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ABSTRACT 

 

Water flooding for a long time has been regarded as a secondary oil recovery method 

which can considerably increase oil production. However, even in this case, a significant 

amount of oil is still trapped in the reservoir. So far, to recover the remaining oil, various 

methods as tertiary recovery processes have been proposed. In the water flooding, it is 

usually pointed out that injection of low saline water change wetting properties of the 

reservoir during a water flood in a favorable way to improve oil recovery due to salinity. 

In the tertiary recovery, several EOR methods such as continuous Gas Injection, Water 

Alternating Gas flooding (WAG), Simultaneous Water Alternating Gas flooding 

(SWAG), and Foam Assisted Water Alternating Gas (FAWAG) process have been 

studied. Among these methods due to high mobility control in the gas flow, FAWAG 

process has been found to be more feasible.  

Hence, in this work based on the acceptable performance of the foregoing methods, 

FAWAG process is improved with low saline water. For this purpose, the oil recovery 

factor is compared between the application of formation water (high salinity brine) and 

low salinity brine during FAWAG-CO2. Type of surfactants to be used already finalized, 

only salinity of the brine is changing. However, several chemical screening tests will be 

conducted. Coreflooding will be done to determine the effect of low saline water during 

FAWAG on oil recovery.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Project Background  

 

Traditionally, oil recovery operations have been subdivided into three stages: primary, 

secondary and tertiary. These stages described the production from a reservoir in a 

chronological sense. Primary recovery result from the use of natural energy presents in a 

reservoir as the main source of energy for the displacement of oil to the production. 

Secondary recovery results from the augmentation of natural energy through injection of 

water or gas to displace oil towards producing wells. 

 

Waterflooding is proved the most popular and successful method in primary-oil recovery 

mechanisms especially in water-wet reservoir. This recovery method had been used on 

numerous fields and responsible for the recovery of 20 to 30 percent of the original oil in 

place. However, after secondary recovery process, still significant amount of oil is 

trapped in the reservoir. 

 

In order to recover the residual oil, tertiary recovery process is utilized. This process is 

known as enhanced oil recovery (EOR). This process includes the injection of gases, 

liquid chemicals and thermal energy. Among these, gas-injection-based EOR is a more 

popular method to recover this enormous resource base effectively. However, gas-

injection posed certain problems. Despite their high microscopic displacement 

efficiencies, Injected gases characteristics of very low density and viscosity caused it to 

have very high and unfavorable mobility ratios which can cause severe fingering and 

gas-oil gravity segregation with large unswept reservoir volume. Volumetric sweep 

efficiency of these EOR process will be low. 

 

In order to overcome this major shortcoming and improve sweep efficiency, water 

alternated gas (WAG) process had been widely practiced. This process is not only 

control the mobility of gas, gas consumption is also been reduced. However, the 

presence of increased mobile water saturation will cause water shielding in which water 
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films prevent oil and gas coming into direct contact and for miscible gas injection it 

delays the onset of miscibility resulted in poor recovery of the WAG process. 

 

Another alternative technique of improving sweep efficiency during gas injection is the 

uses of foam. This technique is known as foam-assisted WAG (FAWAG). It has the 

ability to reduce the produced gas-oil ratio and maximizing production rate in the 

producing well.  Moreover, foam is used with WAG technique to solve the problems 

faced by the well such as overriding caused by thief zone or gravity override. 

Furthermore, in heterogeneous formations, foam generation will occur in the high 

permeability zones first which divert the fluid flow towards low permeability zones. 

 

To further improve the sweep efficiency, role of water salinity had been widely focused 

through many researches. It is well known that low salinity flood has many advantages 

such as high EOR potential, environmentally friendly, and combination with other 

possible recovery methods. As for this research project, low saline water is applied to 

improved FAWAG process. The methodological plan in this study is to do an 

experimental investigation on the effect of salinity. For this purpose, the effects of low 

salinity and effective range of salinity on FAWAG process will be investigated. 

 

 

1.2 Problem Statement 

 

1.2.1 Problem Identification 

Foam has been applied in four different pilots on the Norway Snorre field. The pilots 

covered gas shut off in production wells, and mobility control with foam-assisted WAG 

injection (FAWAG) for diversion of injected gas. A lot of studies on the FAWAG pilots 

have been done by simulation of FAWAG and consideration of foam and foam 

behavior, but there is no laboratory and detailed study which relate the effects of water 

salinity on foam and residual oil saturation during FAWAG process.  It is widely 

recognized that the reservoir wettability affects the relative distribution of fluids within a 

porous medium, which in turn strongly affects the displacement behavior, relative 
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permeability characteristics and consequently the production of hydrocarbons from 

petroleum reservoirs.  

 

To the best of our knowledge, no efforts have been made to critically address the 

recovery of residual oil by combination of low saline water and FAWAG process in the 

literature. It has been found that, there is a pressing need for studying the combined 

effect of low saline water on FAWAG process. Thus, this will be the basis of the 

research. 

 

1.2.2 Significance of the project 

This research able to address the relationship between the parameters that are 

responsible for wettability alteration which in turn will affect the success or failure of 

the proposed hybrid FAWAG process with low saline water injection. A thorough 

investigation will be done to assess all the factors that will be contributing to increased 

oil recovery.  

 

1.3 Relevancy of the Project 

In this research, conventional FAWAG-CO2 process will be improved with the 

introduction of low saline water. In previous research, low saline water has the ability to 

alter the wettability into more water-wet which is more favorable for oil recovery. 

However, This research will compare the performance of using FW or LSW in FAWAG 

process. 

. Foam is used to control gas mobility and gas overriding. Therefore, improved sweep 

efficiency. This research will compare the performance of using FW or LSW in 

FAWAG process. 

 

 

 



4 
 

1.4 Project Objectives 

 

The main objective of this research is to investigate the effect of low saline water 

injection combined with FAWAG-CO2 process on oil recovery. This experimental study 

has the following sub-objectives: 

 

1. To investigate the effect of LSW on foam-formation integrity  

2. To investigate the effectiveness of hybrid application of FAWAG-CO2 and LSW 

injection on oil recovery compared to the conventional FAWAG-CO2 application 

 

 

 

CHAPTER 2: LITERATURE REVIEW 

 

2.1 Enhanced Oil Recovery (EOR) 

For the fact that recovering oil from mature fields is becoming more and more vital as 

finding new oil is not easy, there is a growing need to increase the output and ultimate 

recovery by EOR methods. This has been assumed of a great significance as far as 

mature oil fields are concerned.  

