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ABSTRACT 

 

Rising crude oil price and global energy concerns have revived great interests in the oil 

and gas industry, including the optimization of oil refinery operations. However, the 

economic environment of the refining industry is typically one of low margins with 

intense competition. This state of the industry calls for a continuous improvement in 

operating efficiency by reducing costs through business-driven engineering strategies. 

These strategies are derived based on an acute understanding of the world energy 

market and business processes, with the incorporation of advanced financial modeling 

and computational tools. With regards to this present situation, this work proposes the 

application of the two-stage stochastic programming approach with fixed recourse to 

effectively account for both economic and operational risk management in the planning 

of oil refineries under uncertainty. The scenario analysis approach is adopted to 

consider uncertainty in three parameters: prices of crude oil and commercial products, 

market demand for products, and production yields. However, a large number of 

scenarios are required to capture the probabilistic nature of the problem. Therefore, to 

circumvent the problem posed by the resulting large-scale model, a Monte Carlo 

simulation approach is implemented based on the sample average approximation (SAA) 

technique. The SAA technique enables the determination of the minimum number of 

scenarios required yet still able to compute the true optimal solution of the problem for 

a desired level of accuracy within the specified confidence intervals. We consider 

Conditional Value-at-Risk (CVaR) as the risk metric to hedge against the three 

parameters of uncertainty, which affords a framework that also involves the use of the 

Value-at-Risk (VaR) measure. We adopt two approaches in formulating appropriate 

two-stage stochastic programs with mean–CVaR objective function. The first approach 

is by using the conventional definition of CVaR that leads to a linear optimization 

model approximation coupled with a graphical-based solution strategy to determine the 

value of VaR using SAA in order to arrive at the optimal solution. The second approach 

is to utilize auxiliary variables to formulate a suite of stochastic linear programs with 

CVaR-based constraints. We conduct computational studies on a representative refinery 
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planning problem to investigate the various model formulations using GAMS/CPLEX 

and offer some remarks about the merits of these formulations. 
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ABBREVIATIONS AND NOTATIONS 

 

Sets and Indices 

I′ set of materials or products i 

J set of processes j 
T set of time periods t 
S set of scenarios s 
K set of products with yield uncertainty k 
 
Deterministic Parameters 

di,t,s, 
L
, ,i t sd , U

, ,i t sd  demand for product i in period t per realization of scenario s, with its corresponding 
constant lower (superscript L) and upper (superscript U) bounds 

Pt amount of crude oil purchased in period t 
L
tp , U

tp  lower and upper bounds of the availability of crude oil during period t 

fmin
,i tI , fmax

,i tI  minimum and maximum required amount of inventory for material i at the end of period 
t 

bi,j yield coefficient for material i in process j 

γi,t unit sales price of product type i in period t 

λi,t unit purchase price of crude oil type i in period t 

,i tλ�  value of the starting inventory of material i in period t 

,i tγ�  value of the final inventory of material i in period t 

Cj,t operating cost of process j in period t 

hi,t unit cost of subcontracting or outsourcing the production of product type i in period t 

rt, ot cost per man-hour of regular and overtime labour in period t, respectively 

αj,t variable-size cost coefficient for the investment cost of capacity expansion of process j 
in period t 

βj,t fixed-cost charge for the investment cost of capacity expansion of process j in period t 

θ1, θ2, θ3 risk factors or weighting factors (weights) for multiobjective optimization procedure 

 
Stochastic Parameters 

ps probability of scenario s 

γi,s,t unit sales price of product type i in period t per realization of scenario s 

λt unit purchase price of crude oil in period t per realization of scenario s 

di,s,t demand for product i in time period t per realization of scenario s 

 
Recourse Parameters 

ic+  fixed penalty cost per unit demand di,s of underproduction (shortfall) of product i per 
realization of scenario s (also the cost of lost demand) 

ic−  fixed penalty cost per unit demand di,s of overproduction (surplus) of product i per 
realization of scenario s (also the cost of inventory to store production surplus) 

,i kq
+  fixed unit penalty cost for shortage in yields from material i for product k 

,i kq
−  fixed unit penalty cost for excess in yields from material i for product k 

 
Deterministic Variables (First-Stage Decision Variables) 

xj,t production capacity of process j during period t 

xj,t−1 production capacity of process j during period t − 1 

CEj,t, 
L
,j tCE , U

,j tCE  capacity expansion of the plant for process j that is installed in period t, with its 
corresponding constant lower (superscript L) and upper (superscript U) bounds 
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yj,t binary decision variable that equals one (1) if there is an expansion for process j at the 
beginning of period t, and zero (0) otherwise 

Si,t amount of product i sold in period t 

Li,t amount of lost demand for product i in period t 

Pi,t amount of crude oil purchased in period t 
s
,i tI , f

,i tI  initial and final amount of inventory of material i in period t 

Hi,t amount of product type i to be subcontracted or outsourced in period t 

Rt, Ot regular and overtime working or production hours in period t, respectively 

 
Stochastic Recourse Variables (Second-Stage Decision Variables) 

,i sz
+  amount of unsatisfied demand for product i due to underproduction per realization of 

scenario s 

,i sz
−  amount of excess product i due to overproduction per realization of scenario s 

, ,i k sy
+

 amount of shortage in yields from material i for product type k per realization of 
scenario s 

, ,i k sy
−

 amount of excess in yields from material i for product type k per realization of 
scenario s 

VaRp Value-at-Risk for uncertainty due to price  

up,s auxiliary variable for uncertainty due to price for scenario s 

δp user-specified risk aversion parameter for uncertainty due to price 

ci fixed penalty cost of product i  

xi 
Product i flowrate for price  

VaRd-y Value-at-Risk for uncertainty due to demand and yield  

ud-y,s auxiliary variable for uncertainty due to demand and yield for scenario s 

δd-y user-specified risk aversion parameter for uncertainty due to demand yield 

di, 
Product i flowrate for demand  

ai Product i flowrate for yield  

ci,s fixed penalty cost in price of product i per realization of scenario s  

qi,k fixed unit penalty cost in yields from material i for product k 

zi,s,k Product i flowrate for demand per realization of scenario s for product k 

ri,m fixed unit penalty cost in demand from material i for product m 

yi,s,m Product i flowrate for demand per realization of scenario s for product m 

1
dVaRk

 
Value-at-Risk for uncertainty due to demand shortfall 

2
dVaRk

 
Value-at-Risk for uncertainty due to demand surplus 

1
yVaR m

 
Value-at-Risk for uncertainty due to yield shortfall 

2
yVaR m

 
Value-at-Risk for uncertainty due to yield surplus 

1,i kq  fixed unit penalty cost in yields shortfall from material i for product k 

2,i kq  fixed unit penalty cost in yields surplus from material i for product k 

1, ,i s kz  Product i flowrate for demand shortfall per realization of scenario s for product k 

2, ,i s kz  Product i flowrate for demand surplus per realization of scenario s for product k 

1,i mr  fixed unit penalty cost in demand shortfall from material i for product m 

1, ,i s my  Product i flowrate for demand shortfall per realization of scenario s for product m 

2,i mr  fixed unit penalty cost in demand surplus from material i for product m 

2, ,i s my  Product i flowrate for demand surplus per realization of scenario s for product m 

1
d
k

u  auxiliary variable for uncertainty due to demand shortfall for scenario s 
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2
d
k

u  auxiliary variable for uncertainty due to demand surplus for scenario s 

1
y
m

u  auxiliary variable for uncertainty due to yield shortfall for scenario s 

2
y
m

u  auxiliary variable for uncertainty due to yield surplus for scenario s 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND OF STUDY 

It is commonly known that the problem in Chemical process industry and oil and gas 

industry are subjected to uncertainties by random events such as raw materials and 

products price variations, market demand fluctuations and chemical production yield. 

Therefore, the application of the information technology and information systems in the 

industries is important to enhance the operating flexibility and resiliency of petroleum 

refineries.  To be particular, to optimize petroleum refinery under uncertainties a two-

stage stochastic model with fixed recourse via scenario analysis and incorporation of 

risk management is developed. Recourse model is corrective action made after a random 

event has taken place. Two-stage Stochastic Programming aims to serve the 

optimization purpose of a process by minimizing uncertainties and maximizing profit. 

 

1.2 PROBLEM STATEMENT 

The midterm refinery production planning problem addressed in this paper can be stated 

as follows. Given the following information: 

• The available process units and their capacities; 

• Cost of crude oil and refinery products; 

• Market demand of products 

 

Our goal is to determine the amount of materials that are processed in each process 

stream of each process unit by considering the following uncertain parameters whose 

stochastic data (including probabilities) are available or obtainable: 

• Market demand for products, that is, production amounts of desired products; 
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• Prices of crude oil and the saleable products; and 

• Product (or production) yields of crude oil from chemical reactions in the crude 

distillation unit 

 

It is assumed that: 

• The uncertain parameters of prices, costs, and demands are externally imposed, 

that is, they are exogenous uncertainties;  

• Further, the uncertain parameters are random variables that exhibit the behavior 

and properties of discrete probability distribution functions; and 

• The physical resources of the plant are fixed. 

 

1.3 OBJECTIVE AND SCOPE OF STUDY 

We strive to meet this goal of computing the optimal flow-rates by considering the risk 

involved through the use of the risk measure known as Conditional Value-at-Risk 

(CVaR), which is a convex and thus computationally-attractive metric that has gained 

wide attention in computational finance. Further, we wish to develop a computationally-

efficient framework for applying CVaR in a refinery planning problem that utilizes 

minimum computational time in the solution of the refinery planning model. The 

scenario analysis approach is adopted to represent uncertainties in three classes of 

stochastic parameters, namely prices of crude oil and commercial products, market 

demands, and production yields. However, a large number of scenarios are required to 

capture the stochasticity of the problem. Therefore, to circumvent the problem of the 

resulting large-scale model, we implement a Monte Carlo simulation approach based on 

the sample average approximation (SAA) technique to generate the scenarios. A 

statistical-based scenario reduction strategy is applied to determine the minimum 

number of scenarios required yet still able to compute the true optimal solution for a 

desired level of accuracy within the specified confidence intervals. In this study paper, 
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there are large numbers of scenarios that create difficulty to handle various 

circumstances. For example, there may be more than thousands of cases happening. It is 

hard to predict and control numerous scenarios. Therefore, it is necessary to find the 

minimum number of scenarios to capture all the circumstances. Monte Carlo simulation 

approach based on the sample average approximation (SAA) technique is applied in this 

thesis to generate the minimum number of scenarios which present for thousands cases. 

 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 BACKGROUND OF STOCHASTIC PROGRAMMING; OPTIMIZATION 

CONSIDERING UNDER UNCERTAINTIES MATTERS 

Stochastic Programs are more difficult to for formulate and solve than deterministic 

mathematical. The purpose of it, in a given availability of post-optimally analysis, it can 

be tempting to ease the process by relying on sensitivity analysis to investigate the 

impact of uncertainty by in introducing recourse problems or in other words including 

the risk term in the optimization model of maximizing the profit.  

The risk terms in Khor (2007) are handled using the metric mean-absolute deviation. 

After obtaining the first model with MAD as risk measurement, the second model is 

developed in which the risk terms are performed by CVaR. A comparison between the 

two models to assess which of these two risk measures is superior, both computationally 

and conceptually, in capturing the economic and operating risk in the planning of a 

refinery. Khor model (2007) is expressed: 

1 ' 2max [ ] ( )o o sz E z V z E Wθ θ= − − −       (1) 

Where: 

          [ ]oE z : Expected deterministic profit (crude oil and saleable products) 
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           1θ , 3θ ∈ (0, 1]: weight the components of the objective function 

          ( )oV z : Variance of price uncertainty 

          'sE : Expected penalty of demand and yield uncertainties 

          W : MAD of demand and yield penalty 

 

Apply MAD as risk measure:  

[ ]
o o0 1 z 3 zmax MAD [ ] MADz E z E= − θ − ξ − θ                  (2)                                                                  

Apply CVaR as risk measure: 

[ ]0 1 3max [ ]z E z CVaR E CVaRξ ξ= − θ − ξ − θ                 (3) 

 

2.2 GENERAL FORMULATION OF TWO-STAGE STOCHASTIC 

PROGRAMMING 

Two-stage Stochastic Programming aims to serve the optimization purpose of a process 

by minimizing uncertainties and maximizing profit. A stochastic program (SP) was first 

introduced by George Dantzig in the 1950’s. SP is gaining recognition as a viable 

approach for large scale models of decisions under certainty.  The classic form of the 

stochastic programming (SP) approaches for an optimal midterm refinery planning can 

be represent in the seminal works of Dantzig (1955) and Beale (1955) and has the 

following general form: 

                           

( )min , ( )

s.t. to

0

T
c x E Q x

Ax b

x X

ξ  + ξ ω 

=

∈ ≥

                          (4)     
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( )where , ( ) min ( )

s.t. to ( ) ( ) ( )

0

TQ x q y

W y h T x

y

ξ ω = ω

ω = ω − ω

≥

                                    (5) 

With the notation: 

n
x R∈   : Vector of first-stage decision variables, size (1× n) 

c : First-stage column vector of cost coefficient, sizes (n × 1)    

A : First-stage coefficient matrix, size (m  ×  n) 

b    : Corresponding right-hand side vectors, size (m × 1) 

ω ∈ Ω   : Random events or scenario 

( )ξ ω                 : Random vector 

q(ω)                 : Second stage vector of recourse cost coefficient vectors size  

   (k × 1)  

( )h ω                 : Second stage right-hand side vectors, size (l × 1) 

( )T ω                :  Matrix that ties the two stages together, size (l ×  k) 

W (ω)              : Random recourse coefficient matrix, size (l × k) 

y                 : Vector of second-stage decision variables, size (k× 1) 

 

cTx is known as the first stage or “here and now” decision, x does not response to ω . In 

contrast, y presents second stage variable with ( ), ( )Q x ξ ω  is “wait and see” and is 

determined after observation regarding ω has been obtained.  
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2.2  TWO-STAGE STOCHASTIC PROGRAMMING WITH SIMPLE 

RECOURSE SUB-PROBLEM 

Simple recourse model is a special case of recourse model when recourse coefficients in 

the second stage, W, form an identity matrix. In general, we have:  

( ), ( )Q x ξ ω = ( ), ( )i

i I

Q x ξ ω
∈

∑  

Where: 

( ), ( )iQ x ξ ω = min    q+
ωiy

+
i
 + q-

ωiy
-
i 

s.t.    I y+
i - I y

-
i = ( ) ( ( ) )i ih T xω − ω                      (6) 

y+
i , y

-
i ≥0 

( ) ( )h T xω − ω , a feasible solution to (3) is easily determined by setting y+ and y- 

accordingly. Moreover, if the ith component of q+
ω - q-

ω >0, this feasible solution is 

optimal. 

 

Example of simple recourse is that when a target profit in one company is determined, 

the company will try to reduce the deviation from profit. 

