

Application of Genetic Algorithm in solving
Tourist Routing Problem

By

Siti Sarah Binti Yusof

13915

Dissertation submitted in partial fulfillment of

the requirements for the
Bachelor of Technology (Hons)

(Information & Communication Technology)

SEPT 2013

Universiti Teknologi PETRONAS

Bandar Sri Iskandar,

31750 Tronoh,

Perak Darul Ridzuan, Malaysia.

	
 	
 i	

CERTIFICATION OF APPROVAL

APPLICATION OF GENETIC ALGORITHM IN SOLVING
TOURIST ROUTING PROBLEM

By

Siti Sarah Binti Yusof

13915

Dissertation submitted to the
Information & Communication Programme

Universiti Teknologi PETRONAS
In partial fulfillment of the requirement for the

Bachelor of Technology (Hons) (Information & Communication Technology)

Approved by,

(Mr. Izzatdin Abdul Aziz)

UNIVERSITI TEKNOLOGI PETRONAS
BANDAR SRI ISKANDAR,
31750, TRONOH, PERAK

SEPT 2013

	
 	
 ii	

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and

acknowledgements, and that the original work contained herein have not undertaken

or done by unspecified sources or persons.

SITI SARAH BINTI YUSOF

	
 	
 iii	

ABSTRACT

Normally, tourist will experience dilemma in planning their tour route especially

when they visited foreign country for the first time. Manually mapping the cities and

searching the information on the Internet can be very exhaustive. Besides these,

tourist also faced a dilemma on how to travel across different cities efficiently and at

shortest distance. This can also be known as Tourist Routing Problem (TRP). TRP is

a variance of Travelling Salesman Problem (TSP) which can defined by finding the

optimal path to travel from point A to point B by going through the same place not

more than twice at a shortest distance. After completing a thorough comparative

study, the author decided to apply Genetic Algorithm (GA), which is one of the best

heuristic solutions to date in solving TRP. A rapid-prototyping methodology had

been chosen because the author can immediately alter the prototype if there are any

changes in the requirements. An Android mobile application will be utilized as a

platform to test the effectiveness of GA in solving TRP. To support this, simulation

and experiments will be conducted to evaluate the performance and speedup of the

algorithm. Besides focusing on finding the best shortest distance route to travel, this

application will enable tourist to select places to visit according to their preferences

and activities that will be happening at that particular place.

	
 	
 iv	

ACKNOWLEDGEMENT

First and foremost, I would like to express my gratitude to Allah S.W.T for His

blessings and mercy that He instills in myself to face many challenges and thus

complete this work for my Final Year Project (FYP).

Secondly, I am grateful that for the past 28 weeks, I had managed to complete this

project with the guidance of Mr. Izzatdin Abdul Aziz. Under his supervision, he

constantly encourages me to complete the project with outmost dedication and

commitment. Besides, Mr. Izzatdin ensure that there is no gap between a student and

a lecturer that made us, the students very comfortable to tell him any problem we

faced while completing this project. I am grateful that I have a very understanding

lecturer that always gives different opinion or perspective whenever we are

discussing an issue or problem. Not to mention his dedication, I cannot be more

thankful for his great support and believe in me that I can complete this project

successfully. May Allah S.W.T always bless your for your kindness and

commitment.

Together with this, I would like to thank my mother, Ms. Robiah Sariff and my

family for understanding the late nights and the importance of completing this

project in order for me to complete my degree.

Last but not least, I would like to acknowledge my friends and other personnel not

mentioned above whom gave me such a great support in completing this project. I

would also like to apologize for all the wrongdoings or problems arise. All of your

kindness and cooperation are highly appreciated and will be fondly remembered.

	
 	
 v	

	

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL i
CERTIFICATION OF ORIGINALITY ii
ABSTRACT iii
ACKNOWLEDGEMENT iv
LIST OF FIGURES vii
LIST OF TABLES viii
ABBREVATIONS ix

CHAPTER 1: INTRODUCTION 1

1.1 Background of The Study 1
1.2 Problem Statement 2

1.2.1 Problem Identification 2
1.2.2 Significance of the Project 3

1.3 Objectives and Scope of Study 4
1.3.1 Objective 4
1.3.2 Scopes of Study 4

1.4 Feasibilities of the Project 5
1.4.1 Technical feasibility 5
1.4.2 Economic Feasibility 5
1.4.3 Operational Feasibility 5
1.4.4 Schedule Feasibility 5

CHAPTER 2: LITERATURE REVIEW 6

2.1 What is Travelling Salesman Problem (TSP)? 6
2.2 What is Travelling Routing Problem (TRP)? 7
2.3 Malaysia as a Tourist Destination Place 7
2.4 Famous local attractions in Malaysia 9
2.5 Travel Destination Decision Making 10
2.6 Main application of TRP & TSP 11
2.8 What is Genetic Algorithm? 13
2.9 What is Android? 14
2.10 Why Android? 14
2.11 Comparative Study on Existing Mobile Application 15

CHAPTER 3: RESEARCH METHODOLOGY 16

3.1 Project Method & Activities 16
3.1.1 Planning and Requirements Gathering 17
3.1.2 Analysis & Design 17
3.1.3 Prototype Development 17
3.1.4 Prototype Evaluation & Testing 18
3.1.5 Implementation 18

	
 	
 vi	

3.2.1 Overview of Project Activities 18
3.2.2 Qualitative Survey 19

3.3 System Architecture 19
3.4 Requirement Analysis and Specification 20

3.4.1 Genetic Algorithm 20
3.5 Tools and Equipment 21

3.5.1 Hardware 21
3.5.2 Software 21

3.6 Key milestones & Gantt chart 22

CHAPTER 4 : RESULTS AND DISCUSSION 23

4.1 Genetic Algorithm Calculation for Shortest Distance Route 23
4.2 Eliminating the possibility of redundancy in path planning in solving TRP 25
4.3 Performance Evaluation of GA in solving TRP 26
4.4 Speedup of the GA in solving TRP with increasing number of cities selected 27
4.5 System Design
 29

CHAPTER 5 : CONCLUSION 32

5.1 Conclusion 32
5.2 Recommendation 32

REFERENCES 33
APPENDICES 35

Appendix 1: Gantt Chart 36
Appendix 2: Key Milestones 37
Appendix 3: Algorithm Codes in Java Language 38

	
 	
 vii	

LIST OF FIGURES

Figure 1.1 Mr. Steve’s scenario 2

Figure 1.2 Example of travel destination planning using TRP 3

Figure 2.1: The cluster of cities before and after going through 13

 Genetic Algorithm

Figure 3.1: Research Methodology Diagram 16

Figure 3.2: Overview of overall project activities 18

Figure 3.3 System Architecture for the Mobile Application 19

Figure 4.1 Genetic Algorithm cycle 23

Figure 4.2 Offspring route generated from crossover and mutation 24

Figure 4.3 Maps that consists of 20 cities 25

Figure 4.4 Shortest distance route for 5 cities with GA. 25

Figure 4.5 Shortest distance route for 10 cities with GA. 25

Figure 4.6 Shortest distance route for 15 cities with GA 25

Figure 4.7 Shortest distance route for 20 cities with GA 26

Figure 4.8 Performance Evaluation of GA in solving TRP with 27

 different sets of cities selected.

