of routing 

planning for school bus, army mission planning, and museum visitor problem. In the 

instance school bus problem, found that some constraints need to be taken into 

consideration to solve the problem. In order to find the best possible route schedule, 

the number of route need to be small, have minimum travel distance, time consumed 

to travel using the route did not exceed maximum time constraints.  

 

 As for army mission planning, reported that it involves planning the best path for 

each army to reach their goal or mission in minimum possible time. The problem is a 

bit more complex since it will need to take into consideration of n army, m goals, 
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and base city or initial point where all of the army must return.  It is considered that 

each salesman has a fixed cost, f by solving the algorithm through relaxing the SECs 

and performing a check as to whether any of the SECs are violated, after an integer 

solution is obtained.  

 

Looking back at the museum visitor routing problem, the problem is applied when 

all of the visitors share the same interest (Yu, Lin, &Chou, 2010). In this case, some 

of the visitors will visit the same route and some will be divided into different route. 

Yu, Lin & Chou suggested that the routes are need to be plan in order to save the 

time to conduct to visit and divided into groups of visitors that share the same 

interest. The time to visit each place can vary due to certain exhibition might interest 

the visitor more than other exhibitions so time –window of different route and at 

certain place might vary. Therefore, a proper planning for the visitor’s route could 

help reduce the congestion at certain place or prolonged tour time.   

 

2.7 Comparative study on the possible solution for TRP & TSP 

  

Algorithm  Characteristics Comparison  

Heuristic 

Algorithm  

- Simplification algorithm that 

reduce or limits the search for 

algorithm those are difficult to 

understand. 

-Does not guarantee optimal 

solution  

Memetic 

Algorithms  

-Combination of several techniques 

(local search and crossover from 

genetic algorithm.  

-Use local heuristic to determine 

how to define iteration.  

-Very difficult to program in a short 

time.  

-Very detailed and have many 

inputs to be processed 

Ant colony 

algorithm  

-Based on studies of ant colony.  

- Each colony can form new colony  

-  Can find optimal solutions up to 

100 cities only  

Genetic 

Algorithm  

-Based on the theory of evolution  

- Break into smaller parts to find the 

fitness value.  

- Heuristically find optimal path 

until it reach the stopping criteria 

- Very thorough algorithm that 

handles all possibilities to get 

optimal path until it reach the 

stopping criteria.  

Table 2.3 Possible solutions to TRP&TSP 
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2.8 What is Genetic Algorithm? 
 
Genetic algorithm is one of the best heuristic algorithms that is widely utilize to 

solve TSP derivative that includes TRP which also due to wide application of TSP in 

real life. Originating from the Greek word “genesis” in which literally translates to “ 

to become” or “to grow”, it follows the principles of Genetics and Evolution (Gupta 

& Khurana, 2012). It is basically a step-by-step search technique to find approximate 

solutions to optimization problem. Basically, an optimization problem looks really 

simple.  

    
 BEFORE      AFTER 

Figure 2.1: The cluster of cities before and after going through Genetic Algorithm.  
 
One knows the form of all possible solutions corresponding to particular problem. 

Depending on the number of cities that will be visited, all the possibility can be 

known but the objective was to find the optimal path. Gupta and Khurana stress that 

genetic algorithm will go through each and one of possible population (routes). Each 

solution is represented by a chromosome, which in this project, the solution will 

refers to possible route. It uses the concept of mutation, crossover and recombination 

to solve the problem. 

 

Due to fact that TRP is an NP-complete problem, Genetic Algorithm is considered as 

an exact method that can find the exact optimal solution (Kiraly and Abonyi, 2010). 

However, problem will still occur if the problem is too large in size. There are few 

elements that need to be considered in Genetic Algorithm in order to find the optimal 

path to travel throughout the entire place without going through the same place 

twice.  
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Elements Explanation 

Genetic 

coding  

                   -       How to represent the cities  

                    -       Can choose either to represent it in path or array. 

Fitness 

function  

- Value that will be assigned to each node/route.  

- The higher the value, fi, the greater chance it will be chosen 

as optimal path.  

Selection  - Choose two cities to be crossover to form new route 

- Can either choose “roulette wheel” selection or random 

selection. 

Crossover  - To ensure that none of the cities is repeated or missed out  

- Can use order crossover, cycle crossover, or partially 

matched crossover 

Mutation  - To discard the less fi value route and store it in their 

memory 

- To ensure that no important features are lost such as random 

selection of the cities. 

Table 2.4 Important elements of Genetic Algorithms 

 

2.9 What is Android?  
 

Android is an operating system for mobile-based platform. It is Linux-based and 

designed to be used on touchscreen mobile devices such as smartphone and tablets.  