EOR is a term applied to methods used for recovering oil from a petroleum reservoir 

beyond that recoverable by primary and secondary methods. Thus, EOR is often 

synonymous with tertiary recovery. Various methods of EOR are essentially designed to 

recover residual oil left by both primary and secondary recovery methods. 

 

2.2 Waterflooding 

After natural drive mechanisms are no longer able to recovery oil economically, 

secondary recovery is employed. The most common method of secondary recovery is 

perhaps waterflooding. Water is injected for pressure maintenance and displaced oil 

microscopically. However, waterflood oil microscopic displacement is very poor 

especially in oil-wet reservoir.  
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There is several factor affects the displacement efficiency of waterflooding: 

1. Mobility Ratio: displacement efficiency can be increased by reducing the 

mobility ratio which can be done by increasing the viscosity of water. High 

mobility ratio will cause water fingering and early water breakthrough which is 

faster in high permeability reservoir. 

2. Lithology and rock properties: water injected might cause clay swelling and 

deflocculating which will clog the pores and damage the formation permeability. 

Water injection rate also had to be monitored to make sure that it does not exceed 

the formation fracture pressure. Waterflood also recover more oil in water-wet 

system as it can enter smaller pores due to capillary pressure.  

3. Trapped Gas Saturation, Sgt: if the reservoir pressure is carefully maintained, 

optimum Sgt can exist within the oil bank. Higher Sgt can reduce the residual oil 

saturation. (Willhite, 1986). This is due to gas is more non-wetting to the 

reservoir rock than oil. As water displaced the oil, amount of residual oil left in 

the larger pore spaces would be reduced because portion of the pore spaces is 

occupant by gas (Cole, 1969). 

 

2.3 CO2 Gas Injection  

Gas injection is one of the oldest EOR methods introduced to improve oil recovery. Gas 

injection are usually regarded as a tertiary recovery method, however in certain cases, gas 

injection is use as secondary recovery.  By general, the gases that are widely applied in EOR 

are carbon dioxide (CO2), hydrocarbon gases, and nitrogen (N2) gas. The most common one 

is CO2 due to its high solubility in water and hydrocarbon and abundant in nature. The 

process could be miscible or immiscible depending on the most crucial parameter in 

determining the miscibility of the injected gas i.e. the Minimum Miscibility Pressure (MMP).  

MMP is the minimum required pressure at which the injected gas becomes miscible with the 

reservoir oil. If the MMP is higher than the current reservoir pressure, it might not be 

economical to implement miscible gas flooding due to large compression requirement. 

Technically the maximum pressure that we can inject the gas is determined by the reservoir 

fracturing pressure. When gas is injected at the MMP and above, the process will be miscible 

gas flooding. When gas is injected below the MMP, the process will be immiscible gas 



6 
 

flooding. The purpose of immiscible gas flooding is normally to maintain the reservoir 

pressure.  

In the miscible displacement, the injected gas will completely dissolve the reservoir oil 

through first contact (FCM) or multiple contacts (MCM). In first contact miscibility (FCM), 

CO2 is directly miscible with oil when in contact. However this is not always the case, 

multiple contacts of CO2 and oil are required for mass exchange of the intermediate 

component of hydrocarbon through vaporizing, condensation or both. After several contacts 

and exchange of component between gas and oil, it will reach critical composition, thus cause 

miscibility. Oil composition is an important factor affecting miscibility, a high percentage of 

intermediate hydrocarbons (C5 through C12) is beneficial (Martin & Taber, 1992). When, oil 

and CO2 are miscible, the interfacial tension (IFT) will be reduce until 85% and thus 

eliminating the forces that cause oil retention in the rock matrix and improve sweep 

efficiency (Ghedan, 2009). Miscibility also will cause oil swelling which reduce the viscosity 

of the oil. Thus, the mobility of oil will significantly increase and also swollen oil droplet 

(bypassed oil by waterflooding) will force water out of pore spaces until the oil is mobile. 

Swelling factor increase with pressure and decrease with temperature and density 

(Mangalsingh & Jagai, 1996).  

 

The limitations of applying gas injection EOR are highly dependent on the type of gas to 

be injected into the reservoir and the reservoir temperature and pressure. Solubility of 

gas in oil decreased with increasing temperature (>150
o
C) and reduced API gravity 

(Mangalsingh & Jagai, 1996). Source and supply of the gas must be adequate and 

continuous to supplement the injection requirements. Applications of gas EOR requires 

the current reservoir pressure be higher than the MMP to secure the miscibility of the 

injected gas and the remaining oil which made depth as an important criterion (Martin & 

Taber, 1992). The major drawback of CO2 application is its very high mobility ratio as 

CO2 viscosity and density is very low. This will cause severe viscous fingering and early 

gas breakthrough which ultimately reduced displacement efficiency and cause high 

producing gas-oil ratio. CO2 injection also cause poor areal displacement recovery due 
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to its low density in which the gas will move upward which left the residual oil 

underneath untouched.  

CO2 injection also has the possibility to cause asphaltene precipitation which will clog 

the pores and reduces the permeability and might change the rock wettability (especially 

intermediate we rock). Asphaltene deposition are a severe problem for light rather than 

heavy oil although the heavy oil contain higher percentage of asphaltene (17%) 

compared to light oil (0.1%). This is due to composition of heavy oil which contain high 

resin and aromatic component which cause the lighter oil to have lower potential of 

asphaltene solubility. Rock wettability will become more oil-wet when asphaltene 

content in crude oil exceeds 4.6 wt % (Ghedan, 2009). Injection of CO2 can develop 

corrosion problems to the producing facility as the gas exhibits acidic behavior. 

Corrosion inhibitors are usually injected to minimize the corrosion, but will have a 

strong impact on the economics. 