Figure 4.9 Speedup of GA in solving TRP with different sets of cities selected. 28

Figure 4.10 Welcome page of the application 29

Figure 4.11 Place of interest selection according to the categories 29

Figure 4.12 List of cities included in the Shopping Heaven category 29

Figure 4.13 Shortest distance calculation is projected to the user 30

	
 	
 viii	

LIST OF TABLES

Table 2.1 10 highest tourist nationalities that visited Malaysia in 2012 8

Table 2.2: Tourist attractions in Malaysia according to categories 10

Table 2.3 Possible solutions to TRP&TSP 13

Table 2.4 Important elements of Genetic Algorithms 14

Table 2.5: Existing mobile application that is related to the project 15

Table 3.1 Analysis and comparative study conducted 19

 before project development

Table 3.2 Important elements in Genetic Algorithm 20

Table 3.3 Constant parameters that need to be declared in Genetic Algorithm 21

	
 	
 ix	

 ABBREVATIONS

3D 3 – Dimensional

AR Augmented Reality

FYP Final Year Project

GA Genetic Algorithm

GPS Global Positioning System

RAM Random Access Memory

TRP Tourist Routing Problem

TSP Travelling Salesman Problem

UTP Universiti Teknologi PETRONAS

VRP Vehicle Routing Problem

	
 	
 1	

CHAPTER 1

INTRODUCTION

1.1 Background of The Study

Hwang et. al. (2008) reported that millions of tourist utilized information provided

by more than 70 thousands travel-related website when the search “Travel” keyword

in Google to plan for their holiday. Most of the tourist faced problem on how to

maximized number of tourist attractions that they can visit in their itinerary. They

need to consider many factors such as time, cost, interest and mode of transportation

before deciding which places to visit.

When tourist faced dilemma on which place to travel during their visit, they

prioritize on how to minimize the total distance that need to be travel based on their

interest. This dilemma is known as Tourist Routing Problem (TRP). It is a variance

of Travelling Salesman Problem (TSP). This problem can be defined by, given N set

of cities or places to be visited, how to travel from point A to point B by going

through various cities with the best shortest distance possible. In this research, the

author will be focusing on suggesting the best route to travel based on shortest

distance by applying Genetic Algorithm (GA).

To test the effectiveness of GA in solving TRP, an Android application will be

utilized as a platform. In order to proof the concept, the author will also evaluate the

performance and speedup of the algorithm in solving TRP. This application target

user will be foreign tourist that is visiting Malaysia for the first time. The application

will also function as information center where tourist can get information about the

places to visit such as the location, opening hours, and ongoing activities at that

particular place. Tourist can also choose places that they would like to visit based on

their preferences in the mobile application.

	
 	
 2	

1.2 Problem Statement

1.2.1 Problem Identification

Given a scenario, Mr. Steve is an American tourist who comes to Malaysia

for his summer holiday. This is his first visit to Malaysia and he is travelling

alone for 4 days and 3 nights. Mr. Steve is a person who is very passionate

about history and he would love to learn about the history of our unique

multi- cultural country.

Figure 1.1 Mr. Steve’s scenario

He did his own research on best places or tourist attractions to visit that suit

his preference and he try to manually plan his itinerary. However, due to

certain limitations, he cannot find the best route planning application on the

Internet that can help him to arrange his tour based on his preference and at

shortest travel distance possible.

Realistically, a normal tourist would like to travel through various places in

Malaysia efficiently, the distance between each location will be random;

therefore the time and cost taken to travel through each location will be

different as well. Therefore, by applying TRP, tourist will be able to find the

best route to travel from initial location A to location B through various

	
 	
 3	

locations, shortest distance to travel will be able to help tourist to travel

throughout Malaysia at their own leisure time.

Figure 1.2 Example of travel destination planning using TRP

Even though this problem can be solved with a map, pencil and ruler, it can

be very exhaustive if there is more than 6 cities or locations that the tourist

would like to visit. Besides, some tourist would also like to travel through

various locations according to their preference and interest during their stay

in Malaysia. Providing a selection of attractions segregated based categories

such as shopping malls, museums, national parks, beaches and historical

sites, these can assist tourist in making a better decision during their visit.

1.2.2 Significance of the Project

Researchers have been conducting many studies on the application of TSP in

daily life. Many studies had been conducted in various areas such as

detection of cancerous cells, computation of DNA, and vehicle-routing

problem. In this project, the author will focus on solving TRP, on the scope

of tourism and tourist routing problem. First, the significance of this project

is to prevent redundancy in path planning by eliminating the possibility of

travelling across same city twice. Known as one of heuristic algorithm, the

author will also evaluate the performance of GA in solving TRP by

	
 	
 4	

conducting experiments and simulations as number of cities increases. With

the results projected by the testing conducted, the author will also be able to

measure the speedup of the application in suggesting the best shortest

distance route for tourist to travel.

1.3 Objectives and Scope of Study

 1.3.1 Objective

• To study the effectiveness of Genetic Algorithm in solving TRP

A study will be conducted on the Genetic Algorithm in order to proof the

concept that this algorithm is effective in solving TRP even though is it’s a

heuristic algorithm. In this project, we will focus on the scope of tourism.

Simulations and experiments will be conducted to measure the performance

and speedup of the algorithm.

• To implement GA in finding the shortest distance to travel across

different cities without going through same city twice.

The algorithm will be tested on an Android mobile application that will act as

a platform to suggest the best shortest distance route for tourist to travel

across different cities or places without going through the same place twice.

The application will also enable tourist to select places that they would like to

travel based on their preferences.

1.3.2 Scopes of Study

The scope of this research is to focus on finding the shortest distance route

travel destination planning by applying TRP. It is assume that location

choices for the destination are already pre-defined and the distance of the city

is calculated based on the coordinate between the cities. Termination criteria

will also need to be defined by tourist, which in this case, maximum distance

that the tourist would like to travel in a day/period since Genetic Algorithm is

a heuristic algorithm that will require a parameter to terminate the algorithm

once the criteria has been met.

	
 	
 5	

1.4 Feasibilities of the Project

1.4.1 Technical feasibility

This project requires knowledge and skills in programming in Java in which

the algorithm will be developed and building a mobile application using

Android platform. The content can be extracted from any third-party website

that is available on the Internet regarding tourism.

1.4.2 Economic Feasibility

 Currently, there is no extra cost that needs to fund the project because the

algorithm and mobile application is developed using a personal computer

workstation and simple mobile application developer that is free of charge.

1.4.3 Operational Feasibility

This project will be able to meet the objective since the authors have

narrowed the scope. Once it is completed, it will be able to assist foreign and

local tourist to plan their tour when they visited Malaysia.

1.4.4 Schedule Feasibility

The limitation of the project will be its tight schedule since the duration is

only limited to 28 weeks (FYP1 and FYP2 together). Below are the

timeframes, which can be considered as timely feasible:

FYP1

• Data gathering

• Development of the algorithm

• Interface development

FYP2

• Development of the prototype

• User and functionality testing

• Final documentation

	
 	
 6	

CHAPTER 2

LITERATURE REVIEW

2.1 What is Travelling Salesman Problem (TSP)?

TSP is a very famous mathematical problem has been firstly introduced in the 18th

 Century. Sir William Rowam Hamilton, an Irish Mathematician and Thomas

Penyngton, a British mathematician introduced it in the early stage and further

developed by Hassler, Whitney & Merill in Princeton in a more normal form.(Matai,

Mittal&Singh,2011). Yong (2009) also mentioned that TSP is one of the benchmark

for optimization problem. Gupta and Khurana (2012) believed that TSP has been

proven that it is an NP-complete problem that has no definite optimal solution or

efficient way to solve if there is a large size problem. It is as defined finding the

optimum path to visit all cities starting from the initial point and returned back at the

same point with the consideration to minimize the travel cost at shortest distance.

According to Matai, Mittal and Singh, (2011):

“ The complexity of the TSP is defined as given n is the number of cities to be visited,

the total number of possible routes covering all cities can be given as a set of

feasible solutions of the TSP and is given as (n-1)! /2.”

It is clearly explained, given a set 6 cities to be visited, there will be 6! Sets of

possible routes that equals to 720 possible routes that we can derive from this travel.

