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ABSTRACT 

 

Corrosion is defined as the deterioration of material, usually metal, by a chemical or 

electro-chemical reaction with its environment. In oil and gas industry, CO2 corrosion is 

one of the recognized problems particularly in production, transportation facilities and 

the material selection process. In the application of carbon steel, it has become a main 

concern because of its high corrosion rate and the formation of protective iron carbonate 

(FeCO3) film layers. Current models often over-predict CO2 corrosion rates for wet gas 

and oil transport systems. One of the main reasons for this is the fact that the formation 

of corrosion product scales is not properly taken into account. The objective of this 

project is to study and analyze on CO2 corrosion rate together with the formation of 

protective iron carbonate (FeCO3) film layers. Laboratory experiments of CO2 

corrosion on carbon steel in natural and induced film forming environment with 

Fe2+concentration (cFe
2+) of 0 and 50 ppm respectively, are conducted, in order to 

understand the FeCO3 film formation. The study is conducted at temperatures of 25°C 

and 80°C at pH 5.5, partial pressure of CO2 at 1 bar and stagnant conditions to observe 

how these parameters affect the CO2 corrosion rate and formation of FeCO3 film layers. 

Two electrochemical test techniques namely Electrochemical Impedance Spectroscopy 

(EIS) and Linear Polarization Resistance (LPR) are used. From the EIS technique, in 

the natural film forming environment, as the temperature increases from 25°C to 80°C, 

the corrosion rate decreases from 1.18 mm/year to 0.32 mm/year. In contrast, for the 

induced film forming environment, the corrosion rate decreases from 1.38 mm/year at 

temperature of 25°C to 0.99 mm/year at temperature of 80°C. Meanwhile, for LPR 

technique, in the natural film forming environment, as the temperature increases from 

25°C to 80°C, the corrosion rate decreases from 1.54 mm/year to 0.31 mm/year. In 

contrast, for the induced film forming environment, the corrosion rate decreases from 

0.25 mm/year at temperature of 25°C to 0.18 mm/year at temperature of 80°C. It has 

been observed that the corrosion rate is relatively lower in induced film forming 

environment since the increase of Fe2+concentration results in higher supersaturation. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study  

 

Corrosion is defined as the deterioration of material, usually metal, by a chemical or 

electro-chemical reaction with its environment. It is a natural act of metals trying to 

return to their lowest level of energy. 

 

 According to Van Hunnik [1], Reliable prediction and control of corrosion is the key to 

cost-effective and safe design of facilities for the gas and oil industry. For example, 

current tools for the prediction of CO corrosion in pipelines are still based on “worst 

case” assumptions, which may lead to unnecessary operational expenditures to combat 

potential corrosion. These extra costs can stem from the use of expensive corrosion 

resistant steels, too much corrosion allowance (extra steel wall thickness), or application 

of a corrosion inhibitor. One area where there might be scope for design improvements 

concerns the description of the formation of corrosion product layers (scaling), which 

may limit the progress of internal pipeline corrosion. Currently the potential protective 

properties of scales cannot be taken into account in predictive models as adequate 

understanding of their stability and reliability, e.g. under fluid flow conditions, is 

lacking.  

 

In facilities for oil and gas production, handling and transport, iron carbonate is often 

the main corrosion product. It forms at the wall of a pipeline if the product of ferrous 

ion concentration and carbonate ion concentration, exceeds the solubility product. The 

precipitation kinetics is known to be relatively slow and allows much higher ferrous ion 

concentrations than would be dictated by thermodynamic equilibrium. This condition is 
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known as supersaturation. Literature on the precipitation kinetics of is rather limited and 

additional corrosion experiments would have to be carried out. This information 

enabled the development of an improved description of the kinetics. A number of 

potential application examples, for which knowledge of the iron carbonate precipitation 

process is relevant, will be dealt with [1]. 

 

Linear Sweep Voltammetry (LSV), Electrochemical Impedance Spectroscopy (EIS) and 

Electrochemical Noise (ECN) are among the electrical characterization methods 

available. However, Electrochemical Impedance Spectroscopy (EIS) that has been 

proven to be an effective technique for measuring corrosion rate will be used in this 

project and further analysis will be carried out on the formation of FeCO3 film layers.          

 

1.2 Problem Statement 

 

Current models often over-predict CO2 corrosion rates for wet gas and oil transport 

systems. One of the main reasons for this is the fact that the formation of corrosion 

product scales is not properly taken into account. However, for this project, study and 

analysis on CO2 corrosion would be conducted to obtain a deeper understanding on the 

formation of corrosion product scales in which under certain condition, stable and 

protective corrosion product will be formed. 

 

1.2.1 Problem Identification 

 

The precipitation kinetics of FeCO3 is known to be relatively slow. Therefore, many 

experiments will need to be conducted throughout the time frame given to further 

understand the FeCO3 precipitation process. 
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1.2.2 Significance of the Project 

       

The ultimate aim of this study on precipitation kinetics is to enable the prediction of the 

formation of protective corrosion product layers and the resulting reduction of the 

corrosion rate. By combining models for corrosion rate and precipitation kinetics the 

appearance of FeCO3 layers can be predicted. This is essential to determine whether 

FeCO3 film formation is protective, semi-protective or not protective. Simultaneously, 

the output of this project is intended to help the material selection process in the oil and 

gas industry. By all means, it is already known that a bad material selection process 

may lead to unnecessary extra capital or operational expenditures to combat potential 

corrosion. These extra costs can stem from the use of expensive corrosion resistant 

steels, too much corrosion allowance (extra steel wall thickness), or application of a 

corrosion inhibitor. 

 

1.3 Objectives and Scope of Study 

 

The main objectives for this project are: 

 To study and analyze the CO2 corrosion rate and formation of FeCO3 film 

layers. To conduct laboratory experiment in CO2 environment and measure the 

CO2 corrosion rate on the carbon steel, using Electrochemical Impedance 

Spectroscopy (EIS) technique.  

 

 To compare the effect of temperature on the corrosion rate of carbon steel in 

natural and induced film forming environment.  
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1.4 Scope of the Project 

 

The objective of this project is support by the following scope of study: 

 To study and analyze the formation FeCO3 film layers and CO2 corrosion rate 

using the EIS technique in CO2 environment. 

 The parameters that will be varied throughout this project are temperature and 

the concentration of Fe2⁺ only. The other affecting parameters will be set as 

constant. 

 

1.5 Relevancy of the Project 

 

A thorough understanding on the effect of FeCO3 film formation on CO2 corrosion will 

provide useful information thus help in having reliable prediction in the formation of 

protective corrosion product layers, which is able to lead us in a cost-effective and safe 

design of production and transportation facilities used in the oil and gas industry.  

 

1.6 Feasibility of the Project 

 

The project is initiated by collecting materials such as books, journals and technical 

papers specifically on CO2 corrosion of carbon steel and FeCO3 film formation. 

