Mathematical Modelling of Membrane based Carbon Dioxide Removal from Natural Gas using Spiral Wound Membrane

by

Syazwani Balqis Bt Dilah

Dissertation submitted in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) (Chemical Engineering)

JANUARY 2014

Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Mathematical Modelling Of Membrane Based Carbon Dioxide Removal From Natural Gas Using Spiral Wound Membrane

by

Syazwani Balqis Bt Dilah

A project dissertation submitted to the Chemical Engineering Programme Universiti Teknologi PETRONAS In partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (CHEMICAL ENGINEERING)

Approved by,

(Dr Nurhayati Mellon)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK

January 2014

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

(Syazwani Balqis Bt Dilah)

ABSTRACT

This Dissertation covers the introduction, literature review, methodology, results, discussions and some recommendations for the project entitled "Mathematical Modelling of Membrane Based Carbon Dioxide Removal from Natural Gas using Spiral Wound Membrane". Recently, many modelling of membrane is carried out to improvise the current membrane used for separation of carbon dioxide from the raw natural gas but the recent research studies mostly focussed on the development and optimization of Hollow Fibre membrane for sweetening of natural gas instead of the traditional Spiral Wound membrane. Thus, this project aims to develop a mathematical model of Spiral Wound membrane for natural gas treatment with three parameters to analyse: feed temperature, feed pressure, and permeate pressure. Model is developed based in crossflow model derived by Weller and Steiner for gas separation by using spiral wound membrane through MATLAB. The base operating condition used in for the model is according to literature review from various sources including journals and books. The model proves that feed and permeate pressure has great influence on the membrane performance. The influence of the operating conditions (feed pressure, permeate pressure and CO₂ composition in the feed stream) on the design parameters (membrane area, methane loss, methane recovery and concentration of CO₂ removed) has been studied. It is shown that increase in feed pressure and low permeate pressure leads to higher rate of permeation thus reducing membrane area, improving methane recovery, minimizing methane loss and more CO₂ is removed due to greater driving force across the membrane. Higher CO_2 content in the feed shows decline in membrane performance. In conclusion, the mathematical modelling of spiral wound membrane using Weller and Steiner method has proven its ability to compute the desired performance modelling for the separation of CO_2 from natural gas.

ACKNOWLEDGEMENT

First of all, I would like to say that this Final Year Project (FYP) would not have been successful without support and cooperation accorded to me by my FYP Supervisor, Dr. Nurhayati Mellon from Chemical Engineering Department. Therefore, I would like to take this opportunity to express my sincere gratitude to her who has willingly helped me without failing to motivate, guide, advice and gives many encouragement.

Besides, I would like to thank Allah SWT for all His blessings. I would like to express greatest gratitude to Dr. Narahari Marneni, Senior Lecturer of Fundamental and Applied Science department who continuously gives guidance and advices especially to accomplish the objective of this project.

Last but not least, I would also like to express my appreciation to my family members who has given me moral support to make sure the project is carried out successfully.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL		ii
CERTIFICATION OF ORIGINALITY		iii
ABSTRACT ACKNOWLEDGEMENT LIST OF TABLES LIST OF FIGURES		iv
		V
		viii
		ix
ABBREVIATIO	ONS AND NOMENCLATURES	Х
CHAPTER 1:	INTRODUCTION 1.1 Background of Study 1.2 Problem Statement 1.3 Objective 1.4 Scope of Study	1 1 3 4 4
CHAPTER 2:	 LITERATURE REVIEW 2.1 Membrane Technology for Gas Separation 2.2 Spiral Wound Membranes 2.3 Polymer Membrane-Polyimide 2.4 Types of Flow in Gas Permeation 2.5 Modelling of Spiral Wound Membrane 2.4 Application of Membrane Technology 	5 5 8 10 11 12 15
CHAPTER 3:	METHODOLOGY 3.1 Model Development 3.2 Assumptions for Model Development 3.3 Derivation of Mathematical Equation 3.4 Base Operating Conditions 3.5 Project Activities Workflow 3.6 Flowchart for Modelling 3.7 Tools	16 16 17 17 21 22 23 24
CHAPTER 4:	 RESULTS AND DISCUSSIONS 4.1 Data Validation 4.2 Parametric Studies 4.2.1 Effects of Feed Pressure on Membrane Performance 	25 25 27 27