Introduced in 2005, when Google Inc bought it from Android Inc. In 2012, it is now 

currently the biggest operating system in terms of user demographic in Malaysia that 

overtook Symbian (Nokia) and iOS  (Apple) and Blackberry OS by 43.16%.  

 

2.10 Why Android? 
 

In order to run this application, a platform is required.  This project application will 

require a platform As Android is the fastest growing mobile application platform 

available in the market, it ensures sustainability and constant improvements of the 

application. Huge user demographic can ensure that application that is made 

available in the Google Play can be downloaded for free or per pay.  
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It features as an open-source operating system, which is free, and the development of 

application would be much easier with the support from online community. Creating 

an Android mobile application can also be made easy for non- experts through 

platform such as App Inventor for Android is a visual programming environment 

created by Google for application development.  

2.11 Comparative Study on Existing Mobile Application 
 
 
Application 
Name  

Focus Category  Strength of Product Weakness  

Trip Advisor: 
Kuala Lumpur 
City Guide  

Specific guide 
application  

-Specific city guide  
-Works offline  
-GPS based application 

- No best route 
suggestion to visit few 
places in one trip.  

Trip It  Overall trip 
planning  

- Timely –planner that 
organize all items into 
travel itinerary.  

-User must manually 
input all information.  

Poynt Suggestion based 
application 

-Directly connected 
with local business 
- Offer variety place of 
interest. 

-Information and 
feedbacks are fixed to 
tailor to business needs. 

Wikitude Place of interest 
information 

Use AR in 
disseminating 
information about the 
place.  

-No nearest place 
suggestion, which is 
similar to user interest. 

Route Planner  Routing planning  - User enter initial 
point and end point of 
the trip  
- User can mark their 
favorite route  

-Functions almost 
similar to Google maps  

Best Route Free Routing planning  -Give a whole map 
view  
-Abundant information 
and functions  

-The interface is very 
hard for novice user to 
use.  

Google Maps  Comprehensive 
travel maps  

-Have satellite and 3D 
view of the maps 
- Abundant 
information 
-Simple user interface  

- Some specific features 
are limited to certain 
regions or continent 
only. 

 

Table 2.5: Existing mobile application that is related to the project 
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CHAPTER 3 

RESEARCH METHODOLOGY 
 

3.1 Project Method & Activities  
      

 

 
 
 

Figure 3.1: Research Methodology Diagram  

 

For this research, the author has chosen rapid-prototyping methodology as an 

approach. Objective of choosing this methodology is to ensure that user 

requirements will be meet, development is aligned according to the deadlines and 

each testing will be conducted once the prototype is ready.  Requirements gatherings 

and planning in the early stage will take part and the best algorithms to solve the 

problem will be taken into consideration to develop the prototype.  

 

Planning	
  and	
  
Requirements	
  Gathering	
  	
  

Analysis	
  &Design	
  	
  

Prototype	
  Development	
  	
  

Prototype	
  Evaluation	
  &	
  
User	
  Testing	
  	
  

Implementation	
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If project encounter any problem through any stage, the manager can easily go back 

one step back to ensure that it will meet its design capabilities. Upon testing, 

feedbacks and criticism will be taken into consideration to ensure that the project 

functions effectively and improvements immediately. The finalized prototype then 

will be converted as a system for user usage. 

3.1.1 Planning and Requirements Gathering  
 

Planning phase of the research involved doing a pilot study reading based on 

books, journals, articles regarding tourism, application of TSP, TRP and to 

identify the problem, scope and objectives of the study. A general idea on 

scope of the study such as tourism in Malaysia, possible solution to TRP and 

Android Mobile Application are also necessary. Narrowing the scope of 

study will ensure that the system produced will be able to meet the user 

demands and needs.  

 

3.1.2 Analysis & Design  
 

Analysis of the requirements is conducted based on the identification of the 

problem, scope and objective of the study. Objectives are further refined to 

identify necessary functions or value that need to be added to the system. The 

area of the study are then further researched and studied to gather necessary 

information such as decision making problem for travellers, how to model 

TRP, and how to embedded GA into the mobile application for testing and 

with the objective to produce the best result. Correct analysis is important to 

ensure that the prototype will function properly which will then produced the 

literature review.  

3.1.3 Prototype Development  
 

The prototype will be build and develop at this phase according to the results 

done on previous research or initial stage. The Genetic Algorithm will be first 

developed using Java language and tested using Netbeans 7.3.1 to test its 

effectiveness using a computer simulation. Then, it will be embedded in the 

mobile application to test its functionality once the prototype is completed, 
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any major problems will be change and improved after evaluation and 

experiments until it satisfies the user needs.   

3.1.4 Prototype Evaluation & Testing  
 

The developed prototype will be tested by a group of user that fits the target 

user demographic, which is tourist. The execution time and speedup of the 

application will be tested to see whether with an increase in number of cities, 

does the performance of the application increases or decreases. Tourist 

response and interaction towards the prototype will be closely monitored. 

