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ABSTRACT

Process optimization is very important in the engineering industries. As optimisation

is achieved, less consumption of energy and utilities can be obtained for the process.

In achieving optimisation, the response should be responded close to the reference

values. The refineries nowadays consist mainly of multi variable unit process. Thus,

to achieve optimisation using classical approach will be less reliable and time

consuming. Hence, the introduction of Model Predictive Controller (MPC) to the

process unit is more suitable compared to the classical approach. MPC is capable to

solve high order problem and multivariate processes. The successful of MPC

depends on the selection of tuning parameters. Therefore, by analysing the effect of

each tuning parameters on the controller performance, promising performance of

MPC can be produced. Firstly, the processes are selected from books as a case study

to resemble the high order and multi variable problem processes. Then, the analysis

will be done to study the effect of input weightage (UwO, output weightage (ywt),

control horizon (M) and prediction horizon (P) on the controller performance. By

changing one of the tuning parameter, the other tuning parameters have to be kept

constant.
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CHAPTER 1

INTRODUCTION

1.1. Background of Study

Currently, in industrial business, it is crucial to minimise cost in terms of operation or

utilities and maintenance cost while maintaining the efficiency of the operation and

mass production. However, there are obstacles in process industry that needs to be

optimised to achieve the goals. Model Predictive Controller (MPC) has good track

record in terms of controller design strategy as it provides good solving strategy

towards difficult high-order problem and multivariable processes which resembles the

industry nowadays especially oil and gas industry. Hence, by using MPC, the

existence of problems commonly in the process industry can be overcome. MPC tends

to minimise the cost, but at the same time maintaining the quality of product and

produce mass quantity of products to meet the market demands.

The plant controller system layout consists of measured output (real process) and

model. The model in MPC will then decide sequence of control moves by

manipulating the changes in input so that the measured output moves in the trajectory

line to achieve optimisation. Besides, calculations are being made on the predicted

values of the output to compute a series of strategies to optimise the output behaviour

ofa plant.



Before designing the MPC, tuning parameters must be specified. Some key design

issues and recommended value for the tuning parameters can be used to tune MPC

controller. The tuning parameters that involved in tuning MPC controllers are

Sampling Period (At) and Model Horizon (JV), Control Horizon (M) and Prediction

Horizon (P), and Reference Trajectory (at). In terms of Sampling Period (At) and

Model Horizon (N) selection, the NAthave to be equal to ts, in which ts refers to

settling time for the open-loop response. The purpose of the selection is to ensure the

model reflects the full effect of a change in an input variable over the time required to

achieve steady state.

For Control Horizon (M) and Prediction Horizon (P), it can be seen that as control

horizon (M) increases, the MPC controller will respond more aggressive and required

computational effort increases too. By introducing input blocking, the computational

effort can be reduced. Some typical requirements are 5 < M < 20 and N/3 < M <

N/2. In order to ensure full effect of the last input move is taken into account, the

Prediction Horizon P is often chosen as P = N + M. The controller tends to become

more aggressive when the value of Prediction Horizon P is decreasing.

By tuning Reference Trajectory (a^), the impact can be seen on the desired speed of

response for each output. The performance ratio concept can be used as an alternative

in order to specify the Reference trajectory at.

A major difference between MPC and PID can be seen where performance of MPC

can be measured by looking onto the simulation done using the model. However,

appropriate model have to be selected to achieve the optimum performance. In

addition, MPC itself is more complex than PID as the calculation has to be made at

each sampling time.

1.2. Problem Statement

The successful of MPC depends on the selection of tuning parameters. Therefore, in

order to produce promising performance of MPC, these tuning parameters need to be

analysed and selected to achieve good performance of MPC.



1.3. Objective

The objective of the research is to analyse the tuning parameters that have impact to

the performance of MPC. The purpose of analysing the tuning parameters is to decide

the tuning parameters to enhance performance in MPC.

1.4. Scope of Study

In the research, one particular process has to be chosen. The process will has its own

model to indicate the process. In designing MPC, a number of design parameters must

be specified. The tuning parameters will then be analysed to observe its effect towards

the performance of MPC.



CHAPTER 2

LITERATURE REVIEW

2.1. History of MPC

In the early 1960s, Kalman introduced Linear Quadratic Regulator (LQR). It applies

infinite horizon which gives the ability of LQR to have powerful stability properties.

The development of this technology do not contribute much to the control world, as

the application of LQR itself that do not take into account on the constraints in its

formulation, the nonlinearities of real system and the main factor is the lack of

exposure towards optimal control concepts in the instrument technicians and

engineers at that time.

Later, Model Predictive Heuristic Model being introduced by Richaletet.al (1978) and

Dynamic Matrix Control (DMC) by Cutler and Ramaker (1980). Both of the

controller have same properties by using dynamic model of process in which the past

history response and step response introduced later is taken into account in order to

predict the effect of future control actions. The control action being introduced is by

minimising the predicted error but not exceeding the operational limit in system. The

earlier versions ofMPC were not automatically stabilizing. However, by manipulating

the weights of the cost function, choosing a stable plant and keeping the horizon

larger compared to settling time of plant, the stability then can be achieved. The next

improvement of MPC being developed is the Quadratic Dynamic Matrix Control

(QDMC; Garcia, Morshedi, 1986). Basically, the system is assumed to be linear and it

used quadratic programming to solve constrained open-loop optimal control

problem. In addition, the control and state constraints and quadratic cost are defined

by linear inequalities. In 1970s, Aston et. al. had developed Minimum Variance

Control. The main objective to achieve in the controller is to minimise the quadratic

function of the error between most recent output and the prediction horizon. In



addition, Generalized Minimum Variance Control (GMVC) was introduced to handle

non-minimum phase plants by assigning penalized input to the objective function.