 

2.4 Water-Alternated-Gas (WAG) 

Considering its successful applications in the North Sea, US and Canada oil fields, 

WAG injection can be regarded as a matured technology. Both miscible and immiscible 

injections have been practiced worldwide. In most cases, WAG has been implemented 

as tertiary miscible injection projects. Incremental recovery by application of WAG is 

reported in the range of 5 to 10% of original oil in place (OOIP) (Ramachandran, et al, 

2010). Availability of hydrocarbon gas and limited storage facilities necessitated gas 

injection projects which were also aimed at improving recovery. It was reported that it 

may be difficult to distinguish between miscible and immiscible WAG process. In the 

life of oil production, the process can fluctuate between miscible & immiscible (Lake, 

2008). 

WAG injection is an oil recovery method initially aimed to improve sweep efficiency 

during gas injection. In some recent applications produced hydrocarbon gas has been re-

injected in water injection wells with the aim of improving oil recovery and pressure 

maintenance. Oil recovery by WAG has been attributed to contact of unswept zones, 

especially recovery of attic or cellar oil by exploiting the segregation of gas to the top or 
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accumulating of water towards the bottom and also better overall sweep efficiency is 

obtained by gas displacement at low permeability layer (Sanchez, 1999). Since the 

residual oil after gas flooding is normally lower than the residual oil after water 

flooding, and three-phase zones may obtain lower remaining oil saturation, WAG has 

potential for increased microscopic displacement efficiency. WAG injection, thus, can 

lead to improved oil recovery by combining better mobility control and contacting 

unswept zones, and also leading to improved microscopic displacement. To displace oil 

effectively, the flood front has to be stabilize. This influenced by rock type, injection 

strategy (water and gas injector position), miscible/immiscible gas, and well spacing 

(Lake, 2008). WAG ratio is also an important factor. The optimum WAG ratio was 1:4 

(Mangalsingh & Jagai, 1996). 

Injecting gas with water alternately also reduce the mobility of gas. It reduces the 

breakthrough time of gas and viscous fingering. Thus, increase the oil-CO2 contact time. 

WAG. This resulted in low producing GOR as indicated by several case study in which 

GOR for continuous gas flooding is high as 2000 cc where as for WAG flooding it was 

below 500 cc. lower pore volume requirement is also highlighted as WAG application 

advantage (Mangalsingh & Jagai, 1996). 

The limitation of this method is oil trapping due to water injected reduce the contact of 

oil and CO2. Laboratory studies have concluded that rock wettability strongly affects the 

trapping mechanism of oil by water. Oil trapping happen more severe in water-wet 

reservoir which some cases show more than 45% of the waterflood residual oil was 

trapped (Ghedan, 2009) 

 

2.5 Chemical Flooding 

Chemical flooding involves the injection of specific liquid chemicals that effectively 

displaces oil because of their phase-behavior properties. Methods include utilisation of 

polymers (P), surfactants (S), alkaline (A) chemicals and their combination as in AS, SP 

and ASP. The displacing fluid or micellar solution has limited solubility with oil and 

designed to lower the IFT between the displacing fluid and oil resulted in minimal 
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trapping. Favorable mobility of the micellar solution also contributes to efficient 

displacement (Green & Willhite, 1998). From worldwide experience, the typical 

incremental recovery from a Chemical EOR ranges between 10 to 25% of Original Oil 

in Place (OOIP). 

2.6 Foam-Assisted WAG (FAWAG) 

Foam-Assisted Water Alternating Gas (FAWAG) process has given tremendous 

improvement in recovery by improving sweep efficiency during gas injection and gas 

shut-off. Even less GOR was seen in most of the process. Foam has increased mobility 

control of gas flow and has come up with a new method for improvement of well flow. 

FAWAG is usually introduced in reservoirs with WAG process already in use. It is 

observed that during WAG process, initial cycle is efficient than later. In addition, due to 

the establishment of trapped gas saturation in the area after first gas injection and mass 

exchange reduction between oil and gas in the second gas injection period, gas 

breakthrough is expected to arrive earlier 

The FAWAG technique implemented to Snorre Field in Norway has become the largest 

world's application in four pilot projects in the different parts of the field.  The FAWAG 

project was commenced in 1997 on the Central Fault Block (CFB) of the Snorre Field 

(Blaker, et al., 2002). Snorre is one of the major oil fields on the Norwegian Continental 

Shelf in the North Sea. The Snorre Field is used as a reference to conduct the FAWAG 

project in Field A West.  The Snorre Field was initially developed with water injection 

as the main drive mechanism and came on stream in 1992. One of the first measures 

taken to increase production was implementation of a downdip WAG pilot in the CFB. 

The FAWAG project has been a full-scale field demonstration of the use of foam to 

improve gas sweep efficiency during water-alternating-gas (WAG) injection (Skauge 

et.al, 2002). 

In the mid-1996, a foam treatment was performed on production well P18 located in the 

Central Fault Block of the Snorre Field. The P18 well had suffered high gas oil ratio 

(GOR) due to premature gas breakthrough. The purpose of the field pilot was to reduce 

the production GOR in P18 (Skauge et.al, 2002). 
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The foam treatment was performed in 8 Darcy and 7.2 m thick sand layer of the 

Statfjord formation. The treatment was performed using surfactant alternating gas 

injection (2 cycles) and co- injection and the high permeable layer to be treated was 

mechanically isolated during the injection. 

32 tons of surfactant was used divided with 8 tons on each surfactant alternating gas 

cycle and 16 tons on the co-injection; the surfactant concentration was either 1 or 2 wt%. 

Pressure build-up data during injection and tracer analyses during production after 

treatment was used to evaluate foam generation. It was concluded that the foam 

generation during SAG injection was limited, but the co-injection generated strong 

foam. After foam treatment the plug isolating in the high-permeable streak was 

removed. A 50% reduction in GOR was observed in P18 for more than two months 

(Skauge et.al, 2002). 

 

2.7 Surfactant  

The term surfactant finds its origin from the term "surface active agent". Surfactants are 

organic compounds that have an amphipathic nature, meaning they contain both a 

hydrophobic group (their tail) and hydrophilic group (their head) (Schramm et al., 

2000). The surfactant-brine-oil phase behavior is strongly affected by the salinity of the 

brine. For low brine salinities, a typical surfactant flood will exhibit good aqueous phase 

solubility and poor oil-phase solubility. For high brine salinities, the surfactant solubility 

decreased in the aqueous phase by electrostatic forces (Lake et al., 1989). Surfactant 

stability is also known to be sensitive to high temperature and high salinity (Green & 

Willhite, 1998). 

