NETWORK INTRUSION DETECTION SYSTEM

By

Mohd. Syafick Effandi B. TauficEffandi

16941

A Dissertation Report submitted in partial fulfilment of The requirements for the Bachelor of Technology (Hons) (Information & Communication Technology)

JANUARY 2014

FYP II

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

NETWORK INTRUSION DETECTION SYSTEM

by

Mohd. Syafick Effandi B. TauficEffandi

A project dissertation submitted to the Information & Communication Technology Programme Universiti Teknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF TECHNOLOGY (Hons) (INFORMATION & COMMUNICATION TECHNOLOGY)

Approved:

(AP Dr.Halabi bin Hasbullah)

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2014

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

Mohd. Syafick Effandi B. TauficEffandi (16941)

ICT

Abstract

This report discusses the research done on the chosen topic, which is Network Intrusion Detection System. This project shows that monitoring and detection of the network will reduce the down time of the network and reducing future attacks. In addition, acomprehensive and organised analysis is conducted to verify the causes of the attack. It has been found that most household internet user lacks the means to strengthen their internet connection or networking system. The problem of this project is an unauthorised access into a home networking system that may cause harm by stealing private and confidential information as firewall and anti-virus won't be sufficient against a determine attacker. The scope for this project is to develop an intrusion detection system that will improve the security of home network as that is the potential user of this system. The objective of this project is to investigate the methods needed to detect any unauthorised access into a home networking system. The detection system will use an open source system that are readily available but will be tuned for the usage of home user and based on Windows operating system. The literature review component talks about all the research that has being done prior to the pre-development and post-development of the project. All about intrusion detection and prevention system and its research are further discussed in detail. In methodology section, it will discuss regarding the usage of Iteration Development Model as the methodology used in developing this project. In the results and discussions section, the preliminary findings consist of the findings from literature review research, own research and the use case diagrams of the system. Then, the prototype development process and results together with the testing results will be discussed in detail. All the justifications are made clearly. In the recommendations section, all the related recommendations and some improvements that can be done for the future of this project are listed and elaborated. The conclusion section concludes the overall project. The project phases are also being discussed in detail. The project will focus on developing a network intrusion detection system for Windows-based operating system.

ACKNOWLEDGEMENTS

First and foremost, Alhamdulillah and thanked to Allah the almighty for His consent and plentiful of endowment, that allows me to complete this project. I would like to thank my supervisor, AP Dr.Halabi bin Hasbullah for his guidance and continuous support in completing this project. His constructive ideas and suggestions were shared to me on how to further enhance the project and on how to conduct a good research. The understandings and encouragement by my supervisor have been inspired me to be more creative in this project. . Even though I seldom meet him but his word still rings in my ear. Thank you for this great opportunity.

I would like to express my highest gratitude to Allah the Almighty, for He is the One who made everything happen according to plan without any major problems. I would also like to convey my gratitude to the ICT and BIS FYP committee for their help, Universiti Teknologi PETRONAS.

Thank you also to all my fellow friends that help me a lot in completing this project. They always give advices and guidance to make sure that I will do the excellent work. Lastly, I would like to thank all of the people who have contributed directly or indirectly towards the success of this project.

Table of Contents

Abs	tract		4
1.	Intr	roduction	8
1	.1.	Background of study	8
1	.2.	Problem Statement	8
1	.3.	Objectives	9
2.	Lite	erature Review	10
2	.1.	Types of Network Intrusion Detection System	10
2	.2.	Network-based Intrusion Prevention System	12
2	.3.	Network Intrusion Detection System	13
2	.4.	Phishing	13
2	.5.	Detecting and Preventing Phishing	14
3.	Pro	ject Work	15
3.1.	Р	Project Methodology	15
3.2.	τ	Jse Case Diagram	19
4.	RE	SULT & DISCUSSION	21
4.1.	E	Expected Feature of the System	21
4.2.	Р	Preliminary Findings	22
4.3.	S	Snort	23
4.4.	R	Rules Engine	24
4.5.	S	System Development	25
4.6.	F	Future Work	32
5.	Pro	blems or Challenges	33
6.	Cor	nclusion	34
Ref	erenc	ces	35

LIST OF FIGURES AND TABLES

Figure 1: Iteration Development Model	15
Figure 2: Detailed network diagram of HIDS location	19
Figure 3: USE Case diagram for Intrusion Detection System	19
Figure 4: Desktop Operating System Usage in Percentage	23
Figure 5: Components of Snort	24
Figure 6: Sample rules to test the program	25
Figure 7: Showing the network interface of the user	26
Figure 8: Network packet matches the sample rule	28
Figure 9: Log file	29
Figure 10: Using wireshark to analyse a single log documents	30
Figure 11: Interface for analysing detection	31
Figure 12: Showing the most recent 15 unique alerts	32

Table 1: Gantt Chart FYP1	17
Table 2: Gantt Chart FYP2	18
Table 3: Snort and Suricata feature comparison	22

1. Introduction

1.1.Background of study

Almost all of the people use the internet to carry out essential activities such as bill payment, bank transfer and etc. But attacks towards home network are not uncommon nowadays as everybody is connected to each other through the internet and the attack has been growing more frequent and severe. When an attack do occur, it is essential that a comprehensive and organised analysis is conducted to verify the causes of the attack and the damages of the attack. A thorough and timely investigation and response can serve to minimize network downtime and ensure that critical business systems are maintained in full operation.

The level of connectivity worldwide has provided opportunities for cybercriminals who make a living breaking into networks, as well as amateur hackers who have too much time on their hands. The determined hacker can find a way into your network either by establishing some type of connection and entering your virtual "front door" or by using social engineering tactics to obtain user ID and password information. Whatever the method used, the fact is that an intruder can get into your network and harm your business.

1.2.Problem Statement

The problem statement of this project is:

• An unauthorised access into a home networking system.

Firewall and anti-virus won't be enough against any intrusion. Without a good detection system, a computer network will be access by an unauthorised individual. This individual may do harm to others by stealing other people's data not to mention confidential information would be compromise. A Denial of Service (DoS) attacks may also occur.

1.3.Objectives

The objectives of this project are:

- To monitor the traffic flow for any malicious activities of a network in real-time.
- To prevent abuse or overload from bandwidth and Denial of Service (DoS) attacks.
- To develop an intrusion detection system for Windows-based operating system.

The rapid advancement of technology gave us information in an instance. Network connection is vital in personal usage as with this connection we may gain an extra edge in knowledge information. With this advancement come a few problems such as spam, virus and etc. Therefore a solution is needed to prevent those attacks before it happens.

