
1

CHAPTER 1

INTRODUCTION

1.1. Background

Heat convection involves energy transfer between a surface and a flowing fluid due

to the temperature difference between the surface and fluid. To solve analytically,

one would require the knowledge of flow field and temperature distribution. This can

be obtained by solving the mass, momentum and energy equations (namely the

Navier-Stokes equation) considering the geometry and fluid properties. However the

solution is only available for simple geometries whereas practical heat transfer

problems involve complex geometries. The approach via Newton‟s law of cooling is

more practical as it reduces convection problem to obtaining convective heat transfer

coefficients.

Therefore, this approach can be used to solve heat exchanger problems, especially if

the aim is to determine the Nusselt number correlation. Then the related heat transfer

coefficient values can be found. Ultimately, the heat transfer coefficients are used for

the purpose of sizing the heat exchanger, for instance the diameter and length of tube.

The determination of the heat transfer coefficients is best described using a tube in

tube heat exchanger, which is the focus of this project.

Take the example of a fluid (fluid A) flowing in a tube which is contained in another

tube (both forms the tube in tube heat exchanger).

Figure 1.1 Typical Configuration of Concentric Heat Exchanger

2

The fluid flowing in the annulus (fluid B) is in the opposite the fluid direction of

fluid A, thus forming a counter-flow arrangement. Say that fluid A is of a higher

temperature; therefore it loses heat to fluid B. Another assumption is that the surface

outside the annulus is insulated, thus no heat transfer occurs from annulus to the

surroundings.

The heat transfer in the tube can be calculated as follows,

 (1)

The heat transfer coefficients of the system are of interests, therefore

 (2)

With the background established, it is easier for the reader to grasp all the

information presented in the proceeding sections.

1.2. Problem Statement

From equation 1, different values of Q can be obtained by varying the mass flow

rates of Fluid A. Overall, there are three main thermal resistances participating in the

heat transfer process, and they can be represented by an overall total thermal

resistance, Rov.

In the problem, Rov consists of three terms, one being the thermal resistance caused

by convection inside the tube, second being the thermal resistance caused by the tube

wall and the third being the thermal resistance caused by convection outside the tube.

Expanding the individual terms,

 (3)

Where Ai and Ao are the surface areas of the inner and outer tube diameters,

respectively, kw is the thermal conductivity of the tube wall material.

3

From equations 1 and 2,

With,

Finally, a term for Rov can be obtained:

Now that the value of Rov has been obtained and Rw, being a constant, two unknowns

hi and ho are yet to be determined and this leads to the mathematical conundrum of

indeterminacy in the form of two unknowns and one equation.

One approach is to utilize the Wilson Plot method. In this method, Rov is varied by

having changed, since fluid velocity would influence the value of hi. On the

other hand, ho is kept constant by holding the temperature difference constant, as

well as fluid B‟s mass flow rate being constant.

Wilson deduces that, for fully developed liquid flow inside a tube,

 (4)

Since ho and the tube wall thermal resistance are constant, we group them as

Rearranging equation 3,

4

In which a straight graph (y= mx+c) can be observed from this equation. A straight

graph then can be plot for different values of and its respective value of .

The slope can be calculated as to obtain C2, whereas to C1 is obtained via the

intersection of the graph. Different values of hi can be obtained with different flow

rates. From the value of C1, the value of ho can be obtained too.

The form of the Nusselt Correlation as shown in equation 4 is of a simple one. In

many applications, the form is much more complex, with the inclusion of Reynolds

number, Prandtl number and other factors. With such inclusion, there are more

exponents (in which there is only one in equation 4, and that is n) to be deduced and

industrial practitioners such as heat exchanger manufacturers or heat exchanger

researches rely upon the values of the exponents obtained via the literature. This

presents a form of uncertainty, and the correlations are used to determine the

dimensions of the heat exchanger, using equation 4, the size is not of an optimal one,

resulting in the usage of more materials to construct the heat exchanger and the cost

is increased as well.

Therefore, in Wilson plot method a suitable Nusselt Number correlation form and its

related exponents are assumed, as evident in the above discussion. However, there

should be a method in which both inside and outside heat transfer coefficients can be

directly obtained without using any correlations a priori. That is why it is hoped that

through this project, GA can be used, coupled with the processing power of modern

computers, to avoid the cumbersomeness of the Wilson plot method, as well as to

take the advantage of GA‟s global search properties.

1.3. Objectives

The main objective of this project is to determine the various exponents and

coefficients of the Nusselt Number correlations in the plain tube and brazed plate

heat exchangers using Genetic Algorithm. Having determined these exponents and

coefficients, the heat transfer rate can be predicted and this will be known as the

Genetic Algorithm simulated heat transfer rate, QGA.

5

QGA will be compared with the heat transfer rate predicted as a result of using the

industrial given Nusselt correlations, Qindustry. Based on the concept that GA are

efficient search methods that can usually result in optimum solution and that they are

also robust searching tools, the objective is to determine the hi and ho pair that can

minimize equation 6 as follows:

where the superscripts E and S represent experimental (actual) and simulated

respectively, and N is the number of experimental data. Therefore, the actual heat

transfer rate obtained from the industry will serve as a basis in this project, as it

becomes the measure of the degree of fit between the actual heat transfer rate and the

Genetic Algorithm simulated heat transfer rate. As mentioned earlier, greater

accuracy in correlation would ensure proper sizing of heat exchangers, reducing cost

ultimately. With proper modeling and coding, this project is definitely feasible and is

expected to be completed within the stipulated time frame.

6

CHAPTER 2

LITERATURE REVIEW

2.1. What is Genetic Algorithm?

Genetic algorithm is a searching method inspired by natural evolution. Darwinian‟s

theory of evolution states that only the best will survive. Therefore, GA incorporates

the principles of evolution during the searching process.

Ultimately, the searching process in GA is used to determine a single or a set of

solutions that are optimal. Searching can be either exhaustive or intelligent. In the

former, there are no guidelines in searching – searching is performed by merely

experimenting all the possible solutions, hence the idea of brute force is noted here.

When the number of solutions is confined to hundreds, perhaps it is possible.

However, what if millions of solutions are available? Hence, certain search

mechanisms that quickly ignore inferior solutions and converge to the optimal ones

are required. GA is fit to perform such tasks.

In essence, GA is utilized in the process of searching for a set of parameters that can

optimize a problem or function. A good example would the design of a heat

exchanger. Say that the focus of design is in the diameter, and it can be correlated

with temperature, pressure drop, and fluid velocity. Under certain restrictive criteria

for temperature, pressure drop, and fluid velocity that can provide the optimal

diameter, one can employ GA to search for these three parameters that offer the best

diameter for the heat exchanger. In all optimization problems, constraints form the

backbone in the searching process. It could be said that constraints guide the search

7

towards more feasible regions, otherwise a blind search would not produce any good

results. Just as in real life, one has limited operating resources, optimization are to be

limited by constraints.

2.2. Uses of GA

2.2.1. Optimization design of shell-and-tube heat exchanger by

entropy generation minimization and genetic algorithm [8]

In this paper, a new shell and tube heat exchanger optimization method is developed

in which the dimensionless entropy generation rate obtained by scaling the entropy

generation on the ratio of the heat transfer rate to the inlet temperature of cold fluid

is employed as the objective function, some geometrical parameters of the shell-and-

tube heat exchanger are taken as the design variables and the genetic algorithm is

applied to solve the optimization problem. The fitness function is maximizing the

negative of the entropy generation function suggested by Hesselgreaves. GA is

applied to solve the multi-variable problems which not only yield global optimum,

but also demonstrates the flexibility to select the design variables and constraint

conditions.

2.2.2. Robot Trajectory Planning [2]

A robot trajectory describes the position, orientation, velocity and acceleration of

each robot component as a function of tie. In this example, the robot is a two-link

arm having two degrees of freedom in a plane called the robot workspace. An

obstacle has to be taken into account when designing the cost function, since the

robot is required to move without colliding with the obstacle. Thus, the cost or

fitness function represents the length of the line required to get from the starting

point to the ending point as prescribed by the user, with the inclusion of the obstacle

as mentioned. The genetic algorithm is then utilized to determine the shortest path

from start to finish. The results show that the path becomes shorter as the GA

progresses.

8

2.2.3. Solving Job-Shops Scheduling Problems [2]

In this paper, GA is applied to determine the sequence of task that can satisfy the

constraint of the job-shop problem, namely the precedence constraint, which is

defined by the sequential routing of tasks within a job since the inter-tasks sequence

are predetermined and capacity constraints which restrict the use of each resource to

only one task at a time, in a sense that two tasks that use the same resource cannot

overlap or precede over one another. To come up with the fitness function, a strategy

is defined to build a scheduling from the individual representation of the sequence,

then the completion time of every job is calculated, and the maximum value of these

times, that is the makespan, is the fitness value of the individual.

2.2.4. Optimal Design of Heat Exchangers: A Genetic

Algorithm Framework [1]

In this paper, the authors apply GA to come up with the optimal design of heat

exchanger. Particularly, they were attempting to reduce the heat transfer area for a

given amount of heat duty. They encoded the solution to the optimization problem in

the form of a particular heat exchanger configuration. This includes baffle choices,

number of shells in series, number of tube passes, tube length and layout, etc,

subjected to feasibility and vibration constraints. Feasibility constraint is to

determine if the particular heat exchanger configuration generated is feasible or not,

while vibration constraints takes into account that less baffles are used to reduce

pressure drop due to large flow velocities and this constraint helps the GA to come

up with practical HX configurations solutions. The authors compared the results

supplied by a company that use base-case design to come up with the optimal heat

exchanger. Results show that GA could improve the results by further reducing the

area and cost for the given heat load, and present savings in computational time as

well.

2.2.5. Determination of Thermal Compact Model via

Evolutionary Genetic Optimization Method [5]

9

In this paper, GA is applied to determine a thermal compact model of a micro lead

frame package, which is then used to compute the junction temperature for various

boundary conditions. First a star shaped network is used as a basis network since it is

basic and the simplest network.

The R1, R2, R3 and R4 values are considered the solutions in GA. Together they are

tested for 38 different boundary conditions that will give rise to the different values

of h1, h2, h3 and h4. Then they are solved via the Gaussian elimination method to

obtain the junction temperatures since the following matrix is needed:

Figure 2.2 Simultaneous Equations to Solve for the Desired Temperatures

The obtained temperatures are compared with the Finite Element method generated

junction temperature and the difference becomes the objective or cost function. The

first cost function value obtained is used as a basis of comparison for other networks.

2.2.6 Hybrid Genetic Algorithms for Structural Reliability

Analysis [9]

In this paper, GA is used to search for the minimum reliability index of a structural

system with ANN (Artificial Neural Network) is utilized as a metamodel.

Metamodel resembles that of a model without any mathematical derivations and

equations. The reliability index is subjected to the minimization of the limit state

Figure 2.1 Star shaped resistance network

10

function. In real life, the design problem can be large, and the limit state functions

which are generated from finite element codes, in which they are implicit in terms of

random variables. In other words, if GA alone is used, then each and every time

when the limit state function is required, the finite element codes or program have to

run and this will result in severe down-time, as finite element program usually takes

a long time to reach a solution. However, this problem can be avoided by having an

approximate limit state function by first employing the inputs and outputs of the

finite element software into ANN. Once ANN recognizes the behavior that

determines the limit state function, future predictions of the limit state function can

be made, though they are more of an approximation. In spite of this, a lot of time can

be saved. Again, GA relies on the parameters generated by the ANN metamodel.

2.3 Summary

In essence, the papers above discuss the capabilities of GA. The paper that bears

greatest resemblance and importance to this project is the Determination of Thermal

Compact Model via Evolutionary Genetic Optimization Method paper. In this paper,

the temperatures at each junction are to be optimized by considering the boundary

conditions and resistances of each junction. The fitness function is the percentage

difference incurred between the GA derived temperatures and the Finite Element

model generated temperatures. Therefore, the authors were interested in obtaining

the values of the resistances, which are later utilized to introduce a better thermal

compact model of the circuit that can be used to predict a more accurate junction

temperature of complicated components. For this project, since the experimental data

of the heat transfer is available, the inside and outside heat transfer coefficients can

be determined by lowering the difference between the experimental and GA

simulated heat transfer, the method being similar to the aforementioned paper. Thus,

through the literature review, a comprehension of the applicability of GA can be

made, and the way to model the problem in such a way that it can be implemented in

GA can also be found and studied from the papers.

11

CHAPTER 3

METHODOLOGY

3.1. Implementation of Genetic Algorithm

Observing equation 3 again, it is a problem with one equation and two unknowns. In

conventional method, this can be reduced to one equation and one unknown by using

a Nusselt Number correlation to first either the inside or outside heat transfer

coefficient. However, errors incurred in the correlation for one side of the heat

transfer coefficient will have a pronounce effect in determining the other side of heat

transfer coefficient.

On the other hand, performing exhaustive search to determine the heat transfer

coefficients directly is not an efficient method. This is due to the multidimensional

nature of the problem. If it were only one dimensional then the exhaustive search

appears to be feasible. Attempting different combinations for the values of ho and hi

seem to be a close to impossible task, even with today‟s modern parallel computers.