A surfactant is briefly defined as a material that can greatly reduce the surface tension of 

a liquid (usually water) when used in very low concentrations. The concentration at 

which micelles are formed is called the critical micelle concentration (CMC).  When 

surfactant concentration is lower than CMC, the interfacial tension will decrease 

significantly with increasing surfactant concentration. After the surfactant concentration 

exceeds CMC, however, there will be only small changes in the value of interfacial 
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tension with increasing surfactant concentration. Though the interfacial tension does not 

change much with the changing of the surfactant concentration after it exceeds CMC, 

the higher surfactant concentration will result in more micelles. Micelles can solubilize 

non-polar materials by enclosing them in their hydrophobic (Green & Willhite, 1998). 

 

Applying surfactant flooding at high salinity conditions requires a tailoring of the 

surfactant system with regard to optimizing physicochemical properties (e.g., interfacial 

tension toward oil phase, dynamic retention, and temperature stability). This can in some 

cases be difficult, time-consuming, and uneconomical. In contrast, low salinity 

environments open up a route to a wider portfolio of more commercially available and 

low-cost surfactant systems. At lower salinities, there is an increased possibility for 

surfactants that meet the current environmental and safety regulations. In the past 

decade, an extensive effort has been directed at low salinity water flooding, (Morrow et 

al., 1998). So, from the previous study, it has been showed that a great potential of using 

surfactant at low saline environments. 

 

2.8 Foam 

Foams are special kind of colloidal dispersion: one in which a gas is dispersed in a 

continuous liquid phase (Schramm, 1994). The general foam structure is contained on 

the bottom by the bulk liquid and on the upper part is a second bulk phase, which is gas. 

The gas phase is separated from the thin-liquid film, by a two dimensional interface.  

Lamella is defined as the region that encompasses the thin film, the two interfaces on the 

either side of the thin film, and part of the junction to other lamellae as depicted in Figure 

1 (Schramm, 1994). The connection of three lamellae, at angle of 120
o
, is called the 

plateau border. 
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Figure 1 : generalized foam systems (Schramm, 1994) 

 

The foam structure can be formed in a liquid if bubbles of gas are injected faster than the 

liquid between bubbles can drain away. When two or more foam come together, 

coalescence occurs very rapidly, without detectable flattening of the interface between 

them; that is, there is no thin-film persistence (Schramm, 1994).The adsorption of the 

surfactant or foaming agent at the gas-liquid interface enhances thin-film persistence. 

Gas phase, liquid phase and a surfactant/foaming agent are the factors contributing 

towards the foam persistence. Foaming agent or surfactants are macromolecules, or 

finely divided solids. That is used in the petroleum industry as a surface tension reducer 

and aids the formation of the increased interfacial area with less mechanical energy 

input. According to Schramm (1994), foaming agents may be needed to form a 

protective film at the bubble surfaces that acts to prevent coalescence with other 

bubbles. Foam stability or persistence can be considered as two different processes:   

film thinning and coalescence. 

 Film thinning is the process where the bubbles come closely together, but there is no 

change in surface area. Coalescence is the process of bubbles combined together to be a 

single droplet, larger bubbles, thus reducing the total surface area. The stability of foam 

is defined by few factors involving bulk solution and interfacial properties: 

 Gravity drainage 

 Capillary suction 
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 Surface elasticity 

 Viscosity (bulk and surface) 

 Electric double-layer repulsion 

 Dispersion force attraction 

Foam has been extensively used in improved and enhanced oil recovery processes in the 

petroleum industry over decades (Al-Mossawy, et.al, 2011). The main use of foam in 

petroleum industry is to control gas mobility of oil reservoir during the application of 

gas injection or water-alternating-gas (WAG) process. The high mobility and low 

density of the gas allows gas to flow in channels through high permeability zones of the 

reservoir and to rise to the top of the reservoir by gravity segregation (Al-Mossawy, 

et.al, 2011). This mechanism leads to the decline of the sweep efficiency and 

consequently increases the residual oil in the reservoir. Foam is used in petroleum 

industry to control gas mobility and improving sweep efficiency by increasing the 

effective viscosity and decreasing the relative permeability of the gas. Foam is easily 

form in high permeability zones, so the foam will redirect the gas to the lower 

permeability and smaller pore zones where residual oil is most abundant. Thus foam 

able to solve a thief zone or override problem encountered before (Turta & Singhal, 

2002). Another use of the foam is for gas shut off to reduce the gas/oil ratio (GOR) at 

the production wells (Al-Mossawy, et.al, 2011). 

Foam injection project requires comprehensive research & developments and reservoir 

simulation studies. The operating parameters that should be investigated through 

laboratory experiment are;- formulation and concentration optimisation of foaming agent 

or surfactant, pressure gradient required for stable foam flow, and injection strategy: 

either pre-prepared foam before injection, or co-injection of surfactant solution and gas, 

or surfactant solution-alternating-gas (SAG) injection (Al-Mossawy, et.al, 2011). The 

simulation of reservoir is required to obtain the locations of the injection wells, optimise 

the injection pressure, volumes of gas and surfactant solution, and number of cycles and 

period of each cycle if the SAG injection option is chosen. 
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2.9 Low Saline Water 

Low Salinity flooding is an emerging technology to improve waterflood oil recovery for 

both sandstone and carbonate reservoirs. Extensive laboratory experiments have been 

done to investigate the effect of low salinity.  However, the field experience using 

change in brine salinity to improve oil recovery is yet very limited and the mechanisms 

suggested explaining low salinity effect (LSE) is very diverse (Skauge, 2013).  

Most of the literatures on low salinity effect on improved oil recovery refer to the 

experimental works done by Tang and Morrow (1999) and also by Lager (2008).  

 Fines Migration: fines were being eluted during low salinity waterfloods on 

Berea core samples. They associated it with clay production, mainly Kaolinite in 

effluents. Tang and Morrow (1999) suggested a theory based on the release of 

mixed-wet clay particles from pores. During aging, clay fines are partly in 

contact and exposed to crude oil, and the fines are then mixed-wet particles. The 

production of oil droplets on these clays would contribute in changing the system 

to a more water wet system, since the fines migration resulted in exposure of the 

underlying surfaces that lead to an increase in water-wetness of the system. 