Intrusion can occur internally or externally. An internal intrusion is an intrusion from within own networking system. They have an access to the networking system. It may be a friend, partner, employee, or even disgruntled client. External intrusion as it sounds is an intrusion from outside of the network system. Also known as attack from the internet.

Network-based intrusion detection places sensors inside a private network, between routers or a switch. This breaks up a network into multiple smaller networks. The sensors test programs at the network level, and the sensors recognize the activity of the program as normal or abnormal, based on existing comparison parameters. The sensor determines if the program is from outside the network, and how to treat it if it is.

Educating household internet user on the benefit of having an intrusion detection system on top of firewall and antivirus.

2. Literature Review

2.1.Types of Network Intrusion Detection System

Stated by (Kazienko & Dorosz, 2003), an Intrusion Detection System is a defence mechanism, which detects hostile activities in a network. System will be compromise if the intrusion is not detected and possible prevented. One of the major benefits of intrusion detection system is it provides an overview of any unusual unscrupulous activities. According to (Amoroso, 1999), intrusion detection is "a process of identifying and responding to malicious activity targeted at computing and networking resources".

Even though there are firewall and antivirus programs installed to protect their computer from any unwanted access, it can still be vulnerable to any unauthorised user. With the inclusion of network intrusion detection and prevention system, there will be another protection layer against potential hackers.

Intrusion detection and prevention systems are much more secure than common firewall technology. Although considered to be an expansion of the original intrusion detection system, they are actually more a way of controlling who has access to a computer network. They not only control access, but also detect entry to the network, so the two systems are closely linked.

There are 4 types of detection system. One of the systems is network-based detection system where it is mostly used on virtual private servers, remote access servers, and routers by analysing various network protocols (Sturmer, 2013). Wireless intrusion detection system works much like network-based system only that it applies on wireless networks (Adams). Access point misuse is one of the illegal activities that are monitored by the system. In hostbased system, works on an individual computers. Any changes on the file system, abnormal network traffic and odd application process (Sturmer). Whereas for network behaviour analysis, it detects any irregularity in the system and the also the amount of traffic flow of the network (Seehorn).

There are two types of intrusion which is:

- Internal, coming from own networking system. An insider work. People whom you may know.
- External, coming from outside, frequently via the Internet.

The reason why an attack from the inside hurts more is that the insider (attacker) will take advantage of trust and physical access as resources on the local area network of the company are deemed trusted. Practically, we do not firmly restrict their activities because an attempt to control these trusted users too closely will impede the free flow of business. With the increasing numbers of internal intrusion in the industry and tougher regulatory and compliance requirements, organisations are facing tough challenges to protect both their sensitive data against internal threats and meet regulatory and compliance requirements.

Statistics from (Magalhaes, 2003):

- Almost 90% of interconnected networks that uses Intrusion Detection System detected computer security breach in the last 12 months even though there are several firewalls installed.
- Computer Security Institute, 4/7/02 reported that 80% reported financial losses in excess of \$455M was caused by intrusion and malicious acts thereafter.
- Millions of jobs have been affected because of intrusion.
- Only 0.1% of companies are spending the appropriate budget on Intrusion Detection System.
- Intrusion Detection System are mostly mistaken as a firewall or its substitute.
- By using Intrusion Detection System will act as an additional barrier on top of an antivirus. Most organisations using antivirus software do not use IDS.

2.2. Network-based Intrusion Prevention System

Network-based Intrusion Prevention System products are usually deployed on the network, which means that the [software] acts like a network firewall. It receives packets, analyses them, decides whether they should be authorised, and allows acceptable packets to pass through.

(Scarfone & Mell, February 2007)Mentions that "Network-based Intrusion Prevention System typically perform extensive logging of data related to detected events". The logged data is used to review for any alerts and incidents (Scarfone & Mell). Some of the data that are commonly logged by network-based Intrusion Prevention System are:

- Timestamp
- Packet ID
- Event or action type
- Rating (e.g., priority, severity, impact, confidence)
- Network, transport, and application layer protocols
- Source and destination IP addresses
- Source and destination TCP or UDP ports, or ICMP types and codes
- Number of bytes transmitted over the connection
- Decoded payload data, such as application requests and responses
- State-related information (e.g., authenticated username)

Some network-based Intrusion Prevention System offer limited information gathering capabilities, which means that they can collect information on hosts and the network activity involving those hosts. Examples of information gathering capabilities are as follows:

- Identifying Hosts.
- Identifying Operating Systems.
- Identifying Applications.
- Identifying Network Characteristics.

2.3.Network Intrusion Detection System

Intrusion Detection System monitors all incoming and outgoing network activity and distinguishing weird patterns that show an attempt to break into the network. IDS can serve to confirm secure configuration and operation of other security mechanisms such as firewalls.

(Rozenblum, 2001) Mentions some of the intrusion detection system functions:

- Monitoring and analysing both user and system activities.
- Analysing system configurations and vulnerabilities.
- Assessing system and file integrity.
- Ability to recognise patterns typical of attacks by using signature or rules.
- Analysis of any abnormal network activity patterns.
- Tracking for any policy violations.

By identifying your network topology and its incoming points, Intrusion Detection sensors may be installed and configured to report to a central management console. An administrator would review the logs, manage the sensors and update the signatures.

2.4.Phishing

Phishing is a form social engineering whereby the internet is used to gather private information from businesses and individuals in deceptively way (Parno, Kuo, & Perrig). It is similar to fishing as "the phisher puts the lure hoping to fool at least a few of the prey that encounter the bait" (Rouse M. , 2007). Most notable method of phishing is the mock website. A link (email) to the website is sent to the victim which direct the victim to a mock website that looks identical with the real website (Bo, 2010).

In 1996 hackers were stealing American Online (AOL) accounts, which is when the word phishing was founded (Reid, 2009). AOL user's passwords were being stolen by the hackers (Reid). Reid also mention that the first mention of phishing was made in 2600 hacker newsgroup in January 1996 on the internet.

2.5. Detecting and Preventing Phishing

With an Intrusion Detection System, it is possible to get the signature/characteristics of known phisher, thereby blocking their IP (Liniger & Vines, 2005). Most Intrusion Detection System vendors provide such information (Liniger & Vines).

It is crucial that an Intrusion Detection and Prevention System is able to protect the user and its organisation as phishing attacks become more rampant, focus and sophisticated (Kaspian, 2013). Nowadays, email inspection is not enough as there is increasing of social media adoption (Kaspian).