However, in TSP, we need to focus on finding the best possible path that can

minimized the distance that we need to travel between the cities without going

through the same point twice. An exact TSP can also be classified into three types,

which are symmetric travelling salesman problem (sTSP), asymmetric travelling

salesman problem (aTSP), and multi travelling salesman problem (mTSP). TSP has

	
 	
 7	

many applications in our real life that will be further explained in the next part of the

literature review.

2.2 What is Tourist Routing Problem (TRP)?

According to Yong (2009), manual path planning can be very exhaustive and time

consuming. He believed that this is due to the fact that we need to use brute-force to

find all the best route possibilities. It will take a lot of time to simply find the best

route to travel across different places at the same time. The dilemma has been

described as Tourist Routing Problem (TRP). TRP is a variance of Travelling

Salesman Problem (Hashimoto et al., 2006). It is similar to the Vehicle Routing

Problem (VRP), which has been introduced by Danziq and Ramser in 1960.

VRP can be defined by delivering a set of customers with known demands or time –

window (Chang &Chen, 2007). The cost constraints of the problem are limited to

soft time window and time to travel (Hashimoto et. al, 2006). They also stated that

VRP use local search to determine the possible route. Both constraints in VRP and

TRP have the same objectives, which is to visit the same place once besides finding

the minimum distance for them to travel. Since TRP and VRP are both derivative of

TSP, it is still considered as NP- complete problem (Non-deterministic polynomial-

time complete) because when we put the constraints normally, it can be solve by

using a simple dynamic programming and vice versa.

2.3 Malaysia as a Tourist Destination Place

Malaysia, ranked as 9th most visited place in the world are apparent to the tourist due

to their rich in culture heritage, multi-cultural community, various annual festivities,

wonderful cuisines and traditional crafts (Ledesma et al, 2012). Boasting beautiful

sandy beaches and oldest tropical rainforest in the world as the main attraction for

tourist to flood in every year. They also believed that the national parks are perfect

for water rafting, cave exploration and wildlife watching that will provide challenge

for tourist who loves adventures. According to Home Minister Ng Yen Yen (2013),

Malaysian’s tourism will boost up due to our rich culture and nature heritage which

	
 	
 8	

can be clearly seen in famous cities such as in Penang and Malacca which has been

certified as UNESCO’S World Historical Sites.

It was estimated that over 25.03 millions of visitors flood in Malaysia in 2012, which

is an increase of 1.3% compared to 2011. (UNWTO, 2013). Malaysia is an all- year

round humid weather country are suitable to visit anytime and the peak season is

during the summer holiday season with visitors from Middle East, Singapore, and

Australia. Table below shows the 10 highest tourist nationalities that visited

Malaysia in 2012.

Table 2.1 10 highest tourist nationalities that visited Malaysia in 2012

(Source: Tourism Malaysia)

Besides, Malaysia is estimated to gain a net profit of RM 60.3 billion due to tourism

each year and will be the third largest foreign earning section for the country’s

economy. Tourism also flourishes the country’s related tourism occupational

opportunity for the locals. The country not only boost their culture and natural

heritage as the main attraction, but local foods, shopping heavens, homestay, theme

parks , fine arts and creativity and other parts of truly Asian tourism. Malaysia aimed

	
 	
 9	

to be the best place to visit in the world that with the help of regional and

international collaboration that can lead to development of tourism in Malaysia.

2.4 Famous local attractions in Malaysia

Below is the list of famous local attractions in Malaysia that has been frequently by

foreign and local tourist each year.

Islands and
Beaches

• Langkawi, Kedah
• Pangkor,Perak
• Penang Island
• Redang Island
• Tenggol Island, Terengganu
• Tunku Abdul Rahman National Park
• Perhentian Islands
• Kapas Island
• Lang Tengah Island
• Rantau Abang Beach
• Mabul
• Tioman Island
• Sipadan

National Parks • Bako National Park, Sarawak
• Batang Ai National Park, Sarawak
• Gunung Mulu National Park, Sarawak
• Gunung Gading National Park, Sarawak
• Lambir Hills National Park, Sarawak
• Niah Caves National Park, Sarawak
• Loagan Bunut National Park, Sarawak
• Kinabalu National Park, Sabah
• Taman Negara National Park – spanning from

Kelantan, Pahang and Terengganu (World Oldest
Rainforest)

• Endau Rompin National Park, Johor
Shopping Malls
and Centers

• Berjaya Times Square KL, KL
• Bukit Bintangwalk, KL
• Suria KLCC,KL
• Pavillion, KL
• Midvalley Megamall, KL
• Queensbay Mall, Penang

	
 	
 10	

• Johor Premium Outlets, Johor
Theme Parks • A' Famosa Resort, Malacca

• Sunway Lagoon, Selangor
• LEGOLAND, Johor Bahru
• Hello Kitty Land, Johor Bahru
• Lost World of Tambun,Perak
• Genting Highlands, Pahang
• Bukit Merah Laketown Resort, Perak

Zoo and Animal
Protection Park

• National Zoo of Malaysia (Zoo Negara), KL
• Kuala Gandah Elephant Sanctuary
• Kuala Lumpur Bird Park, KL
• Kuala Lumpur Butterfly Park, KL
• Sepilok Orang Utan Sanctuary

High Hills • Masjid Negara
• Merdeka Square
• Cameron Highlands

• Bukit Larut
• Bukit Fraser
• Genting Highlands

Historical Sites
or Monuments

• Masjid Negara
• Merdeka Square
• Tugu Negara
• Stadium Negara
• Malacca
• Georgetown

Table 2.2: Tourist attractions in Malaysia according to categories

2.5 Travel Destination Decision Making

According to Hwang et al. (2008), complicated, multifaceted decision process is

required to make a decision in travelling. It is defined that in tourist decides which

location to visit according to their place of interest and also any tourism services

available at the location. Considering the place’s attractions, timing, transportation,

activities, accommodation and other facilities are also important. They conclude that

destination choice is selecting a focal place to visit among numerous alternative

places in order to satisfy the tour goals.

	
 	
 11	

Many studies assume that tourist decides the best place to visit by assessing the cost,

maximizing their utility and benefits that they will get from selecting specific

location as their tour destination. According Hewitt (2012), tourist need to be able to

carefully arranging their stay due to their first time experience visiting a foreign

country. They need to carefully “map out” their travel itinerary either through they

decision whether to visit the nearest location possible, undertook a cheaper cost

travel tour or visiting places that they might find interesting activities conducted

there.

Hewitt also suggested that tourist should also plan on how many cash that they

would like to carry throughout their tour in case of emergency and it sometimes can

be too dangerous to carry a lot of cash in hand. Hwang (2012) stated that socio

demographic factors could also influence travel decision-making process such as

their age, marital status, education and also level of income. In conclusion, selecting

and planning travel destinations while travelling is not solely depend on utility

maximization but also situational factors.

2.6 Main application of TRP & TSP

In real life, there were abundance of problems that can be modeled using TSP. Yong

(2009) in his paper mentioned that there were varieties of TSP application such as

planning, logistics, and manufacturing of micro-chip. He also stated that there are

abundant sub-derivative of TSP such as DNA sequencing and also routing problem.

Since TRP is a variance of TSP, it can be seen from the main application of routing

planning for school bus, army mission planning, and museum visitor problem. In the

instance school bus problem, found that some constraints need to be taken into

consideration to solve the problem. In order to find the best possible route schedule,

the number of route need to be small, have minimum travel distance, time consumed

to travel using the route did not exceed maximum time constraints.

 As for army mission planning, reported that it involves planning the best path for

each army to reach their goal or mission in minimum possible time. The problem is a

bit more complex since it will need to take into consideration of n army, m goals,

	
 	
 12	

and base city or initial point where all of the army must return. It is considered that

each salesman has a fixed cost, f by solving the algorithm through relaxing the SECs

and performing a check as to whether any of the SECs are violated, after an integer

solution is obtained.