Peterka (1984) then developed Predictor-Based Self-Tuning control that overcame the

horizon limitation. Alternatively, by not taking Diophantine equation as a based,

Extended Proposal Self-Adaptive Control (EPSAC) was introduced by De Keyser et.

al. (1985) that was using constant control signal starting from the present while using

a sub-optimal predictor. In order to assure zero-steady state error, the input was

replaced by the increment in control signal.

2.2. Stability Factor

One of the important issues being debated by the researches in the last decades is the

stability of predictive control. It is very essential because the properties of finite

horizon itself that is not assured to be stable and is achieved by tuning the weights and

horizons. Besides, by using state-space relationship and analysing the influence of

filter polynomials on robustness improvement, Mohtadi had explained the specific

stability theorems of Generalized Predictive Control (GPC). Although it was well

explained, the general stability property with finite horizons of predictive controller

was still inadequate.

This has contributed to new predictive control method studies to ensure stability can

be achieved starting from the year 1990. Some modifications had been made

including the use of terminal constraints (Kwon et. al., 1983; Meadows et. al., 1995),

the introduction of dual-mode designs (Mayne and Michalska, 1993) and the use of

infinite prediction horizons (Rawling and Muske, 1993). By imposing end-point

equality constraints on the output after a finite horizon, Clarke and Scattolini (1991)

and Moscaet. al. (1990) had introduced stable predictive controllers. Meanwhile, the

minimisation of the objective function as well as stabilizing the process had led to a

stable formulation for GPC that was proposed by Kouvaritakiset. al. (1992). Most of

the stated techniques achieve stability by introducing additional constraints and

changing the design structure. However, these approaches should be avoided. Instead

of modifying structure design, it is preferable to gain stability through tuning the

parameters in the predictive controller.



2.3. Process Models in MPC

2.3.1. MPC Problem Formulation

minmk)J = E^y - yref)2Q + ^=1(A(/)2/? (1)

N = Model Horizon

M = Control Horizon

y = Measured Output

3Ve/ = Reference Output

Q = Output weighting matrix

R = Input weighting matrix

The basic formulation of MPC is well explained by using the above equation.

There are numbers of tuning parameters that need to be analysed and selected so

that optimization of process can be achieved.

The tuning parameters are:

1. Sampling Period and Model Horizon (N)

2. Control Horizon (M) and Prediction Horizon (P)

3. Reference Trajectory (at)

4. Weighting Matrix (Q and R) - the preferred variables that need to be

controlled or manipulated depends on the process

Each of the tuning parameters is related to each other. Consequently, ifone of the

tuning parameters is changed, it will give an impact to the MPC formula

thoroughly. Therefore, to achieve optimization, the best value of these tuning

parameters must be selected as the success of MPC depends on the selection of

tuning parameters.

The reference trajectory formula is given by the equation of:

tt,r(* +D = (oCiVy^k) + [1 - to)7']W*) (2)

for i = 1,2,...,m andj= 1,2,...,P



yir = rthelement of referencetrajectory

at = Filter constant; 0 < at < 1

ylsp = Set point value

2.3.2. Model Predictive Control Law

The objective in MPC is to bring the measured output moves in the line of

reference trajectory by using prediction. Therefore, the control calculation will be

based on minimizingthe prediction deviations from the reference trajectory. This

can be explained by using this equation.

£(fc + 1) & Yr(k + 1) - Y(k + 1) (3)

£(k + 1) = Predicted error vector

Yr(k + 1) = Referencetrajectory

Y(k + 1) - mP-dimensional vector of corrected predictions

over the prediction horizon P

Whereas, E°(k + 1) is defined as the predicted unforced error which is the past

impact of step change being introduced to the system. It also represents the

predicted deviations from the reference trajectory when no further control action

is taken.

£°(fc -I-1) 4 Yr(k + 1) - y°(fc + 1) (4)

Y°(k + 1) = mP-dimensional vector of corrected predictions

for the unforced case.

Y°(k + 1)± Y°(k + 1) + / [y(fe - y(k)] (5)

V Y

Past control Future control

action action



Bydetermining the changes in the manipulated input at sampling instant, we can

strategiesthe control moves for the next M intervals.

AU(k) & col[Au(k),Au(k + 1),.... Au(fc + m - 1) (6)

In objective function of unconstrained MPC, we have to minimise some (or all)

these three types oferror (Qin and Badgwell, 2003):

a. the predictederror over the predictedhorizon, E(k + 1)

b. the next M control moves, AU(k)

c. the deviation of u(k + i) from the desired steady state value (set point)

over the control horizon

The main advantage in using the receding horizon approach is the new measured

output will be used in instant for next move calculation. Therefore, it can

minimise the error in calculation due to the presence of disturbance.

233. Single Input Single Output (SISO) Model

There are several models that are related to MPC. Generally, in industrial

applications, the system is assumed to be linear and the empirical model is in the

form of step-response model. By using step response model as a based, they can

exhibit stable processes in the unusual dynamic behaviour which cannot be

defined by simple transfer function model. However, the detriment of this model

is the existence of large number of model parameters. The equation below is the

SISO model, which assumed to be stable in the step-response model. The

equation will explain on the prediction of future process behaviour.

y(k + 1) = y0 + Sf=1S£ Au(fe - i + 1) + SNu(k - N + 1) (7)

y(fc + l) = output variable at the sampling instant of k+1

Au(k - i + 1) - changes in the manipulated input from one

sampling instant to the next

St = Stepresponsecoefficientat i

SN - Stepresponsecoefficientat N

y0 = Initial value. For simplicity assume it to be zero.