3. Project Work

3.1.Project Methodology

Methodology is known as the way a process or procedure used during the delivery of a project.

Research for the project was done by discussion between the developer and the client. The methodology used in this project is iterative development model. All phases in System Development Life Cycle are included in iterative development. Phases in iterative development model are:

- Planning To plan what is needed to be done to make sure this system can be implemented on time.
- Analysis & Design To determine the problem and solution.
- Implementation To take the solution and implement it. Building the system.
- Deployment Install the system and provide user manual, training and maintenance.
- Testing Testing is conducted to make sure that each unit meets the user's requirement.
- Evaluation Does the system follow the standards given?

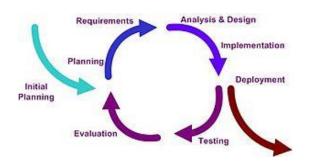


Figure 1: Iteration Development Model

Below are the project activities involved in developing Network Intrusion Detection System:

Planning is conducted during the early stages to determine the purpose of the system and the needs of the potential user.

Design of the system was done after the requirement has been identified by the developer based on the planning stage.

Construction (implementation) of the system was made with code from the design stage.

Testing of the system was conducted in the testing stage to determine if the system meets the requirement gathers during the early part of the development.

Evaluation is the stage whereby testing is conducted on the system based on the requirement.

Deployment will be conducted after the system meets the requirements and if there is no additional requirements.

Gantt Chart

		W	eek												
No.	Project Activities	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Selection of Project Title														
	Search for Project Title														
	Project Title Approval														
	Submission of Proposal for														
2	Research														
	Writing Project Proposal														
	Submit Proposal and Approval														
	Submission of Extended														
3	Proposal														
	Perform Literature Review														
	Research														
	Identify Project Methodology														
	Design Project Flow and Gantt														
	Chart														
	Submit Extended Proposal														
	Proposal Defence/Progress														
4	Evaluation														
	Prepare Presentation Slide														
	Present Proposal Defence														
5	Submission of Interim Report														
	Project Works Continue														
	Submission of Interim Draft														
	Report														
	Interim Report Approval														

		W	eek												
No.	Project Activities	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	System Development and														
1	Implementation														
	Development Phase														
	Implementation														
2	Submission of Progress Report														
	Writing Progress Report														
	Submit Progress Report														
3	Pre-EDX Presentation														
	Prepare Presentation Slide														
	Present for Pre-EDX														
4	Submission of Dissertation														
	Writing Dissertation														
	Submit Dissertation														
5	Viva : Oral Presentation														
	Project Works Finished														
	Prepare Presentation Slide														
	Present for Viva														
	Submission of Final														
6	Dissertation														
	Writing Final Dissertation														
		Pr	oce	SS											

Milestone

Table 2: Gantt Chart for FYP2

3.2.Use Case Diagram

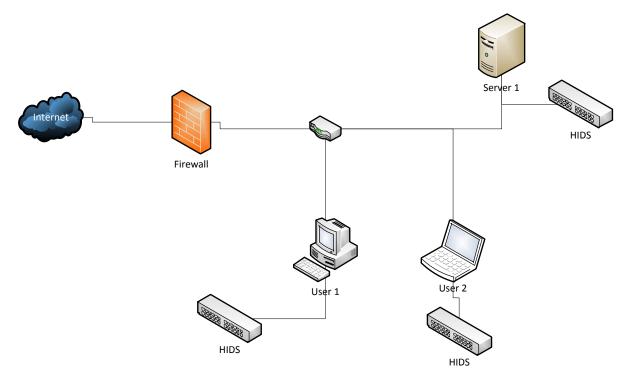


Figure 2: Detailed network diagram of HIDS location

Figure 2 shows an example of deployment of host-based intrusion detection system in a network layout. This system will be installed in each of the host computers in a network system. It will detect any anomaly that is going into the host computers through the given rules.

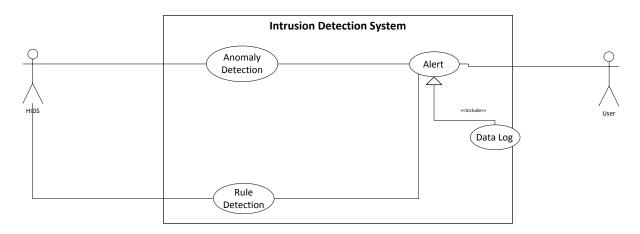


Figure 3: USE Case diagram for Intrusion Detection System

1) Anomaly Detection

If Intrusion Detection System detects any abnormality in the network traffic, then it triggers the alert system

2) Signature recognition

Intrusion Detection System examines the traffic looking for well-known patterns of attack, which are saved in pattern database and triggers the alert system, if a match is found.

3) Alert System

Whenever triggered by anomaly detection or signature recognition, it alerts the system administrator.

4. RESULT & DISCUSSION

4.1.Expected Feature of the System

From the literature review, it is to be known some of the feature of the system. The features are:

- Data logging
- Real-time detection
- Installed in host/user computer. No need third party peripherals.

There are two types of detection method:

- Signature/Rule detection. The system detects known phishing by comparing them with pre-configured and pre-determined attack patterns.
- Anomaly detection. The system detects phishing when anomalous traffic is detected.

As of now, the system will be using signature/rule detection but anomaly detection may also be used if there is any free-time.

4.2.Preliminary Findings

There are two types of programs that have been found to be the most suitable for intrusion detection system. The programs are:

- SNORT
- SURICATA

Parameter	Snort	Suricata
Developer	Sourcefire, Inc.	Open Information Security
		Foundation (OISF)
Availability	1998	2q009
Coded Language	С	С
Operating System	Cross-Platform	Cross-Platform
Threads	Single-Threaded	Multi-Threaded
IPv6 Support	Yes	Yes
Snort (VRT) Rules Support	Yes	Yes
Emerging Threats Rules	Yes	Yes
support		
Logging Format	Unified2	Unified2
Price	Free	Free

Table 3: Snort and Suricata feature comparison

Most of the tools available for Snort are applicable to Suricata.

Suricata is multi-threaded. Means that it can process faster and balance the load of identifying any intrusions.

Configuration for both programs is quite difficult especially Suricata as there is less documentation compared to Snort.

Snort is one of the most widely used intrusion detection and prevention systems. Snort uses a rule-driven language that combines the benefits of signature, protocol, and anomaly-based inspection methods. Also it is one of the most well documented intrusion prevention systems.

Snort is the system that will be used for this project.

Even though both of these programs can be used in wide variety of operating systems, it is built to be used with UNIX based system. But as most of the computers uses Windows based system, the needs to tackle this major operating system is greater. Chart below shows the distribution of operating system usage based on Net Applications as of January 2014.