GA is an intelligent search method. Used in many heat transfer problems,

particularly related to the heat exchanger design problems, GA shows good potential

at arriving in optimum solutions. Thus, GA searches for the parameters or solutions

that will maximize or optimize a user-defined function. An added advantage is that

GA does not require the derivative information in guiding its search. Full-blown or

deliberate mathematical modeling is not needed. The basics of GA will be briefly

described in the following.

12

3.2. Encoding

GA works on the encoding of the solution of the problem, meaning that the

parameters of a function are encoded in a way that can be manipulated by GA. For

instance, in the function of , where one would wish to find the value of x

that optimize y, x can be encoded as binary numbers, 1 or 0, such as

1 0 0 1 1

This binary representation can be converted to decimal and vice versa. In GA, one

binary representation of x is known as individual. A group of individuals is known as

population. However, it is important that one establishes a constraint to the values of

x, so that GA would „know‟ which boundary it should operate at. This is particularly

important in real-life problems, for instance in heat exchanger optimization, where

pressure drop is one of the parameters to be optimized, a certain amount of pressure

drop has to be defined. Otherwise the solution would be impractical and infinite. In

the GA that the author has implemented, continuous encoding was utilized, in which

the two parameters are encoded in this manner:

200 300

The first cell represents the first parameter in the objective function, and the same

goes for the second cell. Such encoding paves the way to solve future problems,

where the heat transfer coefficient could reach the range of 1000 W/m.K, and such

value is impossible to be represented by binary encoding.

3.3. Fitness Measure

Each individual in GA will be assigned a fitness measure, which measures how good

the solution is. In the previous example, the fitness value is the value of y

corresponding to the particular value of x. Be noted that the binary values of x has to

13

be converted to integer values before y can be evaluated. Sometimes the fitness

function is unknown and it could be generated by external software, without the user

having to derive any mathematical models.

Fitness therefore serves as an indicator of the individuals‟ performance in GA. The

relative fitness of each individual is the individual‟s fitness divided by the

population‟s total fitness. A larger relative fitness of an individual means that the

individual has a better performance or quality, relatively to other individuals. Thus,

in Roulette Wheel selection, this individual has a larger chance of being selected.

3.4 Selection

Roulette Wheel selection represents another phase of GA which is the selection

process. The selection process is to select individuals that are deemed „good‟ into the

mating pool. The mating pool will be discussed later. A fitter individual will have a

larger slice of pie in the wheel, and as it is spun, it has a greater probability of being

selected. Therefore, through the selection process, inferior individuals can be

eliminated to give way to better individuals.

3.5 Crossover

In the mating pool, individuals selected will be known as parents. Randomly, two

dissimilar parents will be selected to create new offsprings via crossover.

Parent 1: 11001|010

Parent 2: 00100|111

The | line indicates the crossover point and it will also be randomly selected. In this

example, the bits that appear after | will be swapped, producing two offsprings:

Offspring1: 11001|111

Offspring2: 00100|010

14

Crossover exchanges information between the two parents and produce different

offsprings as a result. The offsprings retain the good features of the parents and since

the selection ensures that „good‟ parents are selected, one can expect the average

fitness to increase. However, since continuous parameter encoding is utilized,

consider:

Parent 1: 200,100

Parent 2: 500,350

The comma is a representative of the cell, as mentioned earlier. To perform

crossover, select a crossover site, which is the second cell as depicted. Then,

Child 1 (2): Parent 1(2) - beta*(Parent 1(2)-Parent 2(2))

Child 2 (2): Parent 2(2) + beta*(Parent 1(2)-Parent 2(2))

The number 2 in parentheses represents the value of parent 1 at cell 2, and so forth.

Then,

Child 1: Parent 1(1) , Child 1 (2)

Child 2: Parent 2(1) , Child 2 (2)

after the crossover process. Beta is a random value between 0 to 1. According to

Haupt in [6], such crossover method in continuous parameter GA can avoid the child

values from being out of the desired range.

3.6 Mutation

Mutation, on the other hand, introduces diversity into the population. In search space

whereby many local optima exist, mutation can help the searching process in

escaping from the local optima. Do perform mutation, a bit is randomly selected and

it is indicated by the bit being underlined:

Individual: 11001111

In this example, bit 1 at the sixth position from the left is selected. Mutation merely

flips that bit into bit 0:

15

Individual: 11001011

Mutation clearly alters the structure of the individual that has undergone crossover.

This can sometimes induce instability in the search process and therefore it should be

used sparingly. For mutation in continuous parameter GA, the mutation site is

selected, which is underlined as shown:

Individual: 200,100

Then, what needs to be done is the replacement of the value at the mutation site with

a random value that is within the desired range.

3.7. Framework/Flow chart of GA

Figure 3.1 Flow Chart of GA

GA is in truth an iterative method and the way it runs can be described by the figure

above. All GA processes are covered in the preceding sections. The termination

criterion, a search limit imposed by the user, is checked. If that criterion is fulfilled,

then the GA iteration is completed. If not, the number of evaluations will be checked.

16

If it exceeds the maximum number of evaluations, the whole searching process has

to be restarted, this time around with another group of random parameters to begin

with. If it does not exceed the maximum number of evaluations, the new parameters

will be brought to the selection process again as shown in the framework.

3.7.1. Encoding

Encoding refers to the representation of parameters to be optimized. There are

several encoding methods such as binary and real number encoding. In this problem,

the real number encoding method is employed as it provides an easier form of

implementation. The encoding takes the form of an array of numbers, whose size is

determined by the numbers of parameters. Using this array, various manipulations in

GA such as selection, crossover and mutation can be implemented.

Ultimately, it is of great interest to know the form of the Nusselt Number correlation

as this provides an opportunity for greater prediction of heat transfer rate, thereby

optimizing the area of heat exchanger with respect to the heat transfer rate.

However, it should be noted that GA is not an elixir to any optimization problems.

Much would depend on how one could provide essential information for the GA to

search in a manner that one desires. That is, as evident from the previous results of

MNCGA, one needs to modify the cost function and fitness evaluation so as to

enable GA to land at feasible answers.

Even better for GA, if it could „overlook‟ the overall trend surrounding the search,

especially in curve-fitting type of functions. For example, the correlation involved

would depend on several non-dimensional numbers, namely Nusselt Number and

Prandtl Number. It would be more efficient for GA to perform the search if these

terms are included as part of the searching mechanism.

Instead of having to find individual pairs of inside-outside heat transfer coefficient

values, and form Nusselt number correlations using curve-fitting software, these

cumbersome steps could be alleviated via searching for the coefficient values related

to each non-dimensional terms.

For instance, a typical form of the Nusselt number correlation is considered:

17

The C, m and n values can be found via GA. Subsequently, the U value can be

obtained and the heat transfer rate value, denoted here as QGA, can be calculated.

QGA will be used in the cost function.

Figure 3.2 The encoding of the parameters, in an array

The array of parameters are also known as chromosome, and through the processing

in GA, the optimal C, m and n values can be estimated. As mentioned in the

methodology section, at the beginning a group of these arrays or chromosomes will

be generated, with their values randomly dispersed, in the range specified by the user.

3.7.2. Fitness Measure/Function

As mentioned previously, the cost function is required to measure the quality of the

parameters. It is also used in the selection process to eliminate inferior parameters. In

this problem, the cost function can be employed as shown in equation (4). Literally,

it would imply that parameters that produce the heat transfer rate which is close to

that given as experimental heat transfer rate values would be considered to be of

higher quality and feasibility of selection of these parameters are much higher, and

vice versa.

3.8. Niching

Imagine an environment inhibited by various species of nature. In accordance

to the herd rule, animals of the same type will compete for food, and eventually the

strongest animal of all in that category/species will dominate and get the biggest

18

portion of the food. However, there will be stronger animals of other types and

eventually the weaker ones will be dominated by the stronger types.

Humans are a good depiction of the above scenario. Being the most

intelligent species, humans have control on the environment and its other inhabitants,

not the other way around. Hence, niching in GA aims to promote inter-niche (in

biological terms meaning the competition between the same species of animal)

competition. Of course, there will be situations whereby the competition will also be

held between animals of different types but this is inevitable in nature. By promoting

inter-niche competition, it is hoped that the GA can have individuals that converge to

various local optima (winners in the respective niche) and with this stepping stone,

the global optima could be achieved.

3.8.1. Multi Niching GA (MNCGA) [7]

MNCGA was developed by Cedeno and Rao from the Hewlett Packard

Laboratories. The aim of MNCGA is to promote competition among similar

individuals. The main purpose of MNCGA is to ameliorate the selection pressure

caused by the fitness proportion selection/roulette wheel selection in the normal GA.

This objective is achieved by encouraging mating and replacement within members

of the same niche while allowing some competition for the population slots among

the niches. By doing so, this offers a balance between exploration where no

restrictions are imposed (this is evident in the fitness proportionate selection process),

allowing freedom in exploring more individuals of different type in the search space,

while converging to the best individuals in different niches. MNCGA is also utilized,

in addition to the normal GA, in this report.

It is best to describe the MNCGA using its algorithm.

1. Crowding Selection

This step replaces the fitness proportionate selection. Instead of choosing the fitter

individuals to survive into the next generation, crowding selection first selects a

parent, denoted by Ix. Then its mate, Iy is selected from a small group of individuals

19

with the size s (not from the entire population) by virtue of their phenotypic distance.

This distance can be defined as the difference between the decoded values of the

individuals. The smaller the difference, the more similar the individuals are.

Individuals in the group of size s are chosen randomly without any restrictions from

the population, and they can be picked with replacement. Thus, with crowding

selection, every individual in the population has a chance to mate, unlike the fitness

proportionate selection method whereby individuals of relatively higher fitness get

chosen for most of the time. This process also allows a great deal of exploration

while exploiting the similarity between individuals from the same niches. By having

individuals of the same niche to mate, one is ensured convergence to local optimum.

On the other hand, there is also the probability that individuals of slightly different

niches will mate, but there is no reason to fret on this because this is where the

exploration comes in. Having selected the mate, one just has to perform the

crossover operator on the parents. If there are two offsprings, one can either opt to

insert the two offsprings back into the population based on the WAMS operator to be

described later, or select the best offspring of the two to be inserted back into the

population.

2. Worst Among Most Similar (WAMS) Operator

This operator is performed after the crowding selection step. This step aims to

replace the worst individual based on the WAMS operator with the offspring that is

produced from the crowding selection operator. First, we need to select f number of

crowding groups with g number of individuals from the population. Then one

individual from each f number of crowding factor groups is selected to form f

number of individuals as candidates for replacement by the offspring. The selection

of f number of candidates for replacement is based on the similarity with the

offspring. One member which is of the lowest fitness in the crowding factor group

will be eliminated and replaced by the offspring.

20

For a better depiction of the WAMS operator,

Figure 3.3 WAMS operator

After the offspring is inserted into the population, it will also compete for survival

with other individuals. In WAMS operator, the offspring will most likely replace a

lower fitness individual from the same niche. On the other hand, there exists the

possibility of the offspring replacing the individual of higher fitness (with respect to

the offspring) from the same niche or other niche. This provides the balance to the

MNCGA by allowing diversity to exist within the population.

The MNCGA framework is as follows:

21

Figure 3.4 Flow Chart of MNCGA

3.9. Project Execution

3.9.1. Project Activities

Figure 3.5 The Framework of the Project

The figure above depicts the main activities or methodology to achieve the

objectives of this project. After establishing the problem statement and objectives,

the theories and information related GA are obtained via journals, text books or

websites, and these information would provide the author an idea on how to execute

the project, in relation to the objectives. Undoubtedly, the tools in which the GA can

be coded upon are of essence. Microsoft Visual Basic provides the means of which

22

the GA can be coded to the user. Utilizing the coding tools and theories of GA, the

codes needed to achieve the objectives are spelt out from scratch. No built-in GA

function is available in VB as VB is a coding tool that is similar to C++ (object

orientated programming tool).

Using the theory of GA, the model can be coded in a procedural manner. The main

loop consists of application of GA until it reaches the number of generations

specified by the user. When the termination criterion is not reached, GA will restart

from the beginning.

Having done with the GA model, the industrial data is required. After the Nusselt

number correlations‟ exponents and coefficients are obtained from GA, the heat

transfer values can be obtained and compared with the experimental heat transfer

values to observe error incurred between the GA simulated heat transfer rate and the

experimental (actual) heat transfer rate. The aim is then to ensure the degree of error

is small as compared to the industrial application‟s form of Nu correlation.

3.9.2. Gantt Chart

FYP 2 Gantt Chart

Figure 3.6 FYP 2 Gantt Chart

The figure above shows the details that make up the entire activities for the FYP 2,

current status and duration taken (indicated by yellow boxes). Since the current stage

represents the last phases of FYP 2, most tasks have already been done or performed.

23

The use of Gantt chart enables the author to track and monitor the project progress,

thus ensuring all deliverables are handed in on time.

3.10. Summary of the Code

Basically the code structure is procedural, meaning that all functions are executed

from beginning to the end. The class object in VB is utilized thoroughly to aid in the

coding of the GA. Such method would allow the chromosome structure to be

codified in a simpler manner, and could be easily manipulated by the various GA

processes in the later stage. Furthermore, the graphical user interface options could

allow for easier view of the results, as well as the input of the data, in which the data

just needs to be inserted into a built-in spreadsheet in VB, and a few lines of codes

would allow these data to be included into the GA code for process.