Any feedbacks and criticism will be taken into accounts and improvements 

will be made immediately. Re-evaluation is required to ensure that the 

application will satisfy the tourist need.  

3.1.5 Implementation  
 

The finalized prototype that satisfies the user will be then called as system 

and implemented to real markets by uploading the application into Google 

Play. 

 

3.2 Project Activities  

3.2.1 Overview of Project Activities  
 

 
  Figure 3.2: Overview of overall project activities  
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3.2.2 Requirement Gathering  
 

Comparative study and analysis are conducted to gather requirements and 

information for project developments. 

  

Analysis  Objective  

Comparative study on travel destination 
planning application that uses TRP. The 
analysis focuses on criteria as follow:  

i. Available tools that focus on finding 
the shortest path to travel through 
multiple location  

ii. Tools that recommends user on best 
path to be taken based on their 
interest 

i. To review on the available 
application on the market.  

ii. To identify each strength and 
weakness of the available 
applications to apply in the 
system.  

iii. To collect data for system 
requirements.  

iv. To support problem statement 
Analysis on TRP approach and its possible 
solutions.  

i. To gather information on TRP  
ii. To review on the real 

application and their 
effectiveness.  

iii. To study and identify the best 
possible algorithm as a solution.  

 

Table 3.1 Analysis and comparative study conducted before project development  

3.3 System Architecture  

 
    Genetic Algorithm  
 

Figure 3.3 System Architecture for the Mobile Application 
 

User	
  Input	
  	
  

Optimal	
  Routing	
  
Suggestion	
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This is the system architecture for the prototype. Figure shown that user will key-in 

the necessary information into the application, for example: place of interest, 

maximum distance they can travel on that day, and the cost for them to travel. The 

application will then use the Genetic Algorithm to find the optimal path for the user 

to travel by going thorough the all the place once at a minimized distance. It will 

then project the optimal routing suggestion based on the calculation.  

 

3.4 Requirement Analysis and Specification  
 
Based on the above system architecture, there are few requirements that need to be 

listed out in order to build the prototype and thus complete the system. Since the 

back-end of the project will be using Genetic Algorithm, there are few requirements 

that need to be set to ensure that the calculation will produce almost accurate results.  

3.4.1 Genetic Algorithm  
 

In order to solve TRP using Genetic Algorithm, we have to make sure that all 

of these requirements are satisfied:  

Elements Explanation 

Genetic coding                     -       How to represent the cities  

                    -       Can choose either to represent it in path or route. 

Fitness 

function  

- Value that will be assigned to each node/route.  

- The higher the value, fi, the greater chance it will be 

chosen as optimal path.  

Selection  - Choose two cities to be crossover to form new route 

- Can either choose “roulette wheel” selection or random 

selection. 

Crossover  - To ensure that none of the cities is repeated or missed out  

- Can use order crossover, cycle crossover, or partially 

matched crossover 

Mutation  - To discard the less fi value route and store it in their 

memory 

- To ensure that no important features are lost such as 

random selection of the cities. 

Table 3.2 Important elements in Genetic Algorithm 
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Besides this, there are also constant parameters that need to be declared for Genetic 

Algorithm to function:  

 

Parameters Functions 

Population Size  - To decide how many generations (possible routes) to be generated 

from the crossover and mutation. 

Crossover 

probability  

Probability of crossover between 2 generated route. 

Mutation 

probability  

Probability of doing mutation between 2 specific cities (ex: between 

city A and city B., A-B, B-A) 

Termination 

criteria 

Need to be declared in order for the to terminate the search (can be 

distance or time) 

Table 3.3 Constant parameters that need to be declared in Genetic Algorithm 

 

3.5 Tools and Equipment 
  

 3.5.1 Hardware 
 

a) 4GB 1333 MHz DDR3 RAM  

b) 1.6 GHz Intel Core i5 

c) Samsung Galaxy S II GT-I9100 powered with Android 4.0.4 Ice Cream 

Sandwich Operating System. 

d) MacBook Air, 11 inch, Mid 2011 Edition  

3.5.2 Software  
 

Software to be used:  

a) Android Developer Tools (ADT) 

ADT consist of:  

i) Eclipse and ADT Plug-in. 

ii) Android Software Development Kit (SDK) Tools  

iii) Android Simulator  

iv) Android Platform Tools  

 

b)  NetBeans 7.3.1  
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c)  Macintosh Operating System, Mac OS X Mountain Lion 10.8.5 

 

3.6 Key milestones & Gantt chart  
 

A Gantt Chart (Appendix 1) is prepared to guide the development of the project. 