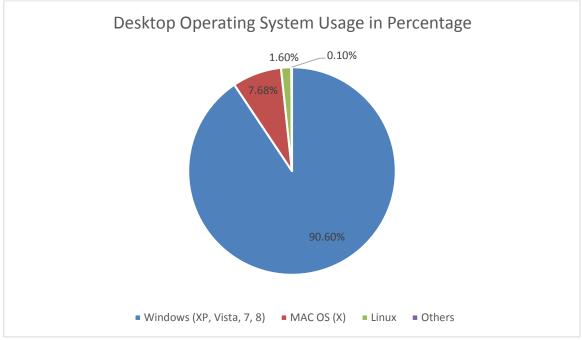


Figure 4: Desktop Operating System Usage in Percentage

4.3.Snort

Snort is an open source network intrusion detection and prevention system. Real-time analysis and packet-logging on IP networks. Analysing each packets closely to detect any suspicious anomalies (Rouse M., 2005). Snort uses a flexible rules language to describe traffic that it should collect or pass, as well as a detection engine that uses a modular plug-in architecture.

"NSS Group, a European network security testing organisation, tested Snort along with intrusion detection and prevention system products from 15 major vendors including Cisco, Computer Associates, and Symantec. According to NSS, Snort, which was the sole open source freeware product tested, clearly out-performed the proprietary products" mention by Rouse M.

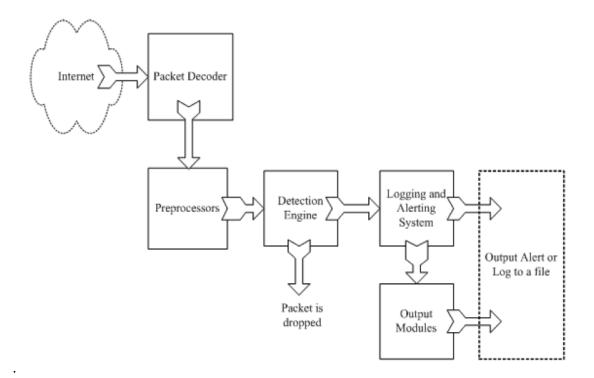


Figure 5: Components of Snort from: Rafeeq Ur Rehman, Intrusion Detection Systems with Snort: Advanced IDS Techniques with Snort, Apache, MySQL, PHP, and ACID.

4.4. Rules Engine

Similar to viruses, most intruders has a sort of signature. Better to be understood as a fingerprint. Information about these signatures is used to create rules.

Two guides in writing rules are:

- Rules must be in a single line.
- Rules are divided into two logical sections, the *rule header* and the *rule options*. The rule header contains the rule's action, protocol, source and destination IP addresses and CIDR (Classless Inter-Domain Routing) block, and the source and destination ports information. The rule option section contains alert messages. It also contains information about which parts of the packet you should inspect to determine if you should take the rule action.

4.5.System Development

At this stage, the project enters the development and implementation phase where the software will be developed. The project was started by redefining the literature review and some part of the problem statements, scope of study and methodology. After that the process of software development started.

After a further study, the chosen program that will be developed into intrusion detection system is SNORT. This is because SNORT has a lot of user usage and with that there is more documentation to help first time user in using it. Also, implementing the rules in SNORT is a bit easier.

The main idea is to help home user in developing the intrusion detection system by themselves. There will be a guide on how to install and configure the program. Not to mention developing own rules to detect any abnormality in network usage. This development is to encounter the problem stated before which is to add another boundary to prevent an unwanted access into the network that may cause problems for the users.

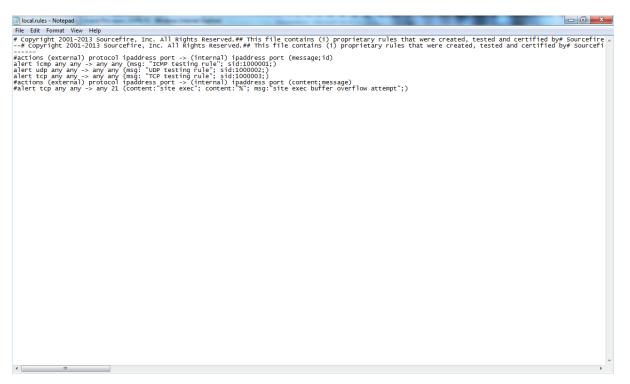


Figure 6: Sample rules to test the program

There are 3 actions on what to do in case of match signatures which are:

- Alert– generates an alert and then log the packet.
- Log-logs the packet.

• Pass- drops the packet. It won't do anything.

Three network protocols that will is usually analyse are TCP, UDP and ICMP.

An example rule taken from figure 6 is:

```
Alert tcp any any -> any any (msg: "TCP testing rule"; sid:1000003;)
```

This rule describes an alert that is generated when the program matches a network packet with all of the following attributes:

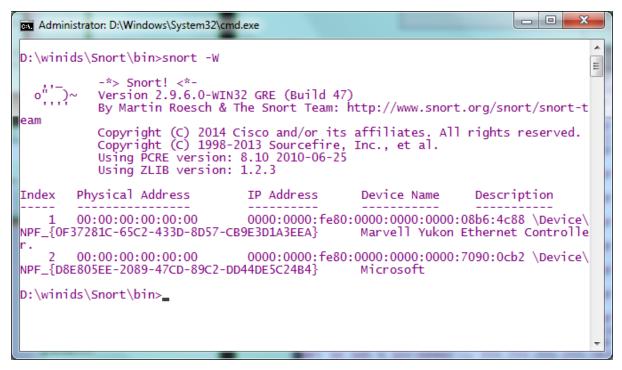
- TCP packet.
- Sourced from any IP address on any port.
- Destined for any IP address on home network on any port.
- With a message "TCP testing rule" and an ID "1000003" to log into the database.

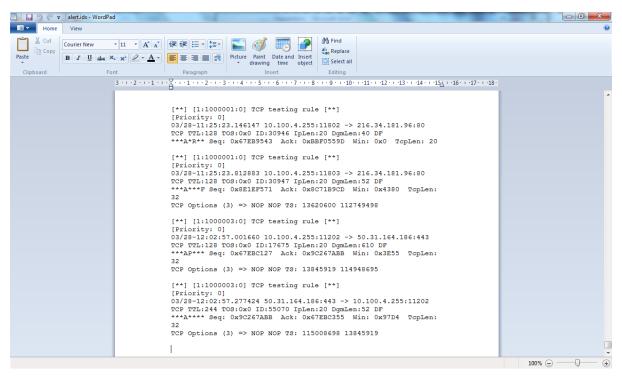
Another example taken from figure 6 is:

```
alerttcp any any -> any 21 (content: "site exec"; content: "%"; msg: "site exec buffer overflow attempt";)
```

This rule describes an alert that is generated when the program matches a network packet with all of the following attributes:

- TCP packet.
- Sourced from any IP address on any port.
- Destined for any IP address on the any home network on port 21.
- The signature contains "site exec" and "%".
- With a message "site exec buffer overflow" to log into the server.




