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ABSTRACT 

This project is conducted with the main objective of carrying out simulated engine 

modification concepts to find the best concept that addresses well on two criteria of the 

automobile industry, which are low fuel consumption and optimum vehicle performance 

for a city car. The focus of the project is set on gasoline engine, the more widely used 

engines for cars in Malaysia. For the purpose of analysis and comparison of the 

modified engine model, the PERODUA Myvi 1.3 SX is made as the benchmark, with 

the engine being a 1.3L K3-VE four-stroke four-cylinder gasoline engine. In order to 

achieve fuel consumption reduction, the author upon the guidance of the supervisor, has 

decided to adopt the cylinder deactivation technology. As to optimize the vehicle 

performance particularly the speed and acceleration of the car, forced induction systems 

are seen as the best solution to boost the performance of the engine in terms of power 

and torque. The period allocated for the project is for two full semesters (7 months), 

requiring target achievements up from defining objectives, research and data gathering 

for concepts generation, simulation of concepts up to the results analysis process and 

finalization of the best concept. From all the research and studies, few feasible 

mechanisms of cylinder deactivation and forced induction are combined into a few 

promising concepts. Virtual modeling through CATIA and theoretical computation with 

the governing equations provide data for software simulation and analysis. In order to 

select the ultimate concept, GT Power is used to generate simulation results for fuel 

consumption and performance of the few selected concepts. The best engine 

modification concept is the 1-cylinder deactivation (piston removal) with the electric 

supercharging, which is simulated to have the best efficiency and lowest brake specific 

fuel consumption at the targeted engine speed range. It also fulfills the basic power 

requirement of 18.2kW and torque of over 89.6Nm. Minor experiments like fuel 

consumption test and engine vibration test are conducted for validation of simulation 

data. As the cylinder deactivation concept compromises the balance of the engine 

cranktrain, balancers are to be mounted on the crankpin of the deactivated cylinders. 

ADAMS simulation proves the balancers effective as they lower both the unbalance 

vibration forces and moments.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Project Background 

The project is selected by the supervisor based on his involvement in the PERODUA 

Eco-Challenge, a car modification competition for the university. It is actually related to 

one of the main propositions of the Universiti Teknologi PETRONAS team to compete 

for the PERODUA Eco-Challenge 2013 (PEC 2013). PEC 2013 challenges all the 

participating university undergraduates and lecturers on five different aspects: Long 

Distance, Time Attack, Styling, Engineering and Marketing Challenge to emerge as the 

Overall Champion [1]. Synchronizing with the competition requirements, the project 

requires the author to address two main criteria of the automobile industry which are 

fuel consumption and vehicle performance. The focus of the project is on the city car 

rather than sports car or heavy duty vehicles. Hence the engine performance has to fulfill 

the requirement of such categories of cars.  

Fuel consumption and carbon dioxide emission reduction have been the two major 

concerns for the automotive industry for what seems like an eternity. Among the 

technologies that emerge are active aerodynamics, cylinder deactivation, idle-stop 

systems, gear shift point display, electric motor-powered cars, regenerative braking etc. 

Cylinder deactivation has been unanimously agreed upon by the UTP team as the 

solution to feature for fuel consumption reduction in the PEC 2013. Cylinder 

deactivation has come into focus of the world in the 80’s when it is first featured in the 

Cardillac’s 1981 Seville with the main aim to reduce fuel consumption [2]. This concept 

revolves around the finding that the typical engine load during daily traffic is low which 

results in sub-optimal fuel consumption and by applying cylinder deactivation, better 
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matching of the real engine load with the optimal engine load can be achieved [3]. As a 

result, the load of the still activated cylinder is increased with improved efficiency [3].  

Cylinder deactivation can be adopted in several different methods though. In this project, 

instead of the typical valve timing technology which is used for relatively bigger engine 

with more cylinders, a different approach is adopted by removing completely the piston 

assemblies of the deactivated cylinders as to remove the unnecessary frictional forces 

between the deactivated pistons with the cylinder wall. This method will affect 

important criteria regarding the powertrain comfort like engine shake, vehicle shuffle as 

well as gear rattle as there is a build-up of forces imbalance due to mass reduction [3]. 

Hence, engine vibrations have to be suppressed, damped or cancelled out. 

Vehicle performance has reached such a high point where acceleration and speed of the 

vehicle achieved is more than required in our daily driving. However, it comes with 

limitations such as high fuel consumption, big size engine for higher compression ratio, 

and higher cost. In order to break the frontier of the limitations, optimization of vehicle 

performance is therefore done in a different approach by downsizing the engine while 

attaining the energy output. One way of doing it will be to artificially make a smaller 

engine to breathe in air as if it were larger than it really is [4]. Forced induction 

techniques such as the conventional turbocharging and supercharging do just that – by 

force inducting air intake of higher density into the engine to increase the volumetric 

efficiency. There has been a new product - electric supercharger which is powered up by 

electricity rather than through the chain connection to the crankshaft of the engine.  

Superchargers and turbochargers have long been utilized by mankind in the field of 

automotives and it can be traced back to the late 1800’s where Gottlieb Daimler filed 

forced induction patent in Germany by supercharging an internal combustion engine [4]. 

Slightly different from the superchargers, turbochargers are devices that couple a 

compressor with a turbine driven by the exhaust gases, in order to have the pressure 

increase proportional to the engine speed [5]. Turbocharger increases the overall system 

efficiency as more energy is conversed from the blowdown of the exhaust gas to provide 

the compression work of the inlet air.  
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This project deals specifically with the car engine itself hence the engine specifications 

are crucial data. The engine selected for benchmarking is the Myvi SX 1.3L (manual 

transmission). The specification of the engine is outlined in Table 1.1 and Figure 1.1. 

TABLE 1.1: Engine Specification for a PERODUA Myvi [6] 

Engine Specification Description 

Engine Classification Four-Stroke Gasoline (SI) Engine 

Engine Type K3-VE 

Valve Mechanism DOHC, 16V with DVVT 

Total Displacement 1298 cc 

Bore x Stroke 72.0 mm x 79.7 mm 

No. of Cylinders 4 

Compression Ratio 10.0 : 1 

Maximum Output (DIN) 67/6000 kW/rpm 

Maximum Torque (DIN) 117/4400 Nm/rpm 

Fuel System Electronic Fuel Injection (EFI) 

Fuel Tank Capacity 40.0 L 

Transmission 5MT (SX) 

 

 
FIGURE 1.1: Power and Torque Curve of K3-VE Engine [7] 



4 
 

1.2  Problem Statements 

Based on the requirement of the project, two crucial criteria have to be fulfilled, which 

are fuel consumption reduction as well as vehicle performance optimization. While there 

is no restriction to the modification of the engine allowed, there are limitations of 

financial resources, time, skills and equipments of the UTP team. 

 

1.3 Objective and Scope of Study 

The objective of this project is twofold: 

1. To reduce fuel consumption of engine by incorporating appropriate cylinder 

deactivation technology to the simulation model of a 1.3L four-cylinder engine;  

2. To maximize the vehicle performance of the car by incorporating a suitable 

forced induction device to the simulation model; 

The scope of study for cylinder deactivation will be the determination of the suitable 

cylinder deactivation technology to adopt for a city car, the optimal number of pistons to 

be deactivated as well as the influence of the cylinder deactivation on a four-cylinder 

engine regarding the dynamic and vibrational behavior of the engine. Balancers of 

certain weight and size can be employed to dampen or cancel out the resultant imbalance 

of forces in the engine.  

As for the forced induction devices, the scope of study covers all the engine specific 

parameters required for the adoption of forced induction devices to maximize the vehicle 

performance while managing their limitations such as eliminating knocking and turbo 

lag for turbochargers. Software and simulation programs enable virtual modeling, 

simulations and analysis. The best design parameters will be determined.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Cylinder Deactivation 

For decades, cylinder deactivation has always been deemed one of the most promising 

technology for reducing emissions and fuel consumption of automobiles. Relentless 

efforts have been put into research and development which is seen through the first mass 

production attempt of engines with cylinder deactivation by GM with their Cadillac 

Eldorado in 1981. However due to certain electronic complications, the technology was 

used for only one model year before it went out of production [3]. More recently, along 

with the arising global issue on the fuel crisis as well as environmental concerns, many 

car manufacturers have returned to this technology to regain advantage over their 

competitors in the automotive industry. DaimlerChrysler, Honda, Volkswagen, Audi and 

Mercedes-Benz have all joined the race to put the technology into perfection.  