Research will be conducted by stages to ensure better understanding is captured. This 

project will then focus on conducting laboratory experiments on carbon steel in CO2 

environment. Study and analysis will be emphasized more on the behavior of FeCO3 

film formation and the effect of CO2 corrosion rate on carbon steel. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Overview of CO2 Corrosion 

 

Carbon dioxide (CO2) corrosion is one of the most important concerns in the oil and gas 

industry [2]. The capital and operational expenditures and health, safety and 

environment of the oil and gas industry are enormously affected by corrosion [3]. The 

study of CO2 corrosion rate and iron carbonate (FeCO3) film formation as one of the 

corrosion products has been carried out rapidly in the last 30 years to develop the 

understanding and modeling the kinetics of FeCO3 precipitation process.  

 

 The presence of CO2 in solution leads to the formation of a weak carbonic acid 

(H2CO3) which drives CO2 corrosion reactions [4]. The initiating process is presented 

by the reaction shown in equation (2.1). 

 CO2 + H2O ↔ H2CO3       (2.1)    

The following corrosion process is controlled by three cathodic reactions and one 

anodic reaction. The cathodic reactions, include (2.1a) the reduction of carbonic acid 

into bicarbonate ions, (2.1b) the reduction of bicarbonate ions, and (2.1c) the reduction 

of hydrogen ions. 

2H2CO3 + 2e¯ → H2 + 2HCO3¯     (2.1a) 

2HCO3¯ + 2e¯ → H2 + 2CO3
2¯      (2.1b) 

2H+ + 2e¯ → H2        (2.1c) 

The anodic reaction significant in CO2 corrosion is the oxidation of iron to ferrous 

(Fe2+) ion given in equation (3). 

 Fe → Fe2+ + 2e¯        (2.2) 
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This corrosion reaction promotes the formation of FeCO3 which can form along a 

couple of reaction paths. First, it may form when ferrous ions react directly with 

carbonate ions as shown in equation (2.3). However, it can also form by the two 

processes shown in equations (2.4a, 2.4b). When ferrous ions react with bicarbonate 

ions, ferrous iron bicarbonate forms which subsequently dissociates into iron carbonate 

along with carbon dioxide and water. 

 Fe2++ CO3
2¯ → FeCO3         (2.3) 

 Fe2+ + 2HCO3¯ → Fe(HCO3)2           (2.4a) 

 Fe(HCO3)2 → FeCO3 + CO2 + H2O                                                     (2.4b) 

Precipitation of iron carbonate on the surface of the metal decreases the corrosion rate 

by acting as a diffusion barrier for the corrosive species to travel to the metal surface by 

blocking few areas on the steel surface and preventing electrochemical reactions from 

happening on the surface [1] 

 

Whilst there is some debate about the mechanism of CO2 corrosion in terms of which 

dissolved species are involved in the corrosion reaction, it is evident that the resulting 

corrosion rate is dependent on the partial pressure of CO2 gas which will determine the 

solution pH and the concentration of dissolved species [2].  Next, the parameters 

affecting CO2 corrosion environment will be discussed briefly. 

 

2.1.3 Parameters Affecting CO2 Corrosion  

 

There are several parameters that affect corrosion rate in CO2 environment. The 

chemistry of both formation and dissolution of corrosion products, rates of chemical 

reactions and transportation rates of species involved in CO2 corrosion can be affected 

by the following parameters: 
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1) Temperature 

 

Prior to any FeCO3 film layers formation the corrosion rate increases with 

temperature. However, at temperature of 60°C and higher, corrosion rate 

will start decreases as very protective FeCO3 film layers already start to 

form. 

 

2) CO2 partial pressure 

 

In the conditions where the formation of protective FeCO3 film layers is 

favorable, increased CO2 partial pressure will decrease corrosion rate. Given 

that the pH is high enough, higher CO2 partial pressure leads to an increase 

in CO3
2¯ concentration and a higher supersaturation which accelerates 

precipitation and FeCO3 film layers formation. 

 

3) pH 

 

The pH has a strong influence on the conditions leading to the formation of 

protective FeCO3 film layers. High pH results in a decreased solubility of 

FeCO3, increased supersaturation and consequently higher precipitation rate 

which leads to the decrease in corrosion rate. 

 

4) Fe2+concentration 

 

The increase of Fe2+concentration results in higher supersaturation, which 

consequently accelerates the precipitation rate and reduces the corrosion 

rate. 
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5) Flow velocity 

 

High flow velocity leads to increase in corrosion rate as it transports Fe2+ 

ions away from carbon steel surface, leads to a lower concentration of Fe2+ 

ions at carbon steel surface and prevents the formation of protective FeCO3 

film layers.  

 

2.2 FeCO3 Film Formation 

 
Table 2.1: Characteristics of Corrosion Films 

 
 

Hence, based on extensive observations made by any workers, corrosion films in the 

5°C to 150°C temperature range in water containing CO2 can generally be divided into 

four classes which are: 
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 Transparent films. 

 Iron carbide films. 

 Iron carbonate films and  

 Iron carbonate + Iron carbide films.  

 

Their overall characteristics are summarized in Table 1. [2] 

 

The formation of FeCO3 film layers will eventually lead to the reduction of the 

corrosion rate. However, the exact corrosion reduction is difficult to predict in view of 

many factors involved such as type of steel, the fluid flow velocity, temperature, CO2 

partial pressure, pH and Fe2+concentration. It is clear that a full description of the 

influence of precipitation on corrosion rate is far too complicated. However, prediction 

of the corrosion rate reduction may be possible under specific conditions. A further 

study shows that corrosion can only be reduced if the precipitation rate is of the order of 

the corrosion rate [1]. 

 

In order to predict the CO2 corrosion rate successfully, the following aspects should be 

clarified such as: 

 

 Protective FeCO3 film formation. 

 The stability of these layers. 

 Adherence to the steel surface of these layers and  

 Repair of damaged scales.  

 

The ability of damaged scales to self-repair has greatly influenced the reliability of 

protective FeCO3 film formation [5]. 
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2.2.1 Effect of Surface Films in CO2 Corrosion 

 

In CO2 Corrosion when the concentration of FeCO3, exceeds the solubility limit, they 

combine to form iron carbonate films on the steel surfaces as mentioned above 

.Therefore, high saturation near surface is needed for the formation of protective films. 

Once the film is formed, it will remain protective at a much lower supersaturation [6]. 

In obtaining a successful protection, the film must be adherent and cover the whole 

surface. Temperature strongly influences the conditions needed to form protective iron 

carbonate layers. At lower temperatures (<60°C) the solubility of FeCO3 is high and the 

precipitation rate is slow and protective films will not form unless the pH is increased.  

 

 

The precipitation rate of FeCO3 has been described as slow and temperature dependent 

process and even under supersaturated conditions, high corrosion rates can maintain for 

weeks until protective iron carbonate layers are formed, specifically at low 

temperatures. Furthermore, in flow systems corrosion films obviously can grow for 

months without giving protection unless the steel is exposed to stagnant or “wet” 

conditions [7]. During a few days stagnation, corrosion products can accumulate on the 

steel surface and form protective films. Thus, kinetics of FeCO3 precipitation seems to 

be a controlling factor for the protectiveness of the corrosion product layer. At higher 

temperature, the FeCO3 solubility is reduced and the precipitation rate is much faster 

thus allowing the formation of iron carbonate films. 