When high salinity brine is present, clays are undistributed and retain their oil 

wet nature leading to poorer displacement efficiency (Lager et al., 2006). When 

the clay particles come in contact with low salinity water, the clay particles will 

detach from the pore surface. Fines migration related to permeability reduction 

and formation damage. 

 

Skauge et al. (2008) proposed a new explanation of partial mobilization of fines, 

where the released clay particles will block pore throats and divert the flow of 

low salinity brine into non-swept pores. This will increase the microscopic sweep 

efficiency and increase the total oil recovery. 

 

 pH effects: Tang and Morrow (1999) observed a pH increase by low salinity 

injection on Berea sandstones. The pH increase could be explained by carbonate 

dissolution and cation exchanges (Lager et al., 2006). The dissolution reactions 
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are dependent on the amount of carbonate present in the rock. During the 

dissolution of carbonate, an excess of OH- will give increased pH. Cation 

exchange will occur between clay minerals and the invading low salinity brine. 

An exchange of H+ in the liquid phase with cation previously adsorbed at the 

mineral surface, will lead to a decrease of H+ concentration inside the liquid 

phase. This could also result in a pH increase. The IFT between the reservoir oil 

and water is reduced by low salinity water injection (Morrow et al., 1998) like it 

is by alkaline flooding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

CHAPTER 3: EXPERIMENTAL PROCEDURES AND MATERIALS 
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Figure 2 : Brief Research Project Process 
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3.1 Research Materials 

1. Surfactant 

i. Sodium Dodecyl Sulphate (SDS) 

ii. Sodium Lauryl Sulphate (SLS) 

 

2. Brine 

      In this research, two type of brine will be used: 

i. Formation brine – brine obtained for the field. Formation brine will be used 

to establish connate water saturation in the core. The brine salinity will be 

30000 ppm. 

ii. Injection brine – this brine will be prepared by mixing distilled water with 

Sodium Chloride, NaCl with different salinity. 1000 ppm, 2000 ppm, and 

5000 ppm of brine salinity will be prepared. 

 

3. Gas  

Only CO2 will be used. The gas only will be use during coreflooding process. 

 

4. Oil  

Crude oil sample obtained from Dulang field, in offshore Terengganu.  

 

5. Core Plugs  

About 50% of the world's petroleum reservoirs are found in sandstones rock and 

sandstones are usually non-fractured and have a high permeability. This research 

will be using Berea sandstone core samples. 

 

3.2. Brine Preparation 

Brine will be made artificially by dissolving desired amount of salts in distilled 

water. Two different type of brine will be produced which is formation water and 

low saline water. High amount of salt will be dissolved to make formation water to 
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reach salinity of about 30000 ppm. FW will be used for saturation and establishing 

connate water purposes in core plugs and also in conventional core flooding. While, 

low saline water (LSW) required much smaller amount of salt to reach 1000 ppm, 

2000 ppm and 5000 ppm of salinity. LSW will be used for wettability alteration and 

the other tests. One stock solution of 50000 ppm brine is prepared by dissolving 50g 

of NaCl in 1 litres of distilled water. To prepare the FW and LSW, the stock solution 

will be diluted with distilled water measured from this calculation: 

M1V1 = M2V2 …………………………………………………………………………………….Equation 1 

where: 

M1 = Original concentration (eg: 50000 ppm) 

V1 = Original Volume (eg: 500 ml) 

M2 = Final Concentration 

V2 = Final Volume 

 

3.3 Aqueous Solution Test 

This test will be conducted to check the compatibility of surfactant with brine of 

different salinity. Aqueous stability refers to a surfactant that dissolves in brine and 

forms a clear solution. A surfactant must be chemically stable in the presence of salt ions 

to pass this test. When a surfactant does not pass aqueous stability, it precipitates or 

separates from solution. This separation may cause problems during the core flood stage 

by plugging in the pores, or even worse in the field, by increasing its absorption to the 

rock and increasing production costs.  

5 ml of 2 wt% of surfactant solution and 5 ml brine of different salinity will be mixed 

together in a test tube until it forms a clear solution. The solutions are left in the oven at 

80 
o
C. Observation will be made at day 1, day 3 and day 5. 
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3.4 Foam Stability Test 

This test is done to determine the stability of foam and compare which surfactant 

performed the best at different brine salinity. Foam stability tests are a simple and quick 

indication of the foaming capabilities of a surfactant formulation when mixed brine of 

different salinity. Surfactant screening is an important task in the processes that involve 

the use of foam. Several screening methods have been developed, including static tests, 

Ross Miles test and porous media tests. However, they are neither dependable nor 

standard. For this project, static bottle test is use due to equipment and time limitations. 

This test requires an inexpensive setup and simple experimental procedure. 

 

 In a calibrated 50 ml test tube, aqueous solution consisting of 10 ml of 2 wt% surfactant 

solution and 10 ml brine are mixed. The concentration are kept constant as from the 

previous works done by Zhong, et al. (1998), it appears that surfactant concentration 

may not be an important factor in affecting the foam stability. The test tubes are closed 

to prevent evaporation during heating to reservoir temperature. The test tube will be left 

in the oven at 80 
o
C for 15 minutes for temperature equilibration. Then, the test tubes are 

shaken with equal intensity for 1 minutes resulting in the formation of a foam column. 

All test tubes are shaken with the same intensity to improve reproducibility of the test 

and reduce operational error. The foam height will be noted for every 5 minutes until all 

foam is deteriorate. The test is repeated using different brine salinity. 

 

 

Figure 3: Test setup and foam formed by surfactant solution 
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3.5 Core Sample Preparation 

Before any test is conducted, the core plug have to be make sure clear of any 

contaminant such as salt, oil or any other organic materials.  

 3.5.1 Core Cleaning 

All cores will be cleaned by using soxhlet extractor (Figure 4) with toluene. Toluene will 

displace the oil and the organic materials in the core. The toluene will be heated up and 

the steam created will cleaned the core before condense back by the flowing water bath. 