 

 

2.3. TWO-STAGE STOCHASTIC PROGRAMMING WITH FIXED 

RECOURSE SUB-PROBLEM 

Fixed recourse model is the model that the constraint matrix in the recourse sub-problem 

is fixed (not subject to uncertainty). (6) is written as: 
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( ), ( ) min ( )

s.t. ( ) ( )

0

TQ x q y

Wy h T x

y

ξ ω = ω

= ω − ω

≥

                           (7) 

When second stage objective coefficients are also fixed, the recourse subproblem can be 

written as: 

       ( ), ( )Q x ξ ω = min   πT ( ( ) ( )h T xω − ω )                                                   (8)

         s.t.        πT W ≤ qT         

                π ≥0 

 

2.4  TWO-STAGE STOCHASTIC PROGRAMMING WITH COMPLETE 

RECOURSE SUB-PROBLEM 

A problem is said to have complete recourse if { }( , ) |Y y W yωω χ χ= ≥ is nonempty for 

any value of χ and the recourse function is necessary finite, ( ), ( )Q x ξ ω = ∞ . Moreover, 

relatively complete recourse results if ( , )Y ω χ is nonempty for 

all { }( ) ( ) | ( , )h T x x Xχ ω ω ω∈ − ∈Ω× . 

 

With the complete recourse problem, model (4) becomes: 

       ( ), ( )Q x ξ ω  = Min ( )Tq yω + M eT z 

              s.t ( ) ( )Wy z h T xω ω+ ≥ − , , 0y z ≥                                     (9)                          

With M: large constant and e: appropriately dimensioned vector of ones. 

 

2.5  FINANCIAL MATHEMATICS, RISK MEASUREMENT, AND RISK 

MANAGEMENT 
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The development of the theory of probability as a companion to statistics is well 

chronicled in Bernstein (23). In the nineties, there was considerable activity in the fields  

• Three broad classes of risk are studied at present. 

• The first, market risk, attempts to determine the uncertainty in the prices of an 

object that is traded in a liquid market. The second, credit risk, attempts to place 

a value on the uncertainty associated with an account receivable. How should we 

account for the possibility that a debtor may default on an obligation? The third, 

operational risk, basically tries to handle everything else. It considers the full set 

of other risks that a business must conventionally/typically face, including the 

risk of catastrophic political events, weather-related risk, and risk of criminal 

activity. 

Table 1: Period, nature of risk and risk metric 

Period/Time Nature of Risk Risk Metric/Measure 

Short term (< 1 month) Operational Earnings 

Intermediate/Medium/Midterm (1 

month–1 year) 

Financial/Trading Value-at-risk, cash flow, 

earnings, credit risk 

Long term (> 1 year) Asset valuation Equity 

 

2.6 ECONOMICAL/ECONOMIC RISK 

(Al-Sharrah. Ghanima. Planning the petrochemical industry in Kuwait using economic 

and safety objectives. PhD Thesis. Loughborough University, 2006.) 

• Economic risk is perceived by business people in two ways. 

• The first is risk of not achieving the targeted financial objective. 

• The second is the risk of variation in the results (Park and Sharp-Bette, 1990). 

• The first type of risk may be caused by a number of causes whether economic, 

political, technical, or the like (of it), and can be represented as the probability of not 

achieving the financial objective. This type of risk has been employed with planning 

activities by Barbaro and Bagajewicz (2003). 
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• The second type of risk can be well-handled by variance techniques such as the 

variance of Expected Monetary Value (EMV) (Bush and Johnson, 1998) or risk-

adjusted return family of methods such as Sharpe ratio (Jones, 1998). 

• Applequist et al. (2000) has adopted a risk premium defined as an increase in the 

expected return in exchange for a given amount of variance in order to evaluate risk 

and uncertainty for chemical manufacturing plants. 

 

2.7  VALUE-AT-RISK (VAR) AND CONDITIONAL-VALUE-AT-RISK 

(CVAR) 

Figure 1 expresses the idea about VaR and CVaR. 

 

Figure 1: VaR and CVaR illustration 

 

According to Rockafellar and Uryasev, 2002: 

Informally, Value at risk (VaR) can be defined as a maximum loss in a specified period 

with some confidence level, except α (e.g., confidence level = 95%, period = 1 week). 

Formally, α -VaR is the α-percentile of the loss distribution: α-VaR is a smallest value 

such that probability that loss exceeds or equals to this value is bigger or equals to α. It 
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suffers, however, from being unstable and difficult to work with numerically when 

losses are not normally distributed.  

 

CVaR (Mean Excess Loss, Mean Shortfall or Tail VaR) is risk assessment technique 

used to reduce the probability a portfolio will incur high losses. CVaR is performed by 

taking the likelihood (at a specific confidence level, example, 0.95 or 0.99, etc…) that a 

specific loss will exceed the value at risk (VaR). In mathematical point of view, CVaR is 

derived by taking a weighted average between the VaR and losses exceeding the VaR. 

CVaR maintains consistency with VaR by yielding the same results in limited settings 

where VaR computations are tractable, i.e., for normal distribution. Most importantly for 

applications, CVaR can be expressed by a remarkable minimization formula. This 

formula can readily be incorporated into problems of optimization with respect to 

x X∈ that are designed to minimize risk or shape in within the bounds. Significant 

shortcuts are thereby achieved while preserving crucial problem features like convexity. 

 

2.8  MONTE CARLO SIMULATION APPROACH BASED ON SAMPLE 

AVERAGE APPROXIMATION (SAA) 

In the study paper of Risk Management for a Global Supply Chain Planning under 

Uncertainty: Models and Algorithms, You et al used Monte Carlo method to determine 

the minimum number of scenarios using the formula 
2

/ 2 nz S
N

H

α 
=  
 

with first estimate the 

value of sampling estimator S(n) by using formula 
[ ]( )

2

1

Cost Cost

1

S

s

s
n

E

S
n

=

−

=
−

∑
and then 

using the formula / 2 / 2( ) ( )
,z z

z S n z S n
E E

S S

α α 
− + 

 
to determine the required number of 

scenarios for a desired confidence interval. 
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In this work, we adopt the Monte Carlo simulation approach for scenario generation 

based on the Sample Average Approximation (SAA) method (Shapiro, 2000; Shapiro 

and Homem-de-Mello , 1998; You, Wassick, and Grossmann, 2008). The procedure 

involved is as follows: 

 

Step1: Generate M independent samples each of size N. For each sample solve the 

corresponding SAA problem 

1

1
min ( , )

N
nT

y Y j

n

c y Q y
N

ξ∈
=

 
+ 

 
∑         

Step 2: Compute minimum number of scenario 

Step 3: Apply risk measure into the model 

(Referred section 3.3 in chapter 3 for more detail about the mathematical equation) 

 

2.9  SOLVING VAR USING PLOT OF CUMULATIVE DISTRIBUTION 

FUNCTION AGAINST THE SORTED DETERMINISTIC LOSSES.  

In the Mekong 2007 paper by Webby et al giving an idea of using pseudo random 

sampling from a normal distribution is used to generated an empirical distribution for 

loss and the results are ranked in order to find VaR. In other words, each resulted losses 

will be assigned to a random probability, then a graph of cumulative distribution 

function is plot against the resulted losses, after that reading the value of VaR at 0.95 

confidence level.  
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2.10 OPTIMIZATION PROBLEMS WITH CONSTRAINTS ON RISK AS 

REPRESENTED BY CVAR 

By consider the following linear programming formulation that utilizes the auxiliary real 

variables us for scenarios s = 1, …, S in order to determine the numerical values for 

VaR1 of price uncertainty and VaR2 of demand and yield uncertainty, which is based on 

the formulation proposed by Rockafellar and Uryasev (2000) and which has been 

applied by Krokhmal et al. (2001). The proposed formulation is as below: 

( )
( )( )

( )

1

1

1
min VaR , VaR

1

1
min VaR

1

S

s

S

s

s

f x y
s

u
s

=

=

+ −
−β

⇒ +
−β

∑

∑
 

where 

( ), VaRsu f x y= −  

( ) [ ] T
1 1, n nf x y x y x y x y= − + + = −�  

Subject to the following linear constraints: 

0su s S≥ ∀ ∈  

( ), VaR

VaR 0

s

T
s s

u f x y s S

x y u s S

≥ − ∀ ∈

⇒ − + + ≥ ∀ ∈
 

Furthermore, in the “Risk management in the oil supply chain: A CVaR approach” paper 

Carneiro et al. (2009) has modified the Krokhmal et al. (2001) original equation as 

stated above to suit its own objective function which  

Maximizing 
1

N

i i

i

x
=

µ∑  

Subject to 
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( ) 1

1

1

1

1

0 1,...,

0 1,...,

1

0 1,...

S

s

s

s

N

i is s

i

N

i

i

i

u K
s

u S S

x r u S S

x

x i N

=

=

=

α + ≤
−β

≥ =

+ α + ≥ =

=

≥ =

∑

∑

∑

   

Where                      

is an upper bound on the portfolio's CVaR.

number of candidate assets

capital fraction applied on candidate asset 

return expected of the th candidate asset

variable that provides the portfo

i

i

K

N

x i

u i

−

−

−

−

α − lio's VaR and CVaR at confidence level of % 

confidence level to compute the CVaR measure of risk

number of scenarios S

β

β −

−

 

The constraints of the this paper have taken into our research consideration because the 

constraints are applicable to our stochastic model as the Carneiro et al. (2009) objective 

function is the same as our objective function, maximizing the objective function.  

2.11 OPTIMIZATION PROBLEMS WITH VERDERAME AND FLOUDAS 

(2010) ON DIFFERENT APPROACH ON MONTE CARLO SAA AND CVAR 

Formulation based on Verderame and Floudas (2010):  

( )
( )

1
, VaR max_risk

1
s

s

F x z
S

ω ξ = + ≤
− β

∑�  

, VaRs x sz f s≥ − ∀  

Where 

( ),F xω ξ�  = approximation function for CVaR 
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β = confidence level 

|S| = no. of scenarios 

zs = auxiliary variable 

max_risk = threshold value of tolerance of risk, i.e., maximum level of risk acceptable  

In the formulation of max_risk of Verderame and Floudas (2010) has introduced 

δ whereuser-specified risk aversion parameter. The following figure 2 shows the steps of 

Sample average approximation algorithm used in Verderame and Floudas (2010). 

 

Figure 2: Verderame and Floudas (2010) of Sample average approximation algorithm

Generate Demand Parameter Scenarios 

Apply CVaR-PPDM Model 

Generate Larger Sample of Demand 
Parameter Scenarios 

Calculate z_trans Values 
z_trans=(Orig_RHS-Avg_LHS)/Stdev_LHS  

Are All z_trans ≥2 ? 

Reduce RHS 
of Certain 

Risk 
Constrains 

Terminate 

Production Profile and Xi Values 
 

Calculate Avg_LHS and Stdev_LHS 
for Risk Constrains  
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CHAPTER 3 

METHODOLOGY 

Research Methodology 

The general methodology of the Stochastic Programming with Economic and 

Operational Risk Management in Petroleum Refinery Planning under Uncertainties is as 

below: 
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Literature Review 

• Book 

• Journals 

• Internet 

Identify Suitable Equation for Modeling 

Verification of Mathematical Model 

• Comparison with journals 

• Examples from literature 
 

Finalization of Mathematical Model 

Verification of Computed Model 

Computational of Model into GAMS 

Finalization of GAMS Model 

Yes 

No 

Yes 

No 

Figure 3: Research Methodology flow chart 
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Project Activities 

The project activities in this work are listed in the Gantt Chart as shown in Figure 3. (      - Milestones) 

No. Detail/ Week 1 2 3 4 5 6 7 8 9 10   11 12 13 14 18-
19 

1 Briefing &update on the progress                     

  
  
  
  
  
  
  
  
  
 M

id
 s

em
es

te
r 

b
re

ak
 

          

2 More Research and Literature 
Review 

                              

3 Submission of Progress report 1                                

4 Project Work continues                               

6 Submission of Progress Report 2                               

7 Pre-EDX/ Poster Exhibition 
Progress Reporting 

                              

8 Project Work continues / EDX                               

9 Dissertation Report submission                               

10 Final oral presentation                                 

Figure 4: Gantt Chart of FYP II
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3.1 OPTIMIZATION MODEL FORMULATION 

 

Using CVaR as the risk metric yields the following form of the main objective function is 

shown below.  

Our model formulation involves maximization of profit whereas in the Rockafellar and 

Uryasev (2000) their problem mainly involves minimization of losses.  

 
00 1 3

uncertaintyuncertainty
in demandsin profit
and yields

max [ ] CVaR CVaRz sz E z E ′ ξ= − θ − − θ
����������

 (10) 

Where  

i: material/product i 

s: scenario 

k: shortfall, surplus notation for demand uncertainty 

m: shortfall/surplus notation for yield uncertainty 

c: unit price of material/saleable products 

x: material flow-rate or saleable products 

z: objective value (profit) in ($/day) 

ξ : Monetary value of demand and yield penalty  

θ1, θ2: weight factor  
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3.2 MONTE CARLO SIMULATION APPROACH BASED ON SAMPLE 

AVERAGE APPROXIMATION (SAA) 

In this research work, we adopt the Monte Carlo simulation approach for scenario 

generation based on the Sample Average Approximation (SAA) method (Shapiro, 2000; 

Shapiro and Homem-de-Mello , 1998; You and Grossmann, 2008) proposed by Santoso 

et al. (2005).  The procedure involved is as follows: 

Monte Carlo Step 1:  

A relatively small number of scenarios (for example, 50 scenarios) with their associated 

probabilities are randomly and independently generated for the uncertain parameters of 

prices, demands, and yields. (This data is otherwise obtained from plant historical data.) 

The resulting stochastic model (a linear program) with the objective function given in 

(37) is solved to determine the optimal stochastic profit with its corresponding material 

flow-rates.  

( ) ( ), , , , , , , , ,

[ ] [ ]

max profit= E[z]

o

s i s i s i i s i i s i j i k s i j i k s

i I s S i I k K s S

E z E

p c x p c z c z q y q y+ + − − + + − −

∈ ∈ ∈ ∈ ∈

ξ

 = − + + + ∑∑ ∑∑ ∑
������� �����������������������

 

(for further development and information of the formulation, please refer to appendix I)

               

[z] [ ] [ ]oE E z E= − ξ          (11)   

 

Monte Carlo Step 2:  

The Monte Carlo sampling variance estimator is determined using the optimal stochastic 

profit and flow-rates computed in Monte Carlo step 1. 