Deliverables and key milestones (Appendix 2) are attached together in the Gantt 

chart. Note that the timeline merge the timeline for Final Year Project I together with 

Final Year Project II to make sure that the project will be able to be delivered on 

time and tested with target user before released to the public.  
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CHAPTER 4 

RESULTS AND DISCUSSION 
 
 

4.1 Genetic Algorithm Calculation for Shortest Distance Route  
 
To produce the best shortest distance route that allows the visitor to travel from the 

starting point across different cities without going through the same place twice, and 

return back to the same point with minimal distance, all of the requirements and 

parameters as stated in the requirement analysis and specifications need to be met. 

Since Genetic Algorithm is a step-by –step heuristic search, therefore there will be 

steps in order to produce the best result. Figure below describe how the algorithm 

work:  

 

 
Figure 4.1 Genetic Algorithm cycle 

 

Based on the algorithm, the first stage selection, an initial city will be choose based 

on this two technique, either random selection or “roulette wheel” selection. In the 
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  ex:	
  City	
  A	
  

and	
  B	
  	
  

Reproduction	
  
-­‐Produce	
  new	
  

combination	
  of	
  route	
  
from	
  the	
  city	
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application, the technique that is used is random selection in which it can select city 

by determining their fitness value, fi. In the real application, the fitness value will be 

the distance of that particular city.  

 

In the reproduction stage, an allele of two routes will be choose, crossover and 

mutate to form new route. The crossover type that will be used is cycle crossover in 

which it is a recombination of both parent route, Rx and Ry to form offspring route, 

Rz. Example:  

 

 

   +       

   

 

 

 

Figure 4.2 Offspring route generated from crossover and mutation 

Each offspring route that has been produced in previous stage will then be given 

fitness value, fi that represents its total distance that need to be travelled. In 

evaluation stage, offspring route that is more fit compared to others are choose. At 

the replacement stage, the fittest route will be choose as a parent and the cycle will 

run heuristically until it reach its terminating criteria which in this case, the 

minimized distance. The previous offspring route will then be discarded. 

 

Since Genetic Algorithm is a heuristic solution to any derivation of TSP such as 

TRP, therefore it can suggest optimal path with rather moderate size of problem. 

However, with an increasing number of cities, the performance of the algorithm will 

increase and speedup of the execution will also increase. The author will conduct 

simulation and experiment to test the algorithm later in this report.  

 

 

 

 

Rx: C1, C2, C3, C4,C5	
   Ry = C3,C4,C5,C1,C2	
  

Rz = C3, C4, C1,C2,C5 
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4.2 Eliminating the possibility of redundancy in path planning in solving TRP 
 

The author have adjusted and remodeled the existing GA to fit into the scope of 

study. To proof that GA is the best heuristic solution to derivative of TSP that 

includes TRP, the author conducted simulation based on different number of cities.  

Below is a map that consists of 20 cities. 

 
Figure 4.3 Map that consists of 20 cities.  

 

This simulation will also test that whether it is possible to eliminate the possibility to 

eliminate the redundancy in path planning which is travelling through same city 

twice. An increase of 5 cities, 10 cities, 15 cities and 20 cities was tested as a 

parameter. Figures below shows the results obtained with different variable of cities:  

 

 
Figure 4.4 Shortest distance route for 5 cities with GA 

 
Figure 4.5 Shortest distance route  for 10 cities with GA. 
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Figure 4.6 Shortest distance route for 15 cities with GA. 

 

 
Figure 4.7 Shortest distance route for 20 cities with GA. 

 

Based on this simulation, we have found that there is a difference is the initial 

distance, which is the total distance of all cities before GA and minimum distance, 

which is the distance of the shortest distance as suggested by the GA. The route 

suggested by the application is also based on the shortest distance possible to travel. 

It has been proved that the route suggested does not show any redundancy in path 

planning since none of the city is repeated more than once in route. 

 

4.3 Performance Evaluation of GA in solving TRP 
 

Besides simulation, the author has also conducted an experiment, which is to 

evaluate the performance of GA in solving TRP. This experiment has been done by 

measuring the execution time of the application parallel to the number of cities. Line 

graph below shows the result obtained by the experiment: 
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Figure 4.8 Performance Evaluation of GA in solving TRP with different sets of cities 
selected. 
 

Based on the results, we can conclude that the execution time that the application 

requires in order to suggest the shortest distance route decreases even though number 

of cities selected by the user increases. These phenomena can be explained due to the 

memory hierarchy of the device used. In this case, results of initial experiments are 

stored in the system memory. Once the same or precedence calculation is being 

called, this reduces the execution time significantly.  