The key in MPC is to predict the future outputs over prediction horizon, P.

Therefore, predicted variable is included in the equation.

y(k + 1) = 2f=15fAu(fc - i + 1) + SNu(k - N + 1) (8)

y(k + 1) = predicted output variable at the sampling instant

ofk+1

However, when we introduce step change in the process, the past step change

will have an impact to current sampling instant. Thus, the effect of past control

actions cannot be neglected as they still produce impact to the response of model

in current sampling instant. The equation can be expanded as,

y(k + 1) = SjAu (fc) + Ef=2 St Au(k - i + 1) + SN u(k - N + 1) (9)

Effect of current action Effect of past control action

In general, for a j-step ahead prediction, it is well explained with the equation of,

Kk+D = rimlSiAu(k+j - 0 + 2X,+1 S,Au(fc +j - i)SNu(k+j - 1) (10)

V V > K V '
Effect of current and Effect of past control action

future control action

For past control actions, it is called as predicted unforced response and denoted

by the symbol ofy0(k +j); which cause the equation to be,

Kk+))= Z{=1SiAu(k+j-i)+%(k+j) (11)

The above equations explained on the simple predictive controller that takes a

basis on single prediction for J step ahead. However, in typical situation, MPC

calculation is based on multiple predictions instead of single prediction. Thus, the

vector matrix notation is introduced. For the next P sample instant,

?(k +1) A col \y(k + l),y(k + 2), ...,?(* + P)] (12)



where col defines a column vector. For predicted unforced responses, it is the

same, in which the equation can be written as,

?°(k + 1) A col [y°(k + l),y°(k + 2), ...,y°(k + P)] (13)

whereas, AU(k), a vector of control actions of the input responses for the next M

sampling instants is defined as,

AU(k) & col [Au(k),Au(k + 1),.... Au(fc + M - 1)] (14)

By calculating AU(k), to move the predicted output to the new set point in

optimum manner, we can conclude the equation to be,

?(k + 1) = SAU(k) + Y°(k + 1) (15)

23.4. Extension of Basic MPC Model (Integrating Processes)

The integrating process is being introduced to the formulation of MPC is because

of bounded output rate of change. By a simple modification, the equation will be,

Ay(k + 1) = £f=i St Au(k - i + 1) + SN u(k - N + 1) (16)

From the above equation, Ay(fe + 1) is being introduced as it provides an

appropriate step response model for the integrating processes (Hokanson and

Gerstle, 1992).

23.5. Extension of Basic MPC Model ( Known Disturbance)

As been explained earlier, the key in MPC is to predict future output so that

measured output moves towards reference trajectory to achieve optimisation.

When measured output much deviated from the trajectory line, there are some

disturbances present that cause the measured output to move away from the

reference trajectory line. Thus, if the disturbance variable is known or can be

measured, it should be included in the model.

10



Pd

y(k +1) =YSi Au(k - i+1) +SNu(k - N+1) +^Sf Ad(k - i+1) +S#d(fc - Nd +1)

iVd = Number of step-response coefficient for

disturbance variable (Nd =£ N).

In case of multiple predictions, we have to predict on the future disturbances. Usually,

the disturbances are assumed to be the same as current disturbance if there are no

information on the next disturbances.

II



CHAPTER 3

METHODOLOGY

3.1. Research Methodology

The methodology used in analyzing the tuning parameters of MPC is by conducting

simulation in MATLAB software. A process model is selected from the book to

resemble the high order and multivariable problem. It will be used as a tool to analyse

the tuning parameters in MPC. The analysis of the tuning parameters will lead to the

best tuning parameters condition to achieve optimisation in MPC. High performance

of MPC can be achieved, by determining the best tuning parameters condition in

MPC.

The process model of project 1 has two inputs (ui and U2) and two disturbance

5 T2e~14
variables (yi and y2). The transfer function of the process is given by for the

60s+i

output while
1.52e~"

25s+l
for disturbance variables.

In process 2, The Wood-Berry Model is used to indicate the distillation column

process which is given by the equation of:

El-
12.8e-

16.7s + 1

6.6e"7s

-18.9e~3s

21s+ 1

-19.4e-35

10.9s + 1 14.4s + 1

12

[S(s)\ +

r3.8e~81s]
14.9s + 1
49e-3.4s

Ll3.2s + J

F(s)



where,

Controlled Variable = XD and Xs (distillate and bottom compositions)

Manipulated Variable = R and S (reflux flow rate and steam flow rate)

Disturbance Variable = F (feed flow rate)

3.2. Project Activities

3.2.1. Flowchart

The project starts with applying MPC to the model. There are four tuning

parameters that need to be tested. ISE for each graph have to calculated and

analysed to see the effect of the tuning parameters towards MPC performance.

The flow of the project activities as per Figure 1:

Start

Apply MPC to the process model to analyse the tuning parameters of MPC

Change the analysed tuning parameter value by keeping the other tuning

parameters values constant

Calculate integrated square error (ISE) for each graph obtained

Not Reasonable

Reasonable

Analyse the ISE to see the effect ofeach tuning parameters on MPC

Figure 1: Flowchart for Project Simulation

13



3.2.2. Project 1

3.2.2.1. Apply MPC to the model

MPC is applied to the process model to analyse the tuning parameters

of MPC. The process is tested for as long as 245 seconds, the sampling

time is set to 7 and nout for both transfer functions is set to 1 as both of

outputs are stable. The MATLAB coding is shown in APPENDIX.

3.2.2.2. Change the analysed tuning parameters value

In this project, there are four tuning parameters that need to be tuned.