CHAPTER 4

RESULTS

4.1. Overview of Results

In this section, several results will be discussed. Firstly, the results of two simple

function minimization problems will be presented, with the aim to make initial

comprehension easier to the reader. A sample problem in the Incropera‟s heat

transfer text book will be attempted as well. Then, the results of the exponents and

coefficients that are related to the Nu correlation will also be presented, together with

the RMS error versus the data point curve, to establish the difference between the

GA-formed Nu correlation and Industrial-given Nu correlation.

24

4.2. Function Minimization Problem

Two function minimization problems were attempted and they were:

In which X and Y were the parameters to be operated by GA in order to arrive at the

global minimum of the two functions. To make observations easier, the results will

be elaborated based on the two functions. The fitness landscape which represents the

level of fitness, based on the function itself, can be shown as in the next two figures:

Figure 4.1 Fitness Landscape of Function 1

25

As

evident from the fitness landscape of these two functions, there exist multiple local

optima (in the form of valleys as can be observed from figure 4.1 and 4.2), in which

normal optimization methods like hill climbing often find the searching process

undone at this local optima points. GA, being a global search method, is capable to

search for the solutions are very close to the global optima.

4.2.1. Function F1

For simplicity‟s sake, only the first 20 results are shown, where they have been

arranged

in descending order, from high to low final fitness values:

Figure 4.2 Fitness Landscape of Function 2

Table 4.1 Results of Function 1

26

The first function F1 is to be minimized with the conditions or constraints of {0 : X :

10} and {0 : Y : 10}. Due to the fact that this is a minimization problem, all negative

fitness values are multiplied with negative one to make computations and coding

easier. However, if fitness values computed are positive, they are imposed with

penalty and end up as:

F1 = 0.001

Therefore, unfeasible solutions of X1 and X2 are slowly eliminated. Another

observation that can be made is based the graph of average population fitness vs

generation:

Figure 4.3 Fitness vs Generation Curve for Function 1

The cost function decreases with the increase of generation, corresponding to the

objection of minimization. This is due to the elimination of unfeasible solutions and

the recombination via crossover operations to produce fitter individuals or

parameters.

4.2.2 Function F2

For simplicity‟s sake, only the first 20 results are shown, where they have been

arranged in descending order, from high to low final fitness values:

27

The second function F2 is to be minimized with the conditions or constraints of {-6 :

X : 6} and {-6 : Y : 6}. Due to the fact that this is a minimization problem, all fitness

values are to be in such a form, to make

Fitness = 1 / F2(X , Y)

computations and coding easier. Another observation can be made with respect to

the graph of average population fitness vs generation:

Figure 4.4 Fitness vs Generation Curve for Function 2

Table 4.2 Results of Function 2

28

The fitness of the population increases from generation to generation. In truth, the

global minimum for this function is zero, however, due to the nature of the

manipulation of continuous numbers, the value obtained is close to zero, where X

and Y are 3 and 2 respectively.

Based on the fitness versus generation curves, it can be deduced that through the

fitness evaluation and selection methods, the best solutions are preserved from time

to time. Using GA processes such as crossover and mutation, varieties are introduced

into the pool of solutions. Variation is important and crucial as it allows GA to

sample with numerous solutions. The selection method will not only preserve the

best individuals, it will also serve to check that the sampling is done in the correct

„direction‟, meaning that the search will be guided towards the area that has higher

probability of global minimum or maximum. For the application of heat exchangers,

the developed GA code will serve as a backbone to solve these problems and hence

achieving the prescribed objectives.

4.3. Incropera’s Textbook Problem

There is a problem related to the concentric heat exchanger given in Incropera‟s heat

transfer text book [4]. In that particular problem, the objective was to determine the

length of the heat exchanger. For the project that the author undertakes, the problem

is reversed – in which the values of the inner and outer heat transfer coefficients are

sought out, rather than determining the coefficients first, then the geometry.

However, in Incropera‟s example of calculation, many simplifications were made,

especially in the calculation of the overall heat transfer coefficient value, U. Thus, all

calculation are made or performed exactly as shown in the example problem.

4.3.1 Results

Table 4.3 Example Problem Results 1

ho hi fitness

2264 38.42 47.77846

2493 38.36 42.32586

2073 38.48 65.80698

2335 38.4 51.13799

29

2164 38.45 81.54128

2373 38.39 224.2397

2452 38.37 230.055

2299 38.41 239.0287

2776 38.3 157.9888

2581 38.34 723.5419

The results above are obtained with the terminating criteria set at 0.01, which is the

allowable difference between QGA-simulated and Qexperimental. Any combinations of ho

and hi that yield the difference below than that criteria will result in the termination

of the searching process.

In the example, hi and ho values are 2250 W/m2.K and 38.4 W/m2.K, respectively.

However, a simple back-calculation will reveal that the Q value generated is not

8524 W, but 8518.773611 W, as some values are lost when the round-up of numbers

is performed.

If the Qexperimental for which the comparison basis is set at is given by the value of

8518.773611 W, the following results are obtained:

Table 4.4 Example Problem Results 2

Hi Ho Fitness

2250 38.4 2515711

2250 38.4 2515711

2250 38.4 2515711

2250 38.4 2515711

2250 38.4 2515711

2250 38.4 2515711

2250 38.4 2515711

2250 38.4 2515711

2250 38.4 2515711

2250 38.4 2515711

The results give a clear indication that for the application in this project, GA mainly

serves the purpose of data fitting. It does not really recognize which heat transfer

coefficients are more superior, in the context of theoretical aspect.

30

4.4. Application on Heat Exchangers

GA is applied to determine the coefficients associated with the Nusselt number

correlations for two geometries: (i) a straight tube concentric heat exchanger and (ii)

a brazed plate heat exchanger. The root mean squared (RMS) error is then plotted

against various data points obtained from the industrial data, to provide a comparison

of the rms error between the industrial-given Nusselt number correlation and GA-

generated Nusselt number correlation, as well as the MNCGA-generated Nusselt

number correlation.

4.4.1. Straight Tube Concentric Heat Exchanger

Equations (9) and (10) are the industrial-based Nu correlations for the concentric

tube heat exchanger:

a) Application via GA

Using the GA-based Nu correlations, the heat transfer rate could be obtained. The

RMS error is then the difference between heat transfer rate predicted by the GA-

based Nu correlation and industry Nu correlation.

31

Figure 4.5 RMS error vs data point for straight tube heat exchanger (GA)

b) Application via MNCGA

Figure 4.6 RMS error vs data point for straight tube heat exchanger (MNCGA)

32

Based on the figure 4.5, out of 50 data points, 32 showed an improvement, which

implies a reduction in error in predicting the heat transfer rates. The remaining data

points are not improved (indicated by red circles), but the error range in which these

data points occur is below 2%, which is still well-accepted. In addition, the highest

RMS error has also been reduced from 3.7 % to 3 % in the case of the GA-based

Nusselt number correlation.

Similarly, the correlation produced as a result of running the MNCGA algorithm

generates 32 points which are improved over the industrial Nu correlation.

Compared to the GA-based Nu correlation, the highest RMS error for the second

application using MNCGA has been reduced from 3.7 % to 2.8 %. Hence, MNCGA

is able to find the parameters which are even closer to the global optimum.

In essence, both GA and MNCGA generate correlations which incur less prediction

error than the industry-based Nu correlation, in a broad sense. It is rather difficult to

have all data points improved, due to the quality of the data. GA cannot account for

all experimental errors since what GA really does is reducing the fitting error

between the experimental heat transfer rate and GA-simulated heat transfer rate, and

in this case, the lowest error is incurred for the improvement for all data points,

rather than a few data points.

4.4.2. Brazed Plate Heat Exchanger

Equations (15) and (16) are the industrial-based Nu correlations for the brazed plate

heat exchanger:

a) Application via GA

33

Figure 4.7 RMS error vs data point for brazed plate heat exchanger (GA)

b) Application via MNCGA

34

Figure 4.8 RMS error vs data point for brazed plate heat exchanger (MNCGA)

Based on figure 4.7, out of 19 data points, 15 showed improvements in predicting

heat transfer rate, whereas 4 were not improved (indicated by red circle). Again, the

4 unimproved data points are still below 2 %, a well-accepted limit. The highest

RMS error is reduced from 3.5% to 3.3 %.

Meanwhile, figure 4.8 shows that similar to the previous case (GA application) for

the application of MNCGA, 15 showed improvements in predicting heat transfer rate,

whereas 4 were not improved. However, the RMS error is reduced from 3.5 % to

3 %, in the case of MNCGA application.

From the results of both heat exchanger applications, GA and MNCGA produce an

almost identical performance, with MNCGA slightly better off in the reduction of

highest RMS error.

CHAPTER 5

DISCUSSION

5.1. Overview

35

In this section, the coding structure will be explained and discussed as this is the

essence of the work done by the author. It is also hoped that such discussion will

provide the readers a rough idea, should they decide to utilize and code GA in the

future. The results obtained will also be analyzed and discussed.

5.2. Explanation of the Code/Coding Structure

In this section, some explanations will be given with regards to what is actually

happening based on the implemented codes. The algorithm is easily available in all

literature, but the implementation via coding is heavily dependent on the user. For

instance, it is easy to say that an individual can be eliminated or selected for survival

in the selection step. However, how can the actual elimination or selection done, in

coding terms? Thus, the explanation can give one an insight into the actual process

or translation of those algorithms into real, practical use.

5.2.1. Preprocess

- This step is to produce random values of ho and hi.

- Random values are generated based on

Value = random * (hi – lo) + lo

in which hi = upper bound value, lo = lower bound value, random = a random

number between 0 to 1

5.2.2. Roulette Wheel Sorting

- This step is to arrange the various combinations of ho and hi values to form the

various sections or „pie‟ in the roulette wheel.

- First the total fitness will be calculated, based on the contributions from each ho –

hi combination.

- The relative fitness will be calculated for each ho – hi combination, by dividing the

fitness value with the total fitness value.

36

- The relative fitness values will be sorted in an ascending manner, with their

associated numerical arrangement of ho – hi kept in an array.

5.2.3. Roulette Wheel Configuration

- In this step, the roulette wheel will be formed, based on the numerical arrangement

of ho – hi values stored in the array shown in the previous step.

5.2.4. Selection

- Having formed the roulette wheel, the selection in which the survival of which ho –

hi values will be determined.

- From the first combination of ho –hi values, a random number between 0 to 1 will

be generated.

- If the random number falls between 2 designated values in the roulette wheel, the

numerical arrangement of the ho – hi value that results in those 2 designated values

will be selected and stored in another array, given as status array for explanation

purposes.

- Otherwise, the selection will be ignored and another portion in the roulette wheel

will be tested.

5.2.5. Create New Generation

- Like its name implies, a new breed of population will be created, based on the

survival mechanism selected in the previous step.

- Using the array, status array as indicated previously, new copies of population will

be created using the clone function available in VB.

- The creation of new generation will proceed until the number of population has

been exceeded in the iteration.

5.2.6. Choose Mate

- This step is to select mating partners for the individuals in the population.

37

- First, an array of numbers, based on the number of population, will be created to

store the numerical arrangement of each individual. As an example, individual 1, 2, 3

will be stored as 1, 2, 3 in the array.

- A number in the arrangement will be selected and removed from the array. The

selection of a number to partner the previously selected number will be done,

similarly.

- Thus, a pair of different numerical arrangement can be obtained. By diminishing

the numbers in the array, an individual cannot be allowed to mate for more than once.

5.2.7. Crossover

- Based on the pairing of numbers performed in the previous step, each pair of

individuals will be selected.

- The crossover site will be generated randomly.

- For the continuous number crossover, the crossover operator given by Haupt will

be performed.

5.2.8. Mutation

- A random number between 0 to 1 will be generated. If the specified mutation

probability exceeds the random number, mutation will be performed. Otherwise, this

step will be skipped.

- A random mutation site is chosen, and a random number based on the user

specified range will replace the current number at the mutation site.

5.3. Results Discussion

1. Based on the results of the function minimization problems, the following

discussions can be made:

a) GA is a robust search model, in which it can perform search even in the fitness

surface with many local optima. The strength in GA lies with the fact that it works

on many potential solutions, which are randomly generated. As observed, only

solutions which are fit stand a higher chance to survive, and when they are combined

38

via crossover operator with other solutions, they will improve in terms of fitness

from generation to generation. On the other hand, mutation allows the solution to

„jump‟ out of local optima and this introduces variety to the population.

b) Variation is extremely important in GA. This implies that at the beginning, there

should be enough solutions of different values for GA to sample with. High variety

would lead to more efficient crossover operations, where else similar individuals or

solutions that cross over would result in stagnation, i.e. the solutions do not improve

much. In fact, with fitness landscape of many local optima, variation of individuals

or solutions is important to ensure that the searching process is not biased towards

certain optima only.

c) The Roulette Wheel selection process eliminates weaker individuals, leaving

stronger individuals to dominate. However, if the initial population is insufficient or

lacking in variety, the selection pressure would leave the GA to concentrate on

suboptimal solutions. The role of mutation is therefore important here, to lead the

search out of local optima. However, based on the work by Cedeno and Rao[7], a

multi-niching Genetic Algorithm can be implemented to allow various local optima

to emerge throughout the generations. Towards the end, the algorithm will slowly

focus towards the best among the local optima, i.e. Global optima. This is why

through this research, the MNCGA will be utilized on the heat exchanger application

(Nu correlation) too. There is a good prospect of including elitism, a selection

mechanism where the fittest individual will be survive in the next generation, at this

stage where the multiple local optima are emerging. Elitism can be used to direct the

search towards the global optima among the local optima or hills.