 

From You et al. (2009): 
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[ ]( )
2

1

Cost Cost

1

S

s

s
n

E

S
n

=

−

=
−

∑
   (12) 

But the objective function of our model formulation involves maximization of profit 

(instead of cost minimization), therefore equation (12) may need to be 

adapted/reformulated for a profit maximization objective function: 

 

( ) ( )

[ ] [ ]

[ ] [ ]( )

[ ]( ) [ ]( )( ) [ ]
22

max profit min cost

so:

Cost profit

Cost Cost Profit Profit

Cost Cost Profit Profit Profit Profit

s s

s s s

E E

E E

E E E

= −

= −

− = − −

− = − − = −

 

 

Hence, the form of eq. (12) that is applicable in our case s given by: 

 

[ ]( )
2

1

Profit Profit

1

S

s

s
n

E

S
n

=

−

=
−

∑
   (13) 

 

 

( )
( )

2

,

1
, , ,where 

1

S

z i s

s
n i s i s i i s

i I

E z

S z c x
n

=

∈

−

= = + ξ
−

∑
∑  

Where                                                     

• Confidence interval H of 1-α is given as: 

[ ] [ ]/ 2 / 2( ) ( )
z , z

z S n z S n
E E

S S

α α 
− + 

 
                               (14)                                        

 

Consider confidence interval 95%, that is: 



21 

 

( )2

2

1 95%

5%, 2 2.5%

1 1 2.5%
2

0.975

Pr 0.975

1.96

z z

z

α

α

− α =

⇒ α = α =

α
− = −

=

≤ =

=

 

•  The minimum number of scenarios N that is theoretically required to obtain an 

optimal solution is determined using the relation below: 

2

/ 2 ( )z S n
N

H

α 
=   

                              (15)                                                                                   

 

Numerical experiments indicate that well controlled choice of the sample sizes can 

significantly reduce the computational time and improve the accuracy of obtained 

solutions. 

 

 

Monte Carlo Step 3:  

Risk measure using the metrics of CVaR is incorporated in a new stochastic model with 

the scenarios given by the minimum number of scenarios N, in which the N number of 

scenarios are generated as a new set of independent random samples of the uncertain 

parameters. 

A new stochastic model is formulated based on/with minimum number of  scenarios N 

with the incorporation of the risk measure of CVaR, respectively,  

 

3.3 GENERAL FORMULATION OF STOCHASTIC REFINERY PLANNING 
WITH RISK EXPRESSED IN TERMS OF CVAR 
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CVaR in conjunction with VaR is a powerful tool to measure risk. Rockafellar and 

Uryasev (2002) define Conditional Value-at-Risk for continuous distribution function: 

,
1 1

( , ) ( ( , ) )
1

i s

i I s S

F x VaR VaR f x y VaR
S

α
α ∈ ∈

= + −
−

∑∑                     (16) 

                                             

With probability distribution in y, CVaR is written as: 

,
1

( , ) ( ( , ) )
1

i ss

i I s S

F x VaR VaR p f x y VaRα
α ∈ ∈

= + −
−
∑∑                       (17)                        

 

Applying The Concept Of Cvar Into The Recourse Terms: 

1 ' 3max [ ] CVaR CVaR
oo z sz E z E ξ= − θ − − θ     

a) 
ozCVaR : Risk measure for uncertainty in price of crude oil and refinery products  

( )1 , , 1

1
CVaR( ) VaR VaR

1
o s i s i s

s i

z p c x= + −
− α
∑∑                  (18)  

b) CVaRξ : Risk measure for uncertainty in market demand and production yield.                                

( ) ( ) ( )2 , , , , , , , , 2

1
CVaR VaR VaR

1
s i i s i i s i j i k s i j i k s

i I k K s S

p c z c z q y q yξ
α

+ + − − + + − −

∈ ∈ ∈

 = + + + + − −
∑∑∑   

                                                       (19)                                     

Then put the equation (18) and (19) back into the main objective function (10), we 

achieve the stochastic model by maximize the profit in which risk elements are expressed 

in term of CVaR. 
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Figure 5 presents an overview of the method of solving the objective function by using Monte Carlo SAA 

algorithm and CVaR 

 

 

Generate relatively small number of 

scenarios (e.g., 50 scenarios) 

Uncertain 
parameters: prices, 
demand, & yields 

Formulate stochastic model with fixed 
recourse without risk and solve for 

optimal stochastic profit and flowrates 

Determine Monte Carlo sampling 
variance estimator using the optimal 

stochastic profit and flowrates  

Determine lower and upper bounds of 

chosen confidence interval H 

Solve for minimum no. of scenarios N 

required to get optimal solution 

Apply risk measure CVaR in 
formulating mean–risk two-stage 

stochastic programming model 

Solve stochastic program using 
GAMS/CPLEX 

Verify optimal solution against real-
world features 

Optimal solution? 

Non-optimal solution 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

4.1. OPTIMIZATION MODEL FORMULATION 

 

Objective function: 

 i i

i I

c x
∈
∑  (20) 

  

Production demand requirements: 

 i ix d i I≤ ∀ ∈  (21) 

 

Demand uncertainty: 

 
1 2, , , , , , ,i i s k i s k s ix z z d i I s S+ − = ∀ ∈ ∀ ∈  (22) 

 

Production yield: 

 , 0,i j i

i I

a x j J
∈

= ∀ ∈∑  (23) 

 

Yield uncertainty: 

 
1 1 2, , , , , , 0, ,s i j i i i s m i s ma x x y y i I s S− + + − = ∀ ∈ ∀ ∈  (24) 

 

Variable bounds: 

 
L U
i i ix x x≤ ≤  (25) 

 

Non-negativity constraints: 

 
1 2 1 2, , , , , , , ,, , , 0i i s k i s k i s m i s mx z z y y ≥  (26) 
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4.1.1. Process Flow Network 
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Figure 6: Process flow network 

 

We adapt Khor et al process flow network as this modeling research example in 

considering the problem of petroleum refinery planning under uncertainties. 

Mass balance constraints are in the form of equalities. There are three types of such 

constraints: fixed plant yield, fixed blends or splits, and unrestricted balances. Except in 

some special situations such as planned shutdown of the plant or storage movements, the 

right hand-side of balance constraints is always zero. For the purpose of consistency, flow 

into the plant or stream junction has negative coefficients and flows out have positive 

coefficients, (Adapted from Khor et al, 2008). The constraints are as follows: 

For the primary distillation unit: 

  1 70.13 0x x− + =  (27) 

 



26 

  1 40.15 0x x− + =  (28) 

 

  1 80.22 0x x− + =  (29) 

 

  1 90.20 0x x− + =  (30) 

 

  1 100.30 0x x− + =  (31) 

 

For the cracker: 

 

  14 200.05 0x x− + =  (32) 

 

  14 160.40 0x x− + =  (33) 

 

  14 170.55 0x x− + =  (34) 
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For gasoline blending: 

 

  2 110.5 0x x− =  (35) 

 

  2 160.5 0x x− =  (36) 

 

For heating oil blending: 

 

  5 120.75 0x x− =  (37) 

 

  5 180.25 0x x− =  (38) 

 

Naphtha: 7 3 11 0x x x− + + =  (39) 

 

Gas oil: −x8 + x12 + x13 = 0 (40) 

 

Cracker feed: −x9 + x14 + x15 = 0 (41) 

 

Cracked oil: −x17 + x18 + x19 = 0 (42) 
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Fuel oil: −x10 – x13 – x15 – x19 + x6 = 0 (43) 

 

 

Materials and saleable products are divided into three groups 

• Demand uncertainty (XID): X2, X3, X4, X5, X6 

• Yield uncertainty (XIY): X4, X7, X8, X9, X10 

• Price uncertainty (XIP): X1, X2, X3, X4, X5, X6, X14 

 

The constraints considered so far are concerned with the physical plant. Constraints are 

also needed relating to external factors such as the availability of raw materials and 

product requirements over a time period. For this example, there are no restrictions on 

crude oil availability or the minimum production required. The maximum production 

requirement constraints (in t/d) are as follows: 

 

Gasoline: x2 ≤ 2700 (44) 

 

Naphtha: x3 ≤ 1100 (45) 

 

Jet fuel: x4 ≤ 2300 (46) 

 

Heating oil: x5 ≤ 1700 (47) 

 

Fuel oil: x6 ≤ 9500 (48) 
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Overall constrained equations of the model 

       1X 15,000≤                     (49) 

 14X 2,500≤                     (50) 

 

4.1.2 Optimization Model Formulation with CVaR Constraints Using Auxiliary 

Variables 

Based on the formulation presented in Section 2.10, initially we investigate a 

formulation for the profit maximization problem in our case that utilizes the following 

customized constraints: 

( )

( )

1 , , 1

2 , , , , , , 2

, , 1 , , 1

, , 2 , , ,

1
VaR VaR 0 (51)

1

1
VaR VaR 0 (52)

1

1
VaR VaR 0 (53)

1

1
VaR

1

s i s i s

i I

s i k i s k i m i s m

i I i I k K i I m M

s i s i s s i s i s

i I i I

s i s i s s i k i s k

i I

p c x s S

p d z q y s S

p c x p c x s S

p c x p d z

∈

∈ ∈ ∈ ∈ ∈

∈ ∈

∈

+ − ≥ ∀ ∈
− α

 
+ + − ≥ ∀ ∈ 

− α  

+ + − ≥ ∀ ∈
− α

+ +
− α

∑

∑ ∑∑ ∑ ∑

∑ ∑

∑ , , , 2VaR 0

(54)

i m i s m

i I i I k K i I m M

q y s S
∈ ∈ ∈ ∈ ∈

 
+ − ≥ ∀ ∈ 

 
∑ ∑∑ ∑ ∑

 

 

Eventually the research based on the formulation presented in Section 2.11; Verderame 

and Floudas(2010) , we have investigated the formulation for the profit maximization 

problem in our case that utilizes the following customized constraints by replacing the 

original formulation with our variables and terms:  
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Constraint On Auxiliary Variables 

Based on Verderame and Floudas (2010), the CVaR constraint is given by: 

 
( )

1
VaR risk_aversion

1
s

s S

u
S ∈

+ ≤
− β

∑  (55) 

The CVaR constraint applied in our model is expressed as follows: 

Constraint 1: 

( )
P

price price, price deterministic,

risk aversion due to
price uncertainty

1
VaR

1
s i i

s S i I

u c x
S ∈ ∈

+ ≤ δ
−β

∑ ∑
���������

 (56) 

( ) 1

D Y

demand_and_yield demand_and_yield, demand_and_yield deterministic, , deterministic,

risk aversion due to
demand and yield uncertainty

1
VaR

1

Va

s i k i i i

s S i I i I

u d z q y
S

∈ ∈ ∈

 
 + ≤ δ +
 − β
 

⇒

∑ ∑ ∑
�������������������������

( )
D Y

demand, yield demand, yield, demand, yield , , , , , ,

1
R

1
s i k i s k i m i s m

s S s S i I k K s S i I m M

u d z q y
S

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 + ≤ δ +
 −β
 

∑ ∑∑∑ ∑∑∑

 

  (57) 

Constraint 2: 

, VaR 0x s sf u s+ + ≥ ∀         (58) 

Rearranging the terms yield: 

, VaRs x su f s≥ − − ∀         (59) 

Constraint 3: 

0su s S≥ ∀ ∈           (60) 
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Formulation Of Loss Function Fx,S: 

Loss functions for price uncertainty: 

, , , , ,

,

x s i s i s i s i s

s S i I s i

f c x c x
∈ ∈

= =∑∑ ∑  

Loss functions for demand and yield uncertainty: 

( )

, , , , , , ,

, , ,shortfall , , ,surplus , , ,shortfall , , ,surplus

, ,demand

x s i k i s k i m i s m

s S i I k K s S i I m M

i k i s i k i s i m i s i m i s

i k i s i

f d z q y

d z d z q y q y

d x

∈ ∈ ∈ ∈ ∈ ∈

= +

= + + +

= −

∑∑∑ ∑∑ ∑

 

In our problem, we consider uncertainty in three parameters: prices, demand, and yields 

loss function variable for scenario s 

( )
( )price price,

1
VaR max_

1
s

s S

u risk
S

∈

+ ≤ δ
− β ∑  

for demand and yield uncertainty: 

Where 

max_risk = threshold value of tolerance of risk, i.e., maximum level of risk acceptable 

us = auxiliary real variables 

β: confidence level 

|S| = no. of scenarios 

δ = user-specified risk aversion parameter 
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4.2 MODEL DATA AND ANALYSIS  

 

Lower and upper bounds of all the materials and products flow-rate is summarize in the 

table below: 

Table 2: Lower bound and upper bound of all material and products flow rate 

Xi Lower bound Upper bound 

X1 12,500 15000 

X2 2000 2700 

X3 625 1100 

X4 1875 2300 

X5 1700 1700 

X6 6175 9500 

X7 1625 1950 

X8 2750 3300 

X9 2500 3000 

X10 3750 3000 

X11 1000 1350 

X12 1275 1275 

X13 1475 3300 

X14 2500 2500 

X15 0 3000 

X16 1000 1200 

X17 1375 1650 

X18 425 425 

X19 950 1650 

X20 125 150 

 

We illustrate the risk modeling approach proposed in this paper on the numerical 

example taken from Khor et al. (2008) and provide major details on the implementation 

using GAMS/CONOPT3 solver in a hardware platform with 2GB memory and a 1.8 

GHz processor. An optimal flow-rates corresponding to each respective materials and 

determining minimum number of scenarios by Monte Carlo simulation approach based 

on the sample average approximation (SAA) technique to generate the scenarios have 

obtained. For further GAMS modeling code please refer appendices II and III.  
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Table 3: Flow-rates of crude oil and saleable products 

X1 7574 X11 1000 

X2 2000 X12 1274 

X3 950 X13 1877 

X4 2300 X14 2500 

X5 1698 X15 500 

X6 6327 X16 1000 

X7 1950 X17 1375 

X8 3151 X18 424.6 

X9 3000 X19 950.4 

X10 3000 X20 125 

 

The table above shows all the optimal flow-rates of crude oil and saleable products 

generate by GAMS. Each of the optimal flow-rates are fulfilled all the constraints as 

stated or in other words it would not exceed the given upper bound. The upper bound is 

measured by maximum production constraints. The proposed initial value is measure by 

an appropriate marginal deterministic value. Quality of the data/quality of industrial 

data or deterministic value used/ensure that data of high quality is used. Besides that, 

another observation is that some of the optimal flow-rates will exceed, equal, or less 

than the proposed initial values, the value changes it is because GAMS will auto iterate 

the proposed initial values until it reach the optimal flow-rates with constraints.  

Table 4: Summary of computational results 

Monte Carlo sampling variance estimator S(n) 489.4 

Lower bound of confidence interval H 965.3 

Upper bound of confidence interval H 1237 
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Range of confidence interval H 271.3 

Minimum number of scenarios N 13 

 

In the table 4, the GAMS show that the Monte Carlo sampling variance estimator S(n) 

is 489.4 and the minimum number of scenarios N is 13.  

