Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

MODELLING OF NONLINEAR SYSTEMS USING INTEGRATED OBFARX PLUS NEURAL NETWORK MODELS

Omar, Ariff (2014) MODELLING OF NONLINEAR SYSTEMS USING INTEGRATED OBFARX PLUS NEURAL NETWORK MODELS. Universiti Teknologi Petronas. (Unpublished)

[img] PDF
Download (2MB)

Abstract

The objective of this project is to develop a new model, which is by combining OBFARX linear model with nonlinear NN model. The results obtained will be compared with the previous models to show performance improvement by the new model. The new model development is based on the model developed by (Zabiri et al 2011) which is OBF linear model combination with nonlinear NN model. The OBF-NN model cannot work efficiently on some problems due to the limitations of the OBF part of the equation. So it is important to analyze the new model which is OBFARX-NN with OBF-NN model. The scope for this project will be the development of the parallel OBFARX-NN model, methods for estimating the model parameter, simulation analysis using MATLAB and evaluation on OBFARX-NN model performance. The method for completing the project will be firstly, make sure all the necessary information about the individual model is available. Then develop a theoretically working OBFARX-NN model. After that, analysis of the performance of the created model is done and also alterations here and there for better clarification. All in all, the result are the improve performance of process control by OBFARX-NN model compared to OBF-NN model.The most important aspect of the model development is the extrapolation capabilities of the model itself. When a model is forced to perform prediction in regions beyond the space of original training, then it can be said that the model can function well even when the process parameter is changed. This aspect is very important because in practical plant, the process conditions are continually changing making extrapolation inevitable. Thus, by testing the extrapolation capabilities of the OBFARX-NN model, the project had come up with the subsequent RMSE value and compared with previous model. The RMSE value indicates superior performance in the extrapolation region.

Item Type: Final Year Project
Academic Subject : Academic Department - Chemical Engineering - Process System Engineering
Subject: T Technology > TP Chemical technology
Divisions: Engineering > Chemical
Depositing User: Users 2053 not found.
Date Deposited: 10 Jul 2014 11:06
Last Modified: 10 Jul 2014 11:06
URI: http://utpedia.utp.edu.my/id/eprint/13853

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...