Figure 7: Showing the network interface of the user's computer

CMD (Command Prompt) is used as the interface for user to execute the program. User needs to run CMD in administrator as the program needs to run under full admin privileges. Figure 7 shows the devices of the network interface that user may choose to use for the program in detection of the network system.

Administrator: D:\Windows\System32\cmd.exe - snort.exe -i2 -s -I D:\winids\Snort\log\ -c D:\wini
Preprocessor Object: SF_SSH Version 1.1 <build 3=""></build>
Preprocessor Object: SF_SMTP Version 1.1 <build 9=""></build>
Preprocessor Object: SF_SIP Version 1.1 <build 1=""></build>
Preprocessor Object: SF_SDF Version 1.1 <build 1=""></build>
Preprocessor Object: SF_REPUTATION Version 1.1 <build 1=""></build>
Preprocessor Object: SF_POP Version 1.0 <build 1=""></build>
Preprocessor Object: SF_MODBUS Version 1.1 <build 1=""></build>
Preprocessor Object: SF_IMAP Version 1.0 <build 1=""></build>
Preprocessor Object: SF_GTP Version 1.1 <build 1=""></build>
Preprocessor Object: SF_FTPTELNET Version 1.2 <build 13=""></build>
Preprocessor Object: SF_DNS Version 1.1 <build 4=""></build>
Preprocessor Object: SF_DNP3 Version 1.1 <build 1=""></build>
Preprocessor Object: SF_DCERPC2 Version 1.0 <build 3=""></build>
Commencing packet processing (pid=5472) 04/06-22:43:48.344063 [**] [1:1000002:0] UDP testing rule [**] [Priority: 0] {U
04/06-22:43:48.344063 [**] [1:1000002:0] UDP testing rule [**] [Priority: 0] {U
DP} 192.168.3.102:63946 -> 209.107.220.181:3478
04/06-22:43:48.742363 [**] [1:1000002:0] UDP testing rule [**] [Priority: 0] {U
DP} 209.107.220.181:3478 -> 192.168.3.102:63946
04/06-22:43:49.779763 [**] [1:1000003:0] TCP testing rule [**] [Priority: 0] {T
CP} 192.168.3.102:1165 -> 69.192.2.135:443
04/06-22:43:49.978439 [**] [1:1000003:0] TCP testing rule [**] [Priority: 0] {T
CP} 69.192.2.135:443 -> 192.168.3.102:1165
04/06-22:43:50.184134 [**] [1:1000003:0] TCP testing rule [**] [Priority: 0] {T
CP} 192.168.3.102:1165 -> 69.192.2.135:443
-

Figure 8: Network packet matches the sample rule

When a network packets that matches one from the hundreds of rules, it will display the matched rule in the command prompt. Figure 8 is an example that shows the program is detecting that there are network packets that matches the sample rule and displaying it. But one of the drawbacks is when there are lots of matched rule, the previous matched packet can't be seen as the new matched packet is written just below of it.

Figure 9: Log file

With any detection that matches the rules, the program will log the entire detected "anomaly" in a single file. This file will keep increase in size with each and every detection as shown in figure 9. Therefore it will be very cumbersome for the user to analyse the log. Figure 9 shows the preliminary logging for the program and it will be used only if the user wanted it.