There are the output weightage (ywt), input weightage (Uwt), control

horizon (M) and prediction horizon (P). The first tuning parameters

being tuned is the input weightage (Uwt) from 0 to 10 with the

increment of 0.5. The other tuning parameters are kept constant with

control horizon (M) is set to 5, prediction horizon (P) is set to 20 and

output weightage (y^) is set to 1. The MATLAB coding is shown in

APPENDIX. Graph will be generated in every simulation to study the

effect of tuning parameters on performance of MPC graphically.

Sample of graph is as shown in figure below.

14



1

Outputs
1 1 T

0.5

0

—

•°5c1

I

50

1 '

100 150 200 250

Time

0

Manipulated Variables
i i i

-0.2 -

-0.4

"Lx
-0.6

-0.8
t

i i . j i

j 50 100 150 200 250

Time

Figure 2: Sample of graph for Project 1

M=5 P = 20 ywt=l uwt=1.0

3.2.23. Calculate ISE for each graph

ISE has to be calculated for each graph obtained to analyse the effect

of each tuning parameters on performance of MPC.

15



3.23. Project 2

3.23.1. Apply MPC to the model

MPC is applied to the process model to analyse the tuning parameters

of MPC. The process is tested for as long as 30 seconds, the sampling

time is set to 2 and ny is set 2 because there are two measured outputs

for the process. The input model and disturbance model is added up for

the process. The MATLAB coding is shown in APPENDDC.

3.2.3.2. Change the analysed tuning parameters value

In this project, there are four tuning parameters that need to be tuned.

There are the output weightage (ywt), input weightage (Uwt), control

horizon (M) and prediction horizon (P). The first tuning parameters

being tuned is the output weightage (ywt) by keeping the other tuning

parameters constant. The output weightage (y^) is increase by 1.0

from 1 to 8. The other tuning parameters are kept constant with input

weightage (uwt) is set to 1, control horizon (M) is set to 5and

prediction horizon (P) is set to 10. The MATLAB coding is shown in

APPENDIX. Graph will be generated in every simulation to study the

effect of tuning parameters on performance of MPC graphically.

Sample of graph is as shown in figure below.

16



Figure 3: Sample ofgraph for Project 2

M=5 P=10 ywtl = 1 ywt2=l uwtl= 1 uwt2 = 1

3.23.3. Calculate ISE for each graph

ISE has to be calculated for each graph obtained to analyse the effect

ofeach tuning parameters on performance ofMPC.

17



33. Key Milestone

Table 1: Gantt chart

No Project Activities 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

Selection ofProcess

Model

A
4»
u

u
V

•*-
SB
V

E
on

2

Apply MPC to Process
Model

3

Analysis of Tuning
Parameters of MPC

4

Submission of Progress
Report •

5 Pre-EDX •

6

Submission ofDraft

Report •

7

Submission of

Dissertation (Soft Bound)
•

8

Submission ofTechnical

Paper •

9 Oral Presentation •

10

Submission of Project
Dissertation (Hard

Bound)

•

Process Suggested Milestone

18



3.4. Tools

The tools required to develop this project:

Table 2: Tools required

Software Purpose

Microsoft Excel 2010 Critical Analysis and Data Tabulation

MATLAB 7.12 Create Modelling of MPC, Analysis ofTuning

Parameters ofMPC and Simulation

19



CHAPTER 4

RESULTS AND DISCUSSION

4.1. Project 1

ISE for each graph with four variables, yi and y2 (outputs) and ui and u2 (disturbance

variable) is calculated and tabulated in the Excel as per below.