 

However, the morphology of iron carbonate scales depends not only on the temperature, 

but also on the pH and and the CO2 partial pressure as well. At higher pH values (>6.5), 

protective iron carbonate films can also form at room temperature [8, 9]. It has also 

been found that supersaturation is an important factor for film growth and the 

protectiveness of the film [10]. 
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2.3 Electrochemical Measurement Techniques  

 

In this project, the effect of FeCO3 film formation on CO2 corrosion rate will be 

analyzed using EIS and LPR and all the data obtained from the experiments would 

assist in providing a reliable prediction on the behavior of CO2 corrosion that will leads 

to cost-effective and safe design of production and transportation facilities used in the 

oil and gas industry.  

 

2.3.1 Electrochemical Impedance Spectroscopy (EIS) 

 

An important advantage of EIS technique over other laboratory techniques is the 

possibility of using very small amplitude signals without significantly disturbing the 

properties being measured. In recent years, EIS technique has found widespread 

applications in the field of characterization of materials. It is routinely used in the 

characterization of coatings, batteries, fuel cells and corrosion phenomena. It has also 

been used extensively as a tool for investigating mechanisms in electrodeposition, 

electrodissolution, passivity and corrosion studies.      

 

An electrochemical process may often be modeled by linear circuit elements such as 

resistors, capacitors, and inductors. For example, the corrosion reaction itself can often 

be modeled by one or more resistors. The ability to model a corrosion process in this 

manner gives rise to one practical attribute of the electrochemical impedance technique. 

Simple AC circuit theory in terms of circuit analogues can be used to model the 

electrochemical corrosion process. Such modeling can facilitate understanding and lead 

to better prediction of corrosion rates and overall corrosion behavior.  
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The fundamental approach of impedance techniques is to apply a small amplitude 

sinusoidal excitation signal usually a voltage between 5 to 10 mV which is applied to 

the working electrode over a range of frequencies, ω of 0.001 Hz to 100,000 Hz. The 

current is measured. The applied voltage is divided by this measured current. Since both 

the voltage and current have a sinusoidal component with respect to time and are 

usually out-of-phase, the division results in the electrochemical impedance Z(ω), which 

itself has real and imaginary contributions. Often, the current is divided by the surface 

area and the impedance has the units of ohm-cm2. The electrochemical impedance Z(ω), 

is the frequency dependent proportionality factor that act as a transfer function by 

establishing a relationship between the excitation voltage signal and the current 

response of the system shown in equation (2.14). 

Z(ω) = E(ω)/I(ω)                            (2.14) 

The magnitude of the resistance or opposition to the current created by capacitors and 

inductors is dependent on the frequency while the magnitude of the opposition created 

by the resistor is independent of frequency. 

 
Figure 2.1: Sinusoidal AC voltage and current signals 

 

The technique can be described in terms of a response to a frequency dependent input 

signal. When a voltage sine or cosine wave is applied across a circuit composed of a 

resistor only, the resultant current is also a sine or cosine wave of the same frequency 

with no phase angle shift but with an amplitude which differs by an amount determined 

by the proportionality factor. In contrast, if the circuit consists of capacitors and 

inductors, the resulting current not only differs in amplitude but is also shifted in time. 

It has a phase angle shift. This phenomenon is shown in Figure 2.1. 
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Vector analysis can be used to describe the equivalent circuit in mathematical terms. 

The relationship between such vector analysis and imaginary or complex numbers 

provides the basis for electrochemical impedance analysis. A sinusoidal current or 

voltage can be viewed as a rotating vector as shown in Figure 2.2. It shows that the 

current vector rotates at a constant angular frequency f (hertz) or v (radians/s = 2πf). 

The x component defines the in-phase current. Therefore, it becomes the “real” 

component of the rotating vector. The y component is shifted out-of-phase by 90°. By 

convention, it is termed the “imaginary” component of the rotating vector. 

 

 
Figure 2.2: Relationship between sinusoidal AC current and rotating vector 

representation    

 

The mathematical description of the two components is described in below equation: 

Real Current = Ix = | I | cos (ωt)               (2.15) 

Imaginary Current = Iy = | I | sin (ωt)               (2.16) 

| I |2 = | Ix |2 +| Iy |2                  (2.17) 

The voltage can be pictured as a similar rotating vector with its own amplitude, E and 

the same rotation speed, v.  

 

As shown in Figure 2.3, when the current is in phase with the applied voltage, the two 

vectors are coincident and rotate together. This response is characteristic of a circuit 

containing only a resistor. When the current and voltage are out-of-phase, the two 

vectors rotate at the same frequency, but they are offset by an angle called the phase 
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angle, θ. This response is characteristic of a circuit which contains capacitors and 

inductors in addition to resistors. 

 

 
Figure 2.3: In-phase and out-of-phase rotation of current and voltage vectors  

 

 
Figure 2.4: Impedance vector 

 

In electrochemical impedance analysis, both the current and voltage vectors are referred 

to the same reference frame. The voltage vector is “divided” by the current vector to 

yield the final result in terms of the impedance as shown in Figure 2.4. The impedance 

is the proportionality factor between the voltage and the current. 
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The mathematical convention for separating the real (x) and imaginary (y) components 

is to multiply the magnitude of the imaginary contribution by j and report the real and 

imaginary values as a complex number. The equations for electrochemical impedance 

become: 

E = Ereal + Eimaginary = E’ + jE”                (2.18) 

I = Ireal + Iimaginary = I’ + jI”                                         (2.19) 

Z = Z’ + jZ” = (E’ + jE”) / (I’ + jI”)                (2.20) 

tan θ = Z”/Z’                  (2.21) 

| Z |2 = ( Z’ )2 +( Z” )2                  (2.22) 

 

The goal of the electrochemical impedance technique is to measure the impedance Z as 

a function of frequency and to derive corrosion rate or mechanism information from the 

values. Use of simple circuit analogues to model the response is one methodology to 

achieve this goal. The amplitude of the excitation signal must be small enough so that 

the response is linearly related to the input, that is, the response is independent of the 

magnitude of the excitation.  

 

Table 2.2: Circuit elements 

Element Equation 

Resistor Z = R 

Capacitor Z = 1/(jωC) 

Inductor Z =jωL 

 

The three basic circuit elements can be written as shown in Table 2.1. It shows that a 

resistor has a real contribution only. That is, the response of a resistor would be a point 

on the real axis, independent of frequency. Both the capacitor and inductor have purely 

imaginary contributions. These would appear on the imaginary axis only. One method 

of electrochemical impedance analysis is to model the corrosion process in terms of 

circuit elements such as those shown in Table 2.1 and from that model to make 

conclusions about the physics of corrosion. 
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Figure 2.5: Nyquist plot 

 

The plot of the real part of impedance against the imaginary part gives a Nyquist plot as 

shown in Figure 2.5. The advantage of Nyquist representation is that it gives a quick 

overview of the data and one can make some qualitative interpretations. While plotting 

data in the Nyquist format, the real axis must be equal to the imaginary axis so as not to 

distort the shape of the curve which is important in making qualitative interpretations of 

the data.  