Cylinder deactivation technology aims to reduce fuel consumption as well as emissions 

of an internal combustion engine during light load operation. The typical power demand 

for the engine during normal everyday driving is low, supported by the findings that the 

average power demand of the New European Driving Cycle (NEDC) is 5kW [3]. Due to 

this low power demand, internal combustion engines operate at low engine load most of 

the time. During light or low load condition, when the throttle valve is nearly closed, the 

engine is literally starving for air. The partial vacuum results in higher pumping loss. 

Engines with large displacement are throttled back so far during light load that the 

cylinder pressure at top dead center (TDC) can diminish as much as 50% which means 

low brake mean effective pressure (BMEP) [8]. The efficiency of combustion engines 
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depends on the engine load and is at its best at high BMEP. Thus, low cylinder pressure 

leads to low fuel efficiency.  

Cylinder deactivation provides solution by combining those two desired operating 

conditions, which is to achieve high engine BMEP during low power demand. 

Theoretically, cylinder deactivation requires the remaining active cylinders to operate at 

higher indicated mean effective pressure (IMEP) to provide the same overall BMEP. 

BMEP is an indication of the overall engine performance, whereas IMEP is an 

indication of individual cylinder performance [3]. The use of cylinder deactivation at 

light load means there are fewer cylinders drawing air from the intake manifold, which 

works to increase its fluid air pressure. This increases pressure in each operating 

cylinder and reduces pumping losses. In highway conditions, fuel consumption can be 

reduced by approximately 20% [8]. 

Generally, cylinder deactivation is realized by deactivating the valves and blocking 

injector or ignition signals [3]. Thus, the working principle of cylinder deactivation in 

variable displacement engines is by simply keeping the intake and exhaust valves for the 

deactivated cylinders closed through all cycles [9]. There are several industrial-proven 

mechanisms, depending on design of the engine valve actuation system. Each of the 

cylinder deactivation technology is given different names, for example the Mercedes-

Benz’s Active Cylinder Control, Mitsubishi’s Modular Displacement, DaimlerChrysler’s 

Multiple Displacement System, GM’s Active Fuel Management and Honda’s Variable 

Cylinder Management. 

 Pushrod Designs 

For pushrod designs, collapsible solenoid-controlled valve lifters are installed. The 

lifters have a spring-loaded locking pin actuated by oil pressure. When cylinder 

deactivation system is activated, the solenoid system is activated, discharging oil to 

the reservoir hence the lifter will remain in the position since the oil pressure 

necessary to push it is removed, hence the valves cannot be actuated and remain 

closed through all cycles until cylinder deactivation is deactivated [8].  
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Another type of cylinder deactivation has collapsible valve lifters installed where the 

lifters have a spring-loaded locking pin which is actuated by oil pressure. The 

activation mode causes the solenoids to increase the oil pressure and thereby 

dislodging the locking. As a consequence, the lifter collapses as it is no longer in 

contact with the pushrod. When the car needs more power, the oil pressure was 

removed and the lifters are locked back into their full-length configuration [10]. 

Figure 2.1 shows the basic idea of the processes. 

 

 
FIGURE 2.1: Cylinder Deactivation Technology for Pushrod Designs [8, 10] 

 

 Overhead Cam Designs 

For overhead cam designs, a pair of rocker arms which are interlocked is employed 

for each valve. One rocker follows the cam profile while the other actuates the valve. 

When cylinder deactivation is employed, solenoid controlled oil pressure releases a 

locking pin between the two rocker arms. The two rocker arms are no longer in 

locked together and hence while one arm still follows the camshaft, the unlocked 

arm remains motionless and the valve remains closed [9].   

Another cylinder deactivation technology for overhead cam design engines is 

adopted by Volkswagen in their new 1.4 TSI gasoline direct injection turbo engine 

(zylinderabschaltung) [11]. The technology involves electromechanical actuators 

engaging zero-lift cams via pins and milled guide slots. When the cylinder is 
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deactivated, the pin will drop into the milled guide slots, turning the movable part of 

the camshaft inwards or outwards, detaching the valve from the cam profile, hence 

closing the valves until the pin is lifted. The process is illustrated in Figure 2.2.  

 
                (a) Normal                                  (b) Cylinder Deactivation 

FIGURE 2.2: Cylinder Deactivation Technology for Overhead Cam Designs [12] 

 

 Cam-less Designs 

The cam-less actuated valves are termed the Valeo system where it uses 

electromagnetic actuation instead of a mechanical valvetrain [13]. With the valves 

set default to a partially open position using a pair of springs, a pair of 

electromagnets is mounted above the valve assemblies with an armature in between. 

The armature is moved by the electromagnetic fields to actuate the valve. The upper 

electromagnet pulls the valve shut, and the lower electromagnet pulls to fully open 

the valve as illustrated in Figure 2.3. Cylinder deactivation can be activated easily 

through ECU. 

 
FIGURE 2.3: Cylinder Deactivation Technology for Camless Designs [13] 
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2.2 Forced Induction Devices 

The power of an ICE can be increased through forced induction using an air 

compression device such as supercharger or turbocharger [14]. Although engine power 

is generally indicated by its cubic centimetres (cc), a term which portrays the engine 

displacement (volume), it is the density of the air-fuel mixture or more specifically the 

mass of fuel and air molecules entering the engine that determine the resultant engine 

power. The working mechanism is by elevating the pressure and density of the inlet air 

to allow additional fuel to be injected into the cylinder, subsequently increasing the 

power produced by each cylinder. Although part of the power output will be consumed 

in compressing the air for supercharging, the net power output is deemed to be higher 

than the power output of an engine of the same capacity but without supercharging [15].  

2.2.1 Thermodynamic Analysis of Supercharging 

The thermodynamic analysis of the supercharged engine cycle can be summarized in 

Figure 2.4 (b) where Process 8  1 is Induction, Process 1  2 is Compression, Process 

2  3 4 is Heat Addition, Process 4  5 is Expansion, Process 5  6 is Heat 

Rejection, Process 6  7 is Exhaust, Process 7  8 is Supercharging. 

                                              
(a) Natural Aspirated Engine             (b)Supercharged Engine  

FIGURE 2.4: Comparison of the Ideal Dual-Fuel Cycle of a Natural Aspirated Engine 

and a Supercharged Engine [15] 

Pressure at 6 would be the atmospheric pressure while pressure at 8 will be the elevated 

pressure of the supercharged air intake. The increase in pressure results in the positive 

work output which increases the power output for the engine. The positive gas exchange 
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area 8-1-6-7-8 may be greater than the negative supercharger work of area 9-10-11-12-9 

but it indicates that there is a clear loss in work.  

Among the crucial limitations for supercharging or turbocharging is the increase in the 

detonation tendency. As compared to diesel engines, spark ignition engines are knock 

limited and hence restricting the allowable compressor pressure increase [14]. In many 

cases, the compression ratio of a SI engine is reduced to mitigate knock when an air 

compressor is used. As for turbocharger in particular, turbo lag is a common drawback. 

 

2.2.2 Limitations of Turbocharging  

One of the limitations of turbocharging is knocking. Knock is a term used to describe the 

pinging noise emitted from homogenous charge, SI engines [14]. It is more commonly 

referred as abnormal combustion or knocking combustion which is caused by auto 

ignition of the unburned or end gas ahead of the flame, creating pressure waves that 

travel through the combustion gases. It may cause loss of power, recurring pre-ignition 

and mechanical damage to the engine, thereby need to be avoided [14]. Knocking can be 

reduced or avoided through regulation of the following few factors [15]: 

 Compression ratio: High compression ratio of engine results in high pressure and 

temperature of the unburned air-fuel mixture at the end of the compression stroke. 

The temperature might increase to the extent that it exceeds the auto ignition 

temperature of the mixture and results in knocking.   

 

 Mass of Inducted Charge: A reduction in mass of the inducted charge or air-fuel 

mixture into the cylinder will result in a decrease in both temperature and density 

of the charge at the time of ignition, hence lowers the tendency of knocking.  

 

 Inlet Temperature of Mixture: An increase in inlet temperature of the mixture 

rises the compression temperature as well thereby increasing the tendency of 

knocking. 



11 
 

 

 Air-Fuel Ratio: The air-fuel ratio affects the reaction time of the mixture. The 

maximum tendency to knock takes place for air-fuel ratio which gives the 

minimum reaction time.  