2. Based on the results of the text book example problem, the following discussions

can be made:

a) If the target Qexperimental is 8524 W, consider two results that have been obtained:

ho hi fitness

2229 38.43 31.78333

39

2581 38.34 723.5419

As can be seen, the fitness measure of the first set of ho-hi combination is not as high

as compared to the second set, though the ho and hi values might be closer to 2250

and 38.4, the optimal values as provided in the example. Despite the fact that the first

set of ho-hi combinations are closer to the optimal values, they might not fit as good

as the second set to the Q value of 8524 W.

b) One deduction to this observation would be GA will merely search for ho-hi

values that could best-fit the heat transfer value, Q. This is why when 8528.358373

W is chosen as the Q for fitness measure purpose, the following result could be

obtained and no other ho-hi combinations can be better than the ho-hi combination

resulting from the fit with this Q value data.

ho hi fitness

2250 38.4 2515711

The difference between 8528.358373 W and 8524 W is about 0.05 %, but it could

make a difference when the data fitting of ho-hi combinations to the given Q is

concerned. This strengthens the fact that GA could not operate more than what it is

expected, as it tries, mathematically to reduce the error between the experimental Q

and GA-simulated Q values.

c) Thus, one cannot discount the possibility that the various combinations of ho and

hi that result in the lowest error between QGA-simulated and Qexperimental can be found, but

they do not produce good correlation. The major limitation here lies in the

experimental heat transfer rate. With lower experimental error, the chances of having

better values of heat transfer coefficients for better Nusselt Number correlations are

higher.

3. Based on the results of the exponents and coefficients in the Nu correlations of the

heat exchangers, the following discussion is made:

40

a) As mentioned earlier, GA is unable to account for any variations or uncertainties

in the experimental data. GA can only process those data in accordance to the fitness

measure and undoubtedly, it is not possible for GA to detect any errors in the data.

The major limitation here lies in the experimental heat transfer rate. With lower

experimental error, the chances of having better values of heat transfer coefficients

for better Nusselt Number correlations are higher. Observing the RMS error versus

data point graphs, in truth the experimental error is well within the established

engineering error limit of 5 %. However, if this could be improved in the future the

quality of the data fed to GA will also be enhanced and as a result the correlations

could be improved as well.

b) GA provides a framework which can be the basis for searching parameters that

would optimize certain functions. However, the manner in which the GA conducts

the search is very much dependent upon the user. GA can only find values that

would either maximize or minimize certain functions but these values are influenced

by the quality of the data given. The errors in the Reynolds number and Prandtl

number have a pronounced effect in the prediction accuracy of the heat transfer rate.

Then again, this is not something that is within the control of GA.

c) The basic GA and MNCGA produce results that are of different level accuracy.

As can be observed from both heat exchanger applications, the highest RMS error

has been reduced even more in the case of MNCGA as compared to the basic GA. In

fact, out of the improved 32 data points in basic GA and MNCGA, MNCGA could

further reduce the prediction error of 22 data points. This implies that MNCGA

possesses the ability of being able to locate the solutions even closer to the global

optimum. However, the improvement rate is not very significant. Thus, for future

problems, basic GA could still be implemented. It is much easier to understand and

poses lesser parameters for control as compared to MNCGA.

d) As for the Nu correlations in the straight tube and brazed plate heat exchangers,

majority of the data points were improved. For the few data points that could not be

improved, the author has attempted to form the correlation based on those data points.

However, it is not possible within the feasible and typical search limits as the error

criterion value is rather high, eventually after the search, meaning that the exact

41

opposite occurs where a majority of the data points could not be improved. In the

case of a brazed plate heat exchanger, the geometry on adjacent plate channels is

identical. This involves the plate wavelength, the amplitude of the plate‟s waviness

and the Chevron angles. Unlike in the case of the fully developed turbulent pipe flow,

no well-established correlations are available. Heat transfer coefficients are

determined here by holding the flow constant on one side while the velocities and

Reynolds numbers are varied over the turbulent regime of flow on the other side. By

extrapolating to zero resistance on the side of the variable flow rate, the heat transfer

coefficients are determined for the constant flow side. Because of the greater

tortuosity of the flow in the plate spaces and the uncertainties in the pattern of flow,

the correlations derived have a higher inherent error.

An advantage with the plate-frame exchangers is that, due to the similarity of flow

paths on either side, the form of the correlations on both sides could be taken to be

identical, with the exponents for each term being identical. However, the heat

transfer coefficients are not expected to be the same on either side even at the same

flow rate. This is purported to be on account of the difference in the diameter at the

entry for the two fluids.

CHAPTER 6

CONCLUSION AND RECOMMENDATION

42

Through literature review, it can be concluded that GA is indeed a powerful

optimization tool. Traditional optimization methods often get trapped in local

minima as the local „hill‟ is perceived to be the peak and no more improvements

with regards to the optimization can be made. GA, on the other hand, relies on

operators such as crossover and mutation to get over those local „hills‟ in order to

achieve global optima. GA does not require derivative information or full-fledged

mathematical models, which is extremely flexible since fitness functions evaluation

can be obtained from external software. This flexibility makes on-the-fly

optimization possible. The advent of more powerful computers enables the searching

of GA more efficient and faster. The implicit parallelism of GA can also take

advantage of these modern machines as the searches can be distributed or covers a

large search space.

This project aims to utilize the capabilities of GA in arriving at the

coefficients and exponents associated with the plain tube and brazed plate heat

exchangers. Since GA is capable of arriving at the optimum solution, the degree of

„fit‟ between the experimental heat transfer rate and GA simulated heat transfer rate

can be extremely good. This method reduces the errors incurred when using

established correlations such as Pethukov-Popov, Sieder-Tate or Gnielinskis‟s

correlations. These correlations encounter error in the form of experimental error.

Based on the results, the present correlations used in the industry have been

improved over by using GA. This could not go on without the observation that not

all the data points could be improved as a result of using GA. Rather, a majority of

the data points were improved. This can be attributed to the quality of the data, as the

quality of the data fitting (which produces the optimal values of the exponents and

coefficients of the Nu correlations) would depend very much on the quality of the

data itself. As mentioned earlier, GA does not require full-blown mathematical

modeling, yet GA would not be able to tell if the results of the data are good or not,

as the only measure of fitness is with respect to the heat exchange rate data.

The recommended future work is to conduct the modeling of the errors

involved in the experiment to obtain more accurate results by reducing the error band

of the actual heat transfer rate. Error modeling will take the uncertainties and errors

of the experiments into account, and present it in the form of a mathematical

43

correlation. With the correlation, necessary adjustments could be made to the heat

transfer with respect to the error it has incurred. With that, the correlation formed

will present even lesser uncertainties.

In addition to that, other heat exchanger configurations such as the shell and

tube exchanger can be considered and the GA is applied to find or estimate the

coefficients and exponents of the Nu correlations. This is to enhance the repertoire of

GA in this field of optimization.

Meanwhile, it is found that MNCGA does not differ much from the basic GA,

and the basic GA is sufficient to perform the required task. Though not all data

points could be improved via GA, it still presents a good opportunity for GA to form

a good correlation that could improve a majority of the data points.

CHAPTER 7

REFERENCES

44

1. Manish, T.C. , Yan Fu. 1999. Optimal Design of Heat Exchangers: A Genetic

Algorithm Framework, USA, Industrial & engineering chemistry research, vol. 38,

pp. 456-467

2. Chambers, L. 2001. The Practical Handbook of Genetic Algorithms Applications,

USA, Chapman & Hall/CRC

3. R. K. Shah. 1990. Assessment of modified Wilson plot technique for obtaining

heat transfer design, Proc. 9
th

 Int. Heat Transfer Conf. , vol. 5, pp. 51-56

4. Incropera, P. , DeWitt, D. , 2004. Fundamentals of Heat Transfer, New York,

Wiley Publishing

5. Arunasalam, P., Seetharamu, K.N. and Ishak, A.A. (2005) Determination of

Thermal Compact Model via Evolutionary Genetic Optimization Method, Malaysia,

IEEE Transaction on Components and Packaging Technologies, Vol 28, No. 2

6. Haupt, R.L. , Haupt, S.E. 1998. Practical Genetic Algorithms, USA, John Wiley

& Sons

7. Cedeno, W., Vemuri, V.R. 1999. Analysis of Speciation and Niching in the

Multi-Niche Crowding GA, Theoretical Computer Science Archives, Volume.

229, Issue 1-2, pp. 177-197

8. Jiang Feng, G. , Lin, C., Ming Tian, X. 2009. Optimization design of shell-and-

tube heat exchanger by entropy generation minimization and genetic algorithm,

China, Applied thermal engineering, Vol 29, pp. 2954-2960

9. Jin, C. 2007. Hybrid Genetic Algorithms for Structural Reliability Analysis,

China, Computers and Structures, Vol 85, pp. 1524-1533

45

APPENDICES

Microsoft Visual Basic 2008 Code

46

Normal GA

Module Module1

 Public my_ga_parameters As New GA_parameters

 Public matrix_random(,) As Double

 Public my_chromosome() As chromosome

 Public crossover_chromosome() As chromosome

 Public holder_chromomsome() As chromosome

 Public timespan As Integer

 Public list(my_ga_parameters.no_of_populations - 1) As Double

 Public sort_list(my_ga_parameters.no_of_populations - 1) As Double

 Public sorted_list(my_ga_parameters.no_of_populations - 1) As Double

 Public sorted_index(my_ga_parameters.no_of_populations - 1) As Double

 Public list2(my_ga_parameters.no_of_populations - 1) As Double

 Public sort_list2(my_ga_parameters.no_of_populations - 1) As Double

 Public sorted_list2(my_ga_parameters.no_of_populations - 1) As Double

 Public sorted_index2(my_ga_parameters.no_of_populations - 1) As Double

 Public number_list1() As Integer

 Public number_list2() As Integer

 Dim Hi(my_ga_parameters.no_of_parameters - 1) As Double

 Dim Lo(my_ga_parameters.no_of_parameters - 1) As Double

 Public X() As Double

 Public Y() As Double

 Private RndSeed As Long = 1

 Public hi_sd As Integer ' sn = significant digit

 Public ho_sd As Integer

 Public experiment_counter As Integer

 Public myheatx_param As New heatx_params

 Public fitness_level As Double

 Public crossover_numbers As Integer

 Public allowed_difference As Double = 0

 Public error_holder() As Double

 Public Function random() As Double

 Dim probabilityTimeSeeded As New System.Random()

 RndSeed = RndSeed + probabilityTimeSeeded.Next

 Dim maxInt As Integer = Integer.MaxValue

 RndSeed = RndSeed * 2 + 17

 If RndSeed > Integer.MaxValue Then

 RndSeed = RndSeed Mod Integer.MaxValue

 End If

 Dim probabilitySeeded As New System.Random(RndSeed)

 Return probabilitySeeded.NextDouble

 End Function

 Sub Main()

 Dim exit_status As Integer

 Dim crossover_numbers As Integer

 Dim starttime As DateTime = DateTime.Now

47

 Dim holding_count As Integer = 0

 For iii As Integer = 0 To 9

 ReDim Preserve holder_chromomsome(iii)

 holder_chromomsome(iii) = New chromosome

 holder_chromomsome(iii).init(my_ga_parameters.no_of_parameters - 1)

 Next

 Dim elite_number As Integer = 0

 Do

 elite_number = 0

 preprocess()

 For i As Integer = 0 To my_ga_parameters.no_of_populations - 1

 ReDim Preserve my_chromosome(i)

 my_chromosome(i) = New chromosome

 my_chromosome(i).init(my_ga_parameters.no_of_parameters - 1)

 For j As Integer = 0 To my_chromosome(i).gene.Length - 1

 my_chromosome(i).gene(j) = matrix_random(i, j)

 Next

 Next

 For ii As Integer = 0 To 40

 For i As Integer = 0 To my_ga_parameters.no_of_populations - 1

 heat_transfer_eval(my_chromosome(i).gene(1), my_chromosome(i).gene(4), my_chromosome(i).gene(3),

my_chromosome(i).gene(0), my_chromosome(i).gene(2), my_chromosome(i).gene(5))

 my_chromosome(i).fitness = fitness_eval()

 For iii As Integer = 0 To UBound(error_holder)

 error_holder(iii) = Math.Abs((myheatx_param.Qexp(iii) - myheatx_param.Qga(iii)) / myheatx_param.Qexp(iii)

* 100)

 Next

 If error_holder(get_max) < 3.4 And fitness_level < 1.08 And Math.Abs(my_chromosome(i).gene(1) -

my_chromosome(i).gene(4)) < 0.001 Then

 MsgBox("done")

 Exit Do

 End If

 'If fitness_level < 0.75 Then

 ' MsgBox("done")

 ' Exit Do

 'End If

 Next

 If ii > 0 Then

 elite_number = 1

 elitist()

 End If

 crossover_numbers = get_crossover_numbers()

 If Not crossover_numbers = 0 Then

 choose_mate(crossover_numbers)

 End If

48

 exit_status = RW_sorting()

 If exit_status = 1 Then

 MsgBox("done!")