Table 3 Effect of manipulating Uwt ori controller performance

Changes in Uwtwith increment of 0.5

NO M P ywt Uwt

ISE

yi yi Ui u2

1 5 20 1.00 0.00 2.2624 0.0000 3.2298 3.4588

2 5 20 1.00 0.50 2.8593 0.0064 3.1262 3.4404

3 5 20 1.00 1.00 3.4896 0.0238 3.0441 3.4257

4 5 20 1.00 1.50 3.9807 0.0503 2.9873 3.4055

5 5 20 1.00 2.00 4.4002 0.0897 2.9442 3.3790

6 5 20 1.00 2.50 4.8005 0.1452 2.9062 3.3479

7 5 20 1.00 3.00 5.2019 0.2179 2.8694 3.3137

8 5 20 1.00 3.50 5.6080 0.3071 2.8325 3.2778

9 5 20 1.00 4.00 6.0159 0.4107 2.7954 3.2412

10 5 20 1.00 4.50 6.4209 0.5257 2.7584 3.2048

11 5 20 1.00 5.00 6.8185 0.6491 2.7220 3.1692

12 5 20 1.00 5.50 7.2049 0.7780 2.6866 3.1349

13 5 20 1.00 6.00 7.5774 0.9100 2.6525 3.1022

14 5 20 1.00 6.50 7.9341 1.0431 2.6200 3.0712

15 5 20 1.00 7.00 8.2743 1.1756 2.5891 3.0419

16 5 20 1.00 7.50 8.5976 1.3065 2.5600 3.0144

20



17 5 20 1.00 8.00 8.9043 1.4349 2.5325 2.9886

18 5 20 1.00 8.50 9.1948 1.5603 2.5067 2.9644

19 5 20 1.00 9.00 9.4700 1.6825 2.4824 2.9418

20 5 20 1.00 9.50 9.7309 1.8013 2.4595 2.9205

21 5 20 1.00 10.00 9.9786 1.9169 2.4380 2.9005

Table 4: Effect ofmanipulating ywt on controller performance

Changes in ywt with increment of0.5

NO M P ywt Uwt

ISE

yi y2 Ul u2

1 5 20 1.00 1.00 3.4896 0.0238 3.0441 3.4257

2 5 20 1.50 1.00 3.0858 0.0113 3.0955 3.4357

3 5 20 2.00 1.00 2.8593 0.0064 3.1262 3.4404

4 5 20 2.50 1.00 2.7179 0.0039 3.1465 3.4437

5 5 20 3.00 1.00 2.6224 0.0025 3.1610 3.4464

6 5 20 3.50 1.00 2.5542 0.0016 3.1719 3.4485

7 5 20 4.00 1.00 2.5035 0.0011 3.1804 3.4503

8 5 20 4.50 1.00 2.4647 0.0008 3.1872 3.4517

9 5 20 5.00 1.00 2.4344 0.0006 3.1928 3.4528

Table 5: Effect ofmanipulating M on controller performance

Changes in M with increment of 1

NO M P ywt Uwt

ISE

yi ya Ul u2

1 1 20 1.00 1.00 8.3733 0.7561 2.3384 2.9377

2 2 20 1.00 1.00 3.2546 0.0143 3.0710 3.5181

3 3 20 1.00 1.00 3.2511 0.0144 3.0716 3.5189

4 4 20 1.00 1.00 3.4253 0.0132 3.0483 3.4619

5 5 20 1.00 1.00 3.4896 0.0238 3.0441 3.4257

6 6 20 1.00 1.00 3.4951 0.0314 3.0461 3.4113

7 7 20 1.00 1.00 3.4918 0.0341 3.0474 3.4072

8 8 20 1.00 1.00 3.4907 0.0346 3.0477 3.4064
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9 20 1.00 1.00 3.4908 0.0345 3.0477 3.4064

10 10 20 1.00 1.00 3.4909 0.0344 3.0476 3.4066

11 11 20 1.00 1.00 3.4909 0.0344 3.0476 3.4066

12 12 20 1.00 1.00 3.4910 0.0344 3.0476 3.4067

13 13 20 1.00 1.00 3.4910 0.0344 3.0476 3.4067

14 14 20 1.00 1.00 3.4910 0.0344 3.0476 3.4067

15 15 20 1.00 1.00 3.4910 0.0344 3.0476 3.4067

Table 6: Effect of manipulating P on controller performance

Changes in P with increment of 1

NO M P ywt Uwt

ISE

yi y2 Ul u2

1 5 10 1.00 1.00 3.4839 0.0322 3.0479 3.4099

2 5 11 1.00 1.00 3.4838 0.0309 3.0474 3.4119

3 5 12 1.00 1.00 3.4842 0.0298 3.0469 3.4138

4 5 13 1.00 1.00 3.4849 0.0288 3.0465 3.4156

5 5 14 1.00 1.00 3.4857 0.0278 3.0460 3.4173

6 5 15 1.00 1.00 3.4865 0.0270 3.0457 3.4190

7 5 16 1.00 1.00 3.4872 0.0262 3.0453 3.4205

8 5 17 1.00 1.00 3.4879 0.0255 3.0450 3.4220

9 5 18 1.00 1.00 3.4885 0.0249 3.0447 3.4233

10 5 19 1.00 1.00 3.4891 0.0244 3.0444 3.4246

11 5 20 1.00 1.00 3.4896 0.0238 3.0441 3.4257

12 5 21 1.00 1.00 3.4901 0.0234 3.0438 3.4268

13 5 22 1.00 1.00 3.4906 0.0230 3.0435 3.4278

14 5 23 1.00 1.00 3.4910 0.0226 3.0432 3.4287

15 5 24 1.00 1.00 3.4914 0.0222 3.0429 3.4295

16 5 25 1.00 1.00 3.4918 0.0219 3.0426 3.4302
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As per tabulated in Table 3, by changing the input weightage (uwt) from 0 to 10 with

the increment of 0.5; keeping the other tuning parameters constant with control

horizon (M) = 5, prediction horizon (P) = 20 and output weightage (ywt) - 1, the ISE

for yi, y2 and ui increased. However, the ISE for u2 decreased.

Then, in Table 4, changing the output weightage (ywt) from 1 to 5 with the increment

of 0.5; keeping the other tuning parameters constant with control horizon (M) = 5,

prediction horizon (P) = 20 and input weightage (u^) = 1, the ISE for ui and u2

increased. However, the ISE for yi and y2decreased.

After that, in Table 5, changing the control horizon (M) from 1 to 15 with the

increment of 1.0; keeping the other tuning parameters constant with output weightage

(ywt) - L prediction horizon (P) = 20 and input weightage (Uwt) = 1, the ISE for yi and

y2 increased up to certain point before become constant until the end of simulation.

However, the ISE for ui and u2 decreased until certain point before become constant

until the end of simulation.

Finally, in Table 6, changing the prediction horizon (P) from 10 to 25 with the

increment of 1.0; keeping the other tuning parameters constant with output weightage

(ywt) = L control horizon (M) = 5 and input weightage (u^) = 1, the ISE for yi and u2

increased. However, the ISE for uj and y2decreased.
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4.2. Project 2

ISE for each graph with eight variables, yn, yi2, y2] and y22 (outputs) and un, uj2, u2i

and u22 (manipulated variable) is calculated and tabulated in the Excel as per below.