Looking back at the museum visitor routing problem, the problem is applied when

all of the visitors share the same interest (Yu, Lin, &Chou, 2010). In this case, some

of the visitors will visit the same route and some will be divided into different route.

Yu, Lin & Chou suggested that the routes are need to be plan in order to save the

time to conduct to visit and divided into groups of visitors that share the same

interest. The time to visit each place can vary due to certain exhibition might interest

the visitor more than other exhibitions so time –window of different route and at

certain place might vary. Therefore, a proper planning for the visitor’s route could

help reduce the congestion at certain place or prolonged tour time.

2.7 Comparative study on the possible solution for TRP & TSP

Algorithm Characteristics Comparison

Heuristic

Algorithm

- Simplification algorithm that

reduce or limits the search for

algorithm those are difficult to

understand.

-Does not guarantee optimal

solution

Memetic

Algorithms

-Combination of several techniques

(local search and crossover from

genetic algorithm.

-Use local heuristic to determine

how to define iteration.

-Very difficult to program in a short

time.

-Very detailed and have many

inputs to be processed

Ant colony

algorithm

-Based on studies of ant colony.

- Each colony can form new colony

- Can find optimal solutions up to

100 cities only

Genetic

Algorithm

-Based on the theory of evolution

- Break into smaller parts to find the

fitness value.

- Heuristically find optimal path

until it reach the stopping criteria

- Very thorough algorithm that

handles all possibilities to get

optimal path until it reach the

stopping criteria.

Table 2.3 Possible solutions to TRP&TSP

	
 	
 13	

2.8 What is Genetic Algorithm?

Genetic algorithm is one of the best heuristic algorithms that is widely utilize to

solve TSP derivative that includes TRP which also due to wide application of TSP in

real life. Originating from the Greek word “genesis” in which literally translates to “

to become” or “to grow”, it follows the principles of Genetics and Evolution (Gupta

& Khurana, 2012). It is basically a step-by-step search technique to find approximate

solutions to optimization problem. Basically, an optimization problem looks really

simple.

 BEFORE AFTER

Figure 2.1: The cluster of cities before and after going through Genetic Algorithm.

One knows the form of all possible solutions corresponding to particular problem.

Depending on the number of cities that will be visited, all the possibility can be

known but the objective was to find the optimal path. Gupta and Khurana stress that

genetic algorithm will go through each and one of possible population (routes). Each

solution is represented by a chromosome, which in this project, the solution will

refers to possible route. It uses the concept of mutation, crossover and recombination

to solve the problem.

Due to fact that TRP is an NP-complete problem, Genetic Algorithm is considered as

an exact method that can find the exact optimal solution (Kiraly and Abonyi, 2010).

However, problem will still occur if the problem is too large in size. There are few

elements that need to be considered in Genetic Algorithm in order to find the optimal

path to travel throughout the entire place without going through the same place

twice.

	
 	
 14	

Elements Explanation

Genetic

coding

 - How to represent the cities

 - Can choose either to represent it in path or array.

Fitness

function

- Value that will be assigned to each node/route.

- The higher the value, fi, the greater chance it will be chosen

as optimal path.

Selection - Choose two cities to be crossover to form new route

- Can either choose “roulette wheel” selection or random

selection.

Crossover - To ensure that none of the cities is repeated or missed out

- Can use order crossover, cycle crossover, or partially

matched crossover

Mutation - To discard the less fi value route and store it in their

memory

- To ensure that no important features are lost such as random

selection of the cities.

Table 2.4 Important elements of Genetic Algorithms

2.9 What is Android?

Android is an operating system for mobile-based platform. It is Linux-based and

designed to be used on touchscreen mobile devices such as smartphone and tablets.

Introduced in 2005, when Google Inc bought it from Android Inc. In 2012, it is now

currently the biggest operating system in terms of user demographic in Malaysia that

overtook Symbian (Nokia) and iOS (Apple) and Blackberry OS by 43.16%.

2.10 Why Android?

In order to run this application, a platform is required. This project application will

require a platform As Android is the fastest growing mobile application platform

available in the market, it ensures sustainability and constant improvements of the

application. Huge user demographic can ensure that application that is made

available in the Google Play can be downloaded for free or per pay.

	
 	
 15	

It features as an open-source operating system, which is free, and the development of

application would be much easier with the support from online community. Creating

an Android mobile application can also be made easy for non- experts through

platform such as App Inventor for Android is a visual programming environment

created by Google for application development.

2.11 Comparative Study on Existing Mobile Application

Application
Name

Focus Category Strength of Product Weakness

Trip Advisor:
Kuala Lumpur
City Guide

Specific guide
application

-Specific city guide
-Works offline
-GPS based application

- No best route
suggestion to visit few
places in one trip.

Trip It Overall trip
planning

- Timely –planner that
organize all items into
travel itinerary.

-User must manually
input all information.

Poynt Suggestion based
application

-Directly connected
with local business
- Offer variety place of
interest.

-Information and
feedbacks are fixed to
tailor to business needs.

Wikitude Place of interest
information

Use AR in
disseminating
information about the
place.

-No nearest place
suggestion, which is
similar to user interest.

Route Planner Routing planning - User enter initial
point and end point of
the trip
- User can mark their
favorite route

-Functions almost
similar to Google maps

Best Route Free Routing planning -Give a whole map
view
-Abundant information
and functions

-The interface is very
hard for novice user to
use.

Google Maps Comprehensive
travel maps

-Have satellite and 3D
view of the maps
- Abundant
information
-Simple user interface

- Some specific features
are limited to certain
regions or continent
only.

Table 2.5: Existing mobile application that is related to the project

	
 	
 16	

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Project Method & Activities

Figure 3.1: Research Methodology Diagram

For this research, the author has chosen rapid-prototyping methodology as an

approach. Objective of choosing this methodology is to ensure that user

requirements will be meet, development is aligned according to the deadlines and

each testing will be conducted once the prototype is ready. Requirements gatherings

and planning in the early stage will take part and the best algorithms to solve the

problem will be taken into consideration to develop the prototype.

Planning	
 and	

Requirements	
 Gathering	
 	

Analysis	
 &Design	
 	

Prototype	
 Development	
 	

Prototype	
 Evaluation	
 &	

User	
 Testing	
 	

Implementation	

	
 	
 17	

If project encounter any problem through any stage, the manager can easily go back

one step back to ensure that it will meet its design capabilities. Upon testing,

feedbacks and criticism will be taken into consideration to ensure that the project

functions effectively and improvements immediately. The finalized prototype then

will be converted as a system for user usage.

3.1.1 Planning and Requirements Gathering

Planning phase of the research involved doing a pilot study reading based on

books, journals, articles regarding tourism, application of TSP, TRP and to

identify the problem, scope and objectives of the study. A general idea on

scope of the study such as tourism in Malaysia, possible solution to TRP and

Android Mobile Application are also necessary. Narrowing the scope of

study will ensure that the system produced will be able to meet the user

demands and needs.

3.1.2 Analysis & Design

Analysis of the requirements is conducted based on the identification of the

problem, scope and objective of the study. Objectives are further refined to

identify necessary functions or value that need to be added to the system. The

area of the study are then further researched and studied to gather necessary

information such as decision making problem for travellers, how to model

TRP, and how to embedded GA into the mobile application for testing and

with the objective to produce the best result. Correct analysis is important to

ensure that the prototype will function properly which will then produced the

literature review.

3.1.3 Prototype Development

The prototype will be build and develop at this phase according to the results

done on previous research or initial stage. The Genetic Algorithm will be first

developed using Java language and tested using Netbeans 7.3.1 to test its

effectiveness using a computer simulation. Then, it will be embedded in the

mobile application to test its functionality once the prototype is completed,

	
 	
 18	

any major problems will be change and improved after evaluation and

experiments until it satisfies the user needs.