 Exit Sub

 Else

 RW_config()

 selection(my_ga_parameters.no_of_populations - crossover_numbers)

 'crossover_numbers = 0

 If Not crossover_numbers = 0 Then

 For iii As Integer = 0 To crossover_numbers - 1

 ReDim Preserve crossover_chromosome(iii)

 crossover_chromosome(iii) = New chromosome

 crossover_chromosome(iii).init(my_ga_parameters.no_of_parameters - 1)

 Next

 crossover(my_chromosome)

 End If

 my_chromosome = create_new_generation(my_chromosome, crossover_chromosome, _

 (my_ga_parameters.no_of_populations - crossover_numbers), elite_number)

 mutation(random)

 End If

 'my_ga_parameters.mutation_rate = my_ga_parameters.mutation_rate * 0.6

 crossover_chromosome = Nothing

 Next

 Loop

 'Dim endtime As DateTime = DateTime.Now

 'Dim Span As TimeSpan = endtime - starttime

 'timespan = Span.TotalMilliseconds

 End Sub

 Function get_crossover_numbers()

 Dim cross_number As Integer

 Dim remainder As Long

 cross_number = random() * my_ga_parameters.no_of_populations

 Math.DivRem(cross_number, 2, remainder)

 If remainder = 1 Then

 cross_number = cross_number - 1

 End If

 Return cross_number

 End Function

 Function findmax(ByVal sent_chromosome() As chromosome)

 Dim counter As Integer = 0

 For i As Integer = 1 To UBound(sent_chromosome)

 If Not sent_chromosome(i).selected_status = -1 Then

 If sent_chromosome(counter).fitness < sent_chromosome(i).fitness Then

 counter = i

 End If

49

 End If

 Next

 Return counter

 End Function

 Function get_max()

 Dim counter As Integer = 0

 For i As Integer = 1 To UBound(error_holder)

 If error_holder(counter) < error_holder(i) Then

 counter = i

 End If

 Next

 Return counter

 End Function

 Function get_min()

 Dim counter As Integer = 0

 For i As Integer = 1 To UBound(error_holder)

 If error_holder(counter) > error_holder(i) Then

 counter = i

 End If

 Next

 Return counter

 End Function

 Sub selection(Optional ByVal survivor_numbers As Integer = 0)

 Dim taken As Integer = 0

 Dim rand As Double

 Dim status(my_ga_parameters.no_of_populations-1) As Double

 Do

 For i As Integer = 0 To UBound(my_chromosome)

 If i = 0 Then

 rand = random()

 If rand < my_ga_parameters.wheel(i) Then

 If taken >= survivor_numbers Then

 Exit Do

 End If

 my_chromosome(sorted_index(i)).survival_numbers = status(sorted_index(i)) + 1

 status(sorted_index(i)) = status(sorted_index(i)) + 1

 taken = taken + 1

 End If

 ElseIf Not i = 0 Then

 rand = random() 'Rnd()

 If rand > my_ga_parameters.wheel(i - 1) And rand < my_ga_parameters.wheel(i) Then

 If taken >= survivor_numbers Then

 Exit Do

 End If

 my_chromosome(sorted_index(i)).survival_numbers = status(sorted_index(i)) + 1

 status(sorted_index(i)) = status(sorted_index(i)) + 1

50

 taken = taken + 1

 End If

 End If

 Next

 Loop Until taken = survivor_numbers

 End Sub

 Sub RW_config()

 Dim counter As Double = 0

 ReDim my_ga_parameters.wheel(UBound(my_chromosome))

 For i As Integer = 0 To UBound(my_chromosome)

 counter = counter + my_chromosome(sorted_index(i)).RW_value

 my_ga_parameters.wheel(i) = counter

 Next

 End Sub

 Sub elitist()

 For i As Integer = 0 To UBound(list)

 list2(i) = my_chromosome(i).fitness

 sorted_list2(i) = my_chromosome(i).fitness

 Next

 Array.Sort(sorted_list2)

 Array.Reverse(sorted_list2)

 For i As Integer = 0 To UBound(list2)

 For j As Integer = 0 To UBound(list2)

 If Not sorted_list2(i) = -1 And sorted_list2(i) = list2(j) Then

 sorted_index2(i) = j

 sorted_list2(i) = -1

 End If

 Next

 Next

 End Sub

 Function RW_sorting()

 Dim sum As Double = 0

 Dim rw_sum As Double = 0

 Dim index As Integer

 Dim counter As Integer = 0

 For i As Integer = 0 To my_ga_parameters.no_of_populations - 1

 sum = sum + my_chromosome(i).fitness

 Next

51

 If sum = 1 / 0 Then

 index = 1

 Return index

 Exit Function

 End If

 For i As Integer = 0 To my_ga_parameters.no_of_populations - 1

 'rw_sum = rw_sum + my_chromosome(i).fitness / sum

 my_chromosome(i).RW_value = my_chromosome(i).fitness / sum

 Next

 For i As Integer = 0 To UBound(list)

 list(i) = my_chromosome(i).RW_value

 sorted_list(i) = my_chromosome(i).RW_value

 Next

 Array.Sort(sorted_list)

 Array.Reverse(sorted_list)

 Do

 For i As Integer = 0 To UBound(my_chromosome)

 If counter = my_ga_parameters.no_of_populations Then

 Exit Do

 End If

 If sorted_list(counter) = my_chromosome(i).RW_value And Not my_chromosome(i).selected_status = -1 Then

 my_chromosome(i).selected_status = -1

 sorted_index(counter) = i

 counter = counter + 1

 End If

 Next

 Loop Until counter = my_ga_parameters.no_of_populations

 'Dim myindex As Integer

 'For i As Integer = 0 To UBound(my_chromosome)

 ' myindex = findmax(my_chromosome)

 ' my_chromosome(myindex).selected_status = -1

 ' sorted_index(i) = myindex

 'Next

 'For i As Integer = 0 To UBound(list)

 ' For j As Integer = 0 To UBound(list)

 ' If i > 0 Then

 ' If Not sorted_list(i) = -1 And sorted_list(i) = list(j) And Not j = sorted_index(i - 1) Then

 ' sorted_index(i) = j

 ' sorted_list(i) = -1

 ' End If

 ' Else

 ' If Not sorted_list(i) = -1 And sorted_list(i) = list(j) Then

 ' sorted_index(i) = j

52

 ' sorted_list(i) = -1

 ' End If

 ' End If

 ' Next

 'Next

 Return index

 End Function

 Function create_new_generation(ByVal sent_chromosome() As chromosome, ByVal crossover_chrome() As chromosome, _

 Optional ByVal survival_numbers As Integer = 0, Optional ByVal elitenum As Integer = 0)

 Dim new_chromosome() As chromosome

 If survival_numbers = -1 Then

 elitenum = 0

 End If

 Dim counter As Integer = elitenum

 For i As Integer = 0 To my_ga_parameters.no_of_populations - 1

 ReDim Preserve new_chromosome(i)

 new_chromosome(i) = New chromosome

 new_chromosome(i).init(my_ga_parameters.no_of_parameters - 1)

 Next

 If Not elitenum = 0 And Not survival_numbers = -1 Then

 new_chromosome(0) = my_chromosome(sorted_index2(0)).clone

 End If

 If Not survival_numbers = -1 Then

 For i As Integer = 0 To my_ga_parameters.no_of_populations - 1

 If sent_chromosome(i).survival_numbers > 0 And Not counter = survival_numbers Then

 For j As Integer = 0 To sent_chromosome(i).survival_numbers - 1

 If counter = survival_numbers Then

 Exit For

 Else

 new_chromosome(counter) = sent_chromosome(i).clone

 counter = counter + 1

 End If

 Next

 Else

 End If

 Next

 End If

 If Not survival_numbers = my_ga_parameters.no_of_populations Then

 For i As Integer = 0 To UBound(crossover_chrome)

 new_chromosome(counter) = crossover_chrome(i).clone

 counter = counter + 1

 If counter >= my_ga_parameters.no_of_populations Then

 Exit For

 End If

 Next

53

 End If

 counter = 0

 Return new_chromosome

 End Function

 Sub choose_mate(Optional ByVal cross_over_numbers As Integer = 0)

 Dim selection As Integer = 0

 Dim take1 As Integer

 Dim take2 As Integer

 Dim random1 As Integer

 Dim random2 As Integer

 ' Dim number_list1() As Integer

 ' Dim number_list2() As Integer

 Dim count As Integer = 0

 'ReDim my_matingpool(my_parameters.solution_space - 1)

 Dim a As New List(Of Integer)

 For i As Integer = 0 To UBound(my_chromosome)

 a.Add(i)

 Next

 Do

 random1 = Int((a.Count - 1) * random())

 take1 = a.Item(random1)

 ReDim Preserve number_list1(count)

 number_list1(count) = take1

 a.Remove(take1)

 random2 = Int((a.Count - 1) * random())

 take2 = a.Item(random2)

 ReDim Preserve number_list2(count)

 number_list2(count) = take2

 a.Remove(take2)

 count = count + 1

 my_chromosome(take1).mating_partner = take2

 Loop Until a.Count = my_ga_parameters.no_of_populations - cross_over_numbers

 End Sub

 Sub crossover(ByVal sent_chromosome() As chromosome)

 Dim store1 As Double

 Dim store2 As Double

 Dim store3 As Double

 Dim store4 As Double

 Dim beta As Double

 Dim crossover_point As Double

 Dim counter As Integer = 0

54

 For i As Integer = 0 To UBound(number_list1)

 beta = random()

 crossover_point = CInt(((my_ga_parameters.no_of_parameters - 1) * random()) + 1) - 1

 If crossover_point = 0 Then

 store1 = sent_chromosome(number_list1(i)).gene(crossover_point)

 store2 = sent_chromosome(number_list2(i)).gene(crossover_point)

 crossover_chromosome(counter).gene(crossover_point) = Math.Round((store1 - (beta * (store1 - store2))), 3)

 crossover_chromosome(counter + 1).gene(crossover_point) = Math.Round((store2 + (beta * (store1 - store2))), 3)

 ElseIf crossover_point = 3 Then

 store1 = sent_chromosome(number_list1(i)).gene(crossover_point)

 store2 = sent_chromosome(number_list2(i)).gene(crossover_point)

 crossover_chromosome(counter).gene(crossover_point) = Math.Round((store1 - (beta * (store1 - store2))), 3)

 crossover_chromosome(counter + 1).gene(crossover_point) = Math.Round((store2 + (beta * (store1 - store2))), 3)

 ElseIf crossover_point = 5 Or crossover_point = 2 Then

 store1 = sent_chromosome(number_list1(i)).gene(crossover_point)

 store2 = sent_chromosome(number_list2(i)).gene(crossover_point)

 crossover_chromosome(counter).gene(crossover_point) = (store1 - (beta * (store1 - store2)))

 crossover_chromosome(counter + 1).gene(crossover_point) = (store2 + (beta * (store1 - store2)))

 Else

 store1 = sent_chromosome(number_list1(i)).gene(crossover_point)

 store2 = sent_chromosome(number_list2(i)).gene(crossover_point)

 crossover_chromosome(counter).gene(crossover_point) = Math.Round((store1 - (beta * (store1 - store2))), 3)

 crossover_chromosome(counter + 1).gene(crossover_point) = Math.Round((store2 + (beta * (store1 - store2))), 3)

 End If

 If crossover_point = 0 Then

 For ii As Integer = 1 To my_ga_parameters.no_of_parameters - 1

 If ii = 3 Then

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = Math.Round(store4, 3)

 crossover_chromosome(counter + 1).gene(ii) = Math.Round(store3, 3)

 ElseIf ii = 5 Or ii = 2 Then

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = store4

 crossover_chromosome(counter + 1).gene(ii) = store3

 Else

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = Math.Round(store4, 3)

 crossover_chromosome(counter + 1).gene(ii) = Math.Round(store3, 3)

 End If

 Next

 ElseIf crossover_point = my_ga_parameters.no_of_parameters - 1 Then

 For ii As Integer = my_ga_parameters.no_of_parameters - 2 To 0 Step -1

55

 If ii = 3 Then

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = Math.Round(store4, 3)

 crossover_chromosome(counter + 1).gene(ii) = Math.Round(store3, 3)

 ElseIf ii = 5 Or ii = 2 Then

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = store4

 crossover_chromosome(counter + 1).gene(ii) = store3

 Else

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = Math.Round(store4, 3)

 crossover_chromosome(counter + 1).gene(ii) = Math.Round(store3, 3)

 End If

 Next

 Else

 For ii As Integer = crossover_point + 1 To my_ga_parameters.no_of_parameters - 1

 If ii = 3 Then

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = Math.Round(store4, 3)

 crossover_chromosome(counter + 1).gene(ii) = Math.Round(store3, 3)