Table 7: Effect ofmanipulating Uwti on controller performance

Changes in u„i with increment of 1

NO M P y«i y«2 UmI "*2

ISE

fti yi2 y2i y22 un «12 1*21 "22

1 5 10 1.00 1.00 1.00 1.00 14.0946 13.5144 13.5144 13.1755 L0.1172 -0.1302 -0.1302 0.1579

2 5 10 1.00 1.00 2.00 1.00 13.8206 13.4966 13.4966 13.2316 0.0527 -0.0812 -0.0812 0.1740

3 5 10 1.00 1.00 3.00 1.00 13.6133 13.4669 13.4669 13.3333 0.0358 -0.0605 -0.0605 ^ 0.1857

4 5 10 1.00 1.00 4.00 1.00 13.4298 13.4337 13.4337 13.4455 0.0279 -0.0490 -0.0490 0.1940

5 5 10 1.00 1.00 5.00 1.00 13.2623 13.4002 13.4002 13.5572 0.0231 -0.0418 -0.0418 0.2000

6 5 10 1.00 1.00 6.00 1.00 13.1108 13.3682 13.3682 13.6624 0.0198 -0.0369 -0.0369 0.2045

7 5 10 1.00 1.00 7.00 1.00 12.9759 13.3389 13.3389 13.7584 0.0174 -0.0334 -0.0334 0.2080

8 5 10 1.00 1.00 8.00 1.00 12.8569 13.3126 13.3126 13.8447 0.0157 -0.0307 -0.0307 0.2108

Table 8 : Effect ofmanipulating Uw^ on controller performance

Changes in u^ wih increment of 1

NO M p y«i y«2 "«i U«2

ISE

yn yn y2i y22 "u "12 "21 "22

1 5 10 1.00 1.00 1.00 1.00 14.0946 13.5144 13.5144 13.1755 0.1172 -0.1302 -0.1302 0.1579

2 5 10 1.00 1.00 1.00 2.00 13.9431 13.1645 13.1645 12.8299 0.1424 -0.1054 -0.1054 0.0939

3 5 10 1.00 1.00 1.00 3.00 13.8446 12.9029 12.9029 12.5994 0.1651 -0.0893 -0.0893 0.0701

4 5 10 1.00 1.00 1.00 4.00 13.7888 12.6978 12.6978 12.4258 0.1862 -0.0778 -0.0778 0.0583

5 5 10 1.00 1.00 1.00 5.00 13.7659 12.5333 12.5333 12.2862 0.2056 -0.0690 -0.0690 0.0515

6 5 10 1.00 1.00 1.00 6.00 13.7668 12.3978 12.3978 12.1664 0.2232 -0.0621 -0.0621 0.0472

7 5 10 1.00 1.00 1.00 7.00 13.7844 12.2832 12.2832 12.0576 0.2389 -0.0566 -0.0566 0.0443

8 5 10 1.00 1.00 1.00 8.00 13.8133 12.1843 12.1843 11.9549 0.2528 -0.0520 -0.0520 0.0423

Table 9: Effect ofmanipulating ywtl on controller performance

Changes inywl wth incrementof 1

NO M p y«i y«2 "Ml "«2

ISE

yu yo yai y22 "u "12 "21 «22

1 5 10 1.00 1.00 1.00 1.00 14.0946 13.5144 13.5144 13.1755 0.1172 -0.1302 -0.1302 0.1579

2 5 10 2.00 1.00 1.00 1.00 14.3704 13.3167 13.3167 12.9620 0.3324 -0.1792 -0.1792 0.1194

3 5 10 3.00 1.00 1.00 1.00 14.5179 13.1282 13.1282 12.8518 0.5757 -0.1653 -0.1653 0.0872

4 5 10 4.00 1.00 1.00 1.00 14.6153 12.9841 12.9841 12.8044 0.8013 -0.1161 -0.1161 0.0746

5 5 10 5.00 1.00 1.00 1.00 14.6846 12.8775 12.8775 12.7882 0.9979 -0.0517 -0.0517 0.0795

6 5 10 6.00 1.00 1.00 1.00 14.7355 12.7987 12.7987 12.7866 1.1662 0.0171 0.0171 0.0967

7 5 10 7.00 1.00 1.00 1.00 14.7736 12.7401 12.7401 12.7913 1.3095 0.0845 0.0845 0.1213

8 5 10 8.00 1.00 1.00 1.00 14.8026 12.6960 12.6960 12.7840 1.4317 0.1477 0.1477 0.1494
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Table 10: Effect ofmanipulating ywaon controller performance

Changes inyM2 with incrementof 1

NO M P y«i y«»2 "»tl "«2

ISE

yn yi2 y2i y22 "u "12 "21 "22

1 5 10 1.00 1.00 1.00 1.00 14.0946 13.5144 13.5144 13.1755 0.1172 -0.1302 -0.1302 0.1579

2 5 10 1.00 2.00 1.00 1.00 14.2127 13.8259 13.8259 13.5560 0.0940 -0.1468 -0.1468 0.2662

3 5 10 1.00 3.00 1.00 1.00 14.2987 13.9509 13.9509 13.6986 0.0928 -0.1630 -0.1630 0.3550

4 5 10 1.00 4.00 1.00 1.00 14.3539 14.0189 14.0189 13.7736 0.0960 -0.1806 -0.1806 0.4366

5 5 10 1.00 5.00 1.00 1.00 14.3890 14.0601 14.0601 13.8190 0.1000 -0.1979 -0.1979 0.5132

6 5 10 1.00 6.00 1.00 1.00 14.4121 14.0870 14.0870 13.8488 0.1038 -0.2142 -0.2142 0.5850

7 5 10 1.00 7.00 1.00 1.00 14.4282 14.1057 14.1057 13.8698 0.1074 -0.2293 -0.2293 0.6520

8 5 10 1.00 8.00 1.00 1.00 14.4400 14.1193 14.1193 13.8852 0.1107 -0.2434 -0.2434 0.7140