3.1.4 Prototype Evaluation & Testing

The developed prototype will be tested by a group of user that fits the target

user demographic, which is tourist. The execution time and speedup of the

application will be tested to see whether with an increase in number of cities,

does the performance of the application increases or decreases. Tourist

response and interaction towards the prototype will be closely monitored.

Any feedbacks and criticism will be taken into accounts and improvements

will be made immediately. Re-evaluation is required to ensure that the

application will satisfy the tourist need.

3.1.5 Implementation

The finalized prototype that satisfies the user will be then called as system

and implemented to real markets by uploading the application into Google

Play.

3.2 Project Activities

3.2.1 Overview of Project Activities

 Figure 3.2: Overview of overall project activities

DeIine	

research	

problem	

Perform	
 literature	

study	
 and	

preliminary	
 research	

Data	
 collection	

	
 Prototype	

Design	

Prototype	

development	

User	

testing	

System	

deployment	

Reporting	
 and	

documentation	

	
 	
 19	

3.2.2 Requirement Gathering

Comparative study and analysis are conducted to gather requirements and

information for project developments.

Analysis Objective

Comparative study on travel destination
planning application that uses TRP. The
analysis focuses on criteria as follow:

i. Available tools that focus on finding
the shortest path to travel through
multiple location

ii. Tools that recommends user on best
path to be taken based on their
interest

i. To review on the available
application on the market.

ii. To identify each strength and
weakness of the available
applications to apply in the
system.

iii. To collect data for system
requirements.

iv. To support problem statement
Analysis on TRP approach and its possible
solutions.

i. To gather information on TRP
ii. To review on the real

application and their
effectiveness.

iii. To study and identify the best
possible algorithm as a solution.

Table 3.1 Analysis and comparative study conducted before project development

3.3 System Architecture

 Genetic Algorithm

Figure 3.3 System Architecture for the Mobile Application

User	
 Input	
 	

Optimal	
 Routing	

Suggestion	
 	

	
 	
 20	

This is the system architecture for the prototype. Figure shown that user will key-in

the necessary information into the application, for example: place of interest,

maximum distance they can travel on that day, and the cost for them to travel. The

application will then use the Genetic Algorithm to find the optimal path for the user

to travel by going thorough the all the place once at a minimized distance. It will

then project the optimal routing suggestion based on the calculation.

3.4 Requirement Analysis and Specification

Based on the above system architecture, there are few requirements that need to be

listed out in order to build the prototype and thus complete the system. Since the

back-end of the project will be using Genetic Algorithm, there are few requirements

that need to be set to ensure that the calculation will produce almost accurate results.

3.4.1 Genetic Algorithm

In order to solve TRP using Genetic Algorithm, we have to make sure that all

of these requirements are satisfied:

Elements Explanation

Genetic coding - How to represent the cities

 - Can choose either to represent it in path or route.

Fitness

function

- Value that will be assigned to each node/route.

- The higher the value, fi, the greater chance it will be

chosen as optimal path.

Selection - Choose two cities to be crossover to form new route

- Can either choose “roulette wheel” selection or random

selection.

Crossover - To ensure that none of the cities is repeated or missed out

- Can use order crossover, cycle crossover, or partially

matched crossover

Mutation - To discard the less fi value route and store it in their

memory

- To ensure that no important features are lost such as

random selection of the cities.

Table 3.2 Important elements in Genetic Algorithm

	
 	
 21	

Besides this, there are also constant parameters that need to be declared for Genetic

Algorithm to function:

Parameters Functions

Population Size - To decide how many generations (possible routes) to be generated

from the crossover and mutation.

Crossover

probability

Probability of crossover between 2 generated route.

Mutation

probability

Probability of doing mutation between 2 specific cities (ex: between

city A and city B., A-B, B-A)

Termination

criteria

Need to be declared in order for the to terminate the search (can be

distance or time)

Table 3.3 Constant parameters that need to be declared in Genetic Algorithm

3.5 Tools and Equipment

 3.5.1 Hardware

a) 4GB 1333 MHz DDR3 RAM

b) 1.6 GHz Intel Core i5

c) Samsung Galaxy S II GT-I9100 powered with Android 4.0.4 Ice Cream

Sandwich Operating System.

d) MacBook Air, 11 inch, Mid 2011 Edition

3.5.2 Software

Software to be used:

a) Android Developer Tools (ADT)

ADT consist of:

i) Eclipse and ADT Plug-in.

ii) Android Software Development Kit (SDK) Tools

iii) Android Simulator

iv) Android Platform Tools

b) NetBeans 7.3.1

	
 	
 22	

c) Macintosh Operating System, Mac OS X Mountain Lion 10.8.5

3.6 Key milestones & Gantt chart

A Gantt Chart (Appendix 1) is prepared to guide the development of the project.

Deliverables and key milestones (Appendix 2) are attached together in the Gantt

chart. Note that the timeline merge the timeline for Final Year Project I together with

Final Year Project II to make sure that the project will be able to be delivered on

time and tested with target user before released to the public.

	

	

	

	

	

	

	

	
 	
 23	

	

	

	

	

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Genetic Algorithm Calculation for Shortest Distance Route

To produce the best shortest distance route that allows the visitor to travel from the

starting point across different cities without going through the same place twice, and

return back to the same point with minimal distance, all of the requirements and

parameters as stated in the requirement analysis and specifications need to be met.

Since Genetic Algorithm is a step-by –step heuristic search, therefore there will be

steps in order to produce the best result. Figure below describe how the algorithm

work:

Figure 4.1 Genetic Algorithm cycle

Based on the algorithm, the first stage selection, an initial city will be choose based

on this two technique, either random selection or “roulette wheel” selection. In the

Selection	

-­‐choose	
 initial	

city	
 ex:	
 City	
 A	

and	
 B	
 	

Reproduction	

-­‐Produce	
 new	

combination	
 of	
 route	

from	
 the	
 city	
 	
 	

Evaluation	

-­‐	
 Fitness	
 of	
 the	

route	
 is	

evaluated	

Replacement	

-­‐	
 Route	
 with	
 higher	

Iiness	
 values	
 is	

selected	
 and	
 replaced	

with	
 new	
 route	

	
 	
 24	

application, the technique that is used is random selection in which it can select city

by determining their fitness value, fi. In the real application, the fitness value will be

the distance of that particular city.

In the reproduction stage, an allele of two routes will be choose, crossover and

mutate to form new route. The crossover type that will be used is cycle crossover in

which it is a recombination of both parent route, Rx and Ry to form offspring route,

Rz. Example:

 +

Figure 4.2 Offspring route generated from crossover and mutation

Each offspring route that has been produced in previous stage will then be given

fitness value, fi that represents its total distance that need to be travelled. In

evaluation stage, offspring route that is more fit compared to others are choose. At

the replacement stage, the fittest route will be choose as a parent and the cycle will

run heuristically until it reach its terminating criteria which in this case, the

minimized distance. The previous offspring route will then be discarded.

Since Genetic Algorithm is a heuristic solution to any derivation of TSP such as

TRP, therefore it can suggest optimal path with rather moderate size of problem.

However, with an increasing number of cities, the performance of the algorithm will

increase and speedup of the execution will also increase. The author will conduct

simulation and experiment to test the algorithm later in this report.

Rx: C1, C2, C3, C4,C5	
 Ry = C3,C4,C5,C1,C2	

Rz = C3, C4, C1,C2,C5

	

	
 	
 25	

4.2 Eliminating the possibility of redundancy in path planning in solving TRP

The author have adjusted and remodeled the existing GA to fit into the scope of

study. To proof that GA is the best heuristic solution to derivative of TSP that

includes TRP, the author conducted simulation based on different number of cities.

Below is a map that consists of 20 cities.

Figure 4.3 Map that consists of 20 cities.