 

 Octane Value of the Fuel: The higher the octane value of the fuel, the higher the 

compression that the fuel can withstand due to their higher self-ignition 

temperature and a low pre-flame reactivity thereby reducing the tendency of 

knocking.  

 

Other less significant factors comprise temperature of the combustion chamber walls, 

the power output of engine, retardation of the spark timing, location of spark plug, 

engine size, engine speed, flame travel distance, combustion chamber shape etc. 

Another limitation of turbocharging is the turbo lag occurs with a sudden throttle change. 

When the accelerator pedal is pressed on, throttle is opened quickly, but the turbocharger 

needs to take several engine revolutions for the exhaust flow rate to increase to speed up 

the rotor of the turbine to provide the power boost. Thus turbocharger has a lag in 

respond time as compared to supercharger. The fundamental problem is to get a 

sufficient volume of exhaust gas to the rotor of the turbine as fast as possible after the 

throttle is opened wide. Turbo lag can be reduced by using lightweight ceramic rotors to 

minimize the rotational inertia so it can respond faster to the change in speed [16]. 

Another alternative is to have a smaller intake manifold. Some manufacturers come out 

with the anti-lag system and also the twin-turbo. The anti-lag system employs slightly-

opened throttle or extra air injector, coupled with ignition delay. Air-fuel mixture will 

flow into the cylinder after the power stroke and remain unburned until they come in 

contact with the high temperature exhaust once the exhaust valve is opened. The 

resultant micro-explosions thereby spin the turbo, providing adequate pressure for the 

turbo even if the accelerator pedal is lifted [17]. As for the twin-turbo, cars such as the 

Porsche 959 and Toyota Supra (last gen) utilize the sequential twin-turbo where during 

low engine speed, the limited amount of exhaust gas is only directed to drive one turbo 
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to spool it up faster. When the exhaust flow reaches sufficient amount, the engine 

management system activates the bypass valve for a switchover to involve the second 

turbo to maximize the boost pressure [18]. 

One of the best solutions is to have an electric turbocharger as what Audi has done. In 

order to solve turbo lag as well as the problem of inadequacy of air to spool the 

turbocharger up to its operating speed at lower engine speed, Audi is working on a new 

bi-turbo engine which uses an electrically-driven turbocharger [19]. The system is 

simpler than the twin-turbo set-ups, mainly dependent on a normally inoperative electric 

turbocharger. During low speeds or from standstill, the air discharged from the main 

turbocharger will be re-routed through the electric turbocharger to be pressurized as it is 

already spinning at high speed using the electrical power provided by the motor or a 

storage battery [19].  Controlled Power Technologies are working in the same approach 

with the Variable Torque Enhancement System (VTES) [20]. The graph in Figure 2.5 

shows that an electric supercharger or turbocharger can solve the main weakness of 

turbochargers of providing torque below 3000rpm. The whole concept is an area of field 

for development of the electric supercharger. 

 
FIGURE 2.5: Torque vs. Engine Speed Graph for Electric Supercharger-

equipped Turbo Engine (VTES) [21] 
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2.3 Critical Literature Analysis 

For project-wise, the solutions for problems stated have to be selected based on the 

ability and limitation of the author. Alternatives those are focus-studied in literature 

review under sub-chapters 2.1 and 2.2 are evaluated for the finalization of the solution. 

Cylinder deactivation lowers the frequency of the combustion torque pulses onto the 

crankshaft, making the active cylinders operating under higher load in order to maintain 

the output torque [3]. On the other hand, reduced combustion interval and increased 

combustion peaks increase the torsional vibrations of the engine [3]. Besides the 

deactivated pistons will still be reciprocating during cylinder deactivation. Thus the 

unnecessary frictional forces between the piston and the cylinder wall will degrade the 

performance of the engine.  Some argue that since the valves remain closed throughout 

the deactivation period, energy is lost through the compression of the dead air by the 

deactivated pistons which otherwise termed as the pumping loss. However, 

manufacturers claim that the loss is minimal as there is an almost 100% offset when the 

compressed air expands and pushes back against the pistons during the down-stroke [22]. 

Although all the limitations can be eliminated through more advanced cylinder 

deactivation technology, it requires highly technical and costly modifications with 

additional actuators and spaces. For instance, an integrated starter alternator damper can 

be employed to suppress the torsional vibrations due to cylinder deactivation but such a 

sophisticated damper costs a fortune for its current technology availability [3]. The 

author does not have the necessary resources, equipments and time for them. Therefore, 

the solution agreed upon by the supervisor for the cylinder deactivation is to remove two 

piston assemblies completely and have the valves of the deactivated cylinders 

deactivated as well in order to prevent pumping loss and frictional forces between the 

piston and cylinders. The removal of piston assemblies will affect the entire powertrain 

comfort by causing engine shake and vibrations, eventually compromising the 

performance of the engine. The unbalance forces and moments developed in the engine 

have to be suppressed, damped or cancelled out. One way of cancelling out the 

unbalance forces is to add balancers to the crank pin of the removed pistons to 

counterweigh the lost in mass of the pistons removed. 
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Supercharging or turbocharging is a great solution but a perfect balance between power 

generation and knocking tendency has to be found for vehicle performance optimization. 

Out of the five major factors contributing to knocking, only a few can be regulated. 

Although the engine is subjected to modification, it will be difficult to alter the 

cylinders' compression ratio. The conventional supercharger is torqued by the crankshaft 

and hence may consume as much as 20% of the engine power [15]. It also puts 

additional strain to the engine. Electric supercharger can be seen as another new 

alternative using an external 24V battery to power up the supercharger. No power will 

be consumed from the engine but from the battery. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Research Methodology 

This project was carried out based on the sequential processes of the methodology from 

one task to another. There were instances where a step back of process is needed for 

changes and modification when a certain process cannot be accomplished. Each process 

is specified with more objective-focused activities in the section of Project Activities 

and Key Milestones. The sequential processes are summarized in Figure 3.1. 

 

FIGURE 3.1: Project Methodology 

Testing 

Experimentation for Validation Comparison & Analysis  

Simulation & Analysis 

ADAMS Simulation GT Power Simulation Theoretical Calculation 

Data Gathering & Preparation 

Engine Dismantling & Assembling  CATIA 3D Modelling 

Study & Research 

Concept & Idea Technology Availability Software Tutorial 

Problem Identification 

Problem Statement Objective 

FYP II 

FYP II 

FYP I 

FYP I 

FYP I 
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3.2 Project Activities 

Detailed activities and tasks are listed out for each process of the methodology. The 

section below pinpoints the different project activities required under different steps. 

a) Problem Identification 

In order to start the project, the problem statement was determined in order to set the 

objectives of the project. A consultation was conducted with the supervisor of the 

project, Ir. Dr. Masri Baharom in order to understand the scope of study on the engine 

modification. Co-supervisor, Mr. Mohd. Syaifuddin Bin Mohd. was consulted as well 

before setting the objectives which were built on the problem statement. The scope of 

the study of the project was set and the title of the project was redefined. 

b) Study & Research 

Previous related projects information had been acquired from the supervisor for 

reference to get a basic concept and idea of starting the project. The solution for the 

problem statement has been scoped down by the supervisor to cylinder deactivation and 

forced induction so focused study and research were carried out to define different 

concepts available. Internet researches had been useful to check on the technological 

availability of the concepts too. The Engine Design lectures had helped to grasp the 

knowledge and understanding on the engine’s working principal and performance 

analysis. Software tutorial and training were given by the lab technicians in Building 17 

on CATIA, ADAMS as well as GT Power. 

c) Data Gathering & Preparation 

A K3-VE engine overhaul had been carried out in a workshop so actual dimension of the 

engine was measured accurately to resemble the real components in 3D modeling as 

well as for the data for GT Power Simulation for effective analysis. Other information 

has been acquired from the manufacturing sectors through websites and brochures. 

CATIA was then used to structure the 3D model as the fundamental preparation for 

ADAMS simulation.  
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d) Analysis & Simulation 

The GT Power engine map of the K3-VE engine was constructed based on the engine 

parts’ dimensions as well as other parameters which were acquired online, measurement 

or assumptions. The power and torque curve produced by the GT power was compared 

to the actual K3-VE curve for validation. Modifications were done to the assumptions to 

assimilate the results as close as possible to the actual curves. Next, modifications were 

carried out for different cylinder deactivation methods. The required power and torque 

of the car was computed and set as the standard to benchmark the cylinder deactivation 

methods. Only few methods were selected and modified with combinations with the 

forced induction systems. The final simulation results were analyzed based on several 

outcome parameters, such as brake power, brake torque, brake efficiency, total fuel 

consumption as well as BSFC. 