The core will be put there for 3 to 5 days. Then, it will be dried at 100 
o
C in the oven for 

two days. After drying, the core dimensions, and weight will be measured.  

 

 

Figure 4: Core cleaning by Soxhlet Extractor 
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 3.5.2 Basic Properties Measurement 

The porosity, permeability and pore volume of the dried cylindrical cores is measured 

using PoroPerm Coval 30 (Figure 5). The PoroPerm instrument is a permeameter and 

porosimeter used to determine the properties of plug sized core samples at 400 psi 

confining pressure. The measurement is based on the unsteady state method (pressure 

falloff) whereas the pore volume is determined using the Boyle’s law technique. The gas 

that is used for the measurement is helium due to its inert properties. Before plugging 

the core into the core holder, the length and diameter of the core have to be measure first 

using a digital caliper. The data is entered into Applilab, the PoroPerm software. The 

equipment is run through the software. 

 

Figure 5: PoroPerm Coval 30 with the computer that run it 

 

 3.5.3 Core Saturation establishment 

The dried and cleaned core is put into a beaker containing the designated formation 

water which in this project, the formation water salinity is 30000 ppm (only contain 

Sodium Chloride, NaCl). The beaker then put into a dessicator connected to a pump 

(Figure 6). The pump will created a vacuum inside the desiccator which will allow the 



22 
 

formation water to fill the pore spaces inside the core. The core will be left there for 7 

days.  

 

 

Figure 6: Dessicator connected to a pump 

 

3.6 FAWAG + FW or LSW Core Flooding 

Two set of coreflooding experiment will be done. For the first set, FAWAG-CO2 is 

tested with FW, while for the second set, FAWAG-CO2 is tested with LSW 

 3.6.1 Connate water saturation, Swc and initial oil saturation, Soi 

establishment 

The saturated core sample is placed into the core holder. The formation brine, Dulang 

crude oil and surfactant are pumped into separate floating piston accumulators. The 

confining pressure inside the core holder is set to 2500 psia while the temperature is set 

at 98 
o
C.  The coreflooding equipment that is being used is TEMCO RPS-800-10000 

HTHP Relative Permeability Test System (Figure 8). The test condition for the 

equipment can be up to 10000 psig flowing pressure, and up 10000 psig overburden 

pressure and temperature up to 177 
o
C (350 

o
F).  Formation brine will first injected into 
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the core at an injection pressure of 1700 psig and injection rate of 1 cc/min to make sure 

the flow is steady state and the core is 100 % saturated with the formation brine. The 

injection of the formation brine also helps to determine the absolute permeability of the 

core. This is followed by the injection of Dulang crude oil into the brine saturated core at 

similar injection rate and pressure. The crude will be injected until no more water is 

produced which indicates the connate water saturation is established. The volume of 

water produced is the initial oil saturation. The following is the equation to determine 

Swc and Soi. 

     
                                               

           
 ……………................... Equation 2 

          ……………………………………………………………….. Equation 3 

 

 3.6.2 Secondary recovery: Waterflooding 

After the connate water and initial oil saturation of the core is established, waterflooding 

can be directly started. This project is aiming to investigate the performance of FAWAG 

as an effective tertiary recovery mechanism, so waterflooding is required. Formation 

brine (30000 ppm) will be injected at a similar injection pressure and rate and also 

temperature. The formation brine will be injected until no further oil is produced or the 

differential pressure (DP) versus time (t) chart is stabilized. The chart can be monitored 

from Smart-Flood 4, software that controls the equipment. The volume of brine and oil 

produced will be measured and recorded as a function of time. Oil recovery factor also 

will be calculated.  

                         
                           

                               
      ………… Equation 4 

 3.6.3 Tertiary recovery: FAWAG-CO2 + FW 

After the waterflooding, the formation brine is first removed from the accumulators and 

replaced by pure carbon dioxide, CO2 as the number of accumulators available is 

limited. Then, the surfactant (2.5 wt% SDS + 30000 ppm brine) is injected at similar 

condition as the waterflooding. The surfactant is injected until the DP vs t chart is 
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stabilized. Immediately after that, CO2 is injected. Surfactant will be injected again and 

followed by CO2. Similar as waterflooding, volume of oil and brine produced at every 

15 minutes will be measured and recorded at each stage of injection until the injection is 

stop.  

 3.6.4 Tertiary recovery: FAWAG-CO2 + LSW 

The procedure is similar as FAWAG-CO2 + FW, only the surfactant injected is changed 

which in this case the surfactant used is 2.5 wt% SDS + 5000 ppm brine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FAWAG-CO2 + FW 

(30000 ppm) 

FAWAG-CO2 + LSW 

(5000 ppm) 

Waterflooding (FW 

injection) 

Waterflooding (FW 

injection) 

Surfactant (2.5 wt% 

SDS + 30000 ppm 

brine) 

Surfactant (2.5 wt% 

SDS + 5000 ppm 

brine) 

CO2 Injection CO2 Injection 

CO2 Injection CO2 Injection 

Surfactant (2.5 wt% 

SDS + 30000 ppm 

brine) 

Surfactant (2.5 wt% 

SDS + 5000 ppm 

brine) 
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CO2+LSW coreflooding process 
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Figure 8: TEMCO RPS-800-10000 HTHP Relative Permeability Test System 

 

CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Aqueous Solution Test 

This test is to determine whether the surfactant solution and the brine solution can mix 

well without creating a phase separation. The samples of all possible combination are 

kept in oven maintained at 80
o
C. The observation is taken at day 1, day 3 and day 5. As 

shown in Figure 9, all combination of surfactant solution (2 wt% SDS solution and 2 

wt% SLS solution) and brine with different salinity (1000 ppm, 2000 ppm, 5000 ppm 

and 30,00 ppm) are in clear solution without any visible separation as shown in Figure 9. 
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Figure 9 : Several samples with different combination of surfactant solution and brine. A1 

(SLS + 1000 ppm), A2 (SLS + 2000 ppm), A3 (SLS + 5000 ppm), A4 (SLS + 30000 ppm), 

B1 (SDS + 1000 ppm), B2 (SDS + 2000 ppm), B3 (SDS + 5000 ppm), B4 (SDS + 30000 ppm) 

 

4.2 Foam Stability Test 

This test is aimed to determine the effect of brine salinity on foam stability. The results 

are shown in Table 1 and Table 2. 