Table 11: Effect ofmanipulating M on controller performance

Changes h M with increment of 1

NO M P y»ti y«2 u*ti "*2

ISE

yn yi2 »i y22 "n "12 "21 "22

1 1 10 1.00 1.00 1.00 1.00 8.5007 8.5826 8.5826 8.7003 0.0186 -0.0273 -0.0273 0.0446

2 2 10 1.00 1.00 1.00 1.00 13.8744 13.2442 13.2442 12.8170 0.1060 -0.1212 -0.1212 0.1537

3 3 10 1.00 1.00 1.00 1.00 14.0441 13.4916 13.4916 13.1467 0.1044 -0.1221 -0.1221 0.1566

4 4 10 1.00 1.00 1.00 1.00 14.0923 13.5129 13.5129 13.1718 0.1166 -0.1305 -0.1305 0.1594

5 5 10 1.00 1.00 1.00 1.00 14.0946 13.5144 13.5144 13.1755 0.1172 -0.1302 -0.1302 0.1579

6 6 10 1.00 1.00 1.00 1.00 14.0999 13.5179 13.5179 13.1787 0.1177 -0.1306 -0.1306 0.1582

7 7 10 1.00 1.00 1.00 1.00 14.0990 13.5170 13.5170 13.1780 0.1179 -0.1307 -0.1307 0.1581

8 8 10 1.00 1.00 1.00 1.00 14.0984 13.5167 13.5167 13.1780 0.1179 -0.1307 -0.1307 0.1581

Table 12: Effect ofmanipulating P on controller performance

Changes in P with increment of 1

NO M P y«i y«2 "mi "wt2

ISE

yn yn y2i y22 "u "12 "21 "22

1 5 7 1.00 1.00 1.00 1.00 14.0946 13.5135 13.5135 13.1753 0.1178 -0.1306 -0.1306 0.1580

2 5 8 1.00 1.00 1.00 1.00 14.0920 13.5128 13.5128 13.1756 0.1175 -0.1304 -0.1304 0.1579

3 5 9 1.00 1.00 1.00 1.00 14.0926 13.5135 13.5135 13.1758 0.1173 -0.1303 -0.1303 0.1579

4 5 10 1.00 1.00 1.00 1.00 14.0946 13.5144 13.5144 13.1755 0.1172 -0.1302 -0.1302 0.1579

5 5 11 1.00 1.00 1.00 1.00 14.0972 13.5153 13.5153 13.1747 0.1171 -0.1302 -0.1302 0.1578

6 5 12 1.00 1.00 1.00 1.00 14.0999 13.5161 13.5161 13.1738 0.1172 -0.1301 -0.1301 0.1578

7 5 13 1.00 1.00 1.00 1.00 14.1026 13.5167 13.5167 13.1727 0.1172 -0.1302 -0.1302 0.1578

8 5 14 1.00 1.00 1.00 1.00 14.1051 13.5173 13.5173 13.1717 0.1173 -0.1302 -0.1302 0.1578

As per tabulated in Table 7, by changing the input weightage 1 (Uwti) from 1 to 8with

the increment of 1.0; keeping the other tuning parameters constant with control

horizon (M) = 5, prediction horizon (P) = 10, input weightage 2 (Uwa) = 1, output

weightage 1 (ywti) - 1 and output weightage 2 (ywa) " 1, the ISE for y22, ui2, u2jand

u22increased. However, the ISE for yn, yi2, y2i and un decreased.

Then, in Table 8, changing the input weightage 2 (Uwt2) from 1 to 8with the increment

of 1.0; keeping the other tuning parameters constant with control horizon (M) = 5,

prediction horizon (P) = 10, input weightage 1 (Uwti) = 1, output weightage 1 (ywti) -

1 and output weightage 2 (ywt2) = 1, the ISE for un, ui2 and u2iincreased. However,

the ISE for yi2, y2i, y22 and u22 decreased.
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After that, in Table 9, changing the output weightage1 (y^i) from 1 to 8with the

increment of 1.0; keeping the other tuning parameters constant with control horizon

(M) = 5, prediction horizon (P) = 10, input weightage 1 (uwti) = 1, input weightage 2

(ywt2) = 1 and output weightage 2 (ywc) = 1, the ISE for yn, u]2 and u2]increased.

However, the ISE for yJ2, y2i, yn and u22 decreased.

Next, in Table 10, changing the output weightage 2 (ywe) from 1 to 8with the

increment of 1.0; keeping the other tuning parameters constant with control horizon

(M) = 5, prediction horizon (P) = 10, inputweightage 1 (Uwti) " 1, input weightage 2

(ywt2) = 1 and output weightage 1 (ywti) = 1, the ISE for yn, y)2, y2J, y22, un and

u22increased. However, the ISE for ui2 and u2i decreased.

Then, in Table 11, changing the control horizon (M) from 1 to 8with the increment of

1.0; keeping the other tuning parameters constant with prediction horizon (P) = 10,

inputweightage 1 (Uwti) = 1, inputweightage 2 (Uwt2) = I. output weightage 1 (y^i) =

1 and output weightage 2 (y^e) = 1, the ISE for yn, yi2, y2), y22, uu and u22increased.

However, the ISE for ui2, u2i and y22 decreased.

Finally, in Table 12, changing the prediction horizon (P) from 7 to 14with the

increment of 1.0; keeping the other tuning parameters constant with control horizon

(M)= 5, inputweightage 1 (Uw,i) = 1, input weightage 2 (Uwt2) = 1,output weightage 1

(ywti) " 1 and output weightage 2 (y^) = 1, the ISE for yn, yi2, y2i, u!2 and

u2iincreased. However, the ISE for Un, u^ and yn decreased.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions and Recommendations

Optimisation provides the best solution towards the problem or design of process

mainly in industrial decision making because of the most cost-effective solution

feature. It is essential for the process operation to generate maximum production to

gain maximum profit without eliminating the efficient operating of the process, so

that the consumption of energy is least. MPC has a good track record in solving high

order problem and multi-variable processes.