4.4 Speedup of the GA in solving TRP with increasing number of cities selected 
 

Once the author evaluates the performance of the algorithm by conducting 

experiment above, we can also tabulate the speedup of the algorithm. The calculation 

of the speedup is based on:  

Speedup  =  Execution time taken for 2 cities 

        Execution Time taken for N cities  
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Figure below shows the tabulation of speedup of the algorithm versus the number of 

cities selected by the tourist: 

 

 

Figure 4.9 Speedup of GA in solving TRP with different sets of cities selected. 
 
Based on the results, we can conclude that the speedup of the application increases 

even though number of cities selected by the user increases. Reduction in the 

execution time is also due to multi-processor architecture of the device being used 

for the simulation and experiments that processed information in parallel. Increased 

performance in execution time and less time is required to process a large number of 

cities can also be explained due to the memory hierarchy effect of the device used.  

Previous route that had already been generated by the algorithm will be stored in the 

RAM. This is due to the temporal locality of reference, which means that there is 

chance that same information will be referred in the future.  The temporal locality of 

reference in this case is due to the structure of GA, in which it will store previous 

route information in the RAM.  With increasing number of cities selected, initial 

information can be simply called and thus reduce execution time.  
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Besides this, the microprocessors in the device also have trace cache in which it 

stored portions of instructions traces that have already been decoded previously. A 

trace cache stores instructions either after they have been decoded, or as they are 

retired. Therefore, it is concluded although the number of cities selected by the user 

increases, the performance and speedup of the algorithm in solving TRP increases. 

 

4.5 System Design  
 

  The system is designed:  

a) To ensure tourist will be able to select their place of interest properly.  

b) To ensure that user can view previous tourist recommendation or rating of 

that particular place.  

 

 

Below is the sample of interface design for the mobile application: 

 
 

Figure 4.10 Welcome page of the application 
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Figure 4.11 Place of interest selection according to the categories 

 
 

Figure 4.12 List of places included in the Shopping Heaven category 
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Figure 4.13 Shortest route calculation is projected to the user 
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CHAPTER 5 

CONCLUSION 
 

5.1 Conclusion  
 

Solving TRP by applying GA as a solution is an active area of research. The 

objective of this research has been met by proofing the concept through simulations 

and experiments by utilizing the mobile application as a platform to test the 

algorithm. The effectiveness of GA in solving TRP has been proven due to an 

increase in performance and speedup of the algorithm even though the number of 

cities selected by the user increases.  At the end of this project, the mobile 

application that applied GA in solving TRP will be able to assist tourist to plan their 

tour accordingly. Tourist will be able to decide which place to visit according to their 

preference and shortest distance route they would be able experience the true 

Malaysian experience visiting various interesting place.  

 

5.2 Recommendation  
 

For future enhancement, the author would like to recommend more parameters will 

be added by not suggesting the shortest distance route for tourist to travel, but taken 

into consideration of other factors such as time to travel, cost, and ratings for each 

tourist attraction. This will be able to provide tourist with an optimal path to travel 

that consist of shortest distance, time to travel, cost and ratings for each place. 

Adding more features for tourist such as tourism activities planner and travel 

checklist can also enhance functionality of the mobile application.  
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Appendix 1: Gantt Chart  
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Appendix 2: Key Milestones 
  

No Week FYP 1 Milestone Date 

1 1 FYP 1 Briefing 20 May 2013 

2 1 Selection of Project Topic 20 May 2013 

3 3 Submit Proposal to Research Cluster 4 June 2013 

4 4 Topic and Supervisor Confirmation 13 June 2013 

5 5 Ideation Makeweekend Rapid Prototyping 22 June 2013 

6 6 Submission of Extended Proposal 25 June 2013 

7 6 Briefing on Plagiarism 26 June 2013 

8 12 Proposal Defense and Progress Evaluation 31 July 2013 

9 13 Prototype Submitted 5 August 2013 

10 14 Submission of Interim Report 20 August 2013 
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Appendix 3: Algorithm Codes in Java Language 
 

TSP_GA.java (main program) 
package geneticalgo; 
 
/** 
 * 
 * @author sarah 
 */ 
public class TSP_GA { 
/* 
* TSP_GA.java 
* Create a tour and evolve a solution 
*/ 
 