Table 1: Summary of Bottle Test Results (Without Oil) for SLS solution: Foam Height vs. 

Time 

Sodium Lauryl Sulphate (SLS) concentration : 2 wt % 

Minutes 
Foam Height (cm) 

1000 ppm 2000 ppm 5000 ppm 30 000 ppm 

0 7.50 7.50 7.50 7.50 

5 2.80 2.10 2.50 4.00 

10 1.80 0.90 1.80 3.30 

15 0.60 0.40 0.80 2.70 

20 0.40 0.30 0.45 2.00 

25 0.35 0.28 0.35 1.00 

30 0.30 0.20 0.21 0.40 

35 0.25 0.15 0.15 0.10 

40 0.20 0.10 0.10 0.00 

45 0.15 0.05 0.05  

50 0.1 0.00 0.00  

55 0.18    

60 0.00    
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Table 2: Summary of Bottle Test Results (Without Oil) for SDS solution: Foam Height vs. 

Time 

Sodium Dodecyl Sulphate (SDS) concentration : 2 wt % 

Minutes 
Foam Height (cm) 

1000 ppm 2000 ppm 5000 ppm 30 000 ppm 

0 7.50 7.50 7.50 7.50 

5 2.70 2.80 2.70 5.00 

10 1.20 1.50 1.50 4.00 

15 0.60 0.70 0.55 3.00 

20 0.45 0.60 0.40 2.20 

25 0.40 0.40 0.35 1.40 

30 0.32 0.30 0.25 0.60 

35 0.25 0.25 0.15 0.15 

40 0.20 0.20 0.12 0.10 

45 0.15 0.12 0.10 0.00 

50 0.12 0.10 0.00  

55 0.10 0.00   

60 0.00    

 

Based on the table above, Figure 10 and Figure 11 is plotted to compare the test results 

for both surfactant solution. 

 

Figure 10: Foam Height vs Time plot for SLS surfactant solution 
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Figure 11: Foam Height vs Time plot for SDS surfactant solution 
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However, the foam created from this solution deteriorates faster which about 15 minutes 

earlier if compared to the surfactant solution with 1000 ppm brine. The foam from other 

surfactant solutions are performed much less the same, only that the surfactant solution 

mixed with 1000 ppm brine have a higher retention time by 5 minutes.  

Figure 12 and Figure 13 is plotted to compare the foam performance formed by SLS and 
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Figure 12: Foam Height vs Log t plotted on semi-log chart for SLS solution 

 

 

Figure 13: Foam height vs Log t plotted on semi-log chart for SDS solution 

 

From Figure 12 and Figure 13, the performance of foam formed by both surfactant 
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No difference is observed between the size of different foams, and no significant 

difference is observed in foam forming ability of the different surfactants. From the 

results shown in Table 1 and Table 2 and Figure 10 to Figure 13, it can be concluded 

that for this preliminary test, SDS solution has a better foam and can retain longer in a 

lower salinity brine.  

4.3 Basic Properties Measurement 

2 Berea sandstone core is obtained. The Berea sandstone cores are cleaned and dried in 

the oven. Core 1 is labeled as B-1 while Core 2 is labeled as B-2. The cores properties 

are tested with PoroPerm at temperature of 26 
o
C and humidity of 65 %. The properties 

of the cores are as in Table 3. 

Table 3: Properties of the Berea core samples 
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B-1 72.06 37.70 169.558 400 15.072 17.088 80.439 68.316 2.482 107.255 

B-2 70.06 38.22 174.666 400 14.377 16.521 80.379 68.823 2.538 57.732 

 

4.4 Coreflooding Test 

2 set of coreflooding experiment is done with only the surfactant formulation or the 

brine salinity is changing.  

 4.4.1 FAWAG-CO2 + FW (2.5wt% SDS in 30000 ppm brine) 

For this set of experiment, core B-2 is used. The brine saturated core is coreflooded with 

formation brine and until the differential pressure versus time chart is stabilized as 

shown in Figure 14. The absolute permeability value is also determined which is 5.13 

md which is considered as fair. The amount of brine produced as a function of time also 

consistent with the flow rate, 1 cc/min. This shows that the fluid flow is steady-state.  
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Oil is then injected into the core until no further water is produced. 13 cc of water is 

produced which is the value of the original oil in place. This means that the Soi of the 

core is 0.79 and Swc is 0.21 

 

Figure 14: Differential Pressure vs Time chart 
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surfactant inside the core which shown in Figure 16 after 2
nd

 cycle of FAWAG-CO2 is 

started and the surfactant injected produced foam which formed earlier. The foam may 

have redirected CO2 into the unswept areas of the core. After 2
nd

 cycle of FAWAG-CO2 

is completed, 86.54 % of the OOIP is produced as shown in Figure 15 and Table 4. 
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Table 4: Summary of the oil produced from each stages of coreflooding (FAWAG-CO2 + 

FW (2.5wt% SDS in 30000 ppm brine)) 

 
Method of injection 

Volume of oil 

produced (cc) 

Oil Recovery 

Factor (% OOIP) 

Secondary 

Recovery 
Waterflooding 2 15.38 

Tertiary 

Recovery 

(1
st
 cycle) 

1
st
 surfactant injection 5.2 40 

Tertiary 

Recovery 

(1
st
 cycle) 

1
st
 gas injection 8.05 61.9 

Tertiary 

Recovery 

(2
nd 

cycle) 

2
nd

 surfactant 

injection 
10.05 77.30 

Tertiary 
Recovery 
(2nd cycle) 

2nd gas injection 11.25 86.54 

 

 

Figure 16: Foam produced during surfactant injection of 2nd FAWAG-CO2 cycle 
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 4.4.2 FAWAG-CO2 + LSW (2.5wt% SDS in 5000 ppm brine) 

In this set of test, the core that being used is core B-1. Similar to the earlier coreflooding 

test, the core is injected first with FW and the absolute permeability for the core is 6.2 

md. Then oil is injected at a similar injection rate and pressure. The volume of water 

produced is 13.5 cc which mean, Soi is 0.79 and Swc is 0.21. The saturation value 

obtained is almost similar to core B-2. After Soi and Swc establishment, waterflooding 

is directly started. The recovery from waterflooding is a shown in Figure 17 and Table 5. 