 

  
    Figure 2.6: Impedance vs. frequency        Figure 2.7: Phase angle vs. frequency 

 

The disadvantage of the Nyquist presentation is that one loses the frequency dimension 

of the data. One way of overcoming this problem is by labeling the frequencies on the 

curve. The absolute value of impedance and the phase shifts are plotted as a function of 
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frequency in two different plots giving a Bode plot, as shown in Figure 2.6 and Figure 

2.7. 

 

2.3.2 Simple Corrosion Process 

 

The simplest type of corrosion process would be a combination of a corrosion reaction 

consisting of two simple electrochemical reactions and a double layer. Corrosion would 

proceed uniformly on the surface. For example, the corrosion of carbon steel in 1 M 

sulfuric acid can be considered to fall into this category shown in equation (2.23):  

Fe + 2H+ → H2 + Fe+2                           (2.23) 

This reaction may be represented by a simple resistor. The double layer is created by the 

voltage change across the interface. On the metal side of the interface, there may be an 

excess (or deficiency) of electrons. This excess (or deficiency) is balanced on the 

solution side by oppositely charged ions. Some are specifically adsorbed at the surface 

(inner layer). Others are nonspecifically adsorbed and are hydrated. They extend out 

into the solution in the diffuse layer. The response of this interfacial structure to varying 

voltage (for example sinusoidal excitation) can be modeled by a capacitor, the double 

layer capacitance. 

 

For this simple process, the model circuit shown in Figure 2.8. The circuit consists of a 

resistor Rp in parallel with a capacitor C. The entire parallel circuit is in series with 

another resistor Rs. The utility of this model for the frequency response lies in the fact 

that Rs equals the solution resistance not compensated by the potentiostat and Rp equals 

the polarization resistance as long as the measurement is made at the corrosion 

potential. By combining Rp with the Tafel slopes for the half-cell reactions by an 

equation such as the Stern-Geary equation, the corrosion rate can be estimated. Thus, 

analysis of electrochemical impedance enables the corrosion rate to be estimated rapidly 

in the absence of uncompensated solution resistance when the measurement is made at 

the corrosion potential.  
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Figure 2.8: Circuit that models simple impedance response 

 

2.3.3 Diffusion Control 

 

Sometimes the rate of a chemical reaction can be influenced by the diffusion of one or 

more reactants or products to or from the surface. This situation can arise when 

diffusion through a surface film or hydrodynamic boundary layer becomes the 

dominating process. Examples are the surface being covered with reaction products of 

limited solubility. An example of this type of corrosion process that has extreme 

practical importance is the corrosion of carbon steel in concentrated sulfuric acid in 

which the product FeSO4 has limited solubility. Such corrosion has been shown to be 

controlled by the diffusion of FeSO4 from a saturated film at the surface to the bulk 

fluid. Very often, electrochemical impedance data for such systems has a unique 

characteristic known as the Warburg impedance. In the low frequency limit, the current 

is a constant 45° out-of-phase with the potential excitation. The impedance response 

should ultimately deviate from this relationship. It will return to the real axis at very low 

frequencies that may be impossible to measure. The equivalent circuit is shown in 

Figure 2.9.  
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Figure 2.9: Circuit that models impedance in the presence of diffusion 

 

The term W is the Warburg impedance. By appropriate manipulation of the data, the 

values of the circuit elements can be evaluated. These circuit elements can be used to 

obtain a value for a resistance (charge transfer resistance) that can sometimes be related 

to a corrosion rate. 

 

2.3.2 Linear Polarization Resistance (LPR) 

 

The electrochemical technique, commonly referred to as Linear Polarization Resistance, 

is the only corrosion monitoring method that allows corrosion rates to be measured 

directly, in real time. The polarizing voltage of 10 mV has been chosen as being well 

within the limits for which the linear relationship between ICORR and ΔE/ΔI holds. 

Additionally, the value is sufficiently small as to cause no significant or permanent 

disruption of the corrosion process, so that subsequent measurements remain valid.  

 

Anodic and cathodic sites continually shift position, and they exist within a 

continuously conductive surface, making direct measurement of icorr impossible. Small, 

externally-imposed, potential shifts (ΔE) will produce measurable current flow (ΔI) at 

the corroding electrode. The behavior of the externally imposed current is governed, as 

is that of icorr, by the degree of difficulty with which the anodic and cathodic corrosion 

processes take place.  
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Therefore the greater difficulty will give smaller value of icorr and ΔI for a given 

potential shift. In fact, at small values of ΔE, ΔI is directly proportional to icorr, and 

hence to the corrosion rate. This relationship is embodied in the theoretically derived 

Stern-Geary equation: 

                                                      
))((3.2 cacorr
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iI
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=
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Δ

   (2.24) 

 

where βa and βc are the Tafel slopes of the anodic and cathodic reactions respectively. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Project activities 

 

 
Figure 3.1 Project activities flow chart 

 

From Figure 3.1, it shows the project flow chart where research is done based on books, 

journals and technical papers specifically on CO2 corrosion of carbon steel, protective 

FeCO3 film formation and EIS technique. The laboratory experiments will be conducted 

using X52 carbon steel in stagnant condition using 3 wt% NaCl over a series of 

parameters which includes temperature, Fe2+ concentration, partial pressure of CO2 and 

flow velocity. EIS and LPR techniques are employed to study and analyze CO2 corrosion 

rate and formation of protective FeCO3 film layers. Once the results were obtained, 

analysis was done using SEM technique.  
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3.2 Electrochemical Measurement Techniques 

 

3.3.1 Electrochemical Impedance Spectroscopy (EIS) 

 

The fundamental approach of EIS technique is to apply a small amplitude sinusoidal 

excitation signal usually a voltage between 5 to 10 mV which is applied to the working 

electrode over a range of frequencies, ω of 0.001 Hz to 100,000 Hz. The usual result is a 

Nyquist plot of half a semi-circle, the high frequency part giving the solution resistance 

and the width of the semi-circle giving the corrosion rate in the same manner as LPR. 

The analysis of this data is performed by circle fitting in the analysis software. An 

advantage of EIS technique is the ability to measure the solution resistance at high 

frequency. 

 

3.3.2 Linear Polarisation Resistance (LPR) 

 

This technique is based on the linear approximation of the polarization behavior at 

potentials near the corrosion potential. Rp is given by Stern and Geary equation: 
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The corrosion current can be related directly to the corrosion rate from Faraday’s law: 

 

xnxF
xZxi

yearmmCR corr

ρ
315

)/( =
       (3.3)

 

Where, 

CR  = Corrosion Rate (mm/year) 

corri = Corrosion current density, 2cm
Aμ  

ρ   = Density of iron, 7.8 g/cm3 

F  = Faraday’s constant, 96,500 C/mole 

 

Linear polarization resistance measurements were performed by firstly measuring the 

corrosion potential of the exposed sample and subsequently sweeping from -10 mV to + 

10 mV with the sweep rate 10 mV/min.  