As for the balancing effort, the 3D model of the piston-crankshaft assembly was 

imported from CATIA into ADAMS. For kinematic analysis, various types of joint were 

defined at specific coordination to link different components together to enable relative 

movements. Main joints included the crank pin connecting the connecting rod with the 

crankshaft and the gudgeon pin linking the connecting rod to the piston, making sure 

that the crankshaft rotates accordingly to the reciprocation of the pistons. A force was 

applied downwards onto the top of each piston to represent the expansion force due to 

combustion of the mixture of air and fuel. Simulation was run and the results were 

generated in the form of graphs for analysis.  

It is important to know the average engine speed of the car to determine the scope of 

analysis of the vehicle performance and fuel consumption. The governing equation used 

for calculating the average engine speed based on average vehicle speed is as the 

formula 3.1 below. 

d

g

p
r

iiV
N








030
                   --------------------------------------- (3.1) 

where V = vehicle speed; ig = gear ratio; i0 = final drive ratio; rd = effective wheel radius  
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For the balancing effort, the theories and equations are as follow.   

 

FIGURE 3.2: Arrangement of Crank Throws of the Engine Crankshaft 

For multi-cylinder cranktrain balancing, the 4-cylinder K3-VE engine has arrangement 

of crank throws as in Figure 3.2, resulting in the following free forces and moments;  

        ΣF1 = 0 ; ΣF2 = 4F2 ; ΣMF1 = 0 ; ΣMF2 = 0  

For two cylinder deactivation, the primary step is to determine the two pistons to be 

deactivated. The best choice determined is to either deactivate piston 1&3 or piston 2&4, 

which results in the same dynamics below. Piston 1&3 are selected to be deactivated. 

            ΣF1 = 0 ; ΣF2 = 2F2 ;  

            ΣMF1 = F1(3a/2) + F1(a/2) = 2F1a;  

            ΣMF2 = F2(3a/2) - F2(a/2) = F2a                           

Consider having two balancers each generating Fx mounted at the crankpin of the 

deactivated pistons, the equations of the resultant forces and moments are as below  

ΣF1 = 0 ;  

ΣF2 = 2(F2 + Fx) ;  

ΣMF1 = F1(3a/2) + F1(a/2) – Fx(3a/2) + Fx(a/2) = 2a(F1 - Fx) ;  

ΣMF2 = F2a                                                                                           

It is seen that with the addition of two balancers, the resultant primary forces ΣF1 as well 

as the moment due to the secondary forces ΣMF2 will not increase. It is noticed that an 

increase in Fx will increase F2 but decreases ΣMF1.  
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As for single-cylinder mass balancing, between the secondary forces and resultant 

moment due to primary forces, it is desirable for lower ΣMF1 while compromising the 

engine with higher ΣF2 because F2 is usually very small and can be negligible. Hence for 

optimum balancing, ΣMF1 should be as small as possible. Formulas for the forces are;  

 Primary forces, F1 = moscrω2 (cos α) ----------------------------------------- (3.2) 

 Secondary forces, F2 = moscrω2 (λ cos 2α) ----------------------------------- (3.3) 

  Balancer Balancing Forces, Fx = mxrω2 ------------------------------------- (3.4) 

For minimal ΣMF1, Fx should be equal to maximum F1.  

                     Maximum F1 = moscrω2 = mxrω2 -------------------------------------- (3.5) 

Since the angular velocity is constant throughout the crankshaft and the two balancers 

will be mounted at the same crank radius away from the main journal, mx should equal 

to mosc. (r and ω = constant) 

The calculation of the oscillating masses is as follow;  

Mconrod” = Mconrod (l1/l) ---------------------------------------------------------- (3.6) 

mosc = Mpiston + Mconrod” --------------------------------------------------------- (3.7) 

The determination of the balancers outer radius is calculated using the formula below;  

ρ = mosc/V  V= mosc/ ρ  

V = π (R2 – R1)
2
 H = mosc/ ρ --------------------------------------------------- (3.8) 

where   R2 = outer radius;    H = balancer thickness = crankpin length;

  R1 = inner radius;   ρ = density of material of build of balancer  
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e) Testing 

Minor experimentations were carried out for validation purposes. The fuel consumption 

test and the engine vibration test were both carried out and the results gathered were 

tabulated for comparison and analysis with the simulation results. Conclusions were 

made after the analysis. 
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3.3 Key Milestones 

Table 3.1 outlines the key milestones of the entire project 

 TABLE 3.1: Key Milestones 

Deliverable Target Due Date Description 

Project proposal 

defence 

 

14 July Present the project proposal to supervisor 

and internal examiners. 

Engine 3D model 

Generation 

 

17 Aug Complete the generation of 3D model of 

the engine in CATIA. 

Interim Report 

Submission 

 

22 Aug Complete the documentation of the project 

as the interim report for FYP1 

ADAMS, GT 

Power & 

Simulation 

 

22 Sept Execute the simulation and analysis for 

the balancers, the turbocharger and other 

engine parameters 

Determination and 

Optimization of the 

Best Concept 

18 Nov Analysis the simulation results to 

determine the best concepts and optimize 

the results for better enhancement of 

engine  

Project Finalization 8 Dec Conduct experiments and validate the 

simulation results. 
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3.4 Gantt Chart 

  

Task 

Month JUN JUL AUG SEP OCT NOV DEC 

Week 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 5 1 2 3 4 1 2 

Duration FYP I Break FYP II 

1 Project Title Confirmation                                                         

2 Problem Identification                                                         

3 Study & Research                                                         

4 Solution Generation & Finalization                                                         

5 Software & Equipment Handling Tutorial                                                         

6 Engine Dismantling & Dimensioning                                                         

7 CATIA 3D Modelling of Engine & Balancers                                                         

8 GT Power Simulation of Cylinder Deactivation                                                         

9 GT Power Simulation of Turbocharging                                                         

10 ADAMS Simulation of Engine & Balancers                                                         

11 Analysis of Simulation Results                                                         

12 Experimentation & Validation                                                         

13 Determination of Best Concepts                                                         

14 Optimization of Best Concepts                                                         

15 Project Finalization                                                         
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Concept Generation 

Several concepts of cylinder deactivation and forced induction system are proposed but 

they have to undergo GT Power simulation to determine their efficiency in terms of fuel 

consumption and engine performance to come out with the best combination.  

The cylinder deactivation technology is made up of two main concepts; one with 

complete piston assemblies removal from the deactivated cylinders and the other has the 

piston remained inside. Complete removal of piston assemblies is a concept whereby the 

whole piston assemblies are removed, leaving an empty cylinder. The cam lobe of the 

targeted cylinders is grinded to roundness to keep the intake and exhaust valves closed 

at all time. The fuel injector of the targeted cylinders will be ceased from functioning by 

plugging off the wire socket to the injector, hence cutting off the input from the ECU.  

As for the proposal to keep the piston inside the targeted cylinder, the deactivation 

method only ceases the injection of fuel and sparks from the spark plugs.  

For feasibility of the engine performance, only 1-cylinder and 2-cylinder deactivation 

are considered as 3-cylinder deactivation cannot generate enough power and torque for 

the car to run. It has been proven when 3-cylinder deactivation (piston remained) was 

tried on a PERODUA Myvi. The car engine could not be started or died seconds after 

ignition. Thus, this makes four cylinder deactivation concepts, which are 1- and 2- 

cylinder deactivation with complete piston assemblies removal as well as 1- and 2- 

cylinder deactivation with piston remained.  
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Concepts of forced induction systems are electric supercharging and turbocharging. 

Turbocharging however, has two different utilizations for the two different cylinder 

deactivation technology. For deactivation with piston removal, the exhaust from the two 

normal cylinders is used to turbocharge while for deactivation without piston removal, 

the exhaust from the deactivated cylinders are used for forced induction through a 

separated exhaust manifold.  

4.2 Data Gathering  

Standard engine parameters of K3-VE are acquired from the manufacturing sector 

through online information as well as manual measuring process. The data is required to 

model an engine map for the GT Power simulation to acquire results as close as possible 

to the actual K3-VE engine. Other common working parameters such as those factoring 

the combustion for SI engine are taken from the GT power examples, some through 

assumptions and engineering idealization. Data collected is summarized as below;  

4.2.1  Online Information 

Table 4.1 below summarizes all the important engine parameter values of K3-VE engine 

acquired online from car manufacturers. 