2 cycle of FAWAG-CO2 also being applied to this core. Similar to before, the oil 

recovery increasing significantly when FAWAG-CO2 is started compared to 

waterflooding. After the last gas injection, the total oil production is 94.8 % of OOIP.  
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Figure 17: Oil recovery factor (%) versus PV injected, at reservoir temperature 98 
o
C, constant 

injection rate of 1 cc/min, and injection pressure of 1700 psi (FAWAG-CO2 + LSW (2.5wt% SDS in 

5000 ppm brine)) 
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Table 5: Summary of the oil produced from each stages of coreflooding (FAWAG-CO2 + 

LSW (2.5wt% SDS in 5000 ppm brine)) 

 
Method of injection 

Volume of oil 

produced (cc) 

Oil Recovery 

Factor (% OOIP) 

Secondary 

Recovery 
Waterflooding 2.2 16.3 

Tertiary 

Recovery 

(1
st
 cycle) 

1
st
 surfactant injection 6.5 48.1 

Tertiary 

Recovery 

(1
st
 cycle) 

1
st
 gas injection 9.5 70.4 

Tertiary 

Recovery 

(2
nd 

cycle) 

2
nd

 surfactant 

injection 
11.5 85.2 

Tertiary 

Recovery 

(2
nd

 cycle) 

2
nd

 gas injection 12.8 94.8 
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 4.4.3 Comparison between FAWAG-CO2 + FW (2.5wt% SDS in 30000 ppm 

brine) and FAWAG-CO2 + LSW (2.5wt% SDS in 5000 ppm brine) 

 

 

Figure 18: Comparison of oil recovery (% OOIP) vs PV injected between FAWAG-CO2 + 

FW (2.5wt% SDS in 30000 ppm brine) and FAWAG-CO2 + LSW (2.5wt% SDS in 5000 

ppm brine) 

 

Figure 18 show the comparison of the oil recovery as a function of time for the two set 

of coreflooding test. The use of LSW during FAWAG-CO2 improved the oil recovery at 

each stages of production compared to the use of FW. In total FAWAG-CO2 + LSW 

(2.5wt% SDS in 5000 ppm brine) able to produced 94.8% of OOIP which is 8.26% 

higher compared to FAWAG-CO2 + FW (2.5wt% SDS in 30000 ppm brine) which able 

to produce 86.54% of OOIP. The recovery may increase due to wettability alteration of 

the sandstone into more water wet. At low capillary pressure and slightly water-wet 

conditions, maximum oil recovery can be reached (Morrow et al., 1998). When the high 

saline formation water is exchanged by the low saline water, active cations are desorbed 

from the clay surface due to desorption of organic material by an ordinary acid-base 

reaction (Austad et al., 2010). However, since the formation brine that being used in the 
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first test is highly saline (30 000 ppm) the adsorption of organic material from the crude 

oil would most likely be small (Aksulu et al., 2012). Adsorption of organic material onto 

the clay surface may create a less water-wet condition inside the core which might 

happen to core B-2. This condition can be clearly explained and observed if the pH 

changes during the coreflooding are noted. Similar observations of increase in the water-

wetness of the core sample with decrease in brine salinity have been reported (Tang and 

Morrow 1999, 1996). Tang and Morrow (1999) reported similar increase in oil recovery 

from reduction in brine salinity which resulted in an increase in water-wetness of the 

cores. The reason for this wetting trend with respect to salinity variation is not clear. 

Tang and Morrow (1998) hypothesized that the increase in recovery they observed in 

their experiment may be related to the transfer of a fraction of the fine particles from the 

rock walls to the oil water interface during the course of displacement. If this hypothesis 

is correct, combining with the ability of foam to control mobility of CO2 as foam tend to 

form in a high permeability pore throat, significant oil recovery increment will be 

observed.  

 

 

CHAPTER 5: CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

Two set of experiment was done on Berea cores for low salinity effects during FAWAG-

CO2 by flooding the core with formation brine, two different formulations of surfactant 

solution and carbon dioxide. The core was flooded with a constant rate of 1 cc/min at 

reservoir temperature, 98°C. The main conclusions from the work are: 

 

1. FAWAG-CO2 is performed on two different core samples and Dulang crude oil 

showed improvement in the reduction of residual oil saturation by 8.26% and 

improvement in the oil recovery efficiency. Incremental oil recovery was 

observed when the salinity of the brine was reduced from 30000 ppm to 5000 

ppm.  
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2. The application of LSW in FAWAG-CO2 has the potential for improved oil 

recovery for tertiary recovery process. When LSW is used in FAWAG-CO2 for 

the tertiary oil recovery, simultaneous effect of wettability alteration, fines 

migration and gas mobility control can be expected. 

3. Results from this study indicate that there is a potential for increasing oil 

production by improving oil recovery in matured oil reservoirs through the 

application of low salinity brine during FAWAG-CO2. One cost-effective means 

of achieving low salinity brine injection is by diluting the formation water by 

mixing with seawater. Two other possible low salinity options for field 

application will be the use of low salinity water reservoir, where available, or the 

setting up of a brine desalination plant. 

 

5.2 Recommendation 

For future reference, a proper chemical screening procedure should be done. It is 

recommended that a much better surfactant with industry standards is use for testing. For 

the foaming test, a much proper experiment setup such as the Ross Miles test is highly 

recommended so that the test can be done at reservoir temperature and its interaction 

with crude oil can be observed. The phase behavior testing also should be done with the 

presence of crude oil to observe the emulsion form when different concentration of 

surfactant is used. IFT test by using Pendant drop method also should be included in the 

chemical screening process. The test can help determine which surfactant is better and 

the optimum concentration to be used.  

For the coreflooding test, the formation brine used should have the similar composition 

as the formation brine obtained from the same field as the crude that being used. All the 

test should be done at reservoir temperature and pressure. To observe the low salinity 

effect, much more factor have to be considered and observed such as presence of clay in 

the core, the effluent composition, pH changes and formation brine composition.  

Salinity of brine that is being tested should be more than two to determine the optimum 

salinity and much more reliable result.  
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