    public static void main(String[] args) { 
 
        // Create and add our cities 
        City city = new City(60, 200); // cities represented like an array City(x-coordinate,y-coordinate) 
        TourManager.addCity(city); 
        City city2 = new City(180, 200); 
        TourManager.addCity(city2); 
        City city3 = new City(80, 180); 
        TourManager.addCity(city3); 
        City city4 = new City(140, 180); 
        TourManager.addCity(city4); 
        City city5 = new City(20, 160); 
        TourManager.addCity(city5); 
        City city6 = new City(100, 160); 
        TourManager.addCity(city6); 
        City city7 = new City(200, 160); 
        TourManager.addCity(city7); 
        City city8 = new City(140, 140); 
        TourManager.addCity(city8); 
        City city9 = new City(40, 120); 
        TourManager.addCity(city9); 
        City city10 = new City(100, 120); 
        TourManager.addCity(city10); 
        City city11 = new City(180,100); 
        TourManager.addCity(city11); 
        City city12 = new City(60,80); 
        TourManager.addCity(city12); 
        City city13 = new City(120, 80); 
        TourManager.addCity(city13); 
        City city14 = new City(180, 60); 
        TourManager.addCity(city14); 
        City city15 = new City(20,40); 
        TourManager.addCity(city15); 
        City city16 = new City(100, 40); 
        TourManager.addCity(city16); 
        City city17 = new City(200,40); 
        TourManager.addCity(city17); 
        City city18 = new City(20,20); 
        TourManager.addCity(city18); 
        City city19 = new City(60,20); 
        TourManager.addCity(city19); 
        City city20 = new City(160, 20); 
        TourManager.addCity(city20); 
       
 
        // Initialize population 
        Population pop = new Population(50, true); 
        System.out.println("Initial distance: " + pop.getFittest().getDistance()); 
 
        // Limited population for 50 generations only  
        pop = GA.evolvePopulation(pop); 
        for (int i = 0; i < 50; i++) { 
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            pop = GA.evolvePopulation(pop); 
        } 
 
        // Print final results 
        System.out.println("Finished"); 
        System.out.println("Minimum distance: " + pop.getFittest().getDistance()); 
        System.out.println("Optimal Path:"); 
        System.out.println(pop.getFittest()); 
    } 
 
} 
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City.java  
 
package geneticalgo; 

 

/** 

 * class City marks city 

 * @author sarah 

 */ 

 

 

public class City { 

    int x; 

    int y; 

     

    // Constructs a randomly placed city 

    public City(){ 

        this.x = (int)(Math.random()*200); 

        this.y = (int)(Math.random()*200); 

    } 

     

    // Constructs a city at chosen x, y location 

    public City(int x, int y){ 

        this.x = x; 

        this.y = y; 

    } 

     

    // Gets city's x coordinate 

    public int getX(){ 

        return this.x; 

    } 

     

    // Gets city's y coordinate 

    public int getY(){ 

        return this.y; 

    } 

     

    // Gets the distance to given city 

    public double distanceTo(City city){ 

        int xDistance = Math.abs(getX() - city.getX()); 

        int yDistance = Math.abs(getY() - city.getY()); 

        double distance = Math.sqrt( (xDistance*xDistance) + (yDistance*yDistance) ); 

         

        return distance; 

    }    

    @Override 

    public String toString(){ 

        return getX()+", "+getY(); 

    } 

 

   } 
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GA.java (algorithm) 
package geneticalgo; 
 
/** 
 * 
 * @author sarah 
 */ 
public class GA { 
    /* 
* GA.java 
* Manages algorithms for evolving population 
*/ 
 
    /* GA parameters */ 
    private static final double mutationRate = 0.015; 
    private static final int tournamentSize = 5; 
    private static final boolean elitism = true; 
 
    // Evolves a population over one generation 
    public static Population evolvePopulation(Population pop) { 
        Population newPopulation = new Population(pop.populationSize(), false); 
 
        // Keep our best route  if elitism is enabled 
        int elitismOffset = 0; 
        if (elitism) { 
            newPopulation.saveTour(0, pop.getFittest()); 
            elitismOffset = 1; 
        } 
 
        // Crossover population 
        // Loop over the new population's size and create individuals from 
        //current population 
        for (int i = elitismOffset; i < newPopulation.populationSize(); i++) { 
            // Select parents (previous route) 
            Tour parent1 = tournamentSelection(pop); 
            Tour parent2 = tournamentSelection(pop); 
            // Crossover parents 
            Tour child = crossover(parent1, parent2); 
            // Add offspring route  to new population 
            newPopulation.saveTour(i, child); 
        } 
 
        // Mutate the new population a bit to add some new genetic material 
        for (int i = elitismOffset; i < newPopulation.populationSize(); i++) { 
            mutate(newPopulation.getTour(i)); 
        } 
 
        return newPopulation; 
    } 
 
    // Applies crossover to a set of parents and creates offspring 
    public static Tour crossover(Tour parent1, Tour parent2) { 
        // Create new child route  
        Tour child = new Tour(); 
 
        // Get start and end sub tour positions for parent1's tour 
        int startPos = (int) (Math.random() * parent1.tourSize()); 
        int endPos = (int) (Math.random() * parent1.tourSize()); 
 