The usage of generated sampling variance S(n)  is to calculate the lower- and upper-

confidence limits of the 95% confidence interval H of 1–α are computed as follows: 

/ 2 / 2( ) ( )
,z z

z S n z S n
E E

S S

α α 
− + 

 
 

The result of the lower and upper bound of confidence interval H are listed in the table 

5. The minimum number of scenarios N which is 13 is required to obtain an optimal 

solution is determined using the relation below numerical experiments indicate that well 

controlled choice of the sample sizes can significantly reduce the computational time 

and improve the accuracy of obtained solutions. Moreover, if we know the minimum 

number of scenarios, we know that we only require that minimum amount of data to 

obtain the optimal solution. For instance, in our case, since 13 is the minimum number 

of scenarios, we do not have to unnecessarily collect more than that amount of data, 

hence we could save the costs that would have been otherwise incurred if we were to 

collect more than the data of those 13 scenarios. 

Monte Carlo simulation approach based on Sample Average Approximation (SAA) is a 

powerful method to calculate minimum number of scenario because it can capture the 

entire possible scenario and becomes preventative for all scenario. Therefore, it saves 

time and convenient.  

Furthermore, a research has been done to determine the difference between a separate 

model in different GAMS files and a combine GAMS files of determine the optimal 

flow-rates and minimum number of scenario. The differences are listed down in the 

table 5. As a result the Combined Model shows a more optimal solution than the 
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separated one, this is because the combined model improves the time taken to solve a 

computational model and become a more efficient model structure. 

Table 5: Difference between a separate GAMS files and a combined GAMS files 

 Combined Model Separated Model 

Ez 1100.917 1101.133 

S(n) 488.833 489.429 

 

Min. scenario 13 13 

 

When we proceed to the methodology section 3.3 the General formulation of stochastic 

refinery planning with risk expressed in terms of CVaR. There are two methods that we 

adopt to calculate the values of the VaR variables.  

The first method is using pseudorandom sampling from a normal distribution to 

generate an empirical distribution for a profit function. Subsequently, the computed 

optimal deterministic profit values for each scenario are ranked or sorted in ascending 

order to determine the value of VaR. In other words, the computed values are assigned a 

random probability, and then a graph of cumulative distribution function is plotted 

against the profit values. Finally, we then read off the value of VaR from the profit 

distribution plot for a specified confidence interval. 
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Figure 7: Loss distribution to determine VaR2 as given by the cumulative distribution function versus the 

multiplied values of penalty costs due to shortfalls or surpluses for both demands and yields  

 

In the first approach, each computed optimal deterministic profit value is assigned to a 

random probability based on a Monte-Carlo-simulation-based method. Table 6 lists 

important results from this approach. 

 

 

Table 6: Result of VaR1, VaR2 and CVaR using graphical method 

VaR1 7.235E+4 

VaR2 1.731E+5 

Optimal solution for model with CVaR $20 800.66/day 
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Approach 2: Model Formulations of CVaR-Based Risk Management Models Using 

Auxiliary Variables 

Our second approach considers the formulation in section 2.10. The second CVaR-

based risk model formulation presents an alternative to the use of Monte-Carlo-based 

random probabilities. We consider three major model formulations conveniently 

referred to as CVaR1a, CVaR1b, and CVaR2 in our computational study. Table 7 

summarizes the main parameters considered in our computational study for the three 

major model formulations that have been developed. 
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Table 7: Comparison of the three major model formulations of CVaR1a, CVaR1b, and CVaR2 for β = 0.95, δp = δd-y = 0.5 
 

Model (with 
CVaR 
constraints) 

Important feature of 
formulation 

Objective 
function value 
($/day) 

Deterministic maximum profit Stochastic 
maximum 
profit 

VaR Production rate 

CVaR1a (with 
static relative 
risk factors) 

Considers static 
relative risk factors 

2938.095 71 558.302 71 524.726 VaRp = 25.000 
 
VaRd-y = 
84579.102 

x1 = 7574.363,    
x2 = 2000.000,     
x3 = 950.000,     
x4 = 2300.000,     
x5 = 1693.951, 
x6 = 6331.820,     
x7 = 1950.000,     
x8 = 3150.770,    
x9 = 3000.000, 
x10 = 3000.000 
x11 = 1000.000, 
x12 = 1270.463,  
x13 = 1880.307, 
x14 = 2500.000, 
x15 = 500.000 
x16 = 1000.000, 
x17 = 1375.000,  
x18  = 423.488, 
x19  = 951.512,  
x20  = 125.000 

CVaR1b • Effects of risk are 
represented by 
aggregated 
auxiliary variables 

• Considers 
dynamic relative 
risk factors (via 
loop function in 
GAMS) 

532 235.537 59.305 8.952 VaRp = 23.882 
 
VaRd-y = 
84579.102 

x1 = 14801.363, 
x2 = 2000.000, 
x3 = 950.000, 
x4 = 2285.617, 
x6 = 8175.000, 
x7  = 1950.000, 
x8 = 3300.000, 
x9 = 3000.000, 
x10 = 3000.000,    
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x11 = 1000.000,    
x13 = 3300.000,    
x14 = 2500.000, 
x15 = 500.000,  
x16 = 1000.000,     
x17 = 1375.000,     
x19 = 1375.000, 
x20 = 125.000 

CVaR2:  
 
 
 

• Effects of risk are 
distributed via 
explicitly 
disaggregated 
auxiliary variables 

• Considers 
dynamic relative 
risk factors 

3.136981E+7 
(with lower 
bound of all 
auxiliary 
variables set as 
0.2) 

248.471 198.156 VaRp = 19.885  
 

1
dVaRk = 

84571.000 
 

2
dVaRk = 

84571.000 
 

1
yVaRm

 = 0.103 

 
2

yVaRm  = 0.103 

x1 = 14801.363, 
x2 = 2000.000, 
x3 = 950.000, 
x4 = 2285.617, 
x6 = 8175.000, 
x7  = 1950.000, 
x8 = 3300.000, 
x9 = 3000.000, 
x10 = 3000.000,    
x11 = 1000.000,    
x13 = 3300.000,    
x14 = 2500.000, 
x15 = 500.000,  
x16 = 1000.000,     
x17 = 1375.000,     
x19 = 1375.000, 
x20 = 125.000 

Remarks:  

• This deterministic maximum profit value for CVaR1b and CVaR2is lower than the deterministic model solution (as reported in Khor et al. (2008)). One of 
the reasons is because when risk is considered, the optimal solution computed specifies that one of the major products (heating oil) is not to be produced. (Its 
negative shadow price (reduced costs) (in the solution of the linear program) implies a lower profit when its value is increased.) 

• A higher risk corresponds to a higher profit. CVaR2 registers a profit that is four (4) times greater because of the greater risks taken as represented by the 
greater number of disaggregated auxiliary variables. Also, since the risk is evaluated as separate components as related to the individual uncertainties in 
prices, demands, and yields, the profit may tend to be higher. This is similar to distributing risks throughout a portfolio of investments rather than a single 
investment.  
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Mean–CVaR model based on aggregated auxiliary variables with static relative risk factors: 

 

( ) ( )

( )

T T
, , 1 1 , , 1

profit due to price uncertainty

, , ,

recourse penalty due to
demand uncertainty

1
max price cost VaR VaR

1
s i s i s i s i s i s i s

i I s S s i

s i k i s k s i

i I s S k K

p x p x p c x

p c z p q

∈ ∈

∈ ∈ ∈

 
− − θ + − 

− α 

− −

∑∑ ∑∑

∑∑∑

���������������

���������

( )

( ) ( )

( )
P

, , , ,

recourse penalty due to
yield uncertainty

2 2 , , , , , , , 2

p p, p

1
VaR VaR

1

s.t constraints (22) (26)

1
VaR

1

j m i s m

i I s S m M

s i k i s k i j m i s m

i I s S k K m M

s i i

s S i I

y

p c z q y

u c x
S

∈ ∈ ∈

∈ ∈ ∈ ∈

∈ ∈

  
− θ + ⋅ + ⋅ −  

− α   

−

+ ≤ δ
−β

∑∑ ∑

∑∑ ∑ ∑

∑ ∑

�����������

( )
D Y

P

d-y d-y, d-y

, p p,

, , , , , , d-y d-y,

p, d-y,

1
VaR

1

1
+VaR 0 ,

1
VaR 0 ,

, 0

D Y

s i i i i

s S i I i I

s i s i s s

i I

s i k i s k s i m i s m s s

i I i I
k m

s s

u c d c a
S

p c x u s S p
S

p q z p r y u s S p
S

u u s S

∈ ∈ ∈

∈

∈ ∈

 
+ ≤ δ +  −β  

+ ≥ ∀ ∈ =

 
 

+ + + ≥ ∀ ∈ = 
 
 

≥ ∀ ∈

∑ ∑ ∑

∑

∑ ∑  (CVaR1a) 

 



41 

Mean–CVaR model based on aggregated auxiliary variables with dynamic relative risk factors: 
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Mean–CVaR model based on disaggregated auxiliary variables: 
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The Effects of Relative Risk Factors 

From Table 8, it is observed that with greater values of θ1 and θ2, the objective function 

value tends to increase whereas the deterministic profit and stochastic profit tend to 

decrease. 

 
Table 8: Trend of θ1 and θ2 vs. . E[z], zdet, and zstoc for δp = δd-y 2 = 0.5 for CVaR1 with dynamic risk 

factors and β = 0.95 
 

θθθθ1 θθθθ2 Objective function value 
($/day) 

Deterministic profit 
($/day) 

Stochastic profit ($/day) 

0 0 1100.917 71 596.422   71 562.839   

0 0.3 135 869.895 38 113.727   38 076.204   

0.3 0 -50 378.197 59.276 8.926   

0.3 0.3 123 746.366 59.305 8.952   

0.3 0.6 297 871.003   59.305   8.952   

0.6 0.9 472 937.791 59.305   8.952   

0.9 0.6 299 755.304   59.305 8.952   

0.6 1 530 979.337 59.305 8.952   

0.8 1 531 607.437 59.305 8.952   

1 1 532 235.537 59.305   8.952   

 

It is noteworthy that in our computational study, the flowrate of heating oil (material i5) 

vanishes or goes to zero at certain values of θ1 and θ2. 

The Effects of Confidence Level ββββ 

Table 9 compares the trend of confidence level β against the objective function value 

E[z], deterministic profit zdet, and stochastic profit zstoc for θ1 = θ2 =1 for the CVaR1 

model with dynamic risk factors and user-specified risk aversion parameter of 0.5. From 

Figure 8, we observe that for higher β, the returns are larger as given by the values of 

E[z], zdet, and zstoc. As β increases, E[z] increases exponentially while both zdet and zstoc 

increases at a high rate for smaller β and gradually increases at a lower rate towards 

larger β.  
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Table 9: Trend of β vs. E[z], zdet, and zstoc for CVaR1b model (with dynamic risk factors) for θ1 = θ2 =1 

and δp = δd-y 2  = 0.5 
 

Confidence level β Objective function 
value ($/day) 

Deterministic profit 
($/day) 

Stochastic profit 
($/day) 

99 3 201 566.966 96.971   46.631 

97 977 010.114 81.131 30.786 

95 532 235.537 59.305   8.952 

93 341 643.741 27.021 -23.343   

 

 

Figure 8: Relation of  β vs E[z], zdet, and zstoc 

 

The Effects of User-Specified Risk Aversion Parameter δδδδ 

 

Table 10 tabulates the trends of variation in the parameters of returns of E[z], zdet, and 

zstoc against δp = δd-y for CVaR1b model (with dynamic risk factors) for θ1 = θ2 = 1 and β 

= 0.95. In general, we observe that higher values of δp and δd-y correspond to higher 

E[z] but lower values of zdet, and zstoc. We also observe that δd-y has a greater impact on 

E[z] than δp, in which for larger δd-y, we obtain larger E[z]. On the overall, E[z] 

increases with δp and δd-y, that is, the higher the risk taken by the investor, the higher is 

the expected profit (Note that the computational study of model CVaR1a uses the 

arbitrary values of δp = δd-y = 0.5.) 
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Table 10: Trends of δp = δd-y vs. E[z], zdet, and zstoc, for CVaR1b model (with dynamic risk factors) for θ1 

= θ2 = 1 and β = 0.95 

δp δd-y  Objective function 
value ($/day) 

Deterministic profit 
($/day) 

Stochastic profit 
($/day) 

0 0 -1.10486E+6 1336.098 1286.176 

0 0.3 -140660.716 1336.098   1286.176   

0.3 0 -1.08658E+6   556.164 505.980   

0.5 0.5 532 235.537 59.305 8.952   

0.5 0.9. 1 817 837.895 59.305   8.952   

0.9 0.5 554 045.760 -938.582   -988.966   

1 1 2 164 350.001   -1179.915   -1230.238   
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Below table shows the comparison of each model the three major model formulations of 
CVaR1a, CVaR1b, and CVaR2 statistics  
 

Table 11: Model size and computational statistics 
 

 CVaR1a CVaR1b CVaR2 

Model type LP LP LP 

Solver GAMS/CONOPT3 GAMS/CONOPT3 GAMS/CONOPT3 

No. of continuous 
variables 

1123 1123 1276 

No. of constraints 717 617 770 

CPU time (s) trival trival trival 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

Recommendation 

Work closely and research on the Verderame and Floudas,(2010) paper, where 

considering the proposed termination criterion using Z-transformation formulation to 

improve the feasibility of the stochastic model solution.  

 

Conclusion: 

The Combined of two initial GAMS file of calculating the flow-rate of crude oil 

saleable product and minimum number of scenarios to one GAMS file. This will 

improve the time taken to solve a computational model and become a more efficient 

model structure.  

Stochastic programming is one of the ultimate operation research models for 

optimization that involves uncertainties. The input values such as materials flow-rate, 

shortfall and surplus of demand and yield penalty are determined maximize the profit. 