 

3.3 Materials 

 

The material that will be used throughout the experiment is the X52 carbon steel. 

The X52 had been purposely obtained from the oil and gas pipeline in order to conduct 

this project.  

 

3.4 Sample Preparation 

 

The X52 carbon steel pipe is first taken to the manufacturing lab to be cut into smaller 

pieces. The band saw machine had been used to cut the pipe as shown in Figure 3.2.  
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Figure 3.2 The band saw machine which cuts the X52 carbon steel pipe 

 

Next, once the steel are in their smaller pieces, the conventional lathe machine (as 

shown in Figure 3.3) had been used to machine them into the cylindrical shape and had 

a diameter of 1.2 cm. The abrasive cutting machine had also been used to cut the steel 

as shown in Figure 3.4. 

 

 
Figure 3.3 Conventional lathe machining used for turning process 
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Figure 3.4 Abrasive cutter machine to cut X52 carbon steel 

 
Figure 3.5 The X52 carbon steel which had undergone turning process. 

 

Firstly, the test specimens will be spot welded with copper wire with certain length 

usually around 30 cm. Then, the test specimens will be mounted with epoxy by cold 

mounting and grinded with wet silicon carbide (SiC) paper. Finally, the test specimens 

will be rinsed with deionizer water and degreased with acetone prior to immersion.  

 

3.5 Test Environment 

 

For natural film forming environment, all experiments will be carried out in CO2 

saturated 3% NaCl solution by purging CO2 for at least one hour prior to each 

experiment to remove the dissolved oxygen from the test solution. At these conditions 
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the saturation pH is 3.80. The pH solution can be adjusted by adding an amount of 1M 

NaHCO3. For induced film forming environment, 50 ppm concentration of ions Fe2+ is 

added to the test solution.  

 

3.6 Experimental Setup 

 
Figure 3.6 Experimental setup 

 

The experimental setup is shown in Figure 3.2. The test assembly consists of one-liter 

glass cell bubbles with CO2. The required test temperature is set through a hot plate. 

The electrochemical measurements are based on a three-electrode system, using a 

commercially available potentiostat with a computer control system. The reference 

electrode used is a saturated calomel electrode (SCE) and the auxiliary electrode is a 

platinum electrode. The test matrix of the experiment is as shown in Table 3.2. 
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Table 3.2: Test matrix for the research 

Parameter Value 

Steel Type X52 carbon steel 

Solution 3 % NaCl 

De-oxygenation gas CO2 

pH 5.5 

Temperature (°C) 25°C and 80°C 

Fe2+ (ppm) 0 and 50 

Rotational velocity (rpm) 0 / stagnant 

Sand paper grit used 60, 120, 240, 400, 600, 1200, 2400 

Measurement techniques EIS,LPR and SEM 

 

In this project, the effect of temperature (t) = Room Temperature and Fe2+concentration 

(cFe
2+) = 0 will be specifically studied to observe how these two parameters affect the 

CO2 corrosion rate and formation of protective FeCO3 film. The other parameters such 

as pH, partial pressure of CO2 and flow velocity will be set at 6.0, 1 bar and 0 rpm / 

stagnant, respectively. This test matrix is chosen to reflect the conditions in the field. 

The experiment is conducted for duration up to 96 hours in order to observe the effect 

of FeCO3 film formation on CO2 corrosion rate. 

 

3.7 Experimental Procedure 

 

1) Bubble CO2 through one-litre 3% NaCl for one hour before inserting the sample. 

2) Adjust pH of the solution to the required values by adding solution of 1M 

NaHCO3. pH is measured at room temperature by pH meter. 

3) Insert the mounted and polished sample into glass cell and run the experiment 

4) For EIS, take readings at the beginning and at the end of the experiment. 

5) For LPR, take readings every one hour for 24 hours 

6) Repeat the procedures for all temperatures and test environments 
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CHAPTER 4 

RESULTS AND DISCUSSION 

The results of natural and induced film formation in CO2 corrosion environment are 

presented in Section 4.1 and Section 4.2, respectively. 

 

4.1 Natural Film Forming Environment 

 

All experiments were carried out in CO2 saturated 3% NaCl solution at pH 5.5 using 

EIS, LPR and SEM techniques. The immersion time for both of the experiments in the 

induced film forming environment was maintained for 96 hours. 

 

4.1.1 Electrochemical Impedance Spectroscopy (EIS) 

 

 
Figure 4.1: Nyquist plot, recorded for 96 hours immersion of a carbon steel 

specimen in CO2 saturated 3% NaCl solution at 25°C and 80°C respectively 

 

A selection of typical impedance spectra, presented as Nyquist plots at temperatures 

of 25°C, and 80°C are presented in Figure 4.1. The Nyquist plots are approximately 

semicircular, and as the temperature increases, the semicircle’s diameter increases, 
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indicating the decrement in the corrosion rate. This is true for impedance spectra of 

25°C, but for impedance spectra at 80°C, it describes the involvement of kinetics 

and diffusion processes which are inter-related to the formation of FeCO3 film 

layers. The corrosion rate at 80°C is expected to decrease since FeCO3 film layers 

are expected to start forming on the steel surface. 

 

Based on the results that have been obtained, these data are later then analyzed 

using the EIS Analyzer (EISSA). The objective of using EISSA is to interpret the 

data obtained from the ACM Sequencer in terms of an electrical circuit. There are 

many types of electrical circuit available for this purpose, nonetheless only the 

circuit that provides the parameters with the most minimal errors shall be chosen. 

Among the parameters that would be obtained from EISSA are the R1, R2, P1 and 

N1. In this case, the CPE electrical circuit is chosen because it provides the most 

minimal errors. The CPE circuit model and the values obtained from the EISSA are 

shown below. 

 
Figure 4.2: The CPE circuit model which is used in the EISSA software 

 

Table 4.1: The values of the respective parameters obtained with EISSA for 

natural film forming environment 

Parameters Natural Film Forming Environment 

Temperature = 25°C Temperature = 80°C 

R1 14.5 3.76 

R2 261.41 915 

P1 0.0005 0.0005 

N1 1 1 
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These values of Rp (obtained from EISSA, Rp= R2-R1) are then used to calculate 

the average corrosion rate at pH 5.5 of a carbon steel specimen in CO2 saturated 3% 

NaCl solution for both temperatures at 25°C and 80°C  respectively. 

 

 
Figure 4.3: Corrosion rate at pH 5.5 (EIS) of a carbon steel specimen in CO2 

saturated 3% NaCl solution at temperatures at 25°C and 80°C respectively 

 

From the results, it shows that the corrosion rate at temperature of 25oC is 1.18 mm/year 

which then decreases to 0.32 mm/year at temperature of 80°C. 