	139598														and a										
e <u>E</u> dit	<u>V</u> iew	<u>G</u> o <u>(</u>	<u>C</u> apture	<u>A</u> na	yze <u>S</u> ta	tistics	<u>H</u> elp																		
(🔐		@ [D	8	(^e a	8	٩	4	\$	1	F 1			e,	0	***	X	¥	1	< [2			
er:									•	<u>E</u> xpr	ession	<u>C</u> lear	Apply												
	lime			irce				estinatio				Protocol													
).000).521				090:cb 9.102	2:f62		f02::1 55.255		255		DHCPV6 UDP		port: 6	4437	Dest	tinati	ion n	ort.	2654					
). 524				9.102			55.255				UDP		port: 6											
). 531				4.255			16.127				TLSV1		ation Da											
	2.217				14.202 20.252			39.255 39.255				SSDP SSDP		<u>H * HTT</u> H * HTT											
	542 542				9.102			55.255				UDP		port: 6		Dest	inati	ion n	ort:	2654					
83	3.542	849	10	.100.	9.102		2	55.255	.255.	255		UDP	Source	port: 6	64440	Dest									
	3.953				5.207			0.100.				NBNS		iery NB											
10 3					5.207 090.ch	2.f62		55.255 f02::1		255		DHCP DHCPV6		form	- Tra	nsact	tion 1	LD OX	(918P/	41a					
12 4					5.207	2.102		0.100.		55		NBNS		Jery NB	WPAD<	00>									
13 4					20.252			0.100.				UDP	Source	port: 3	8741	Dest									
14 4	.846				20.252		2	55.255	.255.	255		UDP	Source	port: 3			tinati	ion p	ort:	5998					
15 4	.966	995	10	.100.	5.207		1	0.100.			1	NBNS	Name q	ery NB											
	.966 .013	995 657	10 10	.100. .100.			1		255.2	55			Name q Name q	iery NB	WPAD<	<00>									
15 4 16 5 17 5 18 5	.966 .013 .129	995 657 728 793	10 10 10 10	100. 100. 100. 100.	5.207 5.207 20.252 14.202		1 1 2 2	0.100. 0.100. 39.255 39.255	255.2 .255. .255.	55 250		NBNS NBNS	Name q Name q M-SEAR		WPAD< P/1.1	<00>			_				_		
15 4 16 5 17 5 18 5 Frame 1 Etherne Interne User Da	.966 .013 .129 .175 .175 .175 .175 .175 .175	995 657 728 793 2 byt 5, Sr(10 10 10 tes o c: 00 ol Ve	.100. .100. .100. .100. n wir :21:6	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6	byte 1:e2	1 2 2 5 Cap (00:2	0.100. 39.255 39.255 39.255 tured 1:63:a	255.2 .255. .255. .255.	250 250 250 : e2) ,	Dst:	NBNS NBNS SSDP SSDP IPV6-	Name q Name q M-SEAR	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	:02 (33:3	3:00:0	01:00	:02)				
15 4 16 5 17 5 18 5 Frame 1 Etherne Interne	.966 .013 .129 .175 .175 .175 .175 .175 .175	995 657 728 793 2 byt 5, Sr(10 10 10 tes o c: 00 ol Ve	.100. .100. .100. .100. .100. .21:6 rsior	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6	byte 1:e2	1 2 2 5 Cap (00:2	0.100. 39.255 39.255 39.255 tured 1:63:a	255.2 .255. .255. .255.	250 250 250 : e2) ,	Dst:	NBNS NBNS SSDP SSDP IPV6-	Name q Name q M-SEAR M-SEAR Neighbor-E	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	9:02 (33:3	3:00:1	01:00	:02)				
15 4 16 5 17 5 18 5 Frame 1 Etherne Interne User Da	.966 .013 .129 .175 .175 .175 .175 .175 .175	995 657 728 793 2 byt 5, Sr(10 10 10 tes o c: 00 ol Ve	.100. .100. .100. .100. .100. .21:6 rsior	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6	byte 1:e2	1 2 2 5 Cap (00:2	0.100. 39.255 39.255 39.255 tured 1:63:a	255.2 .255. .255. .255.	250 250 250 : e2) ,	Dst:	NBNS NBNS SSDP SSDP IPV6-	Name q Name q M-SEAR M-SEAR Neighbor-E	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	9:02 (33:3	3:00:1	01:00	:02)				
15 4 16 5 17 5 18 5 Frame 1 Etherne Interne User Da	.966 .013 .129 .175 .175 .175 .175 .175 .175	995 657 728 793 2 byt 5, Sr(10 10 10 tes o c: 00 ol Ve	.100. .100. .100. .100. .100. .21:6 rsior	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6	byte 1:e2	1 2 2 5 Cap (00:2	0.100. 39.255 39.255 39.255 tured 1:63:a	255.2 .255. .255. .255.	250 250 250 : e2) ,	Dst:	NBNS NBNS SSDP SSDP IPV6-	Name q Name q M-SEAR M-SEAR Neighbor-E	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	2:02 (33:3	3:00:1	01:00	:02)				
15 4 16 5 17 5 18 5 rame 1 therne Interne	.966 .013 .129 .175 .175 .175 .175 .175 .175	995 657 728 793 2 byt 5, Sr(10 10 10 tes o c: 00 ol Ve	.100. .100. .100. .100. .100. .21:6 rsior	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6	byte 1:e2	1 2 2 5 Cap (00:2	0.100. 39.255 39.255 39.255 tured 1:63:a	255.2 .255. .255. .255.	250 250 250 :e2),	Dst:	NBNS NBNS SSDP SSDP IPV6-	Name q Name q M-SEAR M-SEAR Neighbor-E	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	9:02 (33:3	3:00:1	01:00	:02)				
15 4 16 5 17 5 18 5 rame 1 therne Interne	.966 .013 .129 .175 .175 .175 .175 .175 .175	995 657 728 793 2 byt 5, Sr(10 10 10 tes o c: 00 ol Ve	.100. .100. .100. .100. .100. .21:6 rsior	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6	byte 1:e2	1 2 2 5 Cap (00:2	0.100. 39.255 39.255 39.255 tured 1:63:a	255.2 .255. .255. .255.	250 250 250 :e2),	Dst:	NBNS NBNS SSDP SSDP IPV6-	Name q Name q M-SEAR M-SEAR Neighbor-E	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	:02 (33:3	3:00:1	01:00	:02)				
15 4 16 5 17 5 18 5 Frame 1 Etherne Interne User Da	.966 .013 .129 .175 .175 .175 .175 .175 .175	995 657 728 793 2 byt 5, Sr(10 10 10 tes o c: 00 ol Ve	.100. .100. .100. .100. .100. .21:6 rsior	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6	byte 1:e2	1 2 2 5 Cap (00:2	0.100. 39.255 39.255 39.255 tured 1:63:a	255.2 .255. .255. .255.	250 250 250 :e2),	Dst:	NBNS NBNS SSDP SSDP IPV6-	Name q Name q M-SEAR M-SEAR Neighbor-E	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	:02 (33:3	3:00:1	01:00	:02)				
15 4 16 5 17 5 18 5 Frame 1 Etherne Interne USER Da DHCPV6	. 966 . 013 . 129 . 175 . (15 . (15 . (15 . (15) . (15) . (15) . (15) . (15) . (15) . (15) . (15) . (15) . (17) . (17)	995 657 728 793 2 byt 5 Sr(0toco	10 10 10 c: 00 ol Ve rotoc	.100. .100. .100. .100. .100. .21:6 rsior ol, s	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6 rc Por	byte 1:e2 t: dh	1 1 2 2 5 (00:2 cpv6-	0.100. 0.100. 39.255 39.255 39.255 39.255 (tured) 1:63:a	255.2 255. 255. 33:51	250 250 250 :e2), 6), C	Dst:	NBNS NBNS SSDP IPv6-	Name q Name q M=SEAR M=SEAR N=SEAR	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>):02 (33:3	3:00:1	01:00	:02)				
15 4 16 5 17 55 18 5 Frame 1 Etherne Interne USER Da DHCPV6	33 00	995 657 728 793 2 byy otocc otocc am Pr	10 10 10 tes o c: 00 ol ve rotoc	100. 100.	5.207 5.207 20.252 20.252 14.202 e, 152 3:a3:5 6 rc Por	byte 1:e2 t: dh	1 1 2 2 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	0.100. 0.100. 39.255 39.255 tured 1:63:a client	255.2 255. 255. 255. 33:51 : (540	255 250 250 :e2), 5), C	Dst: Dst Por	NBNS NBNS SSDP IPV6-I t: dh	Name q Name q M-SEAR M-SEAR M-SEAR Neighbor-C cpv6-serve	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>):02 (33:3	3:00:1	01:00	:02)				
15 4 16 5 17 5 18 5 18 5 18 5 18 5 18 5 18 5 18 5 18	1.966 .0139 .129 .175 .175 .175 .175 .175 .125 .125 .125 .125 .125 .125 .125 .12	995 657 728 793 2 byn ;, Sr otoc(am Pr 0 01 0 62 6 29	10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0	100. 100. 100. 100. 100. 100. 100. 100.	5.207 5.207 20.252 14.202 e, 152 3:a3:5 6 rc Por 21 63 80 00 02 00	byte 1:e2 t: dh	1 2 2 5 cap (00:2 cpv6-	0.100. 0.100. 39.255 39.255 tured 1:63:a client client 86 dd 00 00	255.2 255.2 255. 33:51 : (54) 60 00 70 90 00 00	255 250 250 (e2), 5), C	Dst: Dst: Dst Por	NBNS SSDP SSDP IPV6-I t: dh	Name q Name q M-SEAR M-SEAR Neighbor-L cpv6-serve	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	:02 (33:3	3:00:0	D1:00	:02)				
15 4 16 5 17 5 18 5 rame 1 therne interne ser Da HCPV6	33 00 00 00 00	995 657 728 793 2 byn ;, Src ;, Src am Pr 0 010 0 02 6 29 0 01	10 10 10 10 10 10 10 10 10 0 Ve rotoc	100. 100.	5.207 5.207 20.2522 14.202 e, 152 3:a3:5 6 rc Por 21 63 80 00 22 02	byte 1:e2 t: dh a3 51 00 00 00 00 23 00	1 1 2 2 2 5 5 6 6 1 6 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	86 dd 00 000 00 100. 00 100. 00 00 00 00 00 00 00 00	255.2 255.2 255. 33:51 : (540 60 00 70 90 00 00 1 1c	255 250 250 :e2), 6), C	Dst: Dst Por	NBNS NBNS SSDP IPV6- t: dh	Name q Name q M-SEAR M-SEAR M-SEAR Neighbor-E cpv6-Serve	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	::02 (33:3	3:00:1	D1:00	:02)				
15 4 16 5 17 5 18 5 rame 1 etherne Jser Dao DHCPV6	33 00 000 00 000 00 000 00 000 00 000 00 000 00	995 657 7728 793 2 by 5, Sr otocc am Pr 0 01 0 62 6 29 0 01 0 08	10 10 10 10 10 10 10 10 10 0 Ve rotoc	100. 100. 100. 100. 100. 100. 100. 100.	5.207 5.207 20.2522 14.202 e, 152 3:a3:5 6 rc Por 21 63 80 00 22 02	byte 1:e2 t: dh 00 00 00 00 23 00 01 00	1 1 2 2 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	0.100. 0.100. 39.255 39.255 tured 1:63:a client client 86 dd 00 00	255.2 255.2 255. 33:51 : (540 60 00 70 90 00 00 1 1c	255 250 250 :e2), 6), C	Dst: Dst: Dst Por	NBNS NBNS SSDP IPV6- t: dh	Name q Name q M-SEAR M-SEAR M-SEAR Neighbor-E cpv6-Serve	iery NB H * HTT H * HTT	WPAD< P/1.1 P/1.1 y_00:	00>	1:02 (33:3	3:00:1	D1:00	02)				