This simulation will also test that whether it is possible to eliminate the possibility to

eliminate the redundancy in path planning which is travelling through same city

twice. An increase of 5 cities, 10 cities, 15 cities and 20 cities was tested as a

parameter. Figures below shows the results obtained with different variable of cities:

Figure 4.4 Shortest distance route for 5 cities with GA

Figure 4.5 Shortest distance route for 10 cities with GA.

	
 	
 26	

Figure 4.6 Shortest distance route for 15 cities with GA.

Figure 4.7 Shortest distance route for 20 cities with GA.

Based on this simulation, we have found that there is a difference is the initial

distance, which is the total distance of all cities before GA and minimum distance,

which is the distance of the shortest distance as suggested by the GA. The route

suggested by the application is also based on the shortest distance possible to travel.

It has been proved that the route suggested does not show any redundancy in path

planning since none of the city is repeated more than once in route.

4.3 Performance Evaluation of GA in solving TRP

Besides simulation, the author has also conducted an experiment, which is to

evaluate the performance of GA in solving TRP. This experiment has been done by

measuring the execution time of the application parallel to the number of cities. Line

graph below shows the result obtained by the experiment:

	
 	
 27	

Figure 4.8 Performance Evaluation of GA in solving TRP with different sets of cities
selected.

Based on the results, we can conclude that the execution time that the application

requires in order to suggest the shortest distance route decreases even though number

of cities selected by the user increases. These phenomena can be explained due to the

memory hierarchy of the device used. In this case, results of initial experiments are

stored in the system memory. Once the same or precedence calculation is being

called, this reduces the execution time significantly.

4.4 Speedup of the GA in solving TRP with increasing number of cities selected

Once the author evaluates the performance of the algorithm by conducting

experiment above, we can also tabulate the speedup of the algorithm. The calculation

of the speedup is based on:

Speedup = Execution time taken for 2 cities

 Execution Time taken for N cities

	
 	
 28	

Figure below shows the tabulation of speedup of the algorithm versus the number of

cities selected by the tourist:

Figure 4.9 Speedup of GA in solving TRP with different sets of cities selected.

Based on the results, we can conclude that the speedup of the application increases

even though number of cities selected by the user increases. Reduction in the

execution time is also due to multi-processor architecture of the device being used

for the simulation and experiments that processed information in parallel. Increased

performance in execution time and less time is required to process a large number of

cities can also be explained due to the memory hierarchy effect of the device used.

Previous route that had already been generated by the algorithm will be stored in the

RAM. This is due to the temporal locality of reference, which means that there is

chance that same information will be referred in the future. The temporal locality of

reference in this case is due to the structure of GA, in which it will store previous

route information in the RAM. With increasing number of cities selected, initial

information can be simply called and thus reduce execution time.

	
 	
 29	

Besides this, the microprocessors in the device also have trace cache in which it

stored portions of instructions traces that have already been decoded previously. A

trace cache stores instructions either after they have been decoded, or as they are

retired. Therefore, it is concluded although the number of cities selected by the user

increases, the performance and speedup of the algorithm in solving TRP increases.

4.5 System Design

 The system is designed:

a) To ensure tourist will be able to select their place of interest properly.

b) To ensure that user can view previous tourist recommendation or rating of

that particular place.

Below is the sample of interface design for the mobile application:

Figure 4.10 Welcome page of the application

	
 	
 30	

Figure 4.11 Place of interest selection according to the categories

Figure 4.12 List of places included in the Shopping Heaven category

	
 	
 31	

Figure 4.13 Shortest route calculation is projected to the user

	
 	
 32	

CHAPTER 5

CONCLUSION

5.1 Conclusion

Solving TRP by applying GA as a solution is an active area of research. The

objective of this research has been met by proofing the concept through simulations

and experiments by utilizing the mobile application as a platform to test the

algorithm. The effectiveness of GA in solving TRP has been proven due to an

increase in performance and speedup of the algorithm even though the number of

cities selected by the user increases. At the end of this project, the mobile

application that applied GA in solving TRP will be able to assist tourist to plan their

tour accordingly. Tourist will be able to decide which place to visit according to their

preference and shortest distance route they would be able experience the true

Malaysian experience visiting various interesting place.

5.2 Recommendation

For future enhancement, the author would like to recommend more parameters will

be added by not suggesting the shortest distance route for tourist to travel, but taken

into consideration of other factors such as time to travel, cost, and ratings for each

tourist attraction. This will be able to provide tourist with an optimal path to travel

that consist of shortest distance, time to travel, cost and ratings for each place.

Adding more features for tourist such as tourism activities planner and travel

checklist can also enhance functionality of the mobile application.

	
 	
 33	

REFERENCES

Gupta,A. & Khurana, S.(2012) .Study of Traveling Salesman Problem using Genetic
Algorithm., International Journal of Management, IT and Engineering.Retrieved
from http://www.ijmra.us/project%20doc/IJMIE_MAY2012/IJMRA-MIE1139.pdf

Hashimoto,H., Ibaraki,T., Imahori,S, & Yaguira, M. (2006) . The vehicle routing
problem with flexible time windows and travelling times. Discrete Applied
Mathematics: The Journal of Combinatorial Algorithms , Informatics and
Computational Sciences.41. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0166218X06001879

Hewitt, E. (2012) . 10 things to do before you travel. Independent Traveller.
Retrieved from http://www.independenttraveler.com/travel-tips/troubleshooting/10-
things-to-do-before-you-travel

Hwang, Y.H., Gretzel, U. ,Xiang, Z. , Fesenmaier,D.R.(2008). Travel destination
choice models. Destination Recommendation System : Behavourial Foundations and
Applications. pp.45-52. Oxfordshire,UK :CABI

Kiraly, A., Abonyi,J.(2010). A novel approach to solve multiple Travelling
Salesman Problem using Genetic Algorithm. Computational Intelligence in
Engineering.313, pp 141-151. Springer

Ledesma, C., Leffman,D.,Lewis, M.,Lim, R.(2012). Introduction to
Malaysia,Singapore, Brunei. The Rough Guides to Malaysia, Singapore &
Brunei.pp. 15-20. Melbourne : Rough Guides Limited.

n.d. (2013, August 16). Yen Yen : Culture and heritage tourism gives Malaysia a
boost. The Malay Mail. Retrieved from
http://www.themalaymailonline.com/travel/article/yen-yen-culture-and-heritage-
tourism-gives-malaysia-a-boost

UNWTO 25th CAP-CSA Conference on Sustainable Tourism Development. (2013).
Malaysia Country Report. Retrieved from
http://dtxtq4w60xqpw.cloudfront.net/sites/all/files/pdf/malaysia_country_report_201
2.pdf. Hyderabad:India

	
 	
 34	

Yong,H.C. (2009) . Vehicle routing problem. An Efficient Solving The Travelling
Salesman Problem: Global Optimization Of Neural Networks By Using Hybrid
Method. Retrieved from http://cdn.intechopen.com/pdfs/12409/InTech-
An_efficient_solving_the_travelling_salesman_problem_global_optimization_of_ne
ural_networks_by_using_hybrid_method.pdf

Yu, V.F., Lin,W.S.,Chou,S.Y. (2010). The museum visitor routing problem.Applied
Mathematics and Computation.216-3. 719-729. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0096300310000792

	
 	
 35	

APPENDICES

	
 	