 

The corrosion rate at temperatures of 25°C and 80°C, in the natural film forming 

environment can also be explained in terms of the increment of the capacitance double 

layer (Cdl) values. The Cdl values are obtained through the circle fittings done with 

ACM Sequencer. According to Lopez [11], consequently, an increment in the 

capacitance Y values could be related to the growing area of an iron carbonates deposit 

over the surface samples which are accompanied by an increase in the corresponding 

Rct values. The growing of the n factor agrees with this assumption because it can be 

attributed to a decrease of the surface inhomogeneity resulting from the formation of a 

deposit on the surface. 
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Table 4.2: Rct, Cdl and corrosion rate values, recorded for 96 hours immersion of a 

carbon steel specimen in CO2 saturated 3% NaCl solution at 25°C  

Time (hours) Rct (ohms.cm²) Cdl (F) Corrosion Rate (mm/year) 
0 1.45E+02 5.60E-04 2.01 
48 2.07E+02 1.12E-03 1.41 
96 2.59E+02 1.60E-03 1.13 

 

 
Figure 4.4: Relationship between Cdl, corrosion rate and 96 hours immersion of a 

carbon steel specimen in CO2 saturated 3% NaCl solution at 25°C  

 

Referring to figure 4.4, at temperature of 25°C, it is observed that the Cdl value has 

increased from 5.60E-04 F at 0 hour to  1.60E‐03 at 96 hours. Nonetheless, with the 

increment of Cdl values, the corrosion rate is seen to be decreasing from 2.01 mm/year 

at 0 hour to 1.13 mm/year at 96 hours.  
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Table 4.3: Rct, Cdl and corrosion rate values, recorded for 96 hours immersion of a 

carbon steel specimen in CO2 saturated 3% NaCl solution at 80°C  

Time (hours) Rct (ohms.cm²) Cdl (F) Corrosion Rate (mm/year) 
0 8.60E+01 1.00E-03 3.38 
48 1.52E+03 2.58E-03 0.19 
96 1.50E+03 3.45E-03 0.20 

 

 
Figure 4.5: Relationship between Cdl, corrosion rate and 96 hours immersion of a 

carbon steel specimen in CO2 saturated 3% NaCl solution at 80°C  

 

Meanwhile, referring to figure 4.5, at temperature of 80°C and, it is observed that the 

Cdl value has increased from 1.00E-03 F at 0 hour to  3.45E‐03 at 96 hours. 

Nonetheless, with the increment of Cdl values, the corrosion rate is seen to be 

decreasing from 3.38 mm/year at 0 hour to 0.20 mm/year at 96 hours.  

 

4.1.2 Linear Polarisation Resistance (LPR) 

 

Figure 4.6 shows the effect of temperatures to the corrosion rate at pH 5.5 for 96 hours 

immersion of a carbon steel specimen in CO2 saturated 3% NaCl solution at 
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temperatures of 25°C and 80°C. It shows that, after corrosion occurs for several hours, 

the corrosion rate started to decrease at the 8th hour of the experiment. Besides, it also 

shows that at low temperatures such as 25°C, the initial corrosion rate is higher 

compared to the corrosion rate at 80°C, because of the high solubility of the FeCO3 film 

layers. However, as temperature increases (around 60-80°C), the FeCO3 film layers 

become more adherent to the steel surface and more protective in nature resulting in a 

decrease of the corrosion rate. This is due to the, higher temperature increases kinetic of 

corrosion reaction, makes the solution saturated faster. As such, corrosion rate decreases 

significantly at temperature of 80°C. 

 

 
Figure 4.6: Corrosion rate at pH 5.5, recorded for 96 hours immersion of a carbon 

steel specimen in CO2 saturated 3% NaCl solution at temperatures of 25°C and 

80°C respectively 

 

The corrosion rate at pH 5.5 of a carbon steel specimen in CO2 saturated 3% NaCl 

solution for all temperatures is then tabulated into a graph ,by taking the value of the 

corrosion rate at the end of each experiment. This has been conducted to observe the 

effect of temperature to the corrosion rate. It is known that increased temperature aids 

the formation of FeCO3 film layers by accelerating the kinetics of precipitation. From 

the results, it shows that the corrosion rate at temperature of 25oC is the lowest with 
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1.55 mm/year while at temperature of 80°C, the corrosion rate decreases to 0.31 

mm/year where FeCO3 film layers might have been formed at the steel surface.  

 

 
Figure 4.7: Corrosion rate at pH 5.5 (LPR) of a carbon steel specimen in CO2 

saturated 3% NaCl solution at various temperatures of 25°C and 80°C respectively 
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4.1.3 Scanning Electron Microscopy (SEM) 

 

 
 

 

 

Figure 4.8: SEM images, for 96 hours immersion of a carbon steel specimen in CO2 

saturated 3% NaCl solution at temperature of 25°C (a) 1000x (b) 500x (c) 100x 

 

 

 

(a) 

(c) 

(b) 
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It can be seen from the SEM images shown in Figure 4.8 that the FeCO3 film layers 

formed are still porous due to the fact that the experiment was conducted at a 

temperature of 25°C.  

 

At low temperatures ranges ≥70°C, corrosion rate progressively increases up to an 

intermediate temperature range (between 70°C to 90°C) after which the corrosion rate 

diminishes [2]. Crolet [12] had also added, It is thought that the increase in corrosion 

rate in the low temperature change is due to an increase of mass transfer rate as a result 

of flow effect and slow FeCO₃ formation rate. 

 

According to Kurniawan [6], in obtaining a successful protection, the film must be 

adherent and cover the whole surface. Temperature strongly influences the conditions 

needed to form protective iron carbonate layers. At lower temperatures (<60°C) the 

solubility of FeCO3 is high and the precipitation rate is slow and protective films will 

not form unless the pH is increased.  

 

In addition, Dugstad [7] has said that the precipitation rate of FeCO₃ has been described 

as slow and temperature dependent process and even under supersaturated conditions, 

high corrosion rates can maintain for weeks until protective iron carbonate layers are 

formed, specifically at low temperatures. 
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Figure 4.9: SEM images, for 96 hours immersion of a carbon steel specimen in CO2 

saturated 3% NaCl solution at temperature of 80°C (a) 1000x (b) 500x (c) 100x 

 

 

 

(c) 

(b) 

(a) 



38 
 

The SEM images produced at this temperature as shown in Figure 4.9 was undesirable 

since there was a shortage of CO₂ supply during the experiment. Further investigations 

should be made and experiments should be reconducted in order to achieve the desired 

results. Besides that, the SEM test for this sample was postponed for a few days since 

there was a technical problem (shortage of gas for EDX) with the SEM machine. The 

sample wasn’t properly kept in a decicator, hence, sample might had been oxidized over 

that period of time. 

At higher temperature such as 80°C, the FeCO3 solubility is reduced and the 

precipitation rate is much faster thus allowing the formations of iron carbonate films. 

Protective carbonate scales can be recognized already by its morphology and 

crystallinity. At temperatures ≥ 90°C the scale is composed of well defined and well-

packed cubes, while at lower temperatures a flat grain type-appearance is found [7]. 

Figures 4.10, 4.11 shown below describe the supposed formation of iron carbonate 

films at temperature of ≥ 90°C [6]. 

 
Figure 4.10: Face view of blank CO₂ corrosion after 96 hours showing large amount of 

FeCO₃ film covering steel surface partially. 