Figure 10: Using wireshark to analyse a single log documents

Another method is by logging the detection by usage. Means that it will log one file for every time the user runs the program. Making it easier for the user to analyse the detection. By using wireshark as in figure 10, analysing will be a bit easier compared to the previous logging method which uses WordPad to open the log file. In this method each detection can be further analyse by clicking any "line" and more description is shown on the bottom part of the screen.

Firefox The Windows Intrusion Detection	ion Sys × 🗌 phpi	nfo()		× +		x
Contemporary Conte					☆ マ C 🚼 - Google 🔎 🖡 🏫 💽 -	o
📀 Stumble! All • 🏠 I like it! 🤻 - 🛷 🖪 🤨	🞙 Share - 🕂 List 🔎	Info 🌟 Likes 🖁	Connections	🛃 Tools -		
The Windows Intrusion Detection Sy	stem!					^
- Today's alerts:	unique	listing	Source IP	Destination IP	Queried on : Sun April 06, 2014 11:05:40	<u>כ</u>
- Last 24 Hours alerts:	unique	listing	Source IP	Destination IP	Database: snort@winids (Schema Version: 107)	•
- Last 72 Hours alerts:	unique	listing	Source IP	Destination IP	Time Window: [2014-03-30 23:34:08] - [2014-03-31 10:08:09]]
- Most recent 15 Alerts:	any protocol	ТСР	UDP	ICMP		
- Last Source Ports:	any protocol	TCP	UDP		Search	
- Last Destination Ports:	any protocol	ТСР	UDP		Graph Alert Data	
- Most Frequent Source Ports:	any protocol	ТСР	UDP		Graph Alert Detection Time	
- Most Frequent Destination Ports:	any protocol	TCP	UDP			
- Most frequent 15 Addresses:	Source	Destination			<u>Use Archive Database</u>	Ξ
- Most recent 15 Unique Alerts						
- Most frequent 5 Unique Alerts						
Sensors/Total: 1 / 1	т	raffic Profile	by Protoco	ol		-
Unique Alerts: 13	т	CP (99%)	•			
Categories: 5						11
Total Number of Alerts: 233		IDP (0%)				1
• Src IP addrs: 57	-	<u></u>				11
• Dest. IP addrs: 16	T	CMP (0%)				11
 Unique IP links <u>84</u> 						1
						4
 Source Ports: 45 	Pe	ortscan Traff	ic <u>(1%)</u>			
• TCP (<u>45</u>) UDP (<u>0</u>)	ľ					
• Dest Ports: 92						
 TCP (<u>92</u>) UDP (<u>0</u>) 						-

Figure 11: Interface for analysing detection

By using both PHP and MySQL, a more user friendly interface is developed to make it easier to analyse the detection as can be seen in figure 11. This method is real-time as in figure 8. In the figure above, the most detection in network protocol is TCP which holds 99% of detection by using the sample rule. The figure above also shows the "most recent 15 unique alerts".