 ElseIf ii = 5 Or ii = 2 Then

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = store4

 crossover_chromosome(counter + 1).gene(ii) = store3

 Else

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = Math.Round(store4, 3)

 crossover_chromosome(counter + 1).gene(ii) = Math.Round(store3, 3)

 End If

 Next

 End If

 If Not crossover_point = 0 Or crossover_point = my_ga_parameters.no_of_parameters - 1 Then

 For ii As Integer = crossover_point - 1 To 0 Step -1

 If ii = 3 Then

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = Math.Round(store3, 3)

 crossover_chromosome(counter + 1).gene(ii) = Math.Round(store4, 3)

 ElseIf ii = 5 Or ii = 2 Then

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = store4

 crossover_chromosome(counter + 1).gene(ii) = store3

 Else

56

 store3 = sent_chromosome(number_list1(i)).gene(ii)

 store4 = sent_chromosome(number_list2(i)).gene(ii)

 crossover_chromosome(counter).gene(ii) = Math.Round(store3, 3)

 crossover_chromosome(counter + 1).gene(ii) = Math.Round(store4, 3)

 End If

 Next

 End If

 counter = counter + 2

 Next

 End Sub

 Sub mutation(ByVal mutation_probability As Double)

 Dim counter As Integer

 Dim take1 As Integer

 Dim mutation_point As Integer

 Dim random1 As Integer

 Dim mutated_gene As Double

 Dim beta As Double

 If my_ga_parameters.mutation_rate > mutation_probability Then

 Dim a As New List(Of Integer)

 For i As Integer = 0 To UBound(my_chromosome)

 a.Add(i)

 Next

 Do

 beta = random()

 mutation_point = CInt(((my_ga_parameters.no_of_parameters - 1) * random()) + 1) - 1

 random1 = Int((a.Count - 1) * Rnd())

 take1 = a.Item(random1)

 mutated_gene = ((Hi(mutation_point) - Lo(mutation_point)) * beta) + Lo(mutation_point)

 If mutation_point = 0 Or mutation_point = 3 Then

 my_chromosome(take1).gene(mutation_point) = Math.Round(mutated_gene, 3)

 ElseIf mutation_point = 2 Or mutation_point = 5 Then

 my_chromosome(take1).gene(mutation_point) = mutated_gene

 Else

 my_chromosome(take1).gene(mutation_point) = Math.Round(mutated_gene, 3)

 End If

 counter = counter + 1

 a.Remove(random1)

 Loop Until counter = my_ga_parameters.mutation_numbers

 End If

 End Sub

 Sub preprocess()

57

 Hi(0) = 2

 Hi(1) = 0.6

 Hi(2) = 1 / 3

 Hi(3) = 2

 Hi(4) = 0.6

 Hi(5) = 1 / 3

 Lo(0) = 0.5

 Lo(1) = 0.5

 Lo(2) = 1 / 3

 Lo(3) = 0.6

 Lo(4) = 0.5

 Lo(5) = 1 / 3

 ReDim matrix_random(my_ga_parameters.no_of_populations - 1, my_ga_parameters.no_of_parameters - 1)

 For i As Integer = 0 To UBound(matrix_random, 1)

 For j As Integer = 0 To UBound(matrix_random, 2)

 If j = 0 Then

 matrix_random(i, j) = Math.Round(((Hi(j) - Lo(j)) * random() + Lo(j)), 3)

 ElseIf j = 1 Then

 matrix_random(i, j) = Math.Round(((Hi(j) - Lo(j)) * random() + Lo(j)), 3)

 ElseIf j = 2 Then

 matrix_random(i, j) = ((Hi(j) - Lo(j)) * random() + Lo(j))

 ElseIf j = 3 Then

 matrix_random(i, j) = Math.Round(((Hi(j) - Lo(j)) * random() + Lo(j)), 3)

 ElseIf j = 4 Then

 matrix_random(i, j) = Math.Round(((Hi(j) - Lo(j)) * random() + Lo(j)), 3)

 ElseIf j = 5 Then

 matrix_random(i, j) = ((Hi(j) - Lo(j)) * random() + Lo(j))

 End If

 Next

 Next

 End Sub

 Function significant_digit_counter(ByVal sent_digit As Double)

 Dim counter As Integer

 Dim number As String = sent_digit

 Dim x As Char

 Dim sd As Integer

 Do

 'If Not number(counter) = "." Then

 x = number(counter)

 counter = counter + 1

 'End If

 Loop Until x = "."

58

 counter = counter - 1

 If counter = 2 Then

 sd = 2

 ElseIf counter = 3 Then

 sd = 1

 Else

 sd = 0

 End If

 Return sd

 End Function

 Sub gather_data()

 Dim counter As Integer = 0

 Form1.WorkbookView2.GetLock()

 If Form1.WorkbookView2.ActiveWorksheet.Cells(0, 0).Value = 0 Then

 MsgBox("please key in values first")

 Else

 Do

 If Not Form1.WorkbookView2.ActiveWorksheet.Cells(counter, 0).Value = 0 Then

 counter = counter + 1

 Else

 Exit Do

 End If

 Loop

 experiment_counter = counter

 ReDim myheatx_param.ki(experiment_counter - 1)

 ReDim myheatx_param.ko(experiment_counter - 1)

 ReDim myheatx_param.Pri(experiment_counter - 1)

 ReDim myheatx_param.Pro(experiment_counter - 1)

 ReDim myheatx_param.Qexp(experiment_counter - 1)

 ReDim myheatx_param.Rei(experiment_counter - 1)

 ReDim myheatx_param.Reo(experiment_counter - 1)

 ReDim myheatx_param.Rw(experiment_counter - 1)

 ReDim myheatx_param.LMTD(experiment_counter - 1)

 ReDim myheatx_param.Qga(experiment_counter - 1)

 ReDim error_holder(experiment_counter - 1)

 For j As Integer = 0 To experiment_counter - 1

 myheatx_param.ki(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 0).Value

 myheatx_param.ko(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 1).Value

 myheatx_param.Pri(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 2).Value

 myheatx_param.Pro(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 3).Value

 myheatx_param.Qexp(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 4).Value

 myheatx_param.Rei(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 5).Value

 myheatx_param.Reo(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 6).Value

 myheatx_param.Rw(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 7).Value

 myheatx_param.LMTD(j) = Form1.WorkbookView2.ActiveWorksheet.Cells(j, 8).Value

 Next

 Form1.Button1.Enabled = True

59

 End If

 Form1.WorkbookView2.ReleaseLock()

 End Sub

 Function fitness_eval() '(ByVal hi As Double, ByVal ho As Double) As Double

 fitness_eval = 0

 fitness_level = 0

 'Dim temp_holder As Double

 For i As Integer = 0 To experiment_counter - 1

 'temp_holder = Math.Abs(allowed_difference - Math.Abs(myheatx_param.Qexp(i) - myheatx_param.Qga(i)))

 fitness_eval = fitness_eval + (Math.Abs(myheatx_param.Qexp(i) - myheatx_param.Qga(i)))

'Math.Abs(myheatx_param.Qexp(i) - myheatx_param.Qga(i))

 fitness_level = fitness_level + (Math.Abs(myheatx_param.Qexp(i) - myheatx_param.Qga(i)))

 Next

 'fitness_level = fitness_level / (experiment_counter)

 fitness_eval = 1 / fitness_eval

 Return fitness_eval

 End Function

 Sub heat_transfer_eval(ByVal Rei_coeff As Double, ByVal Reo_coeff As Double, ByVal cons_coeff_outer As Double, _

 ByVal cons_coeff_inner As Double, ByVal Pri_coeff As Double, ByVal Pro_coeff As Double) ', ByVal

length As Double)

 Dim U() As Double

 ReDim U(experiment_counter - 1)

 Dim hi As Double

 Dim ho As Double

 'For i As Integer = 0 To UBound(U)

 ' hi = (cons_coeff_inner * (myheatx_param.Rei(i) ^ Rei_coeff) * (myheatx_param.Pri(i) ^ Pri_coeff) *

myheatx_param.ki(i) / 0.01792)

 ' ho = (cons_coeff_outer * (myheatx_param.Reo(i) ^ Reo_coeff) * (myheatx_param.Pro(i) ^ Pro_coeff) *

myheatx_param.ko(i) / 0.004)

 ' U(i) = (1 / (hi * 0.1678336)) + (1 / (ho * 0.208106171)) + myheatx_param.Rw(i)

 ' myheatx_param.Qga(i) = (1 / U(i)) * myheatx_param.LMTD(i)

 'Next

 For i As Integer = 0 To UBound(U)

 hi = (cons_coeff_inner * (myheatx_param.Rei(i) ^ Rei_coeff) * (myheatx_param.Pri(i) ^ Pri_coeff) *

myheatx_param.ki(i) / 0.00186) * (1 / 1000)

 ho = (cons_coeff_outer * (myheatx_param.Reo(i) ^ Reo_coeff) * (myheatx_param.Pro(i) ^ Pro_coeff) *

myheatx_param.ko(i) / 0.00186) * (1 / 1000)

 U(i) = (1 / (hi)) + (1 / (ho)) + myheatx_param.Rw(i)

 myheatx_param.Qga(i) = (1 / U(i)) * myheatx_param.LMTD(i) * 0.189

 Next

 End Sub

 Class GA_parameters

 Public no_of_parameters As Double = 6

 Public no_of_populations As Double = 150

 Public wheel() As Double

 Public mutation_numbers As Double = 16

60

 Public mutation_rate As Double = 0.15

 End Class

 Class chromosome

 Implements ICloneable

 Public gene() As Double

 Public fitness As Double

 Public raw_value As Double

 Public U_value As Double

 Public mating_partner As Double

 Public RW_value As Double 'roulette wheel value

 Public survival_numbers As Double

 Public ratio_difference As Double

 Public selected_status As Integer

 Sub New()

 End Sub

 Public Sub New(ByVal old_gene() As Double) ', ByVal old_survival_numbers As Double) ', ByVal old_fitness As

Double)

 gene = old_gene

 End Sub

 Sub init(ByVal number_of_parameters As Double)

 ReDim gene(number_of_parameters)

 End Sub

 Public Function clone() As Object Implements System.ICloneable.Clone

 Dim new_gene() As Double

 'Dim new_fitness As Double

 ReDim new_gene(my_ga_parameters.no_of_parameters - 1)

 'Dim new_survival_numbers As Double

 new_gene = Me.gene.Clone

 Dim instance As New chromosome(new_gene) ', new_survival_numbers) ', new_fitness)

 Return instance

 End Function

 End Class

 Class heatx_params

 Public Reo() As Double

 Public Pro() As Double

 Public ko() As Double

 Public Rw() As Double

 Public Rei() As Double

 Public Pri() As Double

 Public ki() As Double

 Public Qexp() As Double

 Public LMTD() As Double

 Public Qga() As Double

 End Class

61

End Module

MNCGA

Module Module1

 Public my_phenome() As phenome

 Public crowding_group(,) As phenome

 Public crowding_factor_group() As phenome

 Public crowd_phenome() As phenome

 Public my_parameters As New parameters

 Public my_ga_method As New GA_methods

 Public my_genepool() As genepool

 Dim Hi(my_parameters.bits_length) As Double

 Dim Lo(my_parameters.bits_length) As Double

 Public matrix_random(,) As Double

 Public experiment_counter As Integer

 Public myheatx_param As New heatx_params

 Public fitness_level As Double

 Private RndSeed As Long = 1

 Public error_holder() As Double

 Public Function Random() As Double

 Dim probabilityTimeSeeded As New System.Random()

 RndSeed = RndSeed + probabilityTimeSeeded.Next

 Dim maxInt As Integer = Integer.MaxValue

 RndSeed = RndSeed * 2 + 17

 If RndSeed > Integer.MaxValue Then

 RndSeed = RndSeed Mod Integer.MaxValue

 End If

 Dim probabilitySeeded As New System.Random(RndSeed)

 Return probabilitySeeded.NextDouble

 End Function

 Sub Main()

 'create_genepool()

 Do

 initiate()

 For i As Integer = 0 To UBound(my_phenome)

 For j As Integer = 0 To my_parameters.bits_length

 If my_phenome(i).chromosome(j) = 0 Then

 MsgBox("!")

 End If

 Next

 Next

 For i As Integer = 0 To 80

 For ii As Integer = 0 To UBound(my_phenome)

 my_phenome(ii).decoded_value = my_ga_method.heat_transfer_eval(my_phenome(ii).chromosome(1), _

 my_phenome(ii).chromosome(4), _

 my_phenome(ii).chromosome(3), _

 my_phenome(ii).chromosome(0), _

62

 my_phenome(ii).chromosome(2), _

 my_phenome(ii).chromosome(5))

 my_phenome(ii).fitness = my_ga_method.fitness_eval

 For iii As Integer = 0 To UBound(error_holder)

 error_holder(iii) = Math.Abs((myheatx_param.Qexp(iii) - myheatx_param.Qga(iii)) / myheatx_param.Qexp(iii)

* 100)

 Next

 If error_holder(get_max) < 2.82 And fitness_level < 1000 Then 'And Math.Abs(my_chromosome(i).gene(1) -

my_chromosome(i).gene(4)) < 0.001 Then

 MsgBox("done")

 Exit Do

 End If

 'If fitness_level < 1 Then

 ' MsgBox("done!")