 
Figure 4.11: Cross section view of blank CO₂ corrosion after 96 hours showing non-

uniform thickness amount of FeCO₃ film at the steel surface. 
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4.2 Induced Film Forming Environment 

All experiments were carried out in CO2 saturated 3% NaCl solution at pH 5.5 with an 

addition of 50 ppm concentration of ions Fe2+ to the test solution using EIS, LPR and 

SEM techniques. The immersion time for both of the experiments in the induced film 

forming environment was still maintained for 96-hours. 

 

4.2.1 Electrochemical Impedance Spectroscopy (EIS) 

 

Nyquist Plots at temperatures of 25°C and 80°C are presented in Figure 4.12. As shown 

in Figure 4.9, it can be seen that the diameter of the semicircles have increased 

significantly as compared to the diameters of the semicircles shown in Figure 4.1. The 

increment of the temperature causes the corrosion rate to decrease, which 

simultaneously indicates the possibility of continuous growth of FeCO3 film layers.  

 

 
Figure 4.12: Nyquist plots, recorded for 96 hours immersion of a carbon steel 

specimen in CO2 saturated 3% NaCl solution with an addition of 50 ppm 

concentration of ions Fe2+ at temperatures of 25°C and 80°C respectively 
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Based on the results that have been obtained, these data are then used together with the 

EIS Analyzer (EISSA). The data are then being interpreted in terms of circuit 

representation in order to reduce the amount of parameters error obtained from the 

ACM Sequencer. The CPE circuit model and the values obtained from the EISSA are 

shown below. 

 

 
Figure 4.13 The CPE circuit model which is used in the EISSA software 

 

Table 4.4: The values of the respective parameters obtained with EISSA 

for induced film forming environment 

Parameters Induced Film Forming Environment 

Temperature = 25°C Temperature = 80°C 

R1 8.5 7 

R2 220 300 

P1 0.0005 0.00075 

N1 1 0.8 

 

 

From Figure 4.12 the values of polarization resistance, Rp values are obtained from the 

Nyquist plots. These values of Rp are then used to calculate the corrosion rate at pH 5.5 

of a carbon steel specimen in CO2 saturated 3% NaCl solution with an addition of 50 

ppm concentration of ions Fe2+ at temperatures of 25°C and 80°C. The corrosion rate is 

shown in Figure 4.14 below. 
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Figure 4.14: Corrosion rate at pH 5.5 of a carbon steel specimen in CO2 saturated 

3% NaCl solution with an addition of 50 ppm concentration of ions Fe2+ at 

temperatures of 25°C and 80°C respectively 

 

From the results, it is observed that at 25°C, the corrosion rate is 1.38 mm/year while at 

80°C, the corrosion rate has eventually dropped to 0.99 mm/year prior to the 96 hours 

of immersion time. 

 

The corrosion rate at temperatures of 25°C and 80°C, in the induced film forming 

environment can also be explained in terms of the increment of the capacitance double 

layer (Cdl) values. The Cdl values are obtained through the circle fittings done with 

ACM Sequencer. According to Lopez [11], consequently, an increment in the 

capacitance Y values could be related to the growing area of an iron carbonates deposit 

over the surface samples which are accompanied by an increase in the corresponding 

Rct values. The growing of the n factor agrees with this assumption because it can be 

attributed to a decrease of the surface inhomogeneity resulting from the formation of a 

deposit on the surface. 
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Table 4.5: Rct, Cdl and corrosion rate values, recorded 96 hours immersion of a 

carbon steel specimen in CO2 saturated 3% NaCl solution with an addition of 50 

ppm concentration of ions Fe2+ at 25°C  

Time (hours) Rct (ohms.cm²) Cdl (F) Corrosion Rate (mm/year) 
0 1.65E+02 3.47E-04 1.77 
48 1.85E+02 6.17E-04 1.58 
96 1.95E+02 2.17E-03 1.50 

 

 
Figure 4.15: Relationship between Cdl, corrosion rate and 96 hours immersion of a 

carbon steel specimen in CO2 saturated 3% NaCl solution with an addition of 50 

ppm concentration of ions Fe2+ at 25°C  

 

At temperature of 25°C and referring to figure 4.15, it is observed that the Cdl value has 

increased 3.47E-04 F at 0 hour to 2.17E‐03 at 96 hours. Nonetheless, with the increment 

of Cdl values, the corrosion rate is seen to be decreasing from 1.77 mm/year at 0 hour to 

1.50 mm/year at 96 hours.  
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Table 4.6: Rct, Cdl and corrosion rate values, recorded 96 hours immersion of a 

carbon steel specimen in CO2 saturated 3% NaCl solution with an addition of 50 

ppm concentration of ions Fe2+ at 80°C  

Time (hours) Rct (ohms.cm²) Cdl (F) Corrosion Rate (mm/year) 
0 5.95E+01 1.77E-04 4.95 
48 2.30E+02 6.32E-04 1.27 
96 3.00E+02 1.03E-03 0.97 

 

 
Figure 4.16: Relationship between Cdl, corrosion rate and 96 hours immersion of a 

carbon steel specimen in CO2 saturated 3% NaCl solution with an addition of 50 ppm 

concentration of ions Fe2+ at 80°C  

 

Meanwhile, at temperature of 80°C and referring to figure 4.16, it is observed that the 

Cdl value has increased 1.77E-04 F at 0 hour to 1.03E‐03 at 96 hours. Nonetheless, with 

the increment of Cdl values, the corrosion rate is seen to be decreasing from 4.95 

mm/year at 0 hour to 0.97 mm/year at 96 hours.  
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4.2.2 Linear Polarisation Resistance (LPR) 

 

 
Figure 4.17: Corrosion rate at pH 5.5, recorded for 96 hours immersion of a carbon steel 

specimen in CO2 saturated 3% NaCl solution with an addition of 50 ppm concentration 

of ions Fe2+ at temperatures of 25°C and 80°C respectively 

 

Figure 4.17 shows the effect of temperatures to the corrosion rate at pH 5.5 for 96 hours 

immersion of a carbon steel specimen in CO2 saturated 3% NaCl solution with an 

addition of 50 ppm concentration of ions Fe2+ at temperatures of 25°C and 80°C. The 

trends of the corrosion rate are similar to the corrosion rate trends of natural film 

forming environment but there is further reduction in corrosion rate with the presence of 

the induced film forming environment. The increase of concentration of ions Fe2+ from 

0 ppm to 50 ppm, results in higher supersaturation, which consequently accelerates the 

precipitation rate thus contributing to the formation of thicker FeCO3 film layers. It can 

be seen from Figure 4.17, that, after corrosion occurs for several hours, the corrosion 

rate started to decrease smoothly at 96 hours of experiment for both of the temperatures. 

At temperature of 25°C, the value of the average corrosion rate is high because the 

kinetics of corrosion reaction is very slow because of the lower temperature. However, 

at temperature of 80°C, the FeCO3 film layers might have become more adherent to the 
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steel surface and more protective in nature resulting in a decrease of the corrosion rate. 