        // Loop and add the sub tour from parent1 to our child 
        for (int i = 0; i < child.tourSize(); i++) { 
            // If our start position is less than the end position 
            if (startPos < endPos && i > startPos && i < endPos) { 
                child.setCity(i, parent1.getCity(i)); 
            } // If our start position is larger 
            else if (startPos > endPos) { 
                if (!(i < startPos && i > endPos)) { 
                    child.setCity(i, parent1.getCity(i)); 
                } 
            } 
        } 
 
        // Loop through parent2's city route  
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        for (int i = 0; i < parent2.tourSize(); i++) { 
            // If offspring doesn't have the city add it 
            if (!child.containsCity(parent2.getCity(i))) { 
                // Loop to find a spare position in the offspring's route  
                for (int ii = 0; ii < child.tourSize(); ii++) { 
                    // Found empty slots in the route,  add city 
                    if (child.getCity(ii) == null) { 
                        child.setCity(ii, parent2.getCity(i)); 
                        break; 
                    } 
                } 
            } 
        } 
        return child; 
    } 
 
    // Mutate a tour using swap mutation 
    private static void mutate(Tour tour) { 
        // Loop through tour cities 
        for(int tourPos1=0; tourPos1 < tour.tourSize(); tourPos1++){ 
            // Apply mutation rate 
            if(Math.random() < mutationRate){ 
                // Get a second random position in the tour 
                int tourPos2 = (int) (tour.tourSize() * Math.random()); 
 
                // Get the cities at target position in tour 
                City city1 = tour.getCity(tourPos1); 
                City city2 = tour.getCity(tourPos2); 
 
                // Swap them around 
                tour.setCity(tourPos2, city1); 
                tour.setCity(tourPos1, city2); 
            } 
        } 
    } 
 
    // Selects candidate tour for crossover 
    private static Tour tournamentSelection(Population pop) { 
        // Create a tournament population 
        Population tournament = new Population(tournamentSize, false); 
        // For each place in the tournament get a random candidate tour and 
        // add it 
        for (int i = 0; i < tournamentSize; i++) { 
            int randomId = (int) (Math.random() * pop.populationSize()); 
            tournament.saveTour(i, pop.getTour(randomId)); 
        } 
        // Get the fittest tour 
        Tour fittest = tournament.getFittest(); 
        return fittest; 
    } 
} 
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Population.java 
 
package geneticalgo; 
 
/** 
 * 
 * @author sarah 
 */ 
public class Population { 
    /* 
* Population.java 
* Manages a population of candidate tours 
*/ 
 
    // Holds population of tours 
    Tour[] tours; 
 
    // Construct a population 
    public Population(int populationSize, boolean initialise) { 
        tours = new Tour[populationSize]; 
        // If we need to initialise a population of tours do so 
        if (initialise) { 
            // Loop and create offspring route  
            for (int i = 0; i < populationSize(); i++) { 
                Tour newTour = new Tour(); 
                newTour.generateIndividual(); 
                saveTour(i, newTour); 
            } 
        } 
    } 
     
    // Saves generated offspring route  
    public void saveTour(int index, Tour tour) { 
        tours[index] = tour; 
    } 
     
    // Gets a route  from population 
    public Tour getTour(int index) { 
        return tours[index]; 
    } 
 
    // Gets the best route  in the population 
    public Tour getFittest() { 
        Tour fittest = tours[0]; 
        // Loop through cities to find fittest 
        for (int i = 1; i < populationSize(); i++) { 
            if (fittest.getFitness() <= getTour(i).getFitness()) { 
                fittest = getTour(i); 
            } 
        } 
        return fittest; 
    } 
 
    // Gets population size 
    public int populationSize() { 
        return tours.length; 
    } 
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Tour.java 
 
package geneticalgo; 
 
/** 
 * 
 * @author sarah**/ 
 
 
import java.util.ArrayList; 
import java.util.Collections; 
 
 
public class Tour { 
    /* 
* Tour.java 
* Stores a candidate tour 
**/ 
     
 
    // Holds our tour of cities 
    private ArrayList tour = new ArrayList();  
  // tour/ possible route is represented in array 
    private double fitness = 0; // fitness of the route, the higher the better 
    private int distance = 0; // distance of the city  
     
    // Constructs a blank tour 
    public Tour(){ 
        for (int i = 0; i < TourManager.numberOfCities(); i++) { 
            tour.add(null); 
        } 
    } 
     
    public Tour(ArrayList tour){ 
        this.tour = tour; 
    } 
 
    // Creates a random individual (select any initial city) 
    public void generateIndividual() { 
        // Loop through all our destination cities and add them into the pool 
        for (int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) { 
          setCity(cityIndex, TourManager.getCity(cityIndex)); 
        } 
        // Randomly reorder the tour (random selection) 
        Collections.shuffle(tour); 
    } 
 
    // Gets a city from the tour 
    public City getCity(int tourPosition) { 
        return (City)tour.get(tourPosition); 
    } 
 