	4.2.2 Effects of Permeate Pressure on Membrane Performance4.2.3 Effects of CO₂ Composition in Feed on	30 33
CHAPTER 5:	Membrane Performance CONCLUSION AND RECOMMENDATION	35
REFERENCES	CONCLUSION AND RECOMMENDATION	37
APPENDICES		41

LIST OF TABLES

Table 1.1:	US Natural Gas Pipeline Specification	1
Table 2.1:	Comparison of Different Module Designs	7
Table 2.2:	Application of Polyimide Gas Separation Membrane	10
Table 3.1:	Operating Conditions for Modelling	21
Table 4.1:	Experimental data for data validation	25
Table 4.2:	Validation of Mathematical Model with Experimental Data	26
	by Faizan et al.	

LIST OF FIGURES

Figure 2.1:	Gas Permeation through Membrane	6
Figure 2.2:	Spiral wound elements and assembly	8
Figure 2.3:	Local gas flow path for spiral wound separator	9
Figure 2.4:	Ideal flow patterns in a membrane separator for gases	11
Figure 2.5:	Effect of permeate pressure on the permeate flow rate	13
	and residue concentration	
Figure 2.6:	Total cost variation with temperature at different	15
	permeate pressure	
Figure 3.1:	Process flow diagram for cross-flow model	16
Figure 3.2:	Project Activities Workflow	22
Figure 3.3:	Flowchart for Modelling Development	23
Figure 4.1:	Data Validation	26
Figure 4.2(a):	Effect of Feed Pressure on Membrane Area	27
Figure 4.2(b):	Effect of Feed Pressure on Methane Loss	28
Figure 4.2(c):	Effect of Feed Pressure on Methane Recovery	28
Figure 4.2(d):	Effect of Feed Pressure on CO ₂ Removal	29
Figure 4.3(a):	Effect of Permeate Pressure on Membrane Area	30
Figure 4.3(b):	Effect of Permeate Pressure on Methane Loss	31
Figure 4.3(c):	Effect of Permeate Pressure on Methane Recovery	31
Figure 4.3(d) :	Effect of Permeate Pressure on CO ₂ Removal	32
Figure 4.4(a):	Effect of CO ₂ Concentration on Methane Loss	33
Figure 4.4(b):	Effect of CO ₂ Concentration on Methane Recovery	34
Figure 4.4(c):	Effect of CO ₂ Concentration on CO ₂ Removal	34

ABBREVIATIONS AND NOMENCLATURES

US	United States	
CH ₄	Methane	
CO ₂	Carbon Dioxide	
H_2S	Hydrogen Sulphide	
C ₃₊	Heavier Carbon	
N_2	Nitrogen	
He	Helium	
H_2	Hydrogen	
CO	Carbon Monoxide	
ррт	Parts per million	
Btu/scf	British unit per standard cubic feet	
°C	Degree Celsius	
ODE	Ordinary Differential Equation	
FYP I	Final Year Project 1	
FYP II	Final Year Project 2	
L_f	Flowrate of feed stream (cm ³ (STP)/s)	
L_r	Flowrate of retentate stream (cm ³ (STP)/s)	
V _p	Flowrate of permeate stream (cm ³ (STP)/s)	
x_f	Composition of feed	
x_r	Composition of retentate	
y_p	Composition of permeate	
p_h	Pressure of high pressure feed side (cmHg)	
p_l	Pressure of low pressure permeate side (cmHg)	
t	Thickness of membrane (cm)	
α_{AB}	Ideal separation factor	
P_A'	Permeability of A (cm ³ (STP).cm/(s.cm ² .cmHg)	
P_B'	Permeability of B (cm ³ (STP).cm/(s.cm ² .cmHg)	
θ	Total fraction of permeate	

- $\boldsymbol{\theta}^*$ Fraction of permeate up to value of x
- *i* Fraction of stream composition
- i_f Fraction of stream composition at the feed
- i_r Fraction of stream composition at the retentate

$$u_f$$
 value of u at $i = i_f = \frac{x_f}{1 - x_f}$

 A_m Membrane area (cm²)