 ' Exit Do

 'End If

 Next

 niching()

 For iii As Integer = 0 To UBound(my_phenome)

 For j As Integer = 0 To my_parameters.bits_length

 If my_phenome(iii).chromosome(j) = 0 Then

 MsgBox("!")

 End If

 Next

 Next

 elitism()

 Next

 'find_values()

 Loop

 End Sub

 Sub elitism()

 Dim worst_index As Integer

 Dim best_index As Integer

 worst_index = worst_individual(my_phenome)

 best_index = best_individual(my_phenome)

 my_phenome(worst_index) = my_phenome(best_index).clone

 my_phenome(worst_index).tag_number = worst_index

 my_phenome(worst_index).decoded_value =

my_ga_method.heat_transfer_eval(my_phenome(worst_index).chromosome(1), my_phenome(worst_index).chromosome(4), _

 my_phenome(worst_index).chromosome(3), my_phenome(worst_index).chromosome(0), _

 my_phenome(worst_index).chromosome(2), my_phenome(worst_index).chromosome(5))

63

 End Sub

 Sub create_genepool()

 Dim quotient As Integer

 ReDim my_genepool((2 ^ my_parameters.bits_length) - 2)

 For i As Integer = 0 To UBound(my_genepool)

 my_genepool(i) = New genepool

 my_genepool(i).real_value = i + 1

 quotient = my_genepool(i).real_value

 For j As Integer = UBound(my_genepool(i).chroms) To 0 Step -1

 Math.DivRem(quotient, 2, my_genepool(i).chroms(j))

 If my_genepool(i).chroms(j) = 0 Then

 quotient = (quotient / 2)

 ElseIf my_genepool(i).chroms(j) = 1 Then

 quotient = (quotient / 2) - 0.5

 End If

 If quotient = 0 Then

 GoTo breakpoint

 End If

 Next

breakpoint:

 Next

 End Sub

 Sub niching() 'includes both crowding and worst among most similar operators

 Dim index As Integer

 Dim worse_index As Integer

 Dim offspring As New phenome

 offspring.create(my_parameters.bits_length)

 For i As Integer = 0 To my_parameters.solution_space - 1

 Dim crowd_index(my_parameters.crowding_size - 1) As Integer

 For j As Integer = 0 To UBound(crowd_index)

 crowd_index(j) = Int(UBound(my_phenome) * Random())

 Next

 For ii As Integer = 0 To my_parameters.bits_length

 If my_phenome(i).chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 Next

 crowding(crowd_index, my_phenome)

 For ii As Integer = 0 To my_parameters.bits_length

 If my_phenome(i).chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 Next

 index = find_similar_mate_index(crowd_phenome, my_phenome(i))

 For ii As Integer = 0 To my_parameters.bits_length

64

 If my_phenome(i).chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 Next

 offspring = do_crossover(my_phenome(i), my_phenome(crowd_phenome(index).tag_number))

 For ii As Integer = 0 To my_parameters.bits_length

 If my_phenome(i).chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 Next

 worse_index = cluster_crowding_groups(my_phenome, offspring)

 For ii As Integer = 0 To my_parameters.bits_length

 If my_phenome(i).chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 Next

 my_phenome(worse_index) = replacement(my_phenome(worse_index), offspring, worse_index)

 For ii As Integer = 0 To my_parameters.bits_length

 If my_phenome(i).chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 Next

 Next

 End Sub

 Function replacement(ByVal worse_phenome As phenome, ByVal replacement_offspring As phenome, ByVal

worse_fit_index As Integer)

 worse_phenome = replacement_offspring.clone

 worse_phenome.tag_number = worse_fit_index

 worse_phenome.decoded_value = my_ga_method.heat_transfer_eval(worse_phenome.chromosome(1),

worse_phenome.chromosome(4), worse_phenome.chromosome(3), _

 worse_phenome.chromosome(0), worse_phenome.chromosome(2), worse_phenome.chromosome(5))

 worse_phenome.fitness = my_ga_method.fitness_eval()

 Return worse_phenome

 End Function

 Public Function do_crossover(ByVal parent_phenome As phenome, ByVal parent_mate As phenome)

 Dim store1 As Double

 Dim store2 As Double

 Dim store3 As Double

 Dim store4 As Double

 Dim beta As Double

 Dim dice As Double = 0.5

 Dim crossover_point As Double

 Dim offspring As New phenome

65

 offspring.create(UBound(parent_phenome.chromosome))

 beta = Random()

 crossover_point = CInt(((my_parameters.bits_length) * Random()) + 1) - 1

 If crossover_point = 0 Then

 store1 = parent_phenome.chromosome(crossover_point)

 store2 = parent_mate.chromosome(crossover_point)

 If store1 = 0 Then

 MsgBox("!")

 End If

 If dice < Random() Then

 offspring.chromosome(crossover_point) = Math.Round((store1 - (beta * (store1 - store2))), 5)

 Else

 offspring.chromosome(crossover_point) = Math.Round((store2 + (beta * (store1 - store2))), 5)

 End If

 ElseIf crossover_point = 3 Then

 store1 = parent_phenome.chromosome(crossover_point)

 store2 = parent_mate.chromosome(crossover_point)

 If dice < Random() Then

 offspring.chromosome(crossover_point) = Math.Round((store1 - (beta * (store1 - store2))), 5)

 Else

 offspring.chromosome(crossover_point) = Math.Round((store2 + (beta * (store1 - store2))), 5)

 End If

 Else

 store1 = parent_phenome.chromosome(crossover_point)

 store2 = parent_mate.chromosome(crossover_point)

 If dice < Random() Then

 offspring.chromosome(crossover_point) = Math.Round((store1 - (beta * (store1 - store2))), 4)

 Else

 offspring.chromosome(crossover_point) = Math.Round((store2 + (beta * (store1 - store2))), 4)

 End If

 End If

 If crossover_point = 0 Then

 For ii As Integer = 1 To my_parameters.bits_length

 If ii = 3 Then

 store3 = parent_phenome.chromosome(ii)

 store4 = parent_mate.chromosome(ii)

 If dice < Random() Then

 offspring.chromosome(ii) = Math.Round(store4, 5)

 Else

 offspring.chromosome(ii) = Math.Round(store3, 5)

 End If

 If offspring.chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 Else

 store3 = parent_phenome.chromosome(ii)

 store4 = parent_mate.chromosome(ii)

66

 If dice < Random() Then

 offspring.chromosome(ii) = Math.Round(store4, 4)

 Else

 offspring.chromosome(ii) = Math.Round(store3, 4)

 End If

 If offspring.chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 End If

 Next

 ElseIf crossover_point = my_parameters.bits_length Then

 For ii As Integer = my_parameters.bits_length - 1 To 0 Step -1

 If ii = 3 Or ii = 0 Then

 store3 = parent_phenome.chromosome(ii)

 store4 = parent_mate.chromosome(ii)

 If dice < Random() Then

 offspring.chromosome(ii) = Math.Round(store4, 5)

 If offspring.chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 Else

 offspring.chromosome(ii) = Math.Round(store3, 5)

 End If

 If store3 = 0 Or store4 = 0 Then

 MsgBox("!")

 End If

 Else

 store3 = parent_phenome.chromosome(ii)

 store4 = parent_mate.chromosome(ii)

 If dice < Random() Then

 offspring.chromosome(ii) = Math.Round(store4, 4)

 Else

 offspring.chromosome(ii) = Math.Round(store3, 4)

 End If

 If offspring.chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 End If

 Next

 Else

 For iii As Integer = 0 To crossover_point

 If iii = 0 Or iii = 3 Then

 store3 = parent_phenome.chromosome(iii)

 store4 = parent_mate.chromosome(iii)

 If dice < Random() Then

 offspring.chromosome(iii) = Math.Round(store4, 5)

 Else

 offspring.chromosome(iii) = Math.Round(store3, 5)

67

 End If

 Else

 store3 = parent_phenome.chromosome(iii)

 store4 = parent_mate.chromosome(iii)

 If dice < Random() Then

 offspring.chromosome(iii) = Math.Round(store4, 4)

 Else

 offspring.chromosome(iii) = Math.Round(store3, 4)

 End If

 End If

 Next

 For ii As Integer = crossover_point + 1 To my_parameters.bits_length

 If ii = 3 Then

 store3 = parent_phenome.chromosome(ii)

 store4 = parent_mate.chromosome(ii)

 If dice < Random() Then

 offspring.chromosome(ii) = Math.Round(store4, 5)

 Else

 offspring.chromosome(ii) = Math.Round(store3, 5)

 End If

 Else

 store3 = parent_phenome.chromosome(ii)

 store4 = parent_mate.chromosome(ii)

 If dice < Random() Then

 offspring.chromosome(ii) = Math.Round(store4, 4)

 Else

 offspring.chromosome(ii) = Math.Round(store3, 4)

 End If

 If offspring.chromosome(ii) = 0 Then

 MsgBox("!")

 End If

 End If

 Next

 End If

 offspring.decoded_value = my_ga_method.heat_transfer_eval(offspring.chromosome(1), offspring.chromosome(4), _

 offspring.chromosome(3), offspring.chromosome(0), _

 offspring.chromosome(2), offspring.chromosome(5))

 Return offspring

 End Function

 ' Public Function do_mutation(ByVal sent_phenome As phenome)

 ' Dim mutation_rate As Double

 ' Dim random_bit As Integer

 ' Dim mutation_count As Integer = 0

 ' mutation_rate = getRandomNumber()

 ' If mutation_rate > my_parameters.mutation_rate Then

 'return_point:

 ' random_bit = UBound(sent_phenome.chromosome)

68

 ' If sent_phenome.chromosome(random_bit) = 0 Then

 ' sent_phenome.chromosome(random_bit) = 1

 ' ElseIf sent_phenome.chromosome(random_bit) = 1 Then

 ' sent_phenome.chromosome(random_bit) = 0

 ' End If

 ' For i As Integer = 0 To UBound(sent_phenome.chromosome)

 ' If sent_phenome.chromosome(i) = 0 Then

 ' mutation_count = mutation_count + 1

 ' End If

 ' Next

 ' If mutation_count >= UBound(sent_phenome.chromosome) Then

 ' GoTo return_point

 ' End If

 ' End If

 ' sent_phenome.decoded_value = my_ga_method.find_real_number(sent_phenome) / 10

 ' Return sent_phenome

 ' End Function

 Function cluster_crowding_groups(ByVal sent_phenome() As phenome, ByVal offspring_phenome As phenome)

 Dim single_crowding_group() As phenome

 Dim random_index As Integer

 Dim single_crowding_group_counter As Integer

 Dim worse_tag_number As Integer

 ReDim single_crowding_group(my_parameters.crowding_group_size - 1)

 ReDim crowding_group(my_parameters.crowding_groups - 1, my_parameters.crowding_group_size - 1)

 ReDim crowding_factor_group(my_parameters.crowding_groups - 1)

 For i As Integer = 0 To UBound(crowding_factor_group)

 crowding_factor_group(i) = New phenome

 Next

 For i As Integer = 0 To UBound(crowding_group, 1)

 crowding_factor_group(i) = New phenome

 single_crowding_group_counter = 0

 For j As Integer = 0 To UBound(crowding_group, 2)

 random_index = UBound(sent_phenome) * Random()

 crowding_group(i, j) = New phenome

 crowding_group(i, j) = sent_phenome(random_index).clone

 crowding_group(i, j).decoded_value = my_ga_method.heat_transfer_eval(crowding_group(i, j).chromosome(1), _

 crowding_group(i, j).chromosome(4), _

 crowding_group(i, j).chromosome(3), _

 crowding_group(i, j).chromosome(0), _

 crowding_group(i, j).chromosome(2), _

 crowding_group(i, j).chromosome(5))

 '

 'the following code is done as we wish to send only 1D array to the function

69

 single_crowding_group(single_crowding_group_counter) = New phenome

 single_crowding_group(single_crowding_group_counter) = crowding_group(i, j).clone

 single_crowding_group(single_crowding_group_counter).decoded_value = my_ga_method.heat_transfer_eval(_

 single_crowding_group(single_crowding_group_counter).chromosome(1),

single_crowding_group(single_crowding_group_counter).chromosome(4), _

 single_crowding_group(single_crowding_group_counter).chromosome(3),

single_crowding_group(single_crowding_group_counter).chromosome(0), _

 single_crowding_group(single_crowding_group_counter).chromosome(2),

single_crowding_group(single_crowding_group_counter).chromosome(5))

 single_crowding_group_counter = single_crowding_group_counter + 1

 'end

 Next

 crowding_factor_group(i) = crowding_select_similar_individuals(single_crowding_group, offspring_phenome)

 crowding_factor_group(i).decoded_value =

my_ga_method.heat_transfer_eval(crowding_factor_group(i).chromosome(1), _

 crowding_factor_group(i).chromosome(4), _

 crowding_factor_group(i).chromosome(3), _

 crowding_factor_group(i).chromosome(0), _

 crowding_factor_group(i).chromosome(2), _

 crowding_factor_group(i).chromosome(5))

 crowding_factor_group(i).fitness = my_ga_method.fitness_eval()