MPC is the best approach towards solving the problem to achieve optimisation as the

feature of MPC itself in focusing the responses towards the optimum value. The study

on the effect of tuning parameters which are input weightage (uwt), output weightage

(ywt), control horizon (M) and prediction horizon (P) on the controller performance

have been successfully studied. The successful implementation of the tuning

parameters in the MPC will leadto more profitable market industries.

The analyses are just done from problems taken from books based on several

justifications to decide the tuning parameters. Then, every tuning parameter has to be

changed by keeping other tuning parameters constant to study the effect on MPC

performance. The study will be more accurate if it is done on the real industrial

problem which has much order and multi variables. Besides, the industry will benefit

more and further research can be made from the industrial problem to assist the

market industries in achieving optimization.
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APPENDIX

File Edit Debug Parallel Help

-~* ^ r. £ 2* |j w Current Folder O Program Files\MATLAB\R2011a\bin
Shortcuts ii How to Add £} What s New

Command Window

i New to MATLAB? Watch this Video, see Demos,or read Getting Started.

» deltl-O;

delayl-14;

numl-5.72;

denl-[«0 1J;

g-poly2tfd(r.uml,denl, deltl,delayl) ;

tfmal-245;

delt2-7;

nout1—1;

plant-tfd2steF(tfinal,delt2,noutl,g);

delay2-15;

num2-1.52;

den2-[25 1];

gd-poly2tfd(num2,den2,deltl, delay2) ;

delt2-7;

nout2-l;

dplant-tfd2steF(tfinal,delt2,noat2,gd) ;

model-plant;

Figure 4: MATLAB coding to apply MPC to Project 1

gu iJgTT*^**u.iJim.) uuui; ulilii hi—lu^h j

delt2-7;

nout2-l;

dplant-tfd2step(tfinal,delt2,nout2,gd> ;

model-plant;

ywt-0.5; uvt-O;

M-5; P-20;

Kmpcl-repcccn (model, ywt, uwt,M, P) ;

tend-245;

r-[ ]; usat-[ J; tfliter-! ];

dmodel-[ ];

dstep—1;

[yl, ul]-mFC3im(Flant,model,Kmpcl, tend, r,usat,tfilter,

dplant, dmodel, dstep) ;

dmcdei-dpiant; * r

[y2,u2]-mpcsim(plant,model, Kmpcl, tend, r,usat,tfilter,

dplant, dmodel, dstep);

plotalK [yl,y2J, [ul,u2],delt2) ;

pause;

Percent error in the last steF response coefficient

of output yi for input u; is :

2.1%

Percent error m the last steF response coefficient

of output yi for input uj is :

0.01%

Time remaining 245/245

Time remaining 175/245

Time remaining 105/245

Time remaining 35/245

Simulation time is 1.002 seconds.

Time remaining 245/245

Time remaining 175/245

Time remaining 105/245

Time remaining 35/245

Simulation time is 0.002 seconds.

fit >> model-plant;

* Start

Figure 5: MATLAB coding in tuning one of the tuning parameters for Project 1
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APPENDIX (Continued)

Command Window

(T) New to MATLAB? Watch thisVideo, seeDemos, orread Getting Started.

» dele - 2;

ny = 2;

gli = poly2rfd(12.S,[16.7 l],0,i);

921 - poly2tfd<6.6,[10.9 11,0,7);

012 = poly2tfd<-18.9, [21 .0 1],0,3);

q22 = poly2tfd(-19.4, [14 .4 1],0,3);

uir.cd = tfd2mod(delt,ny,gll,g21,gl2,g22);

013 = poly2tfd<3.8,[14.9 U,0,t);

023 - poly2tfd(4.9,[13.2 U,0r3>;

drr.od • tfd2ir.cd(deit,ny,gl3,g23) ;

^"•3 I ut

pitod = addumd(urtod,dmod) •

Imod = prr.cd; ;; ;3Jir,e per:

Figure 6: MATLAB coding in defining the process for Project 2

ywt = [1 1] ; -3

uwt = [1 11; % m

F = 10; % predi : .

M = 5; % cc r

Ks • ' sir.p c c or: (iir.c d, ywt, uwt, M, P) ;

tend»30;

r • [1 0); % se - 3 .

[yi, ul] = snqpcsiir. (pir.cd, irr.cd, Ks, tend,r);

plctall(yl,ul,delt)

Figure 7: MATLAB coding to apply MPC to Project 2
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APPENDIX (Continued)

» linod = pmod;% assume perfect aodeli

ywt = [12] ; %

uwt = [1 1]; % - cs

P = 10; % pre

M = 5; *

Ks = 3irpccon(imod,ywt,uwt,M, P);

tend=30; * timm ; :.-..

[y2,u2] = sicpcsiic(prcod, imod,Ks, tend,r) ;

plotall(y2,u2,delt)

» iir.od = prr.cd;

ywt = [13] ; % weic

uwt • [11]; % i _r.puts

P = 10; % ci'

M = 5; %

Ks = smpccon(imod,ywt,uwt,M,P);

tend=30; * tiree

r = [10]; %

[y3,u3] = srrpcsiir.(pir.od, irr.od,Ks, tend,r);

plotall(y3,u3,delt)

Figure 8: MATLAB coding in tuning one of the tuning parameters for Project 2
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