TABLE 4.1: Engine Parameter Values Acquired Online  

Compression Ratio 10:1 [23] 

Bore X Stroke 72mm X 79.7mm [23] 

Con-rod Length 129.5mm [7] 

WristPin to Crank Offset 8mm [7] 

Valve Timing Intake Opening 30⁰ to -12⁰ BTDC   [7] 

Valve Timing Intake Closing 10⁰ to 52⁰ ABDC  [7] 

Valve Timing Exhaust Opening 30⁰ BBDC  [7] 

Valve Timing Exhaust Closing 2⁰ ATDC  [7] 

Intake Valve Lash 0.145 to 0.235mm (take 0.2mm) [24] 

Exhaust Valve Lash 0.275 to 0.365mm (take 0.3mm) [24] 
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As for forced induction, compressor maps of turbocharger & electric supercharger is 

plotted into arrays to allow simulation in GT Power. The selected electric supercharger 

is the Phantom FTS VW 2.0 TQ-18024V which has been dyno tested according to the 

website, with the specifications and compressor maps in Appendix A. The turbocharger 

is selected from common models in the GT Power tutorials. 

4.2.2  Manual Measurement and Computation 

Based on the information on cylinder, TDC Clearance Height is calculated to be 2.2mm 

with calculation show in Appendix B. The cam profile on the camshafts of K3-VE 

engine is measured using the dial gauge for both the intake valves and exhaust valves to 

generate the approximate arrays of valve lifts v.s. degrees. Other piston assembly 

measurements are taken using vernier caliper for CATIA 3D modeling purposes.  

4.3 GT Power Simulation and Analysis 

4.3.1 GT Power K3-VE Engine Map Simulation 

The engine map of the 4-cylinder gasoline engine is constructed in GT Power with all 

necessary engine parameters as shown in Figure 4.1 below. 

 
FIGURE 4.1: GT Power Engine Map of the K3-VE 4-Cylinder Gasoline Engine 
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The simulation is run to generate five graphs for analysis of the engine fuel consumption 

and performance. It is important to validate the simulation results by comparing the 

simulated engine brake power and torque curve to the actual manufacturing data 

acquired from the Figure 1.1. The comparison can be seen in both the figures below. 

 

FIGURE 4.2: Brake Power Curve of the Actual and Simulated Engine 

 

FIGURE 4.3: Brake Torque Curve of the Actual and Simulated Engine 



27 
 

The two figures above compare the actual brake power and torque curve of the 1.3L K3-

VE engine with the simulated projection of brake power and torque of the GT Power 

Mapped Engine, with red line being the data obtained from manufacturer’s documents 

online. It is important to compare the two curves to validate the accuracy of the GT 

Power-mapped engine model. The smaller the percentage of errors, the higher the 

reliability of the simulation data for the subsequent modifications made. The difference 

of the values is computed in terms of percentage of errors in Table 4.2. 

TABLE 4.2: Percentage of Error of Simulated Data 

Engine Speed 

[RPM] 

Brake Torque[N-m] % of 

Error 

Brake Power [kW] % of 

Error Actual Simulation Actual Simulation 

6500 94 96.0306 2.1% 66 65.366 1.0% 

6000 106.5 108.64 2.0% 68 68.2605 0.4% 

5500 112 115.045 2.6% 65 66.2614 1.9% 

5000 118.5 114.931 3.1% 62 60.178 2.9% 

4500 118 115.674 2.0% 57 54.5101 4.4% 

4000 117.5 109.962 6.9% 50 46.0606 7.9% 

3500 116 108.32 7.1% 43.5 39.7012 8.7% 

3000 115.5 105.807 9.2% 35 33.2403 5.0% 

2500 111 101.022 9.9% 29.5 26.4474 10.3% 

2000 106 97.1142 9.1% 22.5 20.3396 9.6% 

1500 102.5 93.2403 9.9% 16 14.6461 8.5% 

 

It can be seen that the highest percentage of error is only about 10% which deems the 

GT Power engine model reasonably reliable to be used as reference of the actual 

outcome data. 

Since the current 4-cylinder model’s reliability has been validated, every modification 

made to the model with the correct modification in engine mapping in GT Power will 

approximate the actual results as well. 
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4.3.2  GT Power Cylinder Deactivation Simulation 

There are four different cylinder deactivation modules suggested which are 1 

deactivated cylinder with complete piston assemblies removal, 1 deactivated cylinder 

with piston remained, 2 deactivated cylinders with complete piston assemblies removal 

as well as 2 deactivated cylinders with pistons remained. All the engine maps of the 

cylinder deactivation modules are inserted in Appendix C. The results of the simulation 

are portrayed in the following few figures. 

 
FIGURE 4.4: Brake Power Curve of Different Cylinder Deactivation Methods 

 
FIGURE 4.5: Brake Torque Curve of Different Cylinder Deactivation Methods 
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Figure 4.4 and 4.5 show that overall brake power and torque of the engine drops with 

the increasing number of deactivated cylinders. Between the two cylinder deactivation 

methods, those with piston removal have a relatively lower power and torque as well.  

As for fuel consumptions, Figure 4.6 shows that the total fuel consumption decreases 

with increasing number of cylinder deactivation. Between the two methods, cylinder 

deactivation with piston removal consumes much less fuel. The total fuel consumption 

of cylinder deactivation method with the piston remained is almost equal to those of a 

four cylinder engine because a lot of fuel is consumed to compensate for the pumping 

loss of the engine as power is wasted on drawing air in from the intake manifold. 

 

FIGURE 4.6: Total Fuel Consumption Per Cylinder of Different Deactivation Methods 

The total fuel consumption patterns of cylinder deactivation are validated through the 

fuel consumption test on a PERODUA Myvi. The test was run through two engine 

conditions, (1) normal engine (2) 1-cylinder deactivation. The cylinder deactivation was 

done on the 3
rd

 cylinder in order to synchronize with the model in GT Power. The piston 

remained inside the cylinder. The wire socket connecting the fuel injector for the 

targeted cylinder is plugged off. 
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The car was pumped full tank and driven over a designated course as shown in 

Appendix F. At the end of the course, the car was pumped full tank again to determine 

the amount of the fuel used up. The results are tabulated in Table 4.3 and illustrated in 

graph in Figure 4.7. Although Figure 4.6 shows fuel consumption by engine while 4.7 

indicates fuel consumption by car which takes into account the driving style of drivers, 

the drive cycles, drivetrain efficiency, etc, the patterns should remain the same as the 

factors are all made to be as constant as possible by setting the same engine rpm over 

the same route.  

It can be seen that the patterns are similar to those in Figure 4.6 where there is a slight 

decrease in fuel consumption for the engine with 1-cylinder deactivation, justifying that 

fuel consumption decreases with number of cylinder. Moreover, the fuel consumption 

increases relatively steeper at 3500 rpm.  

 TABLE 4.3: Fuel Consumption of Car over Driving Course of 27.7km  

  RPM 
RM for 

full tank 
RM/liter 

fuel used 

(liter) 

Average 

(liter) 

Mileage 

(km/litre) 

Average 

(km/litre) 

4 

CYL 

2000 4.25 2.10 2.024 
2.090 

13.69 
13.26 

2000 4.53 2.10 2.157 12.84 

2500 4.56 2.10 2.171 
2.198 

12.76 
12.61 

2500 4.67 2.10 2.224 12.46 

3000 4.88 2.10 2.324 
2.329 

11.92 
11.90 

3000 4.90 2.10 2.333 11.87 

3500 5.20 2.10 2.476 
2.440 

11.19 
11.35 

3500 5.05 2.10 2.405 11.52 

3 

CYL 

2000 4.20 2.10 2.000 
1.983 

13.85 
13.97 

2000 4.13 2.10 1.967 14.08 

2500 4.20 2.10 2.000 
2.090 

13.85 
13.28 

2500 4.58 2.10 2.181 12.70 

3000 4.80 2.10 2.286 
2.231 

12.12 
12.42 

3000 4.57 2.10 2.176 12.73 

3500 4.90 2.10 2.333 
2.405 

11.87 
11.53 3500 5.20 2.10 2.476 11.19 
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FIGURE 4.7: Total Fuel Consumed by 1.3L Myvi under Different Engine Condition  

The BSFC and Brake Efficiency graphs in Figure 4.8 and 4.9 clearly shows that cylinder 

deactivation with piston removal has better efficiency. Again, it is due to the pumping 

loss theory. On the other hand, they even have better efficiency than the normal 4-

cylinder engine. It is mainly because each cylinder causes a drop in efficiency as energy 

is transferred from one form to the other and a lot of energy is wasted through the 

process. As the number of cylinder decreases, so does the waste in energy, hence 

resulting in an overall higher efficiency. 