 Next

 worse_tag_number = crowding_factor_group(worse_individual(crowding_factor_group)).tag_number

 Return worse_tag_number

 End Function

 Function worse_individual(ByVal sent_crowding_factor_group() As phenome)

 Dim worse_index As Integer = 0

 For i As Integer = 1 To UBound(sent_crowding_factor_group)

 If sent_crowding_factor_group(worse_index).fitness > sent_crowding_factor_group(i).fitness Then

 worse_index = i

 End If

 Next

 Return worse_index

 End Function

 Function worst_individual(ByVal sent_phenome() As phenome)

 Dim worst_index As Integer

 For i As Integer = 1 To UBound(sent_phenome)

 If sent_phenome(worst_index).fitness > sent_phenome(i).fitness Then

 worst_index = i

 End If

 Next

 Return worst_index

 End Function

70

 Function best_individual(ByVal sent_phenome() As phenome)

 Dim best_index As Integer

 For i As Integer = 1 To UBound(sent_phenome)

 If sent_phenome(best_index).fitness < sent_phenome(i).fitness Then

 best_index = i

 End If

 Next

 Return best_index

 End Function

 Function crowding_select_similar_individuals(ByVal sent_crowding_group() As phenome, _

 ByVal sent_offspring As phenome)

 Dim most_similar_phenome As New phenome

 Dim phenotypic_distance As Double

 Dim most_similar_individual As Integer = 0

 For i As Integer = 1 To UBound(sent_crowding_group)

 phenotypic_distance = Math.Abs(sent_offspring.decoded_value -

sent_crowding_group(most_similar_individual).decoded_value)

 If Math.Abs(sent_offspring.decoded_value - sent_crowding_group(i).decoded_value) < phenotypic_distance Then

 most_similar_individual = i

 End If

 Next

 most_similar_phenome = sent_crowding_group(most_similar_individual).clone

 Return most_similar_phenome

 End Function

 Sub crowding(ByVal sent_crowd_index() As Integer, ByVal sent_phenome() As phenome)

 For i As Integer = 0 To my_parameters.crowding_size - 1

 ReDim Preserve crowd_phenome(i)

 crowd_phenome(i) = New phenome

 crowd_phenome(i) = sent_phenome(sent_crowd_index(i)).clone

 crowd_phenome(i).decoded_value = my_ga_method.heat_transfer_eval(crowd_phenome(i).chromosome(1), _

 crowd_phenome(i).chromosome(4), crowd_phenome(i).chromosome(3), crowd_phenome(i).chromosome(0), _

 crowd_phenome(i).chromosome(2), crowd_phenome(i).chromosome(5))

 For j As Integer = 0 To my_parameters.bits_length

 If crowd_phenome(i).chromosome(j) = 0 Then

 MsgBox("!")

 End If

 Next

 Next

 End Sub

 Function find_similar_mate_index(ByVal crowd_group() As phenome, ByVal parent As phenome)

71

 Dim phenotypic_distance As Double

 phenotypic_distance = 0

 Dim most_similar_index As Integer = 0

 For i As Integer = 1 To UBound(crowd_group)

 phenotypic_distance = Math.Abs(parent.decoded_value - crowd_group(most_similar_index).decoded_value)

 If Math.Abs(parent.decoded_value - crowd_group(i).decoded_value) < phenotypic_distance Then

 most_similar_index = i

 End If

 Next

 Return most_similar_index

 End Function

 Sub initiate()

 For i As Integer = 0 To my_parameters.solution_space - 1

 ReDim Preserve my_phenome(i)

 my_phenome(i) = New phenome

 my_phenome(i).create(my_parameters.bits_length, i)

 Next

 preprocess()

 find_values()

 'the following code is used if removal of array element is needed

 ''2. order Is maintained

 'Dim j As Long, N As Long = 25

 ''assumes N is the position In MyArray to remove

 'For j = N To UBound(my_phenome) - 1

 ' my_phenome(j) = my_phenome(j + 1)

 'Next j

 'ReDim Preserve my_phenome(UBound(my_phenome) - 1)

 End Sub

 'assign random numbers to chromosome

 Sub preprocess()

 Hi(0) = 0.05

 Hi(1) = 0.85

 Hi(2) = 1 / 3

 Hi(3) = 0.03

 Hi(4) = 0.85

 Hi(5) = 1 / 3

 Lo(0) = 0.046

 Lo(1) = 0.71

 Lo(2) = 1 / 3

 Lo(3) = 0.02

 Lo(4) = 0.71

 Lo(5) = 1 / 3

72

 ReDim matrix_random(my_parameters.solution_space - 1, my_parameters.bits_length)

 For i As Integer = 0 To UBound(matrix_random, 1)

 For j As Integer = 0 To UBound(matrix_random, 2)

 If j = 0 Then

 matrix_random(i, j) = Math.Round(((Hi(j) - Lo(j)) * Random() + Lo(j)), 5)

 ElseIf j = 1 Then

 matrix_random(i, j) = Math.Round(((Hi(j) - Lo(j)) * Random() + Lo(j)), 4)

 ElseIf j = 2 Then

 matrix_random(i, j) = ((Hi(j) - Lo(j)) * Random() + Lo(j))

 ElseIf j = 3 Then

 matrix_random(i, j) = Math.Round(((Hi(j) - Lo(j)) * Random() + Lo(j)), 5)

 ElseIf j = 4 Then

 matrix_random(i, j) = Math.Round(((Hi(j) - Lo(j)) * Random() + Lo(j)), 4)

 ElseIf j = 5 Then

 matrix_random(i, j) = ((Hi(j) - Lo(j)) * Random() + Lo(j))

 End If

 Next

 Next

 For i As Integer = 0 To my_parameters.solution_space - 1

 For j As Integer = 0 To my_parameters.bits_length

 my_phenome(i).chromosome(j) = matrix_random(i, j)

 Next

 Next

 End Sub

 'Sub take_chromo(ByVal index As Integer, ByVal sent_phenome As phenome)

 ' sent_phenome.chromosome = my_genepool(index).chroms

 ' my_genepool(index).taken_status = my_genepool(index).taken_status + 1

 'End Sub

 Sub find_values()

 For i As Integer = 0 To UBound(my_phenome)

 my_phenome(i).decoded_value = my_ga_method.heat_transfer_eval(my_phenome(i).chromosome(1), _

 my_phenome(i).chromosome(4), _

 my_phenome(i).chromosome(3), _

 my_phenome(i).chromosome(0), _

 my_phenome(i).chromosome(2), _

 my_phenome(i).chromosome(5))

 my_phenome(i).fitness = my_ga_method.fitness_eval()

 Next

 End Sub

 Sub gather_data()

 Dim counter As Integer = 0

 Form1.WorkbookView1.GetLock()

73

 If Form1.WorkbookView1.ActiveWorksheet.Cells(0, 0).Value = 0 Then

 MsgBox("please key in values first")

 Else

 Do

 If Not Form1.WorkbookView1.ActiveWorksheet.Cells(counter, 0).Value = 0 Then

 counter = counter + 1

 Else

 Exit Do

 End If

 Loop

 experiment_counter = counter

 ReDim myheatx_param.ki(experiment_counter - 1)

 ReDim myheatx_param.ko(experiment_counter - 1)

 ReDim myheatx_param.Pri(experiment_counter - 1)

 ReDim myheatx_param.Pro(experiment_counter - 1)

 ReDim myheatx_param.Qexp(experiment_counter - 1)

 ReDim myheatx_param.Rei(experiment_counter - 1)

 ReDim myheatx_param.Reo(experiment_counter - 1)

 ReDim myheatx_param.Rw(experiment_counter - 1)

 ReDim myheatx_param.LMTD(experiment_counter - 1)

 ReDim myheatx_param.Qga(experiment_counter - 1)

 ReDim error_holder(experiment_counter - 1)

 For j As Integer = 0 To experiment_counter - 1

 myheatx_param.ki(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 0).Value

 myheatx_param.ko(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 1).Value

 myheatx_param.Pri(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 2).Value

 myheatx_param.Pro(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 3).Value

 myheatx_param.Qexp(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 4).Value

 myheatx_param.Rei(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 5).Value

 myheatx_param.Reo(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 6).Value

 myheatx_param.Rw(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 7).Value

 myheatx_param.LMTD(j) = Form1.WorkbookView1.ActiveWorksheet.Cells(j, 8).Value

 Next

 Form1.Button2.Enabled = True

 End If

 Form1.WorkbookView1.ReleaseLock()

 End Sub

 Class phenome

 Implements ICloneable

 Public chromosome() As Double

 Public decoded_value As Double

 Public fitness As Double

 Public tag_number As Integer

 Sub New()

 End Sub

 Sub create(ByVal bits_length As Integer, Optional ByVal index As Integer = 0)

 ReDim chromosome(bits_length)

74

 tag_number = index

 End Sub

 Public Sub New(ByVal old_chrome() As Double, ByVal old_tag As Integer)

 chromosome = old_chrome

 tag_number = old_tag

 End Sub

 Public Function clone() As Object Implements System.ICloneable.Clone

 Dim clone_chromosome() As Double

 Dim clone_tag As Integer

 ReDim clone_chromosome(Me.chromosome.Length - 1)

 clone_chromosome = Me.chromosome.Clone

 clone_tag = Me.tag_number

 Dim instance As New phenome(clone_chromosome, clone_tag)

 Return instance

 End Function

 End Class

 Class GA_methods

 Public Function find_real_number(ByVal myphenome As phenome)

 Dim real_number As Double = 0

 Dim inc As Integer = 0

 For i As Integer = UBound(myphenome.chromosome) To 0 Step -1

 real_number = real_number + myphenome.chromosome(inc) * (2 ^ i)

 inc = inc + 1

 Next

 Return real_number

 End Function

 Public Function objective_function(ByVal parameter As Double)

 Dim objective As Double

 objective = 800 - 62.83 * ((2 * parameter) + (0.91 * parameter ^ -0.2))

 Return objective

 End Function

 Public Function fitness_eval()

 fitness_eval = 0

75

 fitness_level = 0

 For i As Integer = 0 To experiment_counter - 1

 fitness_eval = fitness_eval + Math.Abs(myheatx_param.Qexp(i) - myheatx_param.Qga(i))

 fitness_level = fitness_level + Math.Abs(myheatx_param.Qexp(i) - myheatx_param.Qga(i))

 Next

 fitness_eval = 1 / fitness_eval

 End Function

 Public Function heat_transfer_eval(ByVal Rei_coeff As Double, ByVal Reo_coeff As Double, ByVal cons_coeff_outer

As Double, _

 ByVal cons_coeff_inner As Double, ByVal Pri_coeff As Double, ByVal Pro_coeff As Double)

 Dim totalQ As Double = 0

 Dim U() As Double

 ReDim U(experiment_counter - 1)

 Dim hi As Double

 Dim ho As Double

 For i As Integer = 0 To UBound(U)

 hi = (cons_coeff_inner * (myheatx_param.Rei(i) ^ Rei_coeff) * (myheatx_param.Pri(i) ^ Pri_coeff) *

myheatx_param.ki(i) / 0.01792)

 ho = (cons_coeff_outer * (myheatx_param.Reo(i) ^ Reo_coeff) * (myheatx_param.Pro(i) ^ Pro_coeff) *

myheatx_param.ko(i) / 0.004)

 U(i) = (1 / (hi * 0.1678336)) + (1 / (ho * 0.208106171)) + myheatx_param.Rw(i)

 myheatx_param.Qga(i) = (1 / U(i)) * myheatx_param.LMTD(i)

 Next

 For i As Integer = 0 To UBound(myheatx_param.Qga)

 totalQ = totalQ + myheatx_param.Qga(i)

 Next

 Return totalQ

 End Function

 End Class

 Function get_max()

 Dim counter As Integer = 0

 For i As Integer = 1 To UBound(error_holder)

 If error_holder(counter) < error_holder(i) Then

 counter = i

 End If

 Next

 Return counter

 End Function

 Class parameters

 Public no_of_generations As Integer = 10

 Public bits_length As Integer = 5

 Public solution_space As Integer = 150

 Public crowding_size As Integer = 10

 Public crowding_groups As Integer = 8 'number of crowding groups

76

 Public crowding_group_size As Integer = 8 'number of individuals per crowding group

 Public mutation_rate As Double = 0.0005

 End Class

 Class genepool

 Public chroms(my_parameters.bits_length - 1) As Integer

 Public real_value As Integer

 Public taken_status As Integer

 End Class

 Class heatx_params

 Public Reo() As Double

 Public Pro() As Double

 Public ko() As Double

 Public Rw() As Double

 Public Rei() As Double

 Public Pri() As Double

 Public ki() As Double

 Public Qexp() As Double

 Public LMTD() As Double

 Public Qga() As Double

 End Class

End Module

Software Demonstration (Screenshots)

77

- All the necessary inputs required by GA are inserted in this interface.

- This values will provide the necessary information to obtain the heat transfer rate,

based on the Q=UA∆TLMTD relationship.

- The “RUN” button is clicked and the results will be shown if the termination

criterion is fulfilled.

- In this case, as an example, from the figure above, the Nusselt correlations are

Nuin=0.704Re
0.563

Pr
0.333333

, Nuout=1.753Re
0.589

Pr
0.333333