    // Sets a city in a certain position within a tour 
    public void setCity(int tourPosition, City city) { 
        tour.set(tourPosition, city); 
        // If the tours been altered we need to reset the fitness and distance 
        fitness = 0; 
        distance = 0; 
    } 
     
    // Gets the tours fitness 
    public double getFitness() { 
        if (fitness == 0) { 
            fitness = 1/(double)getDistance(); 
        } 
        return fitness; 
    } 
     
    // Gets the total distance of the tour 
    public int getDistance(){ 
        if (distance == 0) { 
            int tourDistance = 0; 
            // Loop through all possible cities in the routes 
            for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) { 
                // Get last point of city where are travelling from 
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                City fromCity = getCity(cityIndex); 
                // City we're travelling to 
                City destinationCity; 
                // Check if not last city  last city, then set course to travel back to intial city  
                if(cityIndex+1 < tourSize()){ 
                    destinationCity = getCity(cityIndex+1); 
                } 
                else{ 
                    destinationCity = getCity(0); 
                } 
                // Get the distance between the two cities 
                tourDistance += fromCity.distanceTo(destinationCity); 
            } 
            distance = tourDistance; 
        } 
        return distance; 
    } 
 
    // Get number of cities on our tour 
    public int tourSize() { 
        return tour.size(); 
    } 
     
    // Check if the tour contains a city 
    // Reconfirm to ensure that none of the city is missing (mutation probabilty) 
    public boolean containsCity(City city){ 
        return tour.contains(city); 
    } 
     
    @Override 
    public String toString() { 
        String geneString = "|"; 
        for (int i = 0; i < tourSize(); i++) { 
            geneString += getCity(i)+"|"; 
        } 
        return geneString; 
    } 
} 
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Tour Manager.java  
package geneticalgo; 
 
/** 
 * 
 * @author sarah**/ 
 
 
import java.util.ArrayList; 
import java.util.Collections; 
 
 
public class Tour { 
    /* 
* Tour.java 
* Stores a candidate tour 
**/ 
     
 
    // Holds our tour of cities 
    private ArrayList tour = new ArrayList();  
  // tour/ possible route is represented in array 
    private double fitness = 0; // fitness of the route, the higher the better 
    private int distance = 0; // distance of the city  
     
    // Constructs a blank tour 
    public Tour(){ 
        for (int i = 0; i < TourManager.numberOfCities(); i++) { 
            tour.add(null); 
        } 
    } 
     
    public Tour(ArrayList tour){ 
        this.tour = tour; 
    } 
 
    // Creates a random individual (select any initial city) 
    public void generateIndividual() { 
        // Loop through all our destination cities and add them into the pool 
        for (int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) { 
          setCity(cityIndex, TourManager.getCity(cityIndex)); 
        } 
        // Randomly reorder the tour (random selection) 
        Collections.shuffle(tour); 
    } 
 
    // Gets a city from the tour 
    public City getCity(int tourPosition) { 
        return (City)tour.get(tourPosition); 
    } 
 
    // Sets a city in a certain position within a tour 
    public void setCity(int tourPosition, City city) { 
        tour.set(tourPosition, city); 
        // If the tours been altered we need to reset the fitness and distance 
        fitness = 0; 
        distance = 0; 
    } 
     
    // Gets the tours fitness 
    public double getFitness() { 
        if (fitness == 0) { 
            fitness = 1/(double)getDistance(); 
        } 
        return fitness; 
    } 
     
    // Gets the total distance of the tour 
    public int getDistance(){ 
        if (distance == 0) { 
            int tourDistance = 0; 
            // Loop through all possible cities in the routes 
            for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) { 
                // Get last point of city where are travelling from 
                City fromCity = getCity(cityIndex); 
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                // City we're travelling to 
                City destinationCity; 
                // Check if not last city  last city, then set course to travel back to intial city  
                if(cityIndex+1 < tourSize()){ 
                    destinationCity = getCity(cityIndex+1); 
                } 
                else{ 
                    destinationCity = getCity(0); 
                } 
                // Get the distance between the two cities 
                tourDistance += fromCity.distanceTo(destinationCity); 
            } 
            distance = tourDistance; 
        } 
        return distance; 
    } 
 
    // Get number of cities on our tour 
    public int tourSize() { 
        return tour.size(); 
    } 
     
    // Check if the tour contains a city 
    // Reconfirm to ensure that none of the city is missing (mutation probabilty) 
    public boolean containsCity(City city){ 
        return tour.contains(city); 
    } 
     
    @Override 
    public String toString() { 
        String geneString = "|"; 
        for (int i = 0; i < tourSize(); i++) { 
            geneString += getCity(i)+"|"; 
        } 
        return geneString; 
    } 
} 
 
 
 
     