 
FIGURE 4.8: BSFC Graph of Different Cylinder Deactivation Methods 
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FIGURE 4.9: Brake Efficiency of Different Cylinder Deactivation Methods 

The optimum power and torque requirement of the engine for this project is focused on 

the requirement of a city car. It is computed to require engine power of 18.2 kW and 

engine torque output of 89.6 Nm in Appendix D with the requirement considering the 

car being able to be driven by a driver with four other passengers on flat normal asphalt 

road surfaces at constant speed of 110km/h (requiring power of 18.2kW and torque of 

89.6Nm) and up a slope of 5.7⁰ at a constant speed at 30km/h (requiring power of 

12.3kW and torque of 63.3Nm). Since the power and torque can be enhanced through 

the employment of supercharger or turbocharger later on, not all cylinder deactivation 

methods that do not meet the requirements are cancelled out immediately. Instead, 

decision is made with consideration for the forced induction system.  

The initial feasibility evaluation of engine deems 2-cylinder deactivation incapable of 

delivering the required performance as they only have a maximum torque of about 45N-

m which is only 50% of the required torque. Even with turbocharging or supercharging, 

the required torque will not be achieved. Hence only both 1-cylinder deactivation 

methods are adopted to be combined with forced induction systems. 
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4.3.3  GT Power Cylinder Deactivation with Forced induction Simulation 

As mentioned in section 4.1, there are three types of forced induction systems in 

combination with the 1-cylinder deactivation methods which are (1) 1-cylinder 

deactivation (piston removal) employed with electric supercharger (2) 1-cylinder 

deactivation (piston removal) employed with turbocharger and (3) 1-cylinder 

deactivation (piston remained) employed with turbocharger. All their GT Power engine 

maps are in Appendix E. The simulation results are as follow; 

 
       FIGURE 4.10: Brake Power Curve of Different Combinations 

In terms of engine performance, from Figure 4.10 and 4.11, it is seen that method (1) 

has a relatively lower but steady power and torque curve. Its curve pattern is almost 

similar to that of the normal engine, mainly because an electric supercharger provides a 

constant boost in air pressure. It is powered by an external power source, like a battery 

so it does not drive power off the engine which results in higher fuel consumption and 

engine wear.  

As a whole, method (2) has the best power and torque performance out of the three but 

it only exceeds the normal engine at high engine speed. It can be seen that initially at 

lower engine rpm, the power and torque increases slowly mainly because of at lower 
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engine rpm, the exhaust gases are in little amount and hence the effect of turbo charging 

is low as well. The effect increases in higher rate with increasing engine speed gradually.  

Method 3 proves to be the least effective at lower rpm but its performance enhances at 

higher engine speed. It is because the turbo charging mechanism is only powered by the 

exhaust gases of one single cylinder. Moreover, the pumping loss contributes to a lower 

power and torque. Hence it has the same curves as the conventional turbocharging 

mechanism but of a lower value. And at engine speed of 6000rpm and onwards, method 

(3) continues to increase as it is not affected by the backpressure due to the flow 

restriction because only exhaust pressure from one cylinder is used to power the 

turbocharger of the same capacity.   

 
       FIGURE 4.11: Brake Torque Curve of Different Combinations 

For fuel consumption evaluation, it is deduced from Figure 4.12 that fuel consumption 

rate is almost proportional to the engine power and torque. The higher the power 

produced, the more the fuel consumed. For a better evaluation of the data, BSFC and 

brake efficiency graph are more helpful as the electric supercharger and turbocharger 

are of different specifications and hence it will be fair to evaluate based on their 

efficiency. 
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       FIGURE 4.12: Total Fuel Consumption of Different Combinations 

Different from the results shown from the previous graph, the normal engine has the 

highest BSFC value and the lowest efficiency after the engine hits speed of 3500rpm. 

Method (3) performs with lowest efficiency and has highest BSFC at lower engine 

speed. 

 
       FIGURE 4.13: BSFC of Different Combinations 
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       FIGURE 4.14: Brake Efficiency of Different Combinations 

Method (1) and (2) have the higher efficiencies and hence lower BSFC. At lower rpm, 

Method (1) outweighs method (2) but method (2) has a relatively better performance at 

higher rpm. It is mainly because method (2) uses a turbocharger has turbo lag where the 

effects are only visible after the breaking point where sufficient exhaust pressure is built 

to run the turbine efficiently. As for method (1), the efficiency drops at higher rpm 

because its compressor is running at a constant speed while the compressor in method (2) 

runs at speed proportional to exhaust pressure, which increases with engine speed. 

Before concluding on the best concepts, it is important to double check the power and 

torque requirement set early on as in Appendix D showing an engine power requirement 

of 18.2kW and an engine torque output of 89.6Nm. All the three methods fulfill the 

requirements and are all eligible to be selected as the best concepts. 

Moreover, it is also necessary for the identification of the average engine speed range or 

the speed range in which the engine will be running in most occasions or frequency. The 

reason is to allow the comparison of different concepts pinpointed in a focused area in a 

more realistic and analytical manner. Under EPA standards, the average speed of a car is 

approximately 30.4km/h for UDDS [25] while the HWFET records an average speed of 

77.7km/h [26]. Using formula 3.1, the average engine speed is computed based on 

average vehicle speed and tabulated in Table 4.4. 
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TABLE 4.4: Average Engine Speed for UDDS and HWFET using Different Gears 

Driving Cycle UDDS HWFET 

CAR SPEED 
km/h 30.40 77.70 

m/s 8.44 21.58 

Gear Gear Ratio Engine Speed (RPM) 

1 3.182 1878 4800 

2 1.842 1087 2779 

3 1.250 738 1886 

4 0.865 511 1305 

5 0.750 443 1131 

 

As table 4.4 indicates, the range of engine speed is approximately between 443rpm to 

4800rpm. However, it is not efficient for the car to be running 30.4km/h using gear 

higher than 3
rd

 gear while a speed of 77km/h should be driven with the 3
rd

, 4
th
 or 5

th
 gear. 

Hence, considering both UDDS and HWFET driving cycles, the average engine speed 

falls in the range of 700rpm to 2000rpm, which is made as the focus of study. 

By focusing on engine speed range of 700rpm to 2000rpm which are low speed range, it 

is seen that method (1) has slightly higher brake efficiency and a lower BSFC. Given an 

electric supercharger with the same specifications of the turbocharger, the total fuel 

consumption should be lower, producing a slightly higher power and torque within the 

lower engine speed range.   

Hence, the best concept should be method (1) for a city car. If the project is opted for a 

sports car which have engine frequently running at higher rpm, method (2) will be the 

best fit. 
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4.4 ADAMS Simulation and Analysis 

As Method (1) has been selected for this project, it is important to look into the vibration 

levels of the engine to ensure customers comfort. Method (1) adopts cylinder 

deactivation method with complete removal of the piston assembly form the targeted 

cylinders. Balancing will be carried out in terms of single cylinder mass balancing as 

well as multi-cylinder cranktrain balancing. Consider adopting a 2-cylinder deactivation, 

the first step will be to balance the multi-cylinder cranktrain as much as possible. Then 

single cylinder mass balancing process is required.  

An alternative engine has been disassembled in a workshop and the engine parameters 

of that particular engine in the lab has been recorded and utilized for the simulation of 

the cylinder deactivation methods. The results of the simulation are elaborated in the 

upcoming subsection. Formulas are utilized for computation of the required mass of the 

balancers as well in order to determine the dimensions and material of the balancers.  

A vibration test was conducted to validate the effect of cylinder deactivation on engine 

vibration level as specified in Appendix G. The test however did not get results of the 

vibration of the crankshaft but the vibration of the surface of the engine which 

theoretically is proportional to each other. The vibration level is shown in Table 4.5. 

TABLE 4.5: Tabulated Results of Vibration Test  

Engine 
Condition 

y x z 

Up  Low  Amp. Up  Low  Amp. Up  Low  Amp. 