This is because higher temperature increases kinetic of corrosion reaction, makes the 

solution saturated faster. Therefore, corrosion rate decreases significantly at temperature 

of 80°C. 

 

 
Figure 4.18: Corrosion rate at pH 5.5 (LPR) of a carbon steel specimen in CO2 saturated 

3% NaCl solution with an addition of 50 ppm concentration of ions Fe2+ at temperatures 

of 25°C and 80°C respectively 

 

The corrosion rate is then tabulated into a graph as shown in Figure 4.18 by taking the 

value of the corrosion rate at the end of each experiment. This is conducted to observe 

the effect of temperature to the corrosion rate as it is known that increased temperature 

aids the formation of FeCO3 film layers by accelerating the kinetics of precipitation. 

The trends of the corrosion rate are similar to the corrosion rate trends of natural film  

forming environment but there is further reduction in corrosion rate with the presence of 

the induced film forming environment. From Figure 4.18, the corrosion rate at 

temperature of 25oC is the highest with corrosion rate of 0.25 mm/year while at 

temperature of 80°C, the corrosion rate decreases to 0.18 mm/year where thick and 

dense FeCO3 film layers might have been formed at the steel surface. 
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4.3 Overall Corrosion Rate 

 

Table 4.7: Corrosion rate for natural film forming environment and induced film 

forming environment 
 

 

Temperature 

(°C) 
 

 

Corrosion Rate (mm/year) 

Natural Film Forming 

Environment 

Induced Film Forming 

Environment 

EIS LPR EIS LPR 

25 1.18 1.54 1.38 0.25 

80 0.32 0.31 0.99 0.18 

 

Table 4.7 shows the tabulated data of overall corrosion rate using EIS and LPR 

techniques for natural film forming environment and induced film forming 

environment. From the EIS technique, in the natural film forming environment, as the 

temperature increases from 25°C to 80°C, the corrosion rate decreases from 1.18 

mm/year to 0.32 mm/year. In contrast, for the induced film forming environment, the 

corrosion rate decreases from 1.38 mm/year at temperature of 25°C to 0.99 mm/year at 

temperature of 80°C. However, the corrosion rate at temperature 80°C should be 

reinvestigated as it should be smaller than the corrosion rate obtained for the natural 

film forming environment. Meanwhile, for LPR technique, in the natural film forming 

environment, as the temperature increases from 25°C to 80°C, the corrosion rate 

decreases from 1.54 mm/year to 0.31 mm/year. In contrast, for the induced film forming 

environment, the corrosion rate decreases from 0.25 mm/year at temperature of 25°C to 

0.18 mm/year at temperature of 80°C.  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

 

Referring to the results that have been obtained, for natural film forming environment, 

using the EIS technique, as the temperature increases from 25°C to 80°C, the corrosion 

rate decreases from 1.18 mm/year to 0.32 mm/year. In contrast, using LPR technique, 

the corrosion rate decreases from 1.54 mm/year at temperature of 25°C to 0.31 mm/year 

at temperature of 80°C.  

 

For induced film forming environment, using EIS technique, as the temperature 

increases from 25°C to 80°C, the corrosion rate decreases from 1.38 mm/year to 0.99 

mm/year. On the other hand, using LPR technique, the corrosion rate decreases from 

0.25 mm/year at temperature of 25°C to 0.18 mm/year at temperature of 80°C. It has 

been observed that the corrosion rate is relatively lower in induced film forming 

environment since the increase of Fe2+concentration results in higher supersaturation, 

which accordingly steps up the precipitation rate and leads to higher surface scaling 

tendency and faster formation of FeCO3 film layers which reduces the corrosion rate. 

Hence, this explains the corrosion rate at temperature 80°C should be reinvestigated as 

it should be smaller than the corrosion rate obtained for the natural film forming 

environment 

 

The SEM images of sample at temperature of 80°C were undesirable since there was a 

shortage of CO₂ supply during the experiment. Further investigations should be made 

and experiments should be reconducted in order to achieve the desired results. Besides 

that, the SEM test for this sample was postponed for a few days since there was an 

unexpected technical problem with the SEM machine. The sample wasn’t properly kept 

in a decicator, hence, sample might had been oxidized over that period of time. 



48 
 

The average corrosion rate is relatively lower in induced film forming environment 

since the increase of Fe2+concentration fastens the formation of FeCO3 film layers. 

Referring to the results for both conditions, it shows that for corrosion prediction work, 

the test is best represented by natural film forming environment. Induced film condition 

is only suitable for the study in relations to film initiation, growth and propagation. 

 

5.2 Recommendations 

 

Firstly, more test temperatures should be included for experiments in both conditions. 

Instead of conducting experiments only at temperatures of 25°C and 80°C, perhaps 

temperatures at 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C and 75°C should be 

included.  The reason being is that, under certain conditions, a margin of 5°C could 

result in different corrosion outcome. 

 

Based on the literature review, pH has a strong influence on the formation of FeCO3 

film layers. Higher pH fastens the formation of the passive films and therefore, various 

pH such as pH 6.3 and pH 6.6 should be included in future work. 

 

Parameters like flow velocity should also be taken into consideration. This is because, 

prior to the formation of FeCO3 film layers, high velocity increases the corrosion rate as 

Fe2+ ions are transported away from the steel surface, thus, leading to a lower 

concentration of Fe2+ ions at the steel surface which later results in a less protective of 

FeCO3 film formation. 

 

Lastly, it is known that the presence of acetic acid (HAc) also affects the CO2 

corrosion.. By including acetic acid in the study, the relationship between HAc and its 

role in the CO2 corrosion, FeCO3 film formation and its protectiveness to a steel surface 

can be further investigated. 
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APPENDIX: METHOD OF Fe2+ ADDITION  
 

1. 100 mL of deionised water (DI water) was deoxygenated in a small beaker for 

about 15 minutes. 

2. 1.78 g of FeCl2.4H2O was weighed in weighing dish. 

3. FeCl2 was added into the deoxygenated DI water. 

4. After FeCl2 was dissolved, the required amount of solution was removed out of 

the glass cell using a syringe and was added to the test solution by piercing the 

needle through the septum on the glass cell. 

5. The amount of iron chloride solution added to the test solution to achieve a 

required concentration of Fe2+ (ppm), when 1.78 g of of FeCl2.4H2O can be 

calculated using the following steps: 

i. Molecular weight of Fe2+ = 56 g/mol 

Molecular weight of FeCl2.4H2O = 198 g/mol 

% of Fe2+ in FeCl2.4H2O =  56 g/mol  x 100%  
                                             198 g/mol 

                                          =  28.28 % 

ii. To prepare solution with 5000 ppm or 0.5% of Fe2+, 1.78 g of 

FeCl2.4H2O was dissolved in 100 mL DI water 

iii. The solution is further diluted by dissolved 1 mL of the solution in step 

(ii) with 100 mL DI water to achieve 50 ppm of Fe2+ 

6. The diluted solution containing 50 ppm of Fe2+ was always added before the 

metal sample was immersed in the test solution. 
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