Monte Carlo simulation approach based on Sample Average Approximation (SAA) is a 

powerful method to calculate minimum number of scenario because it can capture the 

entire possible scenario and becomes preventative for all scenario and decease 

computational time. Therefore, it saves time and convenient. Nevermore, the usage of 

the Monte Carlo simulation approach based on Sample Average Approximation (SAA) 

is used to ensure that the a production profile that is feasible and tight upper bound on 

the production capacity of the plant in question. 
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APPENDIX I: MODEL FORMULATION   
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APPENDIX II: GAMS MODELING CODE (CVaR1a) 

$TITLE  Find flow rate 
$EOLCOM # 
 
SETS 
 
I     material streams   /I1*I20/ 
 
K     DEMAND SHORTFALL OR SURPLUS     /K1, K2/ 
 
M     yield shortfall and surplus     /M1, M2/ 
 
 
$ontext 
IY1('I1',IY) 
/ 
I1.(I7, I4, I8, I9, I10, I20, I16, I17) 
/ 
$offtext 
; 
 
 
$onecho >taskin.txt 
dset=S rng=Sheet4!A16:A65 rdim=1 
dset=ID rng=Sheet4!B15:F15 cdim=1 
dset=IY rng=Sheet4!H15:L15 cdim=1 
dset=IP rng=Sheet4!Q15:W15 cdim=1 
par=D rng=Sheet4!A15:F65 cdim=1 rdim=1 
par=Yield rng=Sheet4!G15:L65  cdim=1 rdim=1 
par=Price rng=Sheet4!P15:W65 cdim=1 rdim=1 
$offecho 
 
$call gdxxrw.exe WStep1.xls @taskin.txt 
 
$gdxin WStep1.gdx 
 
Sets 
 
S(*)      scenario 
IP(I)     material with price uncertainty 
ID(I)     material with demand uncertainty 
IY(I)     material with yield uncertainty; 
 
$load S ID IY IP 
display S, ID, IY, IP; 
 
ALIAS (S,S1) 
; 
 
SCALAR 
 
Z_ALPHA /1.96/ 
DELTA_PRICE     /0.5/ 
DELTA_DEMAND_YIELD     /0.5/ 
 
 
PARAMETERS 
 
D(S,ID)       demand 
N 
Yield(S,IY)   yield 
Price(S,IP)   price 
ACTUAL_ACTUAL_OBJ_FNC_VALUE_DETERMINISTIC 
ACTUAL_OBJ_FNC_VALUE_STOCHASTIC 
 
$load D Yield Price 
display D, Yield, Price; 
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$gdxin 
 
 
PARAMETERS 
 
DETERMINISTIC_PRICE(IP) 
/ 
I1     -8 
I2     18.5 
I3     8.0 
I4     12.5 
I5     14.5 
I6     6 
I14    -1.5 
/ 
 
PRICE_DEMAND(ID) 
/ 
I2     18.5 
I3     8.0 
I4     12.5 
I5     14.5 
I6     6 
/ 
 
 
DETERMINISTIC_DEMAND(ID) 
/ 
I2     2700 
I3     1100 
I4     2300 
I5     1700 
I6     9500 
/ 
 
PRICE_YIELD(IY) 
/ 
I7     8.0      #(ASSUME price of naphtha(I7) to be the same as naphtha(I3)) 
I4     12.5 
I8     14.5     #(ASSUME price same as heating oil (I5)) 
I9     1.5      #(ASSUME price same as cracker feed(I14) but the positive value) 
I10    6        #(ASSUME price same as fuel oil (I6)) 
/ 
 
DETERMINISTIC_YIELD(IY) 
/ 
I7     0.13 
I4     0.15 
I8     0.22 
I9     0.20 
I10    0.30 
/ 
 
Table Penalty_Demand(ID,K) TABLE OF PENALTY DEMAND 
       K1        K2 
I2     25        20 
I3     17        13 
I4     5         4 
I5     6         5 
I6     10        8; 
 
Table Penalty_Yield(IY,M)  TABLE OF PENALTY YIELD 
       M1        M2 
I7      5         3 
I4      5         4 
I8      5         3 
I9      5         3 
I10     5         3; 
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FREE Variables 
 
OBJ         OBJECTIVE FUNCTION 
Sn 
OBJ_RISK 
U(S) 
; 
 
 
Positive Variables 
 
X(I)        MATERIAL FLOWRATE 
Y(IY,S,M)  SHORT FALL OR SURPLUS FOR YEILD 
Z(ID,S,K)   SHORT FALL OR SURPLUS FOR DEMAND 
VaR1 
VaR2 
U1(S) 
U2(S) 
 
; 
 
 
Equations 
 
OBJFNC 
Sn_eqn 
OBJFNC_RISK 
 
DEMAND(S,ID) Demand, 
YIELD_CON(S,IY)    Yield, 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
 
*CVaR constraints 
CONSTRAINT_1_PRICE_UNCERTAINTY 
CONSTRAINT_1_DEMAND_YIELD_UNCERTAINTY 
CONSTRAINT_2_PRICE_UNCERTAINTY 
CONSTRAINT_2_DEMAND_YIELD_UNCERTAINTY 
CONSTRAINT_3_PRICE_UNCERTAINTY 
CONSTRAINT_3_DEMAND_YIELD_UNCERTAINTY 
; 
 
 
OBJFNC.. OBJ =e= SUM((S,IP),(CARD(S)**(-1))*PRICE(S,IP)*X(IP)) -(SUM((ID,S,K),(CARD(S)**(-
1))*(Penalty_Demand(ID,K)*Z(ID,S,K))) + SUM((IY,S,M),(CARD(S)**(-1))*(Penalty_Yield(IY,M)*Y(IY,S,M)))) ; 
 
*Nga: OBJFNC.. OBJ =e= SUM((S,IP),(CARD(S)**(-1))*PRICE(S,IP)*X(IP)) -(SUM((ID,S,K),(CARD(S)**(-
1))*(Penalty_Demand(ID,K)*Z(ID,S,K))) + SUM((IY,S,M),(CARD(S)**(-1))*(Penalty_Yield(IY,M)*Y(IY,S,M)))) ; 
 
 
**LIMITATIONS OF PLANT CAPACITY 
Feed1..      X('I1') =L= 15000; 
Feed14..     X('I14') =L= 2500; 
 
*mbl..X('1')-(X('2')+X('3')+X('4')+X('5')+X('6'))=E=0  ; 
 
*Reformulated stochastic constraints to account for uncertain yield coefficient 
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YIELD_CON(S,IY).. -YIELD(S,IY)*X('I1') + X(IY) + Y(IY,S,'M1') - Y(IY,S,'M2') =E= 0; 
 
 
$ontext 
e1..     -0.13*X('I1') + X('I7') - Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0; 
e1(IY,'I1',S) $ IY1('I1',IY)..     -YIELD(IY,S)*X('I1') + X(IY) - Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0; 
e1(IY,'I14',S)..     -YIELD(IY,S)*X('I14') + X(IY) - Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0; 
 
X('I1') = 100 
X('I7') = 14 
 
-13 + 14 - Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0 
Y(IY,S,'M1') = 1 
Y(IY,S,'M2') = 0 
 
-0.05*X('I14') + X('I20') =E= 0 
; 
 
 
e2..     -0.15*X('I1') + X('I4') =E= 0; 
$offtext 
 
 
 
**********************************************************************************************************
********* 
*FIXED YIELDS FOR CRACKER (deterministic constraints) 
**********************************************************************************************************
********* 
 
PDU_14_20..  -0.05*X('I14') + X('I20') =E= 0; 
PDU_14_16..  -0.40*X('I14') + X('I16') =E= 0; 
PDU_14_17..  -0.55*X('I14') + X('I17') =E= 0; 
FB_2_11..    0.5*X('I2') - X('I11') =E= 0; 
FB_2_16..    0.5*X('I2') - X('I16') =E= 0; 
FB_5_12..    0.75*X('I5') - X('I12') =E= 0; 
FB_5_18..    0.25*X('I5')- X('I18') =E= 0; 
UB_8..       -X('I7') + X('I3') + X('I11') =E= 0; 
UB_14..      -X('I8') + X('I12') + X('I13') =E= 0; 
UB_17..      -X('I9') + X('I14') + X('I15') =E= 0; 
UB_18..      -X('I17') + X('I18') +X('I19') =E= 0; 
UB_6..       -X('I10') - X('I13') - X('I15') - X('I19') + X('I6') =E= 0; 
 
 
**********************************************************************************************************
********* 
**CONSTRAINTS ON PRODUCTION DEMANDS 
**********************************************************************************************************
********* 
 
DEMAND(S,ID).. X(ID) + Z(ID,S,'K1')-Z(ID,S,'K2') =E= D(S,ID); 
 
 
Sn_eqn..     Sn =E= SQRT(SUM(S,(ABS(1100.911-(SUM(IP,PRICE(S,IP)*X(IP))- 
(SUM((ID,K),Penalty_Demand(ID,K)*Z(ID,S,K)) + SUM((IY,M),Penalty_Yield(IY,M)*Y(IY,S,M))))))**2)/49 )  ; 
 
 
*for price uncertainty: 
 
 
**********************************************************************************************************
********* 
*CVaR 
**********************************************************************************************************
********* 
 
OBJFNC_RISK.. OBJ_RISK =e= SUM ( (S,IP), (1/CARD(S))*PRICE(S,IP)*X(IP) ) 
                                 - 0.0001 * ( VaR1 + ( 1 /(1 - 0.95)) * SUM ( (S,IP),(1/CARD(S)) * ( PRICE(S,IP)*X(IP) - VaR1 ) ) ) 
                                 - SUM(S,(1/CARD(S))*(SUM((ID,K),Penalty_Demand(ID,K)*Z(ID,S,K))+SUM((IY,M), 
Penalty_Yield(IY,M)*Y(IY,S,M)))) 
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                                 - 0.01 * ( VaR2 + ( 1 / (1 - 0.95) ) * SUM ( S, (1/CARD(S)) * ( SUM ( (ID,K), 
Penalty_Demand(ID,K)*Z(ID,S,K) ) + SUM ( (IY,M), Penalty_Yield(IY,M)*Y(IY,S,M)) - VaR2 ) ) ); 
 
 
 
CONSTRAINT_1_PRICE_UNCERTAINTY.. 
         VaR1 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, U1(S) ) =L= DELTA_PRICE*SUM (IP, DETERMINISTIC_PRICE(IP) ) 
; 
 
CONSTRAINT_1_DEMAND_YIELD_UNCERTAINTY.. 
         VaR2 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, U2(S) ) =L= DELTA_DEMAND_YIELD*( SUM ( ID, 
PRICE_DEMAND(ID)*DETERMINISTIC_DEMAND(ID) ) + SUM ( IY, PRICE_YIELD(IY)*DETERMINISTIC_YIELD(IY) ) ) 
; 
*problem here is: there are two expressions for U(S) which 
 
CONSTRAINT_2_PRICE_UNCERTAINTY(S)..     U1(S) =G= - SUM ( IP, PRICE(S,IP)*X(IP) ) - VaR1 
; 
 
CONSTRAINT_2_DEMAND_YIELD_UNCERTAINTY(S)..     U2(S) =G= - SUM ( (ID,K), Penalty_Demand(ID,K)*Z(ID,S,K) ) 
+ SUM ( (IY,M), Penalty_Yield(IY,M)*Y(IY,S,M) ) - VaR2 
; 
 
CONSTRAINT_3_PRICE_UNCERTAINTY(S)..     U1(S) =G= 0; 
 
CONSTRAINT_3_DEMAND_YIELD_UNCERTAINTY(S)..     U2(S) =G= 0; 
 
 
 
* Nga's solution from cumumlative density function: 
*Var1 = 72400; 
*Var2 = 173200; 
 
$ontext 
*CVaR for price uncertainty 
CVaR1_constraint_1..     CVaR1 =E= Var1 + (1/(1-0.95)) * SUM ( (S,IP), P(S) * ( PRICE(S,IP)*X(IP) - Var1 ) ) 
; 
 
*CVaR for demand and yield uncertainty 
CVaR2_constraint_1..     CVaR2 =E= Var2 + (1/(1-0.95)) * SUM ( (S,IP), P(S)*(PRICE(S,IP)*X(IP) - Var2 ) ) 
; 
 
*AUXILIARY VARIABLES 
 
CVaR1_constraint_2..    VaR1 + ( (1 - 0.95)**(-1) * SUM ( S, P(S)*U(S) ) ) =G= CVaR1.LO 
; 
CVaR2_constraint_2..    VaR2 + ( (1 - 0.95)**(-1) * SUM ( S, P(S)*U(S) ) ) =G= CVaR2.LO 
; 
 
CVaR_constraint_1(S)..    U(S) =L= 0 
; 
 
*not sure what the following constraints are and where they are obtained 
CVaR1_constraint_3(S)..     U(S) =L= PRICE(S,'1')*X('1') - VaR1 
; 
CVaR2_constraint_3(S)..     U(S) =L= PRICE(S,'1')*X('1') - VaR2 
; 
 
CVaR1.L = 0 
; 
CVaR2.L = 0 
; 
$offtext 
 
 
*DECISION  VARIABLE BOUNDS 
*X.UP(I) = 12100; 
Y.UP(IY,S,M) = 1500; 
*VaR1.UP = 1E5; 
*VaR2.UP = 1E5; 
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*Initial values 
X.L('I1') = 12500; 
*X.L('I2') = 2700; 
X.L('I3') = 625; 
X.L('I4') = 1875; 
X.L('I5') = 1700; 
X.L('I6') = 6175; 
X.L('I7') = 1625; 
X.L('I8') = 2750; 
X.L('I9') = 2500; 
X.L('I10') = 3750; 
*X.L('I11') = 1000; 
X.L('I12') = 1275; 
X.L('I13') = 1475; 
X.L('I14') = 2500; 
X.L('I15') = 0; 
*X.L('I16') = 1000; 
X.L('I17') = 1375; 
X.L('I18') = 425; 
X.L('I19') = 950; 
X.L('I20') = 125; 
 
U1.L(S) = 100; 
U2.L(S) = 100; 
 
* Upper bounds of variables 
X.UP('I1') = 15000; 
 
*original: X.UP('I2') = 2700; 
X.UP('I2') = 3000; 
 
X.UP('I3') = 1100; 
X.UP('I4') = 2300; 
X.UP('I5') = 1700; 
X.UP('I6') = 9500; 
X.UP('I7') = 1950; 
X.UP('I8') = 3300; 
X.UP('I9') = 3000; 
X.UP('I10') = 3000; 
 
*original: X.UP('I11') = 1350; 
X.UP('I11') = 2000; 
 
X.UP('I12') = 1275; 
X.UP('I13') = 3300; 
X.UP('I14') = 2500; 
X.UP('I15') = 3000; 
 
*original: X.UP('I16') = 1200; 
X.UP('I16') = 2000; 
 
X.UP('I17') = 1650; 
X.UP('I18') = 425; 
X.UP('I19') = 1650; 
X.UP('I20') = 150; 
 
 
MODEL WStep1 to determine stochastic profit 
*/ALL/; 
/ 
OBJFNC 
DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
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FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
*Sn_eqn 
/; 
 
 
OPTION LIMROW = 100000; 
OPTION LIMCOL = 100000; 
 
*SOLVE WStep1 USING DNLP MAXIMIZING OBJ; 
SOLVE WStep1 USING DNLP MAXIMIZING OBJ; 
 
EXECUTE_UNLOAD 'WStep1.GDX', Sn; 
EXECUTE 'GDXXRW.EXE WStep1.GDX O=WStep1.XLS VAR=Sn RNG=SHEET4!A68'; 
 
 
MODEL WStep2 
*/ALL/; 
/ 
Sn_eqn 
*OBJFNC 
DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
/ 
; 
 
SOLVE WStep2 USING DNLP MINIMIZING Sn; 
 