Normal 90 -170 260 55 -40 95 55 -80 135 

Deactivation 600 -220 820 130 -100 230 115 -125 240 

Difference   560   135   105 

 

It is seen that the vibration level increases for every axes by quite a big margin with two 

cylinder deactivation, especially in the y-axis (refer to Appendix G for illustration of 

axes), justifying that cylinder deactivation increases the vibration level of the engine and 

hence balancing has to be carried out to counter the rise in vibration amplitude to ensure 

comfort of the driver and passengers.  
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4.4.1 Balancers  

It is necessary to balance the four cylinder inline engine after two pistons are removed 

from the cranktrain. Balancers of design weight and dimension can be mounted on the 

crankpin of the deactivated cylinders to balance off the uneven forces and moments. 

Using both Multi-Cylinder CrankTrain Balancing and Single Cylinder Mass Balancing, 

the desired balancers dimensions can be determined. 

From formula (3.6), 

Mconrod” = 0.755kg (58.392mm/145.88mm) = 0.3022kg  

From formula (3.7), 

mosc = 1.217kg + 0.3022kg  = 1.5192kg  

The desired material is stainless steel which is strong, durable and will not rust, which is 

suitable for a balancer inside the engine because it is really hard to overhaul the engine 

for parts replacement. Density of stainless steel is provided in CATIA as 8.031 x 10
-6

 

kg/mm
3
. Assuming the balancers are made into a cylinder with a hole that fits onto the 

crankpins with a thickness of 22mm, the outer diameter required is;  

From formula (3.8), 

π (R2 – 22.5mm)
2
 (22mm) = 1.5192kg / (8.031 x 10

-6
 kg/mm

3
)  

R2 = 78.154mm  

Hence the balancers should be made of stainless steel with a cylindrical shape with outer 

diameter of 78.154mm, drilled with a central hole of the crankpin diameter. They should 

have a thickness of 22mm and be split in halves to enable mounting. Nut and bolts 

mechanism can be made the fastening mechanism of the halves of balancers. 
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4.4.2 CATIA and ADAMS Simulation  

Based on the dimension selected for the balancer as well as all the engine parts 

dimension measured in the workshop, CATIA is used for modeling of the engine 

components. The models are inserted into ADAMS with specified constraints for 

simulation of the vibration forces and moments of the crankshaft.  

  

(a) Piston 1 & 3 Deactivated                    (b) Cylinder Deactivation with Balancers 

FIGURE 4.15: ADAMS View of Cylinder Deactivation and Balancing 

 

The results are represented by the graphs below which is summarized in Table 4.6, 

allowing comparison and analysis of the results for normal crankshaft, crankshaft with 

cylinder deactivation as well as crankshaft with cylinder deactivation and balancers. 

Figure 4.16 shows that only the magnitude of vibration in the y-direction is significant 

for the analysis, as y-direction is the direction of crank throws. Vibration in z-direction 

is almost zero while vibration forces in x-direction are small and hence negligible.  

     

(a) Magnitude of Vibration (x-direction)       (b) Magnitude of Vibration (y-direction) 
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(c) Magnitude of Vibration (z-direction)               (d) Magnitude of Vibration (Total) 

 FIGURE 4.16: Resultant Magnitude of Vibration of Crankshaft of the Normal Engine 

 

Figures 4.17 and 4.18 show the magnitude of vibration in the y-direction for the engine 

with 2-deactivated cylinders and the engine with 2-deactivated cylinders but mounted 

with balancers.  

 
FIGURE 4.17: Magnitude of Vibration of Crankshaft with 2 Deactivated Cylinders 
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FIGURE 4.18: Vibration of Crankshaft with Balancers for Cylinder Deactivation 

The vibration amplitude is the difference between the maximum and minimum value of 

force. In the y-axis, the vibration amplitude for each case is tabulated below. As shown 

in table 4.6, the balancers decrease the vibration amplitude from 0.1964N to only 

0.0444N.  

TABLE 4.6: Tabulated Results of Vibration Amplitude in ADAMS Simulation 

Condition Vibration Amplitude 

 Crankshaft of a Normal 4-Cylinder Engine 0.1584N 

 Crankshaft with 2 Deactivated Cylinders 0.1964N 

 Crankshaft with Balancers for Cylinder Deactivation 0.0444N 

 

As to calculate the resultant moment along the crankshaft, the results are simulated 

through a series of steps as specified in Appendix H. The resultant moment of 

crankshaft of the deactivated engine without balancing effort is plotted into graph by 

ADAMS in Figure 4.19 while Figure 4.20 shows the resultant moment of the crankshaft 

for the cylinder deactivated engine with balancing initiative. 
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FIGURE 4.19: Resultant Moment of Crankshaft (Without Steel Balancer) 

 

FIGURE 4.20: Resultant Moment of Crankshaft (With Steel Balancer) 

Figure 4.19 shows a resultant moment of amplitude 0.0431N.m while Figure 4.20 shows 

a resultant moment of amplitude 0.0415N.m. As compared, the balancer only decreases 

the resultant moment of the crankshaft by a small margin. As a conclusion, balancing 

effort decreases both vibration forces and moments along the crankshaft. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

As a conclusion, both objectives of the projects have been achieved by the best concept 

selected which is to employ 1-cylinder deactivation with complete piston removal to 

reduce fuel consumption and increase the engine power and torque with an electric 

supercharger powered by an external battery. The combination of cylinder deactivation 

and forced induction system has managed to enhance the overall efficiency of the engine 

too. Balancers can be mounted onto the crank pins of the deactivated cylinder which 

proves to be effective in reducing the vibration level rise due to the cylinder deactivation 

initiative. The project has been completed according to schedule although there are 

some delays around the November period of the Gantt chart due to unforeseen 

circumstances. Some aspects of the projects have been compromised due to time and 

monetary concerns as well. All in all, the project has managed to produce a desirable 

outcome, probing for further experimentation works for engine enhancement.  

5.2 Recommendation 

As the project is ended up till simulation stages, the next step is to put the best concept 

into experimentation to determine the degree of reduction in fuel consumption as well as 

the degree of enhancement in engine performance. It is important to determine if the 

modification to the engine will be feasible in economic, social and environmental sense 

to achieve high sustainability.  
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As seen in the simulation results, the electric supercharger in its current technology only 

induces limited gain in power and torque although it proves to have a better efficiency. 

Even with the best efficiency, if it produces outcomes with an overall lower power and 

torque that cannot meet the people’s demand, it will not be marketable as well. Hence, 

along with technological development, electric supercharger with economical prices that 

runs at higher rpm can be manufactured to provide a higher boost. The balancing efforts 

can be repeated with better consideration of other factors to achieve better results as 

well. 

Actually, since electric supercharger is a unit on its own, we can have one electric 

supercharger for each cylinder by having a separated intake manifold so the engine can 

achieve higher power and torque. It also allows separate controls of the supercharger if 

necessary. However more units mean more batteries and surely consume more spaces 

required in the car’s front compartment. 
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APPENDICES 

Appendix A – Specs & Compressor Map of Electric Supercharger [27] 

SPECIFICATIONS: 
 

Max airflow:  ~400 CFM 

 

Supported engine power:  up to 250 HP 

 

Typical base engine HP:  100-240 

 

Typical peak torque gain:  30-40%         

 

Pressure range:  up to 1.3 PR 

 

Motor efficiency:   ~90-94% 

 

Motor type:  brushless w/ 3” leads 

Compressor efficiency: 72-74% 

 

Lubrication:  sealed ceramic bearings 

 

Weight:   4.0 lbs. 

 

Drive power:  3500 Watts 

 

Rating @ 20 C: 2 minutes 

(continuous)   

 

Rating @ 50 C: 1 minute 

(continuous) 

 

Maintenance:       None  

 

 

Appendix B – Calculation of TDC Clearance Height 

Compression Ratio, 
c

ch
c

V

VV
r


  

Cylinder displacement volume, Vh = 1.3L/4 = 0.325L = 0.325*10
6 
mm

3 

3610*325.09 mmVc      Clearance Volume, hBmmVc

23510*611.3   

TDC Clearance Height, 
 

mm
mm

mm

B

V
h c 2.2

72

10*611.3
2

35

2



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Appendix C – Engine Map of Cylinder Deactivation Modules 
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Appendix D – Minimum Engine Power and Torque Required 

The dynamic equation for a moving car up a slope will be; 

   
  

  
                               

For front wheel drive (    = 0),  

   
  

  
                         

Where 

    = Front Tractive Force 

    = Front Rolling Resistance Force 

    = Rear Rolling Resistance Force 

    = Rear Tracitve Force 

   = Aerodynamic Drag 

          = Gradient/Climbing Resistance 

 

 Figure below illustrates the dynamic forces of the vehicle.   
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D-1 Constant Speed of 110km/h on Flat Asphalt Surface 

Taking PERODUA Myvi 1.3 SX as the benchmarking model, all its physical parameters 

will be used in the calculation. 