 36	

Appendix 1: Gantt Chart

Ta
sk
%/W

ee
k%%

1%
2%
3%

4%
5%

6%
7%

8%
9%

10
%1

1%
12
%1

3%
14
%1

5%
16
%1

7%
18
%
19
%2

0%
21
%2

2%
23
%2

4%
25
%2

6%
27
%2

8%

Se
lec
tio
n%o
f%T
op
ic%
%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
Lit
era

tur
e%S
tud

y%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
Su
bm

iss
ion

%of
%Ex
ten

de
d%P

ro
po
sal
%%

%
%
%

%
%

%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

Pr
op
os
al%
De
fen

se%
%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
Ba
ck
gro

un
d%W

or
k%/
%Pr
oje
ct%

De
ve
lop

me
nt%
%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%

Su
bm

iss
ion

%of
%Dr
aft
%In
ter
im
%Re

po
rt%
%

%
%
%

%
%

%
%

%
%

%
%

%

%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
Su
bm

iss
ion

%of
%In
ter
im
%Re

po
rt%
%

%
%
%

%
%

%
%

%
%

%
%

%
%

%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

Pr
oje
ct%
W
or
k%%

De
ve
lop

me
nt%
%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%

Su
bm

iss
ion

%of
%Pr
og
res

s%R
ep
or
t%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
Pr
oje
ct%
Te
sti
ng
%%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
Pr
eME

DX
%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%

%
%

%
%

Su
bm

iss
ion

%of
%Dr
aft
%Re

po
rt%
%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%

%

%
%

%
Su
bm

iss
ion

%of
%Di
sse

rta
tio
n%(
So
ft%

Bo
un
d)
%

%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%

%
%

Or
al%
Pr
ese

nta
tio
n%%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%

%

%
Su
bm

iss
ion

%of
%Pr
oje
ct%

Di
sse

rta
tio
n(
Ha
rd
%Bo

un
d)
%%

%
%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%
%

%

%

	
 	
 37	

Appendix 2: Key Milestones

No Week FYP 1 Milestone Date

1 1 FYP 1 Briefing 20 May 2013

2 1 Selection of Project Topic 20 May 2013

3 3 Submit Proposal to Research Cluster 4 June 2013

4 4 Topic and Supervisor Confirmation 13 June 2013

5 5 Ideation Makeweekend Rapid Prototyping 22 June 2013

6 6 Submission of Extended Proposal 25 June 2013

7 6 Briefing on Plagiarism 26 June 2013

8 12 Proposal Defense and Progress Evaluation 31 July 2013

9 13 Prototype Submitted 5 August 2013

10 14 Submission of Interim Report 20 August 2013

	
 	
 38	

Appendix 3: Algorithm Codes in Java Language

TSP_GA.java (main program)
package geneticalgo;

/**
 *
 * @author sarah
 */
public class TSP_GA {
/*
* TSP_GA.java
* Create a tour and evolve a solution
*/

 public static void main(String[] args) {

 // Create and add our cities
 City city = new City(60, 200); // cities represented like an array City(x-coordinate,y-coordinate)
 TourManager.addCity(city);
 City city2 = new City(180, 200);
 TourManager.addCity(city2);
 City city3 = new City(80, 180);
 TourManager.addCity(city3);
 City city4 = new City(140, 180);
 TourManager.addCity(city4);
 City city5 = new City(20, 160);
 TourManager.addCity(city5);
 City city6 = new City(100, 160);
 TourManager.addCity(city6);
 City city7 = new City(200, 160);
 TourManager.addCity(city7);
 City city8 = new City(140, 140);
 TourManager.addCity(city8);
 City city9 = new City(40, 120);
 TourManager.addCity(city9);
 City city10 = new City(100, 120);
 TourManager.addCity(city10);
 City city11 = new City(180,100);
 TourManager.addCity(city11);
 City city12 = new City(60,80);
 TourManager.addCity(city12);
 City city13 = new City(120, 80);
 TourManager.addCity(city13);
 City city14 = new City(180, 60);
 TourManager.addCity(city14);
 City city15 = new City(20,40);
 TourManager.addCity(city15);
 City city16 = new City(100, 40);
 TourManager.addCity(city16);
 City city17 = new City(200,40);
 TourManager.addCity(city17);
 City city18 = new City(20,20);
 TourManager.addCity(city18);
 City city19 = new City(60,20);
 TourManager.addCity(city19);
 City city20 = new City(160, 20);
 TourManager.addCity(city20);

 // Initialize population
 Population pop = new Population(50, true);
 System.out.println("Initial distance: " + pop.getFittest().getDistance());

 // Limited population for 50 generations only
 pop = GA.evolvePopulation(pop);
 for (int i = 0; i < 50; i++) {

	
 	
 39	

 pop = GA.evolvePopulation(pop);
 }

 // Print final results
 System.out.println("Finished");
 System.out.println("Minimum distance: " + pop.getFittest().getDistance());
 System.out.println("Optimal Path:");
 System.out.println(pop.getFittest());
 }

}

	
 	
 40	

City.java

package geneticalgo;

/**

 * class City marks city

 * @author sarah

 */

public class City {

 int x;

 int y;

 // Constructs a randomly placed city

 public City(){

 this.x = (int)(Math.random()*200);

 this.y = (int)(Math.random()*200);

 }

 // Constructs a city at chosen x, y location

 public City(int x, int y){

 this.x = x;

 this.y = y;

 }

 // Gets city's x coordinate

 public int getX(){

 return this.x;

 }

 // Gets city's y coordinate

 public int getY(){

 return this.y;

 }

 // Gets the distance to given city

 public double distanceTo(City city){

 int xDistance = Math.abs(getX() - city.getX());

 int yDistance = Math.abs(getY() - city.getY());

 double distance = Math.sqrt((xDistance*xDistance) + (yDistance*yDistance));

 return distance;

 }

 @Override

 public String toString(){

 return getX()+", "+getY();

 }

 }

	
 	
 41	

GA.java (algorithm)
package geneticalgo;

/**
 *
 * @author sarah
 */
public class GA {
 /*
* GA.java
* Manages algorithms for evolving population
*/

 /* GA parameters */
 private static final double mutationRate = 0.015;
 private static final int tournamentSize = 5;
 private static final boolean elitism = true;

 // Evolves a population over one generation
 public static Population evolvePopulation(Population pop) {
 Population newPopulation = new Population(pop.populationSize(), false);

 // Keep our best route if elitism is enabled
 int elitismOffset = 0;
 if (elitism) {
 newPopulation.saveTour(0, pop.getFittest());
 elitismOffset = 1;
 }

 // Crossover population
 // Loop over the new population's size and create individuals from
 //current population
 for (int i = elitismOffset; i < newPopulation.populationSize(); i++) {
 // Select parents (previous route)
 Tour parent1 = tournamentSelection(pop);
 Tour parent2 = tournamentSelection(pop);
 // Crossover parents
 Tour child = crossover(parent1, parent2);
 // Add offspring route to new population
 newPopulation.saveTour(i, child);
 }

 // Mutate the new population a bit to add some new genetic material
 for (int i = elitismOffset; i < newPopulation.populationSize(); i++) {
 mutate(newPopulation.getTour(i));
 }

 return newPopulation;
 }

 // Applies crossover to a set of parents and creates offspring
 public static Tour crossover(Tour parent1, Tour parent2) {
 // Create new child route
 Tour child = new Tour();

 // Get start and end sub tour positions for parent1's tour
 int startPos = (int) (Math.random() * parent1.tourSize());
 int endPos = (int) (Math.random() * parent1.tourSize());

 // Loop and add the sub tour from parent1 to our child
 for (int i = 0; i < child.tourSize(); i++) {
 // If our start position is less than the end position
 if (startPos < endPos && i > startPos && i < endPos) {
 child.setCity(i, parent1.getCity(i));
 } // If our start position is larger
 else if (startPos > endPos) {
 if (!(i < startPos && i > endPos)) {
 child.setCity(i, parent1.getCity(i));
 }
 }
 }

 // Loop through parent2's city route

	
 	
 42	

 for (int i = 0; i < parent2.tourSize(); i++) {
 // If offspring doesn't have the city add it
 if (!child.containsCity(parent2.getCity(i))) {
 // Loop to find a spare position in the offspring's route
 for (int ii = 0; ii < child.tourSize(); ii++) {
 // Found empty slots in the route, add city
 if (child.getCity(ii) == null) {
 child.setCity(ii, parent2.getCity(i));
 break;
 }
 }
 }
 }
 return child;
 }