N = ( Z_ALPHA*Sn.L/( (OBJ.L + Z_ALPHA*Sn.L/SQRT(CARD(S)) ) - (OBJ.L - Z_ALPHA*Sn.L/SQRT(CARD(S)) ) ) )**2 
 
 
MODEL CVaR 
/ 
OBJFNC_RISK 
DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18 
UB_6 
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CONSTRAINT_1_PRICE_UNCERTAINTY 
CONSTRAINT_1_DEMAND_YIELD_UNCERTAINTY 
CONSTRAINT_2_PRICE_UNCERTAINTY 
CONSTRAINT_2_DEMAND_YIELD_UNCERTAINTY 
CONSTRAINT_3_PRICE_UNCERTAINTY 
CONSTRAINT_3_DEMAND_YIELD_UNCERTAINTY 
/ 
; 
 
SOLVE CVaR USING LP MAXIMIZING OBJ_RISK; 
 
ACTUAL_ACTUAL_OBJ_FNC_VALUE_DETERMINISTIC = SUM ( IP, DETERMINISTIC_PRICE(IP)*X.L(IP) ); 
ACTUAL_OBJ_FNC_VALUE_STOCHASTIC = SUM ( (S,IP), (1/CARD(S))*PRICE(S,IP)*X.L(IP) ); 
 
*DISPLAY X.L, OBJ.L, Y.L , Z.L; 
DISPLAY X.L, Y.L , Z.L, N, U1.L,U2.L, VaR1.L, VaR2.L, OBJ_RISK.L, 
ACTUAL_ACTUAL_OBJ_FNC_VALUE_DETERMINISTIC, ACTUAL_OBJ_FNC_VALUE_STOCHASTIC; 
 
 

 
APPENDIX III: GAMS MODELING CODE (CVaR1b) 

 
$TITLE  Find flow rate 
$EOLCOM # 
 
SETS 
 
I     material streams   /I1*I20/ 
 
K     DEMAND SHORTFALL OR SURPLUS     /K1, K2/ 
 
M     yield shortfall and surplus     /M1, M2/ 
 
COUNTER     /1*10/ 
 
$ontext 
IY1('I1',IY) 
/ 
I1.(I7, I4, I8, I9, I10, I20, I16, I17) 
/ 
$offtext 
; 
 
 
$onecho >taskin.txt 
dset=S rng=Sheet4!A16:A65 rdim=1 
dset=ID rng=Sheet4!B15:F15 cdim=1 
dset=IY rng=Sheet4!H15:L15 cdim=1 
dset=IP rng=Sheet4!Q15:W15 cdim=1 
par=D rng=Sheet4!A15:F65 cdim=1 rdim=1 
par=Yield rng=Sheet4!G15:L65  cdim=1 rdim=1 
par=Price rng=Sheet4!P15:W65 cdim=1 rdim=1 
$offecho 
 
$call gdxxrw.exe WStep1.xls @taskin.txt 
 
$gdxin WStep1.gdx 
 
Sets 
 
S(*)      scenario 
IP(I)     material with price uncertainty 
ID(I)     material with demand uncertainty 
IY(I)     material with yield uncertainty; 
 
$load S ID IY IP 
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display S, ID, IY, IP; 
 
ALIAS (S,S1) 
; 
 
SCALAR 
 
Z_ALPHA /1.96/ 
DELTA_PRICE     /0.5/ 
DELTA_DEMAND_YIELD     /0.5/ 
 
WEIGHT1     /0/ 
WEIGHT2     /0/ 
 
 
PARAMETERS 
 
D(S,ID)       demand 
N 
Yield(S,IY)   yield 
Price(S,IP)   price 
ACTUAL_ACTUAL_OBJ_FNC_VALUE_DETERMINISTI
C 
ACTUAL_OBJ_FNC_VALUE_STOCHASTIC 
 
$load D Yield Price 
display D, Yield, Price; 
$gdxin 
 
 
PARAMETERS 
 
DETERMINISTIC_PRICE(IP) 
/ 
I1     -8 
I2     18.5 
I3     8.0 
I4     12.5 
I5     14.5 
I6     6 
I14    -1.5 
/ 
 
PRICE_DEMAND(ID) 
/ 
I2     18.5 
I3     8.0 
I4     12.5 
I5     14.5 
I6     6 
/ 
 
 
DETERMINISTIC_DEMAND(ID) 
/ 
I2     2700 
I3     1100 
I4     2300 
I5     1700 
I6     9500 
/ 
 
PRICE_YIELD(IY) 
/ 
I7     8.0      #(ASSUME price of naphtha(I7) to be the same 
as naphtha(I3)) 
I4     12.5 
I8     14.5     #(ASSUME price same as heating oil (I5)) 
I9     1.5      #(ASSUME price same as cracker feed(I14) but 
the positive value) 
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I10    6        #(ASSUME price same as fuel oil (I6)) 
/ 
 
DETERMINISTIC_YIELD(IY) 
/ 
I7     0.13 
I4     0.15 
I8     0.22 
I9     0.20 
I10    0.30 
/ 
 
Table Penalty_Demand(ID,K) TABLE OF PENALTY 
DEMAND 
       K1        K2 
I2     25        20 
I3     17        13 
I4     5         4 
I5     6         5 
I6     10        8; 
 
Table Penalty_Yield(IY,M)  TABLE OF PENALTY YIELD 
       M1        M2 
I7      5         3 
I4      5         4 
I8      5         3 
I9      5         3 
I10     5         3; 
 
 
 
FREE Variables 
 
OBJ         OBJECTIVE FUNCTION 
Sn 
OBJ_RISK 
U(S) 
; 
 
 
Positive Variables 
 
X(I)        MATERIAL FLOWRATE 
Y(IY,S,M)  SHORT FALL OR SURPLUS FOR YEILD 
Z(ID,S,K)   SHORT FALL OR SURPLUS FOR DEMAND 
VaR1 
VaR2 
U1(S) 
U2(S) 
; 
 
*Initial values 
X.L('I1') = 12500; 
*X.L('I2') = 2700; 
X.L('I3') = 625; 
X.L('I4') = 1875; 
X.L('I5') = 1700; 
X.L('I6') = 6175; 
X.L('I7') = 1625; 
X.L('I8') = 2750; 
X.L('I9') = 2500; 
X.L('I10') = 3750; 
*X.L('I11') = 1000; 
X.L('I12') = 1275; 
X.L('I13') = 1475; 
X.L('I14') = 2500; 
X.L('I15') = 0; 
*X.L('I16') = 1000; 
X.L('I17') = 1375; 
X.L('I18') = 425; 
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X.L('I19') = 950; 
X.L('I20') = 125; 
 
Equations 
 
OBJFNC 
Sn_eqn 
OBJFNC_RISK 
 
DEMAND(S,ID) Demand, 
YIELD_CON(S,IY)    Yield, 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
 
*CVaR constraints 
CONSTRAINT_1_PRICE_UNCERTAINTY 
CONSTRAINT_1_DEMAND_YIELD_UNCERTAINTY 
CONSTRAINT_2_PRICE_UNCERTAINTY 
CONSTRAINT_2_DEMAND_YIELD_UNCERTAINTY 
 
; 
 
 
OBJFNC.. OBJ =e= SUM((S,IP),(CARD(S)**(-
1))*PRICE(S,IP)*X(IP)) -(SUM((ID,S,K),(CARD(S)**(-
1))*(Penalty_Demand(ID,K)*Z(ID,S,K))) + 
SUM((IY,S,M),(CARD(S)**(-
1))*(Penalty_Yield(IY,M)*Y(IY,S,M)))) ; 
 
*Nga: OBJFNC.. OBJ =e= SUM((S,IP),(CARD(S)**(-
1))*PRICE(S,IP)*X(IP)) -(SUM((ID,S,K),(CARD(S)**(-
1))*(Penalty_Demand(ID,K)*Z(ID,S,K))) + 
SUM((IY,S,M),(CARD(S)**(-
1))*(Penalty_Yield(IY,M)*Y(IY,S,M)))) ; 
 
 
**LIMITATIONS OF PLANT CAPACITY 
Feed1..      X('I1') =L= 15000; 
Feed14..     X('I14') =L= 2500; 
 
*mbl..X('1')-(X('2')+X('3')+X('4')+X('5')+X('6'))=E=0  ; 
 
*Reformulated stochastic constraints to account for uncertain 
yield coefficient 
YIELD_CON(S,IY).. -YIELD(S,IY)*X('I1') + X(IY) + 
Y(IY,S,'M1') - Y(IY,S,'M2') =E= 0; 
 
 
$ontext 
e1..     -0.13*X('I1') + X('I7') - Y(IY,S,'M1') + Y(IY,S,'M2') 
=E= 0; 
e1(IY,'I1',S) $ IY1('I1',IY)..     -YIELD(IY,S)*X('I1') + 
X(IY) - Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0; 
e1(IY,'I14',S)..     -YIELD(IY,S)*X('I14') + X(IY) - 
Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0; 
 
X('I1') = 100 
X('I7') = 14 
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-13 + 14 - Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0 
Y(IY,S,'M1') = 1 
Y(IY,S,'M2') = 0 
 
-0.05*X('I14') + X('I20') =E= 0 
; 
 
 
e2..     -0.15*X('I1') + X('I4') =E= 0; 
$offtext 
 
 
 
*************************************************
*************************************************
***************** 
*FIXED YIELDS FOR CRACKER (deterministic 
constraints) 
*************************************************
*************************************************
***************** 
 
PDU_14_20..  -0.05*X('I14') + X('I20') =E= 0; 
PDU_14_16..  -0.40*X('I14') + X('I16') =E= 0; 
PDU_14_17..  -0.55*X('I14') + X('I17') =E= 0; 
FB_2_11..    0.5*X('I2') - X('I11') =E= 0; 
FB_2_16..    0.5*X('I2') - X('I16') =E= 0; 
FB_5_12..    0.75*X('I5') - X('I12') =E= 0; 
FB_5_18..    0.25*X('I5')- X('I18') =E= 0; 
UB_8..       -X('I7') + X('I3') + X('I11') =E= 0; 
UB_14..      -X('I8') + X('I12') + X('I13') =E= 0; 
UB_17..      -X('I9') + X('I14') + X('I15') =E= 0; 
UB_18..      -X('I17') + X('I18') +X('I19') =E= 0; 
UB_6..       -X('I10') - X('I13') - X('I15') - X('I19') + X('I6') 
=E= 0; 
 
 
*************************************************
*************************************************
***************** 
**CONSTRAINTS ON PRODUCTION DEMANDS 
*************************************************
*************************************************
***************** 
 
DEMAND(S,ID).. X(ID) + Z(ID,S,'K1')-Z(ID,S,'K2') =E= 
D(S,ID); 
 
 
Sn_eqn..     Sn =E= SQRT(SUM(S,(ABS(1100.911-
(SUM(IP,PRICE(S,IP)*X(IP))- 
(SUM((ID,K),Penalty_Demand(ID,K)*Z(ID,S,K)) + 
SUM((IY,M),Penalty_Yield(IY,M)*Y(IY,S,M))))))**2)/49 )  
; 
 
 
*for price uncertainty: 
 
 
*************************************************
*************************************************
***************** 
*CVaR 
*************************************************
*************************************************
***************** 
 
OBJFNC_RISK.. OBJ_RISK =e= SUM ( (S,IP), 
(1/CARD(S))*PRICE(S,IP)*X(IP) ) 



XV 

                                 - 1 * ( VaR1 + ( 1 /(1 - 0.95)) * SUM ( 
(S,IP),(1/CARD(S)) * ( PRICE(S,IP)*X(IP) - VaR1 ) ) ) 
                                 - 
SUM(S,(1/CARD(S))*(SUM((ID,K),Penalty_Demand(ID,K)
*Z(ID,S,K))+SUM((IY,M), 
Penalty_Yield(IY,M)*Y(IY,S,M)))) 
                                 - 1 * ( VaR2 + ( 1 / (1 - 0.95) ) * SUM ( 
S, (1/CARD(S)) * ( SUM ( (ID,K), 
Penalty_Demand(ID,K)*Z(ID,S,K) ) + SUM ( (IY,M), 
Penalty_Yield(IY,M)*Y(IY,S,M)) - VaR2 ) ) ); 
 
 
 
CONSTRAINT_1_PRICE_UNCERTAINTY.. 
         VaR1 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, U1(S) 
) =L= DELTA_PRICE*SUM (IP, 
DETERMINISTIC_PRICE(IP) ) 
*         VaR1 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, 
U1(S) ) =L= DELTA_PRICE*SUM (IP, 
DETERMINISTIC_PRICE(IP)*X(IP) ) 
; 
 
CONSTRAINT_1_DEMAND_YIELD_UNCERTAINTY.. 
         VaR2 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, U2(S) 
) =L= DELTA_DEMAND_YIELD*( SUM ( ID, 
PRICE_DEMAND(ID)*DETERMINISTIC_DEMAND(ID) 
) + SUM ( IY, 
PRICE_YIELD(IY)*DETERMINISTIC_YIELD(IY) ) ) 
*         VaR2 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, 
U2(S) ) =L= DELTA_DEMAND_YIELD*( SUM ( 
(ID,S,K), 
PRICE_DEMAND(ID)*DETERMINISTIC_DEMAND(ID)*
Z(ID,S,K) ) + SUM ( (IY,S,M), 
PRICE_YIELD(IY)*DETERMINISTIC_YIELD(IY)*Y(IY,
S,M) ) ) 
; 
*problem here is: there are two expressions for U(S) which 
 
CONSTRAINT_2_PRICE_UNCERTAINTY(S)..     U1(S) 
=G= - SUM ( IP, (1/CARD(S))*PRICE(S,IP)*X(IP) ) - VaR1 
; 
 
CONSTRAINT_2_DEMAND_YIELD_UNCERTAINTY(S)
..     U2(S) =G= - SUM ( (ID,K), 
(1/CARD(S))*Penalty_Demand(ID,K)*Z(ID,S,K) ) - SUM ( 
(IY,M), (1/CARD(S))*Penalty_Yield(IY,M)*Y(IY,S,M) ) - 
VaR2 
; 
 
 
 
 
* Nga's solution from cumumlative density function: 
*Var1 = 72400; 
*Var2 = 173200; 
 
$ontext 
*CVaR for price uncertainty 
CVaR1_constraint_1..     CVaR1 =E= Var1 + (1/(1-0.95)) * 
SUM ( (S,IP), P(S) * ( PRICE(S,IP)*X(IP) - Var1 ) ) 
; 
 
*CVaR for demand and yield uncertainty 
CVaR2_constraint_1..     CVaR2 =E= Var2 + (1/(1-0.95)) * 
SUM ( (S,IP), P(S)*(PRICE(S,IP)*X(IP) - Var2 ) ) 
; 
 
*AUXILIARY VARIABLES 
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CVaR1_constraint_2..    VaR1 + ( (1 - 0.95)**(-1) * SUM ( 
S, P(S)*U(S) ) ) =G= CVaR1.LO 
; 
CVaR2_constraint_2..    VaR2 + ( (1 - 0.95)**(-1) * SUM ( 
S, P(S)*U(S) ) ) =G= CVaR2.LO 
; 
 
CVaR_constraint_1(S)..    U(S) =L= 0 
; 
 