Rolling Resistance,                  
 

 
            

 Consider total mass is equal to the kerb mass of a Myvi car, in addition to the 

mass of four passengers (assumed 75kg each) [28],  

MT = Mcar + Mppl = 935kg + (45x 75kg) = 1310 kg;  

   , the rolling resistance coefficient, is taken as 0.013 for car tires on asphalt or 

concrete road;  

 Angle of elevation of the slope is assumed to be 0⁰; 

        
 

 
                                        

 

Aerodynamic Drag,  2
2

1
wDfw VVCAF                                       

Where,  

 = density of air, taken as 1.2 kg/m3;  

fA = frontal area of car, with Myvi having a value of 2.19m
2
 [29];  

DC = drag coefficient of the Myvi car, 0.35 based on experimented results [23];  

V = speed of the car, desired at constant speed of 110km/h for = 30.56m/s;  

wV = speed of the wind, being neglected and valued as zero;  

    N
s

mm
m

kg
Fw 51.42956.3035.019.22.1

2

1 2

2
2

3 





  
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Required Tractive Force,        
  

  
                 

                                                         

                                       

Minimum Engine Power Required,    
   

  
        

with t = efficiency of driveline assumed 100% 

    
                 

 
                 

 

Minimum Torque Output Required,  

Assuming no slip of the tires,  

d

togp

d

w

tf
r

iiT

r

T
F


       

tog

dt
p

ii

rF
T


  

where  

gi = gear ratio of transmission, using 4
th
 gear at 110km/h = 0.865 [23];  

oi = gear ratio of the final drive, 4.267 for Myvi engine [23];  

t = efficiency of driveline, assume 100%  

dr = radius of the wheel, taken as 583mm [23];  

pT = torque output 

  
   

mN
mN

Tp .6.89
1267.4865.0

583.057.596
  

 

 

 

 



55 
 

D-2 Constant Speed of 30km/h up a Slope of 5.7⁰ 

Taking PERODUA Myvi 1.3 SX as the benchmarking model, all its physical parameters 

will be used in the calculation. 

Rolling Resistance,                  
 

 
            

 Consider total mass is equal to the kerb mass of a Myvi car, in addition to the 

mass of four passengers (assumed 75kg each) [28],  

MT = Mcar + Mppl = 935kg + (5 x 75kg) = 1310 kg;  

   , the rolling resistance coefficient, is taken as 0.013 for car tires on asphalt or 

concrete road;  

 Angle of elevation of the slope is assumed to be a maximum of 5.7⁰ from the 

flyover common standard of gradient 1:10; 

        
 

 
                                          

 

Aerodynamic Drag,  2
2

1
wDfw VVCAF                                       

Where,  

 = density of air, taken as 1.2 kg/m3;  

fA = frontal area of car, with Myvi having a value of 2.19m
2
 [29];  

DC = drag coefficient of the Myvi car, 0.35 based on experimented results [23];  

V = speed of the car, desired at constant speed of 30km/h for = 8.33m/s;  

wV = speed of the wind, being neglected and valued as zero;  

    N
s

mm
m

kg
Fw 91.3133.835.019.22.1

2

1 2

2
2

3 





  
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Slope Climbing Resistance, singMF Tg     

   N
s

mkgFg 4.12767.5sin81.91310 2   ;  

Required Tractive Force,        
  

  
                 

                                                             

                                        

Minimum Engine Power Required,    
   

  
        

with t = efficiency of driveline assumed 100% 

    
                 

 
               

 

Minimum Torque Output Required,  

Assuming no slip of the tires,  

d

togp

d

w

tf
r

iiT

r

T
F


       

tog

dt
p

ii

rF
T


  

where  

gi = gear ratio of transmission, 1
st
 gear up the slope = 3.182 [23];  

oi = gear ratio of the final drive, 4.267 for Myvi engine [23];  

t = efficiency of driveline, assume 100% 

dr = radius of the wheel, taken as 583mm [23];  

pT = torque output 

  
   

mN
mN

Tp .3.63
1267.4182.3

583.055.1474
  
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Appendix E – Engine Map of Forced Induction Modules 
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Appendix F – Driving Course of the Fuel Consumption Test 

 

Red Route (Rounding UTP) – approximately 5.2km per round (drive 5 rounds) ;  

Orange Route (to Petronas Petrol Station) – approximately 0.9 km ;  

Pink Route (from Petronas Petrol Station) – approximately 0.8 km ;   

Total = 27.7km

Petrol Station 
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Appendix G – Vibrational Test 

Although the previous ADAMS simulation section has simulated the vibration levels, an 

actual vibrational test had been carried out to support the statement that cylinder 

deactivation will increase the vibration forces drastically. The main purpose of the task 

aimed to know the vibration forces increment along with cylinder deactivation. By 

employing the PCB accelerometer with the NI LabView software, the vibration level of 

the engine can be easily plotted and recorded.  

The equipments were set up with three PCB accelerometers taped to three different axis; 

x, y, and z. The fuel injectors for Cylinder 1 & 3 are removed as in Figure G-1. The 

accelerometers were connected to the laptop running on NI LabView software. A 

thermocouple has been used to detect the temperature on different surface area of the 

engine after the car engine was started for two minutes and recorded a temperature as 

high as 200⁰C. As a result, the accelerometers of upper temperature limit of only 98⁰C 

can only be taped on the air filter surface above the engine as shown in Figure G-1 

below because the engine temperature might rise too high and damage the 

accelerometers. Anyhow the vibration forces of air filter will almost be perpendicular to 

those of engine. 

The vibration levels were recorded for three different axes; 

   

(a) Accelerometers taped to Engine      (b)Accelerometers connected to LabVIEW 
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(c) Accelerometers connected in 3 different axis         (d) Removal of Fuel Injectors 

FIGURE G-1: Vibration Experiment Equipment Set Up 

 

The car engine is started and run at 2000 rpm at neutral gear to check the vibrations and 

to compare between the vibration with and without deactivation of cylinder. The same is 

done for the deactivated engine. The results are as shown under Figure G-2 and G-3.; 

   

(a) z-axis of amplitude -80N to 55N          (b) x-axis of amplitude -40N to 55N                                                  

 

(c) y-axis of amplitude -170N to 90N                                                 

FIGURE G-2: Vibration Level of Normal Engine at 2000rpm 

Z 

Y 

X 
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(a) z-axis of amplitude -125N to 115N          (b) x-axis of amplitude -100N to 130N                                                  

 

(c) y-axis of amplitude -220N to 600N                                                  

FIGURE G-3: Vibration Level of Deactivated Engine at 2000rpm 
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Appendix H – Resultant Moment along Crankshaft 

As to calculate the resultant moment along the crankshaft, first the forces along the 

crankshaft have to be determined with their distance from the center of the crankshaft. 

The distances are determined from Figure H-1 while the vibration forces on crank pin 1, 

2, 3 & 4 are all determined by subtracting the dynamic forces by the static forces as in 

Figure H-2.  From CATIA model, a = 92mm, a/2 = 46mm, 3a/2 = 138mm; 

 

FIGURE H-1: Crank Throw Arrangement for Moment Calculation 

 

FIGURE H-2: Magnitude of Vibration of Each Crank Pin (Steel Balancer) 

To get the graph for the moment, the graph of forces are scaled up or down with their 

distances from the center, achieving graphs in Figure H-3 after Graphs for piston 1 & 4 

are scaled with 0.138 as in 0.138m while force graphs of piston 2 & 3 are multiplied by 

0.046 as in 0.046m.  
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FIGURE H-3: Magnitude of Moment of Each Crank Pin (Without Steel Balancer) 

Last but not least, all the moments of each crank pin are summed up together to get the 

overall resultant moment as in figure below. 

 

FIGURE H-3: Resultant Moment of Crankshaft (Without Steel Balancer) 

The same steps are done for the crankshaft without steel balancers for cylinder 

deactivation. 

 

 