	ole! All 🔹 🍐 I like it! 🤻 🕤 🛷 🖪 🧇 Share 🔹 🕂 List 🔎 In	fo 🛛 🙀 Likes 🌇 Connect	ions 셾 🛛 Tools 🔹					
≤ -	Signature >	< Classification >	Yotal # >	Sensor #	Source Address >	Sest. Address >	< First >	< Last >
	[<u>snort]</u> stream5: Reset outside window	bad-unknown	<u>83</u> (36%)	1	<u>34</u>	1	2014-03-30 23:34:08	2014-03-31 10:08:09
	[snort] sensitive_data: sensitive data global threshold exceeded	sdf	<u>62</u> (27%)	1	<u>17</u>	1	2014-03-30 23:36:58	2014-03-3: 09:52:58
	[local] [snort] http_inspect: MESSAGE WITH INVALID CONTENT-LENGTH OR CHUNK SIZE	unknown	<u>1</u> (0%)	<u>1</u>	1	1	2014-03-31 09:52:55	2014-03-31 09:52:55
lo	COLJ [snort] http_inspect: HTTP RESPONSE HAS UTF CHARSET WHICH FAILED TO NORMALIZE	unknown	<u>4</u> (2%)	1	<u>1</u>	<u>1</u>	2014-03-30 23:59:53	2014-03-31 09:52:52
	[local] [snart] http_inspect: LONG HEADER	bad-unknown	<u>42</u> (18%)	1	1	<u>13</u>	2014-03-30 23:37:42	2014-03-31 09:52:12
	[local] [snort] http_inspect: HTTP RESPONSE GZIP DECOMPRESSION FAILED	unknown	<u>23(</u> 10%)	1	<u>13</u>	<u>1</u>	2014-03-30 23:36:55	2014-03-31 09:52:07
LE	[local] [snort] http_inspect: NO CONTENT- ENGTH OR TRANSFER-ENCODING IN HTTP RESPONSE	unknown	<u>6</u> (3%)	1	<u>5</u>	<u>1</u>	2014-03-30 23:37:35	2014-03-31 09:52:07
	[local] [snort] portscan: TCP Portsweep	attempted-recon	<u>1</u> (0%)	<u>1</u>	1	1	2014-03-31 09:51:57	2014-03-31 09:51:57
	[snort] stream5: TCP Timestamp is missing	bad-unknown	<u>4</u> (2%)	1	1	1	2014-03-31 00:00:54	2014-03-31 09:46:27

Figure 12: Showing the most recent 15 unique alerts

Figure above shows the most recent 15 unique alerts. As can be seen there are six columns showing the different criteria. There are also a timestamps from the first alert to the latest alert made. In the "Total" section, it shows the number or percentage of that packet triggered the rule. "Sensor" column is the number of network interface use to detect the "anomaly", in this case 1 sensor is shown for all.

4.6.Future Work

This assessment is only focus on developing intrusion detection system for home-based networking system. In future, a prevention mechanism is to be introduced for Windows-based system, thus improving the network security by combating attacks such as phishing and denial-of-service attack (DoS attack), hacking attempts and anything else that might compromise the network. Also as this system in tailored to individual user (household), it would be very helpful if in the future this system would be implemented in large organisation. It will a major stepping stone if this system can be built not only for detecting but also preventing as can be seen that is widely used in UNIX-based operating system.

Also, to have the rules engine to be updated without the help from the user. Auto-update the rules engine by a weekly basis.

5. Problems or Challenges

There are a few obstacles in developing this program. Some of the problems are:

- 1. The program is suited best with using UNIX based operating system. Also many of the tools will run on only in UNIX based operating system.
- 2. Configuration of the program is tedious and understanding on how the program works needs a long period of time.
- As I'm doing this project for Windows-based system, the Intrusion Prevention System cannot be initiated. UNIX is needed to initiate the Intrusion Prevention System.
 Because of that only the detection part of the system can be use.
- 4. To write the rules, I would need to be "attack" before I can write the rules as I need to determine the type of "attack" and its content.

6. Conclusion

This paper was written as an approach to detect any abnormal network activity in a home networking system. It has been shown that Intrusion Detection System is very useful for improving network security by adding another layer of security on top of the firewall and anti-virus programs.

However in reality hackers may take advantage of any possible resources to attack a computer network, and these resources may be unstable and very difficult to categorise. These difficulties can reduce the effectiveness of this approach. Thus, a more secured way of using the internet is needed for the user by only surfing the internet with an updated anti-virus and understanding the risk of surfing the "wrong" sites.

References

- Adams, K. *Types of Intrusion Prevention Systems*. Retrieved from eHow: http://www.ehow.co.uk/info_8039841_types-intrusion-prevention-systems.html
- 2. Amoroso, E. (1999). Wykrywanieintruzów. Warszawa 1999: Wydawnictwo RM.
- Bo, J. (30 August, 2010). *Phishing Methods and Prevention*. Retrieved from Yahoo Voices: http://voices.yahoo.com/phishing-methods-prevention-6664318.html
- Kaspian, P. (23 July, 2013). Network Security in 2013: Is Your Intrusion Prevention System Ready? Retrieved from Security Intelligence Blog: http://securityintelligence.com/network-security-in-2013-is-your-intrusionprevention-system-ready/#
- 5. Kazienko, P., &Dorosz, P. (3 April, 2003). Intrusion Detection Systems (IDS) Part I -(network intrusions; attack symptoms; IDS tasks; and IDS architecture). Retrieved from WindowSecurity.com: http://www.windowsecurity.com/articlestutorials/intrusion_detection/Intrusion_Detection_Systems_IDS_Part_I_network_intr usions_attack_symptoms_IDS_tasks_and_IDS_architecture.html
- Liniger, R., & Vines, R. D. (2005). *Phishing: Cutting the Identity Theft Line*. Indianapolis: Wiley Publishing Inc.
- Magalhaes, R. M. (10 July, 2003). *Host-Based IDS vs Network-Based IDS (Part 1)*. Retrieved from WindowSecurity.com: http://www.windowsecurity.com/articlestutorials/intrusion_detection/Hids_vs_Nids_Part1.html
- Parno, B., Kuo, C., & Perrig, A. (n.d.). *Phoolproof Phishing Prevention*. Carnegie Mellon University.
- 9. Reid, C. E. (12 February, 2009). *History of Phishing*. Retrieved from All Spammed Up: http://www.allspammedup.com/2009/02/history-of-phishing/
- 10. Rouse, M. (September, 2005). Snort. Retrieved from SearchMidmarketSecurity.
- 11. Rouse, M. (May, 2007). *Phishing*. Retrieved from SearchSecurity: http://searchsecurity.techtarget.com/definition/phishing
- 12. Rozenblum, D. (2001). Understanding Intrusion Detection Systems. SANS Institute, 9.

- Scarfone, K., &Mell, P. (February 2007). *Guide to Intrusion Detection and Prevention Systems (IDPS)*. Gaithersburg: National Institute of Standards & Technology.
- 14. Seehorn, A. *The Types of Intrusion Detection System*. Retrieved from eHow: http://www.ehow.com/info_8068215_types-intrusion-detection-system-html
- 15. Sturmer, G. (2013). *What is an Intrusion Prevention System?* Retrieved from eHow: http://www.wisegeek.com/what-is-an-intrusion-prevention-system.htm