*not sure what the following constraints are and where they 
are obtained 
CVaR1_constraint_3(S)..     U(S) =L= PRICE(S,'1')*X('1') - 
VaR1 
; 
CVaR2_constraint_3(S)..     U(S) =L= PRICE(S,'1')*X('1') - 
VaR2 
; 
 
CVaR1.L = 0 
; 
CVaR2.L = 0 
; 
$offtext 
 
 
*DECISION  VARIABLE BOUNDS 
*X.UP(I) = 12100; 
Y.UP(IY,S,M) = 1500; 
*VaR1.UP = 1E5; 
*VaR2.UP = 1E5; 
 
U1.L(S) = 100; 
U2.L(S) = 100; 
 
* Upper bounds of variables 
X.UP('I1') = 15000; 
 
*original: X.UP('I2') = 2700; 
X.UP('I2') = 3000; 
 
X.UP('I3') = 1100; 
X.UP('I4') = 2300; 
X.UP('I5') = 1700; 
X.UP('I6') = 9500; 
X.UP('I7') = 1950; 
X.UP('I8') = 3300; 
X.UP('I9') = 3000; 
X.UP('I10') = 3000; 
 
*original: X.UP('I11') = 1350; 
X.UP('I11') = 2000; 
 
X.UP('I12') = 1275; 
X.UP('I13') = 3300; 
X.UP('I14') = 2500; 
X.UP('I15') = 3000; 
 
*original: X.UP('I16') = 1200; 
X.UP('I16') = 2000; 
 
X.UP('I17') = 1650; 
X.UP('I18') = 425; 
X.UP('I19') = 1650; 
X.UP('I20') = 150; 
 
 
MODEL WStep1 to determine stochastic profit 
*/ALL/; 
/ 
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OBJFNC 
DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
*Sn_eqn 
/; 
 
 
OPTION LIMROW = 100000; 
OPTION LIMCOL = 100000; 
 
*SOLVE WStep1 USING DNLP MAXIMIZING OBJ; 
SOLVE WStep1 USING DNLP MAXIMIZING OBJ; 
 
EXECUTE_UNLOAD 'WStep1.GDX', Sn; 
EXECUTE 'GDXXRW.EXE WStep1.GDX O=WStep1.XLS 
VAR=Sn RNG=SHEET4!A68'; 
 
 
MODEL WStep2 
*/ALL/; 
/ 
Sn_eqn 
*OBJFNC 
DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
/ 
; 
 
SOLVE WStep2 USING DNLP MINIMIZING Sn; 
 
N = ( Z_ALPHA*Sn.L/( (OBJ.L + 
Z_ALPHA*Sn.L/SQRT(CARD(S)) ) - (OBJ.L - 
Z_ALPHA*Sn.L/SQRT(CARD(S)) ) ) )**2 
 
 
MODEL CVaR 
/ 
OBJFNC_RISK 
DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
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PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18 
UB_6 
 
CONSTRAINT_1_PRICE_UNCERTAINTY 
CONSTRAINT_1_DEMAND_YIELD_UNCERTAINTY 
CONSTRAINT_2_PRICE_UNCERTAINTY 
CONSTRAINT_2_DEMAND_YIELD_UNCERTAINTY 
/ 
; 
 
LOOP ( COUNTER, 
WEIGHT1 = WEIGHT1 + 0.1; 
WEIGHT2 = WEIGHT2 + 0.1; 
 
 
SOLVE CVaR USING LP MAXIMIZING OBJ_RISK; 
 
ACTUAL_ACTUAL_OBJ_FNC_VALUE_DETERMINISTI
C = SUM ( IP, DETERMINISTIC_PRICE(IP)*X.L(IP) ); 
ACTUAL_OBJ_FNC_VALUE_STOCHASTIC = SUM ( 
(S,IP), (1/CARD(S))*PRICE(S,IP)*X.L(IP) ); 
 
*DISPLAY X.L, OBJ.L, Y.L , Z.L; 
DISPLAY X.L, Y.L , Z.L, N, U1.L,U2.L, VaR1.L, VaR2.L, 
OBJ_RISK.L, 
ACTUAL_ACTUAL_OBJ_FNC_VALUE_DETERMINISTI
C, ACTUAL_OBJ_FNC_VALUE_STOCHASTIC; 
 
);     # end of LOOP 
 
 

APPENDIX IV: GAMS MODELING CODE (CVaR2) 

$TITLE  Find flow rate 
$EOLCOM # 
 
SETS 
 
I     material streams   /I1*I20/ 
 
K     DEMAND SHORTFALL OR SURPLUS 
/ 
K1     demand shortfall 
K2     demand surplus 
/ 
 
M     yield shortfall and surplus     /M1, M2/ 
 
COUNTER     /1*20/ 
 
$ontext 
IY1('I1',IY) 
/ 
I1.(I7, I4, I8, I9, I10, I20, I16, I17) 
/ 
$offtext 
; 
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$onecho >taskin.txt 
dset=S rng=Sheet4!A16:A65 rdim=1 
dset=ID rng=Sheet4!B15:F15 cdim=1 
dset=IY rng=Sheet4!H15:L15 cdim=1 
dset=IP rng=Sheet4!Q15:W15 cdim=1 
par=D rng=Sheet4!A15:F65 cdim=1 rdim=1 
par=Yield rng=Sheet4!G15:L65  cdim=1 rdim=1 
par=Price rng=Sheet4!P15:W65 cdim=1 rdim=1 
$offecho 
 
$call gdxxrw.exe WStep1.xls @taskin.txt 
 
$gdxin WStep1.gdx 
 
Sets 
 
S(*)      scenario 
IP(I)     material with price uncertainty 
ID(I)     material with demand uncertainty 
IY(I)     material with yield uncertainty; 
 
$load S ID IY IP 
display S, ID, IY, IP; 
 
ALIAS (S,S1) 
; 
 
SCALARS 
 
Z_ALPHA /1.96/ 
DELTA_PRICE     /0.5/ 
DELTA_DEMAND    /0.5/ 
DELTA_YIELD    /0.5/ 
WEIGHT1 /0/ 
WEIGHT2 /0/ 
WEIGHT3 /0/ 
WEIGHT4 /0/ 
WEIGHT5 /0/ 
; 
 
PARAMETERS 
 
D(S,ID)       demand 
N 
ACTUAL_OBJ_FNC_VALUE_DETERMINISTIC 
ACTUAL_OBJ_FNC_VALUE_STOCHASTIC 
 
Yield(S,IY)   yield 
Price(S,IP)   price 
$load D Yield Price 
display D, Yield, Price; 
$gdxin 
 
 
PARAMETERS 
 
DETERMINISTIC_PRICE(IP) 
/ 
I1     -8 
I2     18.5 
I3     8.0 
I4     12.5 
I5     14.5 
I6     6 
I14    -1.5 
/ 
 
PRICE_DEMAND(ID) 
/ 
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I2     18.5 
I3     8.0 
I4     12.5 
I5     14.5 
I6     6 
/ 
 
 
DETERMINISTIC_DEMAND(ID) 
/ 
I2     2700 
I3     1100 
I4     2300 
I5     1700 
I6     9500 
/ 
 
PRICE_YIELD(IY) 
/ 
I7     8.0      #(ASSUME price of naphtha(I7) to be the same 
as naphtha(I3)) 
I4     12.5 
I8     14.5     #(ASSUME price same as heating oil (I5)) 
I9     1.5      #(ASSUME price same as cracker feed(I14) but 
the positive value) 
I10    6        #(ASSUME price same as fuel oil (I6)) 
/ 
 
DETERMINISTIC_YIELD(IY) 
/ 
I7     0.13 
I4     0.15 
I8     0.22 
I9     0.20 
I10    0.30 
/ 
 
Table Penalty_Demand(ID,K) TABLE OF PENALTY 
DEMAND 
       K1        K2 
I2     25        20 
I3     17        13 
I4     5         4 
I5     6         5 
I6     10        8; 
 
Table Penalty_Yield(IY,M)  TABLE OF PENALTY YIELD 
       M1        M2 
I7      5         3 
I4      5         4 
I8      5         3 
I9      5         3 
I10     5         3; 
 
 
 
FREE Variables 
 
OBJ         OBJECTIVE FUNCTION 
Sn 
OBJ_RISK 
; 
 
 
Positive Variables 
 
X(I)        MATERIAL FLOWRATE 
Y(IY,S,M)  SHORT FALL OR SURPLUS FOR YEILD 
Z(ID,S,K)   SHORT FALL OR SURPLUS FOR DEMAND 
VaR1 
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VaR21 
VaR22 
VaR31 
VaR32 
 
U1(S) 
U21(S) 
U22(S) 
U31(S) 
U32(S) 
 
; 
 
 
Equations 
 
OBJFNC 
Sn_eqn 
OBJFNC_RISK 
 
DEMAND(S,ID) Demand, 
YIELD_CON(S,IY)    Yield, 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
 
*CVaR constraints 
CONSTRAINT_1_PRICE_UNCERTAINTY 
CONSTRAINT_1_DEMAND_UNCERTAINTY_SHORTF
ALL 
CONSTRAINT_1_DEMAND_UNCERTAINTY_SURPLUS 
CONSTRAINT_1_YIELD_UNCERTAINTY_SHORTFALL 
CONSTRAINT_1_YIELD_UNCERTAINTY_SURPLUS 
 
CONSTRAINT_2_PRICE_UNCERTAINTY 
CONSTRAINT_2_DEMAND_UNCERTAINTY_SHORTF
ALL 
CONSTRAINT_2_DEMAND_UNCERTAINTY_SURPLUS 
CONSTRAINT_2_YIELD_UNCERTAINTY_SHORTFALL 
CONSTRAINT_2_YIELD_UNCERTAINTY_SURPLUS 
 
 
; 
 
 
OBJFNC.. OBJ =e= SUM((S,IP),(CARD(S)**(-
1))*PRICE(S,IP)*X(IP)) -(SUM((ID,S,K),(CARD(S)**(-
1))*(Penalty_Demand(ID,K)*Z(ID,S,K))) + 
SUM((IY,S,M),(CARD(S)**(-
1))*(Penalty_Yield(IY,M)*Y(IY,S,M)))) ; 
 
*Nga: OBJFNC.. OBJ =e= SUM((S,IP),(CARD(S)**(-
1))*PRICE(S,IP)*X(IP)) -(SUM((ID,S,K),(CARD(S)**(-
1))*(Penalty_Demand(ID,K)*Z(ID,S,K))) + 
SUM((IY,S,M),(CARD(S)**(-
1))*(Penalty_Yield(IY,M)*Y(IY,S,M)))) ; 
 
 
**LIMITATIONS OF PLANT CAPACITY 
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Feed1..      X('I1') =L= 15000; 
Feed14..     X('I14') =L= 2500; 
 
*mbl..X('1')-(X('2')+X('3')+X('4')+X('5')+X('6'))=E=0  ; 
 
*Reformulated stochastic constraints to account for uncertain 
yield coefficient 
YIELD_CON(S,IY).. -YIELD(S,IY)*X('I1') + X(IY) + 
Y(IY,S,'M1') - Y(IY,S,'M2') =E= 0; 
 
 
$ontext 
e1..     -0.13*X('I1') + X('I7') - Y(IY,S,'M1') + Y(IY,S,'M2') 
=E= 0; 
e1(IY,'I1',S) $ IY1('I1',IY)..     -YIELD(IY,S)*X('I1') + 
X(IY) - Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0; 
e1(IY,'I14',S)..     -YIELD(IY,S)*X('I14') + X(IY) - 
Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0; 
 
X('I1') = 100 
X('I7') = 14 
 
-13 + 14 - Y(IY,S,'M1') + Y(IY,S,'M2') =E= 0 
Y(IY,S,'M1') = 1 
Y(IY,S,'M2') = 0 
 
-0.05*X('I14') + X('I20') =E= 0 
; 
 
 
e2..     -0.15*X('I1') + X('I4') =E= 0; 
$offtext 
 
 
 
*************************************************
*************************************************
***************** 
*FIXED YIELDS FOR CRACKER (deterministic 
constraints) 
*************************************************
*************************************************
***************** 
 
PDU_14_20..  -0.05*X('I14') + X('I20') =E= 0; 
PDU_14_16..  -0.40*X('I14') + X('I16') =E= 0; 
PDU_14_17..  -0.55*X('I14') + X('I17') =E= 0; 
FB_2_11..    0.5*X('I2') - X('I11') =E= 0; 
FB_2_16..    0.5*X('I2') - X('I16') =E= 0; 
FB_5_12..    0.75*X('I5') - X('I12') =E= 0; 
FB_5_18..    0.25*X('I5')- X('I18') =E= 0; 
UB_8..       -X('I7') + X('I3') + X('I11') =E= 0; 
UB_14..      -X('I8') + X('I12') + X('I13') =E= 0; 
UB_17..      -X('I9') + X('I14') + X('I15') =E= 0; 
UB_18..      -X('I17') + X('I18') +X('I19') =E= 0; 
UB_6..       -X('I10') - X('I13') - X('I15') - X('I19') + X('I6') 
=E= 0; 
 
 
*************************************************
*************************************************
***************** 
**CONSTRAINTS ON PRODUCTION DEMANDS 
*************************************************
*************************************************
***************** 
 
DEMAND(S,ID).. X(ID) + Z(ID,S,'K1')-Z(ID,S,'K2') =E= 
D(S,ID); 
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Sn_eqn..     Sn =E= SQRT(SUM(S,(ABS(1100.911-
(SUM(IP,PRICE(S,IP)*X(IP))- 
(SUM((ID,K),Penalty_Demand(ID,K)*Z(ID,S,K)) + 
SUM((IY,M),Penalty_Yield(IY,M)*Y(IY,S,M))))))**2)/49 )  
; 
 
 
*for price uncertainty: 
 
 
*************************************************
*************************************************
***************** 
*CVaR 
*************************************************
*************************************************
***************** 
 
$ontext 
OBJFNC_RISK.. OBJ_RISK =e= SUM ( (S,IP), 
(1/CARD(S))*PRICE(S,IP)*X(IP) ) 
                                 - 0.0001 * ( VaR1 + ( 1 /(1 - 0.95)) * 
SUM ( (S,IP),(1/CARD(S)) * ( PRICE(S,IP)*X(IP) - VaR1 ) 
) ) 
                                 - 
SUM(S,(1/CARD(S))*(SUM((ID,K),Penalty_Demand(ID,K)
*Z(ID,S,K)) + SUM((IY,M), 
Penalty_Yield(IY,M)*Y(IY,S,M)))) 
                                 - 0.01 * ( VaR21 + ( 1 / (1 - 0.95) ) * 
SUM ( S, (1/CARD(S)) *  SUM ( (ID), 
Penalty_Demand(ID,'K1')*Z(ID,S,'K1') - VaR21 ) ) ) 
                                 - 0.01 * ( VaR22 + ( 1 / (1 - 0.95) ) * 
SUM ( S, (1/CARD(S)) *  SUM ( (ID), 
Penalty_Demand(ID,'K2')*Z(ID,S,'K2') - VaR22 ) ) ) 
                                 - 0.01 * ( VaR31 + ( 1 / (1 - 0.95) ) * 
SUM ( S, (1/CARD(S)) * SUM ( (IY), 
Penalty_Yield(IY,'M1')*Y(IY,S,'M1') - VaR31 ) ) ) 
                                 - 0.01 * ( VaR32 + ( 1 / (1 - 0.95) ) * 
SUM ( S, (1/CARD(S)) * SUM ( (IY), 
Penalty_Yield(IY,'M1')*Y(IY,S,'M2') - VaR32 ) ) ) 
; 
 