 // Mutate a tour using swap mutation
 private static void mutate(Tour tour) {
 // Loop through tour cities
 for(int tourPos1=0; tourPos1 < tour.tourSize(); tourPos1++){
 // Apply mutation rate
 if(Math.random() < mutationRate){
 // Get a second random position in the tour
 int tourPos2 = (int) (tour.tourSize() * Math.random());

 // Get the cities at target position in tour
 City city1 = tour.getCity(tourPos1);
 City city2 = tour.getCity(tourPos2);

 // Swap them around
 tour.setCity(tourPos2, city1);
 tour.setCity(tourPos1, city2);
 }
 }
 }

 // Selects candidate tour for crossover
 private static Tour tournamentSelection(Population pop) {
 // Create a tournament population
 Population tournament = new Population(tournamentSize, false);
 // For each place in the tournament get a random candidate tour and
 // add it
 for (int i = 0; i < tournamentSize; i++) {
 int randomId = (int) (Math.random() * pop.populationSize());
 tournament.saveTour(i, pop.getTour(randomId));
 }
 // Get the fittest tour
 Tour fittest = tournament.getFittest();
 return fittest;
 }
}

	
 	
 43	

Population.java

package geneticalgo;

/**
 *
 * @author sarah
 */
public class Population {
 /*
* Population.java
* Manages a population of candidate tours
*/

 // Holds population of tours
 Tour[] tours;

 // Construct a population
 public Population(int populationSize, boolean initialise) {
 tours = new Tour[populationSize];
 // If we need to initialise a population of tours do so
 if (initialise) {
 // Loop and create offspring route
 for (int i = 0; i < populationSize(); i++) {
 Tour newTour = new Tour();
 newTour.generateIndividual();
 saveTour(i, newTour);
 }
 }
 }

 // Saves generated offspring route
 public void saveTour(int index, Tour tour) {
 tours[index] = tour;
 }

 // Gets a route from population
 public Tour getTour(int index) {
 return tours[index];
 }

 // Gets the best route in the population
 public Tour getFittest() {
 Tour fittest = tours[0];
 // Loop through cities to find fittest
 for (int i = 1; i < populationSize(); i++) {
 if (fittest.getFitness() <= getTour(i).getFitness()) {
 fittest = getTour(i);
 }
 }
 return fittest;
 }

 // Gets population size
 public int populationSize() {
 return tours.length;
 }

	
 	
 44	

Tour.java

package geneticalgo;

/**
 *
 * @author sarah**/

import java.util.ArrayList;
import java.util.Collections;

public class Tour {
 /*
* Tour.java
* Stores a candidate tour
**/

 // Holds our tour of cities
 private ArrayList tour = new ArrayList();
 // tour/ possible route is represented in array
 private double fitness = 0; // fitness of the route, the higher the better
 private int distance = 0; // distance of the city

 // Constructs a blank tour
 public Tour(){
 for (int i = 0; i < TourManager.numberOfCities(); i++) {
 tour.add(null);
 }
 }

 public Tour(ArrayList tour){
 this.tour = tour;
 }

 // Creates a random individual (select any initial city)
 public void generateIndividual() {
 // Loop through all our destination cities and add them into the pool
 for (int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) {
 setCity(cityIndex, TourManager.getCity(cityIndex));
 }
 // Randomly reorder the tour (random selection)
 Collections.shuffle(tour);
 }

 // Gets a city from the tour
 public City getCity(int tourPosition) {
 return (City)tour.get(tourPosition);
 }

 // Sets a city in a certain position within a tour
 public void setCity(int tourPosition, City city) {
 tour.set(tourPosition, city);
 // If the tours been altered we need to reset the fitness and distance
 fitness = 0;
 distance = 0;
 }

 // Gets the tours fitness
 public double getFitness() {
 if (fitness == 0) {
 fitness = 1/(double)getDistance();
 }
 return fitness;
 }

 // Gets the total distance of the tour
 public int getDistance(){
 if (distance == 0) {
 int tourDistance = 0;
 // Loop through all possible cities in the routes
 for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) {
 // Get last point of city where are travelling from

	
 	
 45	

 City fromCity = getCity(cityIndex);
 // City we're travelling to
 City destinationCity;
 // Check if not last city last city, then set course to travel back to intial city
 if(cityIndex+1 < tourSize()){
 destinationCity = getCity(cityIndex+1);
 }
 else{
 destinationCity = getCity(0);
 }
 // Get the distance between the two cities
 tourDistance += fromCity.distanceTo(destinationCity);
 }
 distance = tourDistance;
 }
 return distance;
 }

 // Get number of cities on our tour
 public int tourSize() {
 return tour.size();
 }

 // Check if the tour contains a city
 // Reconfirm to ensure that none of the city is missing (mutation probabilty)
 public boolean containsCity(City city){
 return tour.contains(city);
 }

 @Override
 public String toString() {
 String geneString = "|";
 for (int i = 0; i < tourSize(); i++) {
 geneString += getCity(i)+"|";
 }
 return geneString;
 }
}

	
 	
 46	

Tour Manager.java
package geneticalgo;

/**
 *
 * @author sarah**/

import java.util.ArrayList;
import java.util.Collections;

public class Tour {
 /*
* Tour.java
* Stores a candidate tour
**/

 // Holds our tour of cities
 private ArrayList tour = new ArrayList();
 // tour/ possible route is represented in array
 private double fitness = 0; // fitness of the route, the higher the better
 private int distance = 0; // distance of the city

 // Constructs a blank tour
 public Tour(){
 for (int i = 0; i < TourManager.numberOfCities(); i++) {
 tour.add(null);
 }
 }

 public Tour(ArrayList tour){
 this.tour = tour;
 }

 // Creates a random individual (select any initial city)
 public void generateIndividual() {
 // Loop through all our destination cities and add them into the pool
 for (int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) {
 setCity(cityIndex, TourManager.getCity(cityIndex));
 }
 // Randomly reorder the tour (random selection)
 Collections.shuffle(tour);
 }

 // Gets a city from the tour
 public City getCity(int tourPosition) {
 return (City)tour.get(tourPosition);
 }

 // Sets a city in a certain position within a tour
 public void setCity(int tourPosition, City city) {
 tour.set(tourPosition, city);
 // If the tours been altered we need to reset the fitness and distance
 fitness = 0;
 distance = 0;
 }

 // Gets the tours fitness
 public double getFitness() {
 if (fitness == 0) {
 fitness = 1/(double)getDistance();
 }
 return fitness;
 }

 // Gets the total distance of the tour
 public int getDistance(){
 if (distance == 0) {
 int tourDistance = 0;
 // Loop through all possible cities in the routes
 for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) {
 // Get last point of city where are travelling from
 City fromCity = getCity(cityIndex);

	
 	
 47	

 // City we're travelling to
 City destinationCity;
 // Check if not last city last city, then set course to travel back to intial city
 if(cityIndex+1 < tourSize()){
 destinationCity = getCity(cityIndex+1);
 }
 else{
 destinationCity = getCity(0);
 }
 // Get the distance between the two cities
 tourDistance += fromCity.distanceTo(destinationCity);
 }
 distance = tourDistance;
 }
 return distance;
 }

 // Get number of cities on our tour
 public int tourSize() {
 return tour.size();
 }

 // Check if the tour contains a city
 // Reconfirm to ensure that none of the city is missing (mutation probabilty)
 public boolean containsCity(City city){
 return tour.contains(city);
 }

 @Override
 public String toString() {
 String geneString = "|";
 for (int i = 0; i < tourSize(); i++) {
 geneString += getCity(i)+"|";
 }
 return geneString;
 }
}