 
*try different values of theta: 
OBJFNC_RISK.. OBJ_RISK =e= SUM ( (S,IP), 
(1/CARD(S))*PRICE(S,IP)*X(IP) ) 
                                 - WEIGHT1 * ( VaR1 + ( 1 /(1 - 0.95)) * 
SUM ( (S,IP),(1/CARD(S)) * ( PRICE(S,IP)*X(IP) - VaR1 ) 
) ) 
                                 - 
SUM(S,(1/CARD(S))*(SUM((ID,K),Penalty_Demand(ID,K)
*Z(ID,S,K)) + SUM((IY,M), 
Penalty_Yield(IY,M)*Y(IY,S,M)))) 
                                 - WEIGHT2 * ( VaR21 + ( 1 / (1 - 0.95) 
) * SUM ( S, (1/CARD(S)) *  SUM ( (ID), 
Penalty_Demand(ID,'K1')*Z(ID,S,'K1') - VaR21 ) ) ) 
                                 - WEIGHT3 * ( VaR22 + ( 1 / (1 - 0.95) 
) * SUM ( S, (1/CARD(S)) *  SUM ( (ID), 
Penalty_Demand(ID,'K2')*Z(ID,S,'K2') - VaR22 ) ) ) 
                                 - WEIGHT4 * ( VaR31 + ( 1 / (1 - 0.95) 
) * SUM ( S, (1/CARD(S)) * SUM ( (IY), 
Penalty_Yield(IY,'M1')*Y(IY,S,'M1') - VaR31 ) ) ) 
                                 - WEIGHT5 * ( VaR32 + ( 1 / (1 - 0.95) 
) * SUM ( S, (1/CARD(S)) * SUM ( (IY), 
Penalty_Yield(IY,'M1')*Y(IY,S,'M2') - VaR32 ) ) ) 
; 
$offtext 
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* 19apr10: with clear separation between the 1st stage and 
2nd stage 
OBJFNC_RISK.. OBJ_RISK =E= 
* 1st stage: 
*SUM ( IP, DETERMINISTIC_PRICE(IP)*X(IP) ) - SUM ( 
ID, 
PRICE_DEMAND(ID)*DETERMINISTIC_DEMAND(ID) 
) - SUM ( IY, 
PRICE_YIELD(IY)*DETERMINISTIC_YIELD(IY) ) 
* 2nd stage: 
SUM ( (S,IP), (1/CARD(S))*PRICE(S,IP)*X(IP) ) 
                                 - WEIGHT1 * ( VaR1 + ( 1 /(1 - 0.95)) * 
SUM ( (S,IP),(1/CARD(S)) * ( PRICE(S,IP)*X(IP) - VaR1 ) 
) ) 
                                 - 
SUM(S,(1/CARD(S))*(SUM((ID,K),Penalty_Demand(ID,K)
*Z(ID,S,K)) + SUM((IY,M), 
Penalty_Yield(IY,M)*Y(IY,S,M)))) 
                                 - WEIGHT2 * ( VaR21 + ( 1 / (1 - 0.95) 
) * SUM ( S, (1/CARD(S)) *  SUM ( (ID), 
Penalty_Demand(ID,'K1')*Z(ID,S,'K1') - VaR21 ) ) ) 
                                 - WEIGHT3 * ( VaR22 + ( 1 / (1 - 0.95) 
) * SUM ( S, (1/CARD(S)) *  SUM ( (ID), 
Penalty_Demand(ID,'K2')*Z(ID,S,'K2') - VaR22 ) ) ) 
                                 - WEIGHT4 * ( VaR31 + ( 1 / (1 - 0.95) 
) * SUM ( S, (1/CARD(S)) * SUM ( (IY), 
Penalty_Yield(IY,'M1')*Y(IY,S,'M1') - VaR31 ) ) ) 
                                 - WEIGHT5 * ( VaR32 + ( 1 / (1 - 0.95) 
) * SUM ( S, (1/CARD(S)) * SUM ( (IY), 
Penalty_Yield(IY,'M1')*Y(IY,S,'M2') - VaR32 ) ) ) 
; 
 
 
CONSTRAINT_1_PRICE_UNCERTAINTY.. 
         VaR1 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, U1(S) 
) =L= DELTA_PRICE*SUM (IP, 
DETERMINISTIC_PRICE(IP) ) 
; 
 
CONSTRAINT_1_DEMAND_UNCERTAINTY_SHORTF
ALL.. 
         VaR21 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, 
U21(S) ) =L= DELTA_DEMAND*( SUM ( ID, 
PRICE_DEMAND(ID)*DETERMINISTIC_DEMAND(ID) 
) ) 
; 
CONSTRAINT_1_DEMAND_UNCERTAINTY_SURPLUS
.. 
         VaR22 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, 
U22(S) ) =L= DELTA_DEMAND*( SUM ( ID, 
PRICE_DEMAND(ID)*DETERMINISTIC_DEMAND(ID) 
) ) 
; 
CONSTRAINT_1_YIELD_UNCERTAINTY_SHORTFALL
.. 
         VaR31 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, 
U31(S) ) =L= DELTA_YIELD* (SUM ( IY, 
PRICE_YIELD(IY)*DETERMINISTIC_YIELD(IY) ) ) 
; 
CONSTRAINT_1_YIELD_UNCERTAINTY_SURPLUS.. 
         VaR32 + ( 1 /((1 - 0.95)*CARD(S)) ) * SUM ( S, 
U32(S) ) =L= DELTA_YIELD* (SUM ( IY, 
PRICE_YIELD(IY)*DETERMINISTIC_YIELD(IY) ) ) 
; 
 
CONSTRAINT_2_PRICE_UNCERTAINTY(S)..     U1(S) 
=G= - SUM ( IP, (1/CARD(S))*PRICE(S,IP)*X(IP) ) - VaR1 
; 
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CONSTRAINT_2_DEMAND_UNCERTAINTY_SHORTF
ALL(S)..     U21(S) =G= - SUM ( (ID), 
(1/CARD(S))*Penalty_Demand(ID,'K1')*Z(ID,S,'K1') ) - 
VaR21 
; 
CONSTRAINT_2_DEMAND_UNCERTAINTY_SURPLUS
(S)..     U22(S) =G= - SUM ( (ID), 
(1/CARD(S))*Penalty_Demand(ID,'K2')*Z(ID,S,'K2') ) - 
VaR22 
; 
 
CONSTRAINT_2_YIELD_UNCERTAINTY_SHORTFALL
(S)..     U31(S) =G= -  SUM ( (IY), 
(1/CARD(S))*Penalty_Yield(IY,'M1')*Y(IY,S,'M1') ) - 
VaR31 
; 
CONSTRAINT_2_YIELD_UNCERTAINTY_SURPLUS(S)
..     U32(S) =G= -  SUM ( (IY), 
(1/CARD(S))*Penalty_Yield(IY,'M2')*Y(IY,S,'M2') ) - 
VaR32 
; 
 
 
* Nga's solution from cumumlative density function: 
*Var1 = 72400; 
*Var2 = 173200; 
 
$ontext 
*CVaR for price uncertainty 
CVaR1_constraint_1..     CVaR1 =E= Var1 + (1/(1-0.95)) * 
SUM ( (S,IP), P(S) * ( PRICE(S,IP)*X(IP) - Var1 ) ) 
; 
 
*CVaR for demand and yield uncertainty 
CVaR2_constraint_1..     CVaR2 =E= Var2 + (1/(1-0.95)) * 
SUM ( (S,IP), P(S)*(PRICE(S,IP)*X(IP) - Var2 ) ) 
; 
 
*AUXILIARY VARIABLES 
 
CVaR1_constraint_2..    VaR1 + ( (1 - 0.95)**(-1) * SUM ( 
S, P(S)*U(S) ) ) =G= CVaR1.LO 
; 
CVaR2_constraint_2..    VaR2 + ( (1 - 0.95)**(-1) * SUM ( 
S, P(S)*U(S) ) ) =G= CVaR2.LO 
; 
 
CVaR_constraint_1(S)..    U(S) =L= 0 
; 
 
*not sure what the following constraints are and where they 
are obtained 
CVaR1_constraint_3(S)..     U(S) =L= PRICE(S,'1')*X('1') - 
VaR1 
; 
CVaR2_constraint_3(S)..     U(S) =L= PRICE(S,'1')*X('1') - 
VaR2 
; 
 
CVaR1.L = 0 
; 
CVaR2.L = 0 
; 
$offtext 
 
 
*DECISION  VARIABLE BOUNDS 
*X.UP(I) = 12100; 
Y.UP(IY,S,M) = 1500; 
*VaR1.UP = 1E5; 
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*VaR2.UP = 1E5; 
 
*Initial values 
X.L('I1') = 12500; 
*X.L('I2') = 2700; 
X.L('I3') = 625; 
X.L('I4') = 1875; 
X.L('I5') = 1700; 
X.L('I6') = 6175; 
X.L('I7') = 1625; 
X.L('I8') = 2750; 
X.L('I9') = 2500; 
X.L('I10') = 3750; 
*X.L('I11') = 1000; 
X.L('I12') = 1275; 
X.L('I13') = 1475; 
X.L('I14') = 2500; 
X.L('I15') = 0; 
*X.L('I16') = 1000; 
X.L('I17') = 1375; 
X.L('I18') = 425; 
X.L('I19') = 950; 
X.L('I20') = 125; 
 
U1.L(S) = 100; 
U21.L(S) = 100; 
 
* Upper bounds of variables 
X.UP('I1') = 15000; 
 
*original: X.UP('I2') = 2700; 
X.UP('I2') = 3000; 
 
X.UP('I3') = 1100; 
X.UP('I4') = 2300; 
X.UP('I5') = 1700; 
X.UP('I6') = 9500; 
X.UP('I7') = 1950; 
X.UP('I8') = 3300; 
X.UP('I9') = 3000; 
X.UP('I10') = 3000; 
 
*original: X.UP('I11') = 1350; 
X.UP('I11') = 2000; 
 
X.UP('I12') = 1275; 
X.UP('I13') = 3300; 
X.UP('I14') = 2500; 
X.UP('I15') = 3000; 
 
*original: X.UP('I16') = 1200; 
X.UP('I16') = 2000; 
 
X.UP('I17') = 1650; 
X.UP('I18') = 425; 
X.UP('I19') = 1650; 
X.UP('I20') = 150; 
 
* lower bounds on auxiliary variables 
U1.LO(S) = 0.2; 
U21.LO(S) = 0.2; 
U22.LO(S) = 0.2; 
U31.LO(S) = 0.2; 
U32.LO(S) = 0.2; 
 
* initial values on auxiliary variables 
*U1.L(S) = 0.1; 
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MODEL WStep1 to determine stochastic profit 
*/ALL/; 
/ 
OBJFNC 
DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
*Sn_eqn 
/; 
 
 
OPTION LIMROW = 100000; 
OPTION LIMCOL = 100000; 
 
*SOLVE WStep1 USING DNLP MAXIMIZING OBJ; 
SOLVE WStep1 USING DNLP MAXIMIZING OBJ; 
 
EXECUTE_UNLOAD 'WStep1.GDX', Sn; 
EXECUTE 'GDXXRW.EXE WStep1.GDX O=WStep1.XLS 
VAR=Sn RNG=SHEET4!A68'; 
 
 
MODEL WStep2 
*/ALL/; 
/ 
Sn_eqn 
*OBJFNC 
DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18, 
UB_6 
/ 
; 
 
SOLVE WStep2 USING DNLP MINIMIZING Sn; 
 
N = ( Z_ALPHA*Sn.L/( (OBJ.L + 
Z_ALPHA*Sn.L/SQRT(CARD(S)) ) - (OBJ.L - 
Z_ALPHA*Sn.L/SQRT(CARD(S)) ) ) )**2 
 
DISPLAY N; 
 
MODEL CVaR 
/ 
OBJFNC_RISK 
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DEMAND 
YIELD_CON 
Feed1, 
Feed14, 
PDU_14_16, 
PDU_14_17, 
PDU_14_20, 
FB_2_11, 
FB_2_16, 
FB_5_12, 
FB_5_18, 
UB_8, 
UB_14, 
UB_17, 
UB_18 
UB_6 
 
CONSTRAINT_1_PRICE_UNCERTAINTY 
 
CONSTRAINT_1_DEMAND_UNCERTAINTY_SHORTF
ALL 
CONSTRAINT_1_DEMAND_UNCERTAINTY_SURPLUS 
CONSTRAINT_1_YIELD_UNCERTAINTY_SHORTFALL 
CONSTRAINT_1_YIELD_UNCERTAINTY_SURPLUS 
 
CONSTRAINT_2_PRICE_UNCERTAINTY 
CONSTRAINT_2_DEMAND_UNCERTAINTY_SHORTF
ALL 
CONSTRAINT_2_DEMAND_UNCERTAINTY_SURPLUS 
CONSTRAINT_2_YIELD_UNCERTAINTY_SHORTFALL 
CONSTRAINT_2_YIELD_UNCERTAINTY_SURPLUS 
 
 
/ 
; 
 
LOOP( COUNTER, 
WEIGHT1 = WEIGHT1 + 0.1; 
WEIGHT2 = WEIGHT2 + 0.1; 
WEIGHT3 = WEIGHT3 + 0.1; 
WEIGHT4 = WEIGHT4 + 0.1; 
WEIGHT5 = WEIGHT5 + 0.1; 
 
SOLVE CVaR USING LP MAXIMIZING OBJ_RISK; 
 
ACTUAL_OBJ_FNC_VALUE_DETERMINISTIC = SUM ( 
IP, DETERMINISTIC_PRICE(IP)*X.L(IP) ); 
ACTUAL_OBJ_FNC_VALUE_STOCHASTIC = SUM ( 
(S,IP), (1/CARD(S))*PRICE(S,IP)*X.L(IP) ); 
 
DISPLAY X.L, Y.L , Z.L, N, U1.L,U21.L, U22.L, U31.L, 
U32.L, VaR1.L, VaR21.L, VaR22.L, VaR31.L, VaR32.L, 
OBJ_RISK.L, 
ACTUAL_OBJ_FNC_VALUE_DETERMINISTIC, 
ACTUAL_OBJ_FNC_VALUE_STOCHASTIC; 
 
);     # end of LOOP 
 
 
 
 
 
 
 
 
 

